NASA Astrophysics Data System (ADS)
Tamagawa, Yoichi; Inukai, Yuji; Ogawa, Izumi; Kobayashi, Masaaki
2015-09-01
The pulse-shape discrimination (PSD) in a GAGG single-crystal scintillator was studied by using a shape indicator (SI) parameter of the optimal digital filter method. SI is one of the most useful PSD methods that use typical pulse shapes. Excellent discrimination between 0.662 MeV γ-rays and 5.48 MeV α-rays was achieved. For a cut at SI=0.0056, 99.95% of the γ-rays and only 0.22% of the α-rays were retained. Selection of background events (γ and α) in the GAGG scintillator was achieved by using the PSD method.
NASA Astrophysics Data System (ADS)
Qin, Zhang-jian; Chen, Chuan; Luo, Jun-song; Xie, Xing-hong; Ge, Liang-quan; Wu, Qi-fan
2018-04-01
It is a usual practice for improving spectrum quality by the mean of designing a good shaping filter to improve signal-noise ratio in development of nuclear spectroscopy. Another method is proposed in the paper based on discriminating pulse-shape and discarding the bad pulse whose shape is distorted as a result of abnormal noise, unusual ballistic deficit or bad pulse pile-up. An Exponentially Decaying Pulse (EDP) generated in nuclear particle detectors can be transformed into a Mexican Hat Wavelet Pulse (MHWP) and the derivation process of the transform is given. After the transform is performed, the baseline drift is removed in the new MHWP. Moreover, the MHWP-shape can be discriminated with the three parameters: the time difference between the two minima of the MHWP, and the two ratios which are from the amplitude of the two minima respectively divided by the amplitude of the maximum in the MHWP. A new type of nuclear spectroscopy was implemented based on the new digital shaping filter and the Gamma-ray spectra were acquired with a variety of pulse-shape discrimination levels. It had manifested that the energy resolution and the peak-Compton ratio were both improved after the pulse-shape discrimination method was used.
Radioanalytical Chemistry for Automated Nuclear Waste Process Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devol, Timothy A.
2005-06-01
Comparison of different pulse shape discrimination methods was performed under two different experimental conditions and the best method was identified. Beta/gamma discrimination of 90Sr/90Y and 137Cs was performed using a phoswich detector made of BC400 (2.5 cm OD x 1.2 cm) and BGO (2.5 cm O.D. x 2.5 cm ) scintillators. Alpha/gamma discrimination of 210Po and 137Cs was performed using a CsI:Tl (2.8 x 1.4 x 1.4 cm3) scintillation crystal. The pulse waveforms were digitized with a DGF-4c (X-Ray Instrumentation Associates) and analyzed offline with IGOR Pro software (Wavemetrics, Inc.). The four pulse shape discrimination methods that were compared include:more » rise time discrimination, digital constant fraction discrimination, charge ratio, and constant time discrimination (CTD) methods. The CTD method is the ratio of the pulse height at a particular time after the beginning of the pulse to the time at the maximum pulse height. The charge comparison method resulted in a Figure of Merit (FoM) of 3.3 (9.9 % spillover) and 3.7 (0.033 % spillover) for the phoswich and the CsI:Tl scintillator setups, respectively. The CTD method resulted in a FoM of 3.9 (9.2 % spillover) and 3.2 (0.25 % spillover), respectively. Inverting the pulse shape data typically resulted in a significantly higher FoM than conventional methods, but there was no reduction in % spillover values. This outcome illustrates that the FoM may not be a good scheme for the quantification of a system to perform pulse shape discrimination. Comparison of several pulse shape discrimination (PSD) methods was performed as a means to compare traditional analog and digital PSD methods on the same scintillation pulses. The X-ray Instrumentation Associates DGF-4C (40 Msps, 14-bit) was used to digitize waveforms from a CsI:Tl crystal and BC400/BGO phoswich detector.« less
NASA Astrophysics Data System (ADS)
Yu, Xin; Cao, Liang; Liu, Jinhu; Zhao, Bo; Shan, Xiujuan; Dou, Shuozeng
2014-09-01
We tested the use of otolith shape analysis to discriminate between species and stocks of five goby species ( Ctenotrypauchen chinensis, Odontamblyopus lacepedii, Amblychaeturichthys hexanema, Chaeturichthys stigmatias, and Acanthogobius hasta) found in northern Chinese coastal waters. The five species were well differentiated with high overall classification success using shape indices (83.7%), elliptic Fourier coefficients (98.6%), or the combination of both methods (94.9%). However, shape analysis alone was only moderately successful at discriminating among the four stocks (Liaodong Bay, LD; Bohai Bay, BH; Huanghe (Yellow) River estuary HRE, and Jiaozhou Bay, JZ stocks) of A. hasta (50%-54%) and C. stigmatias (65.7%-75.8%). For these two species, shape analysis was moderately successful at discriminating the HRE or JZ stocks from other stocks, but failed to effectively identify the LD and BH stocks. A large number of otoliths were misclassified between the HRE and JZ stocks, which are geographically well separated. The classification success for stock discrimination was higher using elliptic Fourier coefficients alone (70.2%) or in combination with shape indices (75.8%) than using only shape indices (65.7%) in C. stigmatias whereas there was little difference among the three methods for A. hasta. Our results supported the common belief that otolith shape analysis is generally more effective for interspecific identification than intraspecific discrimination. Moreover, compared with shape indices analysis, Fourier analysis improves classification success during inter- and intra-species discrimination by otolith shape analysis, although this did not necessarily always occur in all fish species.
Principal Component Analysis for pulse-shape discrimination of scintillation radiation detectors
NASA Astrophysics Data System (ADS)
Alharbi, T.
2016-01-01
In this paper, we report on the application of Principal Component analysis (PCA) for pulse-shape discrimination (PSD) of scintillation radiation detectors. The details of the method are described and the performance of the method is experimentally examined by discriminating between neutrons and gamma-rays with a liquid scintillation detector in a mixed radiation field. The performance of the method is also compared against that of the conventional charge-comparison method, demonstrating the superior performance of the method particularly at low light output range. PCA analysis has the important advantage of automatic extraction of the pulse-shape characteristics which makes the PSD method directly applicable to various scintillation detectors without the need for the adjustment of a PSD parameter.
Discrimination of Mirror-Image shapes by Young Children
ERIC Educational Resources Information Center
Thompson, G. Brian
1975-01-01
Conducted two experiments which employed discrimination learning methods to test predictions related to the difficulty of discrimination of lateral reversals and of inversions when shapes are presented: (1) successively, (2) simultaneously in lateral alignment, and (3) simultaneously in vertical alignment. Subjects were 6-year-old children. (SDH)
NASA Astrophysics Data System (ADS)
Polack, J. K.; Flaska, M.; Enqvist, A.; Sosa, C. S.; Lawrence, C. C.; Pozzi, S. A.
2015-09-01
Organic scintillators are frequently used for measurements that require sensitivity to both photons and fast neutrons because of their pulse shape discrimination capabilities. In these measurement scenarios, particle identification is commonly handled using the charge-integration pulse shape discrimination method. This method works particularly well for high-energy depositions, but is prone to misclassification for relatively low-energy depositions. A novel algorithm has been developed for automatically performing charge-integration pulse shape discrimination in a consistent and repeatable manner. The algorithm is able to estimate the photon and neutron misclassification corresponding to the calculated discrimination parameters, and is capable of doing so using only the information measured by a single organic scintillator. This paper describes the algorithm and assesses its performance by comparing algorithm-estimated misclassification to values computed via a more traditional time-of-flight estimation. A single data set was processed using four different low-energy thresholds: 40, 60, 90, and 120 keVee. Overall, the results compared well between the two methods; in most cases, the algorithm-estimated values fell within the uncertainties of the TOF-estimated values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolbasin, V. A.; Ivanov, A. I.; Pedash, V. Y.
The two pulse shape discrimination methods were implemented in real-time. The pulse gradient analysis method was implemented programmatically on PC. The method based on artificial neural network was programmatically implemented using CUDA platform. It is shown that both implementations can provide up to 10{sup 6} pulses per second processing performance. The results for pulse shape discrimination using polycrystalline stilbene and LiF detectors were shown. (authors)
NASA Astrophysics Data System (ADS)
Zhao, Bo; Liu, Jinhu; Song, Junjie; Cao, Liang; Dou, Shuozeng
2017-11-01
Removal of the length effect in otolith shape analysis for stock identification using length scaling is an important issue; however, few studies have attempted to investigate the effectiveness or weakness of this methodology in application. The aim of this study was to evaluate whether commonly used size scaling methods and normalized elliptic Fourier descriptors (NEFDs) could effectively remove the size effect of fish in stock discrimination. To achieve this goal, length groups from two known geographical stocks of yellow croaker, Larimichthys polyactis, along the Chinese coast (five groups from the Changjiang River estuary of the East China Sea and three groups from the Bohai Sea) were subjected to otolith shape analysis. The results indicated that the variation of otolith shape caused by intra-stock fish length might exceed that due to inter-stock geographical separation, even when otolith shape variables are standardized with length scaling methods. This variation could easily result in misleading stock discrimination through otolith shape analysis. Therefore, conclusions about fish stock structure should be carefully drawn from otolith shape analysis because the observed discrimination may primarily be due to length effects, rather than differences among stocks. The application of multiple methods, such as otoliths shape analysis combined with elemental fingering, tagging or genetic analysis, is recommended for sock identification.
Disjunctive Normal Shape and Appearance Priors with Applications to Image Segmentation.
Mesadi, Fitsum; Cetin, Mujdat; Tasdizen, Tolga
2015-10-01
The use of appearance and shape priors in image segmentation is known to improve accuracy; however, existing techniques have several drawbacks. Active shape and appearance models require landmark points and assume unimodal shape and appearance distributions. Level set based shape priors are limited to global shape similarity. In this paper, we present a novel shape and appearance priors for image segmentation based on an implicit parametric shape representation called disjunctive normal shape model (DNSM). DNSM is formed by disjunction of conjunctions of half-spaces defined by discriminants. We learn shape and appearance statistics at varying spatial scales using nonparametric density estimation. Our method can generate a rich set of shape variations by locally combining training shapes. Additionally, by studying the intensity and texture statistics around each discriminant of our shape model, we construct a local appearance probability map. Experiments carried out on both medical and natural image datasets show the potential of the proposed method.
NASA Astrophysics Data System (ADS)
Pawełczak, I. A.; Ouedraogo, S. A.; Glenn, A. M.; Wurtz, R. E.; Nakae, L. F.
2013-05-01
Pulse shape discrimination capability based on the charge integration has been investigated for liquid scintillator EJ-309. The effectiveness of neutron-γ discrimination in 4-in. diameter and 3-in. thick EJ-309 cells coupled with 3-in. photomultiplier tubes has been carefully studied in the laboratory environment and compared to the commonly used EJ-301 liquid scintillator formulation. Influences of distortions in pulse shape caused by 13.7-m long cables necessary for some remote operations have been examined. The parameter space for an effective neutron-γ discrimination for these assays, such as position and width of a gate used for integration of the delayed light, has been explored.
Schmieder, Daniela A.; Benítez, Hugo A.; Borissov, Ivailo M.; Fruciano, Carmelo
2015-01-01
External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horseshoe bats (Rhinolophidae, Chiroptera) – based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern. PMID:25965335
Improved pulse shape discrimination in EJ-301 liquid scintillators
NASA Astrophysics Data System (ADS)
Lang, R. F.; Masson, D.; Pienaar, J.; Röttger, S.
2017-06-01
Digital pulse shape discrimination has become readily available to distinguish nuclear recoil and electronic recoil events in scintillation detectors. We evaluate digital implementations of pulse shape discrimination algorithms discussed in the literature, namely the Charge Comparison Method, Pulse-Gradient Analysis, Fourier Series and Standard Event Fitting. In addition, we present a novel algorithm based on a Laplace Transform. Instead of comparing the performance of these algorithms based on a single Figure of Merit, we evaluate them as a function of recoil energy. Specifically, using commercial EJ-301 liquid scintillators, we examined both the resulting acceptance of nuclear recoils at a given rejection level of electronic recoils, as well as the purity of the selected nuclear recoil event samples. We find that both a Standard Event fit and a Laplace Transform can be used to significantly improve the discrimination capabilities over the whole considered energy range of 0 - 800keVee . Furthermore, we show that the Charge Comparison Method performs poorly in accurately identifying nuclear recoils.
Yoshioka, Yosuke; Ohashi, Kazuharu; Konuma, Akihiro; Iwata, Hiroyoshi; Ohsawa, Ryo; Ninomiya, Seishi
2007-01-01
Background and Aims Flower shapes are important visual cues for pollinators. However, the ability of pollinators to discriminate between flower shapes under natural conditions is poorly understood. This study focused on the diversity of flower shape in Primula sieboldii and investigated the ability of bumblebees to discriminate between flowers by combining computer graphics with a traditional behavioural experiment. Methods Elliptic Fourier descriptors described shapes by transforming coordinate information for the contours into coefficients, and principal components analysis summarized these coefficients. Using these methods, artificial flowers were created based on the natural diversity of petal shape in P. sieboldii. Dual-choice tests were then performed to investigate the ability of the bumblebees to detect differences in the aspect ratio of petals and the depth of their head notch. Key Results The insects showed no significant ability to detect differences in the aspect ratio of the petals under natural conditions unless the morphological distance increased to an unrealistic level. These results suggest the existence of a perception threshold for distances in this parameter. The bumblebees showed a significant preference for narrow petals even after training using flowers with wide petals. The bumblebees showed a significant ability to discriminate based on the depth of the petal head notch after training using artificial flowers with a deep head notch. However, they showed no discrimination in tests with training using extreme distances between flowers in this parameter. Conclusions A new type of behavioural experiment was demonstrated using real variation in flower corolla shape in P. sieboldii. If the range in aspect ratios of petals expands much further, bumblebees may learn to exhibit selective behaviour. However, because discrimination by bumblebees under natural conditions was low, there may be no strong selective behaviour based on innate or learned preferences under natural conditions. PMID:17553825
Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang
2014-01-01
Purpose: Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation. Methods: To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images. PMID:24989402
Neutron/ γ-ray digital pulse shape discrimination with organic scintillators
NASA Astrophysics Data System (ADS)
Kaschuck, Y.; Esposito, B.
2005-10-01
Neutrons and γ-rays produce light pulses with different shapes when interacting with organic scintillators. This property is commonly used to distinguish between neutrons (n) and γ-rays ( γ) in mixed n/ γ fields as those encountered in radiation physics experiments. Although analog electronic pulse shape discrimination (PSD) modules have been successfully used for many years, they do not allow data reprocessing and are limited in count rate capability (typically up to 200 kHz). The performance of a n/ γ digital pulse shape discrimination (DPSD) system by means of a commercial 12-bit 200 MSamples/s transient recorder card is investigated here. Three organic scintillators have been studied: stilbene, NE213 and anthracene. The charge comparison method has been used to obtain simultaneous n/ γ discrimination and pulse height analysis. The importance of DPSD for high-intensity radiation field measurements and its advantages with respect to analog PSD are discussed. Based on post-experiment simulations with acquired data, the requirements for fast digitizers to provide DPSD with organic scintillators are also analyzed.
Effect of quench on alpha/beta pulse shape discrimination of liquid scintillation cocktails.
DeVol, Timothy A; Theisen, Christopher D; DiPrete, David P
2007-05-01
The objectives of this paper are (1) to illustrate that knowledge of the external quench parameter is insufficient to properly setup a pulse shape discriminating liquid scintillation counter (LSC) for quantitative measurement, (2) to illustrate dependence on pulse shape discrimination on the radionuclide (more than just radiation and energy), and (3) to compare the pulse shape discrimination (PSD) of two commercial instruments. The effects various quenching agents, liquid scintillation cocktails, radionuclides, and LSCs have on alpha/beta pulse shape discriminating liquid scintillation counting were quantified. Alpha emitting radionuclides (239)Pu and (241)Am and beta emitter (90)Sr/(90)Y were investigated to quantify the nuclide dependence on alpha/beta pulse shape discrimination. Also, chemical and color quenching agents, nitromethane, nitric acid, and yellow dye impact on alpha/beta pulse shape discrimination using PerkinElmer Optiphase "HiSafe" 2 and 3, and Ultima Gold AB liquid scintillation cocktails were determined. The prepared samples were counted on the PerkinElmer Wallac WinSpectral 1414 alpha/beta pulse shape discriminating LSC. It was found that for the same level of quench, as measured by the external quench parameter, different quench agents influenced the pulse shape discrimination and the pulse shape discrimination parameters differently. The radionuclide also affects alpha/beta pulse shape discrimination. By comparison with the PerkinElmer Tri-carb 3150 TR/AB, the Wallac 1414 exhibited better pulse shape discrimination capability under the same experimental conditions.
Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang
2014-07-01
Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation. To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yanrong; Shao, Yeqin; Gao, Yaozong
Purpose: Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integratemore » the appearance model into a deformable segmentation framework for prostate MR segmentation. Methods: To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.« less
NASA Astrophysics Data System (ADS)
Nakhostin, M.; Baba, M.
2014-06-01
Parallel-plate avalanche counters have long been recognized as timing detectors for heavily ionizing particles. However, these detectors suffer from a poor pulse-height resolution which limits their capability to discriminate between different ionizing particles. In this paper, a new approach for discriminating between charged particles of different specific energy-loss with avalanche counters is demonstrated. We show that the effect of the self-induced space-charge in parallel-plate avalanche counters leads to a strong correlation between the shape of output current pulses and the amount of primary ionization created by the incident charged particles. The correlation is then exploited for the discrimination of charged particles with different energy-losses in the detector. The experimental results obtained with α-particles from an 241Am α-source demonstrate a discrimination capability far beyond that achievable with the standard pulse-height discrimination method.
NASA Astrophysics Data System (ADS)
Wei, ZHANG; Tongyu, WU; Bowen, ZHENG; Shiping, LI; Yipo, ZHANG; Zejie, YIN
2018-04-01
A new neutron-gamma discriminator based on the support vector machine (SVM) method is proposed to improve the performance of the time-of-flight neutron spectrometer. The neutron detector is an EJ-299-33 plastic scintillator with pulse-shape discrimination (PSD) property. The SVM algorithm is implemented in field programmable gate array (FPGA) to carry out the real-time sifting of neutrons in neutron-gamma mixed radiation fields. This study compares the ability of the pulse gradient analysis method and the SVM method. The results show that this SVM discriminator can provide a better discrimination accuracy of 99.1%. The accuracy and performance of the SVM discriminator based on FPGA have been evaluated in the experiments. It can get a figure of merit of 1.30.
Roncali, Emilie; Phipps, Jennifer E; Marcu, Laura; Cherry, Simon R
2012-10-21
In previous work we demonstrated the potential of positron emission tomography (PET) detectors with depth-of-interaction (DOI) encoding capability based on phosphor-coated crystals. A DOI resolution of 8 mm full-width at half-maximum was obtained for 20 mm long scintillator crystals using a delayed charge integration linear regression method (DCI-LR). Phosphor-coated crystals modify the pulse shape to allow continuous DOI information determination, but the relationship between pulse shape and DOI is complex. We are therefore interested in developing a sensitive and robust method to estimate the DOI. Here, linear discriminant analysis (LDA) was implemented to classify the events based on information extracted from the pulse shape. Pulses were acquired with 2×2×20 mm(3) phosphor-coated crystals at five irradiation depths and characterized by their DCI values or Laguerre coefficients. These coefficients were obtained by expanding the pulses on a Laguerre basis set and constituted a unique signature for each pulse. The DOI of individual events was predicted using LDA based on Laguerre coefficients (Laguerre-LDA) or DCI values (DCI-LDA) as discriminant features. Predicted DOIs were compared to true irradiation depths. Laguerre-LDA showed higher sensitivity and accuracy than DCI-LDA and DCI-LR and was also more robust to predict the DOI of pulses with higher statistical noise due to low light levels (interaction depths further from the photodetector face). This indicates that Laguerre-LDA may be more suitable to DOI estimation in smaller crystals where lower collected light levels are expected. This novel approach is promising for calculating DOI using pulse shape discrimination in single-ended readout depth-encoding PET detectors.
Roncali, Emilie; Phipps, Jennifer E.; Marcu, Laura; Cherry, Simon R.
2012-01-01
In previous work we demonstrated the potential of positron emission tomography (PET) detectors with depth-of-interaction (DOI) encoding capability based on phosphor-coated crystals. A DOI resolution of 8 mm full-width at half-maximum was obtained for 20 mm long scintillator crystals using a delayed charge integration linear regression method (DCI-LR). Phosphor-coated crystals modify the pulse shape to allow continuous DOI information determination, but the relationship between pulse shape and DOI is complex. We are therefore interested in developing a sensitive and robust method to estimate the DOI. Here, linear discriminant analysis (LDA) was implemented to classify the events based on information extracted from the pulse shape. Pulses were acquired with 2 × 2 × 20 mm3 phosphor-coated crystals at five irradiation depths and characterized by their DCI values or Laguerre coefficients. These coefficients were obtained by expanding the pulses on a Laguerre basis set and constituted a unique signature for each pulse. The DOI of individual events was predicted using LDA based on Laguerre coefficients (Laguerre-LDA) or DCI values (DCI-LDA) as discriminant features. Predicted DOIs were compared to true irradiation depths. Laguerre-LDA showed higher sensitivity and accuracy than DCI-LDA and DCI-LR and was also more robust to predict the DOI of pulses with higher statistical noise due to low light levels (interaction depths further from the photodetector face). This indicates that Laguerre-LDA may be more suitable to DOI estimation in smaller crystals where lower collected light levels are expected. This novel approach is promising for calculating DOI using pulse shape discrimination in single-ended readout depth-encoding PET detectors. PMID:23010690
NASA Astrophysics Data System (ADS)
Wan, Bo; Zhang, Xue-Ying; Chen, Liang; Ge, Hong-Lin; Ma, Fei; Zhang, Hong-Bin; Ju, Yong-Qin; Zhang, Yan-Bin; Li, Yan-Yan; Xu, Xiao-Wei
2015-11-01
A digital pulse shape discrimination system based on a programmable module NI-5772 has been established and tested with an EJ-301 liquid scintillation detector. The module was operated by running programs developed in LabVIEW, with a sampling frequency up to 1.6 GS/s. Standard gamma sources 22Na, 137Cs and 60Co were used to calibrate the EJ-301 liquid scintillation detector, and the gamma response function was obtained. Digital algorithms for the charge comparison method and zero-crossing method have been developed. The experimental results show that both digital signal processing (DSP) algorithms can discriminate neutrons from γ-rays. Moreover, the zero-crossing method shows better n-γ discrimination at 80 keVee and lower, whereas the charge comparison method gives better results at higher thresholds. In addition, the figure-of-merit (FOM) for detectors of two different dimensions were extracted at 9 energy thresholds, and it was found that the smaller detector presented better n-γ separation for fission neutrons. Supported by National Natural Science Foundation of China (91226107, 11305229) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA03030300)
Lee, Ga-Young; Kim, Jeonghun; Kim, Ju Han; Kim, Kiwoong; Seong, Joon-Kyung
2014-01-01
Mobile healthcare applications are becoming a growing trend. Also, the prevalence of dementia in modern society is showing a steady growing trend. Among degenerative brain diseases that cause dementia, Alzheimer disease (AD) is the most common. The purpose of this study was to identify AD patients using magnetic resonance imaging in the mobile environment. We propose an incremental classification for mobile healthcare systems. Our classification method is based on incremental learning for AD diagnosis and AD prediction using the cortical thickness data and hippocampus shape. We constructed a classifier based on principal component analysis and linear discriminant analysis. We performed initial learning and mobile subject classification. Initial learning is the group learning part in our server. Our smartphone agent implements the mobile classification and shows various results. With use of cortical thickness data analysis alone, the discrimination accuracy was 87.33% (sensitivity 96.49% and specificity 64.33%). When cortical thickness data and hippocampal shape were analyzed together, the achieved accuracy was 87.52% (sensitivity 96.79% and specificity 63.24%). In this paper, we presented a classification method based on online learning for AD diagnosis by employing both cortical thickness data and hippocampal shape analysis data. Our method was implemented on smartphone devices and discriminated AD patients for normal group.
Herrera, Pedro Javier; Dorado, José.; Ribeiro, Ángela.
2014-01-01
An important objective in weed management is the discrimination between grasses (monocots) and broad-leaved weeds (dicots), because these two weed groups can be appropriately controlled by specific herbicides. In fact, efficiency is higher if selective treatment is performed for each type of infestation instead of using a broadcast herbicide on the whole surface. This work proposes a strategy where weeds are characterised by a set of shape descriptors (the seven Hu moments and six geometric shape descriptors). Weeds appear in outdoor field images which display real situations obtained from a RGB camera. Thus, images present a mixture of both weed species under varying conditions of lighting. In the presented approach, four decision-making methods were adapted to use the best shape descriptors as attributes and a choice was taken. This proposal establishes a novel methodology with a high success rate in weed species discrimination. PMID:25195854
Berg, Eric; Roncali, Emilie; Hutchcroft, Will; Qi, Jinyi; Cherry, Simon R.
2016-01-01
In a scintillation detector, the light generated in the scintillator by a gamma interaction is converted to photoelectrons by a photodetector and produces a time-dependent waveform, the shape of which depends on the scintillator properties and the photodetector response. Several depth-of-interaction (DOI) encoding strategies have been developed that manipulate the scintillator’s temporal response along the crystal length and therefore require pulse shape discrimination techniques to differentiate waveform shapes. In this work, we demonstrate how maximum likelihood (ML) estimation methods can be applied to pulse shape discrimination to better estimate deposited energy, DOI and interaction time (for time-of-flight (TOF) PET) of a gamma ray in a scintillation detector. We developed likelihood models based on either the estimated detection times of individual photoelectrons or the number of photoelectrons in discrete time bins, and applied to two phosphor-coated crystals (LFS and LYSO) used in a previously developed TOF-DOI detector concept. Compared with conventional analytical methods, ML pulse shape discrimination improved DOI encoding by 27% for both crystals. Using the ML DOI estimate, we were able to counter depth-dependent changes in light collection inherent to long scintillator crystals and recover the energy resolution measured with fixed depth irradiation (~11.5% for both crystals). Lastly, we demonstrated how the Richardson-Lucy algorithm, an iterative, ML-based deconvolution technique, can be applied to the digitized waveforms to deconvolve the photodetector’s single photoelectron response and produce waveforms with a faster rising edge. After deconvolution and applying DOI and time-walk corrections, we demonstrated a 13% improvement in coincidence timing resolution (from 290 to 254 ps) with the LFS crystal and an 8% improvement (323 to 297 ps) with the LYSO crystal. PMID:27295658
Berg, Eric; Roncali, Emilie; Hutchcroft, Will; Qi, Jinyi; Cherry, Simon R
2016-11-01
In a scintillation detector, the light generated in the scintillator by a gamma interaction is converted to photoelectrons by a photodetector and produces a time-dependent waveform, the shape of which depends on the scintillator properties and the photodetector response. Several depth-of-interaction (DOI) encoding strategies have been developed that manipulate the scintillator's temporal response along the crystal length and therefore require pulse shape discrimination techniques to differentiate waveform shapes. In this work, we demonstrate how maximum likelihood (ML) estimation methods can be applied to pulse shape discrimination to better estimate deposited energy, DOI and interaction time (for time-of-flight (TOF) PET) of a gamma ray in a scintillation detector. We developed likelihood models based on either the estimated detection times of individual photoelectrons or the number of photoelectrons in discrete time bins, and applied to two phosphor-coated crystals (LFS and LYSO) used in a previously developed TOF-DOI detector concept. Compared with conventional analytical methods, ML pulse shape discrimination improved DOI encoding by 27% for both crystals. Using the ML DOI estimate, we were able to counter depth-dependent changes in light collection inherent to long scintillator crystals and recover the energy resolution measured with fixed depth irradiation (~11.5% for both crystals). Lastly, we demonstrated how the Richardson-Lucy algorithm, an iterative, ML-based deconvolution technique, can be applied to the digitized waveforms to deconvolve the photodetector's single photoelectron response and produce waveforms with a faster rising edge. After deconvolution and applying DOI and time-walk corrections, we demonstrated a 13% improvement in coincidence timing resolution (from 290 to 254 ps) with the LFS crystal and an 8% improvement (323 to 297 ps) with the LYSO crystal.
