Simulation Study on Jet Formability and Damage Characteristics of a Low-Density Material Liner
Tang, Wenhui; Ran, Xianwen
2018-01-01
The shaped charge tandem warhead is an effective weapon against the ERA (explosive reactive armor). Whether the pre-warhead can reliably initiate the ERA directly determines the entire performance of the tandem warhead. The existing shaped charge pre-warhead mostly adopts a metal shaped jet, which effectively initiates the ERA, but interferes the main shaped jet. This article, on the other hand, explores the possibility of producing a pre-warhead using a low-density material as the liner. The nonlinear dynamic analysis software Autodyn-2D is used to simulate and compare three kinds of low-density shaped jets, including floatglass, Lucite, and Plexiglas, to the copper shaped jet in the effectiveness of impacting ERA. Based on the integrative criteria (including u-d initiation criterion, explosive reactive degree, explosive pressure, and particle velocity of the panels), it can be determined whether the low-density shaped jet can reliably initiate the sandwich charge. The results show that the three kinds of low-density shaped jets can not only initiate the reaction armor, but are also superior to the existing copper shaped jet in ductility, jet tip velocity, jet tip diameter, and the mass; namely, it is feasible to use the low-density material shaped jet to destroy the ERA. PMID:29300351
Energy transfer through a multi-layer liner for shaped charges
Skolnick, Saul; Goodman, Albert
1985-01-01
This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.
Longitudinal bunch shaping of picosecond high-charge MeV electron beams
Beaudoin, B. L.; Thangaraj, J. C. T.; Edstrom, Jr., D.; ...
2016-10-20
With ever increasing demands for intensities in modern accelerators, the understanding of space-charge effects becomes crucial. Herein are presented measurements of optically shaped picosecond-long electron beams in a superconducting L-band linac over a wide range of charges, from 0.2 nC to 3.4 nC. At low charges, the shape of the electron beam is preserved, while at higher charge densities, modulations on the beam convert to energy modulations. Here, energy profile measurements using a spectrometer and time profile measurements using a streak camera reveal the dynamics of longitudinal space-charge on MeV-scale electron beams.
Komsa, Darya N; Staroverov, Viktor N
2016-11-08
Standard density-functional approximations often incorrectly predict that heteronuclear diatomic molecules dissociate into fractionally charged atoms. We demonstrate that these spurious charges can be eliminated by adapting the shape-correction method for Kohn-Sham potentials that was originally introduced to improve Rydberg excitation energies [ Phys. Rev. Lett. 2012 , 108 , 253005 ]. Specifically, we show that if a suitably determined fraction of electron charge is added to or removed from a frontier Kohn-Sham orbital level, the approximate Kohn-Sham potential of a stretched molecule self-corrects by developing a semblance of step structure; if this potential is used to obtain the electron density of the neutral molecule, charge delocalization is blocked and spurious fractional charges disappear beyond a certain internuclear distance.
Charge density on thin straight wire, revisited
NASA Astrophysics Data System (ADS)
Jackson, J. D.
2000-09-01
The question of the equilibrium linear charge density on a charged straight conducting "wire" of finite length as its cross-sectional dimension becomes vanishingly small relative to the length is revisited in our didactic presentation. We first consider the wire as the limit of a prolate spheroidal conductor with semi-minor axis a and semi-major axis c when a/c<<1. We then treat an azimuthally symmetric straight conductor of length 2c and variable radius r(z) whose scale is defined by a parameter a. A procedure is developed to find the linear charge density λ(z) as an expansion in powers of 1/Λ, where Λ≡ln(4c2/a2), beginning with a uniform line charge density λ0. We show, for this rather general wire, that in the limit Λ>>1 the linear charge density becomes essentially uniform, but that the tiny nonuniformity (of order 1/Λ) is sufficient to produce a tangential electric field (of order Λ0) that cancels the zeroth-order field that naively seems to belie equilibrium. We specialize to a right circular cylinder and obtain the linear charge density explicitly, correct to order 1/Λ2 inclusive, and also the capacitance of a long isolated charged cylinder, a result anticipated in the published literature 37 years ago. The results for the cylinder are compared with published numerical computations. The second-order correction to the charge density is calculated numerically for a sampling of other shapes to show that the details of the distribution for finite 1/Λ vary with the shape, even though density becomes constant in the limit Λ→∞. We give a second method of finding the charge distribution on the cylinder, one that approximates the charge density by a finite polynomial in z2 and requires the solution of a coupled set of linear algebraic equations. Perhaps the most striking general observation is that the approach to uniformity as a/c→0 is extremely slow.
NASA Astrophysics Data System (ADS)
Shukri, Seyfan Kelil
2017-01-01
We have done Kinetic Monte Carlo (KMC) simulations to investigate the effect of charge carrier density on the electrical conductivity and carrier mobility in disordered organic semiconductors using a lattice model. The density of state (DOS) of the system are considered to be Gaussian and exponential. Our simulations reveal that the mobility of the charge carrier increases with charge carrier density for both DOSs. In contrast, the mobility of charge carriers decreases as the disorder increases. In addition the shape of the DOS has a significance effect on the charge transport properties as a function of density which are clearly seen. On the other hand, for the same distribution width and at low carrier density, the change occurred on the conductivity and mobility for a Gaussian DOS is more pronounced than that for the exponential DOS.
Henderson, Douglas; Silvestre-Alcantara, Whasington; Kaja, Monika; ...
2016-08-18
Here, the density functional theory is applied to a study of the structure and differential capacitance of a planar electric double layer formed by a valency asymmetric mixture of charged dimers and monomers. The dimer consists of two tangentially tethered hard spheres of equal diameters of which one is charged and the other is neutral, while the monomer is a charged hard sphere of the same size. The dimer electrolyte is next to a uniformly charged, smooth planar electrode. The electrode-particle singlet distributions, the mean electrostatic potential, and the differential capacitance for the model double layer are evaluated for amore » 2:1/1:2 valency electrolyte at a given concentration. Important consequences of asymmetry in charges and in ion shapes are (i) a finite, non-zero potential of zero charge, and (ii) asymmetric shaped 2:1 and 1:2 capacitance curves which are not mirror images of each other. Comparisons of the density functional results with the corresponding Monte Carlo simulations show the theoretical predictions to be in good agreement with the simulations overall except near zero surface charge.« less
Pressure enhanced penetration with shaped charge perforators
Glenn, Lewis A.
2001-01-01
A downhole tool, adapted to retain a shaped charge surrounded by a superatmospherically pressurized light gas, is employed in a method for perforating a casing and penetrating reservoir rock around a wellbore. Penetration of a shaped charge jet can be enhanced by at least 40% by imploding a liner in the high pressure, light gas atmosphere. The gas pressure helps confine the jet on the axis of penetration in the latter stages of formation. The light gas, such as helium or hydrogen, is employed to keep the gas density low enough so as not to inhibit liner collapse.
NASA Technical Reports Server (NTRS)
Hoch, Edward L.; Hallinan, Thomas J.; Stenbaek-Nielsen, Hans C.
1994-01-01
Intensity-calibrated color video recordings of three barium-shaped charge injections in the ionopshere were used to determine the initial ionization, the column density corresponding to unity optical depth, and the yield of vaporized barium in the fast jet. It was found that the initial ionization at the burst was less than 1% and that 0% burst ionization was consistent with the observations. Owing to the Doppler shift, the column density for optical thickness in the neutral barium varies somewhat according to the velocity distribution. For the cases examined here, the column density was 2-5 x 10(exp 10) atoms/sq cm. This value, which occurred 12 to 15 s after release, should be approximately valid for most shaped charge experiments. The yield was near 30% (15% in the fast jet) for two of the releases and was somewhat lower in the third, which also had a lower peak velocity. This study also demonstrated the applicability of the computer simulation code developed for chemical releases by Stenbaek-Nielsen and provided experimental verification of the Doppler-corrected emission rates calculated b Stenbaek-Nielsen (1989).
Structure of the charge density wave in cuprate superconductors: Lessons from NMR
NASA Astrophysics Data System (ADS)
Atkinson, W. A.; Ufkes, S.; Kampf, A. P.
2018-03-01
Using a mix of numerical and analytic methods, we show that recent NMR 17O measurements provide detailed information about the structure of the charge-density wave (CDW) phase in underdoped YBa2Cu3O6 +x . We perform Bogoliubov-de Gennes (BdG) calculations of both the local density of states and the orbitally resolved charge density, which are closely related to the magnetic and electric quadrupole contributions to the NMR spectrum, using a microscopic model that was shown previously to agree closely with x-ray experiments. The BdG results reproduce qualitative features of the experimental spectrum extremely well. These results are interpreted in terms of a generic "hot-spot" model that allows one to trace the origins of the NMR line shapes. We find that four quantities—the orbital character of the Fermi surface at the hot spots, the Fermi surface curvature at the hot spots, the CDW correlation length, and the magnitude of the subdominant CDW component—are key in determining the line shapes.
Oxygen vacancy effects in HfO2-based resistive switching memory: First principle study
NASA Astrophysics Data System (ADS)
Dai, Yuehua; Pan, Zhiyong; Wang, Feifei; Li, Xiaofeng
2016-08-01
The work investigated the shape and orientation of oxygen vacancy clusters in HfO2-base resistive random access memory (ReRAM) by using the first-principle method based on the density functional theory. Firstly, the formation energy of different local Vo clusters was calculated in four established orientation systems. Then, the optimized orientation and charger conductor shape were identified by comparing the isosurface plots of partial charge density, formation energy, and the highest isosurface value of oxygen vacancy. The calculated results revealed that the [010] orientation was the optimal migration path of Vo, and the shape of system D4 was the best charge conductor in HfO2, which effectively influenced the SET voltage, formation voltage and the ON/OFF ratio of the device. Afterwards, the PDOS of Hf near Vo and total density of states of the system D4_010 were obtained, revealing the composition of charge conductor was oxygen vacancy instead of metal Hf. Furthermore, the migration barriers of the Vo hopping between neighboring unit cells were calculated along four different orientations. The motion was proved along [010] orientation. The optimal circulation path for Vo migration in the HfO2 super-cell was obtained.
Numerical Simulations of Flow Separation Control in Low-Pressure Turbines using Plasma Actuators
NASA Technical Reports Server (NTRS)
Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.
2007-01-01
A recently introduced phenomenological model to simulate flow control applications using plasma actuators has been further developed and improved in order to expand its use to complicated actuator geometries. The new modeling approach eliminates the requirement of an empirical charge density distribution shape by using the embedded electrode as a source for the charge density. The resulting model is validated against a flat plate experiment with quiescent environment. The modeling approach incorporates the effect of the plasma actuators on the external flow into Navier Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. The model solves the Maxwell equation to obtain the electric field due to the applied AC voltage at the electrodes and an additional equation for the charge density distribution representing the plasma density. The new modeling approach solves the charge density equation in the computational domain assuming the embedded electrode as a source therefore automatically generating a charge density distribution on the surface exposed to the flow similar to that observed in the experiments without explicitly specifying an empirical distribution. The model is validated against a flat plate experiment with quiescent environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Guang; Jiang, Deen; Cummings, Peter T
Recent experiments have revealed that onion-like carbons (OLCs) offer high energy density and charging/discharging rates when used as the electrodes in supercapacitors. To understand the physical origin of this phenomenon, molecular dynamics simulations were performed for a room-temperature ionic liquid near idealized spherical OLCs with radii ranging from 0.356 to 1.223 nm. We find that the surface charge density increases almost linearly with the potential applied on electric double layers (EDLs) near OLCs. This leads to a nearly flat shape of the differential capacitance versus the potential, unlike the bell or camel shape observed on planar electrodes. Moreover, our simulationsmore » reveal that the capacitance of EDLs on OLCs increases with the curvature or as the OLC size decreases, in agreement with experimental observations. The curvature effect is explained by dominance of charge overscreening over a wide potential range and increased ion density per unit area of electrode surface as the OLC becomes smaller.« less
Quantum time crystal by decoherence: Proposal with an incommensurate charge density wave ring
NASA Astrophysics Data System (ADS)
Nakatsugawa, K.; Fujii, T.; Tanda, S.
2017-09-01
We show that time translation symmetry of a ring system with a macroscopic quantum ground state is broken by decoherence. In particular, we consider a ring-shaped incommensurate charge density wave (ICDW ring) threaded by a fluctuating magnetic flux: the Caldeira-Leggett model is used to model the fluctuating flux as a bath of harmonic oscillators. We show that the charge density expectation value of a quantized ICDW ring coupled to its environment oscillates periodically. The Hamiltonians considered in this model are time independent unlike "Floquet time crystals" considered recently. Our model forms a metastable quantum time crystal with a finite length in space and in time.
Huang, Jian; Pfeiffer, L N; West, K W
2014-01-24
In high quality updoped GaAs field-effect transistors, the two-dimensional charge carrier concentrations can be tuned to very low values similar to the density of electrons on helium surfaces. An important interaction effect, screening of the Coulomb interaction by the gate, rises as a result of the large charge spacing comparable to the distance between the channel and the gate. Based on the results of the temperature (T) dependence of the resistivity from measuring four different samples, a power-law characteristic is found for charge densities ≤2×10(9) cm(-2). Moreover, the exponent exhibits a universal dependence on a single dimensionless parameter, the ratio between the mean carrier separation and the distance to the metallic gate that screens the Coulomb interaction. Thus, the electronic properties are tuned through varying the shape of the interaction potential.
Murphy, Michael J.
1993-01-01
An open apex shape charge explosive device is disclosed having an inner liner defining a truncated cone, an explosive charge surrounding the truncated inner liner, a primer charge, and a disc located between the inner liner and the primer charge for directing the detonation of the primer charge around the end edge of the disc means to the explosive materials surrounding the inner liner. The disc comprises a material having one or more of: a higher compressive strength, a higher hardness, and/or a higher density than the material comprising the inner liner, thereby enabling the disc to resist deformation until the liner collapses. The disc has a slide surface thereon on which the end edge of the inner liner slides inwardly toward the vertical axis of the device during detonation of the main explosive surrounding the inner liner, to thereby facilitate the inward collapse of the inner liner. In a preferred embodiment, the geometry of the slide surface is adjusted to further control the collapse or .beta. angle of the inner liner.
Murphy, M.J.
1993-10-12
An open apex shape charge explosive device is disclosed having an inner liner defining a truncated cone, an explosive charge surrounding the truncated inner liner, a primer charge, and a disc located between the inner liner and the primer charge for directing the detonation of the primer charge around the end edge of the disc means to the explosive materials surrounding the inner liner. The disc comprises a material having one or more of: a higher compressive strength, a higher hardness, and/or a higher density than the material comprising the inner liner, thereby enabling the disc to resist deformation until the liner collapses. The disc has a slide surface thereon on which the end edge of the inner liner slides inwardly toward the vertical axis of the device during detonation of the main explosive surrounding the inner liner, to thereby facilitate the inward collapse of the inner liner. In a preferred embodiment, the geometry of the slide surface is adjusted to further control the collapse or [beta] angle of the inner liner. 12 figures.
NASA Astrophysics Data System (ADS)
Egwolf, Bernhard; Tavan, Paul
2004-01-01
We extend our continuum description of solvent dielectrics in molecular-dynamics (MD) simulations [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)], which has provided an efficient and accurate solution of the Poisson equation, to ionic solvents as described by the linearized Poisson-Boltzmann (LPB) equation. We start with the formulation of a general theory for the electrostatics of an arbitrarily shaped molecular system, which consists of partially charged atoms and is embedded in a LPB continuum. This theory represents the reaction field induced by the continuum in terms of charge and dipole densities localized within the molecular system. Because these densities cannot be calculated analytically for systems of arbitrary shape, we introduce an atom-based discretization and a set of carefully designed approximations. This allows us to represent the densities by charges and dipoles located at the atoms. Coupled systems of linear equations determine these multipoles and can be rapidly solved by iteration during a MD simulation. The multipoles yield the reaction field forces and energies. Finally, we scrutinize the quality of our approach by comparisons with an analytical solution restricted to perfectly spherical systems and with results of a finite difference method.
Singu, Bal Sydulu; Hong, Sang Eun; Yoon, Kuk Ro
2016-06-01
Sea-urchin shaped α-MnO2 hierarchical nano structures have been synthesized by facile thermal method without using any hard or soft template under the mild conditions. The structural and morphology of the 3D-MnO2 was characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). From the XRD analysis indicates that MnO2 present in the α form. Morphology analysis shows that α-MnO2 sea-urchins are made by stacked nanorods, the diameter and length of the stacked nanorods present in the range of 50-120 nm and 200-400 nm respectively. The electrochemical behaviour of α-MnO2 has been investigated by cyclic voltammetry (CV) and charge-discharge (CD). The specific capacitance, energy density and power density are 212.0 F g(-1), 21.2 Wh kg(-1) and 1200 W kg(-1) respectively at the current density of 2 A g(-1). The retention of the specific capacitance after completion of 1000 charge-discharge cycles is around 97%. The results reveal that the prepared Sea-urchin shaped α-MnO2 has high specific capacitance and exhibit excellent cycle life.
Space charge effect in spectrometers of ion mobility increment with planar drift chamber.
Elistratov, A A; Sherbakov, L A
2007-01-01
The effect of space charge on the ion beam in a spectrometer of ion mobility increment with the planar drift chamber has been investigated. A model for the drift of ions under a non-uniform high-frequency electric field(1-3) has been developed recently. We have amplified this model by taking space charge effect into account. The ion peak shape taking into consideration the space charge effect is obtained. The output current saturation effect limiting the rise of the ion peak with increasing ion density at the input of the drift chamber of a spectrometer is observed. We show that the saturation effect is caused by the following phenomenon. The maximum possible output ion density exists, depending on the ion type (constant ion mobility, k(0)) and the time of the motion of ions through the drift chamber. At the same time, the ion density does not depend on the parameters of the drift chamber.
Lee, Jiunn-Fwu; Mortland, Max M.; Chiou, Cary T.; Kite, Daniel E.; Boyd, Stephen A.
1990-01-01
A high-charge smectite from Arizona [cation-exchange capacity (CEC) = 120 meq/100 g] and a low-charge smectite from Wyoming (CEC = 90 meq/100 g) were used to prepare homoionic tetramethylammonium (TMA)-clay complexes. The adsorption of benzene, toluene, and o-xylene as vapors by the dry TMA-clays and as solutes from water by the wet TMA-clays was studied. The adsorption of the organic vapors by the dry TMA-smectite samples was strong and apparently consisted of interactions with both the aluminosilicate mineral surfaces and the TMA exchange ions in the interlayers. In the adsorption of organic vapors, the closer packing of TMA ions in the dry high-charge TMA-smectite, compared with the dry low-charge TMA-smectite, resulted in a somewhat higher degree of shape-selective adsorption of benzene, toluene, and xylene. In the presence of water, the adsorption capacities of both samples for the aromatic compounds were significantly reduced, although the uptake of benzene from water by the low-charge TMA-smectite was still substantial. This lower sorption capacity was accompanied by increased shape-selectivity for the aromatic compounds. The reduction in uptake and increased selectivity was much more pronounced for the water-saturated, high-charge TMA-smectite than for the low-charge TMA-smectite. Hydration of the TMA exchange ions and/or the mineral surfaces apparently reduced the accessibility of the aromatic molecules to interlamellar regions. The resulting water-induced sieving effect was greater for the high-charge TMA-smectite due to the higher density of exchanged TMA-ions. The low-charge Wyoming TMA-smectite was a highly effective adsorbent for removing benzene from water and may be useful for purifying benzene-contaminated water.
Lokar, Marusa; Urbanija, Jasna; Frank, Mojca; Hägerstrand, Henry; Rozman, Blaz; Bobrowska-Hägerstrand, Malgorzata; Iglic, Ales; Kralj-Iglic, Veronika
2008-08-01
Plasma protein-mediated attractive interaction between membranes of red blood cells (RBCs) and phospholipid vesicles was studied. It is shown that beta(2)-glycoprotein I (beta(2)-GPI) may induce RBC discocyte-echinocyte-spherocyte shape transformation and subsequent agglutination of RBCs. Based on the observed beta(2)-GPI-induced RBC cell shape transformation it is proposed that the hydrophobic portion of beta(2)-GPI molecule protrudes into the outer lipid layer of the RBC membrane and increases the area of this layer. It is also suggested that the observed agglutination of RBCs is at least partially driven by an attractive force which is of electrostatic origin and depends on the specific molecular shape and internal charge distribution of membrane-bound beta(2)-GPI molecules. The suggested beta(2)-GPI-induced attractive electrostatic interaction between like-charged RBC membrane surfaces is qualitatively explained by using a simple mathematical model within the functional density theory of the electric double layer, where the electrostatic attraction between the positively charged part of the first domains of bound beta(2)-GPI molecules and negatively charged glycocalyx of the adjacent RBC membrane is taken into account.
Nonequilibrium optical conductivity: General theory and application to transient phases
NASA Astrophysics Data System (ADS)
Kennes, D. M.; Wilner, E. Y.; Reichman, D. R.; Millis, A. J.
2017-08-01
A nonequilibrium theory of optical conductivity of dirty-limit superconductors and commensurate charge density wave is presented. We discuss the current response to different experimentally relevant light-field probe pulses and show that a single frequency definition of the optical conductivity σ (ω )≡j (ω )/E (ω ) is difficult to interpret out of the adiabatic limit. We identify characteristic time-domain signatures distinguishing between superconducting, normal-metal, and charge density wave states. We also suggest a route to directly address the instantaneous superfluid stiffness of a superconductor by shaping the probe light field.
Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy
NASA Astrophysics Data System (ADS)
Raeder, S.; Ackermann, D.; Backe, H.; Beerwerth, R.; Berengut, J. C.; Block, M.; Borschevsky, A.; Cheal, B.; Chhetri, P.; Düllmann, Ch. E.; Dzuba, V. A.; Eliav, E.; Even, J.; Ferrer, R.; Flambaum, V. V.; Fritzsche, S.; Giacoppo, F.; Götz, S.; Heßberger, F. P.; Huyse, M.; Kaldor, U.; Kaleja, O.; Khuyagbaatar, J.; Kunz, P.; Laatiaoui, M.; Lautenschläger, F.; Lauth, W.; Mistry, A. K.; Minaya Ramirez, E.; Nazarewicz, W.; Porsev, S. G.; Safronova, M. S.; Safronova, U. I.; Schuetrumpf, B.; Van Duppen, P.; Walther, T.; Wraith, C.; Yakushev, A.
2018-06-01
Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of
NASA Astrophysics Data System (ADS)
Roelofs, W. S. C.; Mathijssen, S. G. J.; Janssen, R. A. J.; de Leeuw, D. M.; Kemerink, M.
2012-02-01
The width and shape of the density of states (DOS) are key parameters to describe the charge transport of organic semiconductors. Here we extract the DOS using scanning Kelvin probe microscopy on a self-assembled monolayer field effect transistor (SAMFET). The semiconductor is only a single monolayer which has allowed extraction of the DOS over a wide energy range, pushing the methodology to its fundamental limit. The measured DOS consists of an exponential distribution of deep states with additional localized states on top. The charge transport has been calculated in a generic variable range-hopping model that allows any DOS as input. We show that with the experimentally extracted DOS an excellent agreement between measured and calculated transfer curves is obtained. This shows that detailed knowledge of the density of states is a prerequisite to consistently describe the transfer characteristics of organic field effect transistors.
Geometrical Description of fractional quantum Hall quasiparticles
NASA Astrophysics Data System (ADS)
Park, Yeje; Yang, Bo; Haldane, F. D. M.
2012-02-01
We examine a description of fractional quantum Hall quasiparticles and quasiholes suggested by a recent geometrical approach (F. D. M. Haldane, Phys. Rev. Lett. 108, 116801 (2011)) to FQH systems, where the local excess electric charge density in the incompressible state is given by a topologically-quantized ``guiding-center spin'' times the Gaussian curvature of a ``guiding-center metric tensor'' that characterizes the local shape of the correlation hole around electrons in the fluid. We use a phenomenological energy function with two ingredients: the shear distortion energy of area-preserving distortions of the fluid, and a local (short-range) approximation to the Coulomb energy of the fluctuation of charge density associated with the Gaussian curvature. Quasiparticles and quasiholes of the 1/3 Laughlin state are modeled as ``punctures'' in the incompressible fluid which then relax by geometric distortion which generates Gaussian curvature, giving rise to the charge-density profile around the topological excitation.
HPAM: Hirshfeld Partitioned Atomic Multipoles
Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.
2011-01-01
An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank lmax on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from lmax = 0 (atomic charges) to lmax = 4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank lmax are shown to exactly reproduce ab initio molecular multipole moments of rank L for L ≤ lmax. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only (lmax = 0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. PMID:22140274
Characterizing the surface charge of synthetic nanomembranes by the streaming potential method
Datta, Subhra; Conlisk, A. T.; Kanani, Dharmesh M.; Zydney, Andrew L.; Fissell, William H.; Roy, Shuvo
2010-01-01
The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt concentration on the ionic mobilities and the thickness of the deposited layer of PEG. Theoretical interpretation of the streaming potential data collected from silicon membranes having nanoscale pore sizes, with/without pore wall surface modification with PEG, indicates that finite electric double layer (EDL) effects in the pore-confined electrolyte significantly affect the interpretation of the membrane charge and that surface modification with PEG leads to a reduction in the pore wall surface charge density. The theoretical model is also used to study the relative significance of the following uniquely nanoscale factors affecting the interpretation of streaming potential in moderate to strongly charged pores: altered net charge convection by applied pressure differentials, surface-charge effects on ionic conduction, and electroosmotic convection of charges. PMID:20462592
Universality of quantum information in chaotic CFTs
NASA Astrophysics Data System (ADS)
Lashkari, Nima; Dymarsky, Anatoly; Liu, Hong
2018-03-01
We study the Eigenstate Thermalization Hypothesis (ETH) in chaotic conformal field theories (CFTs) of arbitrary dimensions. Assuming local ETH, we compute the reduced density matrix of a ball-shaped subsystem of finite size in the infinite volume limit when the full system is an energy eigenstate. This reduced density matrix is close in trace distance to a density matrix, to which we refer as the ETH density matrix, that is independent of all the details of an eigenstate except its energy and charges under global symmetries. In two dimensions, the ETH density matrix is universal for all theories with the same value of central charge. We argue that the ETH density matrix is close in trace distance to the reduced density matrix of the (micro)canonical ensemble. We support the argument in higher dimensions by comparing the Von Neumann entropy of the ETH density matrix with the entropy of a black hole in holographic systems in the low temperature limit. Finally, we generalize our analysis to the coherent states with energy density that varies slowly in space, and show that locally such states are well described by the ETH density matrix.
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yasar, C.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.
2016-03-01
The centrality dependence of the charged-particle pseudorapidity density measured with ALICE in Pb-Pb collisions at √{sNN} = 2.76 TeV over a broad pseudorapidity range is presented. This Letter extends the previous results reported by ALICE to more peripheral collisions. No strong change of the overall shape of charged-particle pseudorapidity density distributions with centrality is observed, and when normalised to the number of participating nucleons in the collisions, the evolution over pseudorapidity with centrality is likewise small. The broad pseudorapidity range (- 3.5 < η < 5) allows precise estimates of the total number of produced charged particles which we find to range from 162 ± 22(syst.) to 17170 ± 770(syst.) in 80-90% and 0-5% central collisions, respectively. The total charged-particle multiplicity is seen to approximately scale with the number of participating nucleons in the collision. This suggests that hard contributions to the charged-particle multiplicity are limited. The results are compared to models which describe dNch / dη at mid-rapidity in the most central Pb-Pb collisions and it is found that these models do not capture all features of the distributions.
Adam, J.; Adamová, D.; Aggarwal, M. M.; ...
2016-01-26
The centrality dependence of the charged-particle pseudorapidity density measured with ALICE in Pb-Pb collisions at √s NN = 2.76 TeV over a broad pseudorapidity range is presented. This Letter extends the previous results reported by ALICE to more peripheral collisions. No strong change of the overall shape of charged-particle pseudorapidity density distributions with centrality is observed, and when normalised to the number of participating nucleons in the collisions, the evolution over pseudorapidity with centrality is likewise small. Broadening the pseudorapidity range (-3.5 < η < 5) allows precise estimates of the total number of produced charged particles which we findmore » to range from 162 ± 22(syst.) to 17170 ± 770(syst.) in 80-90% and 0-5% central collisions, respectively. The total charged-particle multiplicity is seen to approximately scale with the number of participating nucleons in the collision. This suggests that hard contributions to the charged-particle multiplicity are limited. Our results are compared to models which describe dN ch/dη at mid-rapidity in the most central Pb-Pb collisions and it is found that these models do not capture all features of the distributions.« less
NASA Astrophysics Data System (ADS)
Kipp, Dylan; Ganesan, Venkat
2013-06-01
We develop a kinetic Monte Carlo model for photocurrent generation in organic solar cells that demonstrates improved agreement with experimental illuminated and dark current-voltage curves. In our model, we introduce a charge injection rate prefactor to correct for the electrode grid-size and electrode charge density biases apparent in the coarse-grained approximation of the electrode as a grid of single occupancy, charge-injecting reservoirs. We use the charge injection rate prefactor to control the portion of dark current attributed to each of four kinds of charge injection. By shifting the dark current between electrode-polymer pairs, we align the injection timescales and expand the applicability of the method to accommodate ohmic energy barriers. We consider the device characteristics of the ITO/PEDOT/PSS:PPDI:PBTT:Al system and demonstrate the manner in which our model captures the device charge densities unique to systems with small injection energy barriers. To elucidate the defining characteristics of our model, we first demonstrate the manner in which charge accumulation and band bending affect the shape and placement of the various current-voltage regimes. We then discuss the influence of various model parameters upon the current-voltage characteristics.
Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors.
Zhang, Yufei; Ma, Mingze; Yang, Jun; Sun, Chencheng; Su, Haiquan; Huang, Wei; Dong, Xiaochen
2014-08-21
In this work, a facile hydrothermal approach for the shape-controlled synthesis of NiCo2S4 architectures is reported. Four different morphologies, urchin-, tube-, flower-, and cubic-like NiCo2S4 microstructures, have been successfully synthesized by employing various solvents. The obtained precursors and products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. It is revealed that the supersaturation of nucleation and crystal growth is determined by the solvent polarity and solubility, which can precisely control the morphology of NiCo2S4 microstructures. The detailed electrochemical performances of the various NiCo2S4 microstructures are investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The results indicate that the tube-like NiCo2S4 exhibits promising capacitive properties with high capacitance and excellent retention. Its specific capacitance can reach 1048 F g(-1) at the current density of 3.0 A g(-1) and 75.9% of its initial capacitance is maintained at the current density of 10.0 A g(-1) after 5000 charge-discharge cycles.
Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors
NASA Astrophysics Data System (ADS)
Zhang, Yufei; Ma, Mingze; Yang, Jun; Sun, Chencheng; Su, Haiquan; Huang, Wei; Dong, Xiaochen
2014-07-01
In this work, a facile hydrothermal approach for the shape-controlled synthesis of NiCo2S4 architectures is reported. Four different morphologies, urchin-, tube-, flower-, and cubic-like NiCo2S4 microstructures, have been successfully synthesized by employing various solvents. The obtained precursors and products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. It is revealed that the supersaturation of nucleation and crystal growth is determined by the solvent polarity and solubility, which can precisely control the morphology of NiCo2S4 microstructures. The detailed electrochemical performances of the various NiCo2S4 microstructures are investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The results indicate that the tube-like NiCo2S4 exhibits promising capacitive properties with high capacitance and excellent retention. Its specific capacitance can reach 1048 F g-1 at the current density of 3.0 A g-1 and 75.9% of its initial capacitance is maintained at the current density of 10.0 A g-1 after 5000 charge-discharge cycles.
IBEX-lo Sky Maps of Secondary Interstellar Neutrals Helium and Oxygen
NASA Astrophysics Data System (ADS)
Kucharek, H.; Isenberg, P. A.; Jeewoo, P.; Kubiak, M. A.; Bzowski, M.
2017-12-01
There are several populations of heliospheric energetic neutral atoms (ENAs) generated at the various heliospheric interfaces, the inner heliosheath, outer heliosheath (OHS), and the termination shock (TS). Depending on where and how these ENAs are generated, they belong to different energy regimes. While interstellar neutral (ISN) particles flow through the heliospheric boundary is mostly unimpeded, a substantial fraction of ISN H and O is filtered through charge exchange with ambient plasma ions before reaching the TS. Secondary ISN atoms are generated by the charge exchange reaction between primary ISN atoms and interstellar ions in the outer heliosheath, forming walls of H and O in front of the heliopause (HP). The flowing interstellar plasma encounters the heliopause as an obstacle, which deflects the flow. Thus, secondary neutrals measured at 1 AU carry information about the deflected interstellar plasma and the shape of the heliopause that causes the deflection. Due to very different magnitudes of charge exchange cross sections, the main source of the secondary He is charge exchange with the OHS He+, while that of the secondary O is the charge exchange between interstellar O+ and the OHS H. Therefore, the oxygen results are drastically different from those of helium. Interstellar O+ ions behave in principle like the He+ particles with an over-density due to the plasma deceleration. The high density decelerated oxygen ions just upwind of the heliopause encounter an over-density in neutral hydrogen, the hydrogen wall, allowing frequent charge exchange that produce slow neutral oxygen atoms forming the oxygen wall. Thus, the distribution in the sky maps of secondary He and O carries information on the shape as well as the structures in front of it. To investigate the secondary component of the interstellar neutral in detail we have distinguish between the two secondary component's. We engaged theory and simulations for the primary and secondary components to determine differences of between measurements and model predicted data.
Space charge effect in spectrometers of ion mobility increment with cylindrical drift chamber.
Elistratov, A A; Sherbakov, L A
2007-01-01
We have amplified the model for the drift of ions under a non-uniform high-frequency electric field by taking space charge effect into account. By this means, we have investigated the effect of space charge on the dynamics of a single type of ions in a spectrometer of ion mobility increment with a cylindrical drift chamber. The counteraction of the space charge effect and the focusing effect is investigated. The output ion current saturation caused by the effect of the space charge is observed. The shape of the ion peak taking into consideration the space charge effect has been obtained. We show that the effect of the space charge is sufficient for the relative ion density greater than 10 ppt by order of magnitude (for a cylindrical geometry spectrometer with typical parameters).
Negative Differential Conductance in Polyporphyrin Oligomers with Nonlinear Backbones.
Kuang, Guowen; Chen, Shi Zhang; Yan, Linghao; Chen, Ke Qiu; Shang, Xuesong; Liu, Pei Nian; Lin, Nian
2018-01-17
We study negative differential conductance (NDC) effects in polyporphyrin oligomers with nonlinear backbones. Using a low-temperature scanning tunneling microscope, we selectively controlled the charge transport path in single oligomer wires. We observed robust NDC when charge passed through a T-shape junction, bistable NDC when charge passed through a 90° kink and no NDC when charge passed through a 120° kink. Aided by density functional theory with nonequilibrium Green's functions simulations, we attributed this backbone-dependent NDC to bias-modulated hybridization of the electrode states with the resonant transport molecular orbital. We argue this mechanism is generic in molecular systems, which opens a new route of designing molecular NDC devices.
Oxidation catalysis by polyoxometalates fundamental electron-transfer phenomena
Yurii V. Geletii; Rajai H. Atalla; Alan J. Bailey; Laurent Delannoy; Craig L. Hill; Ira A. Weinstock
2002-01-01
Early transition-metal oxygen-anion clusters (polyoxometalates, POMs) are a large and rapidly growing class of versatile and tunable oxidation catalysts. All key molecular properties of these clusters (composition, size, shape, charge density, reduction potential, solubility, etc.) can be systematically altered, and the clusters themselves can serve as tunable ligands...
Pion single and double charge exchange in the resonance region: Dynamical corrections
NASA Astrophysics Data System (ADS)
Johnson, Mikkel B.; Siciliano, E. R.
1983-04-01
We consider pion-nucleus elastic scattering and single- and double-charge-exchange scattering to isobaric analog states near the (3,3) resonance within an isospin invariant framework. We extend previous theories by introducing terms into the optical potential U that are quadratic in density and consistent with isospin invariance of the strong interaction. We study the sensitivity of single and double charge exchange angular distributions to parameters of the second-order potential both numerically, by integrating the Klein-Gordon equation, and analytically, by using semiclassical approximations that explicate the dependence of the exact numerical results to the parameters of U. The magnitude and shape of double charge exchange angular distributions are more sensitive to the isotensor term in U than has been hitherto appreciated. An examination of recent experimental data shows that puzzles in the shape of the 18O(π+, π-)18Ne angular distribution at 164 MeV and in the A dependence of the forward double charge exchange scattering on 18O, 26Mg, 42Ca, and 48Ca at the same energy may be resolved by adding an isotensor term in U. NUCLEAR REACTIONS Scattering theory for elastic, single-, and double-charge-exchange scattering to IAS in the region of the P33 resonance. Second-order effects on charge-exchange calculations of σ(A, θ).
Impurity Effects on Charging Mechanism and Energy Storage of Nanoporous Supercapacitors
Lian, Cheng; Liu, Kun; Liu, Honglai; ...
2017-06-08
Room-temperature ionic liquids (RTILs) have been widely used as electrolytes to enhance the capacitive performance of electrochemical capacitors also known as supercapacitors. Whereas impurities are ubiquitous in RTILs (e.g., water, alkali salts, and organic solvents), little is known about their influences on the electrochemical behavior of electrochemical devices. In this work, we investigate different impurities in RTILs within the micropores of carbon electrodes via the classical density functional theory (CDFT). We find that under certain conditions impurities can significantly change the charging behavior of electric double layers and the shape of differential capacitance curves even at very low concentrations. Moremore » interestingly, an impurity with a strong affinity to the nanopore can increase the energy density beyond a critical charging potential. As a result, our theoretical predictions provide further understanding of how impurity in RTILs affects the performance of supercapacitors.« less
Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K.
2017-11-01
We apply all-atom molecular dynamics simulations to describe the bulk morphology and interfacial structure of reline, a deep eutectic solvent comprising choline chloride and urea in 1:2 molar ratio, near neutral and charged graphene electrodes. For the bulk phase structural investigation, we analyze the simulated real-space radial distribution functions, X-ray/neutron scattering structure functions, and their partial components. Our study shows that both hydrogen-bonding and long-range correlations between different constituents of reline play a crucial role to lay out the bulk structure of reline. Further, we examine the variation of number density profiles, orientational order parameters, and electrostatic potentials near the neutral and charged graphene electrodes with varying electrode charge density. The present study reveals the presence of profound structural layering of not only the ionic components of reline but also urea near the electrodes. In addition, depending on the electrode charge density, the choline ions and urea molecules render different orientations near the electrodes. The simulated number density and electrostatic potential profiles for reline clearly show the presence of multilayer structures up to a distance of 1.2 nm from the respective electrodes. The observation of positive values of the surface potential at zero charge indicates the presence of significant nonelectrostatic attraction between the choline cation and graphene electrode. The computed differential capacitance (Cd) for reline exhibits an asymmetric bell-shaped curve, signifying different variation of Cd with positive and negative surface potentials.
Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study.
Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K
2017-11-21
We apply all-atom molecular dynamics simulations to describe the bulk morphology and interfacial structure of reline, a deep eutectic solvent comprising choline chloride and urea in 1:2 molar ratio, near neutral and charged graphene electrodes. For the bulk phase structural investigation, we analyze the simulated real-space radial distribution functions, X-ray/neutron scattering structure functions, and their partial components. Our study shows that both hydrogen-bonding and long-range correlations between different constituents of reline play a crucial role to lay out the bulk structure of reline. Further, we examine the variation of number density profiles, orientational order parameters, and electrostatic potentials near the neutral and charged graphene electrodes with varying electrode charge density. The present study reveals the presence of profound structural layering of not only the ionic components of reline but also urea near the electrodes. In addition, depending on the electrode charge density, the choline ions and urea molecules render different orientations near the electrodes. The simulated number density and electrostatic potential profiles for reline clearly show the presence of multilayer structures up to a distance of 1.2 nm from the respective electrodes. The observation of positive values of the surface potential at zero charge indicates the presence of significant nonelectrostatic attraction between the choline cation and graphene electrode. The computed differential capacitance (C d ) for reline exhibits an asymmetric bell-shaped curve, signifying different variation of C d with positive and negative surface potentials.
Peterson, David; Stofleth, Jerome H.; Saul, Venner W.
2017-07-11
Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.
Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction
NASA Astrophysics Data System (ADS)
Jang, Youn Jeong; Jang, Ji-Wook; Choi, Sun Hee; Kim, Jae Young; Kim, Ju Hun; Youn, Duck Hyun; Kim, Won Yong; Han, Suenghoon; Sung Lee, Jae
2015-04-01
Highly efficient tree branch-shaped CuO photocathodes are fabricated using the hybrid microwave annealing process with a silicon susceptor within 10 minutes. The unique hierarchical, one-dimensional structure provides more facile charge transport, larger surface areas, and increased crystallinity and crystal ordering with less defects compared to irregular-shaped CuO prepared by conventional thermal annealing. As a result, the photocathode fabricated with the tree branch-shaped CuO produces an unprecedently high photocurrent density of -4.4 mA cm-2 at 0 VRHE under AM 1.5 G simulated sunlight compared to -1.44 mA cm-2 observed for a photocathode fabricated by thermal annealing. It is also confirmed that stoichiometric hydrogen and oxygen are produced from photoelectrochemical water splitting on the tree branch-shaped CuO photocathode and a platinum anode.Highly efficient tree branch-shaped CuO photocathodes are fabricated using the hybrid microwave annealing process with a silicon susceptor within 10 minutes. The unique hierarchical, one-dimensional structure provides more facile charge transport, larger surface areas, and increased crystallinity and crystal ordering with less defects compared to irregular-shaped CuO prepared by conventional thermal annealing. As a result, the photocathode fabricated with the tree branch-shaped CuO produces an unprecedently high photocurrent density of -4.4 mA cm-2 at 0 VRHE under AM 1.5 G simulated sunlight compared to -1.44 mA cm-2 observed for a photocathode fabricated by thermal annealing. It is also confirmed that stoichiometric hydrogen and oxygen are produced from photoelectrochemical water splitting on the tree branch-shaped CuO photocathode and a platinum anode. Electronic supplementary information (ESI) available: The detailed schematic diagram for the HMA process, XRD results, the temperature profile during HMA, derivative XANES results, TEM images, J-V curves, lists of previously reported copper oxide photocathode, and parameters extracted from EIS. See DOI: 10.1039/c5nr00208g
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quan, Zhijue, E-mail: quanzhijue@ncu.edu.cn; Wang, Li, E-mail: wl@ncu.edu.cn; Zheng, Changda
2014-11-14
The roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well (MQW) light-emitting diodes are investigated by numerical simulation. The simulation results show that V-shaped pits cannot only screen dislocations, but also play an important role on promoting hole injection into the MQWs. It is revealed that the injection of holes into the MQW via the sidewalls of the V-shaped pits is easier than via the flat region, due to the lower polarization charge densities in the sidewall structure with lower In concentration and (10–11)-oriented semi-polar facets.
Electrical double layers and differential capacitance in molten salts from density functional theory
Frischknecht, Amalie L.; Halligan, Deaglan O.; Parks, Michael L.
2014-08-05
Classical density functional theory (DFT) is used to calculate the structure of the electrical double layer and the differential capacitance of model molten salts. The DFT is shown to give good qualitative agreement with Monte Carlo simulations in the molten salt regime. The DFT is then applied to three common molten salts, KCl, LiCl, and LiKCl, modeled as charged hard spheres near a planar charged surface. The DFT predicts strong layering of the ions near the surface, with the oscillatory density profiles extending to larger distances for larger electrostatic interactions resulting from either lower temperature or lower dielectric constant. Inmore » conclusion, overall the differential capacitance is found to be bell-shaped, in agreement with recent theories and simulations for ionic liquids and molten salts, but contrary to the results of the classical Gouy-Chapman theory.« less
On the work function and the charging of small ( r ≤ 5 nm) nanoparticles in plasmas
NASA Astrophysics Data System (ADS)
Kalered, E.; Brenning, N.; Pilch, I.; Caillault, L.; Minéa, T.; Ojamäe, L.
2017-01-01
The growth of nanoparticles (NPs) in plasmas is an attractive technique where improved theoretical understanding is needed for quantitative modeling. The variation of the work function W with size for small NPs, rN P≤ 5 nm, is a key quantity for modeling of three NP charging processes that become increasingly important at a smaller size: electron field emission, thermionic electron emission, and electron impact detachment. Here we report the theoretical values of the work function in this size range. Density functional theory is used to calculate the work functions for a set of NP charge numbers, sizes, and shapes, using copper for a case study. An analytical approximation is shown to give quite accurate work functions provided that rN P > 0.4 nm, i.e., consisting of about >20 atoms, and provided also that the NPs have relaxed close to spherical shape. For smaller sizes, W deviates from the approximation, and also depends on the charge number. Some consequences of these results for nanoparticle charging are outlined. In particular, a decrease in W for NP radius below about 1 nm has fundamental consequences for their charge in a plasma environment, and thereby on the important processes of NP nucleation, early growth, and agglomeration.
Electrolyte solutions at curved electrodes. II. Microscopic approach
NASA Astrophysics Data System (ADS)
Reindl, Andreas; Bier, Markus; Dietrich, S.
2017-04-01
Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.
Electrolyte solutions at curved electrodes. II. Microscopic approach.
Reindl, Andreas; Bier, Markus; Dietrich, S
2017-04-21
Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.
Analysis of the formation mechanism of the slug and jet center hole of axisymmetric shaped charges
NASA Astrophysics Data System (ADS)
Baoxiang, Ren; Gang, Tao; Peng, Wen; Changxing, Du; Chunqiao, Pang; Hongbo, Meng
2018-06-01
In the jet formation process of axisymmetric shaped charges, the slug is also formed. There is always a central hole in the symmetry axis of the jet and slug. The phenomenon was rarely mentioned and analyzed by the classical theory of shaped charges. For this problem, this paper attempts to explain the existence of the central hole in the jet and slug. Based on the analysis of recovery slug, we know that the jet and slug are in solid state in the process of formation. Through the analysis of X-flash radiographs of the stretching jet and particulation fracture, it is confirmed that the center holes in the jet are also present. Meanwhile, through the analysis of the microstructure of the recovered slug, it is found that there is a wave disturbance near the surface of the central hole. It can be speculated that the wave disturbance also exist in the jet. This effect may be one of the reasons for jet breakup. Due to the presence of the central hole in the jet, the density deficit of the jet obtained by other tests is very reasonable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Justin Matthew
These are the slides for a graduate presentation at Mississippi State University. It covers the following: the BRL Shaped-Charge Geometry in PAGOSA, mesh refinement study, surrogate modeling using a radial basis function network (RBFN), ruling out parameters using sensitivity analysis (equation of state study), uncertainty quantification (UQ) methodology, and sensitivity analysis (SA) methodology. In summary, a mesh convergence study was used to ensure that solutions were numerically stable by comparing PDV data between simulations. A Design of Experiments (DOE) method was used to reduce the simulation space to study the effects of the Jones-Wilkins-Lee (JWL) Parameters for the Composition Bmore » main charge. Uncertainty was quantified by computing the 95% data range about the median of simulation output using a brute force Monte Carlo (MC) random sampling method. Parameter sensitivities were quantified using the Fourier Amplitude Sensitivity Test (FAST) spectral analysis method where it was determined that detonation velocity, initial density, C1, and B1 controlled jet tip velocity.« less
A dynamic Monte Carlo study of anomalous current voltage behaviour in organic solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feron, K., E-mail: Krishna.Feron@csiro.au; Fell, C. J.; CSIRO Energy Flagship, Newcastle, NSW 2300
2014-12-07
We present a dynamic Monte Carlo (DMC) study of s-shaped current-voltage (I-V) behaviour in organic solar cells. This anomalous behaviour causes a substantial decrease in fill factor and thus power conversion efficiency. We show that this s-shaped behaviour is induced by charge traps that are located at the electrode interface rather than in the bulk of the active layer, and that the anomaly becomes more pronounced with increasing trap depth or density. Furthermore, the s-shape anomaly is correlated with interface recombination, but not bulk recombination, thus highlighting the importance of controlling the electrode interface. While thermal annealing is known tomore » remove the s-shape anomaly, the reason has been not clear, since these treatments induce multiple simultaneous changes to the organic solar cell structure. The DMC modelling indicates that it is the removal of aluminium clusters at the electrode, which act as charge traps, that removes the anomalous I-V behaviour. Finally, this work shows that the s-shape becomes less pronounced with increasing electron-hole recombination rate; suggesting that efficient organic photovoltaic material systems are more susceptible to these electrode interface effects.« less
Kurniawan, Andi; Tsuchiya, Yuki; Eda, Shima; Morisaki, Hisao
2015-12-01
Biofilm polymers contain both electrically positively and negatively charged sites. These charged sites enable the biofilm to trap and retain ions leading to an important role of biofilm such as nutrient recycling and pollutant purification. Much work has focused on the ion-exchange capacity of biofilms, and they are known to adsorb ions through an exchange mechanism between the ions in solution and the ions adsorbed to the charged sites on the biofilm polymer. However, recent studies suggest that the adsorption/desorption behavior of ions in a biofilm cannot be explained solely by this ion exchange mechanism. To examine the possibility that a substantial amount of ions are held in the interstitial region of the biofilm polymer by an electrostatic interaction, intact biofilms formed in a natural environment were immersed in distilled water and ion desorption was investigated. All of the detected ion species were released from the biofilms over a short period of time, and very few ions were subsequently released over more time, indicating that the interstitial region of biofilm polymers is another ion reserve. The extent of ion retention in the interstitial region of biofilms for each ion can be determined largely by charge density, |Z|/r, where |Z| is the ion valence as absolute value and r is the ion radius. The higher |Z|/r value an ion has, the stronger it is retained in the interstitial region of biofilms. Ion shape is also a key determinant of ion retention. Spherical and non-spherical ions have different correlations between the condensation ratio and |Z|/r. The generality of these findings were assured by various biofilm samples. Thus, the internal regions of biofilms exchange ions dynamically with the outside environment. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Acharya, S.; Adam, J.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Al-Turany, M.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Bazo Alba, J. L.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, A.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Bratrud, L.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chandra, S.; Chang, B.; Chapeland, S.; Chartier, M.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. R.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dukhishyam, M.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Haque, M. R.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Hernandez, E. G.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karczmarczyk, P.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kreis, L.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Luhder, J. R.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matuoka, P. F. T.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Nag, D.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Rumyantsev, B.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Schaefer, B.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schmidt, N. V.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silaeva, S.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Storetvedt, M. M.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Thoresen, F.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Torres, S. R.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.; Alice Collaboration
2018-02-01
In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb-Pb collisions at √{sNN } = 2.76 TeV. The two-particle correlator 〈 cos (φα -φβ) 〉, calculated for different combinations of charges α and β, is almost independent of v2 (for a given centrality), while the three-particle correlator 〈 cos (φα +φβ - 2Ψ2) 〉 scales almost linearly both with the event v2 and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v2 points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10-50% centrality interval is found to be 26-33% at 95% confidence level.
Charge density wave modulation and gap measurements in CeTe 3
Ralevic, U.; Lazarevic, N.; Baum, A.; ...
2016-10-14
Here, we present a study of charge density wave (CDW) ordering in CeTe 3 at room temperature using a scanning tunneling microscope and Raman spectroscopy. Two characteristic CDW ordering wave vectors obtained from the Fourier analysis are assessed to be |c* – q|=4.19nm –1 and |q|=10.26nm –1 where |c*|=2π/c is the reciprocal lattice vector. The scanning tunneling spectroscopy measurements, along with inelastic light (Raman) scattering measurements, show a CDW gap Δ max of approximately 0.37 eV. In addition to the CDW modulation, we observe an organization of the Te sheet atoms in an array of alternating V- and N-shaped groupsmore » along the CDW modulation, as predicted in the literature.« less
MAGNETIZED ACCRETION AND DEAD ZONES IN PROTOSTELLAR DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzyurkevich, Natalia; Henning, Thomas; Turner, Neal J.
The edges of magnetically dead zones in protostellar disks have been proposed as locations where density bumps may arise, trapping planetesimals and helping form planets. Magneto-rotational turbulence in magnetically active zones provides both accretion of gas on the star and transport of mass to the dead zone. We investigate the location of the magnetically active regions in a protostellar disk around a solar-type star, varying the disk temperature, surface density profile, and dust-to-gas ratio. We also consider stellar masses between 0.4 and 2 M{sub Sun }, with corresponding adjustments in the disk mass and temperature. The dead zone's size andmore » shape are found using the Elsasser number criterion with conductivities including the contributions from ions, electrons, and charged fractal dust aggregates. The charged species' abundances are found using the approach proposed by Okuzumi. The dead zone is in most cases defined by the ambipolar diffusion. In our maps, the dead zone takes a variety of shapes, including a fish tail pointing away from the star and islands located on and off the midplane. The corresponding accretion rates vary with radius, indicating locations where the surface density will increase over time, and others where it will decrease. We show that density bumps do not readily grow near the dead zone's outer edge, independently of the disk parameters and the dust properties. Instead, the accretion rate peaks at the radius where the gas-phase metals freeze out. This could lead to clearing a valley in the surface density, and to a trap for pebbles located just outside the metal freezeout line.« less
CoFFEE: Corrections For Formation Energy and Eigenvalues for charged defect simulations
NASA Astrophysics Data System (ADS)
Naik, Mit H.; Jain, Manish
2018-05-01
Charged point defects in materials are widely studied using Density Functional Theory (DFT) packages with periodic boundary conditions. The formation energy and defect level computed from these simulations need to be corrected to remove the contributions from the spurious long-range interaction between the defect and its periodic images. To this effect, the CoFFEE code implements the Freysoldt-Neugebauer-Van de Walle (FNV) correction scheme. The corrections can be applied to charged defects in a complete range of material shapes and size: bulk, slab (or two-dimensional), wires and nanoribbons. The code is written in Python and features MPI parallelization and optimizations using the Cython package for slow steps.
Mrozek, Piotr
2011-08-01
A numerical model explicitly considering the space-charge density evolved both under the mask and in the region of optical structure formation was used to predict the profiles of Ag concentration during field-assisted Ag(+)-Na(+) ion exchange channel waveguide fabrication. The influence of the unequal values of diffusion constants and mobilities of incoming and outgoing ions, the value of a correlation factor (Haven ratio), and particularly space-charge density induced during the ion exchange, on the resulting profiles of Ag concentration was analyzed and discussed. It was shown that the incorporation into the numerical model of a small quantity of highly mobile ions other than exclusively Ag(+) and Na(+) may considerably affect the range and shape of calculated Ag profiles in the multicomponent glass. The Poisson equation was used to predict the electric field spread evolution in the glass substrate. The results of the numerical analysis were verified by the experimental data of Ag concentration in a channel waveguide fabricated using a field-assisted process.
NASA Astrophysics Data System (ADS)
Wong, Chin Hong; Dahari, Zuraini; Jumali, Mohammad Hafizuddin; Mohamed, Khairudin; Mohamed, Julie Juliewatty
2017-03-01
Harvesting vibrational energy from impacting raindrops using piezoelectric material has been proven to be a promising approach for future outdoor applications, providing a good alternative resource that can be applied in outdoor rainy environments. We present herein an optimum novel polyvinylidene fluoride (PVDF) piezoelectric transducer specifically developed to harvest raindrop energy. The finite-element method was applied for simulation and optimization of the piezoelectric raindrop energy harvester (PREH) using COMSOL Multiphysics software, investigating the electrical potential, surface charge density, and total displacement for different transducer dimensions. According to the simulation results, the structure that generated the highest electrical potential and surface charge density was a wagon-wheel-shaped structure consisting of six spokes with wheel diameter of 30 mm, spoke width of 2 mm, center pad diameter of 6 mm, and thickness of 25 μm. This optimum wagon-wheel-shaped device was then fabricated by spin coating of PVDF, sputtering of aluminum, a poling process, and computer numerical control machining of a polytetrafluoroethylene stand. The fabricated PREH was characterized by x-ray diffraction analysis and Fourier-transform infrared spectroscopy. Finally, the fabricated PREH was tested under actual rain conditions with an alternating current to direct current converter connected in parallel, revealing that a single cell could generate average peak voltage of 22.5 mV and produce electrical energy of 3.4 nJ from ten impacts in 20 s.
Aspects of jamming in two-dimensional athermal frictionless systems.
Reichhardt, C; Reichhardt, C J Olson
2014-05-07
In this work we provide an overview of jamming transitions in two dimensional systems focusing on the limit of frictionless particle interactions in the absence of thermal fluctuations. We first discuss jamming in systems with short range repulsive interactions, where the onset of jamming occurs at a critical packing density and where certain quantities show a divergence indicative of critical behavior. We describe how aspects of the dynamics change as the jamming density is approached and how these dynamics can be explored using externally driven probes. Different particle shapes can produce jamming densities much lower than those observed for disk-shaped particles, and we show how jamming exhibits fragility for some shapes while for other shapes this is absent. Next we describe the effects of long range interactions and jamming behavior in systems such as charged colloids, vortices in type-II superconductors, and dislocations. We consider the effect of adding obstacles to frictionless jamming systems and discuss connections between this type of jamming and systems that exhibit depinning transitions. Finally, we discuss open questions such as whether the jamming transition in all these different systems can be described by the same or a small subset of universal behaviors, as well as future directions for studies of jamming transitions in two dimensional systems, such as jamming in self-driven or active matter systems.
Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas
NASA Astrophysics Data System (ADS)
Ferri, S.; Calisti, A.; Mossé, C.; Talin, B.; Lisitsa, V.
2010-10-01
A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.
Near-field control and imaging of free charge carrier variations in GaN nanowires
NASA Astrophysics Data System (ADS)
Berweger, Samuel; Blanchard, Paul T.; Brubaker, Matt D.; Coakley, Kevin J.; Sanford, Norman A.; Wallis, Thomas M.; Bertness, Kris A.; Kabos, Pavel
2016-02-01
Despite their uniform crystallinity, the shape and faceting of semiconducting nanowires (NWs) can give rise to variations in structure and associated electronic properties. Here, we develop a hybrid scanning probe-based methodology to investigate local variations in electronic structure across individual n-doped GaN NWs integrated into a transistor device. We perform scanning microwave microscopy (SMM), which we combine with scanning gate microscopy to determine the free-carrier SMM signal contribution and image local charge carrier density variations. In particular, we find significant variations in free carriers across NWs, with a higher carrier density at the wire facets. By increasing the local carrier density through tip-gating, we find that the tip injects current into the NW with strongly localized current when positioned over the wire vertices. These results suggest that the strong variations in electronic properties observed within NWs have significant implications for device design and may lead to new paths to optimization.
Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu
Sandhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas
2016-01-20
Here, we propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. Moreover, we obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to themore » dissipation in collective motion and to adiabatic fission characteristics.« less
NASA Astrophysics Data System (ADS)
Pizio, O.; Sokołowski, S.; Sokołowska, Z.
2014-05-01
We investigate microscopic structure, adsorption, and electric properties of a mixture that consists of amphiphilic molecules and charged hard spheres in contact with uncharged or charged solid surfaces. The amphiphilic molecules are modeled as spheres composed of attractive and repulsive parts. The electrolyte component of the mixture is considered in the framework of the restricted primitive model (RPM). The system is studied using a density functional theory that combines fundamental measure theory for hard sphere mixtures, weighted density approach for inhomogeneous charged hard spheres, and a mean-field approximation to describe anisotropic interactions. Our principal focus is in exploring the effects brought by the presence of ions on the distribution of amphiphilic particles at the wall, as well as the effects of amphiphilic molecules on the electric double layer formed at solid surface. In particular, we have found that under certain thermodynamic conditions a long-range translational and orientational order can develop. The presence of amphiphiles produces changes of the shape of the differential capacitance from symmetric or non-symmetric bell-like to camel-like. Moreover, for some systems the value of the potential of the zero charge is non-zero, in contrast to the RPM at a charged surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, S.; Adam, J.; Adamová, D.
In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v 2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb–Pb collisions atmore » $$\\sqrt{s}$$$_ {NN}$$=2.76 TeV. The two-particle correlator 〈cos(φ α -φ β)〉 calculated for different combinations of charges α and β is almost independent of v 2 (for a given centrality), while the three-particle correlator 〈cos(φ α +φ β -2Ψ 2)〉 scales almost linearly both with the event v 2 and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v 2 points to a large non-CME contribution to the correlator. Finally, comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10–50% centrality interval is found to be 26–33% at 95% confidence level.« less
Acharya, S.; Adam, J.; Adamová, D.; ...
2017-12-12
In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v 2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb–Pb collisions atmore » $$\\sqrt{s}$$$_ {NN}$$=2.76 TeV. The two-particle correlator 〈cos(φ α -φ β)〉 calculated for different combinations of charges α and β is almost independent of v 2 (for a given centrality), while the three-particle correlator 〈cos(φ α +φ β -2Ψ 2)〉 scales almost linearly both with the event v 2 and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v 2 points to a large non-CME contribution to the correlator. Finally, comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10–50% centrality interval is found to be 26–33% at 95% confidence level.« less
NASA Astrophysics Data System (ADS)
Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Noell, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Teng, R.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.
2003-08-01
We have measured transverse momentum distributions of charged hadrons produced in d+Au collisions at (sNN)=200 GeV. The spectra were obtained for transverse momenta 0.25
Hα line shape in front of the limiter in the HT-6M tokamak
NASA Astrophysics Data System (ADS)
Wan, Baonian; Li, Jiangang; Luo, Jiarong; Xie, Jikang; Wu, Zhenwei; Zhang, Xianmei; HT-6M Group
1999-11-01
The Hα line shape in front of the limiter in the HT-6M tokamak is analysed by multi-Gaussian fitting. The energy distribution of neutral hydrogen atoms reveals that Hα radiation is contributed by Franck-Condon atoms, atoms reflected at the limiter surface and charge exchange. Multi-Gaussian fitting of the Hα spectral profile indicates contributions of 60% from reflection particles and 40% from molecule dissociation to recycling. Ion temperatures in central regions are obtained from the spectral width of charge exchange components. Dissociation of hydrogen molecules and reflection of particles at the limiter surface are dominant in edge recycling. Reduction of particle reflection at the limiter surface is important for controlling edge recycling. The measured profiles of neutral hydrogen atom density are reproduced by a particle continuity equation and a simplified one dimensional Monte Carlo simulation code.
Predicting catalyst-support interactions between metal nanoparticles and amorphous silica supports
NASA Astrophysics Data System (ADS)
Ewing, Christopher S.; Veser, Götz; McCarthy, Joseph J.; Lambrecht, Daniel S.; Johnson, J. Karl
2016-10-01
Metal-support interactions significantly affect the stability and activity of supported catalytic nanoparticles (NPs), yet there is no simple and reliable method for estimating NP-support interactions, especially for amorphous supports. We present an approach for rapid prediction of catalyst-support interactions between Pt NPs and amorphous silica supports for NPs of various sizes and shapes. We use density functional theory calculations of 13 atom Pt clusters on model amorphous silica supports to determine linear correlations relating catalyst properties to NP-support interactions. We show that these correlations can be combined with fast discrete element method simulations to predict adhesion energy and NP net charge for NPs of larger sizes and different shapes. Furthermore, we demonstrate that this approach can be successfully transferred to Pd, Au, Ni, and Fe NPs. This approach can be used to quickly screen stability and net charge transfer and leads to a better fundamental understanding of catalyst-support interactions.
Universality for shape dependence of Casimir effects from Weyl anomaly
NASA Astrophysics Data System (ADS)
Miao, Rong-Xin; Chu, Chong-Sun
2018-03-01
We reveal elegant relations between the shape dependence of the Casimir effects and Weyl anomaly in boundary conformal field theories (BCFT). We show that for any BCFT which has a description in terms of an effective action, the near boundary divergent behavior of the renormalized stress tensor is completely determined by the central charges of the theory. These relations are verified by free BCFTs. We also test them with holographic models of BCFT and find exact agreement. We propose that these relations between Casimir coefficients and central charges hold for any BCFT. With the holographic models, we reproduce not only the precise form of the near boundary divergent behavior of the stress tensor, but also the surface counter term that is needed to make the total energy finite. As they are proportional to the central charges, the near boundary divergence of the stress tensor must be physical and cannot be dropped by further artificial renormalization. Our results thus provide affirmative support on the physical nature of the divergent energy density near the boundary, whose reality has been a long-standing controversy in the literature.
First results on d+Au collisions from PHOBOS
NASA Astrophysics Data System (ADS)
Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Noell, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Teng, R.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.
2004-02-01
We have measured transverse momentum distributions of charged hadrons produced in d+Au collisions at √SNN = 200 GeV, in the range 0.25 < pT < 6.0 GeV/c. With increasing collision centrality, the yield at high transverse momenta increases more rapidly than the overall particle density, leading to a strong modification of the spectral shape. This change in spectral shape is qualitatively different from observations in Au+Au collisions at the same energy. The results provide important information for discriminating between different models for the suppression of high-pT hadrons observed in Au+Au collisions.
Symmetric supercapacitor: Sulphurized graphene and ionic liquid.
Shaikh, Jasmin S; Shaikh, Navajsharif S; Kharade, Rohini; Beknalkar, Sonali A; Patil, Jyoti V; Suryawanshi, Mahesh P; Kanjanaboos, Pongsakorn; Hong, Chang Kook; Kim, Jin Hyeok; Patil, Pramod S
2018-10-01
Symmetric supercapacitor is advanced over simple supercapacitor device due to their stability over a large potential window and high energy density. Graphene is a desired candidate for supercapacitor application since it has a high surface area, good electronic conductivity and high electro chemical stability. There is a pragmatic use of ionic liquid electrolyte for supercapacitor due to its stability over a large potential window, good ionic conductivity and eco-friendly nature. For high performance supercapacitor, the interaction between ionic liquid electrolyte and graphene are crucial for better charge transportation. In respect of this, a three-dimensional (3D) nanoporous honeycomb shaped sulfur embedded graphene (S-graphene) has been synthesized by simple chemical method. Here, the fabrication of high performance symmetric supercapacitor is done by using S-graphene as an electrode and [BMIM-PF 6 ] as an electrolyte. The particular architecture of S-graphene benefited to reduce the ion diffusion resistance, providing the large surface area for charge transportation and efficient charge storage. The S-graphene and ionic liquid-based symmetric supercapacitor device showed the large potential window of 3.2 V with high energy density 124 Wh kg -1 at 0.2 A g -1 constant applied current density. Furthermore, this device shows good cycling performance (stability) with a capacitive retention of 95% over 20,000 cycles at a higher current density of 2 A g -1 . Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Metz, Roger N.
1991-01-01
This paper discusses the numerical modeling of electron flows from the sheath surrounding high positively biased objects in LEO (Low Earth Orbit) to regions of voltage or shape discontinuity on the biased surfaces. The sheath equations are derived from the Two-fluid, Warm Plasma Model. An equipotential corner and a plane containing strips of alternating voltage bias are treated in two dimensions. A self-consistent field solution of the sheath equations is outlined and is pursued through one cycle. The electron density field is determined by numerical solution of Poisson's equation for the electrostatic potential in the sheath using the NASCAP-LEO relation between electrostatic potential and charge density. Electron flows are calculated numerically from the electron continuity equation. Magnetic field effects are not treated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemchinsky, V.; Khrabry, A.
Trajectories of a polarizable species (atoms or molecules) in the vicinity of a negatively charged nanoparticle (at a floating potential) are considered. The atoms are pulled into regions of strong electric field by polarization forces. The polarization increases the deposition rate of the atoms and molecules at the nanoparticle. The effect of the non-spherical shape of the nanoparticle is investigated by the Monte Carlo method. The shape of the non-spherical nanoparticle is approximated by an ellipsoid. The total deposition rate and its flux density distribution along the nanoparticle surface are calculated. As a result, it is shown that the fluxmore » density is not uniform along the surface. It is maximal at the nanoparticle tips.« less
Nemchinsky, V.; Khrabry, A.
2018-02-01
Trajectories of a polarizable species (atoms or molecules) in the vicinity of a negatively charged nanoparticle (at a floating potential) are considered. The atoms are pulled into regions of strong electric field by polarization forces. The polarization increases the deposition rate of the atoms and molecules at the nanoparticle. The effect of the non-spherical shape of the nanoparticle is investigated by the Monte Carlo method. The shape of the non-spherical nanoparticle is approximated by an ellipsoid. The total deposition rate and its flux density distribution along the nanoparticle surface are calculated. As a result, it is shown that the fluxmore » density is not uniform along the surface. It is maximal at the nanoparticle tips.« less
Wang, Fei; Qi, Tianhong; Su, Zhongmin; Xie, Yuzhong
2018-02-17
Schiff-base compounds have many applications in the field of optoelectronic materials and chemical sensing because of their appealing coordination ability, and simple and easily accessible use in structural modification. Herein, five kinds of star-shaped Schiff-base compounds were designed and their optical response behavior to hydrogen chloride (HCl) gas was studied using dependent/time-dependent density functional theory (DFT/TDDFT). Moreover, the relationship between structures and properties was investigated upon changing the benzene group into N atom or triazine group at the core-position and introducing a methoxyl (-OCH 3 ) or nitro (-NO 2 ) group into the star-shaped Schiff-bases at the tail of the branches. The results show that all five Schiff-bases could be candidates for HCl gas sensing materials. Furthermore, introducing an electron-donating group at either the core or the tail forms a charge transfer channel with the electron deficient H-bonded imino group, which is convenient for charge transfer and subsequently promotes a red-shift in absorption spectra and fluorescence quenching.
Ion-induced nucleation in solution: promotion of solute nucleation in charged levitated droplets.
Draper, Neil D; Bakhoum, Samuel F; Haddrell, Allen E; Agnes, George R
2007-09-19
We have investigated the nucleation and growth of sodium chloride in both single quiescent charged droplets and charged droplet populations that were levitated in an electrodynamic levitation trap (EDLT). In both cases, the magnitude of a droplet's net excess charge (ions(DNEC)) influenced NaCl nucleation and growth, albeit in different capacities. We have termed the phenomenon ion-induced nucleation in solution. For single quiescent levitated droplets, an increase in ions(DNEC) resulted in a significant promotion of NaCl nucleation, as determined by the number of crystals observed. For levitated droplet populations, a change in NaCl crystal habit, from regular cubic shapes to dome-shaped dendrites, was observed once a surface charge density threshold of -9 x 10(-4) e.nm(-2) was surpassed. Although promotion of NaCl nucleation was observed for droplet population experiments, this can be attributed in part to the increased rate of solvent evaporation observed for levitated droplet populations having a high net charge. Promotion of nucleation was also observed for two organic acids, 2,4,6-trihydroxyacetophenone monohydrate (THAP) and alpha-cyano-4-hydroxycinnamic acid (CHCA). These results are of direct relevance to processes that occur in both soft-ionization techniques for mass spectrometry and to a variety of industrial processes. To this end, we have demonstrated the use of ion-induced nucleation in solution to form ammonium nitrate particles from levitated droplets to be used in in vitro toxicology studies of ambient particle types.
Evidence against a charge density wave on Bi(111)
Kim, T. K.; Wells, J.; Kirkegaard, C.; ...
2005-08-18
The Bi(111) surface was studied by scanning tunneling microscopy (STM), transmission electron microscopy (TEM) and angle-resolved photoemission (ARPES) in order to verify the existence of a recently proposed surface charge density wave (CDW). The STM and TEM results to not support a CDW scenario at low temperatures. Thus the quasiparticle interference pattern observed in STM confirms the spin-orbit split character of the surface states which prevents the formation of a CDW, even in the case of good nesting. The dispersion of the electronic states observed with ARPES agrees well with earlier findings. In particular, the Fermi contour of the electronmore » pocket at the centre of the surface Brillouin zone is found to have a hexagonal shape. However, no gap opening or other signatures of a CDW phase transition can be found in the temperature-dependent data.« less
Improved understanding of the recombination rate at inverted p+ silicon surfaces
NASA Astrophysics Data System (ADS)
To, Alexander; Ma, Fajun; Hoex, Bram
2017-08-01
The effect of positive fixed charge on the recombination rate at SiN x -passivated p+ surfaces is studied in this work. It is shown that a high positive fixed charge on a low defect density, passivated doped surface can result in a near injection level independent lifetime in a certain injection level range. This behaviour is modelled with advanced computer simulations using Sentaurus TCAD, which replicates the measurements conditions during a photoconductance based effective minority carrier lifetime measurement. The resulting simulations show that the shape of the injection level dependent lifetime is a result of the surface recombination rate, which is non-linear due to the surfaces moving into inversion with increasing injection level. As a result, the surface recombination rate switches from being limited by electrons to holes. Equations describing the surface saturation current density, J 0s, during this regime are also derived in this work.
Preparation of Shape-Controlled Graphene/Co3O4 Composites for Supercapacitors
NASA Astrophysics Data System (ADS)
Chen, Jun; Chen, Ningna; Feng, Xiaomiao; Hou, Wenhua
2016-09-01
Graphene/Co3O4 nanocomposites with different morphologies were fabricated by hydrothermal method. The morphology of nanocomposites was characterized by scanning electron microscopy. These composites could be used as the electrode materials for supercapacitors. The eletrochemical behavior of the composite was tested by cyclic voltammetry and galvanostatic charge-discharge measurements in 1.0 mol/L KOH solution. The results showed that the graphene/Co3O4 nanopetal composite exhibited excellent electrochemical performance. The specific capacitance value could reach up to 714 F/g at a scan rate of 2 mV/s. Besides, the capacitance of the graphene/Co3O4 nanopetal composite was 841 F/g at a current density of 0.1 A/g. After galvanostatic charge-discharge 1000 laps at the current density of 0.4 A/g, the specific capacitance could keep 96.7% of original capacitive value, demonstrating its good cycling stability.
Stochastic analysis of pitch angle scattering of charged particles by transverse magnetic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemons, Don S.; Liu Kaijun; Winske, Dan
2009-11-15
This paper describes a theory of the velocity space scattering of charged particles in a static magnetic field composed of a uniform background field and a sum of transverse, circularly polarized, magnetic waves. When that sum has many terms the autocorrelation time required for particle orbits to become effectively randomized is small compared with the time required for the particle velocity distribution to change significantly. In this regime the deterministic equations of motion can be transformed into stochastic differential equations of motion. The resulting stochastic velocity space scattering is described, in part, by a pitch angle diffusion rate that ismore » a function of initial pitch angle and properties of the wave spectrum. Numerical solutions of the deterministic equations of motion agree with the theory at all pitch angles, for wave energy densities up to and above the energy density of the uniform field, and for different wave spectral shapes.« less
Single-Gap Superconductivity and Dome of Superfluid Density in Nb-Doped SrTiO 3
NASA Astrophysics Data System (ADS)
Thiemann, Markus; Beutel, Manfred H.; Dressel, Martin; Lee-Hone, Nicholas R.; Broun, David M.; Fillis-Tsirakis, Evangelos; Boschker, Hans; Mannhart, Jochen; Scheffler, Marc
2018-06-01
SrTiO3 exhibits a superconducting dome upon doping with Nb, with a maximum critical temperature Tc≈0.4 K . Using microwave stripline resonators at frequencies from 2 to 23 GHz and temperatures down to 0.02 K, we probe the low-energy optical response of superconducting SrTiO3 with a charge carrier concentration from 0.3 to 2.2 ×1020 cm-3 , covering the majority of the superconducting dome. We find single-gap electrodynamics even though several electronic bands are superconducting. This is explained by a single energy gap 2 Δ due to gap homogenization over the Fermi surface consistent with the low level of defect scattering in Nb-doped SrTiO3 . Furthermore, we determine Tc, 2 Δ , and the superfluid density as a function of charge carrier concentration, and all three quantities exhibit the characteristic dome shape.
NASA Astrophysics Data System (ADS)
Kappatou, A.; McDermott, R. M.; Pütterich, T.; Dux, R.; Geiger, B.; Jaspers, R. J. E.; Donné, A. J. H.; Viezzer, E.; Cavedon, M.; the ASDEX Upgrade Team
2018-05-01
The analysis of the charge exchange measurements of helium is hindered by an additional emission contributing to the spectra, the helium ‘plume’ emission (Fonck et al 1984 Phys. Rev. A 29 3288), which complicates the interpretation of the measurements. The plume emission is indistinguishable from the active charge exchange signal when standard analysis of the spectra is applied and its intensity is of comparable magnitude for ASDEX Upgrade conditions, leading to a significant overestimation of the He2+ densities if not properly treated. Furthermore, the spectral line shape of the plume emission is non-Gaussian and leads to wrong ion temperature and flow measurements when not taken into account. A kinetic model for the helium plume emission has been developed for ASDEX Upgrade. The model is benchmarked against experimental measurements and is shown to capture the underlying physics mechanisms of the plume effect, as it can reproduce the experimental spectra and provides consistent values for the ion temperature, plasma rotation, and He2+ density.
Charged-particle pseudorapidity distributions in Au+Au collisions at sNN=62.4 GeV
NASA Astrophysics Data System (ADS)
Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G. J. Van; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.
2006-08-01
The charged-particle pseudorapidity density for Au+Au collisions at sNN=62.4 GeV has been measured over a wide range of impact parameters and compared to results obtained at other energies. As a function of collision energy, the pseudorapidity distribution grows systematically both in height and width. The midrapidity density is found to grow approximately logarithmically between BNL Alternating Gradient Synchrotron (AGS) energies and the top BNL Relativistic Heavy Ion Collider (RHIC) energy. There is also an approximate factorization of the centrality and energy dependence of the midrapidity yields. The new results at sNN=62.4 GeV confirm the previously observed phenomenon of “extended longitudinal scaling” in the pseudorapidity distributions when viewed in the rest frame of one of the colliding nuclei. It is also found that the evolution of the shape of the distribution with centrality is energy independent, when viewed in this reference frame. As a function of centrality, the total charged particle multiplicity scales linearly with the number of participant pairs as it was observed at other energies.
NASA Astrophysics Data System (ADS)
Vanderfleet, Oriana M.; Osorio, Daniel A.; Cranston, Emily D.
2017-12-01
Cellulose nanocrystals (CNCs) are emerging nanomaterials with a large range of potential applications. CNCs are typically produced through acid hydrolysis with sulfuric acid; however, phosphoric acid has the advantage of generating CNCs with higher thermal stability. This paper presents a design of experiments approach to optimize the hydrolysis of CNCs from cotton with phosphoric acid. Hydrolysis time, temperature and acid concentration were varied across nine experiments and a linear least-squares regression analysis was applied to understand the effects of these parameters on CNC properties. In all but one case, rod-shaped nanoparticles with a high degree of crystallinity and thermal stability were produced. A statistical model was generated to predict CNC length, and trends in phosphate content and zeta potential were elucidated. The CNC length could be tuned over a relatively large range (238-475 nm) and the polydispersity could be narrowed most effectively by increasing the hydrolysis temperature and acid concentration. The CNC phosphate content was most affected by hydrolysis temperature and time; however, the charge density and colloidal stability were considered low compared with sulfuric acid hydrolysed CNCs. This study provides insight into weak acid hydrolysis and proposes `design rules' for CNCs with improved size uniformity and charge density. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.
Spreading of triboelectrically charged granular matter
NASA Astrophysics Data System (ADS)
Kumar, Deepak; Sane, A.; Gohil, Smita.; Bandaru, P. R.; Bhattacharya, S.; Ghosh, Shankar
2014-06-01
We report on the spreading of triboelectrically charged glass particles on an oppositely charged surface of a plastic cylindrical container in the presence of a constant mechanical agitation. The particles spread via sticking, as a monolayer on the cylinder's surface. Continued agitation initiates a sequence of instabilities of this monolayer, which first forms periodic wavy-stripe-shaped transverse density modulation in the monolayer and then ejects narrow and long particle-jets from the tips of these stripes. These jets finally coalesce laterally to form a homogeneous spreading front that is layered along the spreading direction. These remarkable growth patterns are related to a time evolving frictional drag between the moving charged glass particles and the countercharges on the plastic container. The results provide insight into the multiscale time-dependent tribolelectric processes and motivates further investigation into the microscopic causes of these macroscopic dynamical instabilities and spatial structures.
Effective electrodiffusion equation for non-uniform nanochannels.
Marini Bettolo Marconi, Umberto; Melchionna, Simone; Pagonabarraga, Ignacio
2013-06-28
We derive a one-dimensional formulation of the Planck-Nernst-Poisson equation to describe the dynamics of a symmetric binary electrolyte in channels whose section is nanometric and varies along the axial direction. The approach is in the spirit of the Fick-Jacobs diffusion equation and leads to a system of coupled equations for the partial densities which depends on the charge sitting at the walls in a non-trivial fashion. We consider two kinds of non-uniformities, those due to the spatial variation of charge distribution and those due to the shape variation of the pore and report one- and three-dimensional solutions of the electrokinetic equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubinstein, B.; Doron, R., E-mail: ramy.doron@weizmann.ac.il; Maron, Y.
2016-04-15
We report on the first experimental verification of the traveling-wave-like picture of a magnetic-field and an associated electric potential hill propagating non-diffusively in low resistivity plasma. High spatial resolution spectroscopic method, developed here, allowed for obtaining the detailed shape of the propagating magnetic-field front. The measurements demonstrated that the ion separation, previously claimed, results from the reflection of the higher charge-to-mass ratio ions from the propagating potential hill and from climbing the hill by the lower charge-to-mass ratio ions. This ion dynamics is found to be consistent with the observed electron density evolution.
Revealing weak spin-orbit coupling effects on charge carriers in a π -conjugated polymer
NASA Astrophysics Data System (ADS)
Malissa, H.; Miller, R.; Baird, D. L.; Jamali, S.; Joshi, G.; Bursch, M.; Grimme, S.; van Tol, J.; Lupton, J. M.; Boehme, C.
2018-04-01
We measure electrically detected magnetic resonance on organic light-emitting diodes made of the polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] at room temperature and high magnetic fields where spectral broadening of the resonance due to spin-orbit coupling (SOC) exceeds that due to the local hyperfine fields. Density-functional-theory calculations on an open-shell model of the material reveal g -tensors of charge-carrier spins in the lowest unoccupied (electron) and highest occupied (hole) molecular orbitals. These tensors are used for simulations of magnetic resonance line shapes. Besides providing the first quantification and direct observation of SOC effects on charge-carrier states in these weakly SO-coupled hydrocarbons, this procedure demonstrates that spin-related phenomena in these materials are fundamentally monomolecular in nature.
2009 Insensitive Munitions and Energetic Materials Technology Symposium
2009-05-14
Multilayer Structure 1D STIMULI Flat end rod Round end rod Flat cookie -cutter Spherical fragment Simple shaped charge jet Real shaped charge jet Thin plate... cookie -cutter Spherical fragment Simple shaped charge jet Real shaped charge jet Thin plate Constant Temperature Rising Temperature Multilayer...Propellants Plasticizer mixed into the Propellant - Dough NO SURFACE COATING Formulation Impetus (J/g) Flame Temp (K) Mw (g/mole) A
Chen, Ming; Li, Song; Feng, Guang
2017-02-16
Room-temperature ionic liquids (RTILs) are an emerging class of electrolytes for supercapacitors. In this work, we investigate the effects of different supercapacitor models and anion shape on the electrical double layers (EDLs) of two different RTILs: 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Emim][Tf₂N]) and 1-ethyl-3-methylimidazolium 2-(cyano)pyrrolide ([Emim][CNPyr]) by molecular dynamics (MD) simulation. The EDL microstructure is represented by number densities of cations and anions, and the potential drop near neutral and charged electrodes reveal that the supercapacitor model with a single electrode has the same EDL structure as the model with two opposite electrodes. Nevertheless, the employment of the one-electrode model without tuning the bulk density of RTILs is more time-saving in contrast to the two-electrode one. With the one-electrode model, our simulation demonstrated that the shapes of anions significantly imposed effects on the microstructure of EDLs. The EDL differential capacitance vs. potential (C-V) curves of [Emim][CNPyr] electrolyte exhibit higher differential capacitance at positive potentials. The modeling study provides microscopic insight into the EDLs structure of RTILs with different anion shapes.
Merely Measuring the UV-Visible Spectrum of Gold Nanoparticles Can Change Their Charge State.
Navarrete, Jose; Siefe, Chris; Alcantar, Samuel; Belt, Michael; Stucky, Galen D; Moskovits, Martin
2018-02-14
Metallic nanostructures exhibit a strong plasmon resonance at a wavelength whose value is sensitive to the charge density in the nanostructure, its size, shape, interparticle coupling, and the dielectric properties of its surrounding medium. Here we use UV-visible transmission and reflectance spectroscopy to track the shifts of the plasmon resonance in an array of gold nanoparticles buried under metal-oxide layers of varying thickness produced using atomic layer deposition (ALD) and then coated with bulk layers of one of three metals: aluminum, silver, or gold. A significant shift in the plasmon resonance was observed and a precise value of ω p , the plasmon frequency of the gold comprising the nanoparticles, was determined by modeling the composite of gold nanoparticles and metal-oxide layer as an optically homogeneous film of core-shell particles bounded by two substrates: one of quartz and the other being one of the aforementioned metals, then using a Maxwell-Garnett effective medium expression to extract ω p for the gold nanoparticles before and after coating with the bulk metals. Under illumination, the change in the charge density of the gold nanoparticles per particle determined from the change in the values of ω p is found to be some 50-fold greater than what traditional electrostatic contact electrification models compute based on the work function difference of the two conductive materials. Moreover, when using bulk gold as the capping layer, which should have resulted in a negligible charge exchange between the gold nanoparticles and the bulk gold, a significant charge transfer from the bulk gold layer to the nanoparticles was observed as with the other metals. We explain these observations in terms of the "plasmoelectric effect", recently described by Atwater and co-workers, in which the gold nanoparticles modify their charge density to allow their resonant wavelength to match that of the incident light, thereby achieving, a lower value of the chemical potential due to the entropy increase resulting from the conversion of the plasmon's energy to heat. We conclude that even the act of registering the spectrum of nanoparticles is at times sufficient to alter their charge densities and hence their UV-visible spectra.
Zeng, Yinxiang; Meng, Yue; Lai, Zhengzhe; Zhang, Xiyue; Yu, Minghao; Fang, Pingping; Wu, Mingmei; Tong, Yexiang; Lu, Xihong
2017-11-01
Currently, the main bottleneck for the widespread application of Ni-Zn batteries is their poor cycling stability as a result of the irreversibility of the Ni-based cathode and dendrite formation of the Zn anode during the charging-discharging processes. Herein, a highly rechargeable, flexible, fiber-shaped Ni-Zn battery with impressive electrochemical performance is rationally demonstrated by employing Ni-NiO heterostructured nanosheets as the cathode. Benefiting from the improved conductivity and enhanced electroactivity of the Ni-NiO heterojunction nanosheet cathode, the as-fabricated fiber-shaped Ni-NiO//Zn battery displays high capacity and admirable rate capability. More importantly, this Ni-NiO//Zn battery shows unprecedented cyclic durability both in aqueous (96.6% capacity retention after 10 000 cycles) and polymer (almost no capacity attenuation after 10 000 cycles at 22.2 A g -1 ) electrolytes. Moreover, a peak energy density of 6.6 µWh cm -2 , together with a remarkable power density of 20.2 mW cm -2 , is achieved by the flexible quasi-solid-state fiber-shaped Ni-NiO//Zn battery, outperforming most reported fiber-shaped energy-storage devices. Such a novel concept of a fiber-shaped Ni-Zn battery with impressive stability will greatly enrich the flexible energy-storage technologies for future portable/wearable electronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Light-emitting dendrimer film morphology: A neutron reflectivity study
NASA Astrophysics Data System (ADS)
Vickers, S. V.; Barcena, H.; Knights, K. A.; Thomas, R. K.; Ribierre, J.-C.; Gambino, S.; Samuel, I. D. W.; Burn, P. L.; Fragneto, Giovanna
2010-06-01
We have used neutron reflectivity (NR) measurements to probe the physical structure of phosphorescent dendrimer films. The dendrimers consisted of fac-tris(2-phenylpyridyl)iridium(III) cores, biphenyl-based dendrons (first or second generation), and perdeuterated 2-ethylhexyloxy surface groups. We found that the shape and hydrodynamic radius of the dendrimer were both important factors in determining the packing density of the dendrimers. "Cone" shaped dendrimers were found to pack more effectively than "spherical" dendrimers even when the latter had a smaller radius. The morphology of the films determined by NR was consistent with the measured photoluminescence and charge transporting properties of the materials.
Electrostatic properties of graphene edges for electron emission under an external electric field
NASA Astrophysics Data System (ADS)
Gao, Yanlin; Okada, Susumu
2018-04-01
Electronic properties of graphene edges under a lateral electric field were theoretically studied in regard to their edge shapes and terminations to provide a theoretical insight into their field emission properties. The work function and potential barrier for the electron emission from the graphene edges are sensitive to their shape and termination. We also found that the hydrogenated armchair edge shows the largest emission current among all edges studied here. The electric field outside the chiral edges is spatially modulated along the edge because of the inhomogeneous charge density at the atomic sites of the edge arising from the bond alternation.
A Thin Film Flexible Supercapacitor Based on Oblique Angle Deposited Ni/NiO Nanowire Arrays.
Ma, Jing; Liu, Wen; Zhang, Shuyuan; Ma, Zhe; Song, Peishuai; Yang, Fuhua; Wang, Xiaodong
2018-06-11
With high power density, fast charging-discharging speed, and a long cycling life, supercapacitors are a kind of highly developed novel energy-storage device that has shown a growing performance and various unconventional shapes such as flexible, linear-type, stretchable, self-healing, etc. Here, we proposed a rational design of thin film, flexible micro-supercapacitors with in-plane interdigital electrodes, where the electrodes were fabricated using the oblique angle deposition technique to grow oblique Ni/NiO nanowire arrays directly on polyimide film. The obtained electrodes have a high specific surface area and good adhesion to the substrate compared with other in-plane micro-supercapacitors. Meanwhile, the as-fabricated micro-supercapacitors have good flexibility and satisfactory energy-storage performance, exhibiting a high specific capacity of 37.1 F/cm³, a high energy density of 5.14 mWh/cm³, a power density of up to 0.5 W/cm³, and good stability during charge-discharge cycles and repeated bending-recovery cycles, respectively. Our micro-supercapacitors can be used as ingenious energy storage devices for future portable and wearable electronic applications.
Self-consistent pseudopotential calculation of the bulk properties of Mo and W
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zunger, A.; Cohen, M.L.
The bulk properties of Mo and W are calculated using the recently developed momentum-space approach for calculating total energy via a nonlocal pseudopotential. This approach avoids any shape approximation to the variational charge density (e.g., muffin tins), is fully self-consistent, and replaces the multidimensional and multicenter integrals akin to real-space representations by simple and readily convergent reciprocal-space lattice sums. We use first-principles atomic pseudopotentials which have been previously demonstrated to yield band structures and charge densities for both semiconductors and transition metals in good agreement with experiment and all-electron calculations. Using a mixed-basis representation for the crystalline wave function, wemore » are able to accurately reproduce both the localized and itinerant features of the electronic states in these systems. These first-principles pseudopotentials, together with the self-consistent density-functional representation for both the exchange and the correlation screening, yields agreement with experiment of 0.2% in the lattice parameters, 2% and 11% for the binding energies of Mo and W, respectively, and 12% and 7% for the bulk moduli of Mo and W, respectively.« less
Profiling charge complementarity and selectivity for binding at the protein surface.
Sulea, Traian; Purisima, Enrico O
2003-05-01
A novel analysis and representation of the protein surface in terms of electrostatic binding complementarity and selectivity is presented. The charge optimization methodology is applied in a probe-based approach that simulates the binding process to the target protein. The molecular surface is color coded according to calculated optimal charge or according to charge selectivity, i.e., the binding cost of deviating from the optimal charge. The optimal charge profile depends on both the protein shape and charge distribution whereas the charge selectivity profile depends only on protein shape. High selectivity is concentrated in well-shaped concave pockets, whereas solvent-exposed convex regions are not charge selective. This suggests the synergy of charge and shape selectivity hot spots toward molecular selection and recognition, as well as the asymmetry of charge selectivity at the binding interface of biomolecular systems. The charge complementarity and selectivity profiles map relevant electrostatic properties in a readily interpretable way and encode information that is quite different from that visualized in the standard electrostatic potential map of unbound proteins.
Dynamics of membrane nanotubes coated with I-BAR
NASA Astrophysics Data System (ADS)
Barooji, Younes F.; Rørvig-Lund, Andreas; Semsey, Szabolcs; Reihani, S. Nader S.; Bendix, Poul M.
2016-07-01
Membrane deformation is a necessary step in a number of cellular processes such as filopodia and invadopodia formation and has been shown to involve membrane shaping proteins containing membrane binding domains from the IRSp53-MIM protein family. In reconstituted membranes the membrane shaping domains can efficiently deform negatively charged membranes into tubules without any other proteins present. Here, we show that the IM domain (also called I-BAR domain) from the protein ABBA, forms semi-flexible nanotubes protruding into Giant Unilamellar lipid Vesicles (GUVs). By simultaneous quantification of tube intensity and tubular shape we find both the diameter and stiffness of the nanotubes. I-BAR decorated tubes were quantified to have a diameter of ~50 nm and exhibit no stiffening relative to protein free tubes of the same diameter. At high protein density the tubes are immobile whereas at lower density the tubes diffuse freely on the surface of the GUV. Bleaching experiments of the fluorescently tagged I-BAR confirmed that the mobility of the tubes correlates with the mobility of the I-BAR on the GUV membrane. Finally, at low density of I-BAR the protein upconcentrates within tubes protruding into the GUVs. This implies that I-BAR exhibits strong preference for negatively curved membranes.
Lexan Linear Shaped Charge Holder with Magnets and Backing Plate
NASA Technical Reports Server (NTRS)
Maples, Matthew W.; Dutton, Maureen L.; Hacker, Scott C.; Dean, Richard J.; Kidd, Nicholas; Long, Chris; Hicks, Robert C.
2013-01-01
A method was developed for cutting a fabric structural member in an inflatable module, without damaging the internal structure of the module, using linear shaped charge. Lexan and magnets are used in a charge holder to precisely position the linear shaped charge over the desired cut area. Two types of charge holders have been designed, each with its own backing plate. One holder cuts fabric straps in the vertical configuration, and the other charge holder cuts fabric straps in the horizontal configuration.
Precision Blasting Techniques For Avalanche Control
NASA Astrophysics Data System (ADS)
Powell, Kevin M.
Experimental firings sponsored by the Center For Snow Science at Alta, Utah have demonstrated the potential of a unique prototype shaped charge device designed to stimulate snow pack and ice. These studies, conducted against stable snow pack, demonstrated a fourfold increase in crater volume yield and introduced a novel application of Shock Tube technology to facilitate position control, detonation and dud recovery of manually deployed charges. The extraordinary penetration capability of the shaped charge mechanism has been exploited in many non-military applications to meet a wide range of rapidpiercing and/or cutting requirements. The broader exploitation of the potential of the shaped charge mechanism has nevertheless remained confined to defence based applications. In the studies reported in this paper, the inimitable ability of the shaped charge mechanism to project shock energy, or a liner material, into a highly focussed energetic stream has been applied uniquely to the stimulation of snow pack. Recent research and development work, conducted within the UK, has resulted in the integration of shaped charge technology into a common Avalauncher and hand charge device. The potential of the common charge configuration and spooled Shock Tube fire and control system to improve the safety and cost effectiveness of explosives used in avalanche control operations was successfully demonstrated at Alta in March 2001. Future programmes of study will include focussed shock/blast mechanisms for suspended wire traverse techniques, application of the shaped charge mechanism to helibombing, and the desig n and development of non-fragmenting shaped charge ammunition formilitary artillery gun systems.
NASA Astrophysics Data System (ADS)
Xu, Beibei; Li, Yuanzuo; Song, Peng; Ma, Fengcai; Sun, Mengtao
2017-03-01
Three benzimidazole-based organic dyes, possessing the same triphenylamine donors and cyanoacrylic acid acceptors with the bithiophene π-bridges combined in different nuclear positions of benzimidazole, were investigated in the utility of dye-sensitizer solar cells. The structure, molecular orbital and energy, absorption spectra and some important parameters (such as light harvesting efficiency (LHE), electron injection driving force, the electron injection time, chemical reactivity parameters, vertical dipole moment as well as interaction models of dye-I2) were obtained according to Newns-Anderson model and DFT calculation. The process and strength of charge transfer and separation were visualized with charge different density and index of spatial extent (S, D and Δq). Current work paid attention to the new T-shaped dyes to reveal the relation between the structure and photoelectric performance. Furthermore, nine dyes (substitution of alkyl chains and π-bridges) have been designed and characterized to screen promising sensitizer candidates with excellent photo-electronic properties.
Identified charged hadron production in pp and Pb-Pb collisions with ALICE at the LHC
NASA Astrophysics Data System (ADS)
Vasileiou, Maria
2016-11-01
Nuclear matter under extreme conditions can be investigated in ultra-relativistic heavy-ion collisions. The measurement of transverse momentum distributions and yields of identified particles is a fundamental step in understanding collective and thermal properties of the matter produced in such collisions. The ALICE Experiment results on identified charged hadron production are presented for pp collisions at √s = 0.9, 2.76 and 7 TeV and for Pb-Pb collisions at √sNN = 2.76 TeV. Spectral shapes, production yields and nuclear modification factors are shown and compared to previous experiments and Monte Carlo predictions. The spectral shapes in Pb-Pb collisions indicate a strong increase of the radial flow velocity with respect to RHIC energies, which in hydrodynamic models is expected as a consequence of the increasing particle density. The observed suppression of high transverse momentum particles in central Pb-Pb collisions provides evidence for strong parton energy loss in the hot and dense medium.
Shelf life extension for the lot AAE nozzle severance LSCs
NASA Technical Reports Server (NTRS)
Cook, M.
1990-01-01
Shelf life extension tests for the remaining lot AAE linear shaped charges for redesigned solid rocket motor nozzle aft exit cone severance were completed in the small motor conditioning and firing bay, T-11. Five linear shaped charge test articles were thermally conditioned and detonated, demonstrating proper end-to-end charge propagation. Penetration depth requirements were exceeded. Results indicate that there was no degradation in performance due to aging or the linear shaped charge curving process. It is recommended that the shelf life of the lot AAE nozzle severance linear shaped charges be extended through January 1992.
Graphite oxide/β-Ni(OH)2 composites for application in supercapacitors
NASA Astrophysics Data System (ADS)
Singh, Arvinder; Chandra, Amreesh
2013-06-01
Graphite oxide/β-Ni(OH)2 composites have been investigated as electrode material in supercapacitors. Phase formation of electrode material is investigated using diffraction measurements. Particle shape-size studies show deposition of β-Ni(OH)2 nanoparticles on graphite oxide (GO) sheets. Electrochemical performance of GO/β-Ni(OH)2 composite in supercapacitors is discussed based on the analysis of electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge-discharge studies. Excellent energy density of ˜53 Wh/kg in 1M Na2SO4 aqueous electrolyte is reported at power density of ˜1364W/kg. The significance of results is discussed in the paper.
The Power Spectrum of Ionic Nanopore Currents: The Role of Ion Correlations.
Zorkot, Mira; Golestanian, Ramin; Bonthuis, Douwe Jan
2016-04-13
We calculate the power spectrum of electric-field-driven ion transport through nanometer-scale membrane pores using both linearized mean-field theory and Langevin dynamics simulations. Remarkably, the linearized mean-field theory predicts a plateau in the power spectral density at low frequency ω, which is confirmed by the simulations at low ion concentration. At high ion concentration, however, the power spectral density follows a power law that is reminiscent of the 1/ω(α) dependence found experimentally at low frequency. On the basis of simulations with and without ion-ion interactions, we attribute the low-frequency power-law dependence to ion-ion correlations. We show that neither a static surface charge density, nor an increased pore length, nor an increased ion valency have a significant effect on the shape of the power spectral density at low frequency.
Profiling Charge Complementarity and Selectivity for Binding at the Protein Surface
Sulea, Traian; Purisima, Enrico O.
2003-01-01
A novel analysis and representation of the protein surface in terms of electrostatic binding complementarity and selectivity is presented. The charge optimization methodology is applied in a probe-based approach that simulates the binding process to the target protein. The molecular surface is color coded according to calculated optimal charge or according to charge selectivity, i.e., the binding cost of deviating from the optimal charge. The optimal charge profile depends on both the protein shape and charge distribution whereas the charge selectivity profile depends only on protein shape. High selectivity is concentrated in well-shaped concave pockets, whereas solvent-exposed convex regions are not charge selective. This suggests the synergy of charge and shape selectivity hot spots toward molecular selection and recognition, as well as the asymmetry of charge selectivity at the binding interface of biomolecular systems. The charge complementarity and selectivity profiles map relevant electrostatic properties in a readily interpretable way and encode information that is quite different from that visualized in the standard electrostatic potential map of unbound proteins. PMID:12719221
Continuum modeling of charging process and piezoelectricity of ferroelectrets
NASA Astrophysics Data System (ADS)
Xu, Bai-Xiang; von Seggern, Heinz; Zhukov, Sergey; Gross, Dietmar
2013-09-01
Ferroelectrets in the form of electrically charged micro-porous foams exhibit a very large longitudinal piezoelectric coefficient d33. The structure has hence received wide application interests as sensors particularly in acoustic devices. During charging process, electrical breakdown (Paschen breakdown) takes place in the air pores of the foam and introduces free charge pairs. These charges are separated by electrostatic forces and relocated at the interfaces between the polymer and the electrically broken-down medium, where they are trapped quasistatically. The development of this trapped charge density along the interfaces is key for enabling the piezoelectricity of ferroelectrets. In this article, an internal variable based continuum model is proposed to calculate the charge density development at the interfaces, whereas a Maxwell stress based electromechanical model is used for the bulk behavior, i.e., of the polymer and of the medium where the Paschen breakdown takes place. In the modeling, the electrostatic forces between the separated charge pairs are included, as well as the influence of deformation of the solid layers. The material models are implemented in a nonlinear finite element scheme, which allows a detailed analysis of different geometries. A ferroelectret unit with porous expanded polytetrafluoroethylene (ePTFE) surrounded by fluorinated ethylene propylene is studied first. The simulated hysteresis curves of charge density at the surfaces and the calculated longitudinal piezoelectric constant are in good agreement with experimental results. Simulations show a strong dependency of the interface charge development and thus the remnant charges on the thicknesses of the layers and the permittivity of the materials. According to the calculated relation between d33 and the Young's modulus of ePTFE, the value of the Young's modulus of ePTFE is identified to be around 0.75 MPa, which lies well in the predicted range of 0.45 to 0.80 MPa, determined from the dielectric resonance spectra in the work of Zhang et al. [X. Q. Zhang et al., J. Appl. Phys. 108, 064113 (2010)]. To show the potential of the models, it is also applied to simulation of ferroelectrets with a lens shape. The results indicate that the electrical breakdown happens in a sequential manner, and the local piezoelectric coefficient varies with position. Thereby, the middle point on the surface exhibits the maximum d33. The simulation results obtained by the proposed models will provide insight for device optimization.
Electrodynamic tailoring of self-assembled three-dimensional electrospun constructs
NASA Astrophysics Data System (ADS)
Reis, Tiago C.; Correia, Ilídio J.; Aguiar-Ricardo, Ana
2013-07-01
The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive electrostatic forces between the positively charged aerial fibers and the already collected ones, which tend to acquire a negatively charged network oriented towards the nozzle. The in situ polarization degree is strengthened by higher amounts of clustered fibers, and therefore the initial high density fibrous regions are the preliminary motifs for the self-assembly mechanism. As such regions increase their in situ polarization electrostatic repulsive forces will appear, favoring a competitive growth of these self-assembled fibrous clusters. Highly polarized regions will evidence higher distances between consecutive micro-assembled fibers (MAFs). Different processing parameters - deposition time, electric field intensity, concentration of polymer solution, environmental temperature and relative humidity - were evaluated in an attempt to control material's design.The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive electrostatic forces between the positively charged aerial fibers and the already collected ones, which tend to acquire a negatively charged network oriented towards the nozzle. The in situ polarization degree is strengthened by higher amounts of clustered fibers, and therefore the initial high density fibrous regions are the preliminary motifs for the self-assembly mechanism. As such regions increase their in situ polarization electrostatic repulsive forces will appear, favoring a competitive growth of these self-assembled fibrous clusters. Highly polarized regions will evidence higher distances between consecutive micro-assembled fibers (MAFs). Different processing parameters - deposition time, electric field intensity, concentration of polymer solution, environmental temperature and relative humidity - were evaluated in an attempt to control material's design. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01668d
Manifestation of two-channel nonlocal spin transport in the shapes of Hanle curves
NASA Astrophysics Data System (ADS)
Roundy, R. C.; Prestgard, M. C.; Tiwari, A.; Mishchenko, E. G.; Raikh, M. E.
2014-09-01
The dynamics of charge-density fluctuations in a system of two tunnel-coupled wires contains two diffusion modes with dispersion iω =Dq2 and iω =Dq2+2/τt, where D is the diffusion coefficient and τt is the tunneling time between the wires. The dispersion of corresponding spin-density modes depends on magnetic field as a result of the spin precession with Larmour frequency ωL. The presence of two modes affects the shape of the Hanle curve describing the spin-dependent resistance R between the ferromagnetic strips covering the nonmagnetic wires. We demonstrate that the relative shapes of the R (ωL) curves, one measured within the same wire and the other measured between the wires, depends on the ratio τt/τs, where τs is the spin-diffusion time. If the coupling between the wires is local, i.e., only at the point x =0, then the difference of the shapes of intrawire and interwire Hanle curves reflects the difference in statistics of diffusive trajectories, which "switch" or do not switch near x =0. When one of the coupled wires is bent into a loop with a radius a, the shape of the Hanle curve reflects the statistics of random walks on the loop. This statistics is governed by the dimensionless parameter a /√Dτs .
NASA Astrophysics Data System (ADS)
Kamitake, Hiroki; Uenuma, Mutsunori; Okamoto, Naofumi; Horita, Masahiro; Ishikawa, Yasuaki; Yamashita, Ichro; Uraoka, Yukiharu
2015-05-01
We report a nanodot (ND) floating gate memory (NFGM) with a high-density ND array formed by a biological nano process. We utilized two kinds of cage-shaped proteins displaying SiO2 binding peptide (minTBP-1) on their outer surfaces: ferritin and Dps, which accommodate cobalt oxide NDs in their cavities. The diameters of the cobalt NDs were regulated by the cavity sizes of the proteins. Because minTBP-1 is strongly adsorbed on the SiO2 surface, high-density cobalt oxide ND arrays were obtained by a simple spin coating process. The densities of cobalt oxide ND arrays based on ferritin and Dps were 6.8 × 1011 dots cm-2 and 1.2 × 1012 dots cm-2, respectively. After selective protein elimination and embedding in a metal-oxide-semiconductor (MOS) capacitor, the charge capacities of both ND arrays were evaluated by measuring their C-V characteristics. The MOS capacitor embedded with the Dps ND array showed a wider memory window than the device embedded with the ferritin ND array. Finally, we fabricated an NFGM with a high-density ND array based on Dps, and confirmed its competent writing/erasing characteristics and long retention time.
Hirano, Y; Kiyama, S; Koguchi, H; Sakakita, H
2014-02-01
Spontaneous self-focusing of ion beam with high current density (Jc ∼ 2 mA/cm(2), Ib ∼ 65 mA) in low energy region (∼150 eV) is observed in a hydrogen ion beam extracted from an ordinary bucket type ion source with three electrodes having concave shape (acceleration, deceleration, and grounded electrodes). The focusing appears abruptly in the beam energy region over ∼135-150 eV, and the Jc jumps up from 0.7 to 2 mA/cm(2). Simultaneously a strong electron flow also appears in the beam region. The electron flow has almost the same current density. Probably these electrons compensate the ion space charge and suppress the beam divergence.
Jet properties in PbPb and pp collisions at √{s_{NN}}=5.02 TeV
NASA Astrophysics Data System (ADS)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Escalante Del Valle, A.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hrubec, J.; Jeitler, M.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Taurok, A.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Pieters, M.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Marchesini, I.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Bilin, B.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Kalsi, A. K.; Lenzi, T.; Luetic, J.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Trocino, D.; Tytgat, M.; Verbeke, W.; Vermassen, B.; Vit, M.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correia Silva, G.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Malbouisson, H.; Medina Jaime, M.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Calligaris, L.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, J.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Wang, Y.; Avila, C.; Cabrera, A.; Carrillo Montoya, C. A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Ellithi Kamel, A.; Mahmoud, M. A.; Mohammed, Y.; Bhowmik, S.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Kucher, I.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Coubez, X.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Juillot, P.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lattaud, H.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Zhang, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M. P.; Schomakers, C.; Schulz, J.; Teroerde, M.; Wittmer, B.; Zhukov, V.; Albert, A.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Babounikau, I.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bertsche, D.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Danilov, V.; De Wit, A.; Diez Pardos, C.; Domínguez Damiani, D.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Elwood, A.; Eren, E.; Gallo, E.; Geiser, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Jung, H.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Knolle, J.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Meyer, M.; Missiroli, M.; Mittag, G.; Mnich, J.; Mussgiller, A.; Pflitsch, S. K.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Schwanenberger, C.; Shevchenko, R.; Singh, A.; Stefaniuk, N.; Tholen, H.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Kasieczka, G.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Kutzner, V.; Lange, J.; Marconi, D.; Multhaup, J.; Niedziela, M.; Nowatschin, D.; Peiffer, T.; Perieanu, A.; Reimers, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Vellidis, K.; Kousouris, K.; Papakrivopoulos, I.; Evangelou, I.; Foudas, C.; Gianneios, P.; Katsoulis, P.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Tsitsonis, D.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Vámi, T. Á.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chauhan, S.; Chawla, R.; Dhingra, N.; Gupta, R.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Lohan, M.; Mehta, A.; Sharma, S.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Bhowmik, D.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Rout, P. K.; Roy, A.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Singh, B.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Ravindra Kumar Verma, R.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sahoo, N.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Di Florio, A.; Errico, F.; Fiore, L.; Gelmi, A.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Marangelli, B.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Iemmi, F.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Ravera, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Galati, G.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Voevodina, E.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Tiko, A.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bianchini, L.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Messineo, A.; Palla, F.; Rizzi, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Pandolfi, F.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Castello, R.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Vazzoler, F.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Eysermans, J.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Traczyk, P.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sosnov, D.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Stolin, V.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Popova, E.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Rusakov, S. V.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Blinov, V.; Shtol, D.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Godizov, A.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Babaev, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Alcaraz Maestre, J.; Bachiller, I.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Soares, M. S.; Triossi, A.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Duarte Campderros, J.; Fernandez, M.; Fernández Manteca, P. J.; Garcia-Ferrero, J.; García Alonso, A.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Prieels, C.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bocci, A.; Botta, C.; Camporesi, T.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pantaleo, F.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pitters, F. M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Casal, B.; Chernyavskaya, N.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Klijnsma, T.; Lustermann, W.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; NessiTedaldi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Ruini, D.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Brzhechko, D.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Neutelings, I.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Chang, Y. H.; Cheng, K. y.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bakirci, M. N.; Bat, A.; Boran, F.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tok, U. G.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Atakisi, I. O.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Komurcu, Y.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Linacre, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Auzinger, G.; Bainbridge, R.; Bloch, P.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; Della Negra, M.; Di Maria, R.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Komm, M.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Strebler, T.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Morton, A.; Reid, I. D.; Teodorescu, L.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Taylor, D.; Tos, K.; Tripathi, M.; Wang, Z.; Zhang, F.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Karapostoli, G.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Citron, M.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; Gouskos, L.; Heller, R.; Incandela, J.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Bunn, J.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T. Q.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; MacDonald, E.; Mulholland, T.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chaves, J.; Cheng, Y.; Chu, J.; Datta, A.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kortelainen, M. J.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Savoy-Navarro, A.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, W.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Dittmer, S.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Varelas, N.; Wang, H.; Wang, X.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Hung, W. T.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Benitez, J. F.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Rogan, C.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Modak, A.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Rebassoo, F.; Wright, D.; Baden, A.; Baron, O.; Belloni, A.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bauer, G.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Harris, P.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Zhaozhong, S.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Golf, F.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Freer, C.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Wamorkar, T.; Wang, B.; Wisecarver, A.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Bucci, R.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Li, W.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Siddireddy, P.; Smith, G.; Taroni, S.; Wayne, M.; Wightman, A.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Ling, T. Y.; Luo, W.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Kalogeropoulos, A.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Salfeld-Nebgen, J.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Gutay, L.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xiao, R.; Xie, W.; Cheng, T.; Dolen, J.; Parashar, N.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Ruiz Alvarez, J. D.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Carlsmith, D.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Rekovic, V.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Woods, N.
2018-05-01
Modifications of the properties of jets in PbPb collisions, relative to those in pp collisions, are studied at a nucleon-nucleon center-of-mass energy of √{s_{NN}}=5.02 TeV via correlations of charged particles with the jet axis in relative pseudorapidity (Δ η), relative azimuth (Δ ϕ), and relative angular distance from the jet axis Δ r=√{(Δ η )^2+{(Δ φ )}^2} . This analysis uses data collected with the CMS detector at the LHC, corresponding to integrated luminosities of 404 μb-1 and 27.4 pb-1 for PbPb and pp collisions, respectively. Charged particle number densities, jet fragmentation functions, and jet shapes are presented as a function of PbPb collision centrality and charged-particle track transverse momentum, providing a differential description of jet modifications due to interactions with the quark-gluon plasma. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrero, A. F., E-mail: afguerreror@uqvirtual.edu.co; Mesa, J., E-mail: jmesa@ibb.unesp.br
2016-07-07
Because of the behavior that charged particles have when they interact with biological material, proton therapy is shaping the future of radiation therapy in cancer treatment. The planning of radiation therapy is made up of several stages. The first one is the diagnostic image, in which you have an idea of the density, size and type of tumor being treated; to understand this it is important to know how the particles beam interacts with the tissue. In this work, by using de Lindhard formalism and the Y.R. Waghmare model for the charge distribution of the proton, the electronic stopping powermore » (SP) for a proton beam interacting with a liquid water target in the range of proton energies 10{sup 1} eV - 10{sup 10} eV taking into account all the charge states is calculated.« less
Vibrational modes of thin oblate clouds of charge
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Spencer, Ross L.