Pulse-shape discrimination with Cs2HfCl6 crystal scintillator
NASA Astrophysics Data System (ADS)
Cardenas, C.; Burger, A.; Goodwin, B.; Groza, M.; Laubenstein, M.; Nagorny, S.; Rowe, E.
2017-10-01
The results of investigation into cesium hafnium chloride (Cs2HfCl6) scintillating crystals as a promising detector to search for rare nuclear processes occurring in Hf isotopes is reported. The light output, quenching factor, and pulse-shape characteristics have been investigated at room temperature. The scintillation response of the crystal induced by α-particles and γ-quanta were studied to determine possibility of particle discrimination. Using the optimal filter method we obtained clear separation between signals with a factor of merit (FOM) = 9.3. This indicates that we are able to fully separate signals originating from α-particles and γ-quanta. Similar fruitful discrimination power was obtained by applying the mean time method (FOM = 7) and charge integration method (FOM = 7.5). The quenching factor for collimated 4 MeV α-particles is found to be 0.36, showing that α-particles generate more than a third of the light compared to γ-quanta at the same energy.
Determination of 243Am by pulse shape discrimination liquid scintillation spectrometry.
Alamelu, D; Bhade, S P D; Reddy, P J; Narayan, K K; Shah, P M; Aggarwal, S K
2006-05-01
Alpha specific activity of 243Am was determined using pulse shape discrimination in liquid scintillation spectrometry. 238Pu, 36Cl and 239Np (purified from 243Am) were used for obtaining the spillover of alpha/beta particles into the beta/alpha channels, respectively. Synthetic mixtures of 241Am/243Am were prepared. Using the alpha-specific activity, weights of the stock solutions used and the half-life of 241Am and 243Am isotopes, the expected 241Am/243Am atom ratios in the mixtures were determined and compared with those obtained by thermal ionization mass spectrometry (TIMS). An agreement of about 1% was obtained between the 241Am/243Am atom ratios determined by the two methods. This shows that liquid scintillation counting with pulse shape discrimination can be used for 243Am determination with an accuracy better than 1%.
NASA Astrophysics Data System (ADS)
Longo, S.; Roney, J. M.
2018-03-01
Pulse shape discrimination using CsI(Tl) scintillators to perform neutral hadron particle identification is explored with emphasis towards application at high energy electron-positron collider experiments. Through the analysis of the pulse shape differences between scintillation pulses from photon and hadronic energy deposits using neutron and proton data collected at TRIUMF, it is shown that the pulse shape variations observed for hadrons can be modelled using a third scintillation component for CsI(Tl), in addition to the standard fast and slow components. Techniques for computing the hadronic pulse amplitudes and shape variations are developed and it is shown that the intensity of the additional scintillation component can be computed from the ionization energy loss of the interacting particles. These pulse modelling and simulation methods are integrated with GEANT4 simulation libraries and the predicted pulse shape for CsI(Tl) crystals in a 5 × 5 array of 5 × 5 × 30 cm3 crystals is studied for hadronic showers from 0.5 and 1 GeV/c KL0 and neutron particles. Using a crystal level and cluster level approach for photon vs. hadron cluster separation we demonstrate proof-of-concept for neutral hadron detection using CsI(Tl) pulse shape discrimination in high energy electron-positron collider experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hull, G; Zaitseva, N; Cherepy, N
Efficient, readily-available, low-cost, high-energy neutron detectors can play a central role in detecting illicit nuclear weapons since neutrons are a strong indication for the presence of fissile material such as Plutonium and Highly-Enriched Uranium. The main challenge in detecting fast neutrons consists in the discrimination of the signal from the gamma radiation background. At present, the only well-investigated organic crystal scintillator for fast neutron detection, in a n/{gamma} mixed field, is stilbene, which while offering good pulse shape discrimination, is not widely used because of its limited availability and high cost. In this work we report the results of ourmore » studies made with a number of new organic crystals, which exhibit pulse shape discrimination for detection of fast neutrons. In particular 1,1,4,4-tetraphenyl-1,3-butadiene features a light yield higher than anthracene and a Figure of Merit (FOM) for the pulse shape discrimination better than stilbene. New crystals are good candidates for the low-cost solution growth method, thus representing promising organic scintillators for widespread deployment for high-energy neutron detection.« less
Shape discrimination and concept formation in the jungle crow (Corvus macrorhynchos).
Bogale, Bezawork Afework; Sugita, Shoei
2014-01-01
We investigated whether jungle crows can learn concepts by using printouts of shapes in a simultaneous two-alternative task. Jungle crows were first trained with a red triangle and red square until they reached the discrimination criterion (80% of correct choices in two blocks of 10 trials each). Then, we tested crows with successive transfer tests to investigate both the discrimination cues being used and concept formation ability, by using novel triangular and non-triangular stimuli. All of the jungle crows learnt to discriminate between the triangle and square during training. The discrimination performance was generally not affected either by changes in the colour of the stimuli or when both shape and colour cues conflicted, with the previously non-rewarded shape but matching colour (red square) versus rewarded shape but non-matching colour (green triangle). The use of only outlines of the familiar stimuli also did not affect discrimination behaviour of crows. In addition, crows significantly discriminated novel triangular shapes during the limited trials given, suggesting their ability to form the concept of triangularity. However, failure to discriminate when the novel stimuli size deviated from the original suggests that there is a limit to shape concept formation in a familiar-novel context in the jungle crow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippincott, W. H.; McKinsey, D. N.; Nikkel, J. A.
Using a single-phase liquid argon detector with a signal yield of 4.85 photoelectrons per keV of electronic-equivalent recoil energy (keVee), we measure the scintillation time dependence of both electronic and nuclear recoils in liquid argon down to 5 keVee. We develop two methods of pulse shape discrimination to distinguish between electronic and nuclear recoils. Using one of these methods, we measure a background- and statistics-limited level of electronic recoil contamination to be 7.6x10{sup -7} between 52 and 110 keV of nuclear recoil energy (keVr) for a nuclear recoil acceptance of 50% with no nuclear recoil-like events above 62 keVr. Finally,more » we develop a maximum likelihood method of pulse shape discrimination based on the measured scintillation time dependence.« less
Do rats use shape to solve “shape discriminations”?
Minini, Loredana; Jeffery, Kathryn J.
2006-01-01
Visual discrimination tasks are increasingly used to explore the neurobiology of vision in rodents, but it remains unclear how the animals solve these tasks: Do they process shapes holistically, or by using low-level features such as luminance and angle acuity? In the present study we found that when discriminating triangles from squares, rats did not use shape but instead relied on local luminance differences in the lower hemifield. A second experiment prevented this strategy by using stimuli—squares and rectangles—that varied in size and location, and for which the only constant predictor of reward was aspect ratio (ratio of height to width: a simple descriptor of “shape”). Rats eventually learned to use aspect ratio but only when no other discriminand was available, and performance remained very poor even at asymptote. These results suggest that although rats can process both dimensions simultaneously, they do not naturally solve shape discrimination tasks this way. This may reflect either a failure to visually process global shape information or a failure to discover shape as the discriminative stimulus in a simultaneous discrimination. Either way, our results suggest that simultaneous shape discrimination is not a good task for studies of visual perception in rodents. PMID:16705141
NASA Astrophysics Data System (ADS)
Wen, Xianfei; Enqvist, Andreas
2017-09-01
Cs2LiYCl6:Ce3+ (CLYC) detectors have demonstrated the capability to simultaneously detect γ-rays and thermal and fast neutrons with medium energy resolution, reasonable detection efficiency, and substantially high pulse shape discrimination performance. A disadvantage of CLYC detectors is the long scintillation decay times, which causes pulse pile-up at moderate input count rate. Pulse processing algorithms were developed based on triangular and trapezoidal filters to discriminate between neutrons and γ-rays at high count rate. The algorithms were first tested using low-rate data. They exhibit a pulse-shape discrimination performance comparable to that of the charge comparison method, at low rate. Then, they were evaluated at high count rate. Neutrons and γ-rays were adequately identified with high throughput at rates of up to 375 kcps. The algorithm developed using the triangular filter exhibits discrimination capability marginally higher than that of the trapezoidal filter based algorithm irrespective of low or high rate. The algorithms exhibit low computational complexity and are executable on an FPGA in real-time. They are also suitable for application to other radiation detectors whose pulses are piled-up at high rate owing to long scintillation decay times.
Deep Correlated Holistic Metric Learning for Sketch-Based 3D Shape Retrieval.
Dai, Guoxian; Xie, Jin; Fang, Yi
2018-07-01
How to effectively retrieve desired 3D models with simple queries is a long-standing problem in computer vision community. The model-based approach is quite straightforward but nontrivial, since people could not always have the desired 3D query model available by side. Recently, large amounts of wide-screen electronic devices are prevail in our daily lives, which makes the sketch-based 3D shape retrieval a promising candidate due to its simpleness and efficiency. The main challenge of sketch-based approach is the huge modality gap between sketch and 3D shape. In this paper, we proposed a novel deep correlated holistic metric learning (DCHML) method to mitigate the discrepancy between sketch and 3D shape domains. The proposed DCHML trains two distinct deep neural networks (one for each domain) jointly, which learns two deep nonlinear transformations to map features from both domains into a new feature space. The proposed loss, including discriminative loss and correlation loss, aims to increase the discrimination of features within each domain as well as the correlation between different domains. In the new feature space, the discriminative loss minimizes the intra-class distance of the deep transformed features and maximizes the inter-class distance of the deep transformed features to a large margin within each domain, while the correlation loss focused on mitigating the distribution discrepancy across different domains. Different from existing deep metric learning methods only with loss at the output layer, our proposed DCHML is trained with loss at both hidden layer and output layer to further improve the performance by encouraging features in the hidden layer also with desired properties. Our proposed method is evaluated on three benchmarks, including 3D Shape Retrieval Contest 2013, 2014, and 2016 benchmarks, and the experimental results demonstrate the superiority of our proposed method over the state-of-the-art methods.
Leaf Morphology, Taxonomy and Geometric Morphometrics: A Simplified Protocol for Beginners
Viscosi, Vincenzo; Cardini, Andrea
2011-01-01
Taxonomy relies greatly on morphology to discriminate groups. Computerized geometric morphometric methods for quantitative shape analysis measure, test and visualize differences in form in a highly effective, reproducible, accurate and statistically powerful way. Plant leaves are commonly used in taxonomic analyses and are particularly suitable to landmark based geometric morphometrics. However, botanists do not yet seem to have taken advantage of this set of methods in their studies as much as zoologists have done. Using free software and an example dataset from two geographical populations of sessile oak leaves, we describe in detailed but simple terms how to: a) compute size and shape variables using Procrustes methods; b) test measurement error and the main levels of variation (population and trees) using a hierachical design; c) estimate the accuracy of group discrimination; d) repeat this estimate after controlling for the effect of size differences on shape (i.e., allometry). Measurement error was completely negligible; individual variation in leaf morphology was large and differences between trees were generally bigger than within trees; differences between the two geographic populations were small in both size and shape; despite a weak allometric trend, controlling for the effect of size on shape slighly increased discrimination accuracy. Procrustes based methods for the analysis of landmarks were highly efficient in measuring the hierarchical structure of differences in leaves and in revealing very small-scale variation. In taxonomy and many other fields of botany and biology, the application of geometric morphometrics contributes to increase scientific rigour in the description of important aspects of the phenotypic dimension of biodiversity. Easy to follow but detailed step by step example studies can promote a more extensive use of these numerical methods, as they provide an introduction to the discipline which, for many biologists, is less intimidating than the often inaccessible specialistic literature. PMID:21991324
Compton suppression in BEGe detectors by digital pulse shape analysis.
Mi, Yu-Hao; Ma, Hao; Zeng, Zhi; Cheng, Jian-Ping; Li, Jun-Li; Zhang, Hui
2017-03-01
A new method of pulse shape discrimination (PSD) for BEGe detectors is developed to suppress Compton-continuum by digital pulse shape analysis (PSA), which helps reduce the Compton background level in gamma ray spectrometry. A decision parameter related to the rise time of a pulse shape was presented. The method was verified by experiments using 60 Co and 137 Cs sources. The result indicated that the 60 Co Peak to Compton ratio and the Cs-Peak to Co-Compton ratio could be improved by more than two and three times, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Caldwell, A.; Cossavella, F.; Majorovits, B.; Palioselitis, D.; Volynets, O.
2015-07-01
A pulse-shape discrimination method based on artificial neural networks was applied to pulses simulated for different background, signal and signal-like interactions inside a germanium detector. The simulated pulses were used to investigate variations of efficiencies as a function of used training set. It is verified that neural networks are well-suited to identify background pulses in true-coaxial high-purity germanium detectors. The systematic uncertainty on the signal recognition efficiency derived using signal-like evaluation samples from calibration measurements is estimated to be 5 %. This uncertainty is due to differences between signal and calibration samples.
Haptic shape discrimination and interhemispheric communication.
Dowell, Catherine J; Norman, J Farley; Moment, Jackie R; Shain, Lindsey M; Norman, Hideko F; Phillips, Flip; Kappers, Astrid M L
2018-01-10
In three experiments participants haptically discriminated object shape using unimanual (single hand explored two objects) and bimanual exploration (both hands were used, but each hand, left or right, explored a separate object). Such haptic exploration (one versus two hands) requires somatosensory processing in either only one or both cerebral hemispheres; previous studies related to the perception of shape/curvature found superior performance for unimanual exploration, indicating that shape comparison is more effective when only one hemisphere is utilized. The current results, obtained for naturally shaped solid objects (bell peppers, Capsicum annuum) and simple cylindrical surfaces demonstrate otherwise: bimanual haptic exploration can be as effective as unimanual exploration, showing that there is no necessary reduction in ability when haptic shape comparison requires interhemispheric communication. We found that while successive bimanual exploration produced high shape discriminability, the participants' bimanual performance deteriorated for simultaneous shape comparisons. This outcome suggests that either interhemispheric interference or the need to attend to multiple objects simultaneously reduces shape discrimination ability. The current results also reveal a significant effect of age: older adults' shape discrimination abilities are moderately reduced relative to younger adults, regardless of how objects are manipulated (left hand only, right hand only, or bimanual exploration).
NASA Astrophysics Data System (ADS)
Kamada, So; Takada, Masashi; Suzuki, Toshikazu
2014-09-01
Photons are measured separately from neutrons in high-energy neutron fields using a NaI(Tl) scintillator, 7.62 cm in diameter and 7.62 cm in length, combined with a pulse-shape discrimination method. The particle discrimination capability for this scintillator is confirmed using a time-of-flight method. Neutron fields were produced by irradiating Li targets with 40 and 80 MeV proton beams at the cyclotron facility in the National Institute of Radiological Sciences. Figures of merit corresponding to particle discrimination for the scintillator at the two neutron fields are improved with higher neutron energies. Photon energy spectra for energies over 6.5 MeV can be measured using the NaI(Tl) scintillator.
Do Rats Use Shape to Solve "Shape Discriminations"?
ERIC Educational Resources Information Center
Minini, Loredana; Jeffery, Kathryn J.
2006-01-01
Visual discrimination tasks are increasingly used to explore the neurobiology of vision in rodents, but it remains unclear how the animals solve these tasks: Do they process shapes holistically, or by using low-level features such as luminance and angle acuity? In the present study we found that when discriminating triangles from squares, rats did…
A horse's eye view: size and shape discrimination compared with other mammals.
Tomonaga, Masaki; Kumazaki, Kiyonori; Camus, Florine; Nicod, Sophie; Pereira, Carlos; Matsuzawa, Tetsuro
2015-11-01
Mammals have adapted to a variety of natural environments from underwater to aerial and these different adaptations have affected their specific perceptive and cognitive abilities. This study used a computer-controlled touchscreen system to examine the visual discrimination abilities of horses, particularly regarding size and shape, and compared the results with those from chimpanzee, human and dolphin studies. Horses were able to discriminate a difference of 14% in circle size but showed worse discrimination thresholds than chimpanzees and humans; these differences cannot be explained by visual acuity. Furthermore, the present findings indicate that all species use length cues rather than area cues to discriminate size. In terms of shape discrimination, horses exhibited perceptual similarities among shapes with curvatures, vertical/horizontal lines and diagonal lines, and the relative contributions of each feature to perceptual similarity in horses differed from those for chimpanzees, humans and dolphins. Horses pay more attention to local components than to global shapes. © 2015 The Author(s).
Short-term visual deprivation, tactile acuity, and haptic solid shape discrimination.
Crabtree, Charles E; Norman, J Farley
2014-01-01
Previous psychophysical studies have reported conflicting results concerning the effects of short-term visual deprivation upon tactile acuity. Some studies have found that 45 to 90 minutes of total light deprivation produce significant improvements in participants' tactile acuity as measured with a grating orientation discrimination task. In contrast, a single 2011 study found no such improvement while attempting to replicate these earlier findings. A primary goal of the current experiment was to resolve this discrepancy in the literature by evaluating the effects of a 90-minute period of total light deprivation upon tactile grating orientation discrimination. We also evaluated the potential effect of short-term deprivation upon haptic 3-D shape discrimination using a set of naturally-shaped solid objects. According to previous research, short-term deprivation enhances performance in a tactile 2-D shape discrimination task - perhaps a similar improvement also occurs for haptic 3-D shape discrimination. The results of the current investigation demonstrate that not only does short-term visual deprivation not enhance tactile acuity, it additionally has no effect upon haptic 3-D shape discrimination. While visual deprivation had no effect in our study, there was a significant effect of experience and learning for the grating orientation task - the participants' tactile acuity improved over time, independent of whether they had, or had not, experienced visual deprivation.
The use of waveform shapes to automatically determine earthquake focal depth
Sipkin, S.A.
2000-01-01
Earthquake focal depth is an important parameter for rapidly determining probable damage caused by a large earthquake. In addition, it is significant both for discriminating between natural events and explosions and for discriminating between tsunamigenic and nontsunamigenic earthquakes. For the purpose of notifying emergency management and disaster relief organizations as well as issuing tsunami warnings, potential time delays in determining source parameters are particularly detrimental. We present a method for determining earthquake focal depth that is well suited for implementation in an automated system that utilizes the wealth of broadband teleseismic data that is now available in real time from the global seismograph networks. This method uses waveform shapes to determine focal depth and is demonstrated to be valid for events with magnitudes as low as approximately 5.5.
Effective 3-D shape discrimination survives retinal blur.
Norman, J Farley; Beers, Amanda M; Holmin, Jessica S; Boswell, Alexandria M
2010-08-01
A single experiment evaluated observers' ability to visually discriminate 3-D object shape, where the 3-D structure was defined by motion, texture, Lambertian shading, and occluding contours. The observers' vision was degraded to varying degrees by blurring the experimental stimuli, using 2.0-, 2.5-, and 3.0-diopter convex lenses. The lenses reduced the observers' acuity from -0.091 LogMAR (in the no-blur conditions) to 0.924 LogMAR (in the conditions with the most blur; 3.0-diopter lenses). This visual degradation, although producing severe reductions in visual acuity, had only small (but significant) effects on the observers' ability to discriminate 3-D shape. The observers' shape discrimination performance was facilitated by the objects' rotation in depth, regardless of the presence or absence of blur. Our results indicate that accurate global shape discrimination survives a considerable amount of retinal blur.
Kagawa, Tomonori; Narita, Noriyuki; Iwaki, Sunao; Kawasaki, Shingo; Kamiya, Kazunobu; Minakuchi, Shunsuke
2014-01-01
A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS). Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7), extrastriate cortex (BA18, BA19), and striate cortex (BA17) activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7), extrastriate cortex (BA18, 19), and striate cortex (BA17), as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth. PMID:25299397
Kagawa, Tomonori; Narita, Noriyuki; Iwaki, Sunao; Kawasaki, Shingo; Kamiya, Kazunobu; Minakuchi, Shunsuke
2014-01-01
A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS). Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7), extrastriate cortex (BA18, BA19), and striate cortex (BA17) activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7), extrastriate cortex (BA18, 19), and striate cortex (BA17), as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth.
Neutron/Gamma-ray discrimination through measures of fit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amiri, Moslem; Prenosil, Vaclav; Cvachovec, Frantisek
2015-07-01
Statistical tests and their underlying measures of fit can be utilized to separate neutron/gamma-ray pulses in a mixed radiation field. In this article, first the application of a sample statistical test is explained. Fit measurement-based methods require true pulse shapes to be used as reference for discrimination. This requirement makes practical implementation of these methods difficult; typically another discrimination approach should be employed to capture samples of neutrons and gamma-rays before running the fit-based technique. In this article, we also propose a technique to eliminate this requirement. These approaches are applied to several sets of mixed neutron and gamma-ray pulsesmore » obtained through different digitizers using stilbene scintillator in order to analyze them and measure their discrimination quality. (authors)« less
The zebrafish world of colors and shapes: preference and discrimination.
Oliveira, Jessica; Silveira, Mayara; Chacon, Diana; Luchiari, Ana
2015-04-01
Natural environment imposes many challenges to animals, which have to use cognitive abilities to cope with and exploit it to enhance their fitness. Since zebrafish is a well-established model for cognitive studies and high-throughput screening for drugs and diseases that affect cognition, we tested their ability for ambient color preference and 3D objects discrimination to establish a protocol for memory evaluation. For the color preference test, zebrafish were observed in a multiple-chamber tank with different environmental color options. Zebrafish showed preference for blue and green, and avoided yellow and red. For the 3D objects discrimination, zebrafish were allowed to explore two equal objects and then observed in a one-trial test in which a new color, size, or shape of the object was presented. Zebrafish showed discrimination for color, shape, and color+shape combined, but not size. These results imply that zebrafish seem to use some categorical system to discriminate items, and distracters affect their ability for discrimination. The type of variables available (color and shape) may favor zebrafish objects perception and facilitate discrimination processing. We suggest that this easy and simple memory test could serve as a useful screening tool for cognitive dysfunction and neurotoxicological studies.
Shape classification of wear particles by image boundary analysis using machine learning algorithms
NASA Astrophysics Data System (ADS)
Yuan, Wei; Chin, K. S.; Hua, Meng; Dong, Guangneng; Wang, Chunhui
2016-05-01
The shape features of wear particles generated from wear track usually contain plenty of information about the wear states of a machinery operational condition. Techniques to quickly identify types of wear particles quickly to respond to the machine operation and prolong the machine's life appear to be lacking and are yet to be established. To bridge rapid off-line feature recognition with on-line wear mode identification, this paper presents a new radial concave deviation (RCD) method that mainly involves the use of the particle boundary signal to analyze wear particle features. Signal output from the RCDs subsequently facilitates the determination of several other feature parameters, typically relevant to the shape and size of the wear particle. Debris feature and type are identified through the use of various classification methods, such as linear discriminant analysis, quadratic discriminant analysis, naïve Bayesian method, and classification and regression tree method (CART). The average errors of the training and test via ten-fold cross validation suggest CART is a highly suitable approach for classifying and analyzing particle features. Furthermore, the results of the wear debris analysis enable the maintenance team to diagnose faults appropriately.
Toward a fractal spectrum approach for neutron and gamma pulse shape discrimination
NASA Astrophysics Data System (ADS)
Liu, Ming-Zhe; Liu, Bing-Qi; Zuo, Zhuo; Wang, Lei; Zan, Gui-Bin; Tuo, Xian-Guo
2016-06-01
Accurately selecting neutron signals and discriminating γ signals from a mixed radiation field is a key research issue in neutron detection. This paper proposes a fractal spectrum discrimination approach by means of different spectral characteristics of neutrons and γ rays. Figure of merit and average discriminant error ratio are used together to evaluate the discrimination effects. Different neutron and γ signals with various noise and pulse pile-up are simulated according to real data in the literature. The proposed approach is compared with the digital charge integration and pulse gradient methods. It is found that the fractal approach exhibits the best discrimination performance, followed by the digital charge integration method and the pulse gradient method, respectively. The fractal spectrum approach is not sensitive to high frequency noise and pulse pile-up. This means that the proposed approach has superior performance for effective and efficient anti-noise and high discrimination in neutron detection. Supported by the National Natural Science Foundation of China (41274109), Sichuan Youth Science and Technology Innovation Research Team (2015TD0020), Scientific and Technological Support Program of Sichuan Province (2013FZ0022), and the Creative Team Program of Chengdu University of Technology.
Short-Term Visual Deprivation, Tactile Acuity, and Haptic Solid Shape Discrimination
Crabtree, Charles E.; Norman, J. Farley
2014-01-01
Previous psychophysical studies have reported conflicting results concerning the effects of short-term visual deprivation upon tactile acuity. Some studies have found that 45 to 90 minutes of total light deprivation produce significant improvements in participants' tactile acuity as measured with a grating orientation discrimination task. In contrast, a single 2011 study found no such improvement while attempting to replicate these earlier findings. A primary goal of the current experiment was to resolve this discrepancy in the literature by evaluating the effects of a 90-minute period of total light deprivation upon tactile grating orientation discrimination. We also evaluated the potential effect of short-term deprivation upon haptic 3-D shape discrimination using a set of naturally-shaped solid objects. According to previous research, short-term deprivation enhances performance in a tactile 2-D shape discrimination task – perhaps a similar improvement also occurs for haptic 3-D shape discrimination. The results of the current investigation demonstrate that not only does short-term visual deprivation not enhance tactile acuity, it additionally has no effect upon haptic 3-D shape discrimination. While visual deprivation had no effect in our study, there was a significant effect of experience and learning for the grating orientation task – the participants' tactile acuity improved over time, independent of whether they had, or had not, experienced visual deprivation. PMID:25397327
The effect of age upon the perception of 3-D shape from motion.