2002-07-01
A numerical method is presented for finding the eigenfunctions (normal modes) and mode frequencies of azimuthally symmetric non-neutral plasmas confined in a Penning trap whose axial thickness is much smaller than their radial size. The plasma may be approximated as a charged disk in this limit; the normal modes and frequencies can be found if the surface charge density profile σ(r) of the disk and the trap bounce frequency profile ωz(r) are known. The dependence of the eigenfunctions and equilibrium plasma shapes on nonideal components of the confining Penning trap fields is discussed. The results of the calculation are compared with the experimental data of Weimer et al. [Phys. Rev. A 49, 3842 (1994)] and it is shown that the plasma in this experiment was probably hollow and had mode displacement functions that were concentrated near the center of the plasma.
2011-07-01
a reactive and a non reactive shaped charge liner is in the energy release of the combustion ... reactive shaped charge jets the reaction is explained and the possible energy release of the metal combustion is estimated. Addition- ally the...Charges In a shaped charge a -in most cases- conical cavity in the explosive is covered with a liner. If the explosive detonates , a small portion
Felouat, Abdellah; D'Aléo, Anthony; Charaf-Eddin, Azzam; Jacquemin, Denis; Le Guennic, Boris; Kim, Eunsun; Lee, Kwang Jin; Woo, Jae Heun; Ribierre, Jean-Charles; Wu, Jeong Weon; Fages, Frédéric
2015-06-18
Controlling photoinduced intramolecular charge transfer at the molecular scale is key to the development of molecular devices for nanooptoelectronics. Here, we describe the design, synthesis, electronic characterization, and photophysical properties of two electron donor-acceptor molecular systems that consist of tolane and BF2-containing curcuminoid chromophoric subunits connected in a T-shaped arrangement. The two π-conjugated segments intersect at the electron acceptor dioxaborine core. From steady-state electronic absorption and fluorescence emission, we find that the photophysics of the dialkylamino-substituted analogue is governed by the occurrence of two closely lying excited states. From DFT calculations, we show that excitation in either of these two states results in a distinct shift of the electron density, whether it occurs along the curcuminoid or tolane moiety. Femtosecond transient absorption spectroscopy confirmed these findings. As a consequence, the nature of the emitting state and the photophysical properties are strongly dependent on solvent polarity. Moreover, these characteristics can also be switched by protonation or complexation at the nitrogen atom of the amino group. These features set new approaches toward the construction of a three-terminal molecular system in which the lateral branch would transduce a change of electronic state and ultimately control charge transport in a molecular-scale device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gürel, Hikmet Hakan, E-mail: hhakan.gurel@kocaeli.edu.tr; Salmankurt, Bahadır
2016-03-25
Nanometer-sized graphene as a 2D material has unique chemical and electronic properties. Because of its unique physical, chemical, and electronic properties, its interesting shape and size make it a promising nanomaterial in many biological applications. It is expected that biomaterials incorporating graphene will be developed for the graphene-based drug delivery systems and biomedical devices. The interactions of biomolecules and graphene are long-ranged and very weak. Development of new techniques is very desirable for design of bioelectronics sensors and devices. In this work, we present first-principles calculations within density functional theory to calculate effects of charging on nucleobases on graphene. Itmore » is shown that how modify structural and electronic properties of nucleobases on graphene by applied charging.« less
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Ashley, Paul R.; Abushagur, Mustafa
2004-01-01
A charge density and current density model of a waveguide system has been developed to explore the effects of electric field electrode poling. An optical waveguide may be modeled during poling by considering the dielectric charge distribution, polarization charge distribution, and conduction charge generated by the poling field. These charge distributions are the source of poling current densities. The model shows that boundary charge current density and polarization current density are the major source of currents measured during poling and thermally stimulated discharge These charge distributions provide insight into the poling mechanisms and are directly related to E(sub A), and, alpha(sub r). Initial comparisons with experimental data show excellent correlation to the model results.
Energetics of edge oxidization of graphene nanoribbons
NASA Astrophysics Data System (ADS)
Yasuma, Airi; Yamanaka, Ayaka; Okada, Susumu
2018-06-01
On the basis of the density functional theory, we studied the geometries and energetics of O atoms adsorbed on graphene edges for simulating the initial stage of the edge oxidization of graphene. Our calculations showed that oxygen atoms are preferentially adsorbed onto the graphene edges with the zigzag portion, resulting in a large adsorption energy of about 5 eV. On the other hand, the edges with armchair shape are rarely oxidized, or the oxidization causes substantial structural reconstructions, because of the stable covalent bond at the armchair edge with the triple bond nature. Furthermore, the energetics sensitively depends on the edge angles owing to the inhomogeneity of the charge density at the edge atomic sites.
High performance zinc anode for battery applications
NASA Technical Reports Server (NTRS)
Casey, John E., Jr. (Inventor)
1998-01-01
An improved zinc anode for use in a high density rechargeable alkaline battery is disclosed. A process for making the zinc electrode comprises electrolytic loading of the zinc active material from a slightly acidic zinc nitrate solution into a substrate of nickel, copper or silver. The substrate comprises a sintered plaque having very fine pores, a high surface area, and 80-85 percent total initial porosity. The residual porosity after zinc loading is approximately 25-30%. The electrode of the present invention exhibits reduced zinc mobility, shape change and distortion, and demonstrates reduced dendrite buildup cycling of the battery. The disclosed battery is useful for applications requiring high energy density and multiple charge capability.
Effect of Fe{sub 3}O{sub 4} nanoparticles on positive streamer propagation in transformer oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Yuzhen, E-mail: yzlv@ncepu.edu.cn; School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206; Wang, Qi
Fe{sub 3}O{sub 4} nanoparticles with an average diameter of 10 nm were prepared and used to modify streamer characteristic of transformer oil. It was found that positive streamer propagation velocity in transformer oil-based Fe{sub 3}O{sub 4} nanofluid is greatly reduced by 51% in comparison with that in pure oil. The evolution of streamer shape is also dramatically affected by the presence of nanoparticles, changing from a tree-like shape with sharp branches in pure oil to a bush-like structure with thicker and denser branches in nanofluid. The TSC results reveal that the modification of Fe{sub 3}O{sub 4} nanoparticle can greatly increasemore » the density of shallow trap and change space charge distribution in nanofluid by converting fast electrons into slow electrons via trapping and de-trapping process in shallow traps. These negative space charges induced by nanoparticles greatly alleviate the electric field distortion in front of the positive streamer tip and significantly hinder the propagation of positive streamer.« less
Understanding pyrotechnic shock dynamics and response attenuation over distance
NASA Astrophysics Data System (ADS)
Ott, Richard J.
Pyrotechnic shock events used during stage separation on rocket vehicles produce high amplitude short duration structural response that can lead to malfunction or degradation of electronic components, cracks and fractures in brittle materials, local plastic deformation, and can cause materials to experience accelerated fatigue life. These transient loads propagate as waves through the structural media losing energy as they travel outward from the source. This work assessed available test data in an effort to better understand attenuation characteristics associated with wave propagation and attempted to update a historical standard defined by the Martin Marietta Corporation in the late 1960's using out of date data acquisition systems. Two data sets were available for consideration. The first data set came from a test that used a flight like cylinder used in NASA's Ares I-X program, and the second from a test conducted with a flat plate. Both data sets suggested that the historical standard was not a conservative estimate of shock attenuation with distance, however, the variation in the test data did not lend to recommending an update to the standard. Beyond considering attenuation with distance an effort was made to model the flat plate configuration using finite element analysis. The available flat plate data consisted of three groups of tests, each with a unique charge density linear shape charge (LSC) used to cut an aluminum plate. The model was tuned to a representative test using the lowest charge density LSC as input. The correlated model was then used to predict the other two cases by linearly scaling the input load based on the relative difference in charge density. The resulting model predictions were then compared with available empirical data. Aside from differences in amplitude due to nonlinearities associated with scaling the charge density of the LSC, the model predictions matched the available test data reasonably well. Finally, modeling best practices were recommended when using industry standard software to predict shock response on structures. As part of the best practices documented, a frequency dependent damping schedule that can be used in model development when no data is available is provided.
Wedge-shaped potential and Airy-function electron localization in oxide superlattices.
Popovic, Z S; Satpathy, S
2005-05-06
Oxide superlattices and microstructures hold the promise for creating a new class of devices with unprecedented functionalities. Density-functional studies of the recently fabricated, lattice-matched perovskite titanates (SrTiO3)n/(LaTiO3)m reveal a classic wedge-shaped potential well for the monolayer (m = 1) structure, originating from the Coulomb potential of a two-dimensional charged La sheet. The potential in turn confines the electrons in the Airy-function-localized states. Magnetism is suppressed for the monolayer structure, while in structures with a thicker LaTiO3 part, bulk antiferromagnetism is recovered, with a narrow transition region separating the magnetic LaTiO3 and the nonmagnetic SrTiO3.
Nuclear quantum shape-phase transitions in odd-mass systems
NASA Astrophysics Data System (ADS)
Quan, S.; Li, Z. P.; Vretenar, D.; Meng, J.
2018-03-01
Microscopic signatures of nuclear ground-state shape-phase transitions in odd-mass Eu isotopes are explored starting from excitation spectra and collective wave functions obtained by diagonalization of a core-quasiparticle coupling Hamiltonian based on energy density functionals. As functions of the physical control parameter—the number of nucleons—theoretical low-energy spectra, two-neutron separation energies, charge isotope shifts, spectroscopic quadrupole moments, and E 2 reduced transition matrix elements accurately reproduce available data and exhibit more-pronounced discontinuities at neutron number N =90 compared with the adjacent even-even Sm and Gd isotopes. The enhancement of the first-order quantum phase transition in odd-mass systems can be attributed to a shape polarization effect of the unpaired proton which, at the critical neutron number, starts predominantly coupling to Gd core nuclei that are characterized by larger quadrupole deformation and weaker proton pairing correlations compared with the corresponding Sm isotopes.
Charged drop dynamics experiment using an electrostatic-acoustic hybrid system
NASA Technical Reports Server (NTRS)
Rhim, W. K.; Chung, S. K.; Trinh, E. H.; Elleman, D. D.
1987-01-01
The design and the performance of an electrostatic-acoustic hybrid system and its application to a charge drop rotation experiment are presented. This system can levitate a charged drop electrostatically and induce drop rotation or oscillation by imposing an acoustic torque or an oscillating acoustic pressure. Using this system, the equilibrium shapes and stability of a rotating charged drop were experimentally investigated. A 3 mm size water drop was rotated as a rigid body and its gyrostatic equilibrium shapes were observed. Families of axisymmetric shapes, two-lobed shapes, and eventual fissioning have been observed. With the assumption of 'effective surface tension' in which the surface charge simply modified the surface tension of neutral liquid, the results agree exceptionally well with the Brown and Scriven's (1980) prediction for uncharged drops.
NASA Astrophysics Data System (ADS)
Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.
2017-09-01
Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20-25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30-60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p+ implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO2 interface charge densities (Qf) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p+ implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Qf, that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.
Ramana, CV; Becker, U; Shutthanandan, V; Julien, CM
2008-01-01
Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia. The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA). Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400°C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant increase in size associated with a decrease in density with further annealing. PMID:18534025
Ramana, C V; Becker, U; Shutthanandan, V; Julien, C M
2008-06-05
Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia.The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA).Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400 degrees C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant increase in size associated with a decrease in density with further annealing.
NASA Astrophysics Data System (ADS)
Skottfelt, Jesper; Hall, David J.; Gow, Jason P. D.; Murray, Neil J.; Holland, Andrew D.; Prod'homme, Thibaut
2017-04-01
The visible imager instrument on board the Euclid mission is a weak-lensing experiment that depends on very precise shape measurements of distant galaxies obtained by a large charge-coupled device (CCD) array. Due to the harsh radiative environment outside the Earth's atmosphere, it is anticipated that the CCDs over the mission lifetime will be degraded to an extent that these measurements will be possible only through the correction of radiation damage effects. We have therefore created a Monte Carlo model that simulates the physical processes taking place when transferring signals through a radiation-damaged CCD. The software is based on Shockley-Read-Hall theory and is made to mimic the physical properties in the CCD as closely as possible. The code runs on a single electrode level and takes the three-dimensional trap position, potential structure of the pixel, and multilevel clocking into account. A key element of the model is that it also takes device specific simulations of electron density as a direct input, thereby avoiding making any analytical assumptions about the size and density of the charge cloud. This paper illustrates how test data and simulated data can be compared in order to further our understanding of the positions and properties of the individual radiation-induced traps.
NASA Astrophysics Data System (ADS)
Chinotti, M.; Ethiraj, J.; Mirri, C.; Zhu, Xiangde; Li, Lijun; Petrovic, C.; Degiorgi, L.
2018-01-01
The emergence of superconductivity upon progressively suppressing the long-range, charge-density-wave (CDW) order characterizes the phase diagram of several materials of interest in the on-going solid-state physics research. Se-doped ZrTe3 compounds provide the most recent, suitable arena in order to investigate the interplay of otherwise competing orders in layeredlike two-dimensional systems. We present an optical study of the CDW state in ZrTe3 -xSex at selected Se dopings, based on the measurement of the reflectivity from the far-infrared up to the ultraviolet, as a function of temperature. We particularly focus our attention to the redistribution of the spectral weight, which images the impact of the CDW state within the optical conductivity across the phase diagram of the title compounds. The electrodynamic response is consistent with a scenario based on a long-range CDW condensate at low Se doping. Upon increasing the Se content, this then gives way to local, short-range order CDW segments. Our spectral weight analysis reveals the presence of a pseudogap phase, as fingerprint of the CDW precursor effects and thus shaping the charge dynamics of the title compounds in their normal state, preceding the onset of superconductivity.
NASA Astrophysics Data System (ADS)
Vitarelli, Michael J.; Talaga, David S.
2013-09-01
Single solid-state nanopores find increasing use for electrical detection and/or manipulation of macromolecules. These applications exploit the changes in signals due to the geometry and electrical properties of the molecular species found within the nanopore. The sensitivity and resolution of such measurements are also influenced by the geometric and electrical properties of the nanopore. This paper continues the development of an analytical theory to predict the electrochemical impedance spectra of nanopores by including the influence of the presence of an unfolded protein using the variable topology finite Warburg impedance model previously published by the authors. The local excluded volume of, and charges present on, the segment of protein sampled by the nanopore are shown to influence the shape and peak frequency of the electrochemical impedance spectrum. An analytical theory is used to relate the capacitive response of the electrical double layer at the surface of the protein to both the charge density at the protein surface and the more commonly measured zeta potential. Illustrative examples show how the theory predicts that the varying sequential regions of surface charge density and excluded volume dictated by the protein primary structure may allow for an impedance-based approach to identifying unfolded proteins.
Singh, Kunwar Pal; Guo, Chunlei
2017-06-21
The nanochannel diameter and surface charge density have a significant impact on current-voltage characteristics in a nanofluidic transistor. We have simulated the effect of the channel diameter and surface charge density on current-voltage characteristics of a fluidic nanochannel with positive surface charge on its walls and a gate electrode on its surface. Anion depletion/enrichment leads to a decrease/increase in ion current with gate potential. The ion current tends to increase linearly with gate potential for narrow channels at high surface charge densities and narrow channels are more effective to control the ion current at high surface charge densities. The current-voltage characteristics are highly nonlinear for wide channels at low surface charge densities and they show different regions of current change with gate potential. The ion current decreases with gate potential after attaining a peak value for wide channels at low values of surface charge densities. At low surface charge densities, the ion current can be controlled by a narrow range of gate potentials for wide channels. The current change with source drain voltage shows ohmic, limiting and overlimiting regions.
Rebounding of a shaped-charge jet
NASA Astrophysics Data System (ADS)
Proskuryakov, E. V.; Sorokin, M. V.; Fomin, V. M.
2007-09-01
The phenomenon of rebounding of a shaped-charge jet from the armour surface with small angles between the jet axis and the target surface is considered. Rebounding angles as a function of jet velocity are obtained in experiments for a copper shaped-charge jet. An engineering calculation technique is developed. The results calculated with the use of this technique are in reasonable agreement with experimental data.
Testing Shaped Charges in Unfrozen and Frozen Silt in Alaska
1982-03-01
AwTrRACT Cte sm reveg N emeagay -id d*ify by block number) SBorehole blasting tests using 15- and 40-lb charges were conducted in silt at Fort Wainwright...Table 3-5 of the manual, performance data on the blasting of boreholes with shaped charges are presented. Of particular interest in that table a-e the...Commander of the 47th Engineers at Fort Wainwright asked if I could verify his findings that the M2A4 (15-1b) shaped charge cannot produce a borehole in
Simulation of the Universal-Time Diurnal Variation of the Global Electric Circuit Charging Rate
NASA Technical Reports Server (NTRS)
Mackerras, D.; Darvenzia, M.; Orville, R. E.; Williams, E. R.; Goodman, S. J.
1999-01-01
A global lightning model that includes diurnal and annual lightning variation, and total flash density versus latitude for each major land and ocean, has been used as the basis for simulating the global electric circuit charging rate. A particular objective has been to reconcile the difference in amplitude ratios [AR=(max-min)/mean] between global lightning diurnal variation (AR approx. = 0.8) and the diurnal variation of typical atmospheric potential gradient curves (AR approx. = 0.35). A constraint on the simulation is that the annual mean charging current should be about 1000 A. The global lightning model shows that negative ground flashes can contribute, at most, about 10-15% of the required current. For the purpose of the charging rate simulation, it was assumed that each ground flash contributes 5 C to the charging process. It was necessary to assume that all electrified clouds contribute to charging by means other than lightning, that the total flash rate can serve as an indirect indicator of the rate of charge transfer, and that oceanic electrified clouds contribute to charging even though they are relatively inefficient in producing lightning. It was also found necessary to add a diurnally invariant charging current component. By trial and error it was found that charging rate diurnal variation curves in Universal time (UT) could be produced with amplitude ratios and general shapes similar to those of the potential gradient diurnal variation curves measured over ocean and arctic regions during voyages of the Carnegie Institute research vessels.
Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles
NASA Astrophysics Data System (ADS)
Frost, David; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan
2009-06-01
The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behavior of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, although large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations. In general, particle ignition is a competition between particle heating (which is influenced by particle morphology, size, number density and the local thermodynamic history) and expansion cooling of the products.
Charged jet cross sections and properties in proton-proton collisions at s = 7 TeV
Abelev, B.; Adam, J.; Adamová, D.; ...
2015-06-22
Here, the differential charged jet cross sections, jet fragmentation distributions, and jet shapes are measured in minimum bias proton-proton collisions at center-of-mass energy √s=7 TeV using the ALICE detector at the LHC. Jets are reconstructed from charged particle momenta in the midrapidity region using the sequential recombination k T and anti-k T as well as the SISCone jet finding algorithms with several resolution parameters in the range R=0.2–0.6. Differential jet production cross sections measured with the three jet finders are in agreement in the transverse momentum (p T) interval 20 < pjet,ch T < 100 GeV/c. They are alsomore » consistent with prior measurements carried out at the LHC by the ATLAS Collaboration. The jet charged particle multiplicity rises monotonically with increasing jet p T, in qualitative agreement with prior observations at lower energies. The transverse profiles of leading jets are investigated using radial momentum density distributions as well as distributions of the average radius containing 80% (R 80) of the reconstructed jet p T. The fragmentation of leading jets with R=0.4 using scaled p T spectra of the jet constituents is studied. The measurements are compared to model calculations from event generators (PYTHIA, PHOJET, HERWIG). The measured radial density distributions and R 80 distributions are well described by the PYTHIA model (tune Perugia-2011). The fragmentation distributions are better described by HERWIG.« less
Deployment of Shaped Charges by a Semi-Autonomous Ground Vehicle
2007-06-01
lives on a daily basis. BigFoot seeks to replace the local human component by deploying and remotely detonating shaped charges to destroy IEDs...robotic arm to deploy and remotely detonate shaped charges. BigFoot incorporates improved communication range over previous Autonomous Ground Vehicles...and an updated user interface that includes controls for the arm and camera by interfacing multiple microprocessors. BigFoot is capable of avoiding
Shaped Charge Liner Materials: Resources, Processes, Properties, Costs, and Applications
1991-02-01
SUBTITLE 5. FUNDING NUMBERS Shaped Charge Liner Materials: Resources, Processes, Properties, Costs, and Applications 2 6. AUTHOC Steven M. Buc 7...summaries of the mineral availability, Cq prmarymetal refinement processeb, material costs in raw form and as finished shaped charge liners , relevant... liner materials. 94-11479 gI 14, SUBJECT TERMS iSt NUMBER OF PAGIS 13chrg wrhad :xplosively formed penetrators material R. PRCE COEV" processing
NASA Technical Reports Server (NTRS)
Wescott, E. M.; Davis, T. N.
1980-01-01
A reliable payload system and scaled down shaped charges were developed for carrying out experiments in solar-terrestrial magnetospheric physics. Four Nike-Tomahawk flights with apogees near 450 km were conducted to investigate magnetospheric electric fields, and two Taurus-Tomahawk rockets were flown in experiments on the auroral acceleration process in discrete auroras. In addition, a radial shaped charge was designed for plasma perturbation experiments.
A charged membrane paradigm at large D
NASA Astrophysics Data System (ADS)
Bhattacharyya, Sayantani; Mandlik, Mangesh; Minwalla, Shiraz; Thakur, Somyadip
2016-04-01
We study the effective dynamics of black hole horizons in Einstein-Maxwell theory in a large number of spacetime dimensions D. We demonstrate that horizon dynamics may be recast as a well posed initial value problem for the motion of a codimension one non gravitational membrane moving in flat space. The dynamical degrees of freedom of this membrane are its shape, charge density and a divergence free velocity field. We determine the equations that govern membrane dynamics at leading order in the large D expansion. Our derivation of the membrane equations assumes that the solution preserves an SO( D - p - 2) isometry with p held fixed as D is taken to infinity. However we are able to cast our final membrane equations into a completely geometric form that makes no reference to this symmetry algebra.
Field-induced dielectric response saturation in $o$ -TaS 3
Ma, Yongchang; Lu, Cuimin; Wang, Xuewei; ...
2016-08-03
The temperature and electric field dependent conductivity spectra of o-TaS 3 sample with 10 μm 2 in cross section were measured. Besides the classical electric threshold E T₋Cl, we observed another novel threshold E T₋N at a larger electric field, where an S-shaped I-V relation revealed. The appearance of E T₋N may be due to the establishment of coherence among small charge-density- wave domains. Under a stable field E > E T-N, a sharp dispersion emerged below kHz. At a fixed temperature, the scattering rate of the charged condensate was extremely small and decreased with increasing field. With decreasing temperature,more » the scattering Fröhlic-mode conductivity would be consistent with the meta-stable state.« less
NASA Astrophysics Data System (ADS)
Bazilchuk, Molly; Haug, Halvard; Marstein, Erik Stensrud
2015-04-01
Several important semiconductor devices such as solar cells and photodetectors may be fabricated based on surface inversion layer junctions induced by fixed charge in a dielectric layer. Inversion layer junctions can easily be fabricated by depositing layers with a high density of fixed charge on a semiconducting substrate. Increasing the fixed charge improves such devices; for instance, the efficiency of a solar cell can be substantially increased by reducing the surface recombination velocity, which is a function of the fixed charge density. Methods for increasing the charge density are therefore of interest. In this work, the fixed charge density in silicon nitride layers deposited by plasma enhanced chemical vapor deposition is increased to very high values above 1 × 1013 cm-2 after the application of an external voltage to a gate electrode. The effect of the fixed charge density on the surface recombination velocity was experimentally observed using the combination of capacitance-voltage characterization and photoluminescence imaging, showing a significant reduction in the surface recombination velocity for increasing charge density. The surface recombination velocity vs. charge density data was analyzed using a numerical device model, which indicated the presence of a sub-surface damage region formed during deposition of the layers. Finally, we have demonstrated that the aluminum electrodes used for charge injection may be chemically removed in phosphoric acid without loss of the underlying charge. The injected charge was shown to be stable for a prolonged time period, leading us to propose charge injection in silicon nitride films by application of soaking voltage as a viable method for fabricating inversion layer devices.
Method for Estimating the Charge Density Distribution on a Dielectric Surface.
Nakashima, Takuya; Suhara, Hiroyuki; Murata, Hidekazu; Shimoyama, Hiroshi
2017-06-01
High-quality color output from digital photocopiers and laser printers is in strong demand, motivating attempts to achieve fine dot reproducibility and stability. The resolution of a digital photocopier depends on the charge density distribution on the organic photoconductor surface; however, directly measuring the charge density distribution is impossible. In this study, we propose a new electron optical instrument that can rapidly measure the electrostatic latent image on an organic photoconductor surface, which is a dielectric surface, as well as a novel method to quantitatively estimate the charge density distribution on a dielectric surface by combining experimental data obtained from the apparatus via a computer simulation. In the computer simulation, an improved three-dimensional boundary charge density method (BCM) is used for electric field analysis in the vicinity of the dielectric material with a charge density distribution. This method enables us to estimate the profile and quantity of the charge density distribution on a dielectric surface with a resolution of the order of microns. Furthermore, the surface potential on the dielectric surface can be immediately calculated using the obtained charge density. This method enables the relation between the charge pattern on the organic photoconductor surface and toner particle behavior to be studied; an understanding regarding the same may lead to the development of a new generation of higher resolution photocopiers.
Complexation of ferric oxide particles with pectins of different charge density.
Milkova, Viktoria; Kamburova, Kamelia; Petkanchin, Ivana; Radeva, Tsetska
2008-09-02
The effect of polyelectrolyte charge density on the electrical properties and stability of suspensions of oppositely charged oxide particles is followed by means of electro-optics and electrophoresis. Variations in the electro-optical effect and the electrophoretic mobility are examined at conditions where fully ionized pectins of different charge density adsorb onto particles with ionizable surfaces. The charge neutralization point coincides with the maximum of particle aggregation in all suspensions. We find that the concentration of polyelectrolyte, needed to neutralize the particle charge, decreases with increasing charge density of the pectin. The most highly charged pectin presents an exception to this order, which is explained with a reduction of the effective charge density of this pectin due to condensation of counterions. The presence of condensed counterions, remaining bound to the pectin during its adsorption on the particle surface, is proved by investigation of the frequency behavior of the electro-optical effect at charge reversal of the particle surface.
A method to estimate statistical errors of properties derived from charge-density modelling
Lecomte, Claude
2018-01-01
Estimating uncertainties of property values derived from a charge-density model is not straightforward. A methodology, based on calculation of sample standard deviations (SSD) of properties using randomly deviating charge-density models, is proposed with the MoPro software. The parameter shifts applied in the deviating models are generated in order to respect the variance–covariance matrix issued from the least-squares refinement. This ‘SSD methodology’ procedure can be applied to estimate uncertainties of any property related to a charge-density model obtained by least-squares fitting. This includes topological properties such as critical point coordinates, electron density, Laplacian and ellipticity at critical points and charges integrated over atomic basins. Errors on electrostatic potentials and interaction energies are also available now through this procedure. The method is exemplified with the charge density of compound (E)-5-phenylpent-1-enylboronic acid, refined at 0.45 Å resolution. The procedure is implemented in the freely available MoPro program dedicated to charge-density refinement and modelling. PMID:29724964
Free form hemispherical shaped charge
Haselman, L.C. Jr.
1996-06-04
A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved. 8 figs.
Free form hemispherical shaped charge
Haselman, Jr., Leonard C.
1996-01-01
A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved.
On the equilibrium charge density at tilt grain boundaries
NASA Astrophysics Data System (ADS)
Srikant, V.; Clarke, D. R.
1998-05-01
The equilibrium charge density and free energy of tilt grain boundaries as a function of their misorientation is computed using a Monte Carlo simulation that takes into account both the electrostatic and configurational energies associated with charges at the grain boundary. The computed equilibrium charge density increases with the grain-boundary angle and approaches a saturation value. The equilibrium charge density at large-angle grain boundaries compares well with experimental values for large-angle tilt boundaries in GaAs. The computed grain-boundary electrostatic energy is in agreement with the analytical solution to a one-dimensional Poisson equation at high donor densities but indicates that the analytical solution overestimates the electrostatic energy at lower donor densities.
Jet properties in PbPb and pp collisions at $$ \\sqrt{s_{\\mathrm{N}\\;\\mathrm{N}}}=5.02 $$ TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.
Modifications of the properties of jets in PbPb collisions, relative to those in pp collisions, are studied at a nucleon-nucleon center-of-mass energy ofmore » $$ \\sqrt{s_{\\mathrm{N}\\,\\mathrm{N}}}=5.02 $$ TeV via correlations of charged particles with the jet axis in relative pseudorapidity (Δη), relative azimuth (ΔΦ), and relative angular distance from the jet axis $$ \\varDelta \\mathrm{r}=\\sqrt{{\\left(\\varDelta \\eta \\right)}^2+{\\left(\\varDelta \\phi \\right)}^2} $$ . This analysis uses data collected with the CMS detector at the LHC, corresponding to integrated luminosities of 404 μb$$^{-1}$$ and 27.4 pb$$^{-1}$$ for PbPb and pp collisions, respectively. Charged particle number densities, jet fragmentation functions, and jet shapes are presented as a function of PbPb collision centrality and charged-particle track transverse momentum, providing a differential description of jet modifications due to interactions with the quark-gluon plasma.« less
Jet properties in PbPb and pp collisions at $$ \\sqrt{s_{\\mathrm{N}\\;\\mathrm{N}}}=5.02 $$ TeV
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...
2018-05-02
Modifications of the properties of jets in PbPb collisions, relative to those in pp collisions, are studied at a nucleon-nucleon center-of-mass energy ofmore » $$ \\sqrt{s_{\\mathrm{N}\\,\\mathrm{N}}}=5.02 $$ TeV via correlations of charged particles with the jet axis in relative pseudorapidity (Δη), relative azimuth (ΔΦ), and relative angular distance from the jet axis $$ \\varDelta \\mathrm{r}=\\sqrt{{\\left(\\varDelta \\eta \\right)}^2+{\\left(\\varDelta \\phi \\right)}^2} $$ . This analysis uses data collected with the CMS detector at the LHC, corresponding to integrated luminosities of 404 μb$$^{-1}$$ and 27.4 pb$$^{-1}$$ for PbPb and pp collisions, respectively. Charged particle number densities, jet fragmentation functions, and jet shapes are presented as a function of PbPb collision centrality and charged-particle track transverse momentum, providing a differential description of jet modifications due to interactions with the quark-gluon plasma.« less
Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P; Brownrigg, Alex; Wright, Jonathan P; van Dijk, Niels H; Wagemaker, Marnix
2015-09-23
Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hindering fundamental understanding and progress. Here we use synchrotron microbeam diffraction to disclose the cycling rate-dependent phase transition mechanism within individual particles of LiFePO4, a key Li-ion electrode material. At low (dis)charge rates well-defined nanometer thin plate-shaped domains co-exist and transform much slower and concurrent as compared with the commonly assumed mosaic transformation mechanism. As the (dis)charge rate increases phase boundaries become diffuse speeding up the transformation rates of individual grains. Direct observation of the transformation of individual grains reveals that local current densities significantly differ from what has previously been assumed, giving new insights in the working of Li-ion battery electrodes and their potential improvements.
Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling
Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P.; Brownrigg, Alex; Wright, Jonathan P.; van Dijk, Niels H.; Wagemaker, Marnix
2015-01-01
Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hindering fundamental understanding and progress. Here we use synchrotron microbeam diffraction to disclose the cycling rate-dependent phase transition mechanism within individual particles of LiFePO4, a key Li-ion electrode material. At low (dis)charge rates well-defined nanometer thin plate-shaped domains co-exist and transform much slower and concurrent as compared with the commonly assumed mosaic transformation mechanism. As the (dis)charge rate increases phase boundaries become diffuse speeding up the transformation rates of individual grains. Direct observation of the transformation of individual grains reveals that local current densities significantly differ from what has previously been assumed, giving new insights in the working of Li-ion battery electrodes and their potential improvements. PMID:26395323
Theoretical study of porous surfaces derived from graphene and boron nitride
NASA Astrophysics Data System (ADS)
Fabris, G. S. L.; Marana, N. L.; Longo, E.; Sambrano, J. R.
2018-02-01
Porous graphene (PG), graphenylene (GP), inorganic graphenylene (IGP-BN), and porous boron nitride (PBN) single-layer have been studied via periodic density functional theory with a modified B3LYP functional and an all-electron Gaussian basis set. The structural, elastic, electronic, vibrational, and topological properties of the surfaces were investigated. The analysis showed that all porous structures had a nonzero band gap, and only PG exhibited a non-planar shape. All porous structures seem to be more susceptible to longitudinal deformation than their pristine counterparts, and GP exhibits a higher strength than graphene in the transversal direction. In addition, the electron densities of GP and IGP-BN are localized closer to the atoms, in contrast with PG and PBN, whose charge density is shifted towards the pore center; this property could find application in various fields, such as gas adsorption.
Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus
2007-10-25
The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.
Nucleophilic Substitution in Solution: Activation Strain Analysis of Weak and Strong Solvent Effects
Hamlin, Trevor A.; van Beek, Bas; Wolters, Lando P.
2018-01-01
Abstract We have quantum chemically studied the effect of various polar and apolar solvents on the shape of the potential energy surface (PES) of a diverse collection of archetypal nucleophilic substitution reactions at carbon, silicon, phosphorus, and arsenic by using density functional theory at the OLYP/TZ2P level. In the gas phase, all our model SN2 reactions have single‐well PESs, except for the nucleophilic substitution reaction at carbon (SN2@C), which has a double‐well energy profile. The presence of the solvent can have a significant effect on the shape of the PES and, thus, on the nature of the SN2 process. Solvation energies, charges on the nucleophile or leaving group, and structural features are compared for the various SN2 reactions in a spectrum of solvents. We demonstrate how solvation can change the shape of the PES, depending not only on the polarity of the solvent, but also on how the charge is distributed over the interacting molecular moieties during different stages of the reaction. In the case of a nucleophilic substitution at three‐coordinate phosphorus, the reaction can be made to proceed through a single‐well [no transition state (TS)], bimodal barrier (two TSs), and then through a unimodal transition state (one TS) simply by increasing the polarity of the solvent. PMID:29457865
A high-voltage pulse transformer with a modular ferrite core
NASA Astrophysics Data System (ADS)
Liu, Z.; Winands, G. J. J.; Yan, K.; Pemen, A. J. M.; Van Heesch, E. J. M.
2008-01-01
A high ratio (winding ratio of 1:80) pulse transformer with a modular ferrite core was developed for a repetitive resonant charging system. The magnetic core is constructed from 68 small blocks of ferrites, glued together by epoxy resin. This allows a high degree of freedom in choosing core shape and size. Critical issues related to this modular design are the size tolerance of the individual ferrite blocks, the unavoidable air gap between the blocks, and the saturation of the core. To evaluate the swing of the flux density inside the core during the charging process, an equivalent circuit model was introduced. It was found that when a transformer is used in a resonant charging circuit, the minimal required volume of the magnetic material to keep the core unsaturated depends on the coupling coefficient of the transformer and is independent of the number of turns of the primary winding. Along the flux path, 17 small air gaps are present due to the inevitable joints between the ferrite blocks. The total air gap distance is about 0.67mm. The primary and secondary windings have 16 turns and 1280 turns, respectively, and the actually obtained ratio is about 1:75.4. A coupling coefficient of 99.6% was obtained. Experimental results are in good agreement with the model, and the modular ferrite core works well. Using this transformer, the high-voltage capacitors can be charged up to more than 70kV from a low-voltage capacitor with an initial charging voltage of about 965V. With 26.9J energy transfer, the increased flux density inside the core was about 0.23T, and the core remains unsaturated. The energy transfer efficiency from the primary to the secondary was around 92%.
Microscopic analysis of shape transition in neutron-deficient Yb isotopes
NASA Astrophysics Data System (ADS)
Fu, Y.; Tong, H.; Wang, X. F.; Wang, H.; Wang, D. Q.; Wang, X. Y.; Yao, J. M.
2018-01-01
The development of nuclear collectivity in even-even Yb-170152 is studied with three types of mean-field calculations: the nonrelativistic Hartree-Fock plus BCS calculation using the Skyrme SLy4 force plus a density-dependent δ pairing force and the relativistic mean-field calculation using a point-coupling energy functional supplemented with either a density-independent δ pairing force or a separable pairing force. The low-lying states are obtained by solving a five-dimensional collective Hamiltonian with parameters determined from the three mean-field solutions. The energy surfaces, excitation energies, electric multiple transition strengths, and differential isotope shifts are presented in comparison with available data. Our results show that different treatments of pairing correlations have a significant influence on the speed of developing collectivity as the increase of neutron number. All the calculations demonstrate the important role of dynamic shape-mixing effects in resolving the puzzle in the dramatic increase of charge radius from 152Yb to 154Yb and the role of triaxiality in
NASA Astrophysics Data System (ADS)
Bhadauria, Ravi; Aluru, N. R.
2017-05-01
We propose an isothermal, one-dimensional, electroosmotic flow model for slit-shaped nanochannels. Nanoscale confinement effects are embedded into the transport model by incorporating the spatially varying solvent and ion concentration profiles that correspond to the electrochemical potential of mean force. The local viscosity is dependent on the solvent local density and is modeled using the local average density method. Excess contributions to the local viscosity are included using the Onsager-Fuoss expression that is dependent on the local ionic strength. A Dirichlet-type boundary condition is provided in the form of the slip velocity that is dependent on the macroscopic interfacial friction. This solvent-surface specific interfacial friction is estimated using a dynamical generalized Langevin equation based framework. The electroosmotic flow of Na+ and Cl- as single counterions and NaCl salt solvated in Extended Simple Point Charge (SPC/E) water confined between graphene and silicon slit-shaped nanochannels are considered as examples. The proposed model yields a good quantitative agreement with the solvent velocity profiles obtained from the non-equilibrium molecular dynamics simulations.
Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura
2015-08-11
The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.
Efficiency Analysis of Waveform Shape for Electrical Excitation of Nerve Fibers
Wongsarnpigoon, Amorn; Woock, John P.; Grill, Warren M.
2011-01-01
Stimulation efficiency is an important consideration in the stimulation parameters of implantable neural stimulators. The objective of this study was to analyze the effects of waveform shape and duration on the charge, power, and energy efficiency of neural stimulation. Using a population model of mammalian axons and in vivo experiments on cat sciatic nerve, we analyzed the stimulation efficiency of four waveform shapes: square, rising exponential, decaying exponential, and rising ramp. No waveform was simultaneously energy-, charge-, and power-optimal, and differences in efficiency among waveform shapes varied with pulse width (PW) For short PWs (≤ 0.1 ms), square waveforms were no less energy-efficient than exponential waveforms, and the most charge-efficient shape was the ramp. For long PWs (≥0.5 ms), the square was the least energy-efficient and charge-efficient shape, but across most PWs, the square was the most power-efficient shape. Rising exponentials provided no practical gains in efficiency over the other shapes, and our results refute previous claims that the rising exponential is the energy-optimal shape. An improved understanding of how stimulation parameters affect stimulation efficiency will help improve the design and programming of implantable stimulators to minimize tissue damage and extend battery life. PMID:20388602
Charge-density study on layered oxyarsenides (LaO)MAs (M = Mn, Fe, Ni, Zn)
NASA Astrophysics Data System (ADS)
Takase, Kouichi; Hiramoto, Shozo; Fukushima, Tetsuya; Sato, Kazunori; Moriyoshi, Chikako; Kuroiwa, Yoshihiro
2017-12-01
Using synchrotron X-ray powder diffraction, we investigate the charge-density distributions of the layered oxypnictides (LaO)MnAs, (LaO)FeAs, (LaO)NiAs, and (LaO)ZnAs, which are an antiferromagnetic semiconductor, a parent material of an iron-based superconductor, a low-temperature superconductor, and a non-magnetic semiconductor, respectively. For the metallic samples, clear charge densities are observed in both the transition-metal pnictide layers and the rare-earth-oxide layers. However, in the semiconducting samples, there is no finite charge density between the transition-metal element and As. These differences in charge density reflect differences in physical properties. First-principles calculations using density functional theory reproduce the experimental results reasonably well.
Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K
Kwolek, Emma J.; Lei, Huaping; Lii-Rosales, Ann; ...
2016-06-13
We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison withmore » the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. As a result, this island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.« less
Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwolek, Emma J.; Lii-Rosales, Ann; Department of Chemistry, Iowa State University, Ames, Iowa 50011
2016-12-07
We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison withmore » the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. This island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.« less
Xin, Encheng; Ju, Yong; Yuan, Haiwen
2016-01-01
A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density. PMID:27775627
Xin, Encheng; Ju, Yong; Yuan, Haiwen
2016-10-20
A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.
Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress
NASA Astrophysics Data System (ADS)
Boukhari, Hamed; Rogti, Fatiha
2016-10-01
The space charge dynamic plays a very important role in the aging and breakdown of polymeric insulation materials under high voltage. This is due to the intensification of the local electric field and the attendant chemical-mechanical effects in the vicinity around the trapped charge. In this paper, we have investigated the space charge dynamic in low-density polyethylene under high direct-current voltage, which is evaluated by experimental conditions. The evaluation is on the basis of simulation using a bipolar charge transport model consisting of charge injection, transports, trapping, detrapping, and recombination phenomena. The theoretical formulation of the physical problem is based on the Poisson, the continuity, and the transport equations. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges (net charge density, mobile and trapped of electron density, mobile hole density), conduction and displacement current densities, and the external current. The result shows the appearance of the negative packet-like space charge with a large amount of the bulk under the dc electric field of 100 kV/mm, and the induced distortion of the electric field is largely near to the anode, about 39% higher than the initial electric field applied.
Pyrotechnic shock: A literature survey of the Linear Shaped Charge (LSC)
NASA Technical Reports Server (NTRS)
Smith, J. L.
1984-01-01
Linear shaped charge (LSC) literature for the past 20 years is reviewed. The following topics are discussed: (1) LSC configuration; (2) LSC usage; (3) LSC induced pyroshock; (4) simulated pyrotechnic testing; (5) actual pyrotechnic testing; (6) data collection methods; (7) data analysis techniques; (8) shock reduction methods; and (9) design criteria. Although no new discoveries have been made in LSC research, charge shapes are improved to allow better cutting performance, testing instrumentation is refined, and some new explosives, for use in LSC, are formulated.
Armstrong, M Stuart; Finn, Paul W; Morris, Garrett M; Richards, W Graham
2011-08-01
In a previous paper, we presented the ElectroShape method, which we used to achieve successful ligand-based virtual screening. It extended classical shape-based methods by applying them to the four-dimensional shape of the molecule where partial charge was used as the fourth dimension to capture electrostatic information. This paper extends the approach by using atomic lipophilicity (alogP) as an additional molecular property and validates it using the improved release 2 of the Directory of Useful Decoys (DUD). When alogP replaced partial charge, the enrichment results were slightly below those of ElectroShape, though still far better than purely shape-based methods. However, when alogP was added as a complement to partial charge, the resulting five-dimensional enrichments shows a clear improvement in performance. This demonstrates the utility of extending the ElectroShape virtual screening method by adding other atom-based descriptors.
The Shaped Charge Concept. Part 2. The History of Shaped Charges
1990-09-01
research of Evans. Ubbel•ode. LAmurd-Jones, Devonihire, and An&ew. 1hW U.K. Mufied cadmium liners (which probably produce molten jets) msd steel liners...34 Mathematical Jet Theory of Lined Hollow Charges." BRL Report No. 370, U.S. Army Ballistic Research Laboratory. Aberdeen Proving Ground, MD, 18 June
Structure and properties of B20Si-/0/+ clusters
NASA Astrophysics Data System (ADS)
Lu, Qi Liang; Luo, Qi Quan; Li, Yi De; Huang, Shou Guo
2018-06-01
A global search for the lowest energy structure of B20Si-, B20Si0 and B20Si+ clusters is conducted. Structural transitions at different charge states are observed. B20Si- is a 2D planar configuration with no polygonal holes, and Si atom occupies a peripheral position. B20Si+ adopts a 3D tubular shape, and each Si is bonded with four B atoms. But for B20Si0, competition among quasi-planar, tubular and cage like structures is found. These structures differ greatly from that of pure B21 - cluster. The structural transition may result from changes in the framework of bonding, sp 2 hybridization, and structural mechanics. Some of the clusters' properties including frontier molecular orbital, on-site charge on Si atom, electron density, and magnetism are also discussed.
Quantification of surface charge density and its effect on boundary slip.
Jing, Dalei; Bhushan, Bharat
2013-06-11
Reduction of fluid drag is important in the micro-/nanofluidic systems. Surface charge and boundary slip can affect the fluid drag, and surface charge is also believed to affect boundary slip. The quantification of surface charge and boundary slip at a solid-liquid interface has been widely studied, but there is a lack of understanding of the effect of surface charge on boundary slip. In this paper, the surface charge density of borosilicate glass and octadecyltrichlorosilane (OTS) surfaces immersed in saline solutions with two ionic concentrations and deionized (DI) water with different pH values and electric field values is quantified by fitting experimental atomic force microscopy (AFM) electrostatic force data using a theoretical model relating the surface charge density and electrostatic force. Results show that pH and electric field can affect the surface charge density of glass and OTS surfaces immersed in saline solutions and DI water. The mechanisms of the effect of pH and electric field on the surface charge density are discussed. The slip length of the OTS surface immersed in saline solutions with two ionic concentrations and DI water with different pH values and electric field values is measured, and their effects on the slip length are analyzed from the point of surface charge. Results show that a larger absolute value of surface charge density leads to a smaller slip length for the OTS surface.
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Karthikeyan; Pazhamalai, Parthiban; Veerasubramani, Ganesh Kumar; Kim, Sang Jae
2016-07-01
Two dimensional nanostructures are increasingly used as electrode materials in flexible supercapacitors for portable electronic applications. Herein, we demonstrated a ball milling approach for achieving few layered molybdenum disulfide (MoS2) via exfoliation from their bulk. Physico-chemical characterizations such as X-ray diffraction, field emission scanning electron microscope, and laser Raman analyses confirmed the occurrence of exfoliated MoS2 sheets with few layers from their bulk via ball milling process. MoS2 based wire type solid state supercapacitors (WSCs) are fabricated and examined using cyclic voltammetry (CV), electrochemical impedance spectroscopy, and galvanostatic charge discharge (CD) measurements. The presence of rectangular shaped CV curves and symmetric triangular shaped CD profiles suggested the mechanism of charge storage in MoS2 WSC is due to the formation of electrochemical double layer capacitance. The MoS2 WSC device delivered a specific capacitance of 119 μF cm-1, and energy density of 8.1 nW h cm-1 with better capacitance retention of about 89.36% over 2500 cycles, which ensures the use of the ball milled MoS2 for electrochemical energy storage devices.
Laser-guided, intersecting discharge channels for the final beam transport in heavy-ion fusion
NASA Astrophysics Data System (ADS)
Niemann, C.; Neff, S.; Tauschwitz, A.; Penache, D.; Birkner, R.; Constantin, C.; Knobloch, R.; Presura, R.; Rosmej, F. B.; Hoffmann, D. H. H.; Yu, S. S.
2003-06-01
Ion-beam transport in space charge neutralizing discharge channels has been proposed for the final focus and chamber transport in a heavy-ion fusion reactor. A driver scenario with two-sided target illumination requires a system of two intersecting discharges to transport beams of the same charge from opposite sides towards the fusion target. In this article we report on experiments on the creation of free-standing, intersecting high-current discharge channels. The discharges are initiated in ammonia gas (NH3) in a metallic chamber by two perpendicular CO2-laser beams, which resonantly heat and subsequently rarefy the gas along the laser paths before the breakdown. These low density channels guide the discharges along the predefined paths and also around the 90° angles without any mechanical guiding structures. In this way stable X-, T-, and L-shaped discharges with currents in excess of 40 kA, at pressures of a few mbar were created with a total length of 110 cm. An 11.4 A MeV 58Ni+12 beam from the UNILAC (Universal Linear Accelerator) linear accelerator was used to probe the line-integrated ion-optical properties of the central channel in a T-shaped discharge.
Effective Ion Heating in Guide Field Reconnection
NASA Astrophysics Data System (ADS)
Guo, Xuehan; Horiuchi, Ritoku; Usami, Shunsuke; Ono, Yasushi
2017-10-01
The energy conversion mechanism for ion perpendicular thermal energy is investigated by means of two-dimensional, full particle simulations in an open system. It is shown that ions gain kinetic energy due to the plasma potential drop, which is caused by the charge separation in the one pair of separatrix arms. Based on the force balance in the inflow direction, the strength of the normalized charge density can be expressed by electron Alfvén velocity, which is measurable value in the laboratory experiment and/or satellite observation. Meanwhile, we found that the accelerated ions form a ring shape like distribution in f(v1 ,v2) , as a result, the ion perpendicular temperature Ti , perp increases from inflow region. Here, both v1 and v2 are perpendicular to the magnetic field and v2 is parallel to the in-plane. The mixing of particle populations is verified by means of tracing ions and it is shown three typical particle orbits and each orbit has different entry angle to the potential drop. This ring shape like distribution consists three different population due to the difference of the entry angles to the potential drop. This mixing process will thermalize ions and produce entropy without collisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinotti, M.; Ethiraj, J.; Mirri, C.
The emergence of superconductivity upon progressively suppressing the long-range, charge-density-wave (CDW) order characterizes the phase diagram of several materials of interest in the on-going solid-state physics research. Se-doped ZrTe 3 compounds provide the most recent, suitable arena in order to investigate the interplay of otherwise competing orders in layeredlike two-dimensional systems. We present an optical study of the CDW state in ZrTe 3-xSe x at selected Se dopings, based on the measurement of the reflectivity from the far-infrared up to the ultraviolet, as a function of temperature. We particularly focus our attention to the redistribution of the spectral weight, whichmore » images the impact of the CDW state within the optical conductivity across the phase diagram of the title compounds. The electrodynamic response is consistent with a scenario based on a long-range CDW condensate at low Se doping. Upon increasing the Se content, this then gives way to local, short-range order CDW segments. Thus, our spectral weight analysis reveals the presence of a pseudogap phase, as fingerprint of the CDW precursor effects and thus shaping the charge dynamics of the title compounds in their normal state, preceding the onset of superconductivity.« less
Chinotti, M.; Ethiraj, J.; Mirri, C.; ...
2018-01-12
The emergence of superconductivity upon progressively suppressing the long-range, charge-density-wave (CDW) order characterizes the phase diagram of several materials of interest in the on-going solid-state physics research. Se-doped ZrTe 3 compounds provide the most recent, suitable arena in order to investigate the interplay of otherwise competing orders in layeredlike two-dimensional systems. We present an optical study of the CDW state in ZrTe 3-xSe x at selected Se dopings, based on the measurement of the reflectivity from the far-infrared up to the ultraviolet, as a function of temperature. We particularly focus our attention to the redistribution of the spectral weight, whichmore » images the impact of the CDW state within the optical conductivity across the phase diagram of the title compounds. The electrodynamic response is consistent with a scenario based on a long-range CDW condensate at low Se doping. Upon increasing the Se content, this then gives way to local, short-range order CDW segments. Thus, our spectral weight analysis reveals the presence of a pseudogap phase, as fingerprint of the CDW precursor effects and thus shaping the charge dynamics of the title compounds in their normal state, preceding the onset of superconductivity.« less
NASA Astrophysics Data System (ADS)
Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman
2016-04-01
The dielectrophoretic motion and shape deformation of a Newtonian liquid drop in an otherwise quiescent Newtonian liquid medium in the presence of an axisymmetric nonuniform dc electric field consisting of uniform and quadrupole components is investigated. The theory put forward by Feng [J. Q. Feng, Phys. Rev. E 54, 4438 (1996), 10.1103/PhysRevE.54.4438] is generalized by incorporating the following two nonlinear effects—surface charge convection and shape deformation—towards determining the drop velocity. This two-way coupled moving boundary problem is solved analytically by considering small values of electric Reynolds number (ratio of charge relaxation time scale to the convection time scale) and electric capillary number (ratio of electrical stress to the surface tension) under the framework of the leaky dielectric model. We focus on investigating the effects of charge convection and shape deformation for different drop-medium combinations. A perfectly conducting drop suspended in a leaky (or perfectly) dielectric medium always deforms to a prolate shape and this kind of shape deformation always augments the dielectrophoretic drop velocity. For a perfectly dielectric drop suspended in a perfectly dielectric medium, the shape deformation leads to either increase (for prolate shape) or decrease (for oblate shape) in the dielectrophoretic drop velocity. Both surface charge convection and shape deformation affect the drop motion for leaky dielectric drops. The combined effect of these can significantly increase or decrease the dielectrophoretic drop velocity depending on the electrohydrodynamic properties of both the liquids and the relative strength of the electric Reynolds number and electric capillary number. Finally, comparison with the existing experiments reveals better agreement with the present theory.
Wang, Jimin
2017-06-01
Partial charges of atoms in a molecule and electrostatic potential (ESP) density for that molecule are known to bear a strong correlation. In order to generate a set of point-field force field parameters for molecular dynamics, Kollman and coworkers have extracted atomic partial charges for each of all 20 amino acids using restrained partial charge-fitting procedures from theoretical ESP density obtained from condensed-state quantum mechanics. The magnitude of atomic partial charges for neutral peptide backbone they have obtained is similar to that of partial atomic charges for ionized carboxylate side chain atoms. In this study, the effect of these known atomic partial charges on ESP is examined using computer simulations and compared with the experimental ESP density recently obtained for proteins using electron microscopy. It is found that the observed ESP density maps are most consistent with the simulations that include atomic partial charges of protein backbone. Therefore, atomic partial charges are integral part of atomic properties in protein molecules and should be included in model refinement. © 2017 The Protein Society.
SR90, strontium shaped-charge critical ionization velocity experiment
NASA Technical Reports Server (NTRS)
Wescott, Eugene M.; Stenbaek-Nielsen, Hans; Swift, Daniel W.; Valenzuela, Arnoldo; Rees, David
1990-01-01
In May 1986 an experiment was performed to test Alfven's critical ionization velocity (CIV) effect in free space, using the first high explosive shaped charge with a conical liner of strontium metal. The release, made at 540 km altitude at dawn twilight, was aimed at 48 deg to B. The background electron density was 1.5 x 10(exp 4) cu cm. A faint field-aligned Sr(+) ion streak with tip velocity of 2.6 km/s was observed from two optical sites. Using two calibration methods, it was calculated that between 4.5 x 10(exp 20) and 2 x 10(exp 21) ions were visible. An ionization time constant of 1920 s was calculated for Sr from the solar UV spectrum and ionization cross section which combined with a computer simulation of the injection predicts 1.7 x 10(exp 21) solar UV ions in the low-velocity part of the ion streak. Thus all the observed ions are from solar UV ionization of the slow (less than critical) velocity portion of the neutral jet. The observed neutral Sr velocity distribution and computer simulations indicate that 2 x 10(exp 21) solar UV ions would have been created from the fast (greater than critical) part of the jet. They would have been more diffuse, and were not observed. Using this fact it was estimated that any CIV ions created were less than 10(exp 21). It was concluded that future Sr CIV free space experiments should be conducted below the UV shadow height and in much larger background plasma density.
Quantitative ESD Guidelines for Charged Spacecraft Derived from the Physics of Discharges
NASA Technical Reports Server (NTRS)
Frederickson, A. R.
1992-01-01
Quantitative guidelines are proposed for Electrostatic Discharge (ESD) pulse shape on charged spacecraft. The guidelines are based on existing ground test data, and on a physical description of the pulsed discharge process. The guidelines are designed to predict pulse shape for surface charging and internal charging on a wide variety of spacecraft structures. The pulses depend on the area of the sample, its capacitance to ground, and the strength of the electric field in the vacuum adjacent to the charged surface. By knowing the pulse shape, current vs. time, one can determine if nearby circuits are threatened by the pulse. The quantitative guidelines might be used to estimate the level of threat to an existing spacecraft, or to redesign a spacecraft to reduce its pulses to a known safe level. The experiments which provide the data and the physics that allow one to interpret the data will be discussed, culminating in examples of how to predict pulse shape/size. This method has been used, but not confirmed, on several spacecraft.
The equivalent magnetizing method applied to the design of gradient coils for MRI.
Lopez, Hector Sanchez; Liu, Feng; Crozier, Stuart
2008-01-01
This paper presents a new method for the design of gradient coils for Magnetic Resonance Imaging systems. The method is based on the equivalence between a magnetized volume surrounded by a conducting surface and its equivalent representation in surface current/charge density. We demonstrate that the curl of the vertical magnetization induces a surface current density whose stream line defines the coil current pattern. This method can be applied for coils wounds on arbitrary surface shapes. A single layer unshielded transverse gradient coil is designed and compared, with the designs obtained using two conventional methods. Through the presented example we demonstrate that the generated unconventional current patterns obtained using the magnetizing current method produces a superior gradient coil performance than coils designed by applying conventional methods.
The effect of nozzle-exit-channel shape on resultant fiber diameter in melt-electrospinning
NASA Astrophysics Data System (ADS)
Esmaeilirad, Ahmad; Ko, Junghyuk; Rukosuyev, Maxym V.; Lee, Jason K.; Lee, Patrick C.; Jun, Martin B. G.
2017-01-01
In recent decades, electrospinning using a molten poly (ε-caprolactone) resin has gained attention for creating fibrous tissue scaffolds. The topography and diameter control of such electrospun microfibers is an important issue for their different applications in tissue engineering. Charge density, initial nozzle-exit-channel cross-sectional area, nozzle to collector distance, viscosity, and processing temperature are the most important input parameters that affect the final electrospun fiber diameters. In this paper we will show that the effect of nozzle-exit-channel shape is as important as the other effective parameters in a resultant fiber diameter. However, to the best of our knowledge, the effect of nozzle-exit-channel shapes on a resultant fiber diameter have not been studied before. Comparing rectangular and circular nozzles with almost the same exit-channel cross-sectional areas in a similar processing condition showed that using a rectangular nozzle resulted in decreasing final fiber diameter up to 50%. Furthermore, the effect of processing temperature on the final fiber topography was investigated.
NASA Astrophysics Data System (ADS)
Cvikl, B.
2010-01-01
The closed solution for the internal electric field and the total charge density derived in the drift-diffusion approximation for the model of a single layer organic semiconductor structure characterized by the bulk shallow single trap-charge energy level is presented. The solutions for two examples of electric field boundary conditions are tested on room temperature current density-voltage data of the electron conducting aluminum/tris(8-hydroxyquinoline aluminum/calcium structure [W. Brütting et al., Synth. Met. 122, 99 (2001)] for which jexp∝Va3.4, within the interval of bias 0.4 V≤Va≤7. In each case investigated the apparent electron mobility determined at given bias is distributed within a given, finite interval of values. The bias dependence of the logarithm of their lower limit, i.e., their minimum values, is found to be in each case, to a good approximation, proportional to the square root of the applied electric field. On account of the bias dependence as incorporated in the minimum value of the apparent electron mobility the spatial distribution of the organic bulk electric field as well as the total charge density turn out to be bias independent. The first case investigated is based on the boundary condition of zero electric field at the electron injection interface. It is shown that for minimum valued apparent mobilities, the strong but finite accumulation of electrons close to the anode is obtained, which characterize the inverted space charge limited current (SCLC) effect. The second example refers to the internal electric field allowing for self-adjustment of its boundary values. The total electron charge density is than found typically to be of U shape, which may, depending on the parameters, peak at both or at either Alq3 boundary. It is this example in which the proper SCLC effect is consequently predicted. In each of the above two cases, the calculations predict the minimum values of the electron apparent mobility, which substantially exceed the corresponding published measurements. For this reason the effect of the drift term alone is additionally investigated. On the basis of the published empirical electron mobilities and the diffusion term revoked, it is shown that the steady state electron current density within the Al/Alq3 (97 nm)/Ca single layer organic structure may well be pictured within the drift-only interpretation of the charge carriers within the Alq3 organic characterized by the single (shallow) trap energy level. In order to arrive at this result, it is necessary that the nonzero electric field, calculated to exist at the electron injecting Alq3/Ca boundary, is to be appropriately accounted for in the computation.
Du, Huiwen; Li, Denghua; Wang, Yibing; Wang, Chenxuan; Zhang, Dongdong; Yang, Yan-lian; Wang, Chen
2013-08-29
We report here the measurement of the temperature-dependent surface charge density of purple membrane (PM) by using electrostatic force microscopy (EFM). The surface charge density was measured to be 3.4 × 10(5) e/cm(2) at room temperature and reaches the minimum at around 52 °C. The initial decrease of the surface charge density could be attributed to the reduced dipole alignment because of the thermally induced protein mobility in PM. The increase of charge density at higher temperature could be ascribed to the weakened interaction between proteins and the lipids, which leads to the exposure of the charged amino acids. This work could be a benefit to the direct assessment of the structural stability and electric properties of biological membranes at the nanoscale.
NASA Astrophysics Data System (ADS)
Tian, W. H.; Hu, S. L.; Fan, A. L.; Wang, Z.
2002-01-01
Transmission electron microscopy (TEM) observations were carried out for examining the as-formed and post-deformed microstructures in a variety of electroformed copper liners of shaped charges. The deformation was carried out at an ultra-high strain rate. Specifically, the electron backscattering Kikuchi pattern (EBSP) technique was utilized to examine the micro-texture of these materials. TEM observations revealed that these electroformed copper liners of shaped charges have a grain size of about 1-3 mum, EBSP analysis demonstrated that the as-grown copper liners of shaped charges exhibit a l 10) fiber micro-texture which is parallel to the normal direction of the surface of the liners of shaped charges. Having undergone plastic deformation at ultra-high strain rate (10(7) s(-1)), the specimens which were recovered from the copper slugs were found to have grain size of the same order as that before deformation. EBSP analysis revealed that the (110) fiber texture existed in the as-formed copper liners disappears in the course of deformation. TEM examination results indicate that dynamic recovery and recrystallization play a significant role in this deformation process.
Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn; Zhou, Jihan
Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are notmore » identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar mass and the order of density of complexes observed from the three experimental systems are qualitatively in agreement with those predicted from the simulations.« less
Hassan, Sergio A
2012-08-21
A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.
NASA Astrophysics Data System (ADS)
Hassan, Sergio A.
2012-08-01
A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.
Hassan, Sergio A.
2012-01-01
A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response. PMID:22920098
Space and surface charge behavior analysis of charge-eliminated polymer films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oda, Tetsuji; Takashima, Kazunori; Ichiyama, Shinichiro
1995-12-31
Charge behavior of corona-charged or charge eliminated polymer films being dipped in the city water were studied. They were polytetrafluoroethylene (PTFE teflon{trademark}), polypropylene (PP), low density or high density polyethylene (LDPE or HDPE) thin films which are as grown (native) or plasma-processed. The plasma processing at low pressure was tested as antistatic processing. Charge elimination was done by being dipped in alcohol or city water. TSDC analysis and surface charge profile measurement were done for both charged and charge eliminated polymer films. Surface charge density of plasma processed polymer films just after corona charging is roughly the same as thatmore » of an original film. There is little difference between surface charge density profile of a native film and that of a plasma processed film. A large hetero current peak of TSDC was observed at room temperature for a processed film. It was found that the hetero peak disappears after charge elimination process. A pressure pulse wave method by using a pulse-driven piezoelectric PVDF polymer film as a piezoelectric actuator was newly developed to observe real space charge distribution. A little difference of internal space charge distribution between the plasma processed film and the native one after corona charging is found.« less
Brown, Matthew A; Duyckaerts, Nicolas; Redondo, Amaia Beloqui; Jordan, Inga; Nolting, Frithjof; Kleibert, Armin; Ammann, Markus; Wörner, Hans Jakob; van Bokhoven, Jeroen A; Abbas, Zareen
2013-04-23
Using in-situ X-ray photoelectron spectroscopy at the vapor-water interface, the affinity of nanometer-sized silica colloids to adsorb at the interface is shown to depend on colloid surface charge density. In aqueous suspensions at pH 10 corrected Debye-Hückel theory for surface complexation calculations predict that smaller silica colloids have increased negative surface charge density that originates from enhanced screening of deprotonated silanol groups (≡Si-O(-)) by counterions in the condensed ion layer. The increased negative surface charge density results in an electrostatic repulsion from the vapor-water interface that is seen to a lesser extent for larger particles that have a reduced charge density in the XPS measurements. We compare the results and interpretation of the in-situ XPS and corrected Debye-Hückel theory for surface complexation calculations with traditional surface tension measurements. Our results show that controlling the surface charge density of colloid particles can regulate their adsorption to the interface between two dielectrics.
2017-01-01
Abstract Partial charges of atoms in a molecule and electrostatic potential (ESP) density for that molecule are known to bear a strong correlation. In order to generate a set of point‐field force field parameters for molecular dynamics, Kollman and coworkers have extracted atomic partial charges for each of all 20 amino acids using restrained partial charge‐fitting procedures from theoretical ESP density obtained from condensed‐state quantum mechanics. The magnitude of atomic partial charges for neutral peptide backbone they have obtained is similar to that of partial atomic charges for ionized carboxylate side chain atoms. In this study, the effect of these known atomic partial charges on ESP is examined using computer simulations and compared with the experimental ESP density recently obtained for proteins using electron microscopy. It is found that the observed ESP density maps are most consistent with the simulations that include atomic partial charges of protein backbone. Therefore, atomic partial charges are integral part of atomic properties in protein molecules and should be included in model refinement. PMID:28370507
Pulsational mode fluctuations and their basic conservation laws
NASA Astrophysics Data System (ADS)
Borah, B.; Karmakar, P. K.
2015-01-01
We propose a theoretical hydrodynamic model for investigating the basic features of nonlinear pulsational mode stability in a partially charged dust molecular cloud within the framework of the Jeans homogenization assumption. The inhomogeneous cloud is modeled as a quasi-neutral multifluid consisting of the warm electrons, warm ions, and identical inertial cold dust grains with partial ionization in a neutral gaseous background. The grain-charge is assumed not to vary in the fluctuation evolution time scale. The active inertial roles of the thermal species are included. We apply a standard multiple scaling technique centered on the gravito-electrostatic equilibrium to understand the fluctuations on the astrophysical scales of space and time. This is found that electrostatic and self-gravitational eigenmodes co-exist as diverse solitary spectral patterns governed by a pair of Korteweg-de Vries (KdV) equations. In addition, all the relevant classical conserved quantities associated with the KdV system under translational invariance are methodologically derived and numerically analyzed. A full numerical shape-analysis of the fluctuations, scale lengths and perturbed densities with multi-parameter variation of judicious plasma conditions is carried out. A correlation of the perturbed densities and gravito-electrostatic spectral patterns is also graphically indicated. It is demonstrated that the solitary mass, momentum and energy densities also evolve like solitary spectral patterns which remain conserved throughout the spatiotemporal scales of the fluctuation dynamics. Astrophysical and space environments significant to our results are briefly highlighted.
NASA Astrophysics Data System (ADS)
Srivastava, Mayuri; Singh, N. P.; Yadav, R. A.
2014-08-01
Vibrational spectrum of Pantothenic acid has been investigated using experimental IR and Raman spectroscopies and density functional theory methods available with the Gaussian 09 software. Vibrational assignments of the observed IR and Raman bands have been proposed in light of the results obtained from computations. In order to assign the observed IR and Raman frequencies the potential energy distributions (PEDs) have also been computed using GAR2PED software. Optimized geometrical parameters suggest that the overall symmetry of the molecule is C1. The molecule is found to possess eight conformations. Conformational analysis was carried out to obtain the most stable configuration of the molecule. In the present paper the vibrational features of the lowest energy conformer C-I have been studied. The two methyl groups have slightly distorted symmetries from C3V. The acidic Osbnd H bond is found to be the smallest one. To investigate molecular stability and bond strength we have used natural bond orbital analysis (NBO). Charge transfer occurs in the molecule have been shown by the calculated highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energies. The mapping of electron density iso-surface with electrostatic potential (ESP), has been carried out to get the information about the size, shape, charge density distribution and site of chemical reactivity of the molecule.
Selvarani, C; Balachandran, V; Vishwanathan, K
2014-11-11
Quantum mechanical calculations of energies, geometries and vibrational wave numbers of 3-chloro-2,4,5,6-tetrafluoropyridine and 4-bromo-2,3,5,6-tetrafluoropyridine have been performed by DFT level of theory using B3LYP/6-31+G(d) and B3LYP/6-311++G(d,p) as basis sets. The optimized geometrical parameters obtained by B3LYP method show good agreement with experimental data. The difference between the observed and scaled wave number values of most of the fundamentals is very small. A detailed interpretation of the FT-IR and FT-Raman spectra of 3-chloro-2,4,5,6-tetrafluoropyridine and 4-bromo-2,3,5,6-tetrafluoropyridine were also reported. Molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO). The calculated HOMO and LUMO energies show that charge transfer occurs in the molecules. Information about the size, shape, charge density distribution, and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential (ESP). Thermodynamic properties (heat capacity, entropy and enthalpy and Gibb's free energy) of the title compounds at different temperatures were calculated. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparing simulations and test data of a radiation damaged CCD for the Euclid mission
NASA Astrophysics Data System (ADS)
Skottfelt, Jesper; Hall, David; Gow, Jason; Murray, Neil; Holland, Andrew; Prod'homme, Thibaut
2016-07-01
The radiation damage effects from the harsh radiative environment outside the Earth's atmosphere can be a cause for concern for most space missions. With the science goals becoming ever more demanding, the requirements on the precision of the instruments on board these missions also increases, and it is therefore important to investigate how the radiation induced damage affects the Charge-Coupled Devices (CCDs) that most of these instruments rely on. The primary goal of the Euclid mission is to study the nature of dark matter and dark energy using weak lensing and baryonic acoustic oscillation techniques. The weak lensing technique depends on very precise shape measurements of distant galaxies obtained by a large CCD array. It is anticipated that over the 6 year nominal lifetime of mission, the CCDs will be degraded to an extent that these measurements will not be possible unless the radiation damage effects are corrected. We have therefore created a Monte Carlo model that simulates the physical processes taking place when transferring signal through a radiation damaged CCD. The software is based on Shockley-Read-Hall theory, and is made to mimic the physical properties in the CCD as close as possible. The code runs on a single electrode level and takes charge cloud size and density, three dimensional trap position, and multi-level clocking into account. A key element of the model is that it takes device specific simulations of electron density as a direct input, thereby avoiding to make any analytical assumptions about the size and density of the charge cloud. This paper illustrates how test data and simulated data can be compared in order to further our understanding of the positions and properties of the individual radiation-induced traps.
Effect of anomalous transport on kinetic simulations of the H-mode pedestal
NASA Astrophysics Data System (ADS)
Bateman, G.; Pankin, A. Y.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Ku, S.; Chang, C. S.
2009-11-01
The MMM08 and MMM95 Multi-Mode transport models [1,2], are used to investigate the effect of anomalous transport in XGC0 gyrokinetic simulations [3] of tokamak H-mode pedestal growth. Transport models are implemented in XGC0 using the Framework for Modernization and Componentization of Fusion Modules (FMCFM). Anomalous transport is driven by steep temperature and density gradients and is suppressed by high values of flow shear in the pedestal. The radial electric field, used to calculate the flow shear rate, is computed self-consistently in the XGC0 code with the anomalous transport, Lagrangian charged particle dynamics and neutral particle effects. XGC0 simulations are used to provide insight into how thermal and particle transport, together with the sources of heat and charged particles, determine the shape and growth rate of the temperature and density profiles. [1] F.D. Halpern et al., Phys. Plasmas 15 (2008) 065033; J.Weiland et al., Nucl. Fusion 49 (2009) 965933; A.Kritz et al., EPS (2009) [2] G. Bateman, et al, Phys. Plasmas 5 (1998) 1793 [3] C.S. Chang, S. Ku, H. Weitzner, Phys. Plasmas 11 (2004) 2649
Exhaust Plume Measurements of the VASIMR VX-200
NASA Astrophysics Data System (ADS)
Longmier, Benjamin; Bering, Edgar, III; Squire, Jared; Glover, Tim; Chang-Diaz, Franklin; Brukardt, Michael
2008-11-01
Recent progress is discussed in the development of an advanced RF electric propulsion concept: the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) VX-200 engine, a 200 kW flight-technology prototype. Results from high power Helicon only and Helicon with ICRH experiments are performed on the VX-200 using argon plasma. Recent measurements of axial plasma density and potential profiles, magnetic field-line shaping, charge exchange, and force measurements taken in the plume of the VX-200 exhaust are made within a new 125 cubic meter cryo-pumped vacuum chamber and are presented in the context of RF plasma thruster physics.
Computational Simulations of the Lateral-Photovoltage-Scanning-Method
NASA Astrophysics Data System (ADS)
Kayser, S.; Lüdge, A.; Böttcher, K.
2018-05-01
The major task for the Lateral-Photovoltage-Scanning-Method is to detect doping striations and the shape of the solid-liquid-interface of an indirect semiconductor crystal. This method is sensitive to the gradient of the charge carrier density. Attempting to simulate the signal generation of the LPS-Method, we are using a three dimensional Finite Volume approach for solving the van Roosbroeck equations with COMSOL Multiphysics in a silicon sample. We show that the simulated LPS-voltage is directly proportional to the gradient of a given doping distribution, which is also the case for the measured LPS-voltage.
Schubert, M; Schaefer, H; Mayer, J; Laptev, A; Hettich, M; Merklein, M; He, C; Rummel, C; Ristow, O; Großmann, M; Luo, Y; Gusev, V; Samwer, K; Fonin, M; Dekorsy, T; Demsar, J
2015-08-14
The origin of the martensitic transition in the magnetic shape memory alloy Ni-Mn-Ga has been widely discussed. While several studies suggest it is electronically driven, the adaptive martensite model reproduced the peculiar nonharmonic lattice modulation. We used femtosecond spectroscopy to probe the temperature and doping dependence of collective modes, and scanning tunneling microscopy revealed the corresponding static modulations. We show that the martensitic phase can be described by a complex charge-density wave tuned by magnetic ordering and strong electron-lattice coupling.
NASA Astrophysics Data System (ADS)
Schubert, M.; Schaefer, H.; Mayer, J.; Laptev, A.; Hettich, M.; Merklein, M.; He, C.; Rummel, C.; Ristow, O.; Großmann, M.; Luo, Y.; Gusev, V.; Samwer, K.; Fonin, M.; Dekorsy, T.; Demsar, J.
2015-08-01
The origin of the martensitic transition in the magnetic shape memory alloy Ni-Mn-Ga has been widely discussed. While several studies suggest it is electronically driven, the adaptive martensite model reproduced the peculiar nonharmonic lattice modulation. We used femtosecond spectroscopy to probe the temperature and doping dependence of collective modes, and scanning tunneling microscopy revealed the corresponding static modulations. We show that the martensitic phase can be described by a complex charge-density wave tuned by magnetic ordering and strong electron-lattice coupling.
Electron dynamics inside a vacuum tube diode through linear differential equations
NASA Astrophysics Data System (ADS)
González, Gabriel; Orozco, Fco. Javier González; Orozco
2014-04-01
In this paper we analyze the motion of charged particles in a vacuum tube diode by solving linear differential equations. Our analysis is based on expressing the volume charge density as a function of the current density and coordinates only, i.e. ρ=ρ(J,z), while in the usual scheme the volume charge density is expressed as a function of the current density and electrostatic potential, i.e. ρ=ρ(J,V). We show that, in the case of slow varying charge density, the space-charge-limited current is reduced up to 50%. Our approach gives the well-known behavior of the classical current density proportional to the three-halves power of the bias potential and inversely proportional to the square of the gap distance between electrodes, and does not require the solution of the nonlinear differential equation normally associated with the Child-Langmuir formulation.
In-flight calibration of mesospheric rocket plasma probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havnes, Ove; University Studies Svalbard; Hartquist, Thomas W.
Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effectivemore » cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.« less
In-flight calibration of mesospheric rocket plasma probes.
Havnes, Ove; Hartquist, Thomas W; Kassa, Meseret; Morfill, Gregor E
2011-07-01
Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.
Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum.
Fradkin, Eduardo; Moore, Joel E
2006-08-04
The entanglement entropy of a pure quantum state of a bipartite system A union or logical sumB is defined as the von Neumann entropy of the reduced density matrix obtained by tracing over one of the two parts. In one dimension, the entanglement of critical ground states diverges logarithmically in the subsystem size, with a universal coefficient that for conformally invariant critical points is related to the central charge of the conformal field theory. We find that the entanglement entropy of a standard class of z=2 conformal quantum critical points in two spatial dimensions, in addition to a nonuniversal "area law" contribution linear in the size of the AB boundary, generically has a universal logarithmically divergent correction, which is completely determined by the geometry of the partition and by the central charge of the field theory that describes the critical wave function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Aftab; Khan, S. N.; Wilson, Brian G.
2011-07-06
A numerically efficient, accurate, and easily implemented integration scheme over convex Voronoi polyhedra (VP) is presented for use in ab initio electronic-structure calculations. We combine a weighted Voronoi tessellation with isoparametric integration via Gauss-Legendre quadratures to provide rapidly convergent VP integrals for a variety of integrands, including those with a Coulomb singularity. We showcase the capability of our approach by first applying it to an analytic charge-density model achieving machine-precision accuracy with expected convergence properties in milliseconds. For contrast, we compare our results to those using shape-functions and show our approach is greater than 10 5 times faster and 10more » 7 times more accurate. Furthermore, a weighted Voronoi tessellation also allows for a physics-based partitioning of space that guarantees convex, space-filling VP while reflecting accurate atomic size and site charges, as we show within KKR methods applied to Fe-Pd alloys.« less
Simulation of the Universal-Time Diurnal Variation of the Global Electric Circuit Charging Rate
NASA Technical Reports Server (NTRS)
Mackerras, David; Darveniza, Mat; Orville, Richard E.; Williams, Earle R.; Goodman, Steven J.
1999-01-01
A global lightning model that includes diurnal and annual lightning variation, and total flash density versus latitude for each major land and ocean, has been used as the basis for simulating the global electric circuit charging rate. A particular objective has been to reconcile the difference in amplitude ratios [AR=(max-min)/mean] between global lightning diurnal variation (AR approximately equals 0.8) and the diurnal variation of typical atmospheric potential gradient curves (AR approximately equals 0.35). A constraint on the simulation is that the annual mean charging current should be about 1000 A. The global lightning model shows that negative ground flashes can contribute, at most, about 10-15% of the required current. For the purpose of the charging rate simulation, it was assumed that each ground flash contributes 5 C to the charging process. It was necessary to assume that all electrified clouds contribute to charging by means other than lightning, that the total flash rate can serve as an indirect indicator of the rate of charge transfer, and that oceanic electrified clouds contribute to charging even though they are relatively inefficient in producing lightning. It was also found necessary to add a diurnally invariant charging current component. By trial and error it was found that charging rate diurnal variation curves could be produced with amplitude ratios and general shapes similar to those of the potential gradient diurnal variation curves measured over ocean and arctic regions during voyages of the Carnegie Institute research vessels. The comparisons were made for the northern winter (Nov.-Feb.), the equinox (Mar., Apr., Sept., Oct.), the northern summer (May-Aug.), and the whole year.
NASA Astrophysics Data System (ADS)
Hirae, Sadao; Kohno, Motohiro; Okada, Hiroshi; Matsubara, Hideaki; Nakatani, Ikuyoshi; Kusuda, Tatsufumi; Sakai, Takamasa
1994-04-01
This paper describes a novel approach to the quantitative characterization of semiconductor surface charging caused by plasma exposures and ion implantations. The problems in conventional evaluation of charging are also discussed. Following the discussions above, the necessity of unified criteria is suggested for efficient development of systems or processes without charging damage. Hence, the charging saturation voltage between a top oxide surface and substrate, V s, and the charging density per unit area per second, ρ0, should be taken as criteria of charging behavior, which effectively represent the charging characteristics of both processes. The unified criteria can be obtained from the exposure time dependence of a net charging density on the thick field oxide. In order to determine V s and ρ0, the analysis using the C-V curve measured in a noncontact method with the metal-air-insulator-semiconductor (MAIS) technique is employed. The total space-charge density in oxide and its centroid can be determined at the same time by analyzing the flat-band voltage (V fb) of the MAIS capacitor as a function of the air gap. The net charge density can be obtained by analyzing the difference between the total space-charge density in oxide before and after charging. Finally, it is shown that charge damage of the large area metal-oxide-semiconductor (MOS) capacitor can be estimated from both V s and ρ0 which are obtained from results for a thick field oxide implanted with As+ and exposed to oxygen plasma.
Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.
Ubbink, Job; Khokhlov, Alexei R
2004-03-15
A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.
Zhou, Yongsheng; Jin, Pan; Zhou, Yatong; Zhu, Yingchun
2018-06-13
This work reports the nanocomposites of graphitic nanofibers (GNFs) and carbon nanotubes (CNTs) as the electrode material for supercapacitors. The hybrid CNTs/GNFs was prepared via a synthesis route that involved catalytic chemical vapor deposition (CVD) method. The structure and morphology of CNTs/GNFs can be precisely controlled by adjusting the flow rates of reactant gases. The nest shape entanglement of CNTs and GNFs which could not only have high conductivity to facilitate ion transmission, but could also increase surface area for more electrolyte ions access. When assembled in a symmetric two-electrode system, the CNTs/GNFs-based supercapacitor showed a very good cycling stability of 96% after 10 000 charge/discharge cycles. Moreover, CNTs/GNFs-based symmetric device can deliver a maximum specific energy of 72.2 Wh kg -1 at a power density of 686.0 W kg -1 . The high performance of the hybrid performance can be attributed to the wheat like GNFs which provide sufficient accessible sites for charge storage, and the CNTs skeleton which provide channels for charge transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jadidian, Jouya; Zahn, Markus; Lavesson, Nils
Streamer branching in liquid dielectrics is driven by stochastic and deterministic factors. The presence of stochastic causes of streamer branching such as inhomogeneities inherited from noisy initial states, impurities, or charge carrier density fluctuations is inevitable in any dielectric. A fully three-dimensional streamer model presented in this paper indicates that deterministic origins of branching are intrinsic attributes of streamers, which in some cases make the branching inevitable depending on shape and velocity of the volume charge at the streamer frontier. Specifically, any given inhomogeneous perturbation can result in streamer branching if the volume charge layer at the original streamer headmore » is relatively thin and slow enough. Furthermore, discrete nature of electrons at the leading edge of an ionization front always guarantees the existence of a non-zero inhomogeneous perturbation ahead of the streamer head propagating even in perfectly homogeneous dielectric. Based on the modeling results for streamers propagating in a liquid dielectric, a gauge on the streamer head geometry is introduced that determines whether the branching occurs under particular inhomogeneous circumstances. Estimated number, diameter, and velocity of the born branches agree qualitatively with experimental images of the streamer branching.« less
Space charge influence on the angle of conical spikes developing on a liquid-metal anode.
Boltachev, G Sh; Zubarev, N M; Zubareva, O V
2008-05-01
The influence of the space charge of ions emitted from the surface of a conical spike on its shape has been studied. The problem of the calculation of the spatial distributions of the electric field, ion velocity field, and the space charge density near the cone tip has been reduced to the analysis of a system of ordinary differential equations. As a result of numerical solution of these equations, the criterion for the balance of the capillary and electrostatic forces on the conic surface of a liquid-metal anode has been determined. It has allowed us to relate the electrical current flowing through the system, the applied potential difference, and the cone angle. We have compared the results of our calculations with available experimental data concerning emission from the surface of pure liquid gallium, indium, tin, and some liquid alloys, such as Au+Si , Co+Ge , and Au+Ge . On the basis of the proposed model, explanations have been given for a number of specific features of the emissive behavior of different systems.
Leijtens, Tomas; Lim, Jongchul; Teuscher, Joël; Park, Taiho; Snaith, Henry J
2013-06-18
Transient mobility spectroscopy (TMS) is presented as a new tool to probe the charge carrier mobility of commonly employed organic and inorganic semiconductors over the relevant range of charge densities. The charge density dependence of the mobility of semiconductors used in hybrid and organic photovoltaics gives new insights into charge transport phenomena in solid state dye sensitized solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Explosive shaped charge penetration into tuff rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, M.G.
1988-10-01
Analysis and data for the use of Explosive Shaped Charges (ESC) to generate holes in tuff rock formation is presented. The ESCs evaluated include Conical Shaped Charges (CSC) and Explosive Formed Projectiles (EFP). The CSCs vary in size from 0.158 to 9.1 inches inside cone diameter. The EFPs were 5.0 inches in diameter. Data for projectile impact angles of 30 and 90 degrees are presented. Analytically predicted depth of penetration data generally compared favorably with experimental data. Predicted depth of penetration versus ESC standoff data and hole profile dimensions in tuff are also presented. 24 refs., 45 figs., 6 tabs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biner, S.B.
1998-07-01
In this study, the evolution of the stress-states ahead of the penny shaped internal cracks in both spherical and disk shaped ReNi{sub 5} particles during hydrogen charging and discharging cycles were investigated using coupled diffusion/deformation FEM analyses. The results indicate that large tensile stresses, on the order of 20--50% of the modulus of elasticity, develop in the particles. The disk shaped particles, in addition to having faster charging/discharging cycles, may offer better resistance to fracture than the spherical particles.
Genesis of charge orders in high temperature superconductors
Tu, Wei-Lin; Lee, Ting-Kuo
2016-01-01
One of the most puzzling facts about cuprate high-temperature superconductors in the lightly doped regime is the coexistence of uniform superconductivity and/or antiferromagnetism with many low-energy charge-ordered states in a unidirectional charge density wave or a bidirectional checkerboard structure. Recent experiments have discovered that these charge density waves exhibit different symmetries in their intra-unit-cell form factors for different cuprate families. Using a renormalized mean-field theory for a well-known, strongly correlated model of cuprates, we obtain a number of charge-ordered states with nearly degenerate energies without invoking special features of the Fermi surface. All of these self-consistent solutions have a pair density wave intertwined with a charge density wave and sometimes a spin density wave. Most of these states vanish in the underdoped regime, except for one with a large d-form factor that vanishes at approximately 19% doping of the holes, as reported by experiments. Furthermore, these states could be modified to have a global superconducting order, with a nodal-like density of states at low energy. PMID:26732076
NASA Astrophysics Data System (ADS)
Zhongshan, Zheng; Zhongli, Liu; Ning, Li; Guohua, Li; Enxia, Zhang
2010-02-01
To harden silicon-on-insulator (SOI) wafers fabricated using separation by implanted oxygen (SIMOX) to total-dose irradiation, the technique of nitrogen implantation into the buried oxide (BOX) layer of SIMOX wafers can be used. However, in this work, it has been found that all the nitrogen-implanted BOX layers reveal greater initial positive charge densities, which increased with increasing nitrogen implantation dose. Also, the results indicate that excessively large nitrogen implantation dose reduced the radiation tolerance of BOX for its high initial positive charge density. The bigger initial positive charge densities can be ascribed to the accumulation of implanted nitrogen near the Si-BOX interface after annealing. On the other hand, in our work, it has also been observed that, unlike nitrogen-implanted BOX, all the fluorine-implanted BOX layers show a negative charge density. To obtain the initial charge densities of the BOX layers, the tested samples were fabricated with a metal-BOX-silicon (MBS) structure based on SIMOX wafers for high-frequency capacitance-voltage (C-V) analysis.
Inkaya, Ersin; Dinçer, Muharrem; Sahan, Emine; Yıldırım, Ismail
2013-10-01
In this paper, we will report a combined experimental and theoretical investigation of the molecular structure and spectroscopic parameters (FT-IR, (1)H NMR, (13)C NMR) of 5-benzoyl-4-phenyl-2-methylthio-1H-pyrimidine. The compound crystallizes in the triclinic space group P-1 with Z=2. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311G(d,p) and 6-311++G(d,p) basis sets in ground state and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential (ESP). Also, non-linear optical properties of the title compound were performed at B3LYP/6-311++G(d,p) level. The theoretical results showed an excellent agreement with the experimental values. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
İnkaya, Ersin; Dinçer, Muharrem; Şahan, Emine; Yıldırım, İsmail
2013-10-01
In this paper, we will report a combined experimental and theoretical investigation of the molecular structure and spectroscopic parameters (FT-IR, 1H NMR, 13C NMR) of 5-benzoyl-4-phenyl-2-methylthio-1H-pyrimidine. The compound crystallizes in the triclinic space group P-1 with Z = 2. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311G(d,p) and 6-311++G(d,p) basis sets in ground state and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential (ESP). Also, non-linear optical properties of the title compound were performed at B3LYP/6-311++G(d,p) level. The theoretical results showed an excellent agreement with the experimental values.
Villeneuve-Faure, C; Boudou, L; Makasheva, K; Teyssedre, G
2017-12-15
To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson's equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.
NASA Astrophysics Data System (ADS)
Villeneuve-Faure, C.; Boudou, L.; Makasheva, K.; Teyssedre, G.
2017-12-01
To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson’s equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.
NASA Astrophysics Data System (ADS)
Elkhal Letaief, Wissem; Hassine, Tarek; Gamaoun, Fehmi
2017-02-01
On account of its good biocompatibility, superelastic Ni-Ti arc wire alloys have been successfully used in orthodontic clinics. Nevertheless, delayed fracture in the oral cavity caused by hydrogen diffusion can be observed. The in situ stress relaxation susceptibility of a Ni-Ti shape memory alloy towards hydrogen embrittlement has been examined with respect to the current densities and imposed deformations. Orthodontic wires have been relaxed at different martensite volume fractions using current densities of 5, 10 and 20 A/m2 at 20 °C. The in situ relaxation stress shows that, for an imposed strain at the middle of the austenite-martensite transformation, the specimen fractures at the martensite-austenite reverse transformation. However, for an imposed strain at the beginning of the austenite-martensite plateau, the stress decreases in a similar way to the full austenite structure. Moreover, the stress plateau has been recorded at the reverse transformation for a short period. For the fully martensite structure, embrittlement occurs at a higher stress value. This behaviour is attributed to the interaction between the in situ austenite phase expansion and the diffusion of hydrogen in the different volume fractions of the martensite phase, produced at an imposed strain.
NASA Astrophysics Data System (ADS)
Harismah, Kun; Mirzaei, Mahmoud; Ghasemi, Nahid; Nejati, Mohammad
2017-12-01
For functionalisation of a representative C30 fullerene nanostructure by pyrrole-n-carboxylic acid (PnCA; n=2, 3) their stabilities and properties were investigated based on density functional theory calculations. Parallel calculations were also done for C60 fullerene as evidence for comparing the results. Non-covalent interactions are considered to make the functionalised structures. In contrast with the spherical shape of C60, the shape of C30 fullerene is elliptical; therefore, the functionalisation processes were done for both axial and equatorial elliptical positions (AC30 and EC30). The results indicated that both the positions of C30 have almost equivalent chances to be functionalised by PnCA; but functionalisation by P2CA is slightly more favourable than P3CA, either for C60. The illustrated molecular orbitals' distributions indicated that the direction of charge transfer could be considered from PnCA counterparts to fullerene counterparts. The molecular properties indicated more reactivity for C30 than for C60 fullerene. Finally, the atomic scale quadrupole coupling constants indicated different roles for N and O atoms of PnCA in the functionalised models.
New longitudinal mode and compression of pair ions in plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehsan, Zahida; Imran, Muhammad, E-mail: imransindhu@hotmail.com; Tsintsadze, N. L.
Positive and negative ions forming the so-called pair plasma differing in sign of their charge but asymmetric in mass and temperature support a new acoustic-like mode. The condition for the excitation of ion sound wave through electron beam induced Cherenkov instability is also investigated. This beam can generate a perturbation in the pair ion plasmas in the presence of electrons when there is number density, temperature, and mass difference in the two species of ions. Basic emphasis is on the focusing of ion sound waves, and we show how, in the area of localization of wave energy, the density ofmore » pair particles increases while electrons are pushed away from that region. Further, this localization of wave is dependent on the shape of the pulse. Considering the example of pancake and bullet shaped pulses, we find that only the former leads to compression of pair ions in the supersonic regime of the focusing region. Here, possible existence of regions where pure pair particles can exist may also be speculated which is not only useful from academic point of view but also to mimic the situation of plasma (electron positron asymmetric and symmetric) observed in astrophysical environment.« less
Experimental verification of gain drop due to general ion recombination for a carbon-ion pencil beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tansho, Ryohei, E-mail: r-tansho@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke
Purpose: Accurate dose measurement in radiotherapy is critically dependent on correction for gain drop, which is the difference of the measured current from the ideal saturation current due to general ion recombination. Although a correction method based on the Boag theory has been employed, the theory assumes that ionized charge density in an ionization chamber (IC) is spatially uniform throughout the irradiation volume. For particle pencil beam scanning, however, the charge density is not uniform, because the fluence distribution of a pencil beam is not uniform. The aim of this study was to verify the effect of the nonuniformity ofmore » ionized charge density on the gain drop due to general ion recombination. Methods: The authors measured the saturation curve, namely, the applied voltage versus measured current, using a large plane-parallel IC and 24-channel parallel-plate IC with concentric electrodes. To verify the effect of the nonuniform ionized charge density on the measured saturation curve, the authors calculated the saturation curve using a method which takes into account the nonuniform ionized charge density and compared it with the measured saturation curves. Results: Measurement values of the different saturation curves in the different channels of the concentric electrodes differed and were consistent with the calculated values. The saturation curves measured by the large plane-parallel IC were also consistent with the calculation results, including the estimation error of beam size and of setup misalignment. Although the impact of the nonuniform ionized charge density on the gain drop was clinically negligible with the conventional beam intensity, it was expected that the impact would increase with higher ionized charge density. Conclusions: For pencil beam scanning, the assumption of the conventional Boag theory is not valid. Furthermore, the nonuniform ionized charge density affects the prediction accuracy of gain drop when the ionized charge density is increased by a higher dose rate and/or lower beam size.« less
Ignitor with stable low-energy thermite igniting system
Kelly, Michael D.; Munger, Alan C.
1991-02-05
A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.
NASA Astrophysics Data System (ADS)
Lu, Haoyuan; Li, Qingwei; Guo, Jianhui; Song, Aixin; Gong, Chunhong; Zhang, Jiwei; Zhang, Jingwei
2018-01-01
Hierarchically porous carbons (HPC) are considered as promising electrode materials for supercapacitors, due to their outstanding charge/discharge cycling stabilities and high power densities. However, HPC possess a relatively low ion diffusion rate inside the materials, which challenges their application for high performance supercapacitor. Thus tunnel-shaped carbon pores with a size of tens of nanometers were constructed by inducing the self-assembly of lithocholic acid with ammonium chloride, thereby providing high-speed channels for internal ion diffusion. The as-formed one-dimensional pores are beneficial to the activation process by KOH, providing a large specific surface area, and then facilitate rapid transport of electrolyte ions from macropores to the microporous surfaces. Therefore, the HPC achieve an outstanding gravimetric capacitance of 284 F g-1 at a current density of 0.1 A g-1 and a remarkable capacity retention of 64.8% when the current density increases by 1000 times to 100 A g-1.
Sun, Wenqi; Yuan, Guozan; Liu, Jingxin; Ma, Li; Liu, Chengbu
2013-04-01
The title molecule (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline (DPEQ) was synthesized and characterized by FT-IR, UV-vis, NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results indicate that the theoretical vibrational frequencies, 1H and 13C NMR chemical shift values show good agreement with experimental data. The electronic properties like UV-vis spectral analysis and HOMO-LUMO analysis of DPEQ have been reported and compared with experimental data. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP). Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Wenqi; Yuan, Guozan; Liu, Jingxin; Ma, Li; Liu, Chengbu
2013-04-01
The title molecule (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline (DPEQ) was synthesized and characterized by FT-IR, UV-vis, NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results indicate that the theoretical vibrational frequencies, 1H and 13C NMR chemical shift values show good agreement with experimental data. The electronic properties like UV-vis spectral analysis and HOMO-LUMO analysis of DPEQ have been reported and compared with experimental data. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP).
Positron Radiography of Ignition-Relevant ICF Capsules
NASA Astrophysics Data System (ADS)
Williams, Jackson; Chen, Hui; Field, John; Landen, Nino; Strozzi, David
2017-10-01
X-ray and neutron radiography are currently used to infer residual ICF shell and fuel asymmetries and areal density non-uniformities near and at peak compression that can impede ignition. Charged particles offer an alternative probe source that, in principle, are capable of radiographing the shell shape and areal density at arbitrary times, even in the presence of large x-ray self-emission. Laser-generated positrons are evaluated as a source to radiograph ICF capsules where current ultraintense laser facilities are capable of producing 2 ×1012 relativistic positrons in a narrow energy bandwidth and short duration. Monte Carlo simulations suggest that both the areal density and shell radius can be reconstructed for ignition-relevant capsules conditions between 0.002-2 g/cm2, and that this technique might be better suited to direct-drive. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LDRD Program under project tracking code 17-ERD-010.
NASA Astrophysics Data System (ADS)
Ngabonziza, P.; Wang, Y.; Brinkman, A.
2018-04-01
An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi2Te3 topological insulator samples, bulk single crystals and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi2Te3 thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two dimensional in nature.
Role of ion hydration for the differential capacitance of an electric double layer.
Caetano, Daniel L Z; Bossa, Guilherme V; de Oliveira, Vinicius M; Brown, Matthew A; de Carvalho, Sidney J; May, Sylvio
2016-10-12
The influence of soft, hydration-mediated ion-ion and ion-surface interactions on the differential capacitance of an electric double layer is investigated using Monte Carlo simulations and compared to various mean-field models. We focus on a planar electrode surface at physiological concentration of monovalent ions in a uniform dielectric background. Hydration-mediated interactions are modeled on the basis of Yukawa potentials that add to the Coulomb and excluded volume interactions between ions. We present a mean-field model that includes hydration-mediated anion-anion, anion-cation, and cation-cation interactions of arbitrary strengths. In addition, finite ion sizes are accounted for through excluded volume interactions, described either on the basis of the Carnahan-Starling equation of state or using a lattice gas model. Both our Monte Carlo simulations and mean-field approaches predict a characteristic double-peak (the so-called camel shape) of the differential capacitance; its decrease reflects the packing of the counterions near the electrode surface. The presence of hydration-mediated ion-surface repulsion causes a thin charge-depleted region close to the surface, which is reminiscent of a Stern layer. We analyze the interplay between excluded volume and hydration-mediated interactions on the differential capacitance and demonstrate that for small surface charge density our mean-field model based on the Carnahan-Starling equation is able to capture the Monte Carlo simulation results. In contrast, for large surface charge density the mean-field approach based on the lattice gas model is preferable.
Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun
2016-10-01
Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.
Experimental study of plasma properties in the shadow of the T--10 mushroom limiter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alferov, A.A.; Vershkov, V.A.; Grashin, S.A.
1988-04-01
The plasma properties in the shadow of a mushroom-shaped limiter installed in a lower port of the tokamak have been studied. A study of the asymmetry of the plasma streams on the ion and electron sides of the limiter leads to the conclusion that there are two mechanisms for the occurrence of the asymmetry: the toroidal rotation of the plasma and a predominant escape of plasma to the wall through the outer part of the torus. The asymmetry observed in the plasma floating potentials near the limiter leads to the flow of a current close to the Spitzer value j/submore » S/ through the limiter. With increasing plasma density, the plasma density in the channels of the limiter increases, and the temperature of this plasma decreases, so the loss of charged particles to the limiter depends only weakly on the average density. This circumstance is related to the degradation of the plasma confinement with decreasing density. The total flux of charged particles to the limiter is comparable to the flux of these particles out of the plasma column. The plasma stream into the channels is approximately ambipolar, and the power levels drawn by the neutralization plate are on the order of 10j/sub S/T/sub e//e. The behavior of the neutral gas pressure in the volume near the limiter as a function of the plasma streams into the channels is nonlinear. The maximum pressure is 3x10/sup -2/ torr.« less
Ahn, Yongjun; Yeo, Hwasoo
2015-01-01
The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric vehicles.
Jet Formation and Penetration Study of Double-Layer Shaped Charge
NASA Astrophysics Data System (ADS)
Wang, Zhe; Jiang, Jian-Wei; Wang, Shu-You; Liu, Han
2018-04-01
A theoretical analysis on detonation wave propagation in a double-layer shaped charge (DLSC) is performed. Numerical simulations using the AUTODYN software are carried out to compare the distinctions between jet formations in DLSC and ordinary shaped charge (OSC), in particular, the OSC made using a higher detonation velocity explosive, which is treated as the outer layer charge in the DLSC. The results show that the improved detonation velocity ratio and radial charge percentage of outer-to-inner layer charge are conducive to the formation of a convergent detonation wave, which contributes to enhancement of jet tip velocity in DLSC. The thickness and mass percentages of liner flowing into jet in DLSC closely follow the exponential distribution along the radial direction, but the percentages in DLSC and the mass of effective jet, which have significant influence on the penetration depth, are lower than those in OSC with the outer layer charge. This implies that the total charge energy is the major factor controlling the effective jet formation, which is confirmed by the verification tests using flash X-ray system and following penetration tests. The numerical simulation and test results compare well, while penetration test results indicate that the performance of DLSC is not better than that of OSC with the outer layer charge, due to the differences in jet formation.
Robust statistical reconstruction for charged particle tomography
Schultz, Larry Joe; Klimenko, Alexei Vasilievich; Fraser, Andrew Mcleod; Morris, Christopher; Orum, John Christopher; Borozdin, Konstantin N; Sossong, Michael James; Hengartner, Nicolas W
2013-10-08
Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.
ERIC Educational Resources Information Center
Farris, Stefano; Mora, Luigi; Capretti, Giorgio; Piergiovanni, Luciano
2012-01-01
An easy analytical method for determination of the charge density of polyelectrolytes, including polysaccharides and other biopolymers, is presented. The basic principles of conductometric titration, which is used in the pulp and paper industry as well as in colloid and interface science, were adapted to quantify the charge densities of a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guo-Bo; College of Science, National University of Defense Technology, Changsha 410073; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com
2016-03-15
We show that a ring-shaped hollow electron beam can be injected and accelerated by using a Laguerre-Gaussian laser pulse and ionization-induced injection in a laser wakefield accelerator. The acceleration and evolution of such a hollow, relativistic electron beam are investigated through three-dimensional particle-in-cell simulations. We find that both the ring size and the beam thickness oscillate during the acceleration. The beam azimuthal shape is angularly dependent and evolves during the acceleration. The beam ellipticity changes resulting from the electron angular momenta obtained from the drive laser pulse and the focusing forces from the wakefield. The dependence of beam ring radiusmore » on the laser-plasma parameters (e.g., laser intensity, focal size, and plasma density) is studied. Such a hollow electron beam may have potential applications for accelerating and collimating positively charged particles.« less
Performance trade studies of a solar electric orbit transfer mission
NASA Astrophysics Data System (ADS)
Sutton, D. M.; McLain, M. G.; Kechichian, J. A.
An analysis of several electric orbit transfer trade studies investigating the performance of a solar-powered electric orbit transfer vehicle (EOTV) is presented. One trade illustrates how the greatest payload capability for time-of-flight constrained transfers can be obtained by optimizing specific impulse. Various methods of reducing the accumulated fluence of charged particles during transit are evaluated in a second trade study. The reduction in fluence obtained by shaping the trajectory to avoid high radiation flux density regions is compared with reductions obtained by using a hybrid chemical/electric vehicle, by additional radiation-protective coverslide material added to the solar array, and by increasing the power of the vehicle. It is shown that a trajectory shaped to minimize fluence may be an advantage to the complete EOTV design. A final trade study shows how park orbit altitude influences the initial thrust-to-drag ratio of an EOTV.
Goswami, Prasenjit N; Mandal, Debranjan; Rath, Arup K
2018-01-18
Surface chemistry plays a crucial role in determining the electronic properties of quantum dot solids and may well be the key to mitigate loss processes involved in quantum dot solar cells. Surface ligands help to maintain the shape and size of the individual dots in solid films, to preserve the clean energy band gap of the individual particles and to control charge carrier conduction across solid films, in turn regulating their performance in photovoltaic applications. In this report, we show that the changes in size, shape and functional groups of small chain organic ligands enable us to modulate mobility, dielectric constant and carrier doping density of lead sulfide quantum dot solids. Furthermore, we correlate these results with performance, stability and recombination processes in the respective photovoltaic devices. Our results highlight the critical role of surface chemistry in the electronic properties of quantum dots. The role of the size, functionality and the surface coverage of the ligands in determining charge transport properties and the stability of quantum dot solids have been discussed. Our findings, when applied in designing new ligands with higher mobility and improved passivation of quantum dot solids, can have important implications for the development of high-performance quantum dot solar cells.
DOE R&D Accomplishments Database
Chambers, E. E.; Hofstadter, R.
1956-04-01
The structure and size of the proton have been studied by means of the methods of high-energy electron scattering. The elastic scattering of electrons from protons in polyethylene has been investigated at the following energies in the laboratory system: 200, 300, 400, 500, 550 Mev. The range of laboratory angles examined has been 30 degrees to 135 degrees. At the largest angles and the highest energy, the cross section for scattering shows a deviation below that expected from a point proton by a factor of about nine. The magnitude and variation with angle of the deviations determine a structure factor for the proton, and thereby determine the size and shape of the charge and magnetic-moment distributions within the proton. An interpretation, consistent at all energies and angles and agreeing with earlier results from this laboratory, fixes the rms radius at 0.77 {plus or minus} 0.10 x 10{sup -13} cm for each of the charge and moment distributions. The shape of the density function is not far from a Gaussian with rms radius 0.70 x 10{sup -13} cm or an exponential with rms radius 0.80 x 10 {sup -13} cm. An equivalent interpretation of the experiments would ascribe the apparent size to a breakdown of the Coulomb law and the conventional theory of electromagnetism.
NASA Astrophysics Data System (ADS)
Ma, Yifan; Zhuang, Yan; Xie, Xiaofang; Wang, Ce; Wang, Fei; Zhou, Dongmei; Zeng, Jianqiang; Cai, Lintao
2011-05-01
Cationic liposomes have emerged as a novel adjuvant and antigen delivery system to enhance vaccine efficacy. However, the role of surface charge density in cationic liposome-regulated immune responses has not yet been elucidated. In the present study, we prepared a series of DOTAP/DOPC cationic liposomes with different surface densities by incorporating varying amounts of DOPC (a neutral lipid) into DOTAP (a cationic lipid). The results showed that DOTAP/DOPC cationic liposome-regulated immune responses relied on the surface charge density, and might occur through ROS signaling. The liposomes with a relatively high charge density, such as DOTAP/DOPC 5 : 0 and 4 : 1 liposomes, potently enhanced dendritic cell maturation, ROS generaion, antigen uptake, as well as the production of OVA-specific IgG2a and IFN-γ. In contrast, low-charge liposomes, such as DOTAP/DOPC 1 : 4 liposome, failed to promote immune responses even at high concentrations, confirming that the immunoregulatory effect of cationic liposomes is mostly attributable to their surface charge density. Moreover, the DOTAP/DOPC 1 : 4 liposome suppressed anti-OVA antibody responses in vivo. Overall, maintaining an appropriate surface charge is crucial for optimizing the adjuvant effect of cationic liposomes and enhancing the efficacy of liposome-based vaccines.
Zhou, Han; Li, Fang; Weir, Michael D.; Xu, Hockin H.K.
2013-01-01
Objectives Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Methods Six QAMs were synthesized with CL = 3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond Multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL = 16) was mixed into SBMP at mass fraction = 0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4 hours. Biofilm colony-forming units (CFU) were measured at 2 days. Results Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL = 16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Conclusions Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. PMID:23948394
Zhou, Han; Li, Fang; Weir, Michael D; Xu, Hockin H K
2013-11-01
Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Six QAMs were synthesized with CL=3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL=16) was mixed into SBMP at mass fraction=0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4h. Biofilm colony-forming units (CFU) were measured at 2 days. Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL=16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-01-01
Local surface charge density of lipid membranes influences membrane–protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values. PMID:27561322
Observation of a Charge Density Wave Incommensuration Near the Superconducting Dome in Cu x TiSe 2
Kogar, A.; de la Pena, G. A.; Lee, Sangjun; ...
2017-01-11
X-ray diffraction was employed to study the evolution of the charge density wave (CDW) in Cu xTiSe 2 as a function of copper intercalation in order to clarify the relationship between the CDW and superconductivity. In this paper, the results show a CDW incommensuration arising at an intercalation value coincident with the onset of superconductivity at around x = 0.055(5) . Additionally, it was found that the charge density wave persists to higher intercalant concentrations than previously assumed, demonstrating that the CDW does not terminate inside the superconducting dome. A charge density wave peak was observed in samples up tomore » x = 0.091(6) , the highest copper concentration examined in this study. Lastly, the phase diagram established in this work suggests that charge density wave incommensuration may play a role in the formation of the superconducting state.« less
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy
NASA Astrophysics Data System (ADS)
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-08-01
Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy.
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-08-26
Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.
WSN-Based Space Charge Density Measurement System
Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong
2017-01-01
It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density. PMID:28052105
WSN-Based Space Charge Density Measurement System.
Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong
2017-01-01
It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.
High-temperature charge density wave correlations in La1.875Ba0.125CuO4 without spin–charge locking
Lorenzana, J.; Seibold, G.; Peng, Y. Y.; Amorese, A.; Yakhou-Harris, F.; Kummer, K.; Brookes, N. B.; Konik, R. M.; Thampy, V.; Gu, G. D.; Ghiringhelli, G.; Braicovich, L.
2017-01-01
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La1.875Ba0.125CuO4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates. PMID:29114049
Liu, Jie; Peng, Chunwang; Yu, Gaobo; Zhou, Jian
2015-10-06
The surrounding conditions, such as surface charge density and ionic strength, play an important role in enzyme adsorption. The adsorption of a nonmodular type-A feruloyl esterase from Aspergillus niger (AnFaeA) on charged surfaces was investigated by parallel tempering Monte Carlo (PTMC) and all-atom molecular dynamics (AAMD) simulations at different surface charge densities (±0.05 and ±0.16 C·m(-2)) and ionic strengths (0.007 and 0.154 M). The adsorption energy, orientation, and conformational changes were analyzed. Simulation results show that whether AnFaeA can adsorb onto a charged surface is mainly controlled by electrostatic interactions between AnFaeA and the charged surface. The electrostatic interactions between AnFaeA and charged surfaces are weakened when the ionic strength increases. The positively charged surface at low surface charge density and high ionic strength conditions can maximize the utilization of the immobilized AnFaeA. The counterion layer plays a key role in the adsorption of AnFaeA on the negatively charged COOH-SAM. The native conformation of AnFaeA is well preserved under all of these conditions. The results of this work can be used for the controlled immobilization of AnFaeA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biner, S.B.
1997-12-31
In this study, the evolution of the stress-states ahead of the penny shaped internal cracks in both spherical and disk shaped ReNi{sub 5} particles where Re denotes the rare earths La, Ce, and Misch-metals during hydrogen charging and discharging cycles were investigated using coupled diffusion/deformation FEM analyses. The results indicate that large tensile stresses, on the order of 20--30% of the modulus of elasticity, develop in the particles. The disk shaped particles, in addition to having faster charging/discharging cycles, may offer better resistance to fracture than the spherical particles.
Chirality and orbital order in charge density waves
NASA Astrophysics Data System (ADS)
van Wezel, Jasper
2011-12-01
Helical arrangements of spins are common among magnetic materials. The first material to harbor a corkscrew pattern of charge density, on the other hand, was discovered only very recently. The nature of the order parameter is of key relevance, since rotating a magnetic vector around any propagation vector trivially yields a helical pattern. In contrast, the purely scalar charge density cannot straightforwardly support a chiral state. Here we use a Landau order parameter analysis to resolve this paradox, and show that the chiral charge order may be understood as a form of orbital ordering. We discuss the microscopic mechanism driving the transition and show it to be of a general form, thus allowing for a broad class of materials to display this novel type of orbital-ordered chiral charge density wave.
Global performance enhancements via pedestal optimisation on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Dunne, M. G.; Frassinetti, L.; Beurskens, M. N. A.; Cavedon, M.; Fietz, S.; Fischer, R.; Giannone, L.; Huijsmans, G. T. A.; Kurzan, B.; Laggner, F.; McCarthy, P. J.; McDermott, R. M.; Tardini, G.; Viezzer, E.; Willensdorfer, M.; Wolfrum, E.; The EUROfusion MST1 Team; The ASDEX Upgrade Team
2017-02-01
Results of experimental scans of heating power, plasma shape, and nitrogen content are presented, with a focus on global performance and pedestal alteration. In detailed scans at low triangularity, it is shown that the increase in stored energy due to nitrogen seeding stems from the pedestal. It is also shown that the confinement increase is driven through the temperature pedestal at the three heating power levels studied. In a triangularity scan, an orthogonal effect of shaping and seeding is observed, where increased plasma triangularity increases the pedestal density, while impurity seeding (carbon and nitrogen) increases the pedestal temperature in addition to this effect. Modelling of these effects was also undertaken, with interpretive and predictive models being employed. The interpretive analysis shows a general agreement of the experimental pedestals in separate power, shaping, and seeding scans with peeling-ballooning theory. Predictive analysis was used to isolate the individual effects, showing that the trends of additional heating power and increased triangularity can be recoverd. However, a simple change of the effective charge in the plasma cannot explain the observed levels of confinement improvement in the present models.
Charged anisotropic matter with linear or nonlinear equation of state
NASA Astrophysics Data System (ADS)
Varela, Victor; Rahaman, Farook; Ray, Saibal; Chakraborty, Koushik; Kalam, Mehedi
2010-08-01
Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplifications achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua’s method to include pressure anisotropy and linear or nonlinear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge (1019C) and maximum electric field intensities are very large (1023-1024statvolt/cm) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.
NASA Astrophysics Data System (ADS)
Roest, Steven; van der Mei, Henny C.; Loontjens, Ton J. A.; Busscher, Henk J.
2015-11-01
Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 1014 cm-2. Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 1016 cm-2 and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both cationic-charge and its carrier. The at.% N401.3 eV should be above 0.45 at.% for Gram-positive bacterial contact-killing.
Characteristics of spacecraft charging in low Earth orbit
NASA Astrophysics Data System (ADS)
Anderson, Phillip C.
2012-07-01
It has been found that the DMSP spacecraft at 840 km can charge to very large negative voltages (up to -2000 V) when encountering intense precipitating electron events (auroral arcs). We present an 11-year study of over 1600 charging events, defined as when the spacecraft charged to levels exceeding 100 V negative during an auroral crossing. The occurrence frequency of events was highly correlated with the 11-year solar cycle with the largest number of events occurring during solar minimum. This was due to the requirement that the background thermal plasma density be low, at most 104 cm-3. During solar maximum, the plasma density is typically well above that level due to the solar EUV ionizing radiation, and although the occurrence frequency of auroral arcs is considerably greater than at solar minimum, the occurrence of high-level charging is minimal. As a result of this study, we produced a model spectrum for precipitating electrons that can be used as a specification for the low-altitude auroral charging environment. There are implications from this study on a number of LEO satellite programs, including the International Space Station, which does enter the auroral zone, particularly during geomagnetic activity when the auroral boundary can penetrate to very low latitudes. The plasma density in the ISS orbit is usually well above the minimum required density for charging. However, in the wake of the ISS, the plasma density can be 2 orders of magnitude or more lower than the background density and thus conditions are ripe for charging.