Norman, J Farley; Cheeseman, Jacob R; Pyles, Jessica; Baxter, Michael W; Thomason, Kelsey E; Calloway, Autum B
2013-12-18
Two experiments evaluated the ability of 50 older, middle-aged, and younger adults to discriminate the 3-dimensional (3-D) shape of curved surfaces defined by optical motion. In Experiment 1, temporal correspondence was disrupted by limiting the lifetimes of the moving surface points. In order to discriminate 3-D surface shape reliably, the younger and middle-aged adults needed a surface point lifetime of approximately 4 views (in the apparent motion sequences). In contrast, the older adults needed a much longer surface point lifetime of approximately 9 views in order to reliably perform the same task. In Experiment 2, the negative effect of age upon 3-D shape discrimination from motion was replicated. In this experiment, however, the participants' abilities to discriminate grating orientation and speed were also assessed. Edden et al. (2009) have recently demonstrated that behavioral grating orientation discrimination correlates with GABA (gamma aminobutyric acid) concentration in human visual cortex. Our results demonstrate that the negative effect of age upon 3-D shape perception from motion is not caused by impairments in the ability to perceive motion per se, but does correlate significantly with grating orientation discrimination. This result suggests that the age-related decline in 3-D shape discrimination from motion is related to decline in GABA concentration in visual cortex. Copyright © 2013 Elsevier B.V. All rights reserved.
THE ROLE OF THE HIPPOCAMPUS IN OBJECT DISCRIMINATION BASED ON VISUAL FEATURES.
Levcik, David; Nekovarova, Tereza; Antosova, Eliska; Stuchlik, Ales; Klement, Daniel
2018-06-07
The role of rodent hippocampus has been intensively studied in different cognitive tasks. However, its role in discrimination of objects remains controversial due to conflicting findings. We tested whether the number and type of features available for the identification of objects might affect the strategy (hippocampal-independent vs. hippocampal-dependent) that rats adopt to solve object discrimination tasks. We trained rats to discriminate 2D visual objects presented on a computer screen. The objects were defined either by their shape only or by multiple-features (a combination of filling pattern and brightness in addition to the shape). Our data showed that objects displayed as simple geometric shapes are not discriminated by trained rats after their hippocampi had been bilaterally inactivated by the GABA A -agonist muscimol. On the other hand, objects containing a specific combination of non-geometric features in addition to the shape are discriminated even without the hippocampus. Our results suggest that the involvement of the hippocampus in visual object discrimination depends on the abundance of object's features. Copyright © 2018. Published by Elsevier Inc.
Pulse-shape discrimination of surface events in CdZnTe detectors for the COBRA experiment
NASA Astrophysics Data System (ADS)
Fritts, M.; Tebrügge, J.; Durst, J.; Ebert, J.; Gößling, C.; Göpfert, T.; Gehre, D.; Hagner, C.; Heidrich, N.; Homann, M.; Köttig, T.; Neddermann, T.; Oldorf, C.; Quante, T.; Rajek, S.; Reinecke, O.; Schulz, O.; Timm, J.; Wonsak, B.; Zuber, K.
2014-06-01
Events near the cathode and anode surfaces of a coplanar grid CdZnTe detector are identifiable by means of the interaction depth information encoded in the signal amplitudes. However, the amplitudes cannot be used to identify events near the lateral surfaces. In this paper a method is described to identify lateral surface events by means of their pulse shapes. Such identification allows for discrimination of surface alpha particle interactions from more penetrating forms of radiation, which is particularly important for rare event searches. The effectiveness of the presented technique in suppressing backgrounds due to alpha contamination in the search for neutrinoless double beta decay with the COBRA experiment is demonstrated.
Blindness enhances tactile acuity and haptic 3-D shape discrimination.
Norman, J Farley; Bartholomew, Ashley N
2011-10-01
This study compared the sensory and perceptual abilities of the blind and sighted. The 32 participants were required to perform two tasks: tactile grating orientation discrimination (to determine tactile acuity) and haptic three-dimensional (3-D) shape discrimination. The results indicated that the blind outperformed their sighted counterparts (individually matched for both age and sex) on both tactile tasks. The improvements in tactile acuity that accompanied blindness occurred for all blind groups (congenital, early, and late). However, the improvements in haptic 3-D shape discrimination only occurred for the early-onset and late-onset blindness groups; the performance of the congenitally blind was no better than that of the sighted controls. The results of the present study demonstrate that blindness does lead to an enhancement of tactile abilities, but they also suggest that early visual experience may play a role in facilitating haptic 3-D shape discrimination.
Stereoscopic shape discrimination is well preserved across changes in object size.
Norman, J Farley; Swindle, Jessica M; Jennings, L RaShae; Mullins, Elizabeth M; Beers, Amanda M
2009-06-01
A single experiment evaluated human observers' ability to discriminate the shape of solid objects that varied in size and orientation in depth. The object shapes were defined by binocular disparity, Lambertian shading, and texture. The object surfaces were smoothly curved and had naturalistic shapes, resembling those of water-smoothed granite rocks. On any given trial, two objects were presented that were either the same or different in terms of shape. When the "same" objects were presented, they differed in their orientation in depth by 25 degrees , 45 degrees , or 65 degrees . The observers were required to judge whether any given pair of objects was the "same" or "different" in terms of shape. The size of the objects was also varied by amounts up to +/-40% relative to the standard size. The observers' shape discrimination performance was strongly affected by the magnitude of the orientation changes in depth - thus, their performance was viewpoint dependent. In contrast, the observers' shape discrimination abilities were only slightly affected by changes in the overall size of the objects. It appears that human observers can recognize the three-dimensional shape of objects in a manner that is relatively independent of size.
Doped luminescent materials and particle discrimination using same
Doty, F. Patrick; Allendorf, Mark D; Feng, Patrick L
2014-10-07
Doped luminescent materials are provided for converting excited triplet states to radiative hybrid states. The doped materials may be used to conduct pulse shape discrimination (PSD) using luminescence generated by harvested excited triplet states. The doped materials may also be used to detect particles using spectral shape discrimination (SSD).
Development of a digital method for neutron/gamma-ray discrimination based on matched filtering
NASA Astrophysics Data System (ADS)
Korolczuk, S.; Linczuk, M.; Romaniuk, R.; Zychor, I.
2016-09-01
Neutron/gamma-ray discrimination is crucial for measurements with detectors sensitive to both neutron and gamma-ray radiation. Different techniques to discriminate between neutrons and gamma-rays based on pulse shape analysis are widely used in many applications, e.g., homeland security, radiation dosimetry, environmental monitoring, fusion experiments, nuclear spectroscopy. A common requirement is to improve a radiation detection level with a high detection reliability. Modern electronic components, such as high speed analog to digital converters and powerful programmable digital circuits for signal processing, allow us to develop a fully digital measurement system. With this solution it is possible to optimize digital signal processing algorithms without changing any electronic components in an acquisition signal path. We report on results obtained with a digital acquisition system DNG@NCBJ designed at the National Centre for Nuclear Research. A 2'' × 2'' EJ309 liquid scintillator was used to register mixed neutron and gamma-ray radiation from PuBe sources. A dedicated algorithm for pulse shape discrimination, based on real-time filtering, was developed and implemented in hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mabe, Andrew N.; Glenn, Andrew M.; Carman, M. Leslie
Transparent plastic scintillators with pulse shape discrimination containing 6Li salicylate have been synthesized by bulk polymerization with a maximum 6Li loading of 0.40 wt%. Photoluminescence and scintillation responses to gamma-rays and neutrons are reported in this paper. Plastics containing 6Li salicylate exhibit higher light yields and permit a higher loading of 6Li as compared to previously reported plastics based on lithium 3-phenylsalicylate. However, pulse shape discrimination performance is reduced in lithium salicylate plastics due to the requirement of adding more nonaromatic monomers to the polymer matrix as compared to those based on lithium 3-phenylsalicylate. Finally, reduction in light yield andmore » pulse shape discrimination performance in lithium-loaded plastics as compared to pulse shape discrimination plastics without lithium is interpreted in terms of energy transfer interference by the aromatic lithium salts.« less
NASA Astrophysics Data System (ADS)
Joyce, Malcolm J.; Aspinall, Michael D.; Cave, Francis D.; Lavietes, Anthony D.
2012-08-01
Pulse-shape discrimination (PSD) in fast, organic scintillation detectors is a long-established technique used to separate neutrons and γ rays in mixed radiation fields. In the analogue domain the method can achieve separation in real time, but all knowledge of the pulses themselves is lost thereby preventing the possibility of any post- or repeated analysis. Also, it is typically reliant on electronic systems that are largely obsolete and which require significant experience to set up. In the digital domain, PSD is often more flexible but significant post-processing has usually been necessary to obtain neutron/γ-ray separation. Moreover, the scintillation media on which the technique relies usually have a low flashpoint and are thus deemed hazardous. This complicates the ease with which they are used in industrial applications. In this paper, results obtained with a new portable digital pulse-shape discrimination instrument are described. This instrument provides real-time, digital neutron/γ-ray separation whilst preserving the synchronization with the time-of-arrival for each event, and realizing throughputs of 3 × 106 events per second. Furthermore, this system has been tested with a scintillation medium that is non-flammable and not hazardous.
Norman, J Farley; Phillips, Flip; Holmin, Jessica S; Norman, Hideko F; Beers, Amanda M; Boswell, Alexandria M; Cheeseman, Jacob R; Stethen, Angela G; Ronning, Cecilia
2012-10-01
A set of three experiments evaluated 96 participants' ability to visually and haptically discriminate solid object shape. In the past, some researchers have found haptic shape discrimination to be substantially inferior to visual shape discrimination, while other researchers have found haptics and vision to be essentially equivalent. A primary goal of the present study was to understand these discrepant past findings and to determine the true capabilities of the haptic system. All experiments used the same task (same vs. different shape discrimination) and stimulus objects (James Gibson's "feelies" and a set of naturally shaped objects--bell peppers). However, the methodology varied across experiments. Experiment 1 used random 3-dimensional (3-D) orientations of the stimulus objects, and the conditions were full-cue (active manipulation of objects and rotation of the visual objects in depth). Experiment 2 restricted the 3-D orientations of the stimulus objects and limited the haptic and visual information available to the participants. Experiment 3 compared restricted and full-cue conditions using random 3-D orientations. We replicated both previous findings in the current study. When we restricted visual and haptic information (and placed the stimulus objects in the same orientation on every trial), the participants' visual performance was superior to that obtained for haptics (replicating the earlier findings of Davidson et al. in Percept Psychophys 15(3):539-543, 1974). When the circumstances resembled those of ordinary life (e.g., participants able to actively manipulate objects and see them from a variety of perspectives), we found no significant difference between visual and haptic solid shape discrimination.
Digital pulse shape discrimination.
Miller, L F; Preston, J; Pozzi, S; Flaska, M; Neal, J
2007-01-01
Pulse-shape discrimination (PSD) has been utilised for about 40 years as a method to obtain estimates for dose in mixed neutron and photon fields. Digitizers that operate close to GHz are currently available at a reasonable cost, and they can be used to directly sample signals from photomultiplier tubes. This permits one to perform digital PSD rather than the traditional, and well-established, analogoue techniques. One issue that complicates PSD for neutrons in mixed fields is that the light output characteristics of typical scintillators available for PSD, such as BC501A, vary as a function of energy deposited in the detector. This behaviour is more easily accommodated with digital processing of signals than with analogoue signal processing. Results illustrate the effectiveness of digital PSD.
Errorless discrimination and picture fading as techniques for teaching sight words to TMR students.
Walsh, B F; Lamberts, F
1979-03-01
The effectiveness of two approaches for teaching beginning sight words to 30 TMR students was compared. In Dorry and Zeaman's picture-fading technique, words are taught through association with pictures that are faded out over a series of trials, while in the Edmark program errorless-discrimination technique, words are taught through shaped sequences of visual and auditory--visual matching-to-sample, with the target word first appearing alone and eventually appearing with orthographically similar words. Students were instructed on two lists of 10 words each, one list in the picture-fading and one in the discrimination method, in a double counter-balanced, repeated-measures design. Covariance analysis on three measures (word identification, word recognition, and picture--word matching) showed highly significant differences between the two methods. Students' performance was better after instruction with the errorless-discrimination method than after instruction with the picture-fading method. The findings on picture fading were interpreted as indicating a possible failure of the shifting of control from picture to printed word that earlier researchers have hypothesized as occurring.
Visual feature discrimination versus compression ratio for polygonal shape descriptors
NASA Astrophysics Data System (ADS)
Heuer, Joerg; Sanahuja, Francesc; Kaup, Andre
2000-10-01
In the last decade several methods for low level indexing of visual features appeared. Most often these were evaluated with respect to their discrimination power using measures like precision and recall. Accordingly, the targeted application was indexing of visual data within databases. During the standardization process of MPEG-7 the view on indexing of visual data changed, taking also communication aspects into account where coding efficiency is important. Even if the descriptors used for indexing are small compared to the size of images, it is recognized that there can be several descriptors linked to an image, characterizing different features and regions. Beside the importance of a small memory footprint for the transmission of the descriptor and the memory footprint in a database, eventually the search and filtering can be sped up by reducing the dimensionality of the descriptor if the metric of the matching can be adjusted. Based on a polygon shape descriptor presented for MPEG-7 this paper compares the discrimination power versus memory consumption of the descriptor. Different methods based on quantization are presented and their effect on the retrieval performance are measured. Finally an optimized computation of the descriptor is presented.
2015-01-01
Objectives. Social expectancy theory posits that cultural values shape how individuals perceive and evaluate others, and this influences how others evaluate themselves. Based on this theory, ageism may shape older individuals’ self-evaluations. Given the cultural focus on beauty and youth, perceptions of age discrimination may be associated with lower body esteem, and this may be associated with poor psychological well-being. Because discrimination has been associated with poor health, and perceptions of health can affect body perceptions, subjective health status may also contribute to lower body esteem. Method. These associations are assessed in a structural equation model for 244 African American and European American women in their early 60s. Results. Perceptions of age discrimination and body esteem were associated with lower psychological well-being for both ethnic groups. Body esteem partially mediated the association between age discrimination and psychological well-being among European American women but not among African American women. Discussion. Age-related discrimination is one source of psychological distress for older adults, though ageism’s associations with body esteem, health, and psychological well-being vary significantly for European American and African American women. Examining body perceptions and health in the contexts of ageism and ethnicity is necessary when considering the psychological well-being of older women. PMID:24013801
NASA Astrophysics Data System (ADS)
Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Lenardo, B. G.; Lesko, K. T.; Liao, J.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Utku, U.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration
2018-06-01
Weakly interacting massive particles (WIMPs) are a leading candidate for dark matter and are expected to produce nuclear recoil (NR) events within liquid xenon time-projection chambers. We present a measurement of the scintillation timing characteristics of liquid xenon in the LUX dark matter detector and develop a pulse shape discriminant to be used for particle identification. To accurately measure the timing characteristics, we develop a template-fitting method to reconstruct the detection times of photons. Analyzing calibration data collected during the 2013-2016 LUX WIMP search, we provide a new measurement of the singlet-to-triplet scintillation ratio for electron recoils (ER) below 46 keV, and we make, to our knowledge, a first-ever measurement of the NR singlet-to-triplet ratio at recoil energies below 74 keV. We exploit the difference of the photon time spectra for NR and ER events by using a prompt fraction discrimination parameter, which is optimized using calibration data to have the least number of ER events that occur in a 50% NR acceptance region. We then demonstrate how this discriminant can be used in conjunction with the charge-to-light discrimination to possibly improve the signal-to-noise ratio for nuclear recoils.
Joslin Yogi, Theresa A; Penrod, Michael; Holt, Melinda; Buzzini, Patrick
2018-02-01
Wig fragments or fibers may occasionally be recognized as potential physical evidence during criminal investigations. While analytical methods traditionally adopted for the examination of textile fibers are utilized for the characterizations and comparisons of wig specimens, it is essential to understand in deeper detail the valuable contribution of features of these non-routine evidentiary materials as well as the relationship of the gathered analytical data. This study explores the dependence between the microscopic features of cross-sectional shapes and the polymer type gathered by Fourier transform infrared (FTIR) spectroscopy. The discriminating power of the two methods of cross-sectioning and FTIR spectroscopy was also investigated. Forty-one synthetic wigs varying in both quality and price were collected: twenty-three brown, twelve blondes and six black samples. The collected samples were observed using light microscopy methods (bright field illumination and polarized light), before obtaining cross-sections using the Joliff method and analyze them using FTIR spectroscopy. The forty-one samples were divided into ten groups based on one or more of the ten types of cross-sectional shapes that were observed. The majority of encountered cross-sectional shapes were defined as horseshoe, dog bone and lobular. Infrared spectroscopy confirmed modacrylic to be the most prevalent fiber type. Blends of modacrylic and polyvinyl chloride fibers were also observed as well as polypropylene wig samples. The Goodman and Kruskal lambda statistical test was used and showed that the cross-sectional shape and infrared profile were related. From an evidentiary value perspective, this finding has implications when addressing questions about a common source between questioned wig specimens and a wig reference sample. Copyright © 2017 Elsevier B.V. All rights reserved.
Aging and the visual, haptic, and cross-modal perception of natural object shape.
Norman, J Farley; Crabtree, Charles E; Norman, Hideko F; Moncrief, Brandon K; Herrmann, Molly; Kapley, Noah
2006-01-01
One hundred observers participated in two experiments designed to investigate aging and the perception of natural object shape. In the experiments, younger and older observers performed either a same/different shape discrimination task (experiment 1) or a cross-modal matching task (experiment 2). Quantitative effects of age were found in both experiments. The effect of age in experiment 1 was limited to cross-modal shape discrimination: there was no effect of age upon unimodal (ie within a single perceptual modality) shape discrimination. The effect of age in experiment 2 was eliminated when the older observers were either given an unlimited amount of time to perform the task or when the number of response alternatives was decreased. Overall, the results of the experiments reveal that older observers can effectively perceive 3-D shape from both vision and haptics.
Shedlin, Michele G.; Decena, Carlos U.; Noboa, Hugo; Betancourt, Óscar
2013-01-01
BACKGROUND This study explored factors affecting the health and well being of recent refugees from Colombia in Ecuador. Data collection focused on how sending-country violence and structural violence in a new environment affect immigrant health vulnerability and risk behaviors. METHODS A qualitative approach included ethnographic observation, media content analysis, focus groups, and individual interviews with refugees (N=137). The focus groups (5) provided perspectives on the research domains by sex workers; drug users; male and female refugees; and service providers. RESULTS Social and economic marginalization are impacting the health and well being of this growing refugee population. Data illustrate how stigma and discrimination affect food and housing security, employment and health services, and shape vulnerabilities and health risks in a new receiving environment. DISCUSSION Widespread discrimination in Ecuador reflects fears, misunderstanding, and stereotypes about Colombian refugees. For this displaced population, the sequelae of violence, combined with survival needs and lack of support and protections, shape new risks to health and well-being. PMID:23377565
DOT National Transportation Integrated Search
1974-03-01
Three experiments were conducted on form discrimination to select and evaluate forms for shape coding of daymarks. The discriminability of the forms was measured by the frequency with which each form was identified correctly and the frequency with wh...
Wang, Peng; Zheng, Yefeng; John, Matthias; Comaniciu, Dorin
2012-01-01
Dynamic overlay of 3D models onto 2D X-ray images has important applications in image guided interventions. In this paper, we present a novel catheter tracking for motion compensation in the Transcatheter Aortic Valve Implantation (TAVI). To address such challenges as catheter shape and appearance changes, occlusions, and distractions from cluttered backgrounds, we present an adaptive linear discriminant learning method to build a measurement model online to distinguish catheters from background. An analytic solution is developed to effectively and efficiently update the discriminant model and to minimize the classification errors between the tracking object and backgrounds. The online learned discriminant model is further combined with an offline learned detector and robust template matching in a Bayesian tracking framework. Quantitative evaluations demonstrate the advantages of this method over current state-of-the-art tracking methods in tracking catheters for clinical applications.
Georgieva, Milena; Zagorchev, Plamen; Miloshev, George
2015-10-01
Comet assay is an invaluable tool in DNA research. It is widely used to detect DNA damage as an indicator of exposure to genotoxic stress. A canonical set of parameters and specialized software programs exist for Comet assay data quantification and analysis. None of them so far has proven its potential to employ a computer-based algorithm for assessment of the shape of the comet as an indicator of the exact mechanism by which the studied genotoxins cut in the molecule of DNA. Here, we present 14 unique measurements of the comet image based on the comet morphology. Their mathematical derivation and statistical analysis allowed precise description of the shape of the comet image which in turn discriminated the cause of genotoxic stress. This algorithm led to the development of the "CometShape" software which allowed easy discrimination among different genotoxins depending on the type of DNA damage they induce. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Scully, Erin N; Acerbo, Martin J; Lazareva, Olga F
2014-01-01
Earlier, we reported that nucleus rotundus (Rt) together with its inhibitory complex, nucleus subpretectalis/interstitio-pretecto-subpretectalis (SP/IPS), had significantly higher activity in pigeons performing figure-ground discrimination than in the control group that did not perform any visual discriminations. In contrast, color discrimination produced significantly higher activity than control in the Rt but not in the SP/IPS. Finally, shape discrimination produced significantly lower activity than control in both the Rt and the SP/IPS. In this study, we trained pigeons to simultaneously perform three visual discriminations (figure-ground, color, and shape) using the same stimulus displays. When birds learned to perform all three tasks concurrently at high levels of accuracy, we conducted bilateral chemical lesions of the SP/IPS. After a period of recovery, the birds were retrained on the same tasks to evaluate the effect of lesions on maintenance of these discriminations. We found that the lesions of the SP/IPS had no effect on color or shape discrimination and that they significantly impaired figure-ground discrimination. Together with our earlier data, these results suggest that the nucleus Rt and the SP/IPS are the key structures involved in figure-ground discrimination. These results also imply that thalamic processing is critical for figure-ground segregation in avian brain.
Transparent plastic scintillators for neutron detection based on lithium salicylate
Mabe, Andrew N.; Glenn, Andrew M.; Carman, M. Leslie; ...
2015-10-14
Transparent plastic scintillators with pulse shape discrimination containing 6Li salicylate have been synthesized by bulk polymerization with a maximum 6Li loading of 0.40 wt%. Photoluminescence and scintillation responses to gamma-rays and neutrons are reported in this paper. Plastics containing 6Li salicylate exhibit higher light yields and permit a higher loading of 6Li as compared to previously reported plastics based on lithium 3-phenylsalicylate. However, pulse shape discrimination performance is reduced in lithium salicylate plastics due to the requirement of adding more nonaromatic monomers to the polymer matrix as compared to those based on lithium 3-phenylsalicylate. Finally, reduction in light yield andmore » pulse shape discrimination performance in lithium-loaded plastics as compared to pulse shape discrimination plastics without lithium is interpreted in terms of energy transfer interference by the aromatic lithium salts.« less
The time course of shape discrimination in the human brain.
Ales, Justin M; Appelbaum, L Gregory; Cottereau, Benoit R; Norcia, Anthony M
2013-02-15
The lateral occipital cortex (LOC) activates selectively to images of intact objects versus scrambled controls, is selective for the figure-ground relationship of a scene, and exhibits at least some degree of invariance for size and position. Because of these attributes, it is considered to be a crucial part of the object recognition pathway. Here we show that human LOC is critically involved in perceptual decisions about object shape. High-density EEG was recorded while subjects performed a threshold-level shape discrimination task on texture-defined figures segmented by either phase or orientation cues. The appearance or disappearance of a figure region from a uniform background generated robust visual evoked potentials throughout retinotopic cortex as determined by inverse modeling of the scalp voltage distribution. Contrasting responses from trials containing shape changes that were correctly detected (hits) with trials in which no change occurred (correct rejects) revealed stimulus-locked, target-selective activity in the occipital visual areas LOC and V4 preceding the subject's response. Activity that was locked to the subjects' reaction time was present in the LOC. Response-locked activity in the LOC was determined to be related to shape discrimination for several reasons: shape-selective responses were silenced when subjects viewed identical stimuli but their attention was directed away from the shapes to a demanding letter discrimination task; shape-selectivity was present across four different stimulus configurations used to define the figure; LOC responses correlated with participants' reaction times. These results indicate that decision-related activity is present in the LOC when subjects are engaged in threshold-level shape discriminations. Copyright © 2012 Elsevier Inc. All rights reserved.
Vermaercke, Ben; Van den Bergh, Gert; Gerich, Florian; Op de Beeck, Hans
2015-01-01
Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. It is unknown to what degree this functional organization is related to the well-known hierarchical organization of the visual system in primates. We designed a study in rats that targets one of the hallmarks of the hierarchical object vision pathway in primates: selectivity for behaviorally relevant dimensions. We compared behavioral performance in a visual water maze with neural discriminability in five visual cortical areas. We tested behavioral discrimination in two independent batches of six rats using six pairs of shapes used previously to probe shape selectivity in monkey cortex (Lehky and Sereno, 2007). The relative difficulty (error rate) of shape pairs was strongly correlated between the two batches, indicating that some shape pairs were more difficult to discriminate than others. Then, we recorded in naive rats from five visual areas from primary visual cortex (V1) over areas LM, LI, LL, up to lateral occipito-temporal cortex (TO). Shape selectivity in the upper layers of V1, where the information enters cortex, correlated mostly with physical stimulus dissimilarity and not with behavioral performance. In contrast, neural discriminability in lower layers of all areas was strongly correlated with behavioral performance. These findings, in combination with the results from Vermaercke et al. (2014b), suggest that the functional specialization in rodent lateral visual cortex reflects a processing hierarchy resulting in the emergence of complex selectivity that is related to behaviorally relevant stimulus differences.
Shape Mode Analysis Exposes Movement Patterns in Biology: Flagella and Flatworms as Case Studies
Werner, Steffen; Rink, Jochen C.; Riedel-Kruse, Ingmar H.; Friedrich, Benjamin M.
2014-01-01
We illustrate shape mode analysis as a simple, yet powerful technique to concisely describe complex biological shapes and their dynamics. We characterize undulatory bending waves of beating flagella and reconstruct a limit cycle of flagellar oscillations, paying particular attention to the periodicity of angular data. As a second example, we analyze non-convex boundary outlines of gliding flatworms, which allows us to expose stereotypic body postures that can be related to two different locomotion mechanisms. Further, shape mode analysis based on principal component analysis allows to discriminate different flatworm species, despite large motion-associated shape variability. Thus, complex shape dynamics is characterized by a small number of shape scores that change in time. We present this method using descriptive examples, explaining abstract mathematics in a graphic way. PMID:25426857
Gregory, J S; Testi, D; Stewart, A; Undrill, P E; Reid, D M; Aspden, R M
2004-01-01
The shape of the proximal femur has been demonstrated to be important in the occurrence of fractures of the femoral neck. Unfortunately, multiple geometric measurements frequently used to describe this shape are highly correlated. A new method, active shape modeling (ASM) has been developed to quantify the morphology of the femur. This describes the shape in terms of orthogonal modes of variation that, consequently, are all independent. To test this method, digitized standard pelvic radiographs were obtained from 26 women who had suffered a hip fracture and compared with images from 24 age-matched controls with no fracture. All subjects also had their bone mineral density (BMD) measured at five sites using dual-energy X-ray absorptiometry. An ASM was developed and principal components analysis used to identify the modes which best described the shape. Discriminant analysis was used to determine which variable, or combination of variables, was best able to discriminate between the groups. ASM alone correctly identified 74% of the individuals and placed them in the appropriate group. Only one of the BMD values (Ward's triangle) achieved a higher value (82%). A combination of Ward's triangle BMD and ASM improved the accuracy to 90%. Geometric variables used in this study were weaker, correctly classifying less than 60% of the study group. Logistic regression showed that after adjustment for age, body mass index, and BMD, the ASM data was still independently associated with hip fracture (odds ratio (OR)=1.83, 95% confidence interval 1.08 to 3.11). The odds ratio was calculated relative to a 10% increase in the probability of belonging to the fracture group. Though these initial results were obtained from a limited data set, this study shows that ASM may be a powerful method to help identify individuals at risk of a hip fracture in the future.