Ghosh, Kalyan; Yue, Chee Yoon; Sk, Md Moniruzzaman; Jena, Rajeeb Kumar
2017-05-10
We have fabricated high-energy-density all-solid-state flexible asymmetric supercapacitor by using a facile novel 3D hollow urchin-shaped coaxial manganese dioxide@polyaniline (MnO 2 @PANI) composite as positive electrode and 3D graphene foam (GF) as negative electrode materials with polyvinyl alcohol (PVA)/KOH gel electrolyte. The coaxial MnO 2 @PANI composite was fabricated by hydrothermal route followed by oxidation without use of an external oxidant. The formation mechanism of the 3D hollow MnO 2 @PANI composite occurs first by nucleation and growth of the MnO 2 crystal species via dissolution-recrystallization and oriented attachment mechanisms followed by the oxidation of aniline monomers on the MnO 2 crystalline template. The self-assembled 3D graphene block was synthesized by hydrothermal route using vitamin C as a reducing agent. The microstructures of the composites are analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The morphology is characterized by field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), which clearly showed the formation of urchin-shaped coaxial MnO 2 @PANI composite. The electrochemical studies are explored by cyclic voltammetry, electrochemical impedance spectrometry, and cyclic charge-discharge tests. The symmetric all-solid-state flexible MnO 2 @PANI//MnO 2 @PANI and GF//GF supercapacitors exhibit the specific capacitance of 129.2 and 82.1 F g -1 at 0.5 A/g current density, respectively. The solid-state asymmetric supercapacitor shows higher energy density (37 Wh kg -1 ) with respect to the solid-state symmetric supercapacitors MnO 2 @PANI//MnO 2 @PANI and GF//GF, where the obtained energy density are found to be 17.9 and 11.4 Wh kg -1 , respectively, at 0.5 A/g current density. Surprisingly, the asymmetric supercapacitor shows a high energy density of 22.3 Wh kg -1 at a high current density of 5 A g -1 . The solid-state asymmetric supercapacitor shows a good cyclic stability in which ∼11% capacitance loss was observed after 5000 cycles.
2007 Insensitive Munitions and Energetic Materials Technology Symposium
2007-10-18
Flat end rod Round end rod Flat cookie -cutter Spherical fragment Simple shaped charge jet Real shaped charge jet Thin plate Constant Temperature...while the press is running • No one allowed in the facility before dough -up • Maximum pressures, torque and temperatures set. • First warnings and
Functionalized nanopipettes: toward label-free, single cell biosensors.
Actis, Paolo; Mak, Andy C; Pourmand, Nader
2010-08-01
Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study single cell dynamics. This review is focused on creative applications of nanopipette technology for biosensing. We highlight the potential of this technology with a particular attention to integration of this biosensor with single cell manipulation platforms.
Functionalized nanopipettes: toward label-free, single cell biosensors
Actis, Paolo; Mak, Andy C.
2010-01-01
Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study single cell dynamics. This review is focused on creative applications of nanopipette technology for biosensing. We highlight the potential of this technology with a particular attention to integration of this biosensor with single cell manipulation platforms. PMID:20730113
Castable three-dimensional stationary phase for electric field-driven applications
Shepodd, Timothy J.; Whinnery, Jr., Leroy; Even, Jr., William R.
2005-01-25
A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.
Castable three-dimensional stationary phase for electric field-driven applications
Shepodd, Timothy J [Livermore, CA; Whinnery, Jr., Leroy; Even, Jr., William R.
2009-02-10
A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.
Baturin, Stanislav; Zholents, A.
2017-06-19
Here, the interrelation between the accelerating gradient and the transformer ratio in the collinear wake field accelerator has been analyzed. It has been shown that the high transformer ratio and the high efficiency of the energy transfer from the drive bunch to the witness bunch can only be achieved at the expense of the accelerating gradient. Rigorous proof is given that in best cases of meticulously shaped charge density distributions in the drive bunch, the maximum accelerating gradient falls proportionally to the gain in the transformer ratio. Conclusions are verified using several representative examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baturin, Stanislav; Zholents, A.
Here, the interrelation between the accelerating gradient and the transformer ratio in the collinear wake field accelerator has been analyzed. It has been shown that the high transformer ratio and the high efficiency of the energy transfer from the drive bunch to the witness bunch can only be achieved at the expense of the accelerating gradient. Rigorous proof is given that in best cases of meticulously shaped charge density distributions in the drive bunch, the maximum accelerating gradient falls proportionally to the gain in the transformer ratio. Conclusions are verified using several representative examples.
Covalent character and electric field dependence of H2-AgX (X = F - I).
Li, Xinying
2018-06-16
Mechanisms of Ag-X and Ag…H 2 interactions and stabilities of T-shaped H 2 -AgX (X = F - I) series were investigated at the CCSD(T) level. The "no-density" bond with smaller positive Laplacian and ELF values in interaction regions, as well as considerable delocalization index values, suggest weak covalent "charge-shift" character for the Ag…H 2 interaction. Structure and stability dependence on the electric field were investigated at the MP2 level. Relative total energy curves show obvious parabolic character, and the plots can be fitted by quadratic polynomials as functions of electric field strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Först, M.; Frano, A.; Kaiser, S.
2014-11-17
In this study, we use femtosecond resonant soft x-ray diffraction to measure the optically stimulated ultrafast changes of charge density wave correlations in underdoped YBa₂Cu₃O₆.₆. We find that when coherent interlayer transport is enhanced by optical excitation of the apical oxygen distortions, at least 50% of the in-plane charge density wave order is melted. These results indicate that charge ordering and superconductivity may be competing up to the charge ordering transition temperature, with the latter becoming a hidden phase that is accessible only by nonlinear phonon excitation.
Polymeric and Molecular Materials for Advanced Organic Electronics
2011-07-25
printable variants. All have excellent dielectric and insulating properties, a remarkable ability to minimize trapped charge between thin film transistor... trapped charge density, and hence the corresponding OTFT device performance. Under this program we first discovered that OTFT performance is...deep, high- density charge traps must be overcome for efficient FET operation, it has been postulated that in most OFETs, shallow lower-density (~10
Child-Langmuir flow in a planar diode filled with charged dust impurities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Xiaoyan; Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44870 Bochum; Shukla, Padma Kant
The Child-Langmuir (CL) flow in a planar diode in the presence of stationary charged dust particles is studied. The limiting electron current density and other diode properties, such as the electrostatic potential, the electron flow speed, and the electron number density, are calculated analytically. A comparison of the results with the case without dust impurities reveals that the diode parameters mentioned above decrease with the increase of the dust charge density. Furthermore, it is found that the classical scaling of D{sup -2} (the gap spacing D) for the CL current density remains exactly valid, while the scaling of V{sup 3/2}more » (the applied gap voltage V) can be a good approximation for low applied gap voltage and for low dust charge density.« less
Correlation Between the Extent of Catalytic Activity and Charge Density of Montmorillonites
Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer
2010-01-01
Abstract The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH3-(CH2)n-NH3]+, where n = 3–16 and 18, and then measuring d(001), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed. Key Words: Mars—Origin of life—Montmorillonite—Mineral catalysis—Layer charge density—X–ray diffractometry. Astrobiology 10, 743–749. PMID:20854214
Organic semiconductor density of states controls the energy level alignment at electrode interfaces
Oehzelt, Martin; Koch, Norbert; Heimel, Georg
2014-01-01
Minimizing charge carrier injection barriers and extraction losses at interfaces between organic semiconductors and metallic electrodes is critical for optimizing the performance of organic (opto-) electronic devices. Here, we implement a detailed electrostatic model, capable of reproducing the alignment between the electrode Fermi energy and the transport states in the organic semiconductor both qualitatively and quantitatively. Covering the full phenomenological range of interfacial energy level alignment regimes within a single, consistent framework and continuously connecting the limiting cases described by previously proposed models allows us to resolve conflicting views in the literature. Our results highlight the density of states in the organic semiconductor as a key factor. Its shape and, in particular, the energy distribution of electronic states tailing into the fundamental gap is found to determine both the minimum value of practically achievable injection barriers as well as their spatial profile, ranging from abrupt interface dipoles to extended band-bending regions. PMID:24938867
NASA Astrophysics Data System (ADS)
Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M.
2015-07-01
Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br- or I-) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.
Villareal, Oscar D; Rodriguez, Roberto A; Yu, Lili; Wambo, Thierry O
2016-08-20
Molecular dynamics simulations employing all-atom force fields have become a reliable way to study binding interactions quantitatively for a wide range of systems. In this work, we employ two recently developed methods for the calculation of dissociation constants K D between gold nanoparticles (AuNPs) of different sizes in a near-physiological environment through the potential of mean force (PMF) formalism: the method of geometrical restraints developed by Woo et al. and formalized by Gumbart et al. and the method of hybrid Steered Molecular Dynamics (hSMD). Obtaining identical results (within the margin of error) from both approaches on the negatively charged Au 18 (SR) 14 NP, functionalized by the negatively charged 4-mercapto-benzoate (pMBA) ligand, we draw parallels between their energetic and entropic interactions. By applying the hSMD method on Au 102 (SR) 44 and Au 144 (SR) 60 , both of them near-spherical in shape and functionalized by pMBA, we study the effects of size and shape on the binding interactions. Au 18 binds weakly with K D = 13 mM as a result of two opposing effects: its large surface curvature hindering the formation of salt bridges, and its large ligand density on preferential orientations favoring their formation. On the other hand, Au 102 binds more strongly with K D = 30 μM and Au 144 binds the strongest with K D = 3.2 nM .
Kapton charging characteristics: Effects of material thickness and electron-energy distribution
NASA Technical Reports Server (NTRS)
Williamson, W. S.; Dulgeroff, C. R.; Hymann, J.; Viswanathan, R.
1985-01-01
Charging characteristics of polyimide (Kapton) of varying thicknesses under irradiation by a very-low-curent-density electron beam, with the back surface of the sample grounded are reported. These charging characteristics are in good agreement with a simple analytical model which predicts that in thin samples at low current density, sample surface potential is limited by conduction leakage through the bulk material. The charging of Kapton in a low-current-density electron beam in which the beam energy was modulated to simulate Maxwellian and biMaxwellian distribution functions is measured.
NASA Astrophysics Data System (ADS)
Medley, S. S.; Budny, R. V.; Mansfield, D. K.; Redi, M. H.; Roquemore, A. L.; Fisher, R. K.; Duong, H. H.; McChesney, J. M.; Parks, P. B.; Petrov, M. P.; Gorelenkov, N. N.
1996-10-01
The energy distributions and radial density profiles of the fast confined trapped alpha particles in DT experiments on TFTR are being measured in the energy range 0.5 - 3.5 MeV using the pellet charge exchange (PCX) diagnostic. A brief description of the measurement technique which involves active neutral particle analysis using the ablation cloud surrounding an injected impurity pellet as the neutralizer is presented. This paper focuses on alpha and triton measurements in the core of MHD quiescent TFTR discharges where the expected classical slowing-down and pitch angle scattering effects are not complicated by stochastic ripple diffusion and sawtooth activity. In particular, the first measurement of the alpha slowing-down distribution up to the birth energy, obtained using boron pellet injection, is presented. The measurements are compared with predictions using either the TRANSP Monte Carlo code and/or a Fokker - Planck Post-TRANSP processor code, which assumes that the alphas and tritons are well confined and slow down classically. Both the shape of the measured alpha and triton energy distributions and their density ratios are in good agreement with the code calculations. We can conclude that the PCX measurements are consistent with classical thermalization of the fusion-generated alphas and tritons.
Evangelista, Luiz Roberto; Lenzi, Ervin Kaminski; Barbero, Giovanni; Macdonald, James Ross
2013-03-21
The response of an electrolytic cell, in the shape of a slab, is analyzed in the framework of the Poisson-Nernst-Planck model in the limit of full dissociation. Two different types of boundary conditions on the electrodes are compared. One type describes the exchange of charges between the volume and the external circuit, in the form originally proposed by Chang and Jaffé and later extended to include specific adsorption, where the surface current density is proportional to the variation of the surface bulk density of ions with respect to the value of equilibrium. The other one describes the surface adsorption, in the limit of Langmuir. We show that in the simple case where the ions dissolved in the insulating liquid are identical in all the aspects, except for the sign of the charge, the two models are equivalent only if the phenomenological parameter entering the boundary condition of the Chang-Jaffé model, κ, is frequency dependent, and related to the adsorption coefficient, k(a), in the form κ = iωτ/(1 + iωτ)k(a), where τ is the desorption time and ω the circular frequency of the applied voltage, as proposed long ago by Macdonald.
Dakovski, Georgi L.; Lee, Wei -Sheng; Hawthorn, David G.; ...
2015-06-24
We utilize intense, single-cycle terahertz pulses to induce collective excitations in the charge-density-wave-ordered underdoped cuprate YBa 2Cu 3O 6+x. These excitations manifest themselves as pronounced coherent oscillations of the optical reflectivity in the transient state, accompanied by minimal incoherent quasiparticle relaxation dynamics. The oscillations occur at frequencies consistent with soft phonon energies associated with the charge-density-wave, but vanish above the superconducting transition temperature rather than that at the charge-density-wave transition. These results indicate an intimate relationship of the terahertz excitation with the underlying charge-density-wave and the superconducting condensate itself.
Casati, Nicola; Genoni, Alessandro; Meyer, Benjamin; Krawczuk, Anna; Macchi, Piero
2017-08-01
The possibility to determine electron-density distribution in crystals has been an enormous breakthrough, stimulated by a favourable combination of equipment for X-ray and neutron diffraction at low temperature, by the development of simplified, though accurate, electron-density models refined from the experimental data and by the progress in charge density analysis often in combination with theoretical work. Many years after the first successful charge density determination and analysis, scientists face new challenges, for example: (i) determination of the finer details of the electron-density distribution in the atomic cores, (ii) simultaneous refinement of electron charge and spin density or (iii) measuring crystals under perturbation. In this context, the possibility of obtaining experimental charge density at high pressure has recently been demonstrated [Casati et al. (2016). Nat. Commun. 7, 10901]. This paper reports on the necessities and pitfalls of this new challenge, focusing on the species syn-1,6:8,13-biscarbonyl[14]annulene. The experimental requirements, the expected data quality and data corrections are discussed in detail, including warnings about possible shortcomings. At the same time, new modelling techniques are proposed, which could enable specific information to be extracted, from the limited and less accurate observations, like the degree of localization of double bonds, which is fundamental to the scientific case under examination.
Ahn, Yongjun; Yeo, Hwasoo
2015-01-01
The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station’s density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric vehicles. PMID:26575845
Miao, H.; Lorenzana, J.; Seibold, G.; ...
2017-11-07
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, H.; Lorenzana, J.; Seibold, G.
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less
Preparation of etched tantalum semimicro capacitor stimulation electrodes.
Robblee, L S; Kelliher, E M; Langmuir, M E; Vartanian, H; McHardy, J
1983-03-01
The ideal electrode for stimulation of the nervous system is one that will inject charge by purely capacitive processes. One approach is to exploit the type of metal-oxide combination used in electrolytic capacitors, e.g., Ta/Ta2O5. For this purpose, fine tantalum wire (0.25 mm diam) was etched electrolytically at constant current in a methanol solution of NH4Br containing 1.5 wt % H2O. Electrolytic etching produced a conical tip with a length of ca. 0.5 mm and shaft diameters ranging from 0.10 to 0.16 mm. The etched electrodes were anodized to 10 V (vs. SCE) in 0.1 vol % H3PO4. The capacitance values normalized to geometric area of etched electrodes ranged from 0.13 to 0.33 micro F mm-2. Comparison of these values to the capacitance of "smooth" tantalum anodized to 10 V (0.011 micro F mm-2) indicated that the degree of surface enhancement, or etch ratio, was 12-30. The surface roughness was confirmed by scanning electron microscopy studies which revealed an intricate array of irregularly shaped surface projections about 1-2 micrometers wide. The etched electrodes were capable of delivering 0.06-0.1 micro C of charge with 0.1 ms pulses at a pulse repetition rate of 400 Hz when operated at 50% of the anodization voltage. This quantity of charge corresponded to volumetric charge densities of 20-30 micro C mm-3 and area charge densities of 0.55-0.88 micro C mm-2. Charge storage was proportionately higher at higher fractional values of the formation voltage. Leakage currents at 5 V were ca. 2 nA. Neither long-term passive storage (1500 h) nor extended pulsing time (18 h) had a deleterious effect on electrode performance. The trend in electrical stimulation work is toward smaller electrodes. The procedures developed in this study should be particularly well-suited to the fabrication of even smaller electrodes because of the favorable electrical and geometric characteristics of the etched surface.
NASA Astrophysics Data System (ADS)
Ramírez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafé, Salvador
2008-08-01
We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.
Ramírez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafé, Salvador
2008-08-06
We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.
Electrostatics-driven shape transitions in soft shells.
Jadhao, Vikram; Thomas, Creighton K; Olvera de la Cruz, Monica
2014-09-02
Manipulating the shape of nanoscale objects in a controllable fashion is at the heart of designing materials that act as building blocks for self-assembly or serve as targeted drug delivery carriers. Inducing shape deformations by controlling external parameters is also an important way of designing biomimetic membranes. In this paper, we demonstrate that electrostatics can be used as a tool to manipulate the shape of soft, closed membranes by tuning environmental conditions such as the electrolyte concentration in the medium. Using a molecular dynamics-based simulated annealing procedure, we investigate charged elastic shells that do not exchange material with their environment, such as elastic membranes formed in emulsions or synthetic nanocontainers. We find that by decreasing the salt concentration or increasing the total charge on the shell's surface, the spherical symmetry is broken, leading to the formation of ellipsoids, discs, and bowls. Shape changes are accompanied by a significant lowering of the electrostatic energy and a rise in the surface area of the shell. To substantiate our simulation findings, we show analytically that a uniformly charged disc has a lower Coulomb energy than a sphere of the same volume. Further, we test the robustness of our results by including the effects of charge renormalization in the analysis of the shape transitions and find the latter to be feasible for a wide range of shell volume fractions.
A Monte Carlo modeling on charging effect for structures with arbitrary geometries
NASA Astrophysics Data System (ADS)
Li, C.; Mao, S. F.; Zou, Y. B.; Li, Yong Gang; Zhang, P.; Li, H. M.; Ding, Z. J.
2018-04-01
Insulating materials usually suffer charging effects when irradiated by charged particles. In this paper, we present a Monte Carlo study on the charging effect caused by electron beam irradiation for sample structures with any complex geometry. When transporting in an insulating solid, electrons encounter elastic and inelastic scattering events; the Mott cross section and a Lorentz-type dielectric function are respectively employed to describe such scatterings. In addition, the band gap and the electron–long optical phonon interaction are taken into account. The electronic excitation in inelastic scattering causes generation of electron–hole pairs; these negative and positive charges establish an inner electric field, which in turn induces the drift of charges to be trapped by impurities, defects, vacancies etc in the solid, where the distributions of trapping sites are assumed to have uniform density. Under charging conditions, the inner electric field distorts electron trajectories, and the surface electric potential dynamically alters secondary electron emission. We present, in this work, an iterative modeling method for a self-consistent calculation of electric potential; the method has advantages in treating any structure with arbitrary complex geometry, in comparison with the image charge method—which is limited to a quite simple boundary geometry. Our modeling is based on: the combination of the finite triangle mesh method for an arbitrary geometry construction; a self-consistent method for the spatial potential calculation; and a full dynamic description for the motion of deposited charges. Example calculations have been done to simulate secondary electron yield of SiO2 for a semi-infinite solid, the charging for a heterostructure of SiO2 film grown on an Au substrate, and SEM imaging of a SiO2 line structure with rough surfaces and SiO2 nanoparticles with irregular shapes. The simulations have explored interesting interlaced charge layer distribution underneath the nanoparticle surface and the mechanism by which it is produced.
Emergence of charge density waves and a pseudogap in single-layer TiTe2.
Chen, P; Pai, Woei Wu; Chan, Y-H; Takayama, A; Xu, C-Z; Karn, A; Hasegawa, S; Chou, M Y; Mo, S-K; Fedorov, A-V; Chiang, T-C
2017-09-11
Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermi level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.Due to reduced dimensionality, the properties of 2D materials are often different from their 3D counterparts. Here, the authors identify the emergence of a unique charge density wave (CDW) order in monolayer TiTe 2 that challenges the current understanding of CDW formation.
Yu, Yang-Xin; Wu, Jianzhong; Gao, Guang-Hua
2004-04-15
A density-functional theory is proposed to describe the density profiles of small ions around an isolated colloidal particle in the framework of the restricted primitive model where the small ions have uniform size and the solvent is represented by a dielectric continuum. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-sphere repulsion and a quadratic functional Taylor expansion for the electrostatic interactions. The theoretical predictions are in good agreement with the results from Monte Carlo simulations and from previous investigations using integral-equation theory for the ionic density profiles and the zeta potentials of spherical particles at a variety of solution conditions. Like the integral-equation approaches, the density-functional theory is able to capture the oscillatory density profiles of small ions and the charge inversion (overcharging) phenomena for particles with elevated charge density. In particular, our density-functional theory predicts the formation of a second counterion layer near the surface of highly charged spherical particle. Conversely, the nonlinear Poisson-Boltzmann theory and its variations are unable to represent the oscillatory behavior of small ion distributions and charge inversion. Finally, our density-functional theory predicts charge inversion even in a 1:1 electrolyte solution as long as the salt concentration is sufficiently high. (c) 2004 American Institute of Physics.
Riedy, L W; Walter, J S
1996-06-01
The safe charge injection density for pulsing of 316LVM electrodes has been reported to be 40 microC/cm2. However, only 20 microC/cm2 is available for nonfaradic charge transfer and double layer charge injection. Therefore, we evaluated long term pulsing at 20 microC/cm2 with capacitor coupling.
Ropers, M H; Novales, B; Boué, F; Axelos, M A V
2008-11-18
The binding of a cationic surfactant (hexadecyltrimethylammonium bromide, CTAB) to a negatively charged natural polysaccharide (pectin) at air-solution interfaces was investigated on single interfaces and in foams, versus the linear charge densities of the polysaccharide. Besides classical methods to investigate polymer/surfactant systems, we applied, for the first time concerning these systems, the analogy between the small angle neutron scattering by foams and the neutron reflectivity of films to measure in situ film thicknesses of foams. CTAB/pectin foam films are much thicker than the pure surfactant foam film but similar for high- and low-charged pectin/CTAB systems despite the difference in structure of complexes at interfaces. The improvement of the foam properties of CTAB bound to pectin is shown to be directly related to the formation of pectin-CTAB complexes at the air-water interface. However, in opposition to surface activity, there is no specific behavior for the highly charged pectin: foam properties depend mainly upon the bulk charge concentration, while the interfacial behavior is mainly governed by the charge density of pectin. For the highly charged pectin, specific cooperative effects between neighboring charged sites along the chain are thought to be involved in the higher surface activity of pectin/CTAB complexes. A more general behavior can be obtained at lower charge density either by using a low-charged pectin or by neutralizing the highly charged pectin in decreasing pH.
Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge
NASA Astrophysics Data System (ADS)
Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng
2018-04-01
Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm2, the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.
Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.
Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng
2018-04-19
Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.
47 CFR 69.123 - Density pricing zones for special access and switched transport.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Density pricing zones for special access and...) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges § 69.123 Density pricing zones... price cap regulation may establish any number of density zones within a study area that is used for...
The Effect of Aerodynamic Heating on Air Penetration by Shaped Charge Jets and Their Particles
NASA Astrophysics Data System (ADS)
Backofen, Joseph
2009-06-01
The goal of this paper is to present recent work modeling thermal coupling between shaped charge jets and their particles with air while it is being penetrated to form a crater that subsequently collapses back onto the jet. This work complements research published at International Symposia on Ballistics: 1) 1987 - Shaped Charge Jet Aerodynamics, Particulation and Blast Field Modeling; and 2) 2007 - Air Cratering by Eroding Shaped Charge Jets. The current work shows how and when a shaped charge jet's tip and jet particles are softened enough that they can erode in a hydrodynamic manner as modeled in these papers. This paper and its presentation includes models for heat transfer from shocked air as a function of jet velocity as well as heat flow within the jet or particle. The work is supported by an extensive bibliographic search including publications on meteors and ballistic missile re-entry vehicles. The modeling shows that a jet loses its strength to the depth required to justify hydrodynamic erosion when its velocity is above a specific velocity related to the shock properties of air and the jet material's properties. As a result, the portion of a jet's kinetic energy converted at the aerodynamic shock into heating transferred back onto the jet affects the energy deposited into the air through drag and ablation which in turn affect air crater expansion and subsequent collapse back onto the jet and its particles as shown in high-speed photography.
NASA Astrophysics Data System (ADS)
Bagheri, Zahra; Davoudifar, Pantea; Rastegarzadeh, Gohar; Shayan, Milad
2017-03-01
In this paper, we used CORSIKA code to understand the characteristics of cosmic ray induced showers at extremely high energy as a function of energy, detector distance to shower axis, number, and density of secondary charged particles and the nature particle producing the shower. Based on the standard properties of the atmosphere, lateral and longitudinal development of the shower for photons and electrons has been investigated. Fluorescent light has been collected by the detector for protons, helium, oxygen, silicon, calcium and iron primary cosmic rays in different energies. So we have obtained a number of electrons per unit area, distance to the shower axis, shape function of particles density, percentage of fluorescent light, lateral distribution of energy dissipated in the atmosphere and visual field angle of detector as well as size of the shower image. We have also shown that location of highest percentage of fluorescence light is directly proportional to atomic number of elements. Also we have shown when the distance from shower axis increases and the shape function of particles density decreases severely. At the first stages of development, shower axis distance from detector is high and visual field angle is small; then with shower moving toward the Earth, angle increases. Overall, in higher energies, the fluorescent light method has more efficiency. The paper provides standard calibration lines for high energy showers which can be used to determine the nature of the particles.
Haso, Fadi; Li, Dong; Garai, Somenath; Pigga, Joseph M; Liu, Tianbo
2015-09-14
Two Keplerate-type macroions, [Mo(VI) 72 Fe(III) 30 O252 - (CH3 COO)12 {Mo2 O7 (H2 O)}2 {H2 Mo2 O8 (H2 O)}(H2 O)91 ]⋅ca. 150 H2 O= {Mo72 Fe30 } and [{Na(H2 O)12 }⊂{Mo(VI) 72 Cr(III) 30 O252 (CH3 COO)19 - (H2 O)94 }]⋅ca. 120 H2 O={Mo72 Cr30 }, with identical size and shape but different charge density, can self-assemble into spherical "blackberry"-like structures in aqueous solution by means of electrostatic interactions. These two macroanions can self-recognize each other and self-assemble into two separate types of homogeneous blackberries in their mixed dilute aqueous solution, in which they carry -7 and -5 net charges, respectively. Either adjusting the solution pH or raising temperature is expected to make the self-recognition more difficult, by making the charge densities of the two clusters closer, or by decreasing the activation energy barrier for the blackberry formation, respectively. Amazingly, the self-recognition behavior remains, as confirmed by dynamic and static light scattering, TEM, and energy dispersive spectroscopy techniques. The results prove that the self-recognition behavior of the macroions due to the long-range electrostatic interaction is universal and can be achieved when only minimum differences exist between two types of macroanions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stochastic and deterministic causes of streamer branching in liquid dielectrics
NASA Astrophysics Data System (ADS)
Jadidian, Jouya; Zahn, Markus; Lavesson, Nils; Widlund, Ola; Borg, Karl
2013-08-01
Streamer branching in liquid dielectrics is driven by stochastic and deterministic factors. The presence of stochastic causes of streamer branching such as inhomogeneities inherited from noisy initial states, impurities, or charge carrier density fluctuations is inevitable in any dielectric. A fully three-dimensional streamer model presented in this paper indicates that deterministic origins of branching are intrinsic attributes of streamers, which in some cases make the branching inevitable depending on shape and velocity of the volume charge at the streamer frontier. Specifically, any given inhomogeneous perturbation can result in streamer branching if the volume charge layer at the original streamer head is relatively thin and slow enough. Furthermore, discrete nature of electrons at the leading edge of an ionization front always guarantees the existence of a non-zero inhomogeneous perturbation ahead of the streamer head propagating even in perfectly homogeneous dielectric. Based on the modeling results for streamers propagating in a liquid dielectric, a gauge on the streamer head geometry is introduced that determines whether the branching occurs under particular inhomogeneous circumstances. Estimated number, diameter, and velocity of the born branches agree qualitatively with experimental images of the streamer branching.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamura, M., E-mail: okamura@bnl.gov; Nishina Center for Accelerator-Based Science, RIKEN, Saitama; Palm, K.
Calcium and lithium ion beams are required by NASA Space Radiation Laboratory at Brookhaven National Laboratory to simulate the effects of cosmic radiation. To identify the difficulties in providing such highly reactive materials as laser targets, both species were experimentally tested. Plate shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6 ns 1064 nm neodymium-doped yttrium aluminum garnet laser. We found significant oxygen contamination in both the Ca and Li high charge state beams due to the rapid oxidation of the surfaces. A large spot size, low power density laser was used to create lowmore » charge state beams without scanning the targets. The low charge state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely of oxide with a low power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low power shot. To measure the rate of oxidation, we shot the low power laser at the target repeatedly at 10 s, 30 s, 60 s, and 120 s interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.« less
Calcium and lithium ion production for laser ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamura, M.; Palm, K.; Stifler, C.
2015-08-23
Calcium and lithium ion beams are required by NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) to simulate the effects of cosmic radiation. To find out difficulties to provide such high reactive material as laser targets, the both species were experimentally tested. Plate-shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6ns, 1064nm Nd:YAG laser. We found significant oxygen contamination in both the Ca and Li high-charge-state beams due to the rapid oxidation of the surfaces. A large-spot-size, low-power-density laser was then used to analyze the low-charge-state beams without scanning the targets. The low-charge-statemore » Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely with a low-power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low-power shot. To measure the rate of oxidation, we shot the low-power laser at the target repeatedly at 10sec, 30sec, 60sec, and 120sec interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.« less
Analytical model of a corona discharge from a conical electrode under saturation
NASA Astrophysics Data System (ADS)
Boltachev, G. Sh.; Zubarev, N. M.
2012-11-01
Exact partial solutions are found for the electric field distribution in the outer region of a stationary unipolar corona discharge from an ideal conical needle in the space-charge-limited current mode with allowance for the electric field dependence of the ion mobility. It is assumed that only the very tip of the cone is responsible for the discharge, i.e., that the ionization zone is a point. The solutions are obtained by joining the spherically symmetric potential distribution in the drift space and the self-similar potential distribution in the space-charge-free region. Such solutions are outside the framework of the conventional Deutsch approximation, according to which the space charge insignificantly influences the shape of equipotential surfaces and electric lines of force. The dependence is derived of the corona discharge saturation current on the apex angle of the conical electrode and applied potential difference. A simple analytical model is suggested that describes drift in the point-plane electrode geometry under saturation as a superposition of two exact solutions for the field potential. In terms of this model, the angular distribution of the current density over the massive plane electrode is derived, which agrees well with Warburg's empirical law.
NASA Astrophysics Data System (ADS)
Liu, Wanying; Zhu, Yabo; Chen, Zhiyan; Lei, Jia; Feng, Peizhong
2018-05-01
We generated multilayer black phosphorus (MBP) as a precipitate in centrifugation under 3000 rpm for 25 min, preceded by liquid exfoliation, in which saturated sodium hydroxide (NaOH(s)) was added as an exfoliation auxiliary. The MBP exfoliated with NaOH(s) was characterized by scanning electron microscope, energy dispersive x-ray detector, x-ray diffraction, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Its electrochemical performance was investigated by cyclic voltammetry, charge/discharge and electrochemical impedance spectroscopy. It was found that the appropriate amount of NaOH(s) can make MBP present a ladder-shaped structure or plackets on the layer edge, which may provide more active sites and channels for charge storage to improve its electrochemical performance. The specific capacitance of MBP samples exfoliated with appropriate amounts of NaOH(s) can quickly enter a relatively stable range of 110-90 F/g after the 75th cycle, and finally stabilize at about 90 F/g after thousands of cycles under the current density of 2 A/g, which demonstrates their good stability in the range of long charge/discharge cycles. MBP exhibits double-layer capacitance properties.
Tailoring charge density and hydrogen bonding of imidazolium copolymers for efficient gene delivery.
Allen, Michael H; Green, Matthew D; Getaneh, Hiwote K; Miller, Kevin M; Long, Timothy E
2011-06-13
Conventional free radical polymerization with subsequent postpolymerization modification afforded imidazolium copolymers with controlled charge density and side chain hydroxyl number. Novel imidazolium-containing copolymers where each permanent cation contained one or two adjacent hydroxyls allowed precise structure-transfection efficiency studies. The degree of polymerization was identical for all copolymers to eliminate the influence of molecular weight on transfection efficiency. DNA binding, cytotoxicity, and in vitro gene transfection in African green monkey COS-7 cells revealed structure-property-transfection relationships for the copolymers. DNA gel shift assays indicated that higher charge densities and hydroxyl concentrations increased DNA binding. As the charge density of the copolymers increased, toxicity of the copolymers also increased; however, as hydroxyl concentration increased, cytotoxicity remained constant. Changing both charge density and hydroxyl levels in a systematic fashion revealed a dramatic influence on transfection efficiency. Dynamic light scattering of the polyplexes, which were composed of copolymer concentrations required for the highest luciferase expression, showed an intermediate DNA-copolymer binding affinity. Our studies supported the conclusion that cationic copolymer binding affinity significantly impacts overall transfection efficiency of DNA delivery vehicles, and the incorporation of hydroxyl sites offers a less toxic and effective alternative to more conventional highly charged copolymers.
Quantum crystallographic charge density of urea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Michael E.
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less
Quantum crystallographic charge density of urea
Wall, Michael E.
2016-06-08
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less
Structure in the Proton and the Neutron
DOE R&D Accomplishments Database
Hofstadter, R.
1958-06-01
A survey of the recent work on the structures of the proton and the neutron carried out by high-energy electron-scattering methods is presented. Early work established finite size effects in the proton and led to information about the charge and magnetic density distributions in the proton. The rms size was established to be close to (0.77 plus or minus 0.10) x 10{sup -13} cm, and the density distributions of charge and anomalous magnetic moment were shown to be approximately of the same shape. The form factors could be described in terms of several alternative models given, for example, by an exponential, gaussian, hollow exponential, hollow gaussian, etc., distribution of densities. Many other shapes were excluded by the experimental data. Recent work by Bumiller and Hofstadter now fixes one among these models that is appropriate to the proton and provides an extremely good fit at all angles between energies of 200 and 650 Mev. The new evidence clearly favors the exponential model with rms radius (0.80 plus or minus 0.04) 10{sup -13} cm. Recent studies of the proton have attempted to answer the question: how closely similar are the charge and magnetic form factors? This work now shows that the distributions have the same sizes and shapes to within 10 per cent, and each distribution is given very closely by the exponential model described above with radius (0.80 plus or minus 0.04) x 10{sup -13}. Certain other similar models will be discussed. Early work on the inelastic continuum in the deuteron established that the neutron's magnetic structure was extended and not a point. It was further shown that the neutron's size was approximately the same as that of the proton. This work has recently been extended by Yearian and Hofstadter to a determination of the variation of the neutron's magnetic form factor over the range where the proton's form factor is known. The new results show: (1) the neutron is not a point, (2) the neutron's magnetic structure has a size lying between the limits 0.61 x 10{sup -13} cm and 0.80 x 10{sup -13} cm. The first value (0.61 x 10{sup -13} cm) is determined by examining the total deuteron electro-disintegration cross section at a given angle and incident energy and comparing this cross section with that of the free proton under the same conditions. The second value (0.80 x 10{sup -13} cm) is found by examining the peak of the deuteron electro-disintegration cross section. Because of possible contributions to the total cross section by mesonic exchange effects, the second method is believed to be slightly more accurate. The neutron size is, therefore, approximately (0.70 plus or minus 0.10) x 10{sup -13} cm and probably the larger size 0.90 x 10{sup -13} cm is correct. Thus the magnetic clouds of the neutron and proton are closely the same. The bearing of these results on the validity of electrodynamics is discussed. Because of the small radius implied by the neutron-electron experiments, there is an anomaly between the neutron and the proton. This is represented by the small charge radius for the neutron and the much larger radius of the proton. Additional information of the structure of the deuteron and on the production of pions by electrons is also furnished by the same experiments and will be discussed at the meeting. (auth)
Charge-density-shear-moduli relationships in aluminum-lithium alloys.
Eberhart, M
2001-11-12
Using the first principles full-potential linear-augmented-Slater-type orbital technique, the energies and charge densities of aluminum and aluminum-lithium supercells have been computed. The experimentally observed increase in aluminum's shear moduli upon alloying with lithium is argued to be the result of predictable changes to aluminum's total charge density, suggesting that simple rules may allow the alloy designer to predict the effects of dilute substitutional elements on alloy elastic response.
Thermal stability of atomic layer deposition Al2O3 film on HgCdTe
NASA Astrophysics Data System (ADS)
Zhang, P.; Sun, C. H.; Zhang, Y.; Chen, X.; He, K.; Chen, Y. Y.; Ye, Z. H.
2015-06-01
Thermal stability of Atomic Layer Deposition Al2O3 film on HgCdTe was investigated by Al2O3 film post-deposition annealing treatment and Metal-Insulator-Semiconductor device low-temperature baking treatment. The effectiveness of Al2O3 film was evaluated by measuring the minority carrier lifetime and capacitance versus voltage characteristics. After annealing treatment, the minority carrier lifetime of the HgCdTe sample presented a slight decrease. Furthermore, the fixed charge density and the slow charge density decreased significantly in the annealed MIS device. After baking treatment, the fixed charge density and the slow charge density of the unannealed and annealed MIS devices decreased and increased, respectively.
Joseph, Lynnette; Sajan, D; Chaitanya, K; Isac, Jayakumary
2014-03-25
The conformational behavior and structural stability of trans-1,2-bis(3,5-dimethoxy phenyl)-ethene (TDBE) were investigated by using density functional theory (DFT) method with the B3LYP/6-311++G(d,p) basis set combination. The vibrational wavenumbers of TDBE were computed at DFT level and complete vibrational assignments were made on the basis of normal coordinate analysis calculations (NCA). The DFT force field transformed to natural internal coordinates was corrected by a well-established set of scale factors that were found to be transferable to the title compound. The infrared and Raman spectra were also predicted from the calculated intensities. The observed Fourier transform infrared (FTIR) and Fourier transform (FT) Raman vibrational wavenumbers were analyzed and compared with the theoretically predicted vibrational spectra. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). Copyright © 2013 Elsevier B.V. All rights reserved.
Evaluation of the 3-GeV proton beam profile at the spallation target of the JSNS
NASA Astrophysics Data System (ADS)
Meigo, Shin-ichiro; Noda, Fumiaki; Ishikura, Syuichi; Futakawa, Masatoshi; Sakamoto, Shinichi; Ikeda, Yujiro
2006-06-01
At JSNS, 3-GeV protons beam is delivered from rapid cycling synchrotron (RCS) to the spallation neutron target. In order to reduce the damage of pitting on the target container, the peak current density should be kept as small as possible. In this study, the beam profile at spallation neutron target is evaluated. The phase-space distribution, including the space-charge effect, is calculated with SIMPSONS code. The beam profile on the target is obtained with the transfer matrix from exit of RCS to the target. As for injection to RCS, two methods of correlated and anti-correlated painting are considered. By using anti-correlated painting for injection of beam at RCS, it is found the shape of beam becomes flatter than the distribution by using correlated painting. As other aspect for the study of target, in order to carry out target performance test especially for the study of pitting issue, it is better to have the beam profile variety from the beginning of facility. The adjustable range for the beam profile at the beginning is also studied. Although the beam shape is narrow and the duty is very low, the strong enough peak density is achievable equivalent as 1 MW.
NASA Astrophysics Data System (ADS)
Saha, P.; Rahane, A. B.; Kumar, V.; Sukumar, N.
2016-05-01
Boron atomic clusters show several interesting and unusual size-dependent features due to the small covalent radius, electron deficiency, and higher coordination number of boron as compared to carbon. These include aromaticity and a diverse array of structures such as quasi-planar, ring or tubular shaped, and fullerene-like. In the present work, we have analyzed features of the computed electron density distributions of small boron clusters having up to 11 boron atoms, and investigated the effect of doping with C, P, Al, Si, and Zn atoms on their structural and physical properties, in order to understand the bonding characteristics and discern trends in bonding and stability. We find that in general there are covalent bonds as well as delocalized charge distribution in these clusters. We associate the strong stability of some of these planar/quasiplanar disc-type clusters with the electronic shell closing with effectively twelve delocalized valence electrons using a disc-shaped jellium model. {{{{B}}}9}-, B10, B7P, and B8Si, in particular, are found to be exceptional with very large gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, and these are suggested to be magic clusters.
Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit
NASA Technical Reports Server (NTRS)
Smith, Robert A.
1987-01-01
The evolution and long-time stability of a double layer (DL) in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double layer potential structure. A simple model is presented in which this current redistribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double layer potential. The flank charging may be represented as that of a nonlinear transmission line. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a one-dimensional simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.
Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit
NASA Technical Reports Server (NTRS)
Smith, Robert A.
1987-01-01
The evolution and long-time stability of a double layer in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double-layer potential structure. A simple model is presented in which this current re-distribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double-layer potential. The flank charging may be represented as that of a nonlinear transmission. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a 1-d simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.
Acid-Labile Poly(glycidyl methacrylate)-Based Star Gene Vectors.
Yang, Yan-Yu; Hu, Hao; Wang, Xing; Yang, Fei; Shen, Hong; Xu, Fu-Jian; Wu, De-Cheng
2015-06-10
It was recently reported that ethanolamine-functionalized poly(glycidyl methacrylate) (PGEA) possesses great potential applications in gene therapy due to its good biocompatibility and high transfection efficiency. Importing responsivity into PGEA vectors would further improve their performances. Herein, a series of responsive star-shaped vectors, acetaled β-cyclodextrin-PGEAs (A-CD-PGEAs) consisting of a β-CD core and five PGEA arms linked by acid-labile acetal groups, were proposed and characterized as therapeutic pDNA vectors. The A-CD-PGEAs owned abundant hydroxyl groups to shield extra positive charges of A-CD-PGEAs/pDNA complexes, and the star structure could decrease charge density. The incorporation of acetal linkers endowed A-CD-PGEAs with pH responsivity and degradation. In weakly acidic endosome, the broken acetal linkers resulted in decomposition of A-CD-PGEAs and morphological transformation of A-CD-PGEAs/pDNA complexes, lowering cytotoxicity and accelerating release of pDNA. In comparison with control CD-PGEAs without acetal linkers, A-CD-PGEAs exhibited significantly better transfection performances.
Mapping the Coulomb Environment in Interference-Quenched Ballistic Nanowires.
Gutstein, D; Lynall, D; Nair, S V; Savelyev, I; Blumin, M; Ercolani, D; Ruda, H E
2018-01-10
The conductance of semiconductor nanowires is strongly dependent on their electrostatic history because of the overwhelming influence of charged surface and interface states on electron confinement and scattering. We show that InAs nanowire field-effect transistor devices can be conditioned to suppress resonances that obscure quantized conduction thereby revealing as many as six sub-bands in the conductance spectra as the Fermi-level is swept across the sub-band energies. The energy level spectra extracted from conductance, coupled with detailed modeling shows the significance of the interface state charge distribution revealing the Coulomb landscape of the nanowire device. Inclusion of self-consistent Coulomb potentials, the measured geometrical shape of the nanowire, the gate geometry and nonparabolicity of the conduction band provide a quantitative and accurate description of the confinement potential and resulting energy level structure. Surfaces of the nanowire terminated by HfO 2 are shown to have their interface donor density reduced by a factor of 30 signifying the passivating role played by HfO 2 .
Structural charge site influence on the interlayer hydration of expandable three-sheet clay minerals
Kerns, Raymond L.; Mankin, Charles J.
1968-01-01
Previous investigations have demonstrated the influences of interlayer cation composition, relative humidity, temperature, and magnitude of interlayer surface charge on the interlayer hydration of montmorillonites and vermiculites. It has been suggested that the sites of layer charge deficiencies may also have an influence upon the amount of hydration that can take place in the interlayers of expandable clay minerals. If the interlayer cation-to-layer bonds are considered as ideally electrostatic, the magnitude of the forces resisting expansion may be expressed as a form of Coulomb's law. If this effect is significant, expandable structures in which the charge-deficiency sites are predominantly in the tetrahedral sheet should have less pronounced swelling properties than should structures possessing charge deficiencies located primarily in the octahedral sheet.Three samples that differed in location of layer charge sites were selected for study. An important selection criterion was a non-correlation between tetrahedral charge sites and high surface-charge density, and between octahedral charge sites and low surface-charge density.The effects of differences in interlayer cation composition were eliminated by saturating portions of each sample with the same cations. Equilibrium (001) d values at controlled constant humidities were used as a measure of the relative degree of interlayer hydration.Although no correlation could be made between the degree of interlayer hydration and total surface-charge density, the investigation does not eliminate total surface-charge density as being significant to the swelling properties of three-sheet clay-mineral structures. The results do indicate a correlation between more intense expandability and predominance of charge deficiencies in the octahedral sheet. Conversely, less intense swelling behavior is associated with predominantly tetrahedral charge deficiencies.
The Shaped Charge Concept. Part 3. Applications of Shaped Charges
1990-10-01
discus.A in Part 2. The MISTEL ( mistletoe ) concept used a fighter aircraft mounted piggyback on the top of a large bomber aircraft The unmanned...Tech. Pub. 2158, p.12. March 1947. Coles, R., and P. L Rickson. ’ Mistletoe - The Deadly Parasite," Air Classics Ouarterly Re’ew. Vol. 4, No. 3, pp. 38
Hypergeometric Gaussian beam and its propagation in turbulence
NASA Astrophysics Data System (ADS)
Eyyuboğlu, Halil Tanyer; Cai, Yangjian
2012-10-01
We study propagation characteristics of hypergeometric Gaussian beam in turbulence. In this context, we formulate the receiver plane intensity using extended Huygens-Fresnel integral. From the graphical results, it is seen that, after propagation, hypergeometric Gaussian will in general assume the shape of a dark hollow beam at topological charges other than zero. Increasing values of topological charge will make the beam broader with steeper walls. On the other hand, higher values of hollowness parameter will contract into a narrower shape. Raising the topological charge or the hollowness parameter individually will cause outer rings to appear. Both increased levels of turbulence and longer propagation distances will accelerate the beam evolution and help reach the final Gaussian shape sooner. At lower wavelengths, there will be less beam spreading.
NASA Astrophysics Data System (ADS)
Zou, You-Hao; Zhang, Jian-Bo; Xiong, Guang-Yi; Chen, Ying; Liu, Chuan; Liu, Yu-Bin; Ma, Jian-Ping
2017-10-01
The topological charge density and topological susceptibility are determined by a multi-probing approximation using overlap fermions in quenched SU(3) gauge theory. Then we investigate the topological structure of the quenched QCD vacuum, and compare it with results from the all-scale topological density. The results are consistent. Random permuted topological charge density is used to check whether these structures represent underlying ordered properties. The pseudoscalar glueball mass is extracted from the two-point correlation function of the topological charge density. We study 3 ensembles of different lattice spacing a with the same lattice volume 163×32. The results are compatible with the results of all-scale topological charge density, and the topological structures revealed by multi-probing are much closer to all-scale topological charge density than those from eigenmode expansion. Supported by National Natural Science Foundation of China (NSFC) (11335001, 11275169, 11075167), It is also supported in part by the DFG and the NSFC (11261130311) through funds provided to the Sino-German CRC 110 "Symmetries and the Emergence of Structure in QCD". This work was also funded in part by National Basic Research Program of China (973 Program) (2015CB856700)
Effect of Thermospheric Neutral Density upon Inner Trapped-belt Proton Flux
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.
2007-01-01
We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.
Alternative route to charge density wave formation in multiband systems
Eiter, Hans-Martin; Lavagnini, Michela; Hackl, Rudi; Nowadnick, Elizabeth A.; Kemper, Alexander F.; Devereaux, Thomas P.; Chu, Jiun-Haw; Analytis, James G.; Fisher, Ian R.; Degiorgi, Leonardo
2013-01-01
Charge and spin density waves, periodic modulations of the electron, and magnetization densities, respectively, are among the most abundant and nontrivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron–lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe3. Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron–phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems, such as the iron-based superconductors. PMID:23248317
Alternative route to charge density wave formation in multiband systems.
Eiter, Hans-Martin; Lavagnini, Michela; Hackl, Rudi; Nowadnick, Elizabeth A; Kemper, Alexander F; Devereaux, Thomas P; Chu, Jiun-Haw; Analytis, James G; Fisher, Ian R; Degiorgi, Leonardo
2013-01-02
Charge and spin density waves, periodic modulations of the electron, and magnetization densities, respectively, are among the most abundant and nontrivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron-lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe(3). Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron-phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems, such as the iron-based superconductors.
Chen, Lei; Tian, Huayu; Chen, Jie; Chen, Xuesi; Huang, Yubin; Jing, Xiabin
2010-01-01
The application of polyethylenimine (PEI) in gene delivery has been severely limited by significant cytotoxicity that results from a nondegradable methylene backbone and high cationic charge density. It is therefore necessary to develop novel biodegradable PEI derivates for low-toxic, highly efficient gene delivery. A series of novel cationic copolymers with various charge density were designed and synthesized by grafting different kinds of oligoethylenimine (OEI) onto a determinate multi-armed poly(L-glutamic acid) backbone. The molecular structures of multi-armed poly(L-glutamic acid)-graft-OEI (MP-g-OEI) copolymers were characterized using nuclear magnetic resonance, viscosimetry and gel permeation chromatography. Moreover, the MP-g-OEI/DNA complexes were measured by a gel retardation assay, dynamic light scattering and atomic force microscopy to determine DNA binding ability, particle size, zeta potential, complex formation and shape, respectively. MP-g-OEI copolymers were also evaluated in Chinese hamster ovary and human embryonic kidney-293 cells for their cytotoxicity and transfection efficiency. The particle sizes of MP-g-OEI/DNA complexes were in a range of 109.6-182.6 nm and the zeta potentials were in a range of 29.2-44.5 mV above the N/P ratio of 5. All the MP-g-OEI copolymers exhibited lower cytotoxicity and higher gene transfection efficiency than PEI25k in the absence and presence of serum with different cell lines. Importantly, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed that the cytotoxicity of MP-g-OEI copolymers varied with their molecular weight and charge density, and two of MP-g-OEI copolymers (OEI600-MP and OEI1800-MP) could achieve optimal transfection efficiency at a similar low N/P ratio as that for PEI25k. MP-g-OEI copolymers demonstrated considerable potential as nonviral vectors for gene therapy. Copyright 2009 John Wiley & Sons, Ltd.
Correlation between the extent of catalytic activity and charge density of montmorillonites.
Ertem, Gözen; Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer
2010-09-01
The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH₃-(CH₂)(n)-NH₃](+), where n = 3-16 and 18, and then measuring d(₀₀₁), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed.
NASA Astrophysics Data System (ADS)
Qin, Shengchun; Yao, Tinghui; Guo, Xin; Chen, Qiang; Liu, Dequan; Liu, Qiming; Li, Yali; Li, Junshuai; He, Deyan
2018-05-01
In this paper, we report an electrode architecture of molybdenum disulfide (MoS2)/nickel sulfide (Ni3S4) composite nanosheets anchored on interconnected carbon (C) shells (C@MoS2/Ni3S4). Electrochemical measurements indicate that the C@MoS2/Ni3S4 structure possesses excellent supercapacitive properties especially for long term cycling at high current densities. A specific capacitance as high as ∼640.7 F g-1 can still be delivered even after 10,000 cycles at a high current density of 20 A g-1. From comparison of microstructures and electrochemical properties of the related materials/structures, the improved performance of C@MoS2/Ni3S4 can be attributed to the relatively dispersedly distributed nanosheet-shaped MoS2/Ni3S4 that provides efficient contact with electrolyte and effectively buffers the volume change during charge/discharge processes, enhanced cycling stability by MoS2, and reduced equivalent series resistance by the interconnected C shells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Cheng; Univ. of California, Riverside, CA; Liu, Honglai
The ionophobicity effect of nanoporous electrodes on the capacitance and the energy storage capacity of nonaqueous-electrolyte supercapacitors is studied by means of the classical density functional theory (DFT). It has been hypothesized that ionophobic nanopores may create obstacles in charging, but they store energy much more efficiently than ionophilic pores. In this paper, we find that, for both ionic liquids and organic electrolytes, an ionophobic pore exhibits a charging behavior different from that of an ionophilic pore, and that the capacitance–voltage curve changes from a bell shape to a two-hump camel shape when the pore ionophobicity increases. For electric-double-layer capacitorsmore » containing organic electrolytes, an increase in the ionophobicity of the nanopores leads to a higher capacity for energy storage. Without taking into account the effects of background screening, the DFT predicts that an ionophobic pore containing an ionic liquid does not enhance the supercapacitor performance within the practical voltage ranges. However, by using an effective dielectric constant to account for ion polarizability, the DFT predicts that, like an organic electrolyte, an ionophobic pore with an ionic liquid is also able to increase the energy stored when the electrode voltage is beyond a certain value. We find that the critical voltage for an enhanced capacitance in an ionic liquid is larger than that in an organic electrolyte. Finally, our theoretical predictions provide further understanding of how chemical modification of porous electrodes affects the performance of supercapacitors.« less
NASA Astrophysics Data System (ADS)
Bonacic-Koutecky, Vlasta; Burda, Jaroslav; Mitric, Roland; Ge, Maofa; Zampella, Giuseppe; Fantucci, Piercarlo
2002-08-01
Bimetallic silver-gold clusters offer an excellent opportunity to study changes in metallic versus "ionic" properties involving charge transfer as a function of the size and the composition, particularly when compared to pure silver and gold clusters. We have determined structures, ionization potentials, and vertical detachment energies for neutral and charged bimetallic AgmAun 3[less-than-or-equal](m+n)[less-than-or-equal]5 clusters. Calculated VDE values compare well with available experimental data. In the stable structures of these clusters Au atoms assume positions which favor the charge transfer from Ag atoms. Heteronuclear bonding is usually preferred to homonuclear bonding in clusters with equal numbers of hetero atoms. In fact, stable structures of neutral Ag2Au2, Ag3Au3, and Ag4Au4 clusters are characterized by the maximum number of hetero bonds and peripheral positions of Au atoms. Bimetallic tetramer as well as hexamer are planar and have common structural properties with corresponding one-component systems, while Ag4Au4 and Ag8 have 3D forms in contrast to Au8 which assumes planar structure. At the density functional level of theory we have shown that this is due to participation of d electrons in bonding of pure Aun clusters while s electrons dominate bonding in pure Agm as well as in bimetallic clusters. In fact, Aun clusters remain planar for larger sizes than Agm and AgnAun clusters. Segregation between two components in bimetallic systems is not favorable, as shown in the example of Ag5Au5 cluster. We have found that the structures of bimetallic clusters with 20 atoms Ag10Au10 and Ag12Au8 are characterized by negatively charged Au subunits embedded in Ag environment. In the latter case, the shape of Au8 is related to a pentagonal bipyramid capped by one atom and contains three exposed negatively charged Au atoms. They might be suitable for activating reactions relevant to catalysis. According to our findings the charge transfer in bimetallic clusters is responsible for formation of negatively charged gold subunits which are expected to be reactive, a situation similar to that of gold clusters supported on metal oxides.
Efficient mixing scheme for self-consistent all-electron charge density
NASA Astrophysics Data System (ADS)
Shishidou, Tatsuya; Weinert, Michael
2015-03-01
In standard ab initio density-functional theory calculations, the charge density ρ is gradually updated using the ``input'' and ``output'' densities of the current and previous iteration steps. To accelerate the convergence, Pulay mixing has been widely used with great success. It expresses an ``optimal'' input density ρopt and its ``residual'' Ropt by a linear combination of the densities of the iteration sequences. In large-scale metallic systems, however, the long range nature of Coulomb interaction often causes the ``charge sloshing'' phenomenon and significantly impacts the convergence. Two treatments, represented in reciprocal space, are known to suppress the sloshing: (i) the inverse Kerker metric for Pulay optimization and (ii) Kerker-type preconditioning in mixing Ropt. In all-electron methods, where the charge density does not have a converging Fourier representation, treatments equivalent or similar to (i) and (ii) have not been described so far. In this work, we show that, by going through the calculation of Hartree potential, one can accomplish the procedures (i) and (ii) without entering the reciprocal space. Test calculations are done with a FLAPW method.
Double ion production in mercury thrusters. M.S. Thesis
NASA Technical Reports Server (NTRS)
Peters, R. R.