Perceptual Reorganization of Lexical Tones: Effects of Age and Experimental Procedure
Götz, Antonia; Yeung, H. Henny; Krasotkina, Anna; Schwarzer, Gudrun; Höhle, Barbara
2018-01-01
Findings on the perceptual reorganization of lexical tones are mixed. Some studies report good tone discrimination abilities for all tested age groups, others report decreased or enhanced discrimination with increasing age, and still others report U-shaped developmental curves. Since prior studies have used a wide range of contrasts and experimental procedures, it is unclear how specific task requirements interact with discrimination abilities at different ages. In the present work, we tested German and Cantonese adults on their discrimination of Cantonese lexical tones, as well as German-learning infants between 6 and 18 months of age on their discrimination of two specific Cantonese tones using two different types of experimental procedures. The adult experiment showed that German native speakers can discriminate between lexical tones, but native Cantonese speakers show significantly better performance. The results from German-learning infants suggest that 6- and 18-month-olds discriminate tones, while 9-month-olds do not, supporting a U-shaped developmental curve. Furthermore, our results revealed an effect of methodology, with good discrimination performance at 6 months after habituation but not after familiarization. These results support three main conclusions. First, habituation can be a more sensitive procedure for measuring infants' discrimination than familiarization. Second, the previous finding of a U-shaped curve in the discrimination of lexical tones is further supported. Third, discrimination abilities at 18 months appear to reflect mature perceptual sensitivity to lexical tones, since German adults also discriminated the lexical tones with high accuracy. PMID:29681877
Discrimination of high-Z materials in concrete-filled containers using muon scattering tomography
NASA Astrophysics Data System (ADS)
Frazão, L.; Velthuis, J.; Thomay, C.; Steer, C.
2016-07-01
An analysis method of identifying materials using muon scattering tomography is presented, which uses previous knowledge of the position of high-Z objects inside a container and distinguishes them from similar materials. In particular, simulations were performed in order to distinguish a block of Uranium from blocks of Lead and Tungsten of the same size, inside a concrete-filled drum. The results show that, knowing the shape and position from previous analysis, it is possible to distinguish 5 × 5 × 5 cm3 blocks of these materials with about 4h of muon exposure, down to 2 × 2 × 2 cm3 blocks with 70h of data using multivariate analysis (MVA). MVA uses several variables, but it does not benefit the discrimination over a simpler method using only the scatter angles. This indicates that the majority of discrimination is provided by the angular information. Momentum information is shown to provide no benefits in material discrimination.
A real-time n/γ digital pulse shape discriminator based on FPGA.
Li, Shiping; Xu, Xiufeng; Cao, Hongrui; Yuan, Guoliang; Yang, Qingwei; Yin, Zejie
2013-02-01
A FPGA-based real-time digital pulse shape discriminator has been employed to distinguish between neutrons (n) and gammas (γ) in the Neutron Flux Monitor (NFM) for International Thermonuclear Experimental Reactor (ITER). The discriminator takes advantages of the Field Programmable Gate Array (FPGA) parallel and pipeline process capabilities to carry out the real-time sifting of neutrons in n/γ mixed radiation fields, and uses the rise time and amplitude inspection techniques simultaneously as the discrimination algorithm to observe good n/γ separation. Some experimental results have been presented which show that this discriminator can realize the anticipated goals of NFM perfectly with its excellent discrimination quality and zero dead time. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bagán, H; Tarancón, A; Rauret, G; García, J F
2010-06-18
Activity determination in different types of samples is a current need in many different fields. Simultaneously analysing alpha and beta emitters is now a routine option when using liquid scintillation (LS) and pulse shape discrimination. However, LS has an important drawback, the generation of mixed waste. Recently, several studies have shown the capability of plastic scintillation (PS) as an alternative to LS, but no research has been carried out to determine its capability for alpha/beta discrimination. The objective of this study was to evaluate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape analysis (PSA). The results obtained show that PS pulses had lower energy than LS pulses. As a consequence, a lower detection efficiency, a shift to lower energies and a better discrimination of beta and a worst discrimination of alpha disintegrations was observed for PS. Colour quenching also produced a decrease in the energy of the particles, as well as the effects described above. It is clear that in PS, the discrimination capability was correlated with the energy of the particles detected. Taking into account the discrimination capabilities of PS, a protocol for the measurement and the calculation of alpha and beta activities in mixtures using PS and commercial scintillation detectors has been proposed. The new protocol was applied to the quantification of spiked river water samples containing a pair of radionuclides ((3)H-(241)Am or (90)Sr/(90)Y-(241)Am) in different activity proportions. The relative errors in all determinations were lower than 7%. These results demonstrate the capability of PS to discriminate alpha/beta emitters on the basis of pulse shape and to quantify mixtures without generating mixed waste. 2010 Elsevier B.V. All rights reserved.
de Rivera, Christina; Boutet, Isabelle; Zicker, Steven C; Milgram, Norton W
2005-03-01
Tasks requiring visual discrimination are commonly used in assessment of canine cognitive function. However, little is known about canine visual processing, and virtually nothing is known about the effects of age on canine visual function. This study describes a novel behavioural method developed to assess one aspect of canine visual function, namely contrast sensitivity. Four age groups (young, middle aged, old, and senior) were studied. We also included a group of middle aged to old animals that had been maintained for at least 4 years on a specially formulated food containing a broad spectrum of antioxidants and mitochondrial cofactors. Performance of this group was compared with a group in the same age range maintained on a control diet. In the first phase, all animals were trained to discriminate between two high contrast shapes. In the second phase, contrast was progressively reduced by increasing the luminance of the shapes. Performance decreased as a function of age, but the differences did not achieve statistical significance, possibly because of a small sample size in the young group. All age groups were able to acquire the initial discrimination, although the two older age groups showed slower learning. Errors increased with decreasing contrast with the maximal number of errors for the 1% contrast shape. Also, all animals on the antioxidant diet learned the task and had significantly fewer errors at the high contrast compared with the animals on the control diet. The initial results suggest that contrast sensitivity deteriorates with age in the canine while form perception is largely unaffected by age.
2018-01-01
Abstract We examined how attention causes neural population representations of shape and location to change in ventral stream (AIT) and dorsal stream (LIP). Monkeys performed two identical delayed-match-to-sample (DMTS) tasks, attending either to shape or location. In AIT, shapes were more discriminable when directing attention to shape rather than location, measured by an increase in mean distance between population response vectors. In LIP, attending to location rather than shape did not increase the discriminability of different stimulus locations. Even when factoring out the change in mean vector response distance, multidimensional scaling (MDS) still showed a significant task difference in AIT, but not LIP, indicating that beyond increasing discriminability, attention also causes a nonlinear warping of representation space in AIT. Despite single-cell attentional modulations in both areas, our data show that attentional modulations of population representations are weaker in LIP, likely due to a need to maintain veridical representations for visuomotor control. PMID:29876521
The Morphometrics of “Masculinity” in Human Faces
Mitteroecker, Philipp; Windhager, Sonja; Müller, Gerd B.; Schaefer, Katrin
2015-01-01
In studies of social inference and human mate preference, a wide but inconsistent array of tools for computing facial masculinity has been devised. Several of these approaches implicitly assumed that the individual expression of sexually dimorphic shape features, which we refer to as maleness, resembles facial shape features perceived as masculine. We outline a morphometric strategy for estimating separately the face shape patterns that underlie perceived masculinity and maleness, and for computing individual scores for these shape patterns. We further show how faces with different degrees of masculinity or maleness can be constructed in a geometric morphometric framework. In an application of these methods to a set of human facial photographs, we found that shape features typically perceived as masculine are wide faces with a wide inter-orbital distance, a wide nose, thin lips, and a large and massive lower face. The individual expressions of this combination of shape features—the masculinity shape scores—were the best predictor of rated masculinity among the compared methods (r = 0.5). The shape features perceived as masculine only partly resembled the average face shape difference between males and females (sexual dimorphism). Discriminant functions and Procrustes distances to the female mean shape were poor predictors of perceived masculinity. PMID:25671667
The morphometrics of "masculinity" in human faces.
Mitteroecker, Philipp; Windhager, Sonja; Müller, Gerd B; Schaefer, Katrin
2015-01-01
In studies of social inference and human mate preference, a wide but inconsistent array of tools for computing facial masculinity has been devised. Several of these approaches implicitly assumed that the individual expression of sexually dimorphic shape features, which we refer to as maleness, resembles facial shape features perceived as masculine. We outline a morphometric strategy for estimating separately the face shape patterns that underlie perceived masculinity and maleness, and for computing individual scores for these shape patterns. We further show how faces with different degrees of masculinity or maleness can be constructed in a geometric morphometric framework. In an application of these methods to a set of human facial photographs, we found that shape features typically perceived as masculine are wide faces with a wide inter-orbital distance, a wide nose, thin lips, and a large and massive lower face. The individual expressions of this combination of shape features--the masculinity shape scores--were the best predictor of rated masculinity among the compared methods (r = 0.5). The shape features perceived as masculine only partly resembled the average face shape difference between males and females (sexual dimorphism). Discriminant functions and Procrustes distances to the female mean shape were poor predictors of perceived masculinity.
Understanding the Structure of Large, Diverse Collections of Shapes
2013-06-01
lowest weight edges as candidates, and for each candidate, we compute its edge rank, which is a metric proposed by Heath et al. [51] that estimates the... Neil D. McKay. A method for registration of 3-d shapes. IEEE PAMI, 14(2):239–256, February 1992. [10] V. Blanz, K. Scherbaum, and H.-P. Seidel. Fitting...2011. [50] C. Gu and X. Ren. Discriminative mixture-of-templates for viewpoint classification. In ECCV, 2010. [51] K. Heath , N. Gelfand, M
Morphometric classification of Spanish thoroughbred stallion sperm heads.
Hidalgo, Manuel; Rodríguez, Inmaculada; Dorado, Jesús; Soler, Carles
2008-01-30
This work used semen samples collected from 12 stallions and assessed for sperm morphometry by the Sperm Class Analyzer (SCA) computer-assisted system. A discriminant analysis was performed on the morphometric data from that sperm to obtain a classification matrix for sperm head shape. Thereafter, we defined six types of sperm head shape. Classification of sperm head by this method obtained a globally correct assignment of 90.1%. Moreover, significant differences (p<0.05) were found between animals for all the sperm head morphometric parameters assessed.
NASA Astrophysics Data System (ADS)
El-Saba, A. M.; Alam, M. S.; Surpanani, A.
2006-05-01
Important aspects of automatic pattern recognition systems are their ability to efficiently discriminate and detect proper targets with low false alarms. In this paper we extend the applications of passive imaging polarimetry to effectively discriminate and detect different color targets of identical shapes using color-blind imaging sensor. For this case of study we demonstrate that traditional color-blind polarization-insensitive imaging sensors that rely only on the spatial distribution of targets suffer from high false detection rates, especially in scenarios where multiple identical shape targets are present. On the other hand we show that color-blind polarization-sensitive imaging sensors can successfully and efficiently discriminate and detect true targets based on their color only. We highlight the main advantages of using our proposed polarization-encoded imaging sensor.
Noguchi, M; Satoh, K; Higuchi, H
1984-12-01
Pulse shape discrimination of alpha and beta rays with liquid scintillation counting was investigated for the purpose of low level alpha activity measurements. Various liquid scintillators for pulse shape discrimination were examined by means of pulse rise time analysis. A new scintillator of low cost and of superior characteristics was found. The figure of merits better than 3.5 in rise time spectrum and the energy resolution better than 9% were obtained for carefully prepared samples. The background counting rate for a sample of 10 ml was reduced to 0.013 cpm/MeV in the range of alpha ray energy 5 to 7 MeV.
Polystyrene-based scintillator with pulse-shape discrimination capability
NASA Astrophysics Data System (ADS)
Zhmurin, P. N.; Lebedev, V. N.; Titskaya, V. D.; Adadurov, A. F.; Elyseev, D. A.; Pereymak, V. N.
2014-10-01
Polystyrene-based scintillators with 2-phenyl-5-(4-tert-butylephenyl)-1,3,4-oxadiazole (tert-BuPPD) or 2,5-di-(3-methylphenyl)-1,3,4 oxadiazole (m-DMePPD) are proposed for pulse-shape n/γ-discrimination. These scintillators have improved mechanical properties, long operational time and high n/γ discrimination parameter - figure of merit (1.49 and 1.81 in a wide energy region), so they can be used as detectors of fast neutrons in the presence of gamma radiation background.
Shape-based diagnosis of the aortic valve
NASA Astrophysics Data System (ADS)
Ionasec, Razvan Ioan; Tsymbal, Alexey; Vitanovski, Dime; Georgescu, Bogdan; Zhou, S. Kevin; Navab, Nassir; Comaniciu, Dorin
2009-02-01
Disorders of the aortic valve represent a common cardiovascular disease and an important public-health problem worldwide. Pathological valves are currently determined from 2D images through elaborate qualitative evalu- ations and complex measurements, potentially inaccurate and tedious to acquire. This paper presents a novel diagnostic method, which identies diseased valves based on 3D geometrical models constructed from volumetric data. A parametric model, which includes relevant anatomic landmarks as well as the aortic root and lea ets, represents the morphology of the aortic valve. Recently developed robust segmentation methods are applied to estimate the patient specic model parameters from end-diastolic cardiac CT volumes. A discriminative distance function, learned from equivalence constraints in the product space of shape coordinates, determines the corresponding pathology class based on the shape information encoded by the model. Experiments on a heterogeneous set of 63 patients aected by various diseases demonstrated the performance of our method with 94% correctly classied valves.
Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening.
Seoud, Lama; Hurtut, Thomas; Chelbi, Jihed; Cheriet, Farida; Langlois, J M Pierre
2016-04-01
The development of an automatic telemedicine system for computer-aided screening and grading of diabetic retinopathy depends on reliable detection of retinal lesions in fundus images. In this paper, a novel method for automatic detection of both microaneurysms and hemorrhages in color fundus images is described and validated. The main contribution is a new set of shape features, called Dynamic Shape Features, that do not require precise segmentation of the regions to be classified. These features represent the evolution of the shape during image flooding and allow to discriminate between lesions and vessel segments. The method is validated per-lesion and per-image using six databases, four of which are publicly available. It proves to be robust with respect to variability in image resolution, quality and acquisition system. On the Retinopathy Online Challenge's database, the method achieves a FROC score of 0.420 which ranks it fourth. On the Messidor database, when detecting images with diabetic retinopathy, the proposed method achieves an area under the ROC curve of 0.899, comparable to the score of human experts, and it outperforms state-of-the-art approaches.
Aging and the discrimination of 3-D shape from motion and binocular disparity.
Norman, J Farley; Holmin, Jessica S; Beers, Amanda M; Cheeseman, Jacob R; Ronning, Cecilia; Stethen, Angela G; Frost, Adam L
2012-10-01
Two experiments evaluated the ability of younger and older adults to visually discriminate 3-D shape as a function of surface coherence. The coherence was manipulated by embedding the 3-D surfaces in volumetric noise (e.g., for a 55 % coherent surface, 55 % of the stimulus points fell on a 3-D surface, while 45 % of the points occupied random locations within the same volume of space). The 3-D surfaces were defined by static binocular disparity, dynamic binocular disparity, and motion. The results of both experiments demonstrated significant effects of age: Older adults required more coherence (tolerated volumetric noise less) for reliable shape discrimination than did younger adults. Motion-defined and static-binocular-disparity-defined surfaces resulted in similar coherence thresholds. However, performance for dynamic-binocular-disparity-defined surfaces was superior (i.e., the observers' surface coherence thresholds were lowest for these stimuli). The results of both experiments showed that younger and older adults possess considerable tolerance to the disrupting effects of volumetric noise; the observers could reliably discriminate 3-D surface shape even when 45 % of the stimulus points (or more) constituted noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aalseth, Craig E.; Day, Anthony R.; Fuller, Erin S.
Abstract A new ultra-low-background proportional counter (ULBPC) design was recently developed at Pacific Northwest National Laboratory (PNNL). This design, along with an ultra-low-background counting system (ULBCS) which provides passive and active shielding with radon exclusion, has been developed to complement a new shallow underground laboratory (~30 meters water-equivalent) constructed at PNNL. After these steps to mitigate dominant backgrounds (cosmic rays, external gamma-rays, radioactivity in materials), remaining background events do not exclusively arise from ionization of the proportional counter gas. Digital pulse-shape discrimination (PSD) is thus employed to further improve measurement sensitivity. In this work, a template shape is generated formore » each individual sample measurement of interest, a "self-calibrating" template. Differences in event topology can also cause differences in pulse shape. In this work, the temporal region analyzed for each event is refined to maximize background discrimination while avoiding unwanted sensitivity to event topology. This digital PSD method is applied to sample and background data, and initial measurement results from a biofuel methane sample are presented in the context of low-background measurements currently being developed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, C A; Clarke, S D; Pozzi, S A
Purpose: To develop an instrument for measuring neutron and photon dose rates from mixed fields with a single device. Methods: Stilbene organic scintillators can be used to detect fast neutrons and photons. Stilbene was used to measure emission from mixed particle sources californium-252 (Cf-252) and plutonium-beryllium (PuBe). Many source detector configurations were used, along with varying amounts of shielding. Collected spectra were analyzed using pulse shape discrimination software, to separate neutron and photon interactions. With a measured light output to energy relationship the pulse height spectrum was converted to energy deposited in the detector. Energy deposited was converted to dosemore » with a variety of standard dose factors, for comparison to current methods. For validation, all measurements and processing was repeated using an EJ-309 liquid scintillator detector. Dose rates were also measured in the same configuration with commercially available dose meters for further validation. Results: Measurements of dose rates will show agreement across all methods. Higher accuracy of pulse shape discrimination at lower energies with stilbene leads to more accurate measurement of neutron and photon deposited dose. In strong fields of mixed particles discrimination can be performed well at a very low energy threshold. This shows accurate dose measurements over a large range of incident particle energy. Conclusion: Stilbene shows promise as a material for dose rate measurements due to its strong ability for separating neutrons and photon pulses and agreement with current methods. A dual particle dose meter would simplify methods which are currently limited to the measurement of only one particle type. Future work will investigate the use of a silicon photomultiplier to reduce the size and required voltage of the assembly, for practical use as a handheld survey meter, room monitor, or phantom installation. Funding From the United States Department of Energy and the National Nuclear Security Administration.« less
NASA Astrophysics Data System (ADS)
Ashenfelter, J.; Balantekin, B.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bowes, A.; Brodsky, J. P.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Commeford, K.; Davee, D.; Dean, D.; Deichert, G.; Diwan, M. V.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Goddard, B. W.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Langford, T. J.; Littlejohn, B. R.; Martinez Caicedo, D. A.; McKeown, R. D.; Mendenhall, M. P.; Mueller, P.; Mumm, H. P.; Napolitano, J.; Neilson, R.; Norcini, D.; Pushin, D.; Qian, X.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Sheets, S.; Stemen, N. T.; Surukuchi, P. T.; Varner, R. L.; Viren, B.; Wang, W.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y. R.; Zangakis, G.; Zhang, C.; Zhang, X.
2015-11-01
A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. Key design features for optimizing MeV-scale response and background rejection capabilities are identified.
Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution
Soo, Oi Yoon Michelle; Tan, Wooi Boon; Lim, Lee Hong Susan
2016-01-01
Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions. Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams’s Kmult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data. Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root point, and the length between the inner root point and the dent point. The species on M. buchanani evolved larger, more robust anchors; those on L. subviridis evolved smaller, more delicate anchors. Anchor shape and size were significantly correlated, suggesting constraints in anchor evolution. Tight integration between the root and the point compartments within anchors confirms the anchor as a single, fully integrated module. The correlation between male copulatory organ morphology and size with anchor shape was consistent with predictions from the Rohde-Hobbs hypothesis. Conclusions. Monogenean anchors are tightly integrated structures, and their shape variation correlates strongly with phylogeny, thus underscoring their value for systematic and evolutionary biology studies. Our MonogeneaGM R package provides tools for researchers to mine biological insights from geometric morphometric data of speciose monogenean genera. PMID:26966649
Snipes, Shedra A.; Cooper, Sharon P.; Shipp, Eva M.
2017-01-01
Objective This paper describes how perceived discrimination shapes the way Latino farmworkers encounter injuries and seek out treatment. Methods After 5 months of ethnographic fieldwork, 89 open-ended, semi-structured interviews were analyzed. NVivo was used to code and qualitatively organize the interviews and field notes. Finally, codes, notes, and co-occurring dynamics were used to iteratively assess the data for major themes. Results The primary source of perceived discrimination was the “boss” or farm owner. Immigrant status was also a significant influence on how farmworkers perceived the discrimination. Specifically, the ability to speak English and length of stay in the United States were related to stronger perceptions of discrimination. Finally, farm owners compelled their Latino employees to work through their injuries without treatment. Conclusions This ethnographic account brings attention to how discrimination and lack of worksite protections are implicated in farmworkers' injury experiences, and suggests the need for policies that better safeguards vulnerable workers. PMID:27749157
Skin injury model classification based on shape vector analysis
2012-01-01
Background: Skin injuries can be crucial in judicial decision making. Forensic experts base their classification on subjective opinions. This study investigates whether known classes of simulated skin injuries are correctly classified statistically based on 3D surface models and derived numerical shape descriptors. Methods: Skin injury surface characteristics are simulated with plasticine. Six injury classes – abrasions, incised wounds, gunshot entry wounds, smooth and textured strangulation marks as well as patterned injuries - with 18 instances each are used for a k-fold cross validation with six partitions. Deformed plasticine models are captured with a 3D surface scanner. Mean curvature is estimated for each polygon surface vertex. Subsequently, distance distributions and derived aspect ratios, convex hulls, concentric spheres, hyperbolic points and Fourier transforms are used to generate 1284-dimensional shape vectors. Subsequent descriptor reduction maximizing SNR (signal-to-noise ratio) result in an average of 41 descriptors (varying across k-folds). With non-normal multivariate distribution of heteroskedastic data, requirements for LDA (linear discriminant analysis) are not met. Thus, shrinkage parameters of RDA (regularized discriminant analysis) are optimized yielding a best performance with λ = 0.99 and γ = 0.001. Results: Receiver Operating Characteristic of a descriptive RDA yields an ideal Area Under the Curve of 1.0for all six categories. Predictive RDA results in an average CRR (correct recognition rate) of 97,22% under a 6 partition k-fold. Adding uniform noise within the range of one standard deviation degrades the average CRR to 71,3%. Conclusions: Digitized 3D surface shape data can be used to automatically classify idealized shape models of simulated skin injuries. Deriving some well established descriptors such as histograms, saddle shape of hyperbolic points or convex hulls with subsequent reduction of dimensionality while maximizing SNR seem to work well for the data at hand, as predictive RDA results in CRR of 97,22%. Objective basis for discrimination of non-overlapping hypotheses or categories are a major issue in medicolegal skin injury analysis and that is where this method appears to be strong. Technical surface quality is important in that adding noise clearly degrades CRR. Trial registration: This study does not cover the results of a controlled health care intervention as only plasticine was used. Thus, there was no trial registration. PMID:23497357
Improved pulse shape discriminator for fast neutron-gamma ray detection system
NASA Technical Reports Server (NTRS)
Lockwood, J. A.; St. Onge, R.
1969-01-01
Discriminator in nuclear particle detection system distinguishes nuclear particle type and energy among many different nuclear particles. Discriminator incorporates passive, linear circuit elements so that it will operate over a wide dynamic range.
Simple algorithms for digital pulse-shape discrimination with liquid scintillation detectors
NASA Astrophysics Data System (ADS)
Alharbi, T.
2015-01-01
The development of compact, battery-powered digital liquid scintillation neutron detection systems for field applications requires digital pulse processing (DPP) algorithms with minimum computational overhead. To meet this demand, two DPP algorithms for the discrimination of neutron and γ-rays with liquid scintillation detectors were developed and examined by using a NE213 liquid scintillation detector in a mixed radiation field. The first algorithm is based on the relation between the amplitude of a current pulse at the output of a photomultiplier tube and the amount of charge contained in the pulse. A figure-of-merit (FOM) value of 0.98 with 450 keVee (electron equivalent energy) energy threshold was achieved with this method when pulses were sampled at 250 MSample/s and with 8-bit resolution. Compared to the similar method of charge-comparison this method requires only a single integration window, thereby reducing the amount of computations by approximately 40%. The second approach is a digital version of the trailing-edge constant-fraction discrimination method. A FOM value of 0.84 with an energy threshold of 450 keVee was achieved with this method. In comparison with the similar method of rise-time discrimination this method requires a single time pick-off, thereby reducing the amount of computations by approximately 50%. The algorithms described in this work are useful for developing portable detection systems for applications such as homeland security, radiation dosimetry and environmental monitoring.
Digital pulse-shape analysis with a TRACE early silicon prototype
NASA Astrophysics Data System (ADS)
Mengoni, D.; Dueñas, J. A.; Assié, M.; Boiano, C.; John, P. R.; Aliaga, R. J.; Beaumel, D.; Capra, S.; Gadea, A.; Gonzáles, V.; Gottardo, A.; Grassi, L.; Herrero-Bosch, V.; Houdy, T.; Martel, I.; Parkar, V. V.; Perez-Vidal, R.; Pullia, A.; Sanchis, E.; Triossi, A.; Valiente Dobón, J. J.
2014-11-01
A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 μm thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination.
Ashenfelter, J.; Jaffe, D.; Diwan, M. V.; ...
2015-11-06
A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. As a result, key design features for optimizing MeV-scale response and background rejection capabilities are identified.
Phase Function Determination in Support of Orbital Debris Size Estimation
NASA Technical Reports Server (NTRS)
Hejduk, M. D.; Cowardin, H. M.; Stansbery, Eugene G.
2012-01-01
To recover the size of a space debris object from photometric measurements, it is necessary to determine its albedo and basic shape: if the albedo is known, the reflective area can be calculated; and if the shape is known, the shape and area taken together can be used to estimate a characteristic dimension. Albedo is typically determined by inferring the object s material type from filter photometry or spectroscopy and is not the subject of the present study. Object shape, on the other hand, can be revealed from a time-history of the object s brightness response. The most data-rich presentation is a continuous light-curve that records the object s brightness for an entire sensor pass, which could last for tens of minutes to several hours: from this one can see both short-term periodic behavior as well as brightness variations with phase angle. Light-curve interpretation, however, is more art than science and does not lend itself easily to automation; and the collection method, which requires single-object telescope dedication for long periods of time, is not well suited to debris survey conditions. So one is led to investigate how easily an object s brightness phase function, which can be constructed from the more survey-friendly point photometry, can be used to recover object shape. Such a recovery is usually attempted by comparing a phase-function curve constructed from an object s empirical brightness measurements to analytically-derived curves for basic shapes or shape combinations. There are two ways to accomplish this: a simple averaged brightness-versus phase curve assembled from the empirical data, or a more elaborate approach in which one is essentially calculating a brightness PDF for each phase angle bin (a technique explored in unpublished AFRL/RV research and in Ojakangas 2011); in each case the empirical curve is compared to analytical results for shapes of interest. The latter technique promises more discrimination power but requires more data; the former can be assembled in its essentials from fewer measurements but will be less definitive in its assignments. The goal of the present study is to evaluate both techniques under debris survey conditions to determine their relative performance and, additionally, to learn precisely how a survey should be conducted in order to maximize their performance. Because the distendedness of objects has more of an effect than their precise shape in calculating a characteristic dimension, one is interested in the techniques discrimination ability to distinguish between an elongated rectangular prism and a short rectangular prism or cube, or an elongated cylinder from a squat cylinder or sphere. Sensitivity studies using simulated data will be conducted to determine discrimination power for both techniques as a function of amount of data collected and range (and specific region) of phase angles sampled. Empirical GEODSS photometry data for distended objects (dead payloads with solar panels, rocket bodies) and compact objects (cubesats, calibration spheres, squat payloads) will also be used to test this discrimination ability. The result will be a recommended technique and data collection paradigm for debris surveys in order to maximize this type of discrimination.
Micro-Raman spectroscopy of natural and synthetic indigo samples.
Vandenabeele, Peter; Moens, Luc
2003-02-01
In this work indigo samples from three different sources are studied by using Raman spectroscopy: the synthetic pigment and pigments from the woad (Isatis tinctoria) and the indigo plant (Indigofera tinctoria). 21 samples were obtained from 8 suppliers; for each sample 5 Raman spectra were recorded and used for further chemometrical analysis. Principal components analysis (PCA) was performed as data reduction method before applying hierarchical cluster analysis. Linear discriminant analysis (LDA) was implemented as a non-hierarchical supervised pattern recognition method to build a classification model. In order to avoid broad-shaped interferences from the fluorescence background, the influence of 1st and 2nd derivatives on the classification was studied by using cross-validation. Although chemically identical, it is shown that Raman spectroscopy in combination with suitable chemometric methods has the potential to discriminate between synthetic and natural indigo samples.
NASA Astrophysics Data System (ADS)
White, Travis L.; Miller, William H.
1999-02-01
Researchers at the University of Missouri - Columbia have developed a three-crystal phoswich detector coupled to a digital pulse shape discrimination system for use in alpha/beta/gamma spectroscopy. Phoswich detectors use a sandwich of scintillators viewed by a single photomultiplier tube to simultaneously detect multiple types of radiation. Separation of radiation types is based upon pulse shape difference among the phosphors, which has historically been performed with analog circuitry. The system uses a GaGe CompuScope 1012, 12 bit, 10 MHz computer-based oscilloscope that digitally captures the pulses from a phoswich detector and subsequently performs pulse shape discrimination with cross-correlation analysis. The detector, based partially on previous phoswich designs by Usuda et al., uses a 10 mg/cm 2 thick layer of ZnS(Ag) for alpha detection, followed by a 0.254 cm CaF 2(Eu) crystal for beta detection, all backed by a 2.54 cm NaI(Tl) crystal for gamma detection. Individual energy spectra and count rate information for all three radiation types are displayed and updated periodically. The system shows excellent charged particle discrimination with an accuracy of greater than 99%. Future development will include a large area beta probe with gamma-ray discrimination, systems for low-energy photon detection (e.g. Bremsstrahlung or keV-range photon emissions), and other health physics instrumentation.
Thayer, Zaneta M.; Blair, Irene V.; Buchwald, Dedra S.; Manson, Spero M.
2017-01-01
Objectives Hypertension prevalence is high among American Indians (AIs). AIs experience a substantial burden of interpersonal racial discrimination, which in other populations has been associated with higher blood pressure. The purpose of this study is to understand whether racial discrimination experiences are associated with higher blood pressure in AIs. Materials and Methods We used the Everyday Discrimination Scale to evaluate the relationship between discrimination and measured blood pressure among 77 AIs from two reservation communities in the Northern Plains. We used multivariate linear regression to evaluate the association of racial discrimination with systolic and diastolic blood pressure, respectively. Racial discrimination, systolic blood pressure, and diastolic blood pressure were analyzed as continuous variables. All analyses adjusted for sex, waist circumference, age, posttraumatic stress disorder status, and education. Results We found that 61% of participants experienced discrimination that they attributed to their race or ancestry. Racial discrimination was associated with significantly higher diastolic blood pressure (β = 0.22, SE = 0.09, P = 0.02), and with a similar non-significant trend toward higher systolic blood pressure (β = 0.25, SE = 0.15, P = 0.09). Conclusion The results of this analysis suggest that racial discrimination may contribute to higher diastolic blood pressure within Native communities. These findings highlight one pathway through which the social environment can shape patterns of biology and health in AI and other socially and politically marginalized groups. PMID:28198537
Ventricular beat classifier using fractal number clustering.
Bakardjian, H
1992-09-01
A two-stage ventricular beat 'associative' classification procedure is described. The first stage separates typical beats from extrasystoles on the basis of area and polarity rules. At the second stage, the extrasystoles are classified in self-organised cluster formations of adjacent shape parameter values. This approach avoids the use of threshold values for discrimination between ectopic beats of different shapes, which could be critical in borderline cases. A pattern shape feature conventionally called a 'fractal number', in combination with a polarity attribute, was found to be a good criterion for waveform evaluation. An additional advantage of this pattern classification method is its good computational efficiency, which affords the opportunity to implement it in real-time systems.
Container Surface Evaluation by Function Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendelberger, James G.
Container images are analyzed for specific surface features, such as, pits, cracks, and corrosion. The detection of these features is confounded with complicating features. These complication features include: shape/curvature, welds, edges, scratches, foreign objects among others. A method is provided to discriminate between the various features. The method consists of estimating the image background, determining a residual image and post processing to determine the features present. The methodology is not finalized but demonstrates the feasibility of a method to determine the kind and size of the features present.
NASA Astrophysics Data System (ADS)
Zhao, Bo; Liu, Jinhu; Song, Junjie; Cao, Liang; Dou, Shuozeng
2017-08-01
The otolith morphology of two croaker species (Collichthys lucidus and Collichthys niveatus) from three areas (Liaodong Bay, LD; Huanghe (Yellow) River estuary, HRE; Jiaozhou Bay, JZ) along the northern Chinese coast were investigated for species identification and stock discrimination. The otolith contour shape described by elliptic Fourier coefficients (EFC) were analysed using principal components analysis (PCA) and stepwise canonical discriminant analysis (CDA) to identify species and stocks. The two species were well differentiated, with an overall classification success rate of 97.8%. And variations in the otolith shapes were significant enough to discriminate among the three geographical samples of C. lucidus (67.7%) or C. niveatus (65.2%). Relatively high mis-assignment occurred between the geographically adjacent LD and HRE samples, which implied that individual mixing may exist between the two samples. This study yielded information complementary to that derived from genetic studies and provided information for assessing the stock structure of C. lucidus and C. niveatus in the Bohai Sea and the Yellow Sea.
A recoil-proton spectrometer based on a p-i-n diode implementing pulse-shape discrimination.
Agosteo, S; D'Angelo, G; Fazzi, A; Foglio Para, A; Pola, A; Ventura, L; Zotto, P
2004-01-01
A recoil-proton spectrometer was created by coupling a p-i-n diode with a polyethylene converter. The maximum detectable energy, imposed by the thickness of the totally depleted layer, is approximately 6 MeV. The minimum detectable energy is limited by the contribution of secondary electrons generated by photons in the detector assembly. This limit is approximately 1.5 MeV at full-depletion voltage and was decreased using pulse-shape discrimination. The diode was set up in the 'reverse-injection' configuration (i.e. with the N+ layer adjacent to the converter). This configuration provides longer collection times for the electron-hole pairs generated by the recoil-protons. The pulse-shape discrimination was based on the zero-crossing time of bipolar signals from a (CR)2-(RC)2 filter. The detector was characterised using monoenergetic neutrons generated in the Van De Graaff CN accelerator at the INFN-Laboratori Nazionali di Legnaro. The energy limit for discrimination proved to be approximately 900 keV.
Satoh, K; Noguchi, M; Higuchi, H; Kitamura, K
1984-12-01
Liquid scintillation counting of alpha rays with pulse shape discrimination was applied to the analysis of 226Ra and 239+240Pu in environmental samples and of alpha-emitters in/on a filter paper. The instrument used in this study was either a specially designed detector or a commercial liquid scintillation counter with an automatic sample changer, both of which were connected to the pulse shape discrimination circuit. The background counting rate in alpha energy region of 5-7 MeV was 0.01 or 0.04 cpm/MeV, respectively. The figure of merit indicating the resolving power for alpha- and beta-particles in time spectrum was found to be 5.7 for the commercial liquid scintillation counter.
Visual variability affects early verb learning.
Twomey, Katherine E; Lush, Lauren; Pearce, Ruth; Horst, Jessica S
2014-09-01
Research demonstrates that within-category visual variability facilitates noun learning; however, the effect of visual variability on verb learning is unknown. We habituated 24-month-old children to a novel verb paired with an animated star-shaped actor. Across multiple trials, children saw either a single action from an action category (identical actions condition, for example, travelling while repeatedly changing into a circle shape) or multiple actions from that action category (variable actions condition, for example, travelling while changing into a circle shape, then a square shape, then a triangle shape). Four test trials followed habituation. One paired the habituated verb with a new action from the habituated category (e.g., 'dacking' + pentagon shape) and one with a completely novel action (e.g., 'dacking' + leg movement). The others paired a new verb with a new same-category action (e.g., 'keefing' + pentagon shape), or a completely novel category action (e.g., 'keefing' + leg movement). Although all children discriminated novel verb/action pairs, children in the identical actions condition discriminated trials that included the completely novel verb, while children in the variable actions condition discriminated the out-of-category action. These data suggest that - as in noun learning - visual variability affects verb learning and children's ability to form action categories. © 2014 The British Psychological Society.
A Compton scattering setup for pulse shape discrimination studies in germanium detectors.
von Sturm, K; Belogurov, S; Brugnera, R; Garfagnini, A; Lippi, I; Modenese, L; Rosso, D; Turcato, M
2017-07-01
Pulse shape discrimination is an important handle to improve sensitivity in low background experiments. A dedicated setup was built to investigate the response of high-purity germanium detectors to single Compton scattered events. Using properly collimated γ-ray sources, it is possible to select events with known interaction location. The aim is to correlate the position dependent signal shape with geometrical and electrical properties of the detector. We report on design and performance of the setup with a first look on data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Olfactory discrimination: when vision matters?
Demattè, M Luisa; Sanabria, Daniel; Spence, Charles
2009-02-01
Many previous studies have attempted to investigate the effect of visual cues on olfactory perception in humans. The majority of this research has only looked at the modulatory effect of color, which has typically been explained in terms of multisensory perceptual interactions. However, such crossmodal effects may equally well relate to interactions taking place at a higher level of information processing as well. In fact, it is well-known that semantic knowledge can have a substantial effect on people's olfactory perception. In the present study, we therefore investigated the influence of visual cues, consisting of color patches and/or shapes, on people's olfactory discrimination performance. Participants had to make speeded odor discrimination responses (lemon vs. strawberry) while viewing a red or yellow color patch, an outline drawing of a strawberry or lemon, or a combination of these color and shape cues. Even though participants were instructed to ignore the visual stimuli, our results demonstrate that the accuracy of their odor discrimination responses was influenced by visual distractors. This result shows that both color and shape information are taken into account during speeded olfactory discrimination, even when such information is completely task irrelevant, hinting at the automaticity of such higher level visual-olfactory crossmodal interactions.
A discriminatory function for prediction of protein-DNA interactions based on alpha shape modeling.
Zhou, Weiqiang; Yan, Hong
2010-10-15
Protein-DNA interaction has significant importance in many biological processes. However, the underlying principle of the molecular recognition process is still largely unknown. As more high-resolution 3D structures of protein-DNA complex are becoming available, the surface characteristics of the complex become an important research topic. In our work, we apply an alpha shape model to represent the surface structure of the protein-DNA complex and developed an interface-atom curvature-dependent conditional probability discriminatory function for the prediction of protein-DNA interaction. The interface-atom curvature-dependent formalism captures atomic interaction details better than the atomic distance-based method. The proposed method provides good performance in discriminating the native structures from the docking decoy sets, and outperforms the distance-dependent formalism in terms of the z-score. Computer experiment results show that the curvature-dependent formalism with the optimal parameters can achieve a native z-score of -8.17 in discriminating the native structure from the highest surface-complementarity scored decoy set and a native z-score of -7.38 in discriminating the native structure from the lowest RMSD decoy set. The interface-atom curvature-dependent formalism can also be used to predict apo version of DNA-binding proteins. These results suggest that the interface-atom curvature-dependent formalism has a good prediction capability for protein-DNA interactions. The code and data sets are available for download on http://www.hy8.com/bioinformatics.htm kenandzhou@hotmail.com.
NASA Astrophysics Data System (ADS)
Sun, Hao; Wang, Cheng; Wang, Boliang
2011-02-01
We present a hybrid generative-discriminative learning method for human action recognition from video sequences. Our model combines a bag-of-words component with supervised latent topic models. A video sequence is represented as a collection of spatiotemporal words by extracting space-time interest points and describing these points using both shape and motion cues. The supervised latent Dirichlet allocation (sLDA) topic model, which employs discriminative learning using labeled data under a generative framework, is introduced to discover the latent topic structure that is most relevant to action categorization. The proposed algorithm retains most of the desirable properties of generative learning while increasing the classification performance though a discriminative setting. It has also been extended to exploit both labeled data and unlabeled data to learn human actions under a unified framework. We test our algorithm on three challenging data sets: the KTH human motion data set, the Weizmann human action data set, and a ballet data set. Our results are either comparable to or significantly better than previously published results on these data sets and reflect the promise of hybrid generative-discriminative learning approaches.
Quantification of localized vertebral deformities using a sparse wavelet-based shape model.
Zewail, R; Elsafi, A; Durdle, N
2008-01-01
Medical experts often examine hundreds of spine x-ray images to determine existence of various pathologies. Common pathologies of interest are anterior osteophites, disc space narrowing, and wedging. By careful inspection of the outline shapes of the vertebral bodies, experts are able to identify and assess vertebral abnormalities with respect to the pathology under investigation. In this paper, we present a novel method for quantification of vertebral deformation using a sparse shape model. Using wavelets and Independent component analysis (ICA), we construct a sparse shape model that benefits from the approximation power of wavelets and the capability of ICA to capture higher order statistics in wavelet space. The new model is able to capture localized pathology-related shape deformations, hence it allows for quantification of vertebral shape variations. We investigate the capability of the model to predict localized pathology related deformations. Next, using support-vector machines, we demonstrate the diagnostic capabilities of the method through the discrimination of anterior osteophites in lumbar vertebrae. Experiments were conducted using a set of 150 contours from digital x-ray images of lumbar spine. Each vertebra is labeled as normal or abnormal. Results reported in this work focus on anterior osteophites as the pathology of interest.
Neiterman, Elena; Bourgeault, Ivy Lynn
2015-11-01
This article examines the intersecting roles of gender, ethnicity, and professional status in shaping the experiences of internationally educated health professionals in Canada. The article is based on 140 semi-structured qualitative interviews with internationally trained nurses and physicians who came to Canada within past 10 years with the intention to practice their profession. Describing the challenging process of professional integration in Canada, our participants highlighted incidents of discrimination they experienced along the way. Although some of the participants from both professional groups experienced racial discrimination, the context of those experiences differed. Physicians rarely reported instances of discrimination in communication with patients or nurses. Instead, they were concerned with instances of discrimination within their own professional group. Nurses, on the other hand, reported discrimination at the hands of patients and their families as well as racialization by physicians, management, and other nurses. We conclude our article with a reflection on the role that gender and professional status play in shaping the experiences of ethnic discrimination of internationally educated health professionals. © The Author(s) 2015.
A compact pulse shape discriminator module for large neutron detector arrays
NASA Astrophysics Data System (ADS)
Venkataramanan, S.; Gupta, Arti; Golda, K. S.; Singh, Hardev; Kumar, Rakesh; Singh, R. P.; Bhowmik, R. K.
2008-11-01
A cost-effective high-performance pulse shape discriminator module has been developed to process signals from organic liquid scintillator-based neutron detectors. This module is especially designed for the large neutron detector array used for studies of nuclear reaction dynamics at the Inter University Accelerator Center (IUAC). It incorporates all the necessary pulse processing circuits required for neutron spectroscopy in a novel fashion by adopting the zero crossover technique for neutron-gamma (n- γ) pulse shape discrimination. The detailed layout of the circuit and different features of the module are described in the present paper. The quality of n- γ separation obtained with this electronics is much better than that of commercial modules especially in the low-energy region. The results obtained with our module are compared with similar setups available in other laboratories.
NASA Astrophysics Data System (ADS)
Jones, A. R.; Joyce, M. J.
2017-01-01
Liquid scintillators are used widely for neutron detection and for the assay of nuclear materials. However, due to the constituents of the detector and the nitrogen void within the detector cell, usually incorporated to accommodate any expansion that might occur to avoid leakage, fluctuations in detector response have been observed associated with the orientation of the detector when in use. In this work the angular dependence of the pulse-shape discrimination performance in an EJ309 liquid scintillator has been investigated with 252Cf in terms of the separation of γ -ray and neutron events, described quantitatively by the figure-of-merit. A subtle dependence in terms of pulse-shape discrimination is observed. In contrast, a more significant dependence of detection sensitivity with the angle of orientation is evident.
A pulse shape discriminator and an online system for the balloon-borne hard X-ray/gamma-ray detector
NASA Astrophysics Data System (ADS)
Takahashi, T.; Kamae, T.; Tanaka, M.; Gunji, S.; Miyazuki, S.; Tamura, T.; Sekimoto, Y.; Yamaoka, N.; Nishimura, J.; Yajima, N.
Attention is given to a new kind of phoswich counters (the well-type phoswich counter) that will be capable of detecting very low flux hard X-rays/gamma-rays (40-1000 keV) from astronomical objects. A specially designed pulse-shape discriminator (PSD) selects hard X-rays/gamma-rays that has deposited energy only in the detection part. Sixty-four such counters are assembled into an array where each phoswich element acts as an active shield to the neighboring elements too. The ADCs, the TDCs, the hit-pattern latches, and the precision clock are read out by a VME-based online system, stored on an 8-mm video tape, and transmitted to the ground station. The design and performance of the pulse shape discriminator and the online system are described.
Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors
NASA Astrophysics Data System (ADS)
Joyce, Malcolm J.; Agar, Stewart; Aspinall, Michael D.; Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie
2016-10-01
A fast neutron tomography system based on the use of real-time pulse-shape discrimination in 7 organic liquid scintillation detectors is described. The system has been tested with a californium-252 source of dose rate 163 μSv/h at 1 m and neutron emission rate of 1.5×107 per second into 4π and a maximum acquisition time of 2 h, to characterize two 100×100×100 mm3 concrete samples. The first of these was a solid sample and the second has a vertical, cylindrical void. The experimental data, supported by simulations with both Monte Carlo methods and MATLAB®, indicate that the presence of the internal cylindrical void, corners and inhomogeneities in the samples can be discerned. The potential for fast neutron assay of this type with the capability to probe hydrogenous features in large low-Z samples is discussed. Neutron tomography of bulk porous samples is achieved that combines effective penetration not possible with thermal neutrons in the absence of beam hardening.
NASA Astrophysics Data System (ADS)
Sharma, M.; Nattress, J.; Wilhelm, K.; Jovanovic, I.
2017-06-01
We demonstrate an all-solid-state design for a composite heterogeneous scintillation detector sensitive to interactions with high-energy photons (gammas), fast neutrons, and thermal neutrons. The scintillator exhibits triple pulse shape discrimination, effectively separating electron recoils, fast neutron recoils, and neutron captures. This is accomplished by combining the properties of two distinct scintillators, whereby a 51-mm diameter, 51-mm tall cylinder of pulse shape discriminating plastic is wrapped by a 320-μm thick sheet of 6LiF:ZnS(Ag), optically coupling the scintillators to each other and to the photomultiplier tube. In this way, the sensitivity to neutron captures is achieved without the need to load the plastic scintillator with a capture agent. We demonstrate a figure of merit of up to 1.2 for fast neutrons/gammas and 5.7 for thermal neutrons/gammas. Intrinsic capture efficiency is found to be 0.46±0.05% and is in good agreement with simulation, while gamma rejection was 10-6 with respect to the capture region and 10-4 with respect to the recoil region using a 300 keVee threshold. Finally, we show an improvement in capture-gated neutron spectroscopy by rejecting accidental gamma coincidences using pulse shape discrimination in the plastic scintillator.
Ginat-Frolich, Rivkah; Klein, Zohar; Katz, Omer; Shechner, Tomer
2017-06-01
Generalization is an adaptive learning mechanism, but it can be maladaptive when it occurs in excess. A novel perceptual discrimination training task was therefore designed to moderate fear overgeneralization. We hypothesized that improvement in basic perceptual discrimination would translate into lower fear overgeneralization in affective cues. Seventy adults completed a fear-conditioning task prior to being allocated into training or placebo groups. Predesignated geometric shape pairs were constructed for the training task. A target shape from each pair was presented. Thereafter, participants in the training group were shown both shapes and asked to identify the image that differed from the target. Placebo task participants only indicated the location of each shape on the screen. All participants then viewed new geometric pairs and indicated whether they were identical or different. Finally, participants completed a fear generalization test consisting of perceptual morphs ranging from the CS + to the CS-. Fear-conditioning was observed through physiological and behavioural measures. Furthermore, the training group performed better than the placebo group on the assessment task and exhibited decreased fear generalization in response to threat/safety cues. The findings offer evidence for the effectiveness of the novel discrimination training task, setting the stage for future research with clinical populations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fast neutron-gamma discrimination on neutron emission profile measurement on JT-60U.
Ishii, K; Shinohara, K; Ishikawa, M; Baba, M; Isobe, M; Okamoto, A; Kitajima, S; Sasao, M
2010-10-01
A digital signal processing (DSP) system is applied to stilbene scintillation detectors of the multichannel neutron emission profile monitor in JT-60U. Automatic analysis of the neutron-γ pulse shape discrimination is a key issue to diminish the processing time in the DSP system, and it has been applied using the two-dimensional (2D) map. Linear discriminant function is used to determine the dividing line between neutron events and γ-ray events on a 2D map. In order to verify the validity of the dividing line determination, the pulse shape discrimination quality is evaluated. As a result, the γ-ray contamination in most of the beam heating phase was negligible compared with the statistical error with 10 ms time resolution.
Fast neutron-gamma discrimination on neutron emission profile measurement on JT-60U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, K.; Okamoto, A.; Kitajima, S.
2010-10-15
A digital signal processing (DSP) system is applied to stilbene scintillation detectors of the multichannel neutron emission profile monitor in JT-60U. Automatic analysis of the neutron-{gamma} pulse shape discrimination is a key issue to diminish the processing time in the DSP system, and it has been applied using the two-dimensional (2D) map. Linear discriminant function is used to determine the dividing line between neutron events and {gamma}-ray events on a 2D map. In order to verify the validity of the dividing line determination, the pulse shape discrimination quality is evaluated. As a result, the {gamma}-ray contamination in most of themore » beam heating phase was negligible compared with the statistical error with 10 ms time resolution.« less
Support vector machine-based facial-expression recognition method combining shape and appearance
NASA Astrophysics Data System (ADS)
Han, Eun Jung; Kang, Byung Jun; Park, Kang Ryoung; Lee, Sangyoun
2010-11-01
Facial expression recognition can be widely used for various applications, such as emotion-based human-machine interaction, intelligent robot interfaces, face recognition robust to expression variation, etc. Previous studies have been classified as either shape- or appearance-based recognition. The shape-based method has the disadvantage that the individual variance of facial feature points exists irrespective of similar expressions, which can cause a reduction of the recognition accuracy. The appearance-based method has a limitation in that the textural information of the face is very sensitive to variations in illumination. To overcome these problems, a new facial-expression recognition method is proposed, which combines both shape and appearance information, based on the support vector machine (SVM). This research is novel in the following three ways as compared to previous works. First, the facial feature points are automatically detected by using an active appearance model. From these, the shape-based recognition is performed by using the ratios between the facial feature points based on the facial-action coding system. Second, the SVM, which is trained to recognize the same and different expression classes, is proposed to combine two matching scores obtained from the shape- and appearance-based recognitions. Finally, a single SVM is trained to discriminate four different expressions, such as neutral, a smile, anger, and a scream. By determining the expression of the input facial image whose SVM output is at a minimum, the accuracy of the expression recognition is much enhanced. The experimental results showed that the recognition accuracy of the proposed method was better than previous researches and other fusion methods.
Giacomelli, L; Conroy, S; Gorini, G; Horton, L; Murari, A; Popovichev, S; Syme, D B
2014-02-01
The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world devoted to nuclear fusion experiments of magnetic confined Deuterium (D)/Deuterium-Tritium (DT) plasmas. Neutrons produced in these plasmas are measured using various types of neutron detectors and spectrometers. Two of these instruments on JET make use of organic liquid scintillator detectors. The neutron emission profile monitor implements 19 liquid scintillation counters to detect the 2.45 MeV neutron emission from D plasmas. A new compact neutron spectrometer is operational at JET since 2010 to measure the neutron energy spectra from both D and DT plasmas. Liquid scintillation detectors are sensitive to both neutron and gamma radiation but give light responses of different decay time such that pulse shape discrimination techniques can be applied to identify the neutron contribution of interest from the data. The most common technique consists of integrating the radiation pulse shapes within different ranges of their rising and/or trailing edges. In this article, a step forward in this type of analysis is presented. The method applies a tomographic analysis of the 3-dimensional neutron and gamma pulse shape and pulse height distribution data obtained from liquid scintillation detectors such that n/γ discrimination can be improved to lower energies and additional information can be gained on neutron contributions to the gamma events and vice versa.