1976-01-01
The development of a model which predicts doubly charged ion density is discussed. The accuracy of the model is shown to be good for two different thruster sizes and a total of 11 different cases. The model indicates that in most cases more than 80% of the doubly charged ions are produced from singly charged ions. This result can be used to develop a much simpler model which, along with correlations of the average plasma properties, can be used to determine the doubly charged ion density in ion thrusters with acceptable accuracy. Two different techniques which can be used to reduce the doubly charged ion density while maintaining good thruster operation, are identified as a result of an examination of the simple model. First, the electron density can be reduced and the thruster size then increased to maintain the same propellant utilization. Second, at a fixed thruster size, the plasma density, temperature and energy can be reduced and then to maintain a constant propellant utilization the open area of the grids to neutral propellant loss can be reduced through the use of a small hole accelerator grid.
Emergence of charge density waves and a pseudogap in single-layer TiTe 2
Chen, P.; Pai, Woei Wu; Chan, Y. -H.; ...
2017-09-11
Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here in this paper we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermimore » level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.« less
NASA Astrophysics Data System (ADS)
Sakanoi, T.; Fukunishi, H.; Mukai, T.
1995-10-01
The inverted-V field-aligned acceleration region existing in the altitude range of several thousand kilometers plays an essential role for the magnetosphere-ionosphere coupling system. The adiabatic plasma theory predicts a linear relationship between field-aligned current density (J∥) and parallel potential drop (Φ∥), that is, J∥=KΦ∥, where K is the field-aligned conductance. We examined this relationship using the charged particle and magnetic field data obtained from the Akebono (Exos D) satellite. The potential drop above the satellite was derived from the peak energy of downward electrons, while the potential drop below the satellite was derived from two different methods: the peak energy of upward ions and the energy-dependent widening of electron loss cone. On the other hand, field-aligned current densities in the inverted-V region were estimated from the Akebono magnetometer data. Using these potential drops and field-aligned current densities, we estimated the linear field-aligned conductance KJΦ. Further, we obtained the corrected field-aligned conductance KCJΦ by applying the full Knight's formula to the current-voltage relationship. We also independently estimated the field-aligned conductance KTN from the number density and the thermal temperature of magnetospheric source electrons which were obtained by fitting accelerated Maxwellian functions for precipitating electrons. The results are summarized as follows: (1) The latitudinal dependence of parallel potential drops is characterized by a narrow V-shaped structure with a width of 0.4°-1.0°. (2) Although the inverted-V potential region exactly corresponds to the upward field aligned current region, the latitudinal dependence of upward current intensity is an inverted-U shape rather than an inverted-V shape. Thus it is suggested that the field-aligned conductance KCJΦ changes with a V-shaped latitudinal dependence. In many cases, KCJΦ values at the edge of the inverted-V region are about 5-10 times larger than those at the center. (3) By comparing KCJΦ with KTN, KCJΦ is found to be about 2-20 times larger than KTN. These results suggest that low-energy electrons such as trapped electrons, secondary and back-scattered electrons, and ionospheric electrons significantly contribute to upward field-aligned currents in the inverted-V region. It is therefore inferred that non adiabatic pitch angle scattering processes play an important role in the inverted-V region. .
NASA Astrophysics Data System (ADS)
Mezey, Paul G.
2017-11-01
Two strongly related theorems on non-degenerate ground state electron densities serve as the basis of "Molecular Informatics". The Hohenberg-Kohn theorem is a statement on global molecular information, ensuring that the complete electron density contains the complete molecular information. However, the Holographic Electron Density Theorem states more: the local information present in each and every positive volume density fragment is already complete: the information in the fragment is equivalent to the complete molecular information. In other words, the complete molecular information provided by the Hohenberg-Kohn Theorem is already provided, in full, by any positive volume, otherwise arbitrarily small electron density fragment. In this contribution some of the consequences of the Holographic Electron Density Theorem are discussed within the framework of the "Nuclear Charge Space" and the Universal Molecule Model. In the Nuclear Charge Space" the nuclear charges are regarded as continuous variables, and in the more general Universal Molecule Model some other quantized parameteres are also allowed to become "de-quantized and then re-quantized, leading to interrelations among real molecules through abstract molecules. Here the specific role of the Holographic Electron Density Theorem is discussed within the above context.
A theoretical-electron-density databank using a model of real and virtual spherical atoms.
Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian
2017-08-01
A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.
Effect of current density on electron beam induced charging in MgO
NASA Astrophysics Data System (ADS)
Boughariou, Aicha; Hachicha, Olfa; Kallel, Ali; Blaise, Guy
2005-11-01
It is well known that the presence of space charge in an insulator is correlated with an electric breakdown. Many studies have been carried out on the experimental characterization of space charges. In this paper, we outline the dependence on the current density of the charge-trapping phenomenon in magnesium oxide. Our study was performed with a dedicated scanning electron microscope (SEM) on the electrical property evolution of surface of magnesium oxide (1 0 0) (MgO) single crystal, during a 1.1, 5 and 30 keV electron irradiation. The types of charges trapped on the irradiated areas and the charging kinetics are determined by measuring the total secondary electron emission (SEE) σ during the injection process by means of two complementary detectors. At low energies 1.1 and 5 keV, two different kinds of self-regulated regime (σ = 1) were observed as a function of current density. At 30 keV energy, the electron emission appears to be stimulated by the current density, due to the Poole-Frenkel effect.
Adaptive electron beam shaping using a photoemission gun and spatial light modulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.
The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam imagemore » to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.« less
Adaptive electron beam shaping using a photoemission gun and spatial light modulator
NASA Astrophysics Data System (ADS)
Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.; Kiefer, Jacob; Bazarov, Ivan
2015-02-01
The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam image to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.
Adaptive electron beam shaping using a photoemission gun and spatial light modulator
Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.; ...
2015-02-01
The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam imagemore » to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.« less
UltraSensitive Mycotoxin Detection by STING Sensors
Actis, Paolo; Jejelowo, Olufisayo; Pourmand, Nader
2010-01-01
Signal Transduction by Ion Nano Gating (STING) technology is a label-free biosensor capable of identifying DNA and proteins. Based on a functionalized quartz nanopipette, the STING sensor includes specific recognition elements for analyte discrimination based on size, shape and charge density. A key feature of this technology is that it doesn't require any nanofabrication facility; each nanopipette can be easily, reproducibly, and inexpensively fabricated and tailored at the bench, thus reducing the cost and the turnaround time. Here, we show that STING sensors are capable of the ultrasensitive detection of HT-2 toxin with a detection limit of 100 fg/ml and compare the STING capabilities with respect to conventional sandwich assay techniques. PMID:20829024
Central depression of nuclear charge density distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu Yanyun; Ren Zhongzhou; Center of Theoretical Nuclear Physics, National Laboratory of Heavy-Ion Accelerator, Lanzhou 730000
The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of {sup 46}Ar and {sup 44}S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in {sup 46}Ar and {sup 44}S prefer to occupy the 1d{sub 3/2} state rather than the 2s{sub 1/2} state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of {sup 46}Armore » and {sup 44}S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.« less
On the dependence of charge density on surface curvature of an isolated conductor
NASA Astrophysics Data System (ADS)
Bhattacharya, Kolahal
2016-03-01
A study of the relation between the electrostatic charge density at a point on a conducting surface and the curvature of the surface (at that point) is presented. Two major papers in the scientific literature on this topic are reviewed and the apparent discrepancy between them is resolved. Hence, a step is taken towards obtaining a general analytic formula for relating the charge density with surface curvature of conductors. The merit of this formula and its limitations are discussed.
Gravity dual of spin and charge density waves
NASA Astrophysics Data System (ADS)
Jokela, Niko; Järvinen, Matti; Lippert, Matthew
2014-12-01
At high enough charge density, the homogeneous state of the D3-D7' model is unstable to fluctuations at nonzero momentum. We investigate the end point of this instability, finding a spatially modulated ground state, which is a charge and spin density wave. We analyze the phase structure of the model as a function of chemical potential and magnetic field and find the phase transition from the homogeneous state to be first order, with a second-order critical point at zero magnetic field.
Pair density waves in superconducting vortex halos
NASA Astrophysics Data System (ADS)
Wang, Yuxuan; Edkins, Stephen D.; Hamidian, Mohammad H.; Davis, J. C. Séamus; Fradkin, Eduardo; Kivelson, Steven A.
2018-05-01
We analyze the interplay between a d -wave uniform superconducting and a pair-density-wave (PDW) order parameter in the neighborhood of a vortex. We develop a phenomenological nonlinear sigma model, solve the saddle-point equation for the order-parameter configuration, and compute the resulting local density of states in the vortex halo. The intertwining of the two superconducting orders leads to a charge density modulation with the same periodicity as the PDW, which is twice the period of the charge density wave that arises as a second harmonic of the PDW itself. We discuss key features of the charge density modulation that can be directly compared with recent results from scanning tunneling microscopy and speculate on the role PDW order may play in the global phase diagram of the hole-doped cuprates.
NASA Astrophysics Data System (ADS)
Murguia, Silvia Briseño; Clauser, Arielle; Dunn, Heather; Fisher, Wendy; Snir, Yoav; Brennan, Raymond E.; Young, Marcus L.
2018-04-01
Shape memory alloys (SMAs) are of high interest as active, adaptive "smart" materials for applications such as sensors and actuators due to their unique properties, including the shape memory effect and pseudoelasticity. Binary NiTi SMAs have shown the most desirable properties, and consequently have generated the most commercial success. A major challenge for SMAs, in particular, is their well-known compositional sensitivity. Therefore, it is critical to control the powder composition and morphology. In this study, a low-pressure, low-temperature hydriding-pulverization-dehydriding method for preparing well-controlled compositions, size, and size distributions of SMA powders from wires is presented. Starting with three different diameters of as-drawn martensitic NiTi SMA wires, pre-alloyed NiTi powders of various well-controlled sizes are produced by hydrogen charging the wires in a heated H3PO4 solution. After hydrogen charging for different charging times, the wires are pulverized and subsequently dehydrided. The wires and the resulting powders are characterized using scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. The relationship between the wire diameter and powder size is investigated as a function of hydrogen charging time. The rate of diameter reduction after hydrogen charging of wire is also examined. Finally, the recovery behavior due to the shape memory effect is investigated after dehydriding.
The Optoelectronic Properties of Nanoparticles from First Principles Calculations
NASA Astrophysics Data System (ADS)
Brawand, Nicholas Peter
The tunable optoelectronic properties of nanoparticles through the modification of their size, shape, and surface chemistry, make them promising platforms for numerous applications, including electronic and solar conversion devices. However, the rational design and optimization of nanostructured materials remain open challenges, e.g. due to difficulties in controlling and reproducing synthetic processes and in precise atomic-scale characterization. Hence, the need for accurate theoretical predictions, which can complement and help interpret experiments and provide insight into the underlying physical properties of nanostructured materials. This dissertation focuses on the development and application of first principles calculations to predict the optoelectronic properties of nanoparticles. Novel methods based on density functional theory are developed, implemented, and applied to predict both optical and charge transport properties. In particular, the generalization of dielectric dependent hybrid functionals to finite systems is introduced and shown to yield highly accurate electronic structure properties of molecules and nanoparticles, including photoemission and absorption properties. In addition, an implementation of constrained density functional theory is discussed, for the calculation of hopping transport in nanoparticle systems. The implementation was verified against literature results and compared against other methods used to compute transport properties, showing that some methods used in the literature give unphysical results for thermally disordered systems. Furthermore, the constrained density functional theory implementation was coupled to the self-consistent image charge method, making it possible to include image charge effects self-consistently when predicting charge transport properties of nanoparticles near interfaces. The methods developed in this dissertation were then applied to study the optoelectronic and transport properties of specific systems, in particular, silicon and lead chalcogenide nanoparticles. In the case of Si, blinking in oxidized Si nanoparticles was addressed. Si dangling bonds at the surface were found to introduce defect states which, depending on their charge and local stress conditions, may give rise to ON and OFF states responsible for exponential blinking statistics. We also investigated, engineering of band edge positions of nanoparticles through post-synthetic surface chemistry modification, with a focus on lead chalcogenides. In collaboration with experiment, we demonstrated how band edge positions of lead sulfide nanoparticles can be tuned by over 2.0 eV. We established a clear relationship between ligand dipole moments and nanoparticle band edge shifts which can be used to engineer nanoparticles for optoelectronic applications. Calculations of transport properties focused on charge transfer in silicon and lead chalcogenide nanoparticles. Si nanoparticles with deep defects and shallow impurities were investigated, showing that shallow defects may be more detrimental to charge transport than previously assumed. In the case of lead chalcogenide nanoparticles, hydrogen was found to form complexes with defects which can be used to remove potentially detrimental charge traps in nanoparticle solids. The methods and results presented in this dissertation are expected to help guide engineering of nanoparticles for future device applications.
Ionic Structure at Dielectric Interfaces
NASA Astrophysics Data System (ADS)
Jing, Yufei
The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics(MD) simulations and compared it with liquid state theory result. We explore the effects of high electrolyte concentrations, multivalent ions, and dielectric contrasts on the ionic distributions. We observe the presence of non-monotonous ionic density profiles leading to structure deformation in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of effective interaction between two interfaces. We show that, in concentrated electrolytes with confinement, it is imperative to take into account the finite-size of the ions as well as proper description of electrostatic interactions in heterogeneous media, which is not fully fulfilled by Poisson-Boltzmann based approaches. The effect of electric field at interface between two immiscible electrolyte solutions is studied as well. The classical Poisson-Boltzmann theory has been widely used to describe the corresponding ionic distribution, even though it neglects the polarization and ion correlations typical of these charged systems. Using Monte Carlo simulations, we provide an enhanced description of an oil-water interface in the presence of an electric field without needing any adjustable parameter, including realistic ionic sizes, ion correlations, and image charges. Our data agree with experimental measurements of excess surface tension for a wide range of electrolyte concentrations of LiCl and TBATPB (tetrabutylammonium-tetraphenylborate), contrasting with the result of the classical non-linear Poisson-Boltzmann theory. More importantly, we show that the size-asymmetry between small Li+ and large Cl- ions can significantly increase the electric field near the liquid interface, or can even reverse it locally, at high salt concentrations in the aqueous phase. These observations suggest a novel trapping/release mechanism of charged nanoparticles at oil-water interfaces in the vicinity of the point of zero charge. In addition, we study the effects of size asymmetry and charge asymmetry on ion distribution at a dielectric interface using coarse-grained MD based on an energy variational principle. The goal is to explore charge amplification with exact consideration of surface polarization. We find that both size asymmetry and charge asymmetry lead to charge separation at the interfaces. In addition, charge separation is enhanced by interface polarization. We are currently extending the research to charged interfaces that has broad applications such as batteries and supercapacitors for energy storage.
Lattice model of ionic liquid confined by metal electrodes
NASA Astrophysics Data System (ADS)
Girotto, Matheus; Malossi, Rodrigo M.; dos Santos, Alexandre P.; Levin, Yan
2018-05-01
We study, using Monte Carlo simulations, the density profiles and differential capacitance of ionic liquids confined by metal electrodes. To compute the electrostatic energy, we use the recently developed approach based on periodic Green's functions. The method also allows us to easily calculate the induced charge on the electrodes permitting an efficient implementation of simulations in a constant electrostatic potential ensemble. To speed up the simulations further, we model the ionic liquid as a lattice Coulomb gas and precalculate the interaction potential between the ions. We show that the lattice model captures the transition between camel-shaped and bell-shaped capacitance curves—the latter characteristic of ionic liquids (strong coupling limit) and the former of electrolytes (weak coupling). We observe the appearance of a second peak in the differential capacitance at ≈0.5 V for 2:1 ionic liquids, as the packing fraction is increased. Finally, we show that ionic size asymmetry decreases substantially the capacitance maximum, when all other parameters are kept fixed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslami, E., E-mail: eeslami@iust.ac.ir; Barjasteh, A.; Morshedian, N.
2015-06-15
In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown thatmore » applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap.« less
Saravanan, Kandasamy; Kalaiarasi, Chinnasamy; Kumaradhas, Poomani
2017-12-01
Acetylcholinesterase (AChE) is an important enzyme responsible for Alzheimer's disease, as per report, keto-enol form of curcumin inhibits this enzyme. The present study aims to understand the binding mechanism of keto-enol curcumin with the recombinant human Acetylcholinesterase (rhAChE) from its conformational flexibility, intermolecular interactions, charge density distribution, and the electrostatic properties at the active site of rhAChE. To accomplish this, a molecular docking analysis of curcumin with the rhAChE was performed, which gives the structure and conformation of curcumin in the active site of rhAChE. Further, the charge density distribution and the electrostatic properties of curcumin molecule (lifted from the active site of rhAChE) were determined from the high level density functional theory (DFT) calculations coupled with the charge density analysis. On the other hand, the curcumin molecule was optimized (gas phase) using DFT method and further, the structure and charge density analysis were also carried out. On comparing the conformation, charge density distribution and the electrostatic potential of the active site form of curcumin with the corresponding gas phase form reveals that the above said properties are significantly altered when curcumin is present in the active site of rhAChE. The conformational stability and the interaction of curcumin in the active site are also studied using molecular dynamics simulation, which shows a large variation in the conformational geometry of curcumin as well as the intermolecular interactions.
Atomistic and molecular effects in electric double layers at high surface charges
Templeton, Jeremy Alan; Lee, Jonathan; Mani, Ali
2015-06-16
Here, the Poisson–Boltzmann theory for electrolytes near a charged surface is known to be invalid due to unaccounted physics associated with high ion concentration regimes. In order to investigate this regime, fluids density functional theory (f-DFT) and molecular dynamics (MD) simulations were used to determine electric surface potential as a function of surface charge. Based on these detailed computations, for electrolytes with nonpolar solvent, the surface potential is shown to depend quadratically on the surface charge in the high charge limit. We demonstrate that modified Poisson–Boltzmann theories can model this limit if they are augmented with atomic packing densities providedmore » by MD. However, when the solvent is a highly polar molecule water an intermediate regime is identified in which a constant capacitance is realized. Simulation results demonstrate the mechanism underlying this regime, and for the salt water system studied here, it persists throughout the range of physically realistic surface charge densities so the potential’s quadratic surface charge dependence is not obtained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djara, V.; Cherkaoui, K.; Negara, M. A.
2015-11-28
An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g}more » measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.« less
A Novel Method for Measuring Electrical Conductivity of High Insulating Oil Using Charge Decay
NASA Astrophysics Data System (ADS)
Wang, Z. Q.; Qi, P.; Wang, D. S.; Wang, Y. D.; Zhou, W.
2016-05-01
For the high insulating oil, it is difficult to measure the conductivity precisely using voltammetry method. A high-precision measurementis proposed for measuring bulk electrical conductivity of high insulating oils (about 10-9--10-15S/m) using charge decay. The oil is insulated and charged firstly, and then grounded fully. During the experimental procedure, charge decay is observed to show an exponential law according to "Ohm" theory. The data of time dependence of charge density is automatically recorded using an ADAS and a computer. Relaxation time constant is fitted from the data using Gnuplot software. The electrical conductivity is calculated using relaxation time constant and dielectric permittivity. Charge density is substituted by electric potential, considering charge density is difficult to measure. The conductivity of five kinds of oils is measured. Using this method, the conductivity of diesel oil is easily measured to beas low as 0.961 pS/m, as shown in Fig. 5.
NASA Astrophysics Data System (ADS)
Hu, Bo
2015-08-01
Based on semiclassical Boltzamnn transport theory in random phase approximation, we develop a theoretical model to investigate low-temperature carrier transport properties in relatively high doped bilayer graphene. In the presence of both electron-hole puddles and band gap induced by charged impurities, we calculate low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene. Our calculated conductivity results are in excellent agreement with published experimental data in all compensated gate voltage regime of study by using potential fluctuation parameter as only one free fitting parameter, indicating that both electron-hole puddles and band gap induced by charged impurities play an important role in carrier transport. More importantly, we also find that the conductivity not only depends strongly on the total charged impurity density, but also on the top layer charged impurity density, which is different from that obtained by neglecting the opening of band gap, especially for bilayer graphene with high top layer charged impurity density.
On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.
Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo
2015-12-30
A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.
Core-level spectra and molecular deformation in adsorption: V-shaped pentacene on Al(001)
Lin, He; Brivio, Gian Paolo; Floreano, Luca; Fratesi, Guido
2015-01-01
Summary By first-principle simulations we study the effects of molecular deformation on the electronic and spectroscopic properties as it occurs for pentacene adsorbed on the most stable site of Al(001). The rationale for the particular V-shaped deformed structure is discussed and understood. The molecule–surface bond is made evident by mapping the charge redistribution. Upon X-ray photoelectron spectroscopy (XPS) from the molecule, the bond with the surface is destabilized by the electron density rearrangement to screen the core hole. This destabilization depends on the ionized carbon atom, inducing a narrowing of the XPS spectrum with respect to the molecules adsorbed hypothetically undistorted, in full agreement to experiments. When looking instead at the near-edge X-ray absorption fine structure (NEXAFS) spectra, individual contributions from the non-equivalent C atoms provide evidence of the molecular orbital filling, hybridization, and interchange induced by distortion. The alteration of the C–C bond lengths due to the V-shaped bending decreases by a factor of two the azimuthal dichroism of NEXAFS spectra, i.e., the energy splitting of the sigma resonances measured along the two in-plane molecular axes. PMID:26734516
Charge Neutralization Drives the Shape Reconfiguration of DNA Nanotubes.
Liu, Pi; Zhao, Yan; Liu, Xiaoguo; Sun, Jixue; Xu, Dede; Li, Yang; Li, Qian; Wang, Lihua; Yang, Sichun; Fan, Chunhai; Lin, Jianping
2018-05-04
Reconfiguration of membrane protein channels for gated transport is highly regulated under physiological conditions. However, a mechanistic understanding of such channels remains challenging owing to the difficulty in probing subtle gating-associated structural changes. Herein, we show that charge neutralization can drive the shape reconfiguration of a biomimetic 6-helix bundle DNA nanotube (6HB). Specifically, 6HB adopts a compact state when its charge is neutralized by Mg 2+ ; whereas Na + switches it to the expanded state, as revealed by MD simulations, small-angle X-ray scattering (SAXS), and FRET characterization. Furthermore, partial neutralization of the DNA backbone charges by chemical modification renders 6HB compact and insensitive to ions, suggesting an interplay between electrostatic and hydrophobic forces in the channels. This system provides a platform for understanding the structure-function relationship of biological channels and designing rules for the shape control of DNA nanostructures in biomedical applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the correct interpretation of the low voltage regime in intrinsic single-carrier devices.
Röhr, Jason A; Kirchartz, Thomas; Nelson, Jenny
2017-05-24
We discuss the approach of determining the charge-carrier density of a single-carrier device by combining Ohm's law and the Mott-Gurney law. We show that this approach is seldom valid, due to the fact that whenever Ohm's law is applicable the Mott-Gurney law is usually not, and vice versa. We do this using a numerical drift-diffusion solver to calculate the current density-voltage curves and the charge-carrier density, with increasing doping concentration. As this doping concentration is increased to very large values, using Ohm's law becomes a sensible way of measuring the product of mobility and doping density in the sample. However, in the high-doping limit, the current is no longer governed by space-charge and it will no longer be possible to determine the charge-carrier mobility using the Mott-Gurney law. This leaves the value for the mobility as an unknown in the mobility-doping density product in Ohm's law. We also show that, when the charge-carrier mobility for an intrinsic semiconductor is known in advance, the carrier density is underestimated up to many orders of magnitude if Ohm's law is used. We finally seek to establish a window of conditions where the two methods can be combined to yield reasonable results.
Ions beams and ferroelectric plasma sources
NASA Astrophysics Data System (ADS)
Stepanov, Anton
Near-perfect space-charge neutralization is required for the transverse compression of high perveance ion beams for ion-beam-driven warm dense matter experiments, such as the Neutralized Drift Compression eXperiment (NDCX). Neutralization can be accomplished by introducing a plasma in the beam path, which provides free electrons that compensate the positive space charge of the ion beam. In this thesis, charge neutralization of a 40 keV, perveance-dominated Ar+ beam by a Ferroelectric Plasma Source (FEPS) is investigated. First, the parameters of the ion beam, such as divergence due to the extraction optics, charge neutralization fraction, and emittance were measured. The ion beam was propagated through the FEPS plasma, and the effects of charge neutralization were inferred from time-resolved measurements of the transverse beam profile. In addition, the dependence of FEPS plasma parameters on the configuration of the driving pulser circuit was studied to optimize pulser design. An ion accelerator was constructed that produced a 30-50 keV Ar + beam with pulse duration <300 mus and dimensionless perveance Q up to 8 x 10-4. Transverse profile measurements 33 cm downstream of the ion source showed that the dependence of beam radius on Q was consistent with space charge expansion. It was concluded that the beam was perveance-dominated with a charge neutralization fraction of approximately zero in the absence of neutralizing plasma. Since beam expansion occurred primarily due to space charge, the decrease in effective perveance due to neutralization by FEPS plasma can be inferred from the reduction in beam radius. Results on propagation of the ion beam through FEPS plasma demonstrate that after the FEPS is triggered, the beam radius decreases to its neutralized value in about 5 mus. The duration of neutralization was about 10 mus at a charging voltage VFEPS = 5.5 kV and 35 mus at VFEPS = 6.5 kV. With VFEPS = 6.5 kV, the transverse current density profile 33 cm downstream of the source had a Gaussian shape with xrms =5 mm, which corresponds to a half-angle divergence of 0.87°. The measurements show that near-perfect charge neutralization with FEPS can be attained. No loss of ion beam current was detected, indicating the absence of a neutral cloud in the region of beam propagation, which would cause beam loss to charge exchange collisions. This provides evidence in favor of using FEPS in a future Heavy Ion Fusion accelerator. The FEPS discharge was investigated based on current-voltage measurements in the pulser circuit. Different values of series resistance and storage capacitance in the pulser circuit were used. The charged particle current emitted by the FEPS into vacuum was measured from the difference in forward and return currents in the driving circuit. It was found that FEPS is an emitter of negative charge, and that electron current emission begins approximately 0.5 mus after the fast-rising high voltage pulse is applied and lasts for tens of mus. The value of the series resistance in the pulser circuit was varied to change the rise time of the voltage pulse; plasma density was expected to decrease with increasing values of resistance. However, the data showed that changing the resistance had no significant effect. The average charge emitted per shot depends strongly on the value of the storage capacitance. Lowering the capacitance from 141 nF to 47 nF resulted in a near-complete shut-off of charge emission, although the amplitude of the applied voltage pulse was as high, and rise time as short, as when high-density plasma was produced. Increasing the capacitance from 141 nF to 235 nF increased the average charge emitted per shot by a factor of 2.
NASA Astrophysics Data System (ADS)
Luque-Caballero, Germán; Martín-Molina, Alberto; Quesada-Pérez, Manuel
2014-05-01
Both experiments and theory have evidenced that multivalent cations can mediate the interaction between negatively charged polyelectrolytes and like-charged objects, such as anionic lipoplexes (DNA-cation-anionic liposome complexes). In this paper, we use Monte Carlo simulations to study the electrostatic interaction responsible for the trivalent-counterion-mediated adsorption of polyelectrolytes onto a like-charged planar surface. The evaluation of the Helmholtz free energy allows us to characterize both the magnitude and the range of the interaction as a function of the polyelectrolyte charge, surface charge density, [3:1] electrolyte concentration, and cation size. Both polyelectrolyte and surface charge favor the adsorption. It should be stressed, however, that the adsorption will be negligible if the surface charge density does not exceed a threshold value. The effect of the [3:1] electrolyte concentration has also been analyzed. In certain range of concentrations, the counterion-mediated attraction seems to be independent of this parameter, whereas very high concentrations of salt weaken the adsorption. If the trivalent cation diameter is doubled the adsorption moderates due to the excluded volume effects. The analysis of the integrated charge density and ionic distributions suggests that a delicate balance between charge inversion and screening effects governs the polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent cations.
Measuring the charge density of a tapered optical fiber using trapped microparticles.
Kamitani, Kazuhiko; Muranaka, Takuya; Takashima, Hideaki; Fujiwara, Masazumi; Tanaka, Utako; Takeuchi, Shigeki; Urabe, Shinji
2016-03-07
We report the measurements of charge density of tapered optical fibers using charged particles confined in a linear Paul trap at ambient pressure. A tapered optical fiber is placed across the trap axis at a right angle, and polystyrene microparticles are trapped along the trap axis. The distance between the equilibrium position of a positively charged particle and the tapered fiber is used to estimate the amount of charge per unit length of the fiber without knowing the amount of charge of the trapped particle. The charge per unit length of a tapered fiber with a diameter of 1.6 μm was measured to be 2-1+3×10 -11 C/m.
DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB).
Gaus, Michael; Cui, Qiang; Elstner, Marcus
2012-04-10
The self-consistent-charge density-functional tight-binding method (SCC-DFTB) is an approximate quantum chemical method derived from density functional theory (DFT) based on a second-order expansion of the DFT total energy around a reference density. In the present study we combine earlier extensions and improve them consistently with, first, an improved Coulomb interaction between atomic partial charges, and second, the complete third-order expansion of the DFT total energy. These modifications lead us to the next generation of the DFTB methodology called DFTB3, which substantially improves the description of charged systems containing elements C, H, N, O, and P, especially regarding hydrogen binding energies and proton affinities. As a result, DFTB3 is particularly applicable to biomolecular systems. Remaining challenges and possible solutions are also briefly discussed.
Jarzembska, Katarzyna N; Kamiński, Radosław; Durka, Krzysztof; Woźniak, Krzysztof
2018-05-10
This contribution is devoted to the first electron density studies of a luminescent oxyquinolinato boron complex in the solid state. ortho-Phenylenediboronic acid mixed with 8-hydroxyquinoline in dioxane forms high-quality single crystals via slow solvent evaporation, which allows successful high resolution data collection (sin θ/λ = 1.2 Å -1 ) and charge density distribution modeling. Particular attention has been paid to the boron-oxygen fragment connecting the two parts of the complex, and to the solvent species exhibiting anharmonic thermal motion. The experiment and theory compared rather well in terms of atomic charges and volumes, except for the boron centers. Boron atoms, as expected, constitute the most electron-deficient species in the complex molecule, whereas the neighboring oxygen and carbon atoms are the most significantly negatively charged ones. This part of the molecule appears to be very much involved in the charge transfer occurring between the acid fragment and oxyquinoline moiety leading to the observed fluorescence, as supported by the time-dependent density functional theory (TDDFT) results and the generated transition density maps. TDDFT calculations indicated that p-type atomic orbitals contributing to the HOMO-1, HOMO, and LUMO play the major role in the lowest energy transitions, and enabled further comparison with the charge density features, which is discussed in details. Furthermore, the results confirmed the known fact the Q ligand character is most important for the spectroscopic properties of this class of complexes.
Charge and Spin Currents in Open-Shell Molecules: A Unified Description of NMR and EPR Observables.
Soncini, Alessandro
2007-11-01
The theory of EPR hyperfine coupling tensors and NMR nuclear magnetic shielding tensors of open-shell molecules in the limit of vanishing spin-orbit coupling (e.g., for organic radicals) is analyzed in terms of spin and charge current density vector fields. The ab initio calculation of the spin and charge current density response has been implemented at the Restricted Open-Shell Hartree-Fock, Unrestricted Hartree-Fock, and unrestricted GGA-DFT level of theory. On the basis of this formalism, we introduce the definition of nuclear hyperfine coupling density, a scalar function of position providing a partition of the EPR observable over the molecular domain. Ab initio maps of spin and charge current density and hyperfine coupling density for small radicals are presented and discussed in order to illustrate the interpretative advantages of the newly introduced approach. Recent NMR experiments providing evidence for the existence of diatropic ring currents in the open-shell singlet pancake-bonded dimer of the neutral phenalenyl radical are directly assessed via the visualization of the induced current density.
Experimental and theoretical charge density studies at subatomic resolution.
Fischer, A; Tiana, D; Scherer, W; Batke, K; Eickerling, G; Svendsen, H; Bindzus, N; Iversen, B B
2011-11-17
Analysis of accurate experimental and theoretical structure factors of diamond and silicon reveals that the contraction of the core shell due to covalent bond formation causes significant perturbations of the total charge density that cannot be ignored in precise charge density studies. We outline that the nature and origin of core contraction/expansion and core polarization phenomena can be analyzed by experimental studies employing an extended Hansen-Coppens multipolar model. Omission or insufficient treatment of these subatomic charge density phenomena might yield erroneous thermal displacement parameters and high residual densities in multipolar refinements. Our detailed studies therefore suggest that the refinement of contraction/expansion and population parameters of all atomic shells is essential to the precise reconstruction of electron density distributions by a multipolar model. Furthermore, our results imply that also the polarization of the inner shells needs to be adopted, especially in cases where second row or even heavier elements are involved in covalent bonding. These theoretical studies are supported by direct multipolar refinements of X-ray powder diffraction data of diamond obtained from a third-generation synchrotron-radiation source (SPring-8, BL02B2).
Quantitative nanoscale electrostatics of viruses
NASA Astrophysics Data System (ADS)
Hernando-Pérez, M.; Cartagena-Rivera, A. X.; Lošdorfer Božič, A.; Carrillo, P. J. P.; San Martín, C.; Mateu, M. G.; Raman, A.; Podgornik, R.; de Pablo, P. J.
2015-10-01
Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed φ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material.Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed φ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04274g
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuto, M.; Kewalramani, S.; Wang, S.
2011-02-07
We report an experimental demonstration of a strategy for inducing two-dimensional (2D) crystallization of charged nanoparticles on oppositely charged fluid interfaces. This strategy aims to maximize the interfacial adsorption of nanoparticles, and hence their lateral packing density, by utilizing a combination of weakly charged particles and a high surface charge density on the planar interface. In order to test this approach, we investigated the assembly of cowpea mosaic virus (CPMV) on positively charged lipid monolayers at the aqueous solution surface, by means of in situ X-ray scattering measurements at the liquid-vapor interface. The assembly was studied as a function ofmore » the solution pH, which was used to vary the charge on CPMV, and of the mole fraction of the cationic lipid in the binary lipid monolayer, which set the interface charge density. The 2D crystallization of CPMV occurred in a narrow pH range just above the particle's isoelectric point, where the particle charge was weakly negative, and only when the cationic-lipid fraction in the monolayer exceeded a threshold. The observed 2D crystals exhibited nearly the same packing density as the densest lattice plane within the known 3D crystals of CPMV. The above electrostatic approach of maximizing interfacial adsorption may provide an efficient route to the crystallization of nanoparticles at aqueous interfaces.« less
Rosenzweig, Shirley; Sorial, George A; Sahle-Demessie, Endalkachew; McAvoy, Drew C
2014-08-30
Systematic experiments of copper adsorption on 10 different commercially available nanomaterials were studied for the influence of physical-chemical properties and their interactions. Design of experiment and response surface methodology was used to develop a polynomial model to predict maximum copper adsorption (initial concentration, Co=10mg/L) per mass of nanomaterial, qe, using multivariable regression and maximum R-square criterion. The best subsets of properties to predict qe in order of significant contribution to the model were: bulk density, ID, mesopore volume, tube length, pore size, zeta-charge, specific surface area and OD. The highest experimental qe observed was for an alcohol-functionalized MWCNT (16.7mg/g) with relative high bulk density (0.48g/cm(3)), ID (2-5nm), 10-30μm long and OD<8nm. Graphene nanoplatelets (GNP) showed poor adsorptive capacity associated to stacked-nanoplatelets, but good colloidal stability due to high functionalized surface. Good adsorption results for pristine SWCNT indicated that tubes with small diameter were more associated with good adsorption than functionalized surface. XPS and ICP analysis explored surface chemistry and purity, but pHpzc and zeta-charge were ultimately applied to indicate the degree of functionalization. Optimum CNT were identified in the scatter plot, but actual manufacturing processes introduced size and shape variations which interfered with final property results. Copyright © 2014 Elsevier B.V. All rights reserved.
Intersecting solitons, amoeba, and tropical geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimori, Toshiaki; Nitta, Muneto; Ohta, Kazutoshi
2008-11-15
We study the generic intersection (or web) of vortices with instantons inside, which is a 1/4 Bogomol'nyi-Prasad-Sommerfield state in the Higgs phase of five-dimensional N=1 supersymmetric U(N{sub C}) gauge theory on R{sub t}x(C*){sup 2}{approx_equal}R{sup 2,1}xT{sup 2} with N{sub F}=N{sub C} Higgs scalars in the fundamental representation. In the case of the Abelian-Higgs model (N{sub F}=N{sub C}=1), the intersecting vortex sheets can be beautifully understood in a mathematical framework of amoeba and tropical geometry, and we propose a dictionary relating solitons and gauge theory to amoeba and tropical geometry. A projective shape of vortex sheets is described by the amoeba. Vortexmore » charge density is uniformly distributed among vortex sheets, and negative contribution to instanton charge density is understood as the complex Monge-Ampere measure with respect to a plurisubharmonic function on (C*){sup 2}. The Wilson loops in T{sup 2} are related with derivatives of the Ronkin function. The general form of the Kaehler potential and the asymptotic metric of the moduli space of a vortex loop are obtained as a by-product. Our discussion works generally in non-Abelian gauge theories, which suggests a non-Abelian generalization of the amoeba and tropical geometry.« less
Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid
Mansart, Barbara; Cottet, Mathieu J. G.; Penfold, Thomas J.; Dugdale, Stephen B.; Tediosi, Riccardo; Chergui, Majed; Carbone, Fabrizio
2012-01-01
The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material’s crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with ab initio electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time. PMID:22451898
Effect of pectin charge density on formation of multilayer films with chitosan.
Kamburova, Kamelia; Milkova, Viktoria; Petkanchin, Ivana; Radeva, Tsetska
2008-04-01
The effect of pectin charge density on the formation of multilayer films with chitosan (PEC/CHI) is studied by means of electro-optics. Pectins of low (21%) and high (71%) degrees of esterification, which are inversely proportional to the pectin charge density, are used to form films on colloidal beta-FeOOH particles at pH 4.0 when the CHI is fully ionized. We find that, after deposition of the first 3-4 layers, the film thickness increases linearly with the number of adsorbed layers. However, the increase in the film thickness is larger when the film is terminated with CHI. Irregular increase of the film thickness is more marked for the PEC with higher density of charge. Oscillation in the electrical polarizability of the film-coated particles with the number of deposited layers is also registered in the PEC/CHI films. The charge balance of the multilayers, calculated from electrical polarizability of the film-coated particles, is positive, with larger excess of positive charge within the film constructed from CHI and less charged PEC. This is attributed to the ability of CHI to diffuse into the film at each deposition step. Despite the CHI diffusion, the film thickness increases linearly due to the dissolution of unstable PEC/CHI complexes from the film surface.
NASCAP modelling of environmental-charging-induced discharges in satellites
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Roche, J. C.
1979-01-01
The charging and discharging characteristics of a typical geosynchronous satellite experiencing time-varying geomagnetic substorms, in sunlight, were studied utilizing the NASA Charging Analyzer Program (NASCAP). An electric field criteria of 150,000 volts/cm to initiate discharges and transfer of 67 percent of the stored charge was used based on ground test results. The substorm characteristics were arbitrarily chosen to evaluate effects of electron temperature and particle density (which is equivalent to current density). It was found that while there is a minimum electron temperature for discharges to occur, the rate of discharges is dependent on particle density and duration times of the encounter. Hence, it is important to define the temporal variations in the substorm environments.
Patra, Chandra N
2014-11-14
A systematic investigation of the spherical electric double layers with the electrolytes having size as well as charge asymmetry is carried out using density functional theory and Monte Carlo simulations. The system is considered within the primitive model, where the macroion is a structureless hard spherical colloid, the small ions as charged hard spheres of different size, and the solvent is represented as a dielectric continuum. The present theory approximates the hard sphere part of the one particle correlation function using a weighted density approach whereas a perturbation expansion around the uniform fluid is applied to evaluate the ionic contribution. The theory is in quantitative agreement with Monte Carlo simulation for the density and the mean electrostatic potential profiles over a wide range of electrolyte concentrations, surface charge densities, valence of small ions, and macroion sizes. The theory provides distinctive evidence of charge and size correlations within the electrode-electrolyte interface in spherical geometry.
NASA Astrophysics Data System (ADS)
Zeng, Yi; Shen, Zhong-Hui; Shen, Yang; Lin, Yuanhua; Nan, Ce-Wen
2018-03-01
Flexible dielectric polymer films with high energy storage density and high charge-discharge efficiency have been considered as promising materials for electrical power applications. Here, we design hierarchical structured nanocomposite films using nonlinear polymer poly(vinylidene fluoride-HFP) [P(VDF-HFP)] with inorganic h-boron nitride (h-BN) nanosheets by electrospinning and hot-pressing methods. Our results show that the addition of h-BN nanosheets and the design of the hierarchical multilayer structure in the nanocomposites can remarkably enhance the charge-discharge efficiency and energy density. A high charge-discharge efficiency of 78% and an energy density of 21 J/cm3 can be realized in the 12-layered PVDF/h-BN nanocomposite films. Phase-field simulation results reveal that the spatial distribution of the electric field in these hierarchical structured films affects the charge-discharge efficiency and energy density. This work provides a feasible route, i.e., structure modulation, to improve the energy storage performances for nanocomposite films.
Importance of core electrostatic properties on the electrophoresis of a soft particle
NASA Astrophysics Data System (ADS)
De, Simanta; Bhattacharyya, Somnath; Gopmandal, Partha P.
2016-08-01
The impact of the volumetric charged density of the dielectric rigid core on the electrophoresis of a soft particle is analyzed numerically. The volume charge density of the inner core of a soft particle can arise for a dendrimer structure or bacteriophage MS2. We consider the electrokinetic model based on the conservation principles, thus no conditions for Debye length or applied electric field is imposed. The fluid flow equations are coupled with the ion transport equations and the equation for the electric field. The occurrence of the induced nonuniform surface charge density on the outer surface of the inner core leads to a situation different from the existing analysis of a soft particle electrophoresis. The impact of this induced surface charge density together with the double-layer polarization and relaxation due to ion convection and electromigration is analyzed. The dielectric permittivity and the charge density of the core have a significant impact on the particle electrophoresis when the Debye length is in the order of the particle size. We find that by varying the ionic concentration of the electrolyte, the particle can exhibit reversal in its electrophoretic velocity. The role of the polymer layer softness parameter is addressed in the present analysis.
Mahalwar, Prateek; Singh, Ajeet Pratap; Fadeev, Andrey; Nüsslein-Volhard, Christiane; Irion, Uwe
2016-11-15
The conspicuous striped coloration of zebrafish is produced by cell-cell interactions among three different types of chromatophores: black melanophores, orange/yellow xanthophores and silvery/blue iridophores. During color pattern formation xanthophores undergo dramatic cell shape transitions and acquire different densities, leading to compact and orange xanthophores at high density in the light stripes, and stellate, faintly pigmented xanthophores at low density in the dark stripes. Here, we investigate the mechanistic basis of these cell behaviors in vivo, and show that local, heterotypic interactions with dense iridophores regulate xanthophore cell shape transition and density. Genetic analysis reveals a cell-autonomous requirement of gap junctions composed of Cx41.8 and Cx39.4 in xanthophores for their iridophore-dependent cell shape transition and increase in density in light-stripe regions. Initial melanophore-xanthophore interactions are independent of these gap junctions; however, subsequently they are also required to induce the acquisition of stellate shapes in xanthophores of the dark stripes. In summary, we conclude that, whereas homotypic interactions regulate xanthophore coverage in the skin, their cell shape transitions and density is regulated by gap junction-mediated, heterotypic interactions with iridophores and melanophores. © 2016. Published by The Company of Biologists Ltd.
Effects of Io's volcanos on the plasma torus and Jupiter's magnetosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, A.F.
1980-12-01
Io's volcanism can have dominant effects on Jupiter's magnetosphere. A model is developed in which a neutral gas torus is formed at Io's orbit by volcanic SO/sub 2/ escaping from Io. Ionization and dissociation of volcanic SO/sub 2/ is shown to be the dominant source of plasma in Jupiter's magnetosphere. The failure of Voyager observations to confirm predictions of the magnetic anomaly model is naturally explained. A 30--50 KeV sulfur and oxygen ion plasma is formed in the outer magnetosphere, with density roughly equal to the proton density there, by ionization of sulfur and oxygen atoms on highly eccentric ellipticalmore » orbits around Jupiter. When these atoms are ionized in the outer magnetosphere, they are swept up by the Jovian magnetic field and achieve 30--50 keV energies. Such atoms are created by dissociative attachment of SO/sub 2/ by < or approx. =10 eV electrons. Substantial losses of radiation-belt charged particles result from passage through the neutral gas torus. Such losses can account for observed anomalies in charged particle depletions near Io; these could not be understood in terms of satellite sweeping alone. Substantial ionization energy loss occurs for < or approx. =1 MeV protons and < or approx. =100 keV electrons; losses of < or approx. =1 MeV protons are much greater than for comparable energy electrons. Losses of < or approx. =1 MeV per nucleon ions are also severe. Other consequences of the model include intrinsic time variability in the Jovian magnetosphere, on times > or approx. =10/sup 6/ s, caused by variations in Io's volcanic activity. Charged particle losses in the neutral gas torus tend to yield dumbbell-shaped pitch-angle distributions. Negative ions are predicted in the Io plasma torus.« less
pi-eta mixing and charge symmetry violating NN potential in matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Subhrajyoti; Roy, Pradip; Dutt-Mazumder, Abhee K.
2010-06-15
We construct density-dependent class III charge symmetry violating (CSV) potential caused by the mixing of pi-eta mesons with off-shell corrections. The density dependence enters through the nonvanishing pi-eta mixing driven by both the neutron-proton mass difference and their asymmetric density distribution. The contribution of density-dependent mixing to the CSV potential is found to be appreciably larger than that of the vacuum part.
Method of measuring a profile of the density of charged particles in a particle beam
Hyman, L.G.; Jankowski, D.J.
1975-10-01
A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam.
Determination of gas phase protein ion densities via ion mobility analysis with charge reduction.
Maisser, Anne; Premnath, Vinay; Ghosh, Abhimanyu; Nguyen, Tuan Anh; Attoui, Michel; Hogan, Christopher J
2011-12-28
We use a charge reduction electrospray (ESI) source and subsequent ion mobility analysis with a differential mobility analyzer (DMA, with detection via both a Faraday cage electrometer and a condensation particle counter) to infer the densities of single and multiprotein ions of cytochrome C, lysozyme, myoglobin, ovalbumin, and bovine serum albumin produced from non-denaturing (20 mM aqueous ammonium acetate) and denaturing (1 : 49.5 : 49.5, formic acid : methanol : water) ESI. Charge reduction is achieved through use of a Po-210 radioactive source, which generates roughly equal concentrations of positive and negative ions. Ions produced by the source collide with and reduce the charge on ESI generated drops, preventing Coulombic fissions, and unlike typical protein ESI, leading to gas-phase protein ions with +1 to +3 excess charges. Therefore, charge reduction serves to effectively mitigate any role that Coulombic stretching may play on the structure of the gas phase ions. Density inference is made via determination of the mobility diameter, and correspondingly the spherical equivalent protein volume. Through this approach it is found that for both non-denaturing and denaturing ESI-generated ions, gas-phase protein ions are relatively compact, with average densities of 0.97 g cm(-3) and 0.86 g cm(-3), respectively. Ions from non-denaturing ESI are found to be slightly more compact than predicted from the protein crystal structures, suggesting that low charge state protein ions in the gas phase are slightly denser than their solution conformations. While a slight difference is detected between the ions produced with non-denaturing and denaturing ESI, the denatured ions are found to be much more dense than those examined previously by drift tube mobility analysis, in which charge reduction was not employed. This indicates that Coulombic stretching is typically what leads to non-compact ions in the gas-phase, and suggests that for gas phase measurements to be correlated to biomolecular structures in solution, low charge state ions should be analyzed. Further, to determine if different solution conditions give rise to ions of different structure, ions of similar charge state should be compared. Non-denatured protein ion densities are found to be in excellent agreement with non-denatured protein ion densities inferred from prior DMA and drift tube measurements made without charge reduction (all ions with densities in the 0.85-1.10 g cm(-3) range), showing that these ions are not strongly influenced by Coulombic stretching nor by analysis method.
Charged Analogues of Henning Knutsen Type Solutions in General Relativity
NASA Astrophysics Data System (ADS)
Gupta, Y. K.; Kumar, Sachin; Pratibha
2011-11-01
In the present article, we have found charged analogues of Henning Knutsen's interior solutions which join smoothly to the Reissner-Nordstrom metric at the pressure free interface. The solutions are singularity free and analyzed numerically with respect to pressure, energy-density and charge-density in details. The solutions so obtained also present the generalization of A.L. Mehra's solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, AG; Bhadra, S; Hertzberg, BJ
We demonstrate that a simple acoustic time-of-flight experiment can measure the state of charge and state of health of almost any closed battery. An acoustic conservation law model describing the state of charge of a standard battery is proposed, and experimental acoustic results verify the simulated trends; furthermore, a framework relating changes in sound speed, via density and modulus changes, to state of charge and state of health within a battery is discussed. Regardless of the chemistry, the distribution of density within a battery must change as a function of state of charge and, along with density, the bulk modulimore » of the anode and cathode changes as well. The shifts in density and modulus also change the acoustic attenuation in a battery. Experimental results indicating both state-of-charge determination and irreversible physical changes are presented for two of the most ubiquitous batteries in the world, the lithium-ion 18650 and the alkaline LR6 (AA). Overall, a one-or two-point acoustic measurement can be related to the interaction of a pressure wave at multiple discrete interfaces within a battery, which in turn provides insights into state of charge, state of health, and mechanical evolution/degradation.« less
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.; Alice Collaboration
2017-09-01
We present the charged-particle pseudorapidity density in Pb-Pb collisions at √{sNN} = 5.02 TeV in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from -3.5 to 5, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0-5%) collisions we find 21 400 ± 1 300, while for the most peripheral (80-90%) we find 230 ± 38. This corresponds to an increase of (27 ± 4)% over the results at √{sNN} = 2.76 TeV previously reported by ALICE. The energy dependence of the total number of charged particles produced in heavy-ion collisions is found to obey a modified power-law like behaviour. The charged-particle pseudorapidity density of the most central collisions is compared to model calculations - none of which fully describes the measured distribution. We also present an estimate of the rapidity density of charged particles. The width of that distribution is found to exhibit a remarkable proportionality to the beam rapidity, independent of the collision energy from the top SPS to LHC energies.
Depth profile of halide anions under highly charged biological membrane
NASA Astrophysics Data System (ADS)
Sung, Woongmo; Wang, Wenjie; Lee, Jonggwan; Vaknin, David; Kim, Doseok
2015-03-01
Halide ion (Cl- and I-) distribution under a cationic Langmuir monolayer consisting of 1,2-dipalmitoyl-3 trimethylammonium-propane (DPTAP) molecules was investigated by vibrational sum-frequency generation (VSFG) and X-ray spectroscopy. From VSFG spectra, it was observed that large halide anions (I-) screen surface charge more efficiently so that interfacial water alignment becomes more randomized. On the other hand, number density of ions directly measured by X-ray fluorescence spectroscopy at grazing incidence angle reveals that the ion densities within 6 ~ 8 nm are the same for both I- and Cl-. Since the observed ion densities in both cases are almost equal to the charge density of the DPTAP monolayer, we propose that larger halide anions are attracted closer to the surface making direct binding with the charged headgroups of the molecules in the monolayer, accomplishing charge neutrality in short distance. This direct adsorption of anions also disturbs the monolayer structure both in terms of the conformation of alkyl chains and the vertical configuration of the monolayer, with iodine having the stronger effect. Our study shows that the length scale that ions neutralize a charged interface varies significantly and specifically even between monovalent ions.
NASA Astrophysics Data System (ADS)
Arbañil, José D. V.; Zanchin, Vilson T.
2018-05-01
We study the static equilibrium configurations of uncharged and charged spheres composed by a relativistic polytropic fluid, and we compare with those of spheres composed by a nonrelativistic polytropic fluid, the later case being already studied in a previous work [J. D. Arbañil, P. S. Lemos, and V. T. Zanchin, Phys. Rev. D 88, 084023 (2013), 10.1103/PhysRevD.88.084023]. An equation of state connecting the pressure p and the energy density ρ is assumed. In the nonrelativistic fluid case, the connection is through a nonrelativistic polytropic equation of state, p =ω ργ , with ω and γ being respectively the polytropic constant and the polytropic exponent. In the relativistic fluid case, the connection is through a relativistic polytropic equation of state, p =ω δγ, with δ =ρ -p /(γ -1 ), and δ being the rest-mass density of the fluid. For the electric charge distribution, we assume that the charge density ρe is proportional to the energy density ρ , ρe=α ρ , with α being a constant such that 0 ≤|α |≤1 . The study is developed by integrating numerically the hydrostatic equilibrium equation. Some properties of the charged spheres such as the gravitational mass, the total electric charge, the radius, the surface redshift, and the speed of sound are analyzed by varying the central rest-mass density, the charge fraction, and the polytropic exponent. In addition, some limits that arise in general relativity, such as the Chandrasekhar limit, the Oppenheimer-Volkoff limit, the Buchdahl bound, and the Buchdahl-Andréasson bound are studied. It is confirmed that charged relativistic polytropic spheres with γ →∞ and α →1 saturate the Buchdahl-Andréasson bound, thus indicating that it reaches the quasiblack hole configuration. We show by means of numerical analysis that, as expected, the major differences between the two cases appear in the high energy density region.
Foldable, High Energy Density Lithium Ion Batteries
NASA Astrophysics Data System (ADS)
Suresh, Shravan
Lithium Ion Batteries (LIBs) have become ubiquitous owing to its low cost, high energy density and, power density. Due to these advantages, LIBs have garnered a lot of attention as the primary energy storage devices in consumer electronics and electric vehicles. Recent advances in the consumer electronics research and, the drive to reduce greenhouse gases have created a demand for a shape conformable, high energy density batteries. This thesis focuses on the aforementioned two aspects of LIBs: (a) shape conformability (b) energy density and provides potential solutions to enhance them. This thesis is divided into two parts viz. (i) achieving foldability in batteries and, (ii) improving its energy density. Conventional LIBs are not shape conformable due to two limitations viz. inelasticity of metallic foils, and delamination of the active materials while bending. In the first part of the thesis (in Chapter 3), this problem is solved by replacing metallic current collector with Carbon Nanotube Macrofilms (CNMs). CNMs are superelastic films comprising of porous interconnected nanotube network. Using Molecular Dynamics (MD) simulation, we found that in the presence of an interconnected nanotube network CNMs can be fully folded. This is because the resultant stress due to bending and, the effective bending angle at the interface is reduced due to the network of nanotubes. Hence, unlike an isolated nanotube (which ruptures beyond 120 degrees of bending), a network of nanotubes can be completely folded. Thus, by replacing metallic current collector foils with CNMs, the flexibility limitation of a conventional LIB can be transcended. The second part of this thesis focusses on enhancing the energy density of LIBs. Two strategies adopted to achieve this goal are (a) removing the dead weight of the batteries, and (b) incorporating high energy density electrode materials. By incorporating CNMs, the weight of the batteries was reduced by 5-10 times due to low mass loading of CNMs (0.7 mg/cm2) as compared to metallic foils (5-10 mg/cm2). We show that the energy density of the fully foldable battery with CMF current collectors can be up to 2-fold higher than conventional LIBs at realistic mass loading (5mg/cm2) of the electrode materials. Therefore, not only does the CMF impart shape conformability, it also significantly boosts the energy density of the device by removing the dead weight of the batteries. Silicon (Si) shows enormous potential as the next generation anode material in Lithium-ion batteries due to its high energy denisty. However, Si is highly brittle, and in an effort to prevent Si from fracturing, the research community has migrated from the use of Si films to Si nanoparticle based electrodes. Such a strategy significantly reduces volumetric energy density due to the porosity of Si nanoparticle electrodes. In Chapters 4 and 5, we propose two solutions to incorporate Si films in foldable batteries. We show that contrary to conventional wisdom, Si films can be stabilized by two strategies: (a) anchoring the Si films to a carbon nanotube macrofilm (CNM) current-collector and (b) draping the films with a graphene monolayer. After electrochemical cycling, the graphene-coated Si films on CNM resembled a tough mud-cracked surface in which the graphene capping layer suppresses delamination and stabilizes the solid electrolyte interface by creating a slippery interface and reducing the stress transfer across the interface. The graphene-draped Si films on CNM exhibit long cycle life (> 1000 charge/discharge steps) with an average specific capacity of 806 mAh/g. The volumetric capacity averaged over 1000 cycles of charge/discharge is 2821 mAh/cm3 which is 2 to 5 times higher than what is reported in the literature for Si nanoparticle based electrodes. The graphene-draped Si anode could also be successfully cycled against commercial cathodes in a full-cell configuration. In Chapter 5, an alternate strategy has been explored to stabilize Si films by utilizing the role of a slippery interface in stabilizing Si. In this study, graphene films were used as a buffer layer on which Si films were deposited. Here, instead of a highly elastic matrix (as seen in Chapter 4), a slippery interface was used to stabilize Si. It was observed that due to the slippery interface, the Si films were stable and could retain a capacity of 900 mAh/g. These Si films also possessed a volumetric capacity of 5462 mAh/cm3. On the other hand, Si films with a rigid interface were completely eviscerated with a capacity retention of only 180 mAh/g. Thus, this thesis presents new ideas to achieve foldable high energy density Lithium Ion Battery. We also hope that this thesis serves as a platform for researchers to further explore this field.