Ucchesu, Mariano; Orrù, Martino; Grillo, Oscar; Venora, Gianfranco; Paglietti, Giacomo; Ardu, Andrea; Bacchetta, Gianluigi
2016-01-01
The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340ºC for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA) method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017–1751 2σ cal. BC), allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plants. PMID:26901361
Ucchesu, Mariano; Orrù, Martino; Grillo, Oscar; Venora, Gianfranco; Paglietti, Giacomo; Ardu, Andrea; Bacchetta, Gianluigi
2016-01-01
The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340ºC for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA) method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017-1751 2σ cal. BC), allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plants.
Moestue, Helen
2009-08-01
To examine the potential of anthropometry as a tool to measure gender discrimination, with particular attention to the WHO growth standards. Surveillance data collected from 1990 to 1999 were analysed. Height-for-age Z-scores were calculated using three norms: the WHO standards, the 1978 National Center for Health Statistics (NCHS) reference and the 1990 British growth reference (UK90). Bangladesh. Boys and girls aged 6-59 months (n 504 358). The three sets of growth curves provided conflicting pictures of the relative growth of girls and boys by age and over time. Conclusions on sex differences in growth depended also on the method used to analyse the curves, be it according to the shape or the relative position of the sex-specific curves. The shapes of the WHO-generated curves uniquely implied that Bangladeshi girls faltered faster or caught up slower than boys throughout their pre-school years, a finding consistent with the literature. In contrast, analysis of the relative position of the curves suggested that girls had higher WHO Z-scores than boys below 24 months of age. Further research is needed to help establish whether and how the WHO international standards can measure gender discrimination in practice, which continues to be a serious problem in many parts of the world.
NASA Astrophysics Data System (ADS)
O'Keeffe, H. M.; O'Sullivan, E.; Chen, M. C.
2011-06-01
The SNO+ liquid scintillator experiment is under construction in the SNOLAB facility in Canada. The success of this experiment relies upon accurate characterization of the liquid scintillator, linear alkylbenzene (LAB). In this paper, scintillation decay times for alpha and electron excitations in LAB with 2 g/L PPO are presented for both oxygenated and deoxygenated solutions. While deoxygenation is expected to improve pulse shape discrimination in liquid scintillators, it is not commonly demonstrated in the literature. This paper shows that for linear alkylbenzene, deoxygenation improves discrimination between electron and alpha excitations in the scintillator.
Stereoscopic processing of crossed and uncrossed disparities in the human visual cortex.
Li, Yuan; Zhang, Chuncheng; Hou, Chunping; Yao, Li; Zhang, Jiacai; Long, Zhiying
2017-12-21
Binocular disparity provides a powerful cue for depth perception in a stereoscopic environment. Despite increasing knowledge of the cortical areas that process disparity from neuroimaging studies, the neural mechanism underlying disparity sign processing [crossed disparity (CD)/uncrossed disparity (UD)] is still poorly understood. In the present study, functional magnetic resonance imaging (fMRI) was used to explore different neural features that are relevant to disparity-sign processing. We performed an fMRI experiment on 27 right-handed healthy human volunteers by using both general linear model (GLM) and multi-voxel pattern analysis (MVPA) methods. First, GLM was used to determine the cortical areas that displayed different responses to different disparity signs. Second, MVPA was used to determine how the cortical areas discriminate different disparity signs. The GLM analysis results indicated that shapes with UD induced significantly stronger activity in the sub-region (LO) of the lateral occipital cortex (LOC) than those with CD. The results of MVPA based on region of interest indicated that areas V3d and V3A displayed higher accuracy in the discrimination of crossed and uncrossed disparities than LOC. The results of searchlight-based MVPA indicated that the dorsal visual cortex showed significantly higher prediction accuracy than the ventral visual cortex and the sub-region LO of LOC showed high accuracy in the discrimination of crossed and uncrossed disparities. The results may suggest the dorsal visual areas are more discriminative to the disparity signs than the ventral visual areas although they are not sensitive to the disparity sign processing. Moreover, the LO in the ventral visual cortex is relevant to the recognition of shapes with different disparity signs and discriminative to the disparity sign.
Structural Origins of Scintillation: Metal Organic Frameworks as a Nanolaboratory
2016-06-01
scintillation response and thus the ability to perform neutron/gamma particle discrimination via pulse-shape discrimination ( PSD ). Unfortunately, the...defined an alternative approach towards particle discrimination that addresses the limitations of conventional PSD organic scintillators. This approach...discrimination ( PSD ), for which the prompt component of the scintillation response is quenched for high specific energy loss (dE/dX) particles such as protons
Standardization of 237Np by the CIEMAT/NIST LSC tracer method
Gunther
2000-03-01
The standardization of 237Np presents some difficulties: several groups of alpha, beta and gamma radiation, chemical problems with the daughter nuclide 233Pa, an incomplete radioactive equilibrium after sample preparation, high conversion of some gamma transitions. To solve the chemical problems, a sample composition involving the Ultima Gold AB scintillator and a high concentration of HCl is used. Standardization by the CIEMAT/NIST method and by pulse shape discrimination is described. The results agree within 0.1% with those obtained by two other methods.
Facial patterns in a tropical social wasp correlate with colony membership
NASA Astrophysics Data System (ADS)
Baracchi, David; Turillazzi, Stefano; Chittka, Lars
2016-10-01
Social insects excel in discriminating nestmates from intruders, typically relying on colony odours. Remarkably, some wasp species achieve such discrimination using visual information. However, while it is universally accepted that odours mediate a group level recognition, the ability to recognise colony members visually has been considered possible only via individual recognition by which wasps discriminate `friends' and `foes'. Using geometric morphometric analysis, which is a technique based on a rigorous statistical theory of shape allowing quantitative multivariate analyses on structure shapes, we first quantified facial marking variation of Liostenogaster flavolineata wasps. We then compared this facial variation with that of chemical profiles (generated by cuticular hydrocarbons) within and between colonies. Principal component analysis and discriminant analysis applied to sets of variables containing pure shape information showed that despite appreciable intra-colony variation, the faces of females belonging to the same colony resemble one another more than those of outsiders. This colony-specific variation in facial patterns was on a par with that observed for odours. While the occurrence of face discrimination at the colony level remains to be tested by behavioural experiments, overall our results suggest that, in this species, wasp faces display adequate information that might be potentially perceived and used by wasps for colony level recognition.
In-Line Sorting of Harumanis Mango Based on External Quality Using Visible Imaging
Ibrahim, Mohd Firdaus; Ahmad Sa’ad, Fathinul Syahir; Zakaria, Ammar; Md Shakaff, Ali Yeon
2016-01-01
The conventional method of grading Harumanis mango is time-consuming, costly and affected by human bias. In this research, an in-line system was developed to classify Harumanis mango using computer vision. The system was able to identify the irregularity of mango shape and its estimated mass. A group of images of mangoes of different size and shape was used as database set. Some important features such as length, height, centroid and parameter were extracted from each image. Fourier descriptor and size-shape parameters were used to describe the mango shape while the disk method was used to estimate the mass of the mango. Four features have been selected by stepwise discriminant analysis which was effective in sorting regular and misshapen mango. The volume from water displacement method was compared with the volume estimated by image processing using paired t-test and Bland-Altman method. The result between both measurements was not significantly different (P > 0.05). The average correct classification for shape classification was 98% for a training set composed of 180 mangoes. The data was validated with another testing set consist of 140 mangoes which have the success rate of 92%. The same set was used for evaluating the performance of mass estimation. The average success rate of the classification for grading based on its mass was 94%. The results indicate that the in-line sorting system using machine vision has a great potential in automatic fruit sorting according to its shape and mass. PMID:27801799
In-Line Sorting of Harumanis Mango Based on External Quality Using Visible Imaging.
Ibrahim, Mohd Firdaus; Ahmad Sa'ad, Fathinul Syahir; Zakaria, Ammar; Md Shakaff, Ali Yeon
2016-10-27
The conventional method of grading Harumanis mango is time-consuming, costly and affected by human bias. In this research, an in-line system was developed to classify Harumanis mango using computer vision. The system was able to identify the irregularity of mango shape and its estimated mass. A group of images of mangoes of different size and shape was used as database set. Some important features such as length, height, centroid and parameter were extracted from each image. Fourier descriptor and size-shape parameters were used to describe the mango shape while the disk method was used to estimate the mass of the mango. Four features have been selected by stepwise discriminant analysis which was effective in sorting regular and misshapen mango. The volume from water displacement method was compared with the volume estimated by image processing using paired t -test and Bland-Altman method. The result between both measurements was not significantly different (P > 0.05). The average correct classification for shape classification was 98% for a training set composed of 180 mangoes. The data was validated with another testing set consist of 140 mangoes which have the success rate of 92%. The same set was used for evaluating the performance of mass estimation. The average success rate of the classification for grading based on its mass was 94%. The results indicate that the in-line sorting system using machine vision has a great potential in automatic fruit sorting according to its shape and mass.
Kamitani, Toshiaki; Kuroiwa, Yoshiyuki
2009-01-01
Recent studies demonstrated an altered P3 component and prolonged reaction time during the visual discrimination tasks in multiple system atrophy (MSA). In MSA, however, little is known about the N2 component which is known to be closely related to the visual discrimination process. We therefore compared the N2 component as well as the N1 and P3 components in 17 MSA patients with these components in 10 normal controls, by using a visual selective attention task to color or to shape. While the P3 in MSA was significantly delayed in selective attention to shape, the N2 in MSA was significantly delayed in selective attention to color. N1 was normally preserved both in attention to color and in attention to shape. Our electrophysiological results indicate that the color discrimination process during selective attention is impaired in MSA.
Social discrimination, stress, and risk of unintended pregnancy among young women.
Hall, Kelli Stidham; Kusunoki, Yasamin; Gatny, Heather; Barber, Jennifer
2015-03-01
Prior research linking young women's mental health to family planning outcomes has often failed to consider their social circumstances and the intersecting biosocial mechanisms that shape stress and depression as well as reproductive outcomes during adolescence and young adulthood. We extend our previous work to investigate relationships between social discrimination, stress and depression symptoms, and unintended pregnancy among adolescent and young adult women. Data were drawn from 794 women aged 18-20 years in a longitudinal cohort study. Baseline and weekly surveys assessed psychosocial information including discrimination (Everyday Discrimination Scale), stress (Perceived Stress Scale), depression (Center for Epidemiologic Studies-Depression Scale), and reproductive outcomes. Multilevel, mixed-effects logistic regression and discrete-time hazard models estimated associations between discrimination, mental health, and pregnancy. Baron and Kenny's method was used to test mediation effects of stress and depression on discrimination and pregnancy. The mean discrimination score was 19/45 points; 20% reported moderate/high discrimination. Discrimination scores were higher among women with stress and depression symptoms versus those without symptoms (21 vs. 18 points for both, p < .001). Pregnancy rates (14% overall) were higher among women with moderate/high (23%) versus low (11%) discrimination (p < .001). Discrimination was associated with stress (adjusted relative risk ratio, [aRR], 2.2; 95% confidence interval [CI], 1.4-3.4), depression (aRR, 2.4; CI, 1.5-3.7), and subsequent pregnancy (aRR, 1.8; CI, 1.1-3.0). Stress and depression symptoms did not mediate discrimination's effect on pregnancy. Discrimination was associated with an increased risk of mental health symptoms and unintended pregnancy among these young women. The interactive social and biological influences on reproductive outcomes during adolescence and young adulthood warrant further study. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Ferjan Ramírez, Naja; Ramírez, Rey R.; Clarke, Maggie; Taulu, Samu; Kuhl, Patricia K.
2017-01-01
Language experience shapes infants' abilities to process speech sounds, with universal phonetic discrimination abilities narrowing in the second half of the first year. Brain measures reveal a corresponding change in neural discrimination as the infant brain becomes selectively sensitive to its native language(s). Whether and how bilingual…
DBSCAN-based ROI extracted from SAR images and the discrimination of multi-feature ROI
NASA Astrophysics Data System (ADS)
He, Xin Yi; Zhao, Bo; Tan, Shu Run; Zhou, Xiao Yang; Jiang, Zhong Jin; Cui, Tie Jun
2009-10-01
The purpose of the paper is to extract the region of interest (ROI) from the coarse detected synthetic aperture radar (SAR) images and discriminate if the ROI contains a target or not, so as to eliminate the false alarm, and prepare for the target recognition. The automatic target clustering is one of the most difficult tasks in the SAR-image automatic target recognition system. The density-based spatial clustering of applications with noise (DBSCAN) relies on a density-based notion of clusters which is designed to discover clusters of arbitrary shape. DBSCAN was first used in the SAR image processing, which has many excellent features: only two insensitivity parameters (radius of neighborhood and minimum number of points) are needed; clusters of arbitrary shapes which fit in with the coarse detected SAR images can be discovered; and the calculation time and memory can be reduced. In the multi-feature ROI discrimination scheme, we extract several target features which contain the geometry features such as the area discriminator and Radon-transform based target profile discriminator, the distribution characteristics such as the EFF discriminator, and the EM scattering property such as the PPR discriminator. The synthesized judgment effectively eliminates the false alarms.
Feelings: what questions best discriminate women with and without eating disorders?
Abraham, S F; von Lojewski, A; Anderson, G; Clarke, S; Russell, J
2009-03-01
This study explored feelings that discriminate between eating disorder and community groups of women. Responses to 25 questions about body image (9), eating (8) self-esteem (3) general psychology (5) were collected in 2002-2003 (N=268) and 2005-2006 (N=472). Wilk's lambda was used to test discrimination. The most discriminating psychological questions were: 'feeling unhappy and unable to cope as well as usual', 'unease attending social functions', 'fearing loss of control over emotions'; and for eating questions were: 'feeling uneasy if other people saw you eating', 'feeling preoccupied with food/eating', 'fearing loss of control over eating'. For body image only 'feeling preoccupied with body weight/shape' and 'fearing loss of control over your body' discriminated. Questions relating to weight and shape for self-esteem ('feeling fat', 'fearing weight gain' and 'wanting to lose weight') discriminated poorly. Results for both cohorts were consistent. Preoccupation with thoughts of eating or body image and fear of loss of control of these would be useful additions to eating disorders criteria. Psychological impairment should also be present.
Asymmetry and irregularity border as discrimination factor between melanocytic lesions
NASA Astrophysics Data System (ADS)
Sbrissa, David; Pratavieira, Sebastião.; Salvio, Ana Gabriela; Kurachi, Cristina; Bagnato, Vanderlei Salvadori; Costa, Luciano Da Fontoura; Travieso, Gonzalo
2015-06-01
Image processing tools have been widely used in systems supporting medical diagnosis. The use of mobile devices for the diagnosis of melanoma can assist doctors and improve their diagnosis of a melanocytic lesion. This study proposes a method of image analysis for melanoma discrimination from other types of melanocytic lesions, such as regular and atypical nevi. The process is based on extracting features related with asymmetry and border irregularity. It were collected 104 images, from medical database of two years. The images were obtained with standard digital cameras without lighting and scale control. Metrics relating to the characteristics of shape, asymmetry and curvature of the contour were extracted from segmented images. Linear Discriminant Analysis was performed for dimensionality reduction and data visualization. Segmentation results showed good efficiency in the process, with approximately 88:5% accuracy. Validation results presents sensibility and specificity 85% and 70% for melanoma detection, respectively.
Monostatic Radar Cross Section Estimation of Missile Shaped Object Using Physical Optics Method
NASA Astrophysics Data System (ADS)
Sasi Bhushana Rao, G.; Nambari, Swathi; Kota, Srikanth; Ranga Rao, K. S.
2017-08-01
Stealth Technology manages many signatures for a target in which most radar systems use radar cross section (RCS) for discriminating targets and classifying them with regard to Stealth. During a war target’s RCS has to be very small to make target invisible to enemy radar. In this study, Radar Cross Section of perfectly conducting objects like cylinder, truncated cone (frustum) and circular flat plate is estimated with respect to parameters like size, frequency and aspect angle. Due to the difficulties in exactly predicting the RCS, approximate methods become the alternative. Majority of approximate methods are valid in optical region and where optical region has its own strengths and weaknesses. Therefore, the analysis given in this study is purely based on far field monostatic RCS measurements in the optical region. Computation is done using Physical Optics (PO) method for determining RCS of simple models. In this study not only the RCS of simple models but also missile shaped and rocket shaped models obtained from the cascaded objects with backscatter has been computed using Matlab simulation. Rectangular plots are obtained for RCS in dbsm versus aspect angle for simple and missile shaped objects using Matlab simulation. Treatment of RCS, in this study is based on Narrow Band.
Wang, Lei; Beg, Faisal; Ratnanather, Tilak; Ceritoglu, Can; Younes, Laurent; Morris, John C.; Csernansky, John G.; Miller, Michael I.
2010-01-01
In large-deformation diffeomorphic metric mapping (LDDMM), the diffeomorphic matching of images are modeled as evolution in time, or a flow, of an associated smooth velocity vector field v controlling the evolution. The initial momentum parameterizes the whole geodesic and encodes the shape and form of the target image. Thus, methods such as principal component analysis (PCA) of the initial momentum leads to analysis of anatomical shape and form in target images without being restricted to small-deformation assumption in the analysis of linear displacements. We apply this approach to a study of dementia of the Alzheimer type (DAT). The left hippocampus in the DAT group shows significant shape abnormality while the right hippocampus shows similar pattern of abnormality. Further, PCA of the initial momentum leads to correct classification of 12 out of 18 DAT subjects and 22 out of 26 control subjects. PMID:17427733
Improved (10)B-loaded liquid scintillator with pulse-shape discrimination.
Greenwood, L R; Chellew, N R
1979-04-01
An improved (10)B-loaded liquid scintillator solution has been developed containing trimethylborate, 1-methylnaphthalene, and 9,10-diphenylanthracene. Cells up to 5 cm in diameter by 15.2 cm long have been prepared and tested with (10)B-loadings up to 7.2% by weight (80% trimethylborate). The solution has excellent light output and pulse-shape discrimination properties and is stable at temperatures as low as -17 degrees C. Neutron efficiency calculations are also presented.
NASA Technical Reports Server (NTRS)
Quilligan, Gerard; DeMonthier, Jeffrey; Suarez, George
2011-01-01
This innovation addresses challenges in lidar imaging, particularly with the detection scheme and the shapes of the detected signals. Ideally, the echoed pulse widths should be extremely narrow to resolve fine detail at high event rates. However, narrow pulses require wideband detection circuitry with increased power dissipation to minimize thermal noise. Filtering is also required to shape each received signal into a form suitable for processing by a constant fraction discriminator (CFD) followed by a time-to-digital converter (TDC). As the intervals between the echoes decrease, the finite bandwidth of the shaping circuits blends the pulses into an analog signal (luminance) with multiple modes, reducing the ability of the CFD to discriminate individual events
NASA Astrophysics Data System (ADS)
Yi, Faliu; Moon, Inkyu; Lee, Yeon H.
2015-01-01
Counting morphologically normal cells in human red blood cells (RBCs) is extremely beneficial in the health care field. We propose a three-dimensional (3-D) classification method of automatically determining the morphologically normal RBCs in the phase image of multiple human RBCs that are obtained by off-axis digital holographic microscopy (DHM). The RBC holograms are first recorded by DHM, and then the phase images of multiple RBCs are reconstructed by a computational numerical algorithm. To design the classifier, the three typical RBC shapes, which are stomatocyte, discocyte, and echinocyte, are used for training and testing. Nonmain or abnormal RBC shapes different from the three normal shapes are defined as the fourth category. Ten features, including projected surface area, average phase value, mean corpuscular hemoglobin, perimeter, mean corpuscular hemoglobin surface density, circularity, mean phase of center part, sphericity coefficient, elongation, and pallor, are extracted from each RBC after segmenting the reconstructed phase images by using a watershed transform algorithm. Moreover, four additional properties, such as projected surface area, perimeter, average phase value, and elongation, are measured from the inner part of each cell, which can give significant information beyond the previous 10 features for the separation of the RBC groups; these are verified in the experiment by the statistical method of Hotelling's T-square test. We also apply the principal component analysis algorithm to reduce the dimension number of variables and establish the Gaussian mixture densities using the projected data with the first eight principal components. Consequently, the Gaussian mixtures are used to design the discriminant functions based on Bayesian decision theory. To improve the performance of the Bayes classifier and the accuracy of estimation of its error rate, the leaving-one-out technique is applied. Experimental results show that the proposed method can yield good results for calculating the percentage of each typical normal RBC shape in a reconstructed phase image of multiple RBCs that will be favorable to the analysis of RBC-related diseases. In addition, we show that the discrimination performance for the counting of normal shapes of RBCs can be improved by using 3-D features of an RBC.
The Role of Visual Area V4 in the Discrimination of Partially Occluded Shapes
Kosai, Yoshito; El-Shamayleh, Yasmine; Fyall, Amber M.
2014-01-01
The primate brain successfully recognizes objects, even when they are partially occluded. To begin to elucidate the neural substrates of this perceptual capacity, we measured the responses of shape-selective neurons in visual area V4 while monkeys discriminated pairs of shapes under varying degrees of occlusion. We found that neuronal shape selectivity always decreased with increasing occlusion level, with some neurons being notably more robust to occlusion than others. The responses of neurons that maintained their selectivity across a wider range of occlusion levels were often sufficiently sensitive to support behavioral performance. Many of these same neurons were distinctively selective for the curvature of local boundary features and their shape tuning was well fit by a model of boundary curvature (curvature-tuned neurons). A significant subset of V4 neurons also signaled the animal's upcoming behavioral choices; these decision signals had short onset latencies that emerged progressively later for higher occlusion levels. The time course of the decision signals in V4 paralleled that of shape selectivity in curvature-tuned neurons: shape selectivity in curvature-tuned neurons, but not others, emerged earlier than the decision signals. These findings provide evidence for the involvement of contour-based mechanisms in the segmentation and recognition of partially occluded objects, consistent with psychophysical theory. Furthermore, they suggest that area V4 participates in the representation of the relevant sensory signals and the generation of decision signals underlying discrimination. PMID:24948811
Dore, Patricia; Dumani, Ardian; Wyatt, Geddes; Shepherd, Alex J
2018-03-16
This study explored associations between local and global shape perception on coloured backgrounds, colour discrimination, and non-verbal IQ (NVIQ). Five background colours were chosen for the local and global shape tasks that were tailored for the cone-opponent pathways early in the visual system (cardinal colour directions: L-M, loosely, reddish-greenish; and S-(L + M), or tritan colours, loosely, blueish-yellowish; where L, M and S refer to the long, middle and short wavelength sensitive cones). Participants also completed the Farnsworth-Munsell 100-hue test (FM100) to determine whether performance on the local and global shape tasks correlated with colour discrimination overall, or with performance on the L-M and tritan subsets of the FM100 test. Overall performance on the local and global shape tasks did correlate with scores on the FM100 tests, despite the colour of the background being irrelevant to the shape tasks. There were also significantly larger associations between scores for the L-M subset of the FM100 test, compared to the tritan subset, and accuracy on some of the shape tasks on the reddish, greenish and neutral backgrounds. Participants also completed the non-verbal components of the WAIS and the SPM+ version of Raven's progressive matrices, to determine whether performance on the FM100 test, and on the local and global shape tasks, correlated with NVIQ. FM100 scores correlated significantly with both WAIS and SPM+ scores. These results extend previous work that has indicated FM100 performance is not purely a measure of colour discrimination, but also involves aspects of each participant's NVIQ, such as the ability to attend to local and global aspects of the test, part-whole relationships, perceptual organisation and good visuomotor skills. Overall performance on the local and global shape tasks correlated only with the WAIS scores, not the SPM+. These results indicate that those aspects of NVIQ that engage spatial comprehension of local-global relationships and manual manipulation (WAIS), rather than more abstract reasoning (SPM+), are related to performance on the local and global shape tasks. Links are presented between various measures of NVIQ and performance on visual tasks, but they are currently seldom addressed in studies of either shape or colour perception. Further studies to explore these issues are recommended. Copyright © 2018 Elsevier Ltd. All rights reserved.
Characteristics of cesium iodide for use as a particle discriminator for high energy cosmic rays
NASA Technical Reports Server (NTRS)
Crannell, C. J.; Kurz, R. J.; Viehmann, W.
1973-01-01
The possible use of CsI to discriminate between high energy cosmic ray electrons and interacting protons has been investigated. The pulse-shape properties as a function of ionization density, temperature, and spectral response are presented for thallium-activated CsI and as a function of ionization density for sodium-activated CsI. The results are based on previously published data and on corroborative measurements from the present work. Experimental results on the response of CsI to electron-induced electromagnetic cascades and to interacting hadrons are described. Bibliographies of publications dealing with the properties of CsI and with pulse-shape discrimination techniques are presented.
Textural Maturity Analysis and Sedimentary Environment Discrimination Based on Grain Shape Data
NASA Astrophysics Data System (ADS)
Tunwal, M.; Mulchrone, K. F.; Meere, P. A.
2017-12-01
Morphological analysis of clastic sedimentary grains is an important source of information regarding the processes involved in their formation, transportation and deposition. However, a standardised approach for quantitative grain shape analysis is generally lacking. In this contribution we report on a study where fully automated image analysis techniques were applied to loose sediment samples collected from glacial, aeolian, beach and fluvial environments. A range of shape parameters are evaluated for their usefulness in textural characterisation of populations of grains. The utility of grain shape data in ranking textural maturity of samples within a given sedimentary environment is evaluated. Furthermore, discrimination of sedimentary environment on the basis of grain shape information is explored. The data gathered demonstrates a clear progression in textural maturity in terms of roundness, angularity, irregularity, fractal dimension, convexity, solidity and rectangularity. Textural maturity can be readily categorised using automated grain shape parameter analysis. However, absolute discrimination between different depositional environments on the basis of shape parameters alone is less certain. For example, the aeolian environment is quite distinct whereas fluvial, glacial and beach samples are inherently variable and tend to overlap each other in terms of textural maturity. This is most likely due to a collection of similar processes and sources operating within these environments. This study strongly demonstrates the merit of quantitative population-based shape parameter analysis of texture and indicates that it can play a key role in characterising both loose and consolidated sediments. This project is funded by the Irish Petroleum Infrastructure Programme (www.pip.ie)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacomelli, L.; Department of Physics, Università degli Studi di Milano-Bicocca, Milano; Conroy, S.
The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world devoted to nuclear fusion experiments of magnetic confined Deuterium (D)/Deuterium-Tritium (DT) plasmas. Neutrons produced in these plasmas are measured using various types of neutron detectors and spectrometers. Two of these instruments on JET make use of organic liquid scintillator detectors. The neutron emission profile monitor implements 19 liquid scintillation counters to detect the 2.45 MeV neutron emission from D plasmas. A new compact neutron spectrometer is operational at JET since 2010 to measure the neutron energy spectra from both D and DT plasmas. Liquid scintillation detectorsmore » are sensitive to both neutron and gamma radiation but give light responses of different decay time such that pulse shape discrimination techniques can be applied to identify the neutron contribution of interest from the data. The most common technique consists of integrating the radiation pulse shapes within different ranges of their rising and/or trailing edges. In this article, a step forward in this type of analysis is presented. The method applies a tomographic analysis of the 3-dimensional neutron and gamma pulse shape and pulse height distribution data obtained from liquid scintillation detectors such that n/γ discrimination can be improved to lower energies and additional information can be gained on neutron contributions to the gamma events and vice versa.« less
Neutron/gamma pulse shape discrimination (PSD) in plastic scintillators with digital PSD electronics
NASA Astrophysics Data System (ADS)
Hutcheson, Anthony L.; Simonson, Duane L.; Christophersen, Marc; Phlips, Bernard F.; Charipar, Nicholas A.; Piqué, Alberto
2013-05-01
Pulse shape discrimination (PSD) is a common method to distinguish between pulses produced by gamma rays and neutrons in scintillator detectors. This technique takes advantage of the property of many scintillators that excitations by recoil protons and electrons produce pulses with different characteristic shapes. Unfortunately, many scintillating materials with good PSD properties have other, undesirable properties such as flammability, toxicity, low availability, high cost, and/or limited size. In contrast, plastic scintillator detectors are relatively low-cost, and easily handled and mass-produced. Recent studies have demonstrated efficient PSD in plastic scintillators using a high concentration of fluorescent dyes. To further investigate the PSD properties of such systems, mixed plastic scintillator samples were produced and tested. The addition of up to 30 wt. % diphenyloxazole (DPO) and other chromophores in polyvinyltoluene (PVT) results in efficient detection with commercial detectors. These plastic scintillators are produced in large diameters up to 4 inches by melt blending directly in a container suitable for in-line detector use. This allows recycling and reuse of materials while varying the compositions. This strategy also avoids additional sample handling and polishing steps required when using removable molds. In this presentation, results will be presented for different mixed-plastic compositions and compared with known scintillating materials
Discriminative power of visual attributes in dermatology.
Giotis, Ioannis; Visser, Margaretha; Jonkman, Marcel; Petkov, Nicolai
2013-02-01
Visual characteristics such as color and shape of skin lesions play an important role in the diagnostic process. In this contribution, we quantify the discriminative power of such attributes using an information theoretical approach. We estimate the probability of occurrence of each attribute as a function of the skin diseases. We use the distribution of this probability across the studied diseases and its entropy to define the discriminative power of the attribute. The discriminative power has a maximum value for attributes that occur (or do not occur) for only one disease and a minimum value for those which are equally likely to be observed among all diseases. Verrucous surface, red and brown colors, and the presence of more than 10 lesions are among the most informative attributes. A ranking of attributes is also carried out and used together with a naive Bayesian classifier, yielding results that confirm the soundness of the proposed method. proposed measure is proven to be a reliable way of assessing the discriminative power of dermatological attributes, and it also helps generate a condensed dermatological lexicon. Therefore, it can be of added value to the manual or computer-aided diagnostic process. © 2012 John Wiley & Sons A/S.
Combining color and shape information for illumination-viewpoint invariant object recognition.
Diplaros, Aristeidis; Gevers, Theo; Patras, Ioannis
2006-01-01
In this paper, we propose a new scheme that merges color- and shape-invariant information for object recognition. To obtain robustness against photometric changes, color-invariant derivatives are computed first. Color invariance is an important aspect of any object recognition scheme, as color changes considerably with the variation in illumination, object pose, and camera viewpoint. These color invariant derivatives are then used to obtain similarity invariant shape descriptors. Shape invariance is equally important as, under a change in camera viewpoint and object pose, the shape of a rigid object undergoes a perspective projection on the image plane. Then, the color and shape invariants are combined in a multidimensional color-shape context which is subsequently used as an index. As the indexing scheme makes use of a color-shape invariant context, it provides a high-discriminative information cue robust against varying imaging conditions. The matching function of the color-shape context allows for fast recognition, even in the presence of object occlusion and cluttering. From the experimental results, it is shown that the method recognizes rigid objects with high accuracy in 3-D complex scenes and is robust against changing illumination, camera viewpoint, object pose, and noise.
Performance evaluation for 120 four-layer DOI block detectors of the jPET-D4.
Inadama, Naoko; Murayama, Hideo; Ono, Yusuke; Tsuda, Tomoaki; Hamamoto, Manabu; Yamaya, Taiga; Yoshida, Eiji; Shibuya, Kengo; Nishikido, Fumihiko; Takahashi, Kei; Kawai, Hideyuki
2008-01-01
The jPET-D4 is a brain positron emission tomography (PET) scanner that we have developed to meet user demands for high sensitivity and high spatial resolution. For this scanner, we developed a four-layer depth-of-interaction (DOI) detector. The four-layer DOI detector is a key component for the jPET-D4, its performance has great influence on the overall system performance. Previously, we reported the original technique for encoding four-layer DOI. Here, we introduce the final design of the jPET-D4 detector and present the results of an investigation on uniformity in performance of the detector. The performance evaluation was done over the 120 DOI crystal blocks for the detectors, which are to be assembled into the jPET-D4 scanner. We also introduce the crystal assembly method, which is simple enough, even though each DOI crystal block is composed of 1,024 crystal elements. The jPET-D4 detector consists of four layers of 16 x 16 Gd(2)SiO(5) (GSO) crystals and a 256-channel flat-panel position-sensitive photomultiplier tube (256ch FP-PMT). To identify scintillated crystals in the four-layer DOI detector, we use pulse shape discrimination and position discrimination on the two-dimensional (2D) position histogram. For pulse shape discrimination, two kinds of GSO crystals that show different scintillation decay time constants are used in the upper two and lower two layers, respectively. Proper reflector arrangement in the crystal block then allows the scintillated crystals to be identified in these two-layer groupings with two 2D position histograms. We produced the 120 DOI crystal blocks for the jPET-D4 system, and measured their characteristics such as the accuracy of pulse shape discrimination, energy resolution, and the pulse height of the full energy peak. The results show a satisfactory and uniform performance of the four-layer DOI crystal blocks; for example, misidentification rate in each GSO layer is <5% based on pulse shape discrimination, the averaged energy resolutions for the central four crystals of the first (farthest from the FP-PMT), second, third, and 4th layers are 15.7 +/- 1.0, 15.8 +/- 0.6, 17.7 +/- 1.2, and 17.3 +/- 1.4%, respectively, and variation in pulse height of the full energy peak among the four layers is <5% on average.
ERIC Educational Resources Information Center
De Joux, Neil; Russell, Paul N.; Helton, William S.
2013-01-01
Despite a long history of vigilance research, the role of global and local feature discrimination in vigilance tasks has been relatively neglected. In this experiment participants performed a sustained attention task requiring either global or local shape stimuli discrimination. Reaction time to local feature discriminations was characterized by a…
[Application of the elliptic fourier functions to the description of avian egg shape].
Ávila, Dennis Denis
2014-12-01
Egg shape is difficult to quantify due to the lack of an exact formula to describe its geometry. Here I described a simple algorithm to characterize and compare egg shapes using Fourier functions. These functions can delineate any closed contour and had been previously applied to describe several biological objects. I described, step by step, the process of data acquisition, processing and the use of the SHAPE software to extract function coefficients in a study case. I compared egg shapes in three birds' species representing different reproductive strategies: Cuban Parakeet (Aratinga euops), Royal Tern (Thalasseus maximus) and Cuban Blackbird (Dives atroviolaceus). Using 73 digital pictures of eggs kept in Cuban scientific collections, I calculated Fourier descriptors with 4, 6, 8, 16 and 20 harmonics. Descriptors were reduced by a Principal Component Analysis and the scores of the eigen-values that account for 90% of variance were used in a Lineal Discriminant Function to analyze the possibility to differentiate eggs according to its shapes. Using four harmonics, the first five component accounted for 97% of shape variances; more harmonics diluted the variance increasing to eight the number of components needed to explain most of the variation. Convex polygons in the discriminant space showed a clear separation between species, allowing trustful discrimination (classification errors between 7-15%). Misclassifications were related to specific egg shape variability between species. In the study case, A. euops eggs were perfectly classified, but for the other species, errors ranged from 5 to 29% of misclassifications, in relation to the numbers or harmonics and components used. The proposed algorithm, despite its apparent mathematical complexity, showed many advantages to describe eggs shape allowing a deeper understanding of factors related to this variable.
Estévez Campo, Enrique José; López-Lázaro, Sandra; López-Morago Rodríguez, Claudia; Alemán Aguilera, Inmaculada; Botella López, Miguel Cecilio
2018-05-01
Sex determination of unknown individuals is one of the primary goals of Physical and Forensic Anthropology. The adult skeleton can be sexed using both morphological and metric traits on a large number of bones. The human pelvis is often used as an important element of adult sex determination. However, studies carried out about the pelvic bone in subadult individuals present several limitations due the absence of sexually dimorphic characteristics. In this study, we analyse the sexual dimorphism of the immature pubis and ischium bones, attending to their shape (Procrustes residuals) and size (centroid size), using an identified sample of subadult individuals composed of 58 individuals for the pubis and 83 for the ischium, aged between birth and 1year of life, from the Granada osteological collection of identified infants (Granada, Spain). Geometric morphometric methods and discriminant analysis were applied to this study. The results of intra- and inter-observer error showed good and excellent agreement in the location of coordinates of landmarks and semilandmarks, respectively. Principal component analysis performed on shape and size variables showed superposition of the two sexes, suggesting a low degree of sexual dimorphism. Canonical variable analysis did not show significant changes between the male and female shapes. As a consequence, discriminant analysis with leave-one-out cross validation provided low classification accuracy. The results suggested a low degree of sexual dimorphism supported by significant sexual dimorphism in the subadult sample and poor cross-validated classification accuracy. The inclusion of centroid size as a discriminant variable does not imply a significant improvement in the results of the analysis. The similarities found between the sexes prevent consideration of pubic and ischial morphology as a sex estimator in early stages of development. The authors suggest extending this study by analysing the different trajectories of shape and size in later ontogeny between males and females. Copyright © 2018 Elsevier B.V. All rights reserved.
Predictive Coding in Area V4: Dynamic Shape Discrimination under Partial Occlusion
Choi, Hannah; Pasupathy, Anitha; Shea-Brown, Eric
2018-01-01
The primate visual system has an exquisite ability to discriminate partially occluded shapes. Recent electrophysiological recordings suggest that response dynamics in intermediate visual cortical area V4, shaped by feedback from prefrontal cortex (PFC), may play a key role. To probe the algorithms that may underlie these findings, we build and test a model of V4 and PFC interactions based on a hierarchical predictive coding framework. We propose that probabilistic inference occurs in two steps. Initially, V4 responses are driven solely by bottom-up sensory input and are thus strongly influenced by the level of occlusion. After a delay, V4 responses combine both feedforward input and feedback signals from the PFC; the latter reflect predictions made by PFC about the visual stimulus underlying V4 activity. We find that this model captures key features of V4 and PFC dynamics observed in experiments. Specifically, PFC responses are strongest for occluded stimuli and delayed responses in V4 are less sensitive to occlusion, supporting our hypothesis that the feedback signals from PFC underlie robust discrimination of occluded shapes. Thus, our study proposes that area V4 and PFC participate in hierarchical inference, with feedback signals encoding top-down predictions about occluded shapes. PMID:29566355
Stoycheva, Polina; Tiippana, Kaisa
2018-03-14
The brain's left hemisphere often displays advantages in processing verbal information, while the right hemisphere favours processing non-verbal information. In the haptic domain due to contra-lateral innervations, this functional lateralization is reflected in a hand advantage during certain functions. Findings regarding the hand-hemisphere advantage for haptic information remain contradictory, however. This study addressed these laterality effects and their interaction with memory retention times in the haptic modality. Participants performed haptic discrimination of letters, geometric shapes and nonsense shapes at memory retention times of 5, 15 and 30 s with the left and right hand separately, and we measured the discriminability index d'. The d' values were significantly higher for letters and geometric shapes than for nonsense shapes. This might result from dual coding (naming + spatial) or/and from a low stimulus complexity. There was no stimulus-specific laterality effect. However, we found a time-dependent laterality effect, which revealed that the performance of the left hand-right hemisphere was sustained up to 15 s, while the performance of the right-hand-left hemisphere decreased progressively throughout all retention times. This suggests that haptic memory traces are more robust to decay when they are processed by the left hand-right hemisphere.
Preferential Amygdala Reactivity to the Negative Assessment of Neutral Faces
Blasi, Giuseppe; Hariri, Ahmad R.; Alce, Guilna; Taurisano, Paolo; Sambataro, Fabio; Das, Saumitra; Bertolino, Alessandro; Weinberger, Daniel R.; Mattay, Venkata S.
2010-01-01
Background Prior studies suggest that the amygdala shapes complex behavioral responses to socially ambiguous cues. We explored human amygdala function during explicit behavioral decision making about discrete emotional facial expressions that can represent socially unambiguous and ambiguous cues. Methods During functional magnetic resonance imaging, 43 healthy adults were required to make complex social decisions (i.e., approach or avoid) about either relatively unambiguous (i.e., angry, fearful, happy) or ambiguous (i.e., neutral) facial expressions. Amygdala activation during this task was compared with that elicited by simple, perceptual decisions (sex discrimination) about the identical facial stimuli. Results Angry and fearful expressions were more frequently judged as avoidable and happy expressions most often as approachable. Neutral expressions were equally judged as avoidable and approachable. Reaction times to neutral expressions were longer than those to angry, fearful, and happy expressions during social judgment only. Imaging data on stimuli judged to be avoided revealed a significant task by emotion interaction in the amygdala. Here, only neutral facial expressions elicited greater activity during social judgment than during sex discrimination. Furthermore, during social judgment only, neutral faces judged to be avoided were associated with greater amygdala activity relative to neutral faces that were judged as approachable. Moreover, functional coupling between the amygdala and both dorsolateral prefrontal (social judgment > sex discrimination) and cingulate (sex discrimination > social judgment) cortices was differentially modulated by task during processing of neutral faces. Conclusions Our results suggest that increased amygdala reactivity and differential functional coupling with prefrontal circuitries may shape complex decisions and behavioral responses to socially ambiguous cues. PMID:19709644
Study of pulse shape discrimination for a neutron phoswich detector
NASA Astrophysics Data System (ADS)
Hartman, Jessica; Barzilov, Alexander
2017-09-01
A portable phoswich detector capable of differentiating between fast neutrons and thermal neutrons, and photons was developed. The detector design is based on the use of two solid-state scintillators with dissimilar scintillation time properties coupled with a single optical sensor: a 6Li loaded glass and EJ-299-33A plastic. The on-the-fly digital pulse shape discrimination and the wavelet treatment of measured waveforms were employed in the data analysis. The instrument enabled neutron spectrum evaluation.
Sex determination by three-dimensional geometric morphometrics of craniofacial form.
Chovalopoulou, Maria-Eleni; Valakos, Efstratios D; Manolis, Sotiris K
The purpose of the present study is to define which regions of the cranium, the upper-face, the orbits and the nasal are the most sexually dimorphic, by using three-dimensional geometric morphometric methods, and investigate the effectiveness of this method in determining sex from the shape of these regions. The study sample consisted of 176 crania of known sex (94 males, 82 females) belonging to individuals who lived in Greece during the 20(th) century. The three-dimensional co-ordinates of 31 ecto-cranial landmarks were digitized using a MicroScribe 3DX contact digitizer. Goodall's F-test was performed in order to compare statistical differences in shape between males and females. Generalized Procrustes Analysis (GPA) was used to obtain size and shape variables for statistical analysis. Shape, Size and Form analyses were carried out by logistic regression and discriminant function analysis. The results indicate that there are shape differences between the sexes in the upper-face and the orbits. The highest shape classification rate was obtained from the upper-face region. The centroid size of the caraniofacial and the orbital regions was smaller in females than males. Moreover, it was found that size is significant for sexual dimorphism in the upper-face region. As anticipated, the classification accuracy improves when both size and shape are combined. The findings presented here constitute a firm basis upon which further research can be conducted.
Giacomelli, L; Zimbal, A; Reginatto, M; Tittelmeier, K
2011-01-01
A compact NE213 liquid scintillation neutron spectrometer with a new digital data acquisition (DAQ) system is now in operation at the Physikalisch-Technische Bundesanstalt (PTB). With the DAQ system, developed by ENEA Frascati, neutron spectrometry with high count rates in the order of 5×10(5) s(-1) is possible, roughly an order of magnitude higher than with an analog acquisition system. To validate the DAQ system, a new data analysis code was developed and tests were done using measurements with 14-MeV neutrons made at the PTB accelerator. Additional analysis was carried out to optimize the two-gate method used for neutron and gamma (n-γ) discrimination. The best results were obtained with gates of 35 ns and 80 ns. This indicates that the fast and medium decay time components of the NE213 light emission are the ones that are relevant for n-γ discrimination with the digital acquisition system. This differs from what is normally implemented in the analog pulse shape discrimination modules, namely, the fast and long decay emissions of the scintillating light.
Vessel Classification in Cosmo-Skymed SAR Data Using Hierarchical Feature Selection
NASA Astrophysics Data System (ADS)
Makedonas, A.; Theoharatos, C.; Tsagaris, V.; Anastasopoulos, V.; Costicoglou, S.
2015-04-01
SAR based ship detection and classification are important elements of maritime monitoring applications. Recently, high-resolution SAR data have opened new possibilities to researchers for achieving improved classification results. In this work, a hierarchical vessel classification procedure is presented based on a robust feature extraction and selection scheme that utilizes scale, shape and texture features in a hierarchical way. Initially, different types of feature extraction algorithms are implemented in order to form the utilized feature pool, able to represent the structure, material, orientation and other vessel type characteristics. A two-stage hierarchical feature selection algorithm is utilized next in order to be able to discriminate effectively civilian vessels into three distinct types, in COSMO-SkyMed SAR images: cargos, small ships and tankers. In our analysis, scale and shape features are utilized in order to discriminate smaller types of vessels present in the available SAR data, or shape specific vessels. Then, the most informative texture and intensity features are incorporated in order to be able to better distinguish the civilian types with high accuracy. A feature selection procedure that utilizes heuristic measures based on features' statistical characteristics, followed by an exhaustive research with feature sets formed by the most qualified features is carried out, in order to discriminate the most appropriate combination of features for the final classification. In our analysis, five COSMO-SkyMed SAR data with 2.2m x 2.2m resolution were used to analyse the detailed characteristics of these types of ships. A total of 111 ships with available AIS data were used in the classification process. The experimental results show that this method has good performance in ship classification, with an overall accuracy reaching 83%. Further investigation of additional features and proper feature selection is currently in progress.
Adaptive shaping of cortical response selectivity in the vibrissa pathway
Zheng, He J. V.; Wang, Qi
2015-01-01
One embodiment of context-dependent sensory processing is bottom-up adaptation, where persistent stimuli decrease neuronal firing rate over hundreds of milliseconds. Adaptation is not, however, simply the fatigue of the sensory pathway, but shapes the information flow and selectivity to stimulus features. Adaptation enhances spatial discriminability (distinguishing stimulus location) while degrading detectability (reporting presence of the stimulus), for both the ideal observer of the cortex and awake, behaving animals. However, how the dynamics of the adaptation shape the cortical response and this detection and discrimination tradeoff is unknown, as is to what degree this phenomenon occurs on a continuum as opposed to a switching of processing modes. Using voltage-sensitive dye imaging in anesthetized rats to capture the temporal and spatial characteristics of the cortical response to tactile inputs, we showed that the suppression of the cortical response, in both magnitude and spatial spread, is continuously modulated by the increasing amount of energy in the adapting stimulus, which is nonuniquely determined by its frequency and velocity. Single-trial ideal observer analysis demonstrated a tradeoff between detectability and spatial discriminability up to a moderate amount of adaptation, which corresponds to the frequency range in natural whisking. This was accompanied by a decrease in both detectability and discriminability with high-energy adaptation, which indicates a more complex coupling between detection and discrimination than a simple switching of modes. Taken together, the results suggest that adaptation operates on a continuum and modulates the tradeoff between detectability and discriminability that has implications for information processing in ethological contexts. PMID:25787959
Chovalopoulou, Maria-Eleni; Bertsatos, Andreas; Papageorgopoulou, Christina
2017-07-01
The aim of this paper is to investigate ageing changes in craniofacial region in both sexes and evaluate whether these shape changes are substantial to achieve age discrimination of samples used in anthropological analyses. The study sample consisted of 157 crania of known sex and age (81 males and 76 females) belonging to individuals who lived in Greece during the twentieth century. The sample was divided in three age groups: young adults (YA, 18-39 years old), middle adults (MA, 40-59 years old) and old adults (OA, >60 years old). The three-dimensional coordinates of 31 ecto-cranial landmarks were digitized using a Microscribe 3DX contact digitizer, and landmark configurations were analyzed using the generalized least-squares Procrustes method. The results indicate that both males and females show significant difference among the age groups; however, shape differences can not be used for age group discrimination due to a large range on the accuracy of age group classification. The morphometric changes related to age were different between sexes.
Stimulus generalization, discrimination learning, and peak shift in horses.
Dougherty, D M; Lewis, P
1991-01-01
Using horses, we investigated three aspects of the stimulus control of lever-pressing behavior: stimulus generalization, discrimination learning, and peak shift. Nine solid black circles, ranging in size from 0.5 in. to 4.5 in. (1.3 cm to 11.4 cm) served as stimuli. Each horse was shaped, using successive approximations, to press a rat lever with its lip in the presence of a positive stimulus, the 2.5-in. (6.4-cm) circle. Shaping proceeded quickly and was comparable to that of other laboratory organisms. After responding was maintained on a variable-interval 30-s schedule, stimulus generalization gradients were collected from 2 horses prior to discrimination training. During discrimination training, grain followed lever presses in the presence of a positive stimulus (a 2.5-in circle) and never followed lever presses in the presence of a negative stimulus (a 1.5-in. [3.8-cm] circle). Three horses met a criterion of zero responses to the negative stimulus in fewer than 15 sessions. Horses given stimulus generalization testing prior to discrimination training produced symmetrical gradients; horses given discrimination training prior to generalization testing produced asymmetrical gradients. The peak of these gradients shifted away from the negative stimulus. These results are consistent with discrimination, stimulus generalization, and peak-shift phenomena observed in other organisms. PMID:1940765
Simulation of synthetic discriminant function optical implementation
NASA Astrophysics Data System (ADS)
Riggins, J.; Butler, S.
1984-12-01
The optical implementation of geometrical shape and synthetic discriminant function matched filters is computer modeled. The filter implementation utilizes the Allebach-Keegan computer-generated hologram algorithm. Signal-to-noise and efficiency measurements were made on the resultant correlation planes.
Background rejection of n+ surface events in GERDA Phase II
NASA Astrophysics Data System (ADS)
Lehnert, Björn
2016-05-01
The GERDA experiment searches for neutrinoless double beta (0vββ) decay in 76Ge using an array of high purity germanium (HPGe) detectors immersed in liquid argon (LAr). Phase II of the experiment uses 30 new broad energy germanium (BEGe) detectors with superior pulse shape discrimination capabilities compared to the previously used semi-coaxial detector design. By far the largest background component for BEGe detectors in GERDA are n+-surface events from 42K β decays which are intrinsic in LAr. The β particles with up to 3.5 MeV can traverse the 0.5 to 0.9 mm thick electrode and deposit energy within the region of interest for the 0vββ decay. However, those events have particular pulse shape features allowing for a strong discrimination. The understanding and simulation of this background, showing a reduction by up to a factor 145 with pulse shape discrimination alone, is presented in this work.
Jones, Kristen P
2017-04-01
Despite the rapid entrance of women into the workforce over the past several decades, many workplace experiences unique to women remain poorly understood. One critical, yet understudied, area is the intersection of work and pregnancy. Because pregnancy remains concealable for a substantial amount of time, expectant employees must navigate decisions regarding to whom, when, and how to disclose their pregnant identities at work. In light of evidence that has suggested pregnancy is often stigmatized within the workplace, I employed a retrospective longitudinal design to explore the extent to which women's expectations about discrimination-anticipated discrimination-shape their pregnancy disclosure behaviors, and the extent to which these different behavioral strategies are associated with higher or lower experienced discrimination. I also examined the link between pregnancy disclosure strategies and psychological distress. Taken together, findings suggest that pregnant employees' expectations about pregnancy discrimination play a role in shaping disclosure behaviors at work. Furthermore, certain behavioral strategies for pregnancy disclosure were linked with average reports of experienced discrimination and momentary reports of psychological distress. I also discuss theoretical and practical implications. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Pulse shape discrimination for background rejection in germanium gamma-ray detectors
NASA Technical Reports Server (NTRS)
Feffer, P. T.; Smith, D. M.; Campbell, R. D.; Primbsch, J. H.; Lin, R. P.
1989-01-01
A pulse-shape discrimination (PSD) technique is developed to reject the beta-decay background resulting from activation of Ge gamma-ray detectors by cosmic-ray secondaries. These beta decays are a major source of background at 0.2-2 MeV energies in well shielded Ge detector systems. The technique exploits the difference between the detected current pulse shapes of single- and multiple-site energy depositions within the detector: beta decays are primarily single-site events, while photons at these energies typically Compton scatter before being photoelectrically absorbed to produce multiple-site events. Depending upon the amount of background due to sources other than beta decay, PSD can more than double the detector sensitivity.
NASA Astrophysics Data System (ADS)
Jiang, Jie; Zhang, Shumei; Cao, Shixiang
2015-01-01
Multitemporal remote sensing images generally suffer from background variations, which significantly disrupt traditional region feature and descriptor abstracts, especially between pre and postdisasters, making registration by local features unreliable. Because shapes hold relatively stable information, a rotation and scale invariant shape context based on multiscale edge features is proposed. A multiscale morphological operator is adapted to detect edges of shapes, and an equivalent difference of Gaussian scale space is built to detect local scale invariant feature points along the detected edges. Then, a rotation invariant shape context with improved distance discrimination serves as a feature descriptor. For a distance shape context, a self-adaptive threshold (SAT) distance division coordinate system is proposed, which improves the discriminative property of the feature descriptor in mid-long pixel distances from the central point while maintaining it in shorter ones. To achieve rotation invariance, the magnitude of Fourier transform in one-dimension is applied to calculate angle shape context. Finally, the residual error is evaluated after obtaining thin-plate spline transformation between reference and sensed images. Experimental results demonstrate the robustness, efficiency, and accuracy of this automatic algorithm.
The perception of 3-D shape from shadows cast onto curved surfaces.
Norman, J Farley; Lee, Young-lim; Phillips, Flip; Norman, Hideko F; Jennings, L RaShae; McBride, T Ryan
2009-05-01
In a natural environment, cast shadows abound. Objects cast shadows both upon themselves and upon background surfaces. Previous research on the perception of 3-D shape from cast shadows has only examined the informativeness of shadows cast upon flat background surfaces. In outdoor environments, however, background surfaces often possess significant curvature (large rocks, trees, hills, etc.), and this background curvature distorts the shape of cast shadows. The purpose of this study was to determine the extent to which observers can "discount" the distorting effects of curved background surfaces. In our experiments, observers viewed deforming or static shadows of naturally shaped objects, which were cast upon flat and curved background surfaces. The results showed that the discrimination of 3-D object shape from cast shadows was generally invariant over the distortions produced by hemispherical background surfaces. The observers often had difficulty, however, in identifying the shadows cast onto saddle-shaped background surfaces. The variations in curvature which occur in different directions on saddle-shaped background surfaces cause shadow distortions that lead to difficulties in object recognition and discrimination.