Mid-Latitude Ionospheric Disturbances Due to Geomagnetic Storms at ISS Altitudes
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Willis, Emily M.; Neergaard Parker, Linda
2014-01-01
Spacecraft charging of the International Space Station (ISS) is dominated by interaction of the US high voltage solar arrays with the F2-region ionosphere plasma environment. ISS solar array charging is enhanced in a high electron density environment due to the increased thermal electron currents to the edges of the solar cells. High electron temperature environments suppress charging due to formation of barrier potentials on the charged solar cell cover glass that restrict the charging currents to the cell edge [Mandell et al., 2003]. Environments responsible for strong solar array charging are therefore characterized by high electron densities and low electron temperatures. In support of the ISS space environmental effects engineering community, we are working to understand a number of features of solar array charging and to determine how well future charging behavior can be predicted from in-situ plasma density and temperature measurements. One aspect of this work is a need to characterize the magnitude of electron density and temperature variations that occur at ISS orbital altitudes (approximately 400 km) over time scales of days, the latitudes over which significant variations occur, and the time periods over which the disturbances persist once they start. This presentation provides examples of mid-latitude electron density and temperature disturbances at altitudes relevant to ISS using data sets and tools developed for our ISS plasma environment study. "Mid-latitude" is defined as the extra-tropical region between approx. 30 degrees to approx. 60 degrees magnetic latitude sampled by ISS over its 51.6 degree inclination orbit. We focus on geomagnetic storm periods because storms are well known drivers for disturbances in the ionospheric plasma environment.
Singh, Kiran Pal; Bhattacharjya, Dhrubajyoti; Razmjooei, Fatemeh; Yu, Jong-Sung
2016-01-01
In the race of gaining higher energy density, carbon’s capacity to retain power density is generally lost due to defect incorporation and resistance increment in carbon electrode. Herein, a relationship between charge carrier density/charge movement and supercapacitance performance is established. For this purpose we have incorporated the most defect-free pristine graphene into defective/sacrificial graphene oxide. A unique co-solvent-based technique is applied to get a homogeneous suspension of single to bi-layer graphene and graphene oxide. This suspension is then transformed into a 3D composite structure of pristine graphene sheets (GSs) and defective N-doped reduced graphene oxide (N-RGO), which is the first stable and homogenous 3D composite between GS and RGO to the best of our knowledge. It is found that incorporation of pristine graphene can drastically decrease defect density and thus decrease relaxation time due to improved associations between electrons in GS and ions in electrolyte. Furthermore, N doping is implemented selectively only on RGO and such doping is shown to improve the charge carrier density of the composite, which eventually improves the energy density. After all, the novel 3D composite structure of N-RGO and GS greatly improves energy and power density even at high current density (20 A/g). PMID:27530441
Energy storage device with large charge separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei T.
High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.
Energy storage device with large charge separation
Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei
2016-04-12
High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.
NASA Astrophysics Data System (ADS)
Fairchild, A. J.; Chirayath, V. A.; Chrysler, M. D.; Gladen, R. W.; Imam, S. K.; Koymen, A. R.; Weiss, A. H.
We report a detailed line shape analysis of the positron induced C KVV Auger line shape from highly oriented pyrolytic graphite (HOPG) and a single layer of graphene grown on polycrystalline Cu. A model consisting of the self-fold of the one-electron density of states including terms for hole-hole interactions, charge screening effects, and intrinsic loss mechanisms is compared to experimental C KVV line shapes measured using a positron induced Auger electron spectrometer (PAES). In traditional Auger spectroscopies which use an electron or photon to initiate the Auger process, extracting the relatively small Auger signal from the large secondary background can be quite difficult. Using a very low energy positron beam to create the core hole through an anti-matter matter annihilation entirely eliminates this background. Additionally, PAES has sensitivity to the top most atomic layer since the positron becomes trapped in an image potential well at the surface before annihilation. Therefore, the PAES signal from a single layer of graphene on polycrystalline Cu is primarily from the graphene overlayer with small contributions from the Cu substrate while the PAES signal from HOPG can be viewed as a single graphene layer with a graphite substrate. The influence of these two substrates on C KVV line shape is discussed. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.
The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells
Philippa, Bronson; Stolterfoht, Martin; Burn, Paul L.; Juška, Gytis; Meredith, Paul; White, Ronald D.; Pivrikas, Almantas
2014-01-01
A typical signature of charge extraction in disordered organic systems is dispersive transport, which implies a distribution of charge carrier mobilities that negatively impact on device performance. Dispersive transport has been commonly understood to originate from a time-dependent mobility of hot charge carriers that reduces as excess energy is lost during relaxation in the density of states. In contrast, we show via photon energy, electric field and film thickness independence of carrier mobilities that the dispersive photocurrent in organic solar cells originates not from the loss of excess energy during hot carrier thermalization, but rather from the loss of carrier density to trap states during transport. Our results emphasize that further efforts should be directed to minimizing the density of trap states, rather than controlling energetic relaxation of hot carriers within the density of states. PMID:25047086
Structure of Weakly Charged Polyelectrolyte Brushes: Monomer Density Profiles
NASA Astrophysics Data System (ADS)
Borisov, O. V.; Zhulina, E. B.
1997-03-01
The internal structure (the monomer density profiles) of weakly charged polyelectrolyte brushes of different morphologies has been analyzed on the basis of the self-consistent-field approach. In contrast to previous studies based on the local electroneutrality approximation valid for sufficiently strongly charged or densely grafted (“osmotic") brushes we consider the opposite limit of sparse brushes which are unable to retain the counterions inside the brush. We have shown that an exact analytical solution of the SCF-equations is available in the case of a planar brush. In contrast to Gaussian monomer density profile known for “osmotic" polyelectrolyte brushes we have found that weakly charged brushes are characterized by constant monomer density. At the same time free ends of grafted polyions are distributed throughout the brush. Thus, the structural cross-over between polyelectrolyte “mushrooms" and dense brush regimes is established.
Water-mediated interactions between hydrophobic and ionic species in cylindrical nanopores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaitheeswaran, S.; Reddy, G.; Thirumalai, D.
2009-03-07
We use Metropolis Monte Carlo and umbrella sampling to calculate the free energies of interaction of two methane molecules and their charged derivatives in cylindrical water-filled pores. Confinement strongly alters the interactions between the nonpolar solutes and completely eliminates the solvent separated minimum (SSM) that is seen in bulk water. The free energy profiles show that the methane molecules are either in contact or at separations corresponding to the diameter and the length of the cylindrical pore. Analytic calculations that estimate the entropy of the solutes, which are solvated at the pore surface, qualitatively explain the shape of the freemore » energy profiles. Adding charges of opposite sign and magnitude 0.4e or e (where e is the electronic charge) to the methane molecules decreases their tendency for surface solvation and restores the SSM. We show that confinement induced ion-pair formation occurs whenever l{sub B}/D{approx}O(1), where l{sub B} is the Bjerrum length and D is the pore diameter. The extent of stabilization of the SSM increases with ion charge density as long as l{sub B}/D<1. In pores with D{<=}1.2 nm, in which the water is strongly layered, increasing the charge magnitude from 0.4e to e reduces the stability of the SSM. As a result, ion-pair formation that occurs with negligible probability in the bulk is promoted. In larger diameter pores that can accommodate a complete hydration layer around the solutes, the stability of the SSM is enhanced.« less
NASA Astrophysics Data System (ADS)
Li, Yonghui; Ullrich, Carsten
2013-03-01
The time-dependent transition density matrix (TDM) is a useful tool to visualize and interpret the induced charges and electron-hole coherences of excitonic processes in large molecules. Combined with time-dependent density functional theory on a real-space grid (as implemented in the octopus code), the TDM is a computationally viable visualization tool for optical excitation processes in molecules. It provides real-time maps of particles and holes which gives information on excitations, in particular those that have charge-transfer character, that cannot be obtained from the density alone. Some illustration of the TDM and comparison with standard density difference plots will be shown for photoexcited organic donor-acceptor molecules. This work is supported by NSF Grant DMR-1005651
Modelling charge transfer reactions with the frozen density embedding formalism.
Pavanello, Michele; Neugebauer, Johannes
2011-12-21
The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two π-stacked nucleobase dimers of B-DNA: 5'-GG-3' and 5'-GT-3'. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.
Tamura, Hiroyuki
2016-11-23
Intermolecular exciton transfers and related conical intersections are analyzed by diabatization for time-dependent density functional theory. The diabatic states are expressed as a linear combination of the adiabatic states so as to emulate the well-defined reference states. The singlet exciton coupling calculated by the diabatization scheme includes contributions from the Coulomb (Förster) and electron exchange (Dexter) couplings. For triplet exciton transfers, the Dexter coupling, charge transfer integral, and diabatic potentials of stacked molecules are calculated for analyzing direct and superexchange pathways. We discuss some topologies of molecular aggregates that induce conical intersections on the vanishing points of the exciton coupling, namely boundary of H- and J-aggregates and T-shape aggregates, as well as canceled exciton coupling to the bright state of H-aggregate, i.e., selective exciton transfer to the dark state. The diabatization scheme automatically accounts for the Berry phase by fixing the signs of reference states while scanning the coordinates.
Electron gun controlled smart structure
Martin, Jeffrey W.; Main, John Alan; Redmond, James M.; Henson, Tammy D.; Watson, Robert D.
2001-01-01
Disclosed is a method and system for actively controlling the shape of a sheet of electroactive material; the system comprising: one or more electrodes attached to the frontside of the electroactive sheet; a charged particle generator, disposed so as to direct a beam of charged particles (e.g. electrons) onto the electrode; a conductive substrate attached to the backside of the sheet; and a power supply electrically connected to the conductive substrate; whereby the sheet changes its shape in response to an electric field created across the sheet by an accumulation of electric charge within the electrode(s), relative to a potential applied to the conductive substrate. Use of multiple electrodes distributed across on the frontside ensures a uniform distribution of the charge with a single point of e-beam incidence, thereby greatly simplifying the beam scanning algorithm and raster control electronics, and reducing the problems associated with "blooming". By placing a distribution of electrodes over the front surface of a piezoelectric film (or other electroactive material), this arrangement enables improved control over the distribution of surface electric charges (e.g. electrons) by creating uniform (and possibly different) charge distributions within each individual electrode. Removal or deposition of net electric charge can be affected by controlling the secondary electron yield through manipulation of the backside electric potential with the power supply. The system can be used for actively controlling the shape of space-based deployable optics, such as adaptive mirrors and inflatable antennae.
NASA Astrophysics Data System (ADS)
Calisti, Annette; Ferri, Sandrine; Mossé, Caroline; Talin, Bernard
2017-02-01
The radiative properties of an emitter surrounded by a plasma, are modified through various mechanisms. For instance the line shapes emitted by bound-bound transitions are broadened and carry useful information for plasma diagnostics. Depending on plasma conditions the electrons occupying the upper quantum levels of radiators no longer exist as they belong to the plasma free electron population. All the charges present in the radiator environment contribute to the lowering of the energy required to free an electron in the fundamental state. This mechanism is known as ionization potential depression (IPD). The knowledge of IPD is useful as it affects both the radiative properties of the various ionic states and their populations. Its evaluation deals with highly complex n-body coupled systems, involving particles with different dynamics and attractive ion-electron forces. A classical molecular dynamics (MD) code, the BinGo-TCP code, has been recently developed to simulate neutral multi-component (various charge state ions and electrons) plasma accounting for all the charge correlations. In the present work, results on IPD and other dense plasma statistical properties obtained using the BinGo-TCP code are presented. The study focuses on aluminum plasmas for different densities and several temperatures in order to explore different plasma coupling conditions.
Ferroelectric Plasma Sources for Ion Beam Neutralization
NASA Astrophysics Data System (ADS)
Stepanov, A.; Gilson, E. P.; Grisham, L. R.; Davidson, R. C.
2014-10-01
A 40 keV Ar+ beam with a dimensionless perveance of 4 ×10-4 is propagated through a Ferroelectric Plasma Source (FEPS) to determine the effects of charge neutralization on the transverse beam profile. Neutralization is established 5 μs after the FEPS is triggered, and lasts between 10 and 35 μs. When the beam is fully neutralized, the profile has a Gaussian shape with a half-angle divergence of 0.87°, which is attributed to ion optics. The effects of the resistance and capacitance in the pulser circuit on the FEPS discharge are studied. The electron current emitted by the FEPS is calculated from measurements of the forward and return currents in the circuit. Electron emission typically begins 0.5 μs after the driving pulse, lasting for tens of μs, which is similar to the duration of ion beam neutralization. The total emitted charge does not depend significantly on the resistance, but depends strongly on the storage capacitance. Lowering the capacitance from 141 nF to 47 nF results in a near-complete shut-off of charge emission, although the amplitude of the applied voltage pulse is as high as when high-density plasma is produced. Overall, the data suggest that ferroelectric effects are significant in the physics of the FEPS discharge.
NASA Astrophysics Data System (ADS)
Boemer, Dominik; Ponthot, Jean-Philippe
2017-01-01
Discrete element method simulations of a 1:5-scale laboratory ball mill are presented in this paper to study the influence of the contact parameters on the charge motion and the power draw. The position density limit is introduced as an efficient mathematical tool to describe and to compare the macroscopic charge motion in different scenarios, i.a. with different values of the contact parameters. While the charge motion and the power draw are relatively insensitive to the stiffness and the damping coefficient of the linear spring-slider-damper contact law, the coefficient of friction has a strong influence since it controls the sliding propensity of the charge. Based on the experimental calibration and validation by charge motion photographs and power draw measurements, the descriptive and predictive capabilities of the position density limit and the discrete element method are demonstrated, i.e. the real position of the charge is precisely delimited by the respective position density limit and the power draw can be predicted with an accuracy of about 5 %.
2D Raman band splitting in graphene: Charge screening and lifting of the K-point Kohn anomaly.
Wang, Xuanye; Christopher, Jason W; Swan, Anna K
2017-10-19
Pristine graphene encapsulated in hexagonal boron nitride has transport properties rivalling suspended graphene, while being protected from contamination and mechanical damage. For high quality devices, it is important to avoid and monitor accidental doping and charge fluctuations. The 2D Raman double peak in intrinsic graphene can be used to optically determine charge density, with decreasing peak split corresponding to increasing charge density. We find strong correlations between the 2D 1 and 2D 2 split vs 2D line widths, intensities, and peak positions. Charge density fluctuations can be measured with orders of magnitude higher precision than previously accomplished using the G-band shift with charge. The two 2D intrinsic peaks can be associated with the "inner" and "outer" Raman scattering processes, with the counterintuitive assignment of the phonon closer to the K point in the KM direction (outer process) as the higher energy peak. Even low charge screening lifts the phonon Kohn anomaly near the K point for graphene encapsulated in hBN, and shifts the dominant intensity from the lower to the higher energy peak.
X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics
NASA Astrophysics Data System (ADS)
Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2018-06-01
X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.
Comparison of direct and flow integration based charge density population analyses.
Francisco, E; Martín Pendas, A; Blanco, M A; Costales, A
2007-12-06
Different exhaustive and fuzzy partitions of the molecular electron density (rho) into atomic densities (rho(A)) are used to compute the atomic charges (Q(A)) of a representative set of molecules. The Q(A)'s derived from a direct integration of rho(A) are compared to those obtained from integrating the deformation density rho(def) = rho - rho(0) within each atomic domain. Our analysis shows that the latter methods tend to give Q(A)'s similar to those of the (arbitrary) reference atomic densities rho(A)(0) used in the definition of the promolecular density, rho(0) = SigmaArho(A)(0). Moreover, we show that the basis set independence of these charges is a sign not of their intrinsic quality, as commonly stated, but of the practical insensitivity on the basis set of the atomic domains that are employed in this type of methods.
Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers.
Haskins, Justin B; Lawson, John W
2016-05-14
We investigate how systematically increasing the accuracy of various molecular dynamics modeling techniques influences the structure and capacitance of ionic liquid electric double layers (EDLs). The techniques probed concern long-range electrostatic interactions, electrode charging (constant charge versus constant potential conditions), and electrolyte polarizability. Our simulations are performed on a quasi-two-dimensional, or slab-like, model capacitor, which is composed of a polarizable ionic liquid electrolyte, [EMIM][BF4], interfaced between two graphite electrodes. To ensure an accurate representation of EDL differential capacitance, we derive new fluctuation formulas that resolve the differential capacitance as a function of electrode charge or electrode potential. The magnitude of differential capacitance shows sensitivity to different long-range electrostatic summation techniques, while the shape of differential capacitance is affected by charging technique and the polarizability of the electrolyte. For long-range summation techniques, errors in magnitude can be mitigated by employing two-dimensional or corrected three dimensional electrostatic summations, which led to electric fields that conform to those of a classical electrostatic parallel plate capacitor. With respect to charging, the changes in shape are a result of ions in the Stern layer (i.e., ions at the electrode surface) having a higher electrostatic affinity to constant potential electrodes than to constant charge electrodes. For electrolyte polarizability, shape changes originate from induced dipoles that soften the interaction of Stern layer ions with the electrode. The softening is traced to ion correlations vertical to the electrode surface that induce dipoles that oppose double layer formation. In general, our analysis indicates an accuracy dependent differential capacitance profile that transitions from the characteristic camel shape with coarser representations to a more diffuse profile with finer representations.
Song, Jinsuk; Kim, Mahn Won
2010-03-11
Understanding the differential adsorption of ions at the interface of an electrolyte solution is very important because it is closely related, not only to the fundamental aspects of biological systems, but also to many industrial applications. We have measured the excess interfacial negative charge density at air-electrolyte solution interfaces by using resonant second harmonic generation of oppositely charged probe molecules. The excess charge density increased with the square root of the bulk electrolyte concentration. A new adsorption model that includes the electrostatic interaction between adsorbed molecules is proposed to explain the measured adsorption isotherm, and it is in good agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Le, Son Phuong; Nguyen, Duong Dai; Suzuki, Toshi-kazu
2018-01-01
We have investigated insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor (MIS) devices with Al2O3 or AlTiO (an alloy of Al2O3 and TiO2) gate dielectrics obtained by atomic layer deposition on AlGaN. Analyzing insulator-thickness dependences of threshold voltages for the MIS devices, we evaluated positive interface fixed charges, whose density at the AlTiO/AlGaN interface is significantly lower than that at the Al2O3/AlGaN interface. This and a higher dielectric constant of AlTiO lead to rather shallower threshold voltages for the AlTiO gate dielectric than for Al2O3. The lower interface fixed charge density also leads to the fact that the two-dimensional electron concentration is a decreasing function of the insulator thickness for AlTiO, whereas being an increasing function for Al2O3. Moreover, we discuss the relationship between the interface fixed charges and interface states. From the conductance method, it is shown that the interface state densities are very similar at the Al2O3/AlGaN and AlTiO/AlGaN interfaces. Therefore, we consider that the lower AlTiO/AlGaN interface fixed charge density is not owing to electrons trapped at deep interface states compensating the positive fixed charges and can be attributed to a lower density of oxygen-related interface donors.
Ishizuka, Ryosuke; Matubayasi, Nobuyuki
2016-02-09
A self-consistent scheme is developed to determine the atomic partial charges of ionic liquid. Molecular dynamics (MD) simulation was conducted to sample a set of ion configurations, and these configurations were subject to density functional theory (DFT) calculations to determine the partial charges. The charges were then averaged and used as inputs for the subsequent MD simulation, and MD and DFT calculations were repeated until the MD results are not altered any more. We applied this scheme to 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ([C1mim][NTf2]) and investigated its structure and dynamics as a function of temperature. At convergence, the average ionic charges were ±0.84 e at 350 K due to charge transfer among ions, where e is the elementary charge, while the reduced ionic charges do not affect strongly the density of [C1mim][NTf2] and radial distribution function. Instead, major effects are found on the energetics and dynamics, with improvements of the overestimated heat of vaporization and the too slow motions of ions observed in MD simulations using commonly used force fields.
NASA Astrophysics Data System (ADS)
Chitraningrum, Nidya; Chu, Ting-Yi; Huang, Ping-Tsung; Wen, Ten-Chin; Guo, Tzung-Fang
2018-02-01
We fabricate the phenyl-substituted poly(p-phenylene vinylene) copolymer (super yellow, SY-PPV)-based polymer light-emitting diodes (PLEDs) with different device architectures to modulate the injection of opposite charge carriers and investigate the corresponding magnetoconductance (MC) responses. At the first glance, we find that all PLEDs exhibit the positive MC responses. By applying the mathematical analysis to fit the curves with two empirical equations of a non-Lorentzian and a Lorentzian function, we are able to extract the hidden negative MC component from the positive MC curve. We attribute the growth of the negative MC component to the reduced interaction of the triplet excitons with charges to generate the free charge carriers as modulated by the applied magnetic field, known as the triplet exciton-charge reaction, by analyzing MC responses for PLEDs of the charge-unbalanced and hole-blocking device configurations. The negative MC component causes the broadening of the line shape in MC curves.
Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model.
Schuss, Z; Nadler, B; Eisenberg, R S
2001-09-01
Permeation of ions from one electrolytic solution to another, through a protein channel, is a biological process of considerable importance. Permeation occurs on a time scale of micro- to milliseconds, far longer than the femtosecond time scales of atomic motion. Direct simulations of atomic dynamics are not yet possible for such long-time scales; thus, averaging is unavoidable. The question is what and how to average. In this paper, we average a Langevin model of ionic motion in a bulk solution and protein channel. The main result is a coupled system of averaged Poisson and Nernst-Planck equations (CPNP) involving conditional and unconditional charge densities and conditional potentials. The resulting NP equations contain the averaged force on a single ion, which is the sum of two components. The first component is the gradient of a conditional electric potential that is the solution of Poisson's equation with conditional and permanent charge densities and boundary conditions of the applied voltage. The second component is the self-induced force on an ion due to surface charges induced only by that ion at dielectric interfaces. The ion induces surface polarization charge that exerts a significant force on the ion itself, not present in earlier PNP equations. The proposed CPNP system is not complete, however, because the electric potential satisfies Poisson's equation with conditional charge densities, conditioned on the location of an ion, while the NP equations contain unconditional densities. The conditional densities are closely related to the well-studied pair-correlation functions of equilibrium statistical mechanics. We examine a specific closure relation, which on the one hand replaces the conditional charge densities by the unconditional ones in the Poisson equation, and on the other hand replaces the self-induced force in the NP equation by an effective self-induced force. This effective self-induced force is nearly zero in the baths but is approximately equal to the self-induced force in and near the channel. The charge densities in the NP equations are interpreted as time averages over long times of the motion of a quasiparticle that diffuses with the same diffusion coefficient as that of a real ion, but is driven by the averaged force. In this way, continuum equations with averaged charge densities and mean-fields can be used to describe permeation through a protein channel.
Charging in the ac Conductance of a Double Barrier Resonant Tunneling Structure
NASA Technical Reports Server (NTRS)
Anantram, M. P.; Saini, Subhash (Technical Monitor)
1998-01-01
There have been many studies of the linear response ac conductance of a double barrier resonant tunneling structure (DBRTS), both at zero and finite dc biases. While these studies are important, they fail to self consistently include the effect of the time dependent charge density in the well. In this paper, we calculate the ac conductance at both zero and finite do biases by including the effect of the time dependent charge density in the well in a self consistent manner. The charge density in the well contributes to both the flow of displacement currents in the contacts and the time dependent potential in the well. We find that including these effects can make a significant difference to the ac conductance and the total ac current is not equal to the simple average of the non-selfconsistently calculated conduction currents in the two contacts. This is illustrated by comparing the results obtained with and without the effect of the time dependent charge density included correctly. Some possible experimental scenarios to observe these effects are suggested.
NASA Astrophysics Data System (ADS)
Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil
2011-07-01
The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.
Li, Chun; Wang, Zhuanpei; Li, Shengwen; Cheng, Jianli; Zhang, Yanning; Zhou, Jingwen; Yang, Dan; Tong, Dong-Ge; Wang, Bin
2018-05-30
Fiber-shaped supercapacitors (FSCs) have great promises in wearable electronics applications. However, the limited specific surface area and inadequate structural stability caused by the weak interfacial interactions of the electrodes result in relatively low specific capacitance and unsatisfactory cycle lifetime. Herein, solid-state FSCs with high energy density and ultralong cycle lifetime based on polyaniline (PANI)/sulfur-doped TiO 2 nanotube arrays (PANI/S-TiO 2 ) are fabricated by interfacial engineering. The experimental results and ab initio calculations reveal that S doping can effectively promote the conductivity of titania nanotubes and increase the binding energy of PANI anchored on the electrode surface, leading to a much stronger binding of PANI on the surface of the electrode and excellent electrode structure stability. As a result, the FSCs using the PANI/S-TiO 2 electrodes deliver a high specific capacitance of 91.9 mF cm -2 , a capacitance retention of 93.78% after 12 000 charge-discharge cycles, and an areal energy density of 3.2 μW h cm -2 . Meanwhile, the all-solid-state FSC device retains its excellent flexibility and stable electrochemical capacitance even after bending 150 cycles. The enhanced performances of FSCs could be attributed to the large surface area, reduced ion diffusion path, improved electrical conductivity, and engineered interfacial interaction of the rationally designed electrodes.
Xing, Ling-Li; Wu, Xu; Huang, Ke-Jing
2018-06-05
A three-dimensional (3D) flower-shaped Li 4 Ti 5 O 12 -graphene (Gr) hybrid micro/nanostructures and pine needles derived carbon nanopores (PNDCN) has been prepared by using the effective hydrothermal process. Due to the unique micro/nanostructures which can provide abundant surface active sites, the obtained 3D Li 4 Ti 5 O 12 -Gr displays a high specific capacitance of 706.52 F g -1 at 1 A g -1 . The prepared PNDCN also exhibits high specific capacitance of 314.50 F g -1 at 1 A g -1 benefiting from its interconnected honeycomb-like hierarchical and open structure, which facilitates the diffusion and reaction of electrolyte ions and enables an isotropic charging/discharging process. An asymmetric supercapacitor utilizing Li 4 Ti 5 O 12 -Gr as positive electrode and PNDCN as negative electrode has been fabricated, it delivers a high energy density of 35.06 Wh kg -1 at power density of 800.08 W kg -1 and outstanding cycling stability with 90.18% capacitance retention after 2000 cycles. The fabrication process presented in this work is facile, cost-effective, and environmentally benign, offering a feasible solution for manufacturing next-generation high-performance energy storage devices. Copyright © 2018. Published by Elsevier Inc.
High charge state carbon and oxygen ions in Earth's equatorial quasi-trapping region
NASA Technical Reports Server (NTRS)
Christon, S. P.; Hamilton, D. C.; Gloeckler, G.; Eastmann, T. E.
1994-01-01
Observations of energetic (1.5 - 300 keV/e) medium-to-high charge state (+3 less than or equal to Q less than or equal to +7) solar wind origin C and O ions made in the quasi-trapping region (QTR) of Earth's magnetosphere are compared to ion trajectories calculated in model equatorial magnetospheric magnetic and electric fields. These comparisons indicate that solar wind ions entering the QTR on the nightside as an energetic component of the plasma sheet exit the region on the dayside, experiencing little or no charge exchange on the way. Measurements made by the CHarge Energy Mass (CHEM) ion spectrometer on board the Active Magnetospheric Particle Tracer Explorer/Charge Composition Explorer (AMPTE/CCE) spacecraft at 7 less than L less than 9 from September 1984 to January 1989 are the source of the new results contained herein: quantitative long-term determination of number densities, average energies, energy spectra, local time distributions, and their variation with geomagnetic disturbance level as indexed by Kp. Solar wind primaries (ions with charge states unchanged) and their secondaries (ions with generally lower charge states produced from primaries in the magnetosphere via charge exchange)are observed throughout the QTR and have distinctly different local time variations that persist over the entire 4-year analysis interval. During Kp larger than or equal to 3 deg intervals, primary ion (e.g., O(+6)) densities exhibit a pronounced predawn maximum with average energy minimum and a broad near-local-noon density minimum with average energy maximum. Secondary ion (e.g., O(+5)) densities do not have an identifiable predawn peak, rather they have a broad dayside maximum peaked in local morning and a nightside minimum. During Kp less than or equal to 2(-) intervals, primary ion density peaks are less intense, broader in local time extent, and centered near midnight, while secondary ion density local time variations diminish. The long-time-interval baseline helps to refine and extend previous observations; for example, we show that ionospheric contribution to O(+3)) is negligible. Through comparison with model ion trajectories, we interpret the lack of pronounced secondary ion density peaks colocated with the primary density peaks to indicate that: (1) negligible charge exchange occurs at L greater than 7, that is, solar wind secondaries are produced at L less than 7, and (2) solar wind secondaries do not form a significant portion of the plasma sheet population injected into the QTR. We conclude that little of the energetic solar wind secondary ion population is recirculated through the magnetosphere.
Yang, Weitao; Mori-Sánchez, Paula; Cohen, Aron J
2013-09-14
The exact conditions for density functionals and density matrix functionals in terms of fractional charges and fractional spins are known, and their violation in commonly used functionals has been shown to be the root of many major failures in practical applications. However, approximate functionals are designed for physical systems with integer charges and spins, not in terms of the fractional variables. Here we develop a general framework for extending approximate density functionals and many-electron theory to fractional-charge and fractional-spin systems. Our development allows for the fractional extension of any approximate theory that is a functional of G(0), the one-electron Green's function of the non-interacting reference system. The extension to fractional charge and fractional spin systems is based on the ensemble average of the basic variable, G(0). We demonstrate the fractional extension for the following theories: (1) any explicit functional of the one-electron density, such as the local density approximation and generalized gradient approximations; (2) any explicit functional of the one-electron density matrix of the non-interacting reference system, such as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body perturbation theory; and (4) random-phase approximations. A general rule for such an extension has also been derived through scaling the orbitals and should be useful for functionals where the link to the Green's function is not obvious. The development thus enables the examination of approximate theories against known exact conditions on the fractional variables and the analysis of their failures in chemical and physical applications in terms of violations of exact conditions of the energy functionals. The present work should facilitate the calculation of chemical potentials and fundamental bandgaps with approximate functionals and many-electron theories through the energy derivatives with respect to the fractional charge. It should play an important role in developing accurate approximate density functionals and many-body theory.
Spacecraft Charging in Low Temperature Environments
NASA Technical Reports Server (NTRS)
Parker, Linda N.
2007-01-01
Spacecraft charging in plasma and radiation environments is a temperature dependent phenomenon due to the reduction of electrical conductivity in dielectric materials at low temperatures. Charging time constants are proportional to l/conductivity may become very large (on the order of days to years) at low temperatures and accumulation of charge densities in insulators in charging environments traditionally considered benign at ambient temperatures may be sufficient to produce charge densities and electric fields of concern in insulators at low temperatures. Low temperature charging is of interest because a number of spacecraft-primarily infrared astronomy and microwave cosmology observatories-are currently being design, built, and or operated at very cold temperatures on the order of 40K to 100K. This paper reviews the temperature dependence of spacecraft charging processes and material parameters important to charging as a function of temperature with an emphasis on low temperatures regimes.
Lian, Cheng; Univ. of California, Riverside, CA; Liu, Honglai; ...
2016-08-22
The ionophobicity effect of nanoporous electrodes on the capacitance and the energy storage capacity of nonaqueous-electrolyte supercapacitors is studied by means of the classical density functional theory (DFT). It has been hypothesized that ionophobic nanopores may create obstacles in charging, but they store energy much more efficiently than ionophilic pores. In this paper, we find that, for both ionic liquids and organic electrolytes, an ionophobic pore exhibits a charging behavior different from that of an ionophilic pore, and that the capacitance–voltage curve changes from a bell shape to a two-hump camel shape when the pore ionophobicity increases. For electric-double-layer capacitorsmore » containing organic electrolytes, an increase in the ionophobicity of the nanopores leads to a higher capacity for energy storage. Without taking into account the effects of background screening, the DFT predicts that an ionophobic pore containing an ionic liquid does not enhance the supercapacitor performance within the practical voltage ranges. However, by using an effective dielectric constant to account for ion polarizability, the DFT predicts that, like an organic electrolyte, an ionophobic pore with an ionic liquid is also able to increase the energy stored when the electrode voltage is beyond a certain value. We find that the critical voltage for an enhanced capacitance in an ionic liquid is larger than that in an organic electrolyte. Finally, our theoretical predictions provide further understanding of how chemical modification of porous electrodes affects the performance of supercapacitors.« less
NASA Astrophysics Data System (ADS)
Asmus, Heiner; Staszak, Tristan; Strelnikov, Boris; Lübken, Franz-Josef; Friedrich, Martin; Rapp, Markus
2017-08-01
We present results of in situ measurements of mesosphere-lower thermosphere dusty-plasma densities including electrons, positive ions and charged aerosols conducted during the WADIS-2 sounding rocket campaign. The neutral air density was also measured, allowing for robust derivation of turbulence energy dissipation rates. A unique feature of these measurements is that they were done in a true common volume and with high spatial resolution. This allows for a reliable derivation of mean sizes and a size distribution function for the charged meteor smoke particles (MSPs). The mean particle radius derived from Schmidt numbers obtained from electron density fluctuations was ˜ 0.56 nm. We assumed a lognormal size distribution of the charged meteor smoke particles and derived the distribution width of 1.66 based on in situ-measured densities of different plasma constituents. We found that layers of enhanced meteor smoke particles' density measured by the particle detector coincide with enhanced Schmidt numbers obtained from the electron and neutral density fluctuations. Thus, we found that large particles with sizes > 1 nm were stratified in layers of ˜ 1 km thickness and lying some kilometers apart from each other.
Peng, Bo; Yu, Yang-Xin
2009-10-07
The structural and thermodynamic properties for charge symmetric and asymmetric electrolytes as well as mixed electrolyte system inside a charged cylindrical nanopore are investigated using a partially perturbative density functional theory. The electrolytes are treated in the restricted primitive model and the internal surface of the cylindrical nanopore is considered to have a uniform charge density. The proposed theory is directly applicable to the arbitrary mixed electrolyte solution containing ions with the equal diameter and different valences. Large amount of simulation data for ion density distributions, separation factors, and exclusion coefficients are used to determine the range of validity of the partially perturbative density functional theory for monovalent and multivalent counterion systems. The proposed theory is found to be in good agreement with the simulations for both mono- and multivalent counterion systems. In contrast, the classical Poisson-Boltzmann equation only provides reasonable descriptions of monovalent counterion system at low bulk density, and is qualitatively and quantitatively wrong in the prediction for the multivalent counterion systems due to its neglect of the strong interionic correlations in these systems. The proposed density functional theory has also been applied to an electrolyte absorbed into a pore that is a model of the filter of a physiological calcium channel.
Cyclotron resonance of interacting quantum Hall droplets
NASA Astrophysics Data System (ADS)
Widmann, M.; Merkt, U.; Cortés, M.; Häusler, W.; Eberl, K.
1998-06-01
The line shape and position of cyclotron resonance in gated GaAs/GaAlAs heterojunctions with δ-doped layers of negatively charged beryllium acceptors, that provide strong potential fluctuations in the channels of the quasi-two-dimensional electron systems, are examined. Specifically, the magnetic quantum limit is considered when the electrons are localized in separate quantum Hall droplets in the valleys of the disorder potential. A model treating disorder and electron-electron interaction on an equal footing accounts for all of the principal experimental findings: blue shifts from the unperturbed cyclotron frequency that decrease when the electron density is reduced, surprisingly narrow lines in the magnetic quantum limit, and asymmetric lines due to additional oscillator strength on their high-frequency sides.
Electronic Transport and Quantum Hall Effect in Bipolar Graphene p-n-p Junctions
NASA Astrophysics Data System (ADS)
Özyilmaz, Barbaros; Jarillo-Herrero, Pablo; Efetov, Dmitri; Abanin, Dmitry A.; Levitov, Leonid S.; Kim, Philip
2007-10-01
We have developed a device fabrication process to pattern graphene into nanostructures of arbitrary shape and control their electronic properties using local electrostatic gates. Electronic transport measurements have been used to characterize locally gated bipolar graphene p-n-p junctions. We observe a series of fractional quantum Hall conductance plateaus at high magnetic fields as the local charge density is varied in the p and n regions. These fractional plateaus, originating from chiral edge states equilibration at the p-n interfaces, exhibit sensitivity to interedge backscattering which is found to be strong for some of the plateaus and much weaker for other plateaus. We use this effect to explore the role of backscattering and estimate disorder strength in our graphene devices.
Non-local geometry inside Lifshitz horizon
NASA Astrophysics Data System (ADS)
Hu, Qi; Lee, Sung-Sik
2017-07-01
Based on the quantum renormalization group, we derive the bulk geometry that emerges in the holographic dual of the fermionic U( N ) vector model at a nonzero charge density. The obstruction that prohibits the metallic state from being smoothly deformable to the direct product state under the renormalization group flow gives rise to a horizon at a finite radial coordinate in the bulk. The region outside the horizon is described by the Lifshitz geometry with a higher-spin hair determined by microscopic details of the boundary theory. On the other hand, the interior of the horizon is not described by any Riemannian manifold, as it exhibits an algebraic non-locality. The non-local structure inside the horizon carries the information on the shape of the filled Fermi sea.
Electrochemical Evaluations of Fractal Microelectrodes for Energy Efficient Neurostimulation.
Park, Hyunsu; Takmakov, Pavel; Lee, Hyowon
2018-03-12
Advancements in microfabrication has enabled manufacturing of microscopic neurostimulation electrodes with smaller footprint than ever possible. The smaller electrodes can potentially reduce tissue damage and allow better spatial resolution for neural stimulation. Although electrodes of any shape can easily be fabricated, substantial effort have been focused on identification and characterization of new materials and surface morphology for efficient charge injection, while maintaining simple circular or rectangular Euclidean electrode geometries. In this work we provide a systematic electrochemical evaluation of charge injection capacities of serpentine and fractal-shaped platinum microelectrodes and compare their performance with traditional circular microelectrodes. Our findings indicate that the increase in electrode perimeter leads to an increase in maximum charge injection capacity. Furthermore, we found that the electrode geometry can have even more significant impact on electrode performance than having a larger perimeter for a given surface area. The fractal-shaped microelectrodes, despite having smaller perimeter than other designs, demonstrated superior charge injection capacity. Our results suggest that electrode design can significantly affect both Faradaic and non-Faradaic electrochemical processes, which may be optimized to enable a more energy efficient design for neurostimulation.
All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics.
Guo, Hengyu; Yeh, Min-Hsin; Lai, Ying-Chih; Zi, Yunlong; Wu, Changsheng; Wen, Zhen; Hu, Chenguo; Wang, Zhong Lin
2016-11-22
Recently, a self-charging power unit consisting of an energy harvesting device and an energy storage device set the foundation for building a self-powered wearable system. However, the flexibility of the power unit working under extremely complex deformations (e.g., stretching, twisting, and bending) becomes a key issue. Here, we present a prototype of an all-in-one shape-adaptive self-charging power unit that can be used for scavenging random body motion energy under complex mechanical deformations and then directly storing it in a supercapacitor unit to build up a self-powered system for wearable electronics. A kirigami paper based supercapacitor (KP-SC) was designed to work as the flexible energy storage device (stretchability up to 215%). An ultrastretchable and shape-adaptive silicone rubber triboelectric nanogenerator (SR-TENG) was utilized as the flexible energy harvesting device. By combining them with a rectifier, a stretchable, twistable, and bendable, self-charging power package was achieved for sustainably driving wearable electronics. This work provides a potential platform for the flexible self-powered systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, X. M.; Wang, Y. J.; MacAlpine, J. M. K.
The relationship between the calculated charged-particle densities in positive corona, the rate of streamer production, and the photon count from the corona were investigated and found to be closely related. Both the densities of electrons and positive ions peaked at 11.8 kV, near the corona inception voltage; they then fell rapidly before slowly rising again. This behavior was exactly matched by the measured photon count. The calculation of the charged-particle density in a positive corona was achieved by means of a fluid model.
Mamun, A A; Shukla, P K
2009-09-01
Effects of the nonthermal distribution of electrons as well as the polarity of the net dust-charge number density on nonplanar (viz. cylindrical and spherical) dust-ion-acoustic solitary waves (DIASWs) are investigated by employing the reductive perturbation method. It is found that the basic features of the DIASWs are significantly modified by the effects of nonthermal electron distribution, polarity of net dust-charge number density, and nonplanar geometry. The implications of our results in some space and laboratory dusty plasma environments are briefly discussed.
Impacts of oxidants in atomic layer deposition method on Al2O3/GaN interface properties
NASA Astrophysics Data System (ADS)
Taoka, Noriyuki; Kubo, Toshiharu; Yamada, Toshikazu; Egawa, Takashi; Shimizu, Mitsuaki
2018-01-01
The electrical interface properties of GaN metal-oxide-semiconductor (MOS) capacitors with an Al2O3 gate insulator formed by atomic layer deposition method using three kinds of oxidants were investigated by the capacitance-voltage technique, Terman method, and conductance method. We found that O3 and the alternate supply of H2O and O3 (AS-HO) are effective for reducing the interface trap density (D it) at the energy range of 0.15 to 0.30 eV taking from the conduction band minimum. On the other hand, we found that surface potential fluctuation (σs) induced by interface charges for the AS-HO oxidant is much larger than that for a Si MOS capacitor with a SiO2 layer formed by chemical vapor deposition despite the small D it values for the AS-HO oxidant compared with the Si MOS capacitor. This means that the total charged center density including the fixed charge density, charged slow trap density, and charged interface trap density for the GaN MOS capacitor is higher than that for the Si MOS capacitor. Therefore, σs has to be reduced to improve the performances and reliability of GaN devices with the Al2O3/GaN interfaces.
Higgs-mode radiance and charge-density-wave order in 2 H -NbSe2
NASA Astrophysics Data System (ADS)
Grasset, Romain; Cea, Tommaso; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Cario, Laurent; Benfatto, Lara; Méasson, Marie-Aude
2018-03-01
Despite being usually considered two competing phenomena, charge-density wave and superconductivity coexist in few systems, the most emblematic one being the transition-metal dichalcogenide 2 H -NbSe2 . This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp subgap mode emerging below the superconducting temperature is still under debate. In this work we use external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique, we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge-density-wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density wave and superconductivity in 2 H -NbSe2 involve mutual electronic degrees of freedom. These findings fill the knowledge gap on the electronic mechanisms at play in transition-metal dichalcogenides, a crucial step to fully exploit their properties in few-layer systems optimized for device applications.
Shi, Haotian; Poudel, Nirakar; Hou, Bingya; Shen, Lang; Chen, Jihan; Benderskii, Alexander V; Cronin, Stephen B
2018-02-01
We report a novel approach to probe the local ion concentration at graphene/water interfaces using in situ Raman spectroscopy. Here, the upshifts observed in the G band Raman mode under applied electrochemical potentials are used to determine the charge density in the graphene sheet. For voltages up to ±0.8 V vs. NHE, we observe substantial upshifts in the G band Raman mode by as much as 19 cm -1 , which corresponds to electron and hole carrier densities of 1.4 × 10 13 cm -2 and Fermi energy shifts of ±430 meV. The charge density in the graphene electrode is also measured independently using the capacitance-voltage characteristics (i.e., Q = CV), and is found to be consistent with those measured by Raman spectroscopy. From charge neutrality requirements, the ion concentration in solution per unit area must be equal and opposite to the charge density in the graphene electrode. Based on these charge densities, we estimate the local ion concentration as a function of electrochemical potential in both pure DI water and 1 M KCl solutions, which span a pH range from 3.8 to 10.4 for pure DI water and net ion concentrations of ±0.7 mol L -1 for KCl under these applied voltages.
Nanosecond pulsed electric field induced changes in cell surface charge density.
Dutta, Diganta; Palmer, Xavier-Lewis; Asmar, Anthony; Stacey, Michael; Qian, Shizhi
2017-09-01
This study reports that the surface charge density changes in Jurkat cells with the application of single 60 nanosecond pulse electric fields, using atomic force microscopy. Using an atomic force microscope tip and Jurkat cells on silica in a 0.01M KCl ionic concentration, we were able to measure the interfacial forces, while also predicting surface charge densities of both Jurkat cell and silica surfaces. The most important finding is that the pulsing conditions varyingly reduced the cells' surface charge density. This offers a novel way in which to examine cellular effects of pulsed electric fields that may lead to the identification of unique mechanical responses. Compared to a single low field strength NsPEF (15kV/cm) application, exposure of Jurkat cells to a single high field strength NsPEF (60kV/cm) resulted in a further reduction in charge density and major morphological changes. The structural, physical, and chemical properties of biological cells immensely influence their electrostatic force; we were able to investigate this through the use of atomic force microscopy by measuring the surface forces between the AFM's tip and the Jurkat cells under different pulsing conditions as well as the interfacial forces in ionic concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of Polymer Electrode Morphology on Performance of a Lithium/Polypyrrole Battery. M.S. Thesis
NASA Technical Reports Server (NTRS)
Nicholson, Marjorie Anne
1991-01-01
A variety of conducting polymer batteries were described in the recent literature. In this work, a Li/Polypyrrole secondary battery is described. The effect of controlling the morphology of the polymer on enhancement of counterion diffusion in the polymer phase is explored. A method of preparing conducting polymers was developed which yields high surface area per unit volume of electrode material. A porous membrane is used as a template in which to electrochemically polymerize pyrrole, then the membrane is dissolved, leaving the polymer in a fibrillar form. Conventionally, the polymer is electrochemically polymerized as a dense polymer film on a smooth Pt disk electrode. Previous work has shown that when the polymer is electrochemically polymerized in fribrillar form, charge transport rates are faster and charge capacities are greater than for dense, conventionally grown films containing the same amount of polymer. The purpose is to expand previous work by further investigating the possibilities of the optimization of transport rates in polypyrrole films by controlling the morphology of the films. The utility of fibrillar polypyrrole as a cathode material in a lithium/polymer secondary battery is then assessed. The performance of the fibrillar battery is compared to the performance of an analogous battery which employed a conventionally grown polypyrrole film. The study includes a comparison of cyclic voltammetry, shape of charge/discharge curves, discharge time and voltage, cycle life, coulombic efficiencies, charge capacities, energy densities, and energy efficiencies.
Nucleon-gold collisions at 200 A GeV using tagged d + Au interactions in the PHOBOS detector
NASA Astrophysics Data System (ADS)
Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.; Phobos Collaboration
2015-09-01
Forward calorimetry in the PHOBOS detector has been used to study charged hadron production in d +Au , p +Au , and n +Au collisions at √{sN N}=200 GeV . The forward proton calorimeter detectors are described and a procedure for determining collision centrality with these detectors is detailed. The deposition of energy by deuteron spectator nucleons in the forward calorimeters is used to identify p +Au and n +Au collisions in the data. A weighted combination of the yield of p +Au and n +Au is constructed to build a reference for Au +Au collisions that better matches the isospin composition of the gold nucleus. The pT and centrality dependence of the yield of this improved reference system is found to match that of d +Au . The shape of the charged-particle transverse momentum distribution is observed to extrapolate smoothly from p +p ¯ to central d +Au as a function of the charged-particle pseudorapidity density. The asymmetry of positively and negatively charged hadron production in p +Au is compared to that of n +Au . No significant asymmetry is observed at midrapidity. These studies augment recent results from experiments at the CERN Large Hadron Collider and BNL Relativistic Heavy Ion Collider facilities to give a more complete description of particle production in p +A and d +A collisions, essential for the understanding the medium produced in high-energy nucleus-nucleus collisions.
Nucleon-gold collisions at 200A GeV using tagged d + Au interactions in the PHOBOS detector
Back, B. B.; Nouicer, R.; Baker, M. D.; ...
2015-09-23
Forward calorimetry in the PHOBOS detector has been used to study charged hadron production in d+Au, p+Au, and n+Au collisions at √s NN =200GeV. The forward proton calorimeter detectors are described and a procedure for determining collision centrality with these detectors is detailed. The deposition of energy by deuteron spectator nucleons in the forward calorimeters is used to identify p+Au and n+Au collisions in the data. A weighted combination of the yield of p+Au and n+Au is constructed to build a reference for Au+Au collisions that better matches the isospin composition of the gold nucleus. The p T and centralitymore » dependence of the yield of this improved reference system is found to match that of d+Au. The shape of the charged-particle transverse momentum distribution is observed to extrapolate smoothly from p+p¯ to central d+Au as a function of the charged-particle pseudorapidity density. The asymmetry of positively and negatively charged hadron production in p+Au is compared to that of n+Au. No significant asymmetry is observed at midrapidity. In conclusion, these studies augment recent results from experiments at the CERN Large Hadron Collider and BNL Relativistic Heavy Ion Collider facilities to give a more complete description of particle production in p+A and d+A collisions, essential for the understanding the medium produced in high-energy nucleus-nucleus collisions.« less
Nucleon-gold collisions at 200 A GeV using tagged d + Au interactions in the PHOBOS detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Back, B. B.; Baker, M. D.; Ballintijn, M.
2015-09-01
Forward calorimetry in the PHOBOS detector has been used to study charged hadron production in d + Au, p + Au, and n + Au collisions at root s(NN) = 200 GeV. The forward proton calorimeter detectors are described and a procedure for determining collision centrality with these detectors is detailed. The deposition of energy by deuteron spectator nucleons in the forward calorimeters is used to identify p + Au and n + Au collisions in the data. A weighted combination of the yield of p + Au and n + Au is constructed to build a reference for Aumore » + Au collisions that better matches the isospin composition of the gold nucleus. The p(T) and centrality dependence of the yield of this improved reference system is found to match that of d + Au. The shape of the charged-particle transverse momentum distribution is observed to extrapolate smoothly from p + (p) over bar to central d + Au as a function of the charged-particle pseudorapidity density. The asymmetry of positively and negatively charged hadron production in p + Au is compared to that of n + Au. No significant asymmetry is observed at midrapidity. These studies augment recent results from experiments at the CERN Large Hadron Collider and BNL Relativistic Heavy Ion Collider facilities to give a more complete description of particle production in p + A and d + A collisions, essential for the understanding the medium produced in high-energy nucleus-nucleus collisions.« less
Diagnostic Imaging of Detonation Waves for Waveshaper Development
2009-07-01
it is difficult to determine the depth of the detonation wave (due to the translucency of the sensitised nitromethane) and when it reaches the bottom...Charges For Use against Concrete Targerts, DSTO Client Report, DSTO-CR-2005-0164, 2005. [2] M. J. Murphy, R. M. Kuklo, T. A. Rambur, L. L. Switzer & M...Resnyansky, S. A. Weckert & T. Delaney, Shaping of Detonation Waves in Shaped Charges for Use against Concrete Targets: Part II, in preparation
Distribution of electron density in charged Li@C60 complexes
NASA Astrophysics Data System (ADS)
Sadlej-Sosnowska, Nina; Mazurek, Aleksander P.
2013-08-01
The Letter is an expanded commentary to the paper 'Fullerene as an electron buffer: charge transfer in Li@C60', by Pavanello and co-authors [8]. We calculated the electron density distribution in the space inside and outside the fullerene cage in Li@C60 complexes differing in total charge, based on Gauss's law. It allowed us to determine the charges contained inside surfaces isomorphic with the fullerene cage and contracted or enlarged with respect to the latter. For every complex, a surface was found in the vicinity of the central Li atom such that the charge enclosed within it was equal to +1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Zahid; Brouet, Veronique; Yang, Wanli
2008-01-16
We present a detailed angle-resolved photoemission spectroscopy (ARPES) investigation of the RTe3 family, which sets this system as an ideal"textbook" example for the formation of a nesting driven charge density wave (CDW). This family indeed exhibits the full range of phenomena that can be associated to CDWinstabilities, from the opening of large gaps on the best nested parts of Fermi surface (up to 0.4 eV), to the existence of residual metallic pockets. ARPES is the best suited technique to characterize these features, thanks to its unique ability to resolve the electronic structure in k space. An additional advantage of RTe3more » is that theband structure can be very accurately described by a simple two dimensional tight-binding (TB) model, which allows one to understand and easily reproduce many characteristics of the CDW. In this paper, we first establish the main features of the electronic structure by comparing our ARPES measurements with the linear muffin-tinorbital band calculations. We use this to define the validity and limits of the TB model. We then present a complete description of the CDW properties and of their strong evolution as a function of R. Using simple models, we are able to reproduce perfectly the evolution of gaps in k space, the evolution of the CDW wave vector with R, and the shape of the residual metallic pockets. Finally, we give an estimation of the CDWinteraction parameters and find that the change in the electronic density of states n (EF), due to lattice expansion when different R ions are inserted, has the correct order of magnitude to explain the evolution of the CDW properties.« less
Modelling charge transfer reactions with the frozen density embedding formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavanello, Michele; Neugebauer, Johannes
2011-12-21
The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionalsmore » are used the electronic couplings are grossly overestimated.« less
Continuum description of solvent dielectrics in molecular-dynamics simulations of proteins
NASA Astrophysics Data System (ADS)
Egwolf, Bernhard; Tavan, Paul
2003-02-01
We present a continuum approach for efficient and accurate calculation of reaction field forces and energies in classical molecular-dynamics (MD) simulations of proteins in water. The derivation proceeds in two steps. First, we reformulate the electrostatics of an arbitrarily shaped molecular system, which contains partially charged atoms and is embedded in a dielectric continuum representing the water. A so-called fuzzy partition is used to exactly decompose the system into partial atomic volumes. The reaction field is expressed by means of dipole densities localized at the atoms. Since these densities cannot be calculated analytically for general systems, we introduce and carefully analyze a set of approximations in a second step. These approximations allow us to represent the dipole densities by simple dipoles localized at the atoms. We derive a system of linear equations for these dipoles, which can be solved numerically by iteration. After determining the two free parameters of our approximate method we check its quality by comparisons (i) with an analytical solution, which is available for a perfectly spherical system, (ii) with forces obtained from a MD simulation of a soluble protein in water, and (iii) with reaction field energies of small molecules calculated by a finite difference method.
Shao, Xuan-Min
2016-04-12
The fundamental electromagnetic equations used by lightning researchers were introduced in a seminal paper by Uman, McLain, and Krider in 1975. However, these equations were derived for an infinitely thin, one-dimensional source current, and not for a general three-dimensional current distribution. In this paper, we introduce a corresponding pair of generalized equations that are determined from a three-dimensional, time-dependent current density distribution based on Jefimenko's original electric and magnetic equations. To do this, we derive the Jefimenko electric field equation into a new form that depends only on the time-dependent current density similar to that of Uman, McLain, and Krider,more » rather than on both the charge and current densities in its original form. The original Jefimenko magnetic field equation depends only on current, so no further derivation is needed. We show that the equations of Uman, McLain, and Krider can be readily obtained from the generalized equations if a one-dimensional source current is considered. For the purpose of practical applications, we discuss computational implementation of the new equations and present electric field calculations for a three-dimensional, conical-shape discharge.« less
Sharma, Ashutosh
2018-02-01
Relativistic electron rings hold the possibility of very high accelerating rates, and hopefully a relatively cheap and compact accelerator/collimator for ultrahigh energy proton source. In this work, we investigate the generation of helical shaped quasi-monoenergetic relativistic electron beam and high-energy proton beam from near critical density plasmas driven by petawatt-circularly polarized-short laser pulses. We numerically observe the efficient proton acceleration from magnetic vortex acceleration mechanism by using the three dimensional particle-in-cell simulations; proton beam with peak energy 350 MeV, charge ~10nC and conversion efficiency more than 6% (which implies 2.4 J proton beam out of the 40 J incident laser energy) is reported. We detailed the microphysics involved in the ion acceleration mechanism, which requires investigating the role of self-generated plasma electric and magnetic fields. The concept of efficient generation of quasi-monoenergetic electron and proton beam from near critical density gas targets may be verified experimentally at advanced high power - high repetition rate laser facilities e.g. ELI-ALPS. Such study should be an important step towards the development of high quality electron and proton beam.
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovska, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Hansen, A.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shahzad, M. I.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yang, P.; Yano, S.; Yasin, Z.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration
2016-11-01
We present measurements of the elliptic (v2), triangular (v3) and quadrangular (v4) anisotropic azimuthal flow over a wide range of pseudorapidities (- 3.5 < η < 5). The measurements are performed with Pb-Pb collisions at √{sNN} = 2.76 TeV using the ALICE detector at the Large Hadron Collider (LHC). The flow harmonics are obtained using two- and four-particle correlations from nine different centrality intervals covering central to peripheral collisions. We find that the shape of vn (η) is largely independent of centrality for the flow harmonics n = 2- 4, however the higher harmonics fall off more steeply with increasing | η |. We assess the validity of extended longitudinal scaling of v2 by comparing to lower energy measurements, and find that the higher harmonic flow coefficients are proportional to the charged particle densities at larger pseudorapidities. Finally, we compare our measurements to both hydrodynamical and transport models, and find they both have challenges when it comes to describing our data.
Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges
NASA Astrophysics Data System (ADS)
Sobral, H.; Robledo-Martinez, A.
2016-10-01
A fast, high voltage square-shaped electrical pulse initiated by laser ablation was investigated as a means to enhance the analytical capabilities of laser Induced breakdown spectroscopy (LIBS). The electrical pulse is generated by the discharge of a charged coaxial cable into a matching impedance. The pulse duration and the stored charge are determined by the length of the cable. The ablation plasma was produced by hitting an aluminum target with a nanosecond 532-nm Nd:YAG laser beam under variable fluence 1.8-900 J cm- 2. An enhancement of up to one order of magnitude on the emission signal-to-noise ratio can be achieved with the spark discharge assisted laser ablation. Besides, this increment is larger for ionized species than for neutrals. LIBS signal is also increased with the discharge voltage with a tendency to saturate for high laser fluences. Electron density and temperature evolutions were determined from time delays of 100 ns after laser ablation plasma onset. Results suggest that the spark discharge mainly re-excites the laser produced plume.
Goncharov, P R; Ozaki, T; Sudo, S; Tamura, N; Tolstikhina, I Yu; Sergeev, V Yu
2008-10-01
Measurements of energy- and time-resolved neutral hydrogen and helium fluxes from an impurity pellet ablation cloud, referred to as pellet charge exchange or PCX experiments, can be used to study local fast ion energy distributions in fusion plasmas. The estimation of the local distribution function f(i)(E) of fast ions entering the cloud requires knowledge of both the fraction F(0)(E) of incident ions exiting the cloud as neutral atoms and the attenuation factor A(E,rho) describing the loss of fast atoms in the plasma. Determination of A(E,rho), in turn, requires the total stopping cross section sigma(loss) of neutral atoms in the plasma and the Jacobian reflecting the measurement geometry and the magnetic surface shape. The obtained functions F(0)(E) and A(E,rho) enter multiplicatively into the probability density for escaping neutral particle kinetic energy. A general calculation scheme has been developed and realized as a FORTRAN code, which is to be applied for the calculation of f(i)(E) from PCX experimental results obtained with low-Z impurity pellets.
Printing of highly conductive solution by alternating current electrohydrodynamic direct-write
NASA Astrophysics Data System (ADS)
Jiang, Jiaxin; Zheng, Gaofeng; Wang, Xiang; Zheng, Jianyi; Liu, Juan; Liu, Yifang; Li, Wenwang; Guo, Shumin
2018-03-01
Electrohydrodynamic Direct-Write (EDW) is a novel technology for the printing of micro/nano structures. In this paper, Alternating Current (AC) electrical field was introduced to improve the ejection stability of jet with highly conductive solution. By alternating the electrical field, the polarity of free charges on the surface of jet was changed and the average density of charge, as well as the repulsive force, was reduced to stabilize the jet. When the frequency of AC electrical field increased, the EDW process became more stable and the shape of deposited droplets became more regular. The diameter of printed droplets decreased and the deposition frequency increased with the increase of voltage frequency. The phenomenon of corona discharge was overcome effectively as well. To further evaluate the performance of AC EDW for highly conductive solution, more NaCl was added to the solution and the conductivity was increased to 2810μs/cm. With such high conductivity, the problem of serious corona discharge could still be prevented by AC EDW, and the diameter of printed droplets decreased significantly. This work provides an effective way to accelerate industrial applications of EDW.
Adam, J.; Adamová, D.; Aggarwal, M. M.; ...
2016-07-11
We present measurements of the elliptic (v 2 ), triangular (v 3 ) and quadrangular (v 4 ) anisotropic azimuthal flow over a wide range of pseudorapidities (-3.5 < η < 5). The measurements are performed with Pb–Pb collisions at √s NN =2.76 TeV using the ALICE detector at the Large Hadron Collider (LHC). The flow harmonics are obtained using two- and four-particle correlations from nine different centrality intervals covering central to peripheral collisions. We find that the shape of v n(η) is largely independent of centrality for the flow harmonics n=2–4, however the higher harmonics fall off more steeplymore » with increasing |η|. We assess the validity of extended longitudinal scaling of v₂ by comparing to lower energy measurements, and find that the higher harmonic flow coefficients are proportional to the charged particle densities at larger pseudorapidities. Finally, we compare our measurements to both hydrodynamical and transport models, and find they both have challenges when it comes to describing our data.« less
Significance of Polarization Charges and Isomagnetic Surface in Magnetohydrodynamics
Liang, Zhu-Xing; Liang, Yi
2015-01-01
From the frozen-in field lines concept, a highly conducting fluid can move freely along, but not traverse to, magnetic field lines. We discuss this topic and find that in the study of the frozen-in field lines concept, the effects of inductive and capacitive reactance have been omitted. When admitted, the relationships among the motional electromotive field, the induced electric field, the eddy electric current, and the magnetic field becomes clearer. We emphasize the importance of isomagnetic surfaces and polarization charges, and show analytically that whether a conducting fluid can freely traverse magnetic field lines or not depends solely on the magnetic gradient along the path of the fluid. If a fluid does not change its density distribution and shape (can be regarded as a quasi-rigid body) and moves along isomagnetic surface, it can freely traverse magnetic field lines without any magnetic drag, no matter how strong the magnetic field is. Besides theoretical analysis, we also present experimental results to support our analysis. The main purpose of this work is to correct a fallacy among some astrophysicists. PMID:26322894
Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage.
Chai, Zhisheng; Zhang, Nannan; Sun, Peng; Huang, Yi; Zhao, Chuanxi; Fan, Hong Jin; Fan, Xing; Mai, Wenjie
2016-10-05
The pursuit of harmonic combination of technology and fashion intrinsically points to the development of smart garments. Herein, we present an all-solid tailorable energy textile possessing integrated function of simultaneous solar energy harvesting and storage, and we call it tailorable textile device. Our technique makes it possible to tailor the multifunctional textile into any designed shape without impairing its performance and produce stylish smart energy garments for wearable self-powering system with enhanced user experience and more room for fashion design. The "threads" (fiber electrodes) featuring tailorability and knittability can be large-scale fabricated and then woven into energy textiles. The fiber supercapacitor with merits of tailorability, ultrafast charging capability, and ultrahigh bending-resistance is used as the energy storage module, while an all-solid dye-sensitized solar cell textile is used as the solar energy harvesting module. Our textile sample can be fully charged to 1.2 V in 17 s by self-harvesting solar energy and fully discharged in 78 s at a discharge current density of 0.1 mA.
Goh, Youngin; Ahn, Jaehan; Lee, Jeong Rak; Park, Wan Woo; Ko Park, Sang-Hee; Jeon, Sanghun
2017-10-25
Amorphous oxide semiconductor-based thin film transistors (TFTs) have been considered as excellent switching elements for driving active-matrix organic light-emitting diodes (AMOLED) owing to their high mobility and process compatibility. However, oxide semiconductors have inherent defects, causing fast transient charge trapping and device instability. For the next-generation displays such as flexible, wearable, or transparent displays, an active semiconductor layer with ultrahigh mobility and high reliability at low deposition temperature is required. Therefore, we introduced high density plasma microwave-assisted (MWA) sputtering method as a promising deposition tool for the formation of high density and high-performance oxide semiconductor films. In this paper, we present the effect of the MWA sputtering method on the defects and fast charge trapping in In-Sn-Zn-O (ITZO) TFTs using various AC device characterization methodologies including fast I-V, pulsed I-V, transient current, low frequency noise, and discharge current analysis. Using these methods, we were able to analyze the charge trapping mechanism and intrinsic electrical characteristics, and extract the subgap density of the states of oxide TFTs quantitatively. In comparison to conventional sputtered ITZO, high density plasma MWA-sputtered ITZO exhibits outstanding electrical performance, negligible charge trapping characteristics and low subgap density of states. High-density plasma MWA sputtering method has high deposition rate even at low working pressure and control the ion bombardment energy, resulting in forming low defect generation in ITZO and presenting high performance ITZO TFT. We expect the proposed high density plasma sputtering method to be applicable to a wide range of oxide semiconductor device applications.
NASA Astrophysics Data System (ADS)
Polack, J. K.; Flaska, M.; Enqvist, A.; Sosa, C. S.; Lawrence, C. C.; Pozzi, S. A.
2015-09-01
Organic scintillators are frequently used for measurements that require sensitivity to both photons and fast neutrons because of their pulse shape discrimination capabilities. In these measurement scenarios, particle identification is commonly handled using the charge-integration pulse shape discrimination method. This method works particularly well for high-energy depositions, but is prone to misclassification for relatively low-energy depositions. A novel algorithm has been developed for automatically performing charge-integration pulse shape discrimination in a consistent and repeatable manner. The algorithm is able to estimate the photon and neutron misclassification corresponding to the calculated discrimination parameters, and is capable of doing so using only the information measured by a single organic scintillator. This paper describes the algorithm and assesses its performance by comparing algorithm-estimated misclassification to values computed via a more traditional time-of-flight estimation. A single data set was processed using four different low-energy thresholds: 40, 60, 90, and 120 keVee. Overall, the results compared well between the two methods; in most cases, the algorithm-estimated values fell within the uncertainties of the TOF-estimated values.
Nazir, Safdar; Bernal, Camille; Yang, Kesong
2015-03-11
The highly mobile two-dimensional electron gas (2DEG) formed at the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) is a matter of great interest because of its potential applications in nanoscale solid-state devices. To realize practical implementation of the 2DEG in device design, desired physical properties such as tuned charge carrier density and mobility are necessary. In this regard, polar perovskite-based transition metal oxides can act as doping layers at the interface and are expected to tune the electronic properties of 2DEG of STO-based HS systems dramatically. Herein, we investigated the doping effects of LaTiO3(LTO) layers on the electronic properties of 2DEG at n-type (LaO)(+1)/(TiO2)(0) interface in the LAO/STO HS using spin-polarized density functional theory calculations. Our results indicate an enhancement of orbital occupation near the Fermi energy, which increases with respect to the number of LTO unit cells, resulting in a higher charge carrier density of 2DEG than that of undoped system. The enhanced charge carrier density is attributed to an extra electron introduced by the Ti 3d(1) orbitals from the LTO dopant unit cells. This conclusion is consistent with the recent experimental findings (Appl. Phys. Lett. 2013, 102, 091601). Detailed charge density and partial density of states analysis suggests that the 2DEG in the LTO-doped HS systems primarily comes from partially occupied dyz and dxz orbitals.
Jarzembska, Katarzyna N; Řlepokura, Katarzyna; Kamiński, Radosław; Gutmann, Matthias J; Dominiak, Paulina M; Woźniak, Krzysztof
2017-08-01
Uridine, a nucleoside formed of a uracil fragment attached to a ribose ring via a β-N1-glycosidic bond, is one of the four basic components of ribonucleic acid. Here a new anhydrous structure and experimental charge density distribution analysis of a uridine-5'-monophosphate potassium salt, K(UMPH), is reported. The studied case constitutes the very first structure of a 5'-nucleotide potassium salt according to the Cambridge Structural Database. The excellent crystal quality allowed the collection of charge density data at various temperatures, i.e. 10, 100, 200 and 300 K on one single crystal. Crystal structure and charge density data were analysed thoroughly in the context of related literature-reported examples. Detailed analysis of the charge density distribution revealed elevated anharmonic motion of part of the uracil ring moiety relatively weakly interacting with the neighbouring species. The effect was manifested by alternate positive and negative residual density patterns observed for these atoms, which `disappear' at low temperature. It also occurred that the potassium cation, quite uniformly coordinated by seven O atoms from all molecular fragments of the UMPH - anion, including the O atom from the ribofuranose ring, can be treated as spherical in the charge density model which was supported by theoretical calculations. Apart from the predominant electrostatic interactions, four relatively strong hydrogen bond types further support the stability of the crystal structure. This results in a compact and quite uniform structure (in all directions) of the studied crystal, as opposed to similar cases with layered architecture reported in the literature.
Two-dimensional relativistic space charge limited current flow in the drift space
NASA Astrophysics Data System (ADS)
Liu, Y. L.; Chen, S. H.; Koh, W. S.; Ang, L. K.
2014-04-01
Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.
Building better water models using the shape of the charge distribution of a water molecule
NASA Astrophysics Data System (ADS)
Dharmawardhana, Chamila Chathuranga; Ichiye, Toshiko
2017-11-01
The unique properties of liquid water apparently arise from more than just the tetrahedral bond angle between the nuclei of a water molecule since simple three-site models of water are poor at mimicking these properties in computer simulations. Four- and five-site models add partial charges on dummy sites and are better at modeling these properties, which suggests that the shape of charge distribution is important. Since a multipole expansion of the electrostatic potential describes a charge distribution in an orthogonal basis set that is exact in the limit of infinite order, multipoles may be an even better way to model the charge distribution. In particular, molecular multipoles up to the octupole centered on the oxygen appear to describe the electrostatic potential from electronic structure calculations better than four- and five-site models, and molecular multipole models give better agreement with the temperature and pressure dependence of many liquid state properties of water while retaining the computational efficiency of three-site models. Here, the influence of the shape of the molecular charge distribution on liquid state properties is examined by correlating multipoles of non-polarizable water models with their liquid state properties in computer simulations. This will aid in the development of accurate water models for classical simulations as well as in determining the accuracy needed in quantum mechanical/molecular mechanical studies and ab initio molecular dynamics simulations of water. More fundamentally, this will lead to a greater understanding of how the charge distribution of a water molecule leads to the unique properties of liquid water. In particular, these studies indicate that p-orbital charge out of the molecular plane is important.
Ulybyshev, Maksim; Winterowd, Christopher; Zafeiropoulos, Savvas
2017-11-09
Here in this article, we discuss the nontrivial collective charge excitations (plasmons) of the extended square lattice Hubbard model. Using a fully nonperturbative approach, we employ the hybrid Monte Carlo algorithm to simulate the system at half-filling. A modified Backus-Gilbert method is introduced to obtain the spectral functions via numerical analytic continuation. We directly compute the single-particle density of states which demonstrates the formation of Hubbard bands in the strongly correlated phase. The momentum-resolved charge susceptibility also is computed on the basis of the Euclidean charge-density-density correlator. In agreement with previous extended dynamical mean-field theory studies, we find that, atmore » high strength of the electron-electron interaction, the plasmon dispersion develops two branches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulybyshev, Maksim; Winterowd, Christopher; Zafeiropoulos, Savvas
Here in this article, we discuss the nontrivial collective charge excitations (plasmons) of the extended square lattice Hubbard model. Using a fully nonperturbative approach, we employ the hybrid Monte Carlo algorithm to simulate the system at half-filling. A modified Backus-Gilbert method is introduced to obtain the spectral functions via numerical analytic continuation. We directly compute the single-particle density of states which demonstrates the formation of Hubbard bands in the strongly correlated phase. The momentum-resolved charge susceptibility also is computed on the basis of the Euclidean charge-density-density correlator. In agreement with previous extended dynamical mean-field theory studies, we find that, atmore » high strength of the electron-electron interaction, the plasmon dispersion develops two branches.« less
Differentiating defects in red oak lumber by discriminant analysis using color, shape, and density
B. H. Bond; D. Earl Kline; Philip A. Araman
2002-01-01
Defect color, shape, and density measures aid in the differentiation of knots, bark pockets, stain/mineral streak, and clearwood in red oak, (Quercus rubra). Various color, shape, and density measures were extracted for defects present in color and X-ray images captured using a color line scan camera and an X-ray line scan detector. Analysis of variance was used to...
Diffusion of Conserved Charges in Relativistic Heavy Ion Collisions
NASA Astrophysics Data System (ADS)
Greif, Moritz; Fotakis, Jan. A.; Denicol, Gabriel S.; Greiner, Carsten
2018-06-01
We demonstrate that the diffusion currents do not depend only on gradients of their corresponding charge density, but that the different diffusion charge currents are coupled. This happens in such a way that it is possible for density gradients of a given charge to generate dissipative currents of another charge. Within this scheme, the charge diffusion coefficient is best viewed as a matrix, in which the diagonal terms correspond to the usual charge diffusion coefficients, while the off-diagonal terms describe the coupling between the different currents. In this Letter, we calculate for the first time the complete diffusion matrix for hot and dense nuclear matter, including baryon, electric, and strangeness charges. We find that the baryon diffusion current is strongly affected by baryon charge gradients but also by its coupling to gradients in strangeness. The electric charge diffusion current is found to be strongly affected by electric and strangeness gradients, whereas strangeness currents depend mostly on strange and baryon gradients.
A PIC-MCC code RFdinity1d for simulation of discharge initiation by ICRF antenna
NASA Astrophysics Data System (ADS)
Tripský, M.; Wauters, T.; Lyssoivan, A.; Bobkov, V.; Schneider, P. A.; Stepanov, I.; Douai, D.; Van Eester, D.; Noterdaeme, J.-M.; Van Schoor, M.; ASDEX Upgrade Team; EUROfusion MST1 Team
2017-12-01
Discharges produced and sustained by ion cyclotron range of frequency (ICRF) waves in absence of plasma current will be used on ITER for (ion cyclotron-) wall conditioning (ICWC, Te = 3{-}5 eV, ne < 1018 m-3 ). In this paper, we present the 1D particle-in-cell Monte Carlo collision (PIC-MCC) RFdinity1d for the study the breakdown phase of ICRF discharges, and its dependency on the RF discharge parameters (i) antenna input power P i , (ii) RF frequency f, (iii) shape of the electric field and (iv) the neutral gas pressure pH_2 . The code traces the motion of both electrons and ions in a narrow bundle of magnetic field lines close to the antenna straps. The charged particles are accelerated in the parallel direction with respect to the magnetic field B T by two electric fields: (i) the vacuum RF field of the ICRF antenna E_z^RF and (ii) the electrostatic field E_zP determined by the solution of Poisson’s equation. The electron density evolution in simulations follows exponential increase, {\\dot{n_e} ∼ ν_ion t } . The ionization rate varies with increasing electron density as different mechanisms become important. The charged particles are affected solely by the antenna RF field E_z^RF at low electron density ({ne < 1011} m-3 , {≤ft \\vert E_z^RF \\right \\vert \\gg ≤ft \\vert E_zP \\right \\vert } ). At higher densities, when the electrostatic field E_zP is comparable to the antenna RF field E_z^RF , the ionization frequency reaches the maximum. Plasma oscillations propagating toroidally away from the antenna are observed. The simulated energy distributions of ions and electrons at {ne ∼ 1015} m-3 correspond a power-law Kappa energy distribution. This energy distribution was also observed in NPA measurements at ASDEX Upgrade in ICWC experiments.
Wen, Zhen; Yeh, Min-Hsin; Guo, Hengyu; Wang, Jie; Zi, Yunlong; Xu, Weidong; Deng, Jianan; Zhu, Lei; Wang, Xin; Hu, Chenguo; Zhu, Liping; Sun, Xuhui; Wang, Zhong Lin
2016-10-01
Wearable electronics fabricated on lightweight and flexible substrate are believed to have great potential for portable devices, but their applications are limited by the life span of their batteries. We propose a hybridized self-charging power textile system with the aim of simultaneously collecting outdoor sunshine and random body motion energies and then storing them in an energy storage unit. Both of the harvested energies can be easily converted into electricity by using fiber-shaped dye-sensitized solar cells (for solar energy) and fiber-shaped triboelectric nanogenerators (for random body motion energy) and then further stored as chemical energy in fiber-shaped supercapacitors. Because of the all-fiber-shaped structure of the entire system, our proposed hybridized self-charging textile system can be easily woven into electronic textiles to fabricate smart clothes to sustainably operate mobile or wearable electronics.
NASA Astrophysics Data System (ADS)
Wang, Xi-Feng; Jia, Wen-Zhu; Song, Yuan-Hong; Zhang, Ying-Ying; Dai, Zhong-Ling; Wang, You-Nian
2017-11-01
Pulsed-discharge plasmas offer great advantages in deposition of silicon-based films due to the fact that they can suppress cluster agglomeration, moderate the energy of bombarding ions, and prolong the species' diffusion time on the substrate. In this work, a one-dimensional fluid/Monte-Carlo hybrid model is applied to study pulse modulated radio-frequency (RF) plasmas sustained in capacitively coupled Ar and SiH4/Ar discharges. First, the electron energy distributions in pulsed Ar and SiH4/Ar plasmas have been investigated and compared under identical discharge-circuit conditions. The electron energy distribution function (EEDF) in Ar discharge exhibits a familiar bi-Maxwellian shape during the power-on phase of the pulse, while a more complex (resembling a multi-Maxwellian) distribution with extra inflection points at lower energies is observed in the case of the SiH4/Ar mixture. These features become more prominent with the increasing fraction of SiH4 in the gas mixture. The difference in the shape of the EEDF (which is pronounced inside the plasma but not in the RF sheath where electron heating occurs) is mainly attributed to the electron-impact excitations of SiH4. During the power-off phase of the pulse, the EEDFs in both Ar and SiH4/Ar discharges evolve into bi-Maxwellian shapes, with shrinking high energy tails. Furthermore, the parameter of ion species in the case of SiH4/Ar discharge is strongly modulated by pulsing. For positive ions, such as SiH3+ and Si2H4+ , the particle fluxes overshoot at the beginning of the power-on interval. Meanwhile, for negative ions such as SiH2- and SiH3- , density profiles observed between the electrodes are saddle-shaped due to the repulsion by the self-bias electric field as it builds up. During the power-off phase, the wall fluxes of SiH2- and SiH3- gradually increase, leading to a significant decrease in the net surface charge density on the driven electrode. Compared with ions, the density of SiH3 is poorly modulated by pulsed power and is nearly constant over the entire modulation period, but the density of SiH2 shows a detectable decline in the afterglow. However, because of a much smaller content of SiH2, the deposition rate hardly shows any variation under the selected waveform of the pulse.
Ickert, Stefanie; Hofmann, Johanna; Riedel, Jens; Beck, Sebastian; Pagel, Kevin; Linscheid, Michael W
2018-04-01
Mass spectrometry is applied as a tool for the elucidation of molecular structures. This premises that gas-phase structures reflect the original geometry of the analytes, while it requires a thorough understanding and investigation of the forces controlling and affecting the gas-phase structures. However, only little is known about conformational changes of oligonucleotides in the gas phase. In this study, a series of multiply charged DNA oligonucleotides (n = 15-40) has been subjected to a comprehensive tandem mass spectrometric study to unravel transitions between different ionic gas-phase structures. The nucleobase sequence and the chain length were varied to gain insights into their influence on the geometrical oligonucleotide organization. Altogether, 23 oligonucleotides were analyzed using collision-induced fragmentation. All sequences showed comparable correlation regarding the characteristic collision energy. This value that is also a measure for stability, strongly correlates with the net charge density of the precursor ions. With decreasing charge of the oligonucleotides, an increase in the fragmentation energy was observed. At a distinct charge density, a deviation from linearity was observed for all studied species, indicating a structural reorganization. To corroborate the proposed geometrical change, collisional cross-sections of the oligonucleotides at different charge states were determined using ion mobility-mass spectrometry. The results clearly indicate that an increase in charge density and thus Coulomb repulsion results in the transition from a folded, compact form to elongated structures of the precursor ions. Our data show this structural transition to depend mainly on the charge density, whereas sequence and size do not have an influence.
NASA Astrophysics Data System (ADS)
Diallo, Amadou O.
Optical techniques are used to determine the size, shape and many other properties of particles ranging from the micro to a nano-level. These techniques have endless applications. This research is based on a project assigned by a "Vendor" that wants anonymity. The Leica optical microscope and the Dark Field Polarizing Metallurgical Microscope is used to determine the size and count of ice crystals (Vendors products) in multiple time frames. Since the ice temperature influences, its symmetry and the shape is subject to changes at room temperature (300 K) and the atmospheric pressure that is exerted on the ice crystals varies. The ice crystals are in a mixture of water, electrolytes and carbon dioxide with the optical spectroscopy (Qpod2) and Spectra suite, the optical density of the ice crystals is established from the absorbance and transmission measurements. The optical density in this case is also referred to as absorption; it is plotted with respect to a frequency (GHz), wavelength (nm) or Raman shift (1/cm) which shows the light colliding with the ice particles and CO2. Depending on the peaks positions, it is possible to profile the ice crystal sizes using a mean distribution plots. The region of absorbency wavelength expected for the ice is in the visible range; the water molecules in the (UV) Ultra-violet range and the CO2 in the (IR) infrared region. It is also possible to obtain the reflection and transmission output as a percentage change with the wavelengths ranging from 200 to 1100 nm. The refractive index of the ice can be correlated to the density based on the optical acoustic theorem, or Mie Scattering Theory. The viscosity of the ice crystals and the solutions from which the ice crystals are made of as well are recorded with the SV-10 viscometer. The baseline viscosity is used as reference and set lower than that of the ice crystals. The Zeta potential of the particles present in the mixture are approximated by first finding the viscosity of the solution where the pH level contribute to the surface charges, afterward use Stoke's diameter to compute the settling velocity of the bubbles, or alternatively record it under the microscope. With those parameters in hand the surface charge of the bubble (zeta potential) is approximated.
NASA Astrophysics Data System (ADS)
Roh, Jeongkyun; Lee, Taesoo; Kang, Chan-Mo; Kwak, Jeonghun; Lang, Philippe; Horowitz, Gilles; Kim, Hyeok; Lee, Changhee
2017-04-01
We demonstrated modulation of charge carrier densities in all-solution-processed organic field-effect transistors (OFETs) by modifying the injection properties with self-assembled monolayers (SAMs). The all-solution-processed OFETs based on an n-type polymer with inkjet-printed Ag electrodes were fabricated as a test platform, and the injection properties were modified by the SAMs. Two types of SAMs with different dipole direction, thiophenol (TP) and pentafluorobenzene thiol (PFBT) were employed, modifying the work function of the inkjet-printed Ag (4.9 eV) to 4.66 eV and 5.24 eV with TP and PFBT treatments, respectively. The charge carrier densities were controlled by the SAM treatment in both dominant and non-dominant carrier-channel regimes. This work demonstrates that control of the charge carrier densities can be efficiently achieved by modifying the injection property with SAM treatment; thus, this approach can achieve polarity conversion of the OFETs.
Validation of ISS Floating Potential Measurement Unit Electron Densities and Temperatures
NASA Technical Reports Server (NTRS)
Coffey, Victoria N.; Minow, Joseph I.; Parker, Linda N.; Bui, Them; Wright, Kenneth, Jr.; Koontz, Steven L.; Schneider, T.; Vaughn, J.; Craven, P.
2007-01-01
Validation of the Floating Potential Measurement Unit (FPMU) electron density and temperature measurements is an important step in the process of evaluating International Space Station spacecraft charging issues .including vehicle arcing and hazards to crew during extravehicular activities. The highest potentials observed on Space Station are due to the combined VxB effects on a large spacecraft and the collection of ionospheric electron and ion currents by the 160 V US solar array modules. Ionospheric electron environments are needed for input to the ISS spacecraft charging models used to predict the severity and frequency of occurrence of ISS charging hazards. Validation of these charging models requires comparing their predictions with measured FPMU values. Of course, the FPMU measurements themselves must also be validated independently for use in manned flight safety work. This presentation compares electron density and temperatures derived from the FPMU Langmuir probes and Plasma Impedance Probe against the independent density and temperature measurements from ultraviolet imagers, ground based incoherent scatter radar, and ionosonde sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, P.; Pai, Woei Wu; Chan, Y. -H.
Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here in this paper we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermimore » level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.« less
Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties
Boyer, T.H.; Singer, P.C.; Aiken, G.R.
2008-01-01
Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.
Organic electrical double layer transistors gated with ionic liquids
NASA Astrophysics Data System (ADS)
Xie, Wei; Frisbie, C. Daniel
2011-03-01
Transport in organic semiconductors gated with several types of ionic liquids has been systematically studied at charge densities larger than 1013 cm-2 . We observe a pronounced maximum in channel conductance for both p-type and n-type organic single crystals which is attributed to carrier localization at the semiconductor-electrolyte interface. Carrier mobility, as well as charge density and dielectric capacitance are determined through displacement current measurement and capacitance-voltage measurement. By using a larger-sized and spherical anion, tris(pentafluoroethyl)trifluorophosphate (FAP), effective carrier mobility in rubrene can be enhanced substantially up to 3.2 cm2 V-1 s -1 . Efforts have been made to maximize the charge density in rubrene single crystals, and at low temperature when higher gate bias can be applied, charge density can more than double the amount of that at room temperature, reaching 8*1013 cm-2 holes (0.4 holes per rubrene molecule). NSF MRSEC program at the University of Minnesota.
Sukhomlinov, Sergey V; Müser, Martin H
2015-12-14
In this work, we study how including charge transfer into force fields affects the predicted elastic and vibrational Γ-point properties of ionic crystals, in particular those of rock salt. In both analytical and numerical calculations, we find that charge transfer generally leads to a negative contribution to the Cauchy pressure, P(C) ≡ C12 - C66, where C12 and C66 are elements of the elastic tensor. This contribution increases in magnitude with pressure for different charge-transfer approaches in agreement with results obtained with density functional theory (DFT). However, details of the charge-transfer models determine the pressure dependence of the longitudinal optical-transverse optical splitting and that for partial charges. These last two quantities increase with density as long as the chemical hardness depends at most weakly on the environment while experiments and DFT find a decrease. In order to reflect the correct trends, the charge-transfer expansion has to be made around ions and the chemical (bond) hardness has to increase roughly exponentially with inverse density or bond lengths. Finally, the adjustable force-field parameters only turn out meaningful, when the expansion is made around ions.
NASA Astrophysics Data System (ADS)
Sukhomlinov, Sergey V.; Müser, Martin H.
2015-12-01
In this work, we study how including charge transfer into force fields affects the predicted elastic and vibrational Γ-point properties of ionic crystals, in particular those of rock salt. In both analytical and numerical calculations, we find that charge transfer generally leads to a negative contribution to the Cauchy pressure, PC ≡ C12 - C66, where C12 and C66 are elements of the elastic tensor. This contribution increases in magnitude with pressure for different charge-transfer approaches in agreement with results obtained with density functional theory (DFT). However, details of the charge-transfer models determine the pressure dependence of the longitudinal optical-transverse optical splitting and that for partial charges. These last two quantities increase with density as long as the chemical hardness depends at most weakly on the environment while experiments and DFT find a decrease. In order to reflect the correct trends, the charge-transfer expansion has to be made around ions and the chemical (bond) hardness has to increase roughly exponentially with inverse density or bond lengths. Finally, the adjustable force-field parameters only turn out meaningful, when the expansion is made around ions.
Nuclear charge radii: density functional theory meets Bayesian neural networks
NASA Astrophysics Data System (ADS)
Utama, R.; Chen, Wei-Chia; Piekarewicz, J.
2016-11-01
The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain.
Foster, Tobias
2011-09-01
A novel analytical and continuous density distribution function with a widely variable shape is reported and used to derive an analytical scattering form factor that allows us to universally describe the scattering from particles with the radial density profile of homogeneous spheres, shells, or core-shell particles. Composed by the sum of two Fermi-Dirac distribution functions, the shape of the density profile can be altered continuously from step-like via Gaussian-like or parabolic to asymptotically hyperbolic by varying a single "shape parameter", d. Using this density profile, the scattering form factor can be calculated numerically. An analytical form factor can be derived using an approximate expression for the original Fermi-Dirac distribution function. This approximation is accurate for sufficiently small rescaled shape parameters, d/R (R being the particle radius), up to values of d/R ≈ 0.1, and thus captures step-like, Gaussian-like, and parabolic as well as asymptotically hyperbolic profile shapes. It is expected that this form factor is particularly useful in a model-dependent analysis of small-angle scattering data since the applied continuous and analytical function for the particle density profile can be compared directly with the density profile extracted from the data by model-free approaches like the generalized inverse Fourier transform method. © 2011 American Chemical Society
Chiral charge and orbital order in 1T-TiSe2
NASA Astrophysics Data System (ADS)
van Wezel, Jasper
2012-02-01
Helical arrangements of spins are common among magnetic materials. The first material to harbor a corkscrew pattern of charge density on the other hand, was discovered only very recently [1,2]. The nature of the order parameter is of key relevance, since rotating a magnetic vector around any propagation vector trivially yields a helical pattern. In contrast, the purely scalar charge density cannot straightforwardly support a chiral state. Here we resolve this paradox by identifying the microscopic mechanism underlying the formation of the chiral charge density wave in 1T-TiSe2. It is shown that the emergence of chirality is accompanied by the simultaneous formation of orbital order [3] We show that this type of combined orbital and charge order may in fact be expected to be a generic property of a broad class of charge ordered materials and discuss the prerequisites for finding chiral charge order in other materials. [4pt] [1] J. Ishioka, Y. H. Liu, K. Shimatake, T. Kurosawa, K. Ichimura, Y. Toda, M. Oda and S. Tanda, Phys. Rev. Lett. 105, 176401 (2010). [2] J. van Wezel and P. B. Littlewood, Physics 3, 87 (2010). [3] J. van Wezel, arXiv:1106.1930v1 (2011).
Shi, Minjie; Yang, Cheng; Song, Xuefeng; Liu, Jing; Zhao, Liping; Zhang, Peng; Gao, Lian
2017-05-24
Wire-shaped supercapacitors (SCs) based on shape memory materials are of considerable interest for next-generation portable and wearable electronics. However, the bottleneck in this field is how to develop the devices with excellent electrochemical performance while well-maintaining recoverability and flexibility. Herein, a unique asymmetric electrode concept is put forward to fabricate smart wire-shaped SCs with ultrahigh energy density, which is realized by using porous carbon dodecahedra coated on NiTi alloy wire and flexible graphene fiber as yarn electrodes. Notably, the wire-shaped SCs not only exhibit high flexibility that can be readily woven into real clothing but also represent the available recoverable ability. When irreversible plastic deformations happen, the deformed shape of the devices can automatically resume the initial predesigned shape in a warm environment (about 35 °C). More importantly, the wire-shaped SCs act as efficient energy storage devices, which display high volumetric energy density (8.9 mWh/cm 3 ), volumetric power density (1080 mW/cm 3 ), strong durability in multiple mechanical states, and steady electrochemical behavior after repeated shape recovery processes. Considering their relative facile fabrication technology and excellent electrochemical performance, this asymmetric electrode strategy produced smart wire-shaped supercapacitors desirable for multifunctional portable and wearable electronics.
Theoretical prediction of the impact of Auger recombination on charge collection from an ion track
NASA Technical Reports Server (NTRS)
Edmonds, Larry D.
1991-01-01
A recombination mechanism that significantly reduces charge collection from very dense ion tracks in silicon devices was postulated by Zoutendyk et al. The theoretical analysis presented here concludes that Auger recombination is such a mechanism and is of marginal importance for higher density tracks produced by 270-MeV krypton, but of major importance for higher density tracks. The analysis shows that recombination loss is profoundly affected by track diffusion. As the track diffuses, the density and recombination rate decrease so fast that the linear density (number of electron-hole pairs per unit length) approaches a non-zero limiting value as t yields infinity. Furthermore, the linear density is very nearly equal to this limiting value in a few picoseconds or less. When Auger recombination accompanies charge transport processes that have much longer time scales, it can be simulated by assigning a reduced linear energy transfer to the ion.
Sugihara-Seki, Masako; Akinaga, Takeshi; O-Tani, Hideyuki
2012-01-01
A fluid mechanical and electrostatic model for the transport of solute molecules across the vascular endothelial surface glycocalyx layer (EGL) was developed to study the charge effect on the diffusive and convective transport of the solutes. The solute was assumed to be a spherical particle with a constant surface charge density, and the EGL was represented as an array of periodically arranged circular cylinders of like charge, with a constant surface charge density. By combining the fluid mechanical analyses for the flow around a solute suspended in an electrolyte solution and the electrostatic analyses for the free energy of the interaction between the solute and cylinders based on a mean field theory, we estimated the transport coefficients of the solute across the EGL. Both of diffusive and convective transports are reduced compared to those for an uncharged system, due to the stronger exclusion of the solute that results from the repulsive electrostatic interaction. The model prediction for the reflection coefficient for serum albumin agreed well with experimental observations if the charge density in the EGL is ranged from approximately -10 to -30 mEq/l.
NASA Astrophysics Data System (ADS)
Gómez-Silva, G.; Orellana, P. A.; Anda, E. V.
2018-02-01
In the present work, we investigate the thermoelectric properties of a T-shaped double quantum dot system coupled to two metallic leads incorporating the intra-dot Coulomb interaction. We explore the role of the interference effects and Coulomb blockade on the thermoelectric efficiency of the system in the linear and nonlinear regimes. We studied as well the effect of a Van-Hove singularity of the leads density of states (DOS) at the neighborhood of the Fermi energy, a situation that can be obtained using a carbon nanotube, a graphene nano-ribbon or other contacts with one-dimensional properties. The system is studied above the Kondo temperature. The Coulomb blockade of the electronic charges is studied using the Hubbard III approximation, which properly describes the transport properties of this regime. In the linear response, our results show an enhancement of the thermopower and the figure of merit of the system. For a nonlinear situation, we calculate the thermoelectric efficiency and power output, concluding that the T-shaped double quantum dot is an efficient thermoelectric device. Moreover, we demonstrate the great importance of the DOS Van-Hove singularity at the neighborhood of the Fermi energy to obtain a very significant increase in the thermoelectric efficiency of the system.
NASA Astrophysics Data System (ADS)
Bajaj, Akash; Janet, Jon Paul; Kulik, Heather J.
2017-11-01
The flat-plane condition is the union of two exact constraints in electronic structure theory: (i) energetic piecewise linearity with fractional electron removal or addition and (ii) invariant energetics with change in electron spin in a half filled orbital. Semi-local density functional theory (DFT) fails to recover the flat plane, exhibiting convex fractional charge errors (FCE) and concave fractional spin errors (FSE) that are related to delocalization and static correlation errors. We previously showed that DFT+U eliminates FCE but now demonstrate that, like other widely employed corrections (i.e., Hartree-Fock exchange), it worsens FSE. To find an alternative strategy, we examine the shape of semi-local DFT deviations from the exact flat plane and we find this shape to be remarkably consistent across ions and molecules. We introduce the judiciously modified DFT (jmDFT) approach, wherein corrections are constructed from few-parameter, low-order functional forms that fit the shape of semi-local DFT errors. We select one such physically intuitive form and incorporate it self-consistently to correct semi-local DFT. We demonstrate on model systems that jmDFT represents the first easy-to-implement, no-overhead approach to recovering the flat plane from semi-local DFT.
Exactly solvable model of the two-dimensional electrical double layer.
Samaj, L; Bajnok, Z
2005-12-01
We consider equilibrium statistical mechanics of a simplified model for the ideal conductor electrode in an interface contact with a classical semi-infinite electrolyte, modeled by the two-dimensional Coulomb gas of pointlike unit charges in the stability-against-collapse regime of reduced inverse temperatures 0< or = beta < 2. If there is a potential difference between the bulk interior of the electrolyte and the grounded electrode, the electrolyte region close to the electrode (known as the electrical double layer) carries some nonzero surface charge density. The model is mappable onto an integrable semi-infinite sine-Gordon theory with Dirichlet boundary conditions. The exact form-factor and boundary state information gained from the mapping provide asymptotic forms of the charge and number density profiles of electrolyte particles at large distances from the interface. The result for the asymptotic behavior of the induced electric potential, related to the charge density via the Poisson equation, confirms the validity of the concept of renormalized charge and the corresponding saturation hypothesis. It is documented on the nonperturbative result for the asymptotic density profile at a strictly nonzero beta that the Debye-Hückel beta-->0 limit is a delicate issue.
Determination of Transverse Charge Density from Kaon Form Factor Data
NASA Astrophysics Data System (ADS)
Mejia-Ott, Johann; Horn, Tanja; Pegg, Ian; Mecholski, Nicholas; Carmignotto, Marco; Ali, Salina
2016-09-01
At the level of nucleons making up atomic nuclei, among subatomic particles made up of quarks, K-mesons or kaons represent the most simple hadronic system including the heavier strange quark, having a relatively elementary bound state of a quark and an anti-quark as its valence structure. Its electromagnetic structure is then parametrized by a single, dimensionless quantity known as the form factor, the two-dimensional Fourier transform of which yields the quantity of transverse charge density. Transverse charge density, in turn, provides a needed framework for the interpretation of form factors in terms of physical charge and magnetization, both with respect to the propagation of a fast-moving nucleon. To this is added the value of strange quarks in ultimately presenting a universal, process-independent description of nucleons, further augmenting the importance of studying the kaon's internal structure. The pressing character of such research questions directs the present paper, describing the first extraction of transverse charge density from electromagnetic kaon form factor data. The extraction is notably extended to form factor data at recently acquired higher energy levels, whose evaluation could permit more complete phenomenological models for kaon behavior to be proposed. This work was supported in part by NSF Grant PHY-1306227.
Recent charge-breeding developments with EBIS/T devices (invited).
Schwarz, S; Lapierre, A
2016-02-01
Short breeding times, narrow charge state distributions, low background, high efficiency, and the flexible time structure of the ejected low-emittance ion pulses are among the most attractive features of electron beam ion source or trap (EBIS/T) based charge breeders. Significant progress has been made to further improve these properties: Several groups are working to increase current densities towards 10(3) or even 10(4) A/cm(2). These current densities will become necessary to deliver high charge states of heavy nuclei in a short time and/or provide sufficient space-charge capacity to handle high-current ion beams in next-generation rare-isotope beam (RIB) facilities. Efficient capture of continuous beams, attractive because of its potential of handling highest-current ion beams, has become possible with the development of high-density electron beams of >1 A. Requests for the time structure of the charge bred ion pulse range from ultra-short pulses to quasi-continuous beams. Progress is being made on both ends of this spectrum, by either dividing the extracted charge in many pulse-lets, adjusting the extraction potential for a near-uniform long pulse, or adding dedicated devices to spread the ion bunches delivered from the EBIS/T in time. Advances in EBIS/T charge state breeding are summarized, including recent results with NSCL's ReA EBIS/T charge breeder.
Recent charge-breeding developments with EBIS/T devices (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, S., E-mail: schwarz@nscl.msu.edu; Lapierre, A.
Short breeding times, narrow charge state distributions, low background, high efficiency, and the flexible time structure of the ejected low-emittance ion pulses are among the most attractive features of electron beam ion source or trap (EBIS/T) based charge breeders. Significant progress has been made to further improve these properties: Several groups are working to increase current densities towards 10{sup 3} or even 10{sup 4} A/cm{sup 2}. These current densities will become necessary to deliver high charge states of heavy nuclei in a short time and/or provide sufficient space-charge capacity to handle high-current ion beams in next-generation rare-isotope beam (RIB) facilities.more » Efficient capture of continuous beams, attractive because of its potential of handling highest-current ion beams, has become possible with the development of high-density electron beams of >1 A. Requests for the time structure of the charge bred ion pulse range from ultra-short pulses to quasi-continuous beams. Progress is being made on both ends of this spectrum, by either dividing the extracted charge in many pulse-lets, adjusting the extraction potential for a near-uniform long pulse, or adding dedicated devices to spread the ion bunches delivered from the EBIS/T in time. Advances in EBIS/T charge state breeding are summarized, including recent results with NSCL’s ReA EBIS/T charge breeder.« less
Analysis of polarization in hydrogen bonded complexes: An asymptotic projection approach
NASA Astrophysics Data System (ADS)
Drici, Nedjoua
2018-03-01
The asymptotic projection technique is used to investigate the polarization effect that arises from the interaction between the relaxed, and frozen monomeric charge densities of a set of neutral and charged hydrogen bonded complexes. The AP technique based on the resolution of the original Kohn-Sham equations can give an acceptable qualitative description of the polarization effect in neutral complexes. The significant overlap of the electron densities, in charged and π-conjugated complexes, impose further development of a new functional, describing the coupling between constrained and non-constrained electron densities within the AP technique to provide an accurate representation of the polarization effect.
Superconducting and charge density wave transition in single crystalline LaPt2Si2
NASA Astrophysics Data System (ADS)
Gupta, Ritu; Dhar, S. K.; Thamizhavel, A.; Rajeev, K. P.; Hossain, Z.
2017-06-01
We present results of our comprehensive studies on single crystalline LaPt2Si2. Pronounced anomaly in electrical resistivity and heat capacity confirms the bulk nature of superconductivity (SC) and charge density wave (CDW) transition in the single crystals. While the charge density wave transition temperature is lower, the superconducting transition temperature is higher in single crystal compared to the polycrystalline sample. This result confirms the competing nature of CDW and SC. Another important finding is the anomalous temperature dependence of upper critical field H C2(T). We also report the anisotropy in the transport and magnetic measurements of the single crystal.
Charged-Particle Multiplicity near Midrapidity in Central Au+Au Collisions at sNN = 56 and 130 GeV
NASA Astrophysics Data System (ADS)
Back, B. B.; Baker, M. D.; Barton, D. S.; Basilev, S.; Bates, B. D.; Baum, R.; Betts, R. R.; Białas, A.; Bindel, R.; Bogucki, W.; Budzanowski, A.; Busza, W.; Carroll, A.; Ceglia, M.; Chang, Y.-H.; Chen, A. E.; Coghen, T.; Conner, C.; Czyż, W.; Dabrowski, B.; Decowski, M. P.; Despet, M.; Fita, P.; Fitch, J.; Friedl, M.; Gałuszka, K.; Ganz, R.; Garcia, E.; George, N.; Godlewski, J.; Gomes, C.; Griesmayer, E.; Gulbrandsen, K.; Gushue, S.; Halik, J.; Halliwell, C.; Haridas, P.; Hayes, A.; Heintzelman, G. A.; Henderson, C.; Hollis, R.; HołyŃski, R.; Holzman, B.; Johnson, E.; Kane, J.; Katzy, J.; Kita, W.; Kotuła, J.; Kraner, H.; Kucewicz, W.; Kulinich, P.; Law, C.; Lemler, M.; Ligocki, J.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Neal, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Patel, M.; Pernegger, H.; Plesko, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Ross, D.; Rosenberg, L.; Ryan, J.; Sanzgiri, A.; Sarin, P.; Sawicki, P.; Scaduto, J.; Shea, J.; Sinacore, J.; Skulski, W.; Steadman, S. G.; Stephans, G. S.; Steinberg, P.; Straczek, A.; Stodulski, M.; Strȩk, M.; Stopa, Z.; Sukhanov, A.; Surowiecka, K.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zalewski, K.; Żychowski, P.
2000-10-01
We present the first measurement of pseudorapidity densities of primary charged particles near midrapidity in Au+Au collisions at sNN = 56 and 130 GeV. For the most central collisions, we find the charged-particle pseudorapidity density to be dN/dη\\|\\|η\\|<1 = 408+/-12\\(stat\\)+/-30\\(syst\\) at 56 GeV and 555+/-12\\(stat\\)+/-35\\(syst\\) at 130 GeV, values that are higher than any previously observed in nuclear collisions. Compared to proton-antiproton collisions, our data show an increase in the pseudorapidity density per participant by more than 40% at the higher energy.
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun
2018-06-01
The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most significant suppression impact on surface charge accumulation.
Charging of Basic Structural Shapes in a Simulated Lunar Environment
NASA Technical Reports Server (NTRS)
Craven, P.; Schneider, T.; Vaughn, J.; Wang, J.; Polansky, J.
2012-01-01
In order to understand the effect of the charging environment on and around structures on the lunar surface, we have exposed basic structural shapes to electrons and Vacuum Ultra-Violet (VUV) radiation. The objects were, in separate runs, isolated, grounded, and placed on dielectric surfaces. In this presentation, the effects of electron energy, VUV flux, and sample orientation, on the charging of the objects will be examined. The potential of each of the object surfaces was monitored in order to determine the magnitude of the ram and wake effects under different orientations relative to the incoming beams (solar wind). This is a part of, and complementary to, the study of the group at USC under Dr. J. Wang, the purpose of which is to model the effects of the charging environment on structures on the lunar surface.
The study of the dynamics of erythrocytes under the influence of an external electric field
NASA Astrophysics Data System (ADS)
Mamaeva, Sargylana N.; Maksimov, Georgy V.; Antonov, Stepan R.
2017-11-01
A mathematical model is considered for the determination of the surface charge of an erythrocyte with its shape approximated by a surface of revolution of the second order, and the investigation of the dynamics of erythrocytes under the influence of an external electric field. In the first part of this work, the electrical surface charge of the erythrocyte of the patient was calculated with the assumption that the change in the shape and size of the red blood cells leads to stabilization of the electric field, providing a normal electrostatic repulsion. In the second part of the work, the research results of dynamics of changes in the morphology of erythrocytes under the influence of an external electric field depending on the values of their surface charge and resistance of blood plasma is presented. In the course of the work, the dependence of the surface charge of red blood cells from their shape and size is presented. The determination of the relationship between the value of the charge field and the surface of erythrocytes in norm and in pathology is shown. The dependence of the velocity of the erythrocytes on the characteristics of the external electric field, surface charge of the erythrocyte and properties of the medium is obtained. The results of this study can be applied indirectly to diagnose diseases and to develop recommendations for experimental studies of hemodynamics under the influence of various external physical factors.
NASA Astrophysics Data System (ADS)
Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.
2016-01-01
Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for the nonlinear response of an electron-mediated charge-density-wave-ordered material. We examine both the dc current and the order parameter of the conduction electrons as the ordered system is driven by the electric field. Although the formalism we develop applies to all models, for concreteness, we examine the charge-density-wave phase of the Falicov-Kimball model, which displays a number of anomalous behaviors including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field.
Visualization of electronic density
Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; ...
2015-04-22
An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.
Plasma effect on fast-electron-impact-ionization from 2p state of hydrogen-like ions
NASA Astrophysics Data System (ADS)
Qi, Y. Y.; Ning, L. N.; Wang, J. G.; Qu, Y. Z.
2013-12-01
Plasma effects on the high-energy electron-impact ionization process from 2p orbital of Hydrogen-like ions embedded in weakly coupled plasmas are investigated in the first Born approximation. The plasma screening of the Coulomb interaction between charged particles is represented by the Debye Hückel model. The screening of Coulomb interactions decreases the ionization energies and varies the wave functions for not only the bound orbital but also the continuum; the number of the summation for the angular-momentum states in the generalized oscillator strength densities is reduced with the plasma screening stronger when the ratio of ɛ /I2p (I2p is the ionization energy of 2p state and ɛ is the energy of the continuum electron) is kept, and then the contribution from the lower-angular-momentum states dominates the generalized oscillator strength densities, so the threshold phenomenon in the generalized oscillator strength densities and the double differential cross sections are remarkable: The accessional minima, the outstanding enhancement, and the resonance peaks emerge a certain energy region, whose energy position and width are related to the vicinity between δ and the critical value δnlc, corresponding to the special plasma condition when the bound state |nl⟩ just enters the continuum; the multiple virtual-state enhancement and the multiple shape resonances in a certain energy domain also appear in the single differential cross section whenever the plasma screening parameter passes through a critical value δnlc, which is similar to the photo-ionization process but different from it, where the dipole transition only happens, but multi-pole transition will occur in the electron-impact ionization process, so its multiple virtual-state enhancements and the multiple shape resonances appear more frequently than the photo-ionization process.
Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells
NASA Astrophysics Data System (ADS)
Aeberhard, Urs; Rau, Uwe
2017-06-01
The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions. Its derivation is based on detailed balance relations between local absorption and emission rates in optically isotropic media with nondegenerate quasiequilibrium carrier distributions. In many cases, the dependence of density and spatial variation of electronic and optical device states on the point of operation is modest and the reciprocity relation holds. In nanostructure-based photovoltaic devices exploiting confined modes, however, the underlying assumptions are no longer justifiable. In the case of ultrathin absorber solar cells, the modification of the electronic structure with applied bias is significant due to the large variation of the built-in field. Straightforward use of the external quantum efficiency as measured at short circuit conditions in the photovoltaic reciprocity theory thus fails to reproduce the electroluminescence spectrum at large forward bias voltage. This failure is demonstrated here by numerical simulation of both spectral quantities at normal incidence and emission for an ultrathin GaAs p -i -n solar cell using an advanced quantum kinetic formalism based on nonequilibrium Green's functions of coupled photons and charge carriers. While coinciding with the semiclassical relations under the conditions of their validity, the theory provides a consistent microscopic relationship between absorption, emission, and charge carrier transport in photovoltaic devices at arbitrary operating conditions and for any shape of optical and electronic density of states.
Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells.
Aeberhard, Urs; Rau, Uwe
2017-06-16
The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions. Its derivation is based on detailed balance relations between local absorption and emission rates in optically isotropic media with nondegenerate quasiequilibrium carrier distributions. In many cases, the dependence of density and spatial variation of electronic and optical device states on the point of operation is modest and the reciprocity relation holds. In nanostructure-based photovoltaic devices exploiting confined modes, however, the underlying assumptions are no longer justifiable. In the case of ultrathin absorber solar cells, the modification of the electronic structure with applied bias is significant due to the large variation of the built-in field. Straightforward use of the external quantum efficiency as measured at short circuit conditions in the photovoltaic reciprocity theory thus fails to reproduce the electroluminescence spectrum at large forward bias voltage. This failure is demonstrated here by numerical simulation of both spectral quantities at normal incidence and emission for an ultrathin GaAs p-i-n solar cell using an advanced quantum kinetic formalism based on nonequilibrium Green's functions of coupled photons and charge carriers. While coinciding with the semiclassical relations under the conditions of their validity, the theory provides a consistent microscopic relationship between absorption, emission, and charge carrier transport in photovoltaic devices at arbitrary operating conditions and for any shape of optical and electronic density of states.
Lorenzo, Julia; Montaña, Ángel M
2016-09-01
Molecular shape similarity and field similarity have been used to interpret, in a qualitative way, the structure-activity relationships in a selected series of platinum(IV) complexes with anticancer activity. MM and QM calculations have been used to estimate the electron density, electrostatic potential maps, partial charges, dipolar moments and other parameters to correlate the stereo-electronic properties with the differential biological activity of complexes. Extended Electron Distribution (XED) field similarity has been also evaluated for the free 1,4-diamino carrier ligands, in a fragment-based drug design approach, comparing Connolly solvent excluded surface, hydrophobicity field surface, Van der Waals field surface, nucleophilicity field surface, electrophilicity field surface and the extended electron-distribution maxima field points. A consistency has been found when comparing the stereo-electronic properties of the studied series of platinum(IV) complexes and/or the free ligands evaluated and their in vitro anticancer activity. Copyright © 2016 Elsevier Inc. All rights reserved.
Sun, J P; Matsuura, K; Ye, G Z; Mizukami, Y; Shimozawa, M; Matsubayashi, K; Yamashita, M; Watashige, T; Kasahara, S; Matsuda, Y; Yan, J-Q; Sales, B C; Uwatoko, Y; Cheng, J-G; Shibauchi, T
2016-07-19
The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (Tc) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase of Tc has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to ∼15 GPa, which uncover the dome shape of magnetic phase superseding the nematic order. Above ∼6 GPa the sudden enhancement of superconductivity (Tc≤38.3 K) accompanies a suppression of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome, we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed in the normal states of the high-Tc phase above 6 GPa. The obtained phase diagram highlights unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-Tc cuprates.
Effect of packing material on methane activation in a dielectric barrier discharge reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, Sungkwon; Hoon Lee, Dae; Seok Kang, Woo
2013-12-15
The conversion of methane is measured in a planar-type dielectric barrier discharge reactor using γ-Al{sub 2}O{sub 3} (sphere), α-Al{sub 2}O{sub 3} (sphere), and γ-Al{sub 2}O{sub 3} (16–20 mesh). Investigations on the surface properties and shape of the three packing materials clearly indicate that methane activation is considerably affected by the material used. Capacitances inside the discharge gap are estimated from charge–voltage plots, and a comparison of the generated and transferred charges for different packing conditions show that the difference in surface properties between γ- and α-phase Al{sub 2}O{sub 3} affects the discharge characteristics. Moreover, all packing conditions show different chargemore » characteristics that are related to the electron density. Finally, the packing material's shape affects the local electron temperature, which is strongly related to methane conversion. The combined results indicate that both microscale and macroscale variations in a packing material affect the discharge characteristics, and a packing material should be considered carefully for effective methane activation.« less
Quasiparticle energy bands and Fermi surfaces of monolayer NbSe2
NASA Astrophysics Data System (ADS)
Kim, Sejoong; Son, Young-Woo
2017-10-01
A quasiparticle band structure of a single layer 2 H -NbSe2 is reported by using first-principles G W calculation. We show that a self-energy correction increases the width of a partially occupied band and alters its Fermi surface shape when comparing those using conventional mean-field calculation methods. Owing to a broken inversion symmetry in the trigonal prismatic single layer structure, the spin-orbit interaction is included and its impact on the Fermi surface and quasiparticle energy bands are discussed. We also calculate the doping dependent static susceptibilities from the band structures obtained by the mean-field calculation as well as G W calculation with and without spin-orbit interactions. A complete tight-binding model is constructed within the three-band third nearest neighbor hoppings and is shown to reproduce our G W quasiparticle energy bands and Fermi surface very well. Considering variations of the Fermi surface shapes depending on self-energy corrections and spin-orbit interactions, we discuss the formations of charge density wave (CDW) with different dielectric environments and their implications on recent controversial experimental results on CDW transition temperatures.
NASA Astrophysics Data System (ADS)
Bartczak, Witold M.; Kroh, Jerzy
The simulation of the transient d.c. conductivity in a quasi one-dimensional system of charges produced by a pulse of ionizing radiation in a solid sample has been performed. The simulation is based on the macroscopic conductivity equations and can provide physical insight into d.c. conductivity measurements, particularly for the case of transient currents in samples with internal space charge. We consider the system of mobile (negative) and immobile (positive) charges produced by a pulse of ionizing radiation in the sample under a fixed external voltage V0. The presence of space charge results in an electric field which is a function of both the spatial and the time variable: E( z, t). Given the space charge density, the electric field can be calculated from the Poisson equation. However, for an arbitrary space charge distribution, the corresponding equations can only be solved numerically. The two non-trivial cases for which approximate analytical solutions can be provided are: (i) The density of the current carriers n( z, t) is negligible in comparison with the density of immobile space charge N( z). A general analytical solution has been found for this case using Green's functions. The solutions for two cases, viz. the homogeneous distribution of space charge N( z) = N, and the non-homogeneous exponential distribution N( z) = A exp(- Bz), have been separately discussed. (ii) The space charge created in the pulse without any space charge present prior to the irradiation.