Fast neutron flux analyzer with real-time digital pulse shape discrimination
NASA Astrophysics Data System (ADS)
Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.
2016-08-01
Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.
Visual discrimination of local surface structure: slant, tilt, and curvedness.
Norman, J Farley; Todd, James T; Norman, Hideko F; Clayton, Anna Marie; McBride, T Ryan
2006-03-01
In four experiments, observers were required to discriminate interval or ordinal differences in slant, tilt, or curvedness between designated probe points on randomly shaped curved surfaces defined by shading, texture, and binocular disparity. The results reveal that discrimination thresholds for judgments of slant or tilt typically range between 4 degrees and 10 degrees; that judgments of one component are unaffected by simultaneous variations in the other; and that the individual thresholds for either the slant or tilt components of orientation are approximately equal to those obtained for judgments of the total orientation difference between two probed regions. Performance was much worse, however, for judgments of curvedness, and these judgments were significantly impaired when there were simultaneous variations in the shape index parameter of curvature.
Classification of Uxo by Principal Dipole Polarizability
NASA Astrophysics Data System (ADS)
Kappler, K. N.
2010-12-01
Data acquired by multiple-Transmitter, multiple-receiver time-domain electromagnetic devices show great potential for determining the geometric and compositional information relating to near surface conductive targets. Here is presented an analysis of data from one such system; the Berkeley Unexploded-ordnance Discriminator (BUD) system. BUD data are succinctly reduced by processing the multi-static data matrices to obtain magnetic dipole polarizability matrices for data from each time gate. When viewed over all time gates, the projections of the data onto the principal polar axes yield so-called polarizability curves. These curves are especially well suited to discriminating between subsurface conductivity anomalies which correspond to objects of rotational symmetry and irregularly shaped objects. The curves have previously been successfully employed as library elements in a pattern recognition scheme aimed at discriminating harmless scrap metal from dangerous intact unexploded ordnance. However, previous polarizability-curve matching methods have only been applied at field sites which are known a priori to be contaminated by a single type of ordnance, and furthermore, the particular ordnance present in the subsurface was known to be large. Thus signal amplitude was a key element in the discrimination process. The work presented here applies feature-based pattern classification techniques to BUD field data where more than 20 categories of object are present. Data soundings from a calibration grid at the Yuma, AZ proving ground are used in a cross validation study to calibrate the pattern recognition method. The resultant method is then applied to a Blind Test Grid. Results indicate that when lone UXO are present and SNR is reasonably high, Polarizability Curve Matching successfully discriminates UXO from scrap metal when a broad range of objects are present.
Why do shape aftereffects increase with eccentricity?
Gheorghiu, Elena; Kingdom, Frederick A A; Bell, Jason; Gurnsey, Rick
2011-12-20
Studies have shown that spatial aftereffects increase with eccentricity. Here, we demonstrate that the shape-frequency and shape-amplitude aftereffects, which describe the perceived shifts in the shape of a sinusoidal-shaped contour following adaptation to a slightly different sinusoidal-shaped contour, also increase with eccentricity. Why does this happen? We first demonstrate that the perceptual shift increases with eccentricity for stimuli of fixed sizes. These shifts are not attenuated by variations in stimulus size; in fact, at each eccentricity the degree of perceptual shift is scale-independent. This scale independence is specific to the aftereffect because basic discrimination thresholds (in the absence of adaptation) decrease as size increases. Structural aspects of the displays were found to have a modest effect on the degree of perceptual shift; the degree of adaptation depends modestly on distance between stimuli during adaptation and post-adaptation testing. There were similar temporal rates of decline of adaptation across the visual field and higher post-adaptation discrimination thresholds in the periphery than in the center. The observed results are consistent with greater sensitivity reduction in adapted mechanisms following adaptation in the periphery or an eccentricity-dependent increase in the bandwidth of the shape-frequency- and shape-amplitude-selective mechanisms.
Penin, Xavier; Berge, Christine; Baylac, Michel
2002-05-01
Heterochronic studies compare ontogenetic trajectories of an organ in different species: here, the skulls of common chimpanzees and modern humans. A growth trajectory requires three parameters: size, shape, and ontogenetic age. One of the great advantages of the Procrustes method is the precise definition of size and shape for whole organs such as the skull. The estimated ontogenetic age (dental stages) is added to the plot to give a graphical representation to compare growth trajectories. We used the skulls of 41 Homo sapiens and 50 Pan troglodytes at various stages of growth. The Procrustes superimposition of all specimens was completed by statistical procedures (principal component analysis, multivariate regression, and discriminant function) to calculate separately size-related shape changes (allometry common to chimpanzees and humans), and interspecific shape differences (discriminant function). The results confirm the neotenic theory of the human skull (sensu Gould [1977] Ontogeny and Phylogeny, Cambridge: Harvard University Press; Alberch et al. [1979] Paleobiology 5:296-317), but modify it slightly. Human growth is clearly retarded in terms of both the magnitude of changes (size-shape covariation) and shape alone (size-shape dissociation) with respect to the chimpanzees. At the end of growth, the adult skull in humans reaches an allometric shape (size-related shape) which is equivalent to that of juvenile chimpanzees with no permanent teeth, and a size which is equivalent to that of adult chimpanzees. Our results show that human neoteny involves not only shape retardation (paedomorphosis), but also changes in relative growth velocity. Before the eruption of the first molar, human growth is accelerated, and then strongly decelerated, relative to the growth of the chimpanzee as a reference. This entails a complex process, which explains why these species reach the same overall (i.e., brain + face) size in adult stage. The neotenic traits seem to concern primarily the function of encephalization, but less so other parts of the skull. Our results, based on the discriminant function, reveal that additional structural traits (corresponding to the nonallometric part of the shape which is specific to humans) are rather situated in the other part of the skull. They mainly concern the equilibrium of the head related to bipedalism, and the respiratory and masticatory functions. Thus, the reduced prognathism, the flexed cranial base (forward position of the foramen magnum which is brought closer to the palate), the reduced anterior portion of the face, the reduced glabella, and the prominent nose mainly correspond to functional innovations which have nothing to do with a neotenic process in human evolution. The statistical analysis used here gives us the possibility to point out that some traits, which have been classically described as paedomorphic because they superficially resemble juvenile traits, are in reality independent of growth. Copyright 2002 Wiley-Liss, Inc.
Shen, Kai-kai; Fripp, Jurgen; Mériaudeau, Fabrice; Chételat, Gaël; Salvado, Olivier; Bourgeat, Pierrick
2012-02-01
The hippocampus is affected at an early stage in the development of Alzheimer's disease (AD). With the use of structural magnetic resonance (MR) imaging, we can investigate the effect of AD on the morphology of the hippocampus. The hippocampal shape variations among a population can be usually described using statistical shape models (SSMs). Conventional SSMs model the modes of variations among the population via principal component analysis (PCA). Although these modes are representative of variations within the training data, they are not necessarily discriminative on labeled data or relevant to the differences between the subpopulations. We use the shape descriptors from SSM as features to classify AD from normal control (NC) cases. In this study, a Hotelling's T2 test is performed to select a subset of landmarks which are used in PCA. The resulting variation modes are used as predictors of AD from NC. The discrimination ability of these predictors is evaluated in terms of their classification performances with bagged support vector machines (SVMs). Restricting the model to landmarks with better separation between AD and NC increases the discrimination power of SSM. The predictors extracted on the subregions also showed stronger correlation with the memory-related measurements such as Logical Memory, Auditory Verbal Learning Test (AVLT) and the memory subscores of Alzheimer Disease Assessment Scale (ADAS). Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
Brill, R L; Pawloski, J L; Helweg, D A; Au, W W; Moore, P W
1992-09-01
This study demonstrated the ability of a false killer whale (Pseudorca crassidens) to discriminate between two targets and investigated the parameters of the whale's emitted signals for changes related to test conditions. Target detection performance comparable to the bottlenose dolphin's (Tursiops truncatus) has previously been reported for echolocating false killer whales. No other echolocation capabilities have been reported. A false killer whale, naive to conditioned echolocation tasks, was initially trained to detect a cylinder in a "go/no-go" procedure over ranges of 3 to 8 m. The transition from a detection task to a discrimination task was readily achieved by introducing a spherical comparison target. Finally, the cylinder was successfully compared to spheres of two different sizes and target strengths. Multivariate analyses were used to evaluate the parameters of emitted signals. Duncan's multiple range tests showed significant decreases (df = 185, p less than 0.05) in both source level and bandwidth in the transition from detection to discrimination. Analysis of variance revealed a significant decrease in the number of clicks over test conditions [F(5.26) = 5.23, p less than 0.0001]. These data suggest that the whale relied on cues relevant to target shape as well as target strength, that changes in source level and bandwidth were task-related, that the decrease in clicks was associated with learning experience, and that Pseudorca's ability to discriminate shapes using echolocation may be comparable to that of Tursiops truncatus.
Plastic scintillators with efficient neutron/gamma pulse shape discrimination
NASA Astrophysics Data System (ADS)
Zaitseva, Natalia; Rupert, Benjamin L.; PaweŁczak, Iwona; Glenn, Andrew; Martinez, H. Paul; Carman, Leslie; Faust, Michelle; Cherepy, Nerine; Payne, Stephen
2012-03-01
A possibility of manufacturing plastic scintillators with efficient neutron/gamma pulse shape discrimination (PSD) is demonstrated using a system of a polyvinyltoluene (PVT) polymer matrix loaded with a scintillating dye, 2,5-diphenyloxazole (PPO). Similarities and differences of conditions leading to the rise of PSD in liquid and solid organic scintillators are discussed based on the classical model of excited state interaction and delayed light formation. First characterization results are presented to show that PSD in plastic scintillators can be of the similar magnitude or even higher than in standard commercial liquid scintillators.
Gamma-ray spectroscopy and pulse shape discrimination with a plastic scintillator
NASA Astrophysics Data System (ADS)
van Loef, E.; Markosyan, G.; Shirwadkar, U.; McClish, M.; Shah, K.
2015-07-01
The scintillation properties of a novel plastic scintillator loaded with an organolead compound are presented. Under X-ray and gamma-ray excitation, emission is observed peaking at 435 nm. The scintillation light output is 9000 ph/MeV. An energy resolution (full width at half maximum over the peak position) of about 16% was observed for the 662 keV full absorption peak. Excellent pulse shape discrimination between neutrons and gamma-rays with a Figure of Merit of 2.6 at 1 MeVee was observed.
Amaudruz, P. -A.; Batygov, M.; Beltran, B.; ...
2016-09-17
The DEAP-1 low-background liquid argon detector has been used to measure scintillation pulse shapes of beta decays and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keV ee. The relative intensities of singlet/triplet states in liquid argon have been measured as a function of energy between 15 and 500 keVee for both beta and nuclear recoils. Using a triple-coincidence tag we find the fraction of beta events that are misidentified as nuclear recoils to be less than 6 x 10 -8 between 43-86 keV ee and that the discrimination parametermore » agrees with a simple analytic model. The discrimination measurement is currently limited by nuclear recoils induced by cosmic-ray generated neutrons, and is expected to improve by operating the detector underground at SNOLAB. The analytic model predicts a beta misidentification fraction of 10 -10 for an electron-equivalent energy threshold of 20 keV ee. This reduction allows for a sensitive search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10 -46 cm 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amaudruz, P. -A.; Batygov, M.; Beltran, B.
The DEAP-1 low-background liquid argon detector has been used to measure scintillation pulse shapes of beta decays and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keV ee. The relative intensities of singlet/triplet states in liquid argon have been measured as a function of energy between 15 and 500 keVee for both beta and nuclear recoils. Using a triple-coincidence tag we find the fraction of beta events that are misidentified as nuclear recoils to be less than 6 x 10 -8 between 43-86 keV ee and that the discrimination parametermore » agrees with a simple analytic model. The discrimination measurement is currently limited by nuclear recoils induced by cosmic-ray generated neutrons, and is expected to improve by operating the detector underground at SNOLAB. The analytic model predicts a beta misidentification fraction of 10 -10 for an electron-equivalent energy threshold of 20 keV ee. This reduction allows for a sensitive search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10 -46 cm 2.« less
Malkassian, Anthony; Nerini, David; van Dijk, Mark A; Thyssen, Melilotus; Mante, Claude; Gregori, Gerald
2011-04-01
Analytical flow cytometry (FCM) is well suited for the analysis of phytoplankton communities in fresh and sea waters. The measurement of light scatter and autofluorescence properties of particles by FCM provides optical fingerprints, which enables different phytoplankton groups to be separated. A submersible version of the CytoSense flow cytometer (the CytoSub) has been designed for in situ autonomous sampling and analysis, making it possible to monitor phytoplankton at a short temporal scale and obtain accurate information about its dynamics. For data analysis, a manual clustering is usually performed a posteriori: data are displayed on histograms and scatterplots, and group discrimination is made by drawing and combining regions (gating). The purpose of this study is to provide greater objectivity in the data analysis by applying a nonmanual and consistent method to automatically discriminate clusters of particles. In other words, we seek for partitioning methods based on the optical fingerprints of each particle. As the CytoSense is able to record the full pulse shape for each variable, it quickly generates a large and complex dataset to analyze. The shape, length, and area of each curve were chosen as descriptors for the analysis. To test the developed method, numerical experiments were performed on simulated curves. Then, the method was applied and validated on phytoplankton cultures data. Promising results have been obtained with a mixture of various species whose optical fingerprints overlapped considerably and could not be accurately separated using manual gating. Copyright © 2011 International Society for Advancement of Cytometry.
Pulse-shape discrimination scintillators for homeland security applications
NASA Astrophysics Data System (ADS)
Ellis, Mark E.; Duroe, Kirk; Kendall, Paul A.
2016-09-01
An extensive programme of research has been conducted for scintillation liquids and plastics capable of neutron-gamma discrimination for deployment in future passive and active Homeland Security systems to provide protection against radiological and nuclear threats. The more established detection materials such as EJ-301 and EJ-309 are compared with novel materials such as EJ-299-33 and p-terphenyl. This research also explores the benefits that can be gained from improvements in the analogue-to-digital sampling rate and sample bit resolution. Results are presented on the Pulse Shape Discrimination performance of various detector and data acquisition combinations and how optimum configurations from these studies have been developed into field-ready detector arrays. Early results from application-specific experimental configurations of multi-element detector arrays are presented.
Rojas-Hortelano, Eduardo; Concha, Luis; de Lafuente, Victor
2014-10-15
We routinely identify objects with our hands, and the physical attributes of touched objects are often held in short-term memory to aid future decisions. However, the brain structures that selectively process tactile information to encode object shape are not fully identified. In this article we describe the areas within the human cerebral cortex that specialize in encoding, short-term memory, and decision-making related to the shape of objects explored with the hand. We performed event-related functional magnetic resonance imaging in subjects performing a shape discrimination task in which two sequentially presented objects had to be explored to determine whether they had the same shape or not. To control for low-level and nonspecific brain activations, subjects performed a temperature discrimination task in which they compared the temperature of two spheres. Our results show that although a large network of brain structures is engaged in somatosensory processing, it is the areas lining the intraparietal sulcus that selectively participate in encoding, maintaining, and deciding on tactile information related to the shape of objects. Copyright © 2014 the American Physiological Society.
Smid, H G; Jakob, A; Heinze, H J
1999-03-01
What cognitive processes underlie event-related brain potential (ERP) effects related to visual multidimensional selective attention and how are these processes organized? We recorded ERPs when participants attended to one conjunction of color, global shape and local shape and ignored other conjunctions of these attributes in three discriminability conditions. Attending to color and shape produced three ERP effects: frontal selection positivity (FSP), central negativity (N2b), and posterior selection negativity (SN). The results suggested that the processes underlying SN and N2b perform independent within-dimension selections, whereas the process underlying the FSP performs hierarchical between-dimension selections. At posterior electrodes, manipulation of discriminability changed the ERPs to the relevant but not to the irrelevant stimuli, suggesting that the SN does not concern the selection process itself but rather a cognitive process initiated after selection is finished. Other findings suggested that selection of multiple visual attributes occurs in parallel.
Edge, Sara; Newbold, Bruce
2013-02-01
Research and practice increasingly suggests discrimination compromises health. Yet the unique experiences and effects facing immigrant and refugee populations remain poorly understood in Canada and abroad. We review current knowledge on discrimination against newcomers in Canada, emphasizing impacts upon health status and service access to identify gaps and research needs. Existing knowledge centers around experiences within health-care settings, differences in perception and coping, mental health impacts, and debates about "non-discriminatory" health-care. There is need for comparative analyses within and across ethno-cultural groups and newcomer classes to better understand factors shaping how discrimination and its health effects are differentially experienced. Women receive greater attention in the literature given their compounded vulnerability. While this must continue, little is known about the experiences of youth and men. Governance and policy discourse analyses would elucidate how norms, institutions and practices shape discriminatory attitudes and responses. Finally, "non-discriminatory health-care" interventions require critical evaluation to determine their effectiveness.
Gutierrez, Beatriz Lopez; MacLeod, Norman; Edgecombe, Gregory D.
2011-01-01
Abstract To date, the forcipules have played almost no role in determining the systematics of scutigeromorph centipedes though in his 1974 review of taxonomic characters Markus Würmli suggested some potentially informative variation might be found in these structures. Geometric morphometric analyses were used to evaluate Würmli’s suggestion, specifically to determine whether the shape of the forcipular coxa contains information useful for diagnosing species. The geometry of the coxae of eight species from the genera Sphendononema, Scutigera, Dendrothereua, Thereuonema, Thereuopoda, Thereuopodina, Allothereua and Parascutigera was characterised using a combination of landmark- and semi-landmark-based sampling methods to summarize group-specific morphological variation. Canonical variates analysis of shape data characterizing the forcipular coxae indicates that these structures differ significantly between taxa at various systematic levels. Models calculated for the canonical variates space facilitate identification of the main shape differences between genera, including overall length/width, curvature of the external coxal margin, and the extent to which the coxofemoral condyle projects laterally. Jackknifed discriminant function analysis demonstrates that forcipular coxal training-set specimens were assigned to correct species in 61% of cases on average, the most accurate assignments being those of Parascutigera (Parascutigera guttata) and Thereuonema (Thereuonema microstoma). The geographically widespread species Thereuopoda longicornis, Sphendononema guildingii, Scutigera coleoptrata, and Dendrothereua linceci exhibit the least diagnostic coxae in our dataset. Thereuopoda longicornis populations sampled from different parts of East and Southeast Asia were significantly discriminated from each other, suggesting that, in this case, extensive synonymy may be obscuring diagnosable inter-species coxal shape differences. PMID:22303095
Tactile discrimination and representations of texture, shape, and softness
NASA Technical Reports Server (NTRS)
Srinivasan, M. A.; Lamotte, R. H.
1991-01-01
We present here some of the salient results on the tactual discriminabilities of human subjects obtained through psychophysical experiments, and the associated peripheral neural codes obtained through electrophysiological recordings from monkey single nerve fibers. Humans can detect the presence of a 2 micron high single dot on a smooth glass plate stroked on the skin, based on the responses of Meissner type rapidly adapting fibers (RAs). They can also detect a 0.06 micron high grating on the plate, owing to the response of Pacinian corpuscle fibers. Among all the possible representations of the shapes of objects, the surface curvature distribution seems to be the most relevant for tactile sensing. Slowly adapting fibers respond to both the change and rate of change of curvature of the skin surface at the most sensitive spot in their receptive fields, whereas RAs respond only to the rate of change of curvature. Human discriminability of compliance of objects depends on whether the object has a deformable or rigid surface. When the surface is deformable, the spatial pressure distribution within the contact region is dependent on object compliance, and hence information from cutaneous mechanoreceptors is sufficient for discrimination of subtle differences in compliance. When the surface is rigid, kinesthetic information is necessary for discrimination, and the discriminability is much poorer than that for objects with deformable surfaces.
Enhancement of equivalence class formation by pretraining discriminative functions.
Nartey, Richard K; Arntzen, Erik; Fields, Lanny
2015-03-01
The present experiment showed that a simple discriminative function acquired by an abstract stimulus through simultaneous and/or successive discrimination training enhanced the formation of an equivalence class of which that stimulus was a member. College students attempted to form three equivalence classes composed of three nodes and five members (A→B→C→D→E), using the simultaneous protocol. In the PIC group, the C stimuli were pictures and the A, B, D, and E stimuli were abstract shapes. In the ABS group, all of the stimuli were abstract shapes. In the SIM + SUCC (simultaneous and successive) group, simple discriminations were formed with the C stimuli through both simultaneous and successive discrimination training before class formation. Finally, in the SIM-only and SUCC-only groups, prior to class formation, simple discriminations were established for the C stimuli with a simultaneous procedure and a successive procedure, respectively. Equivalence classes were formed by 80% and 70% of the participants in the PIC and SIM + SUCC groups respectively, by 30% in the SUCC-only group, and by 10% apiece in the ABS and SIM-only groups. Thus, pretraining of combined simultaneous and successive discriminations enhanced class formation, as did the inclusion of a meaningful stimulus in a class. The isolated effect of forming successive discriminations was more influential than that of forming simultaneous discriminations. The establishment of both discriminations together produced an enhancement greater than the sum of the two procedures alone. Finally, a sorting test documented the maintenance of the classes formed during the simultaneous protocol. These results also provide a stimulus control-function account of the class-enhancing effects of meaningful stimuli.
Development of a homogeneous pulse shape discriminating flow-cell radiation detection system
NASA Astrophysics Data System (ADS)
Hastie, K. H.; DeVol, T. A.; Fjeld, R. A.
1999-02-01
A homogeneous flow-cell radiation detection system which utilizes coincidence counting and pulse shape discrimination circuitry was assembled and tested with five commercially available liquid scintillation cocktails. Two of the cocktails, Ultima Flo (Packard) and Mono Flow 5 (National Diagnostics) have low viscosities and are intended for flow applications; and three of the cocktails, Optiphase HiSafe 3 (Wallac), Ultima Gold AB (Packard), and Ready Safe (Beckman), have higher viscosities and are intended for static applications. The low viscosity cocktails were modified with 1-methylnaphthalene to increase their capability for alpha/beta pulse shape discrimination. The sample loading and pulse shape discriminator setting were optimized to give the lowest minimum detectable concentration for alpha radiation in a 30 s count time. Of the higher viscosity cocktails, Optiphase HiSafe 3 had the lowest minimum detectable activities for alpha and beta radiation, 0.2 and 0.4 Bq/ml for 233U and 90Sr/ 90Y, respectively, for a 30 s count time. The sample loading was 70% and the corresponding alpha/beta spillover was 5.5%. Of the low viscosity cocktails, Mono Flow 5 modified with 2.5% (by volume) 1-methylnaphthalene resulted in the lowest minimum detectable activities for alpha and beta radiation; 0.3 and 0.5 Bq/ml for 233U and 90Sr/ 90Y, respectively, for a 30 s count time. The sample loading was 50%, and the corresponding alpha/beta spillover was 16.6%. HiSafe 3 at a 10% sample loading was used to evaluate the system under simulated flow conditions.
Mitev, Krasimir K
2016-04-01
This work demonstrates that common plastic scintillators like BC-400, EJ-200 and SCSF-81 absorb radon and their scintillation pulse decay times are different for alpha- and beta-particles. This allows the application of pulse shape analysis for separation of the pulses of alpha- and beta-particles emitted by the absorbed radon and its progeny. It is shown that after pulse shape discrimination of beta-particles' pulses, the energy resolution of BC-400 and EJ-200 alpha spectra is sufficient to separate the peaks of (222)Rn, (218)Po and (214)Po and allows (222)Rn measurements that are unaffected by the presence of thoron ((220)Rn) in the environment. The alpha energy resolution of SCSF-81 in the experiments degrades due to imperfect collection of the light emitted inside the scintillating fibers. The experiments with plastic scintillation microspheres (PSM) confirm previous findings of other researchers that PSM have alpha-/beta-discrimination properties and show suitability for radon measurements. The diffusion length of radon in BC-400 and EJ-200 is determined. The pilot experiments show that the plastic scintillators are suitable for radon-in-soil-gas measurements. Overall, the results of this work suggest that it is possible to develop a new type of radon measurement instruments which employ absorption in plastic scintillators, pulse-shape discrimination and analysis of the alpha spectra. Such instruments can be very compact and can perform continuous, real-time radon measurements and thoron detection. They can find applications in various fields from radiation protection to earth sciences. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sánchez, D; Vandame, R
2012-06-01
To increase our understanding in bee vision ecology, we investigated the color and shape discrimination performance of the stingless bee Scaptotrigona mexicana Guérin. Our main goal was to describe the choice behavior of experienced foragers over time, trying to understand to what extent color and shape stimuli (separately tested) aid them to choose the rewarding option, in the presence of distracting, unrewarding stimuli. Single foragers were trained to collect sucrose solution from a target plate. Afterwards, one distracting, unrewarding plate was placed besides the target plate and eight choices were recorded. Our results showed that both color and shape stimuli assisted efficiently the trained foragers in locating the target plate. However, foragers chose significantly more often the target plate in the color experiments than in the shape experiments. In conclusion, in our experimental setup, color was of better assistance to the foragers of S. mexicana than shape to choose their rewards. This is the first study in which it is demonstrated that the choice performance over time in a stingless bee depends upon the characteristics of the resource, such as shape and color.
2013-01-01
Background Plasma glucose levels are important measures in medical care and research, and are often obtained from oral glucose tolerance tests (OGTT) with repeated measurements over 2–3 hours. It is common practice to use simple summary measures of OGTT curves. However, different OGTT curves can yield similar summary measures, and information of physiological or clinical interest may be lost. Our mean aim was to extract information inherent in the shape of OGTT glucose curves, compare it with the information from simple summary measures, and explore the clinical usefulness of such information. Methods OGTTs with five glucose measurements over two hours were recorded for 974 healthy pregnant women in their first trimester. For each woman, the five measurements were transformed into smooth OGTT glucose curves by functional data analysis (FDA), a collection of statistical methods developed specifically to analyse curve data. The essential modes of temporal variation between OGTT glucose curves were extracted by functional principal component analysis. The resultant functional principal component (FPC) scores were compared with commonly used simple summary measures: fasting and two-hour (2-h) values, area under the curve (AUC) and simple shape index (2-h minus 90-min values, or 90-min minus 60-min values). Clinical usefulness of FDA was explored by regression analyses of glucose tolerance later in pregnancy. Results Over 99% of the variation between individually fitted curves was expressed in the first three FPCs, interpreted physiologically as “general level” (FPC1), “time to peak” (FPC2) and “oscillations” (FPC3). FPC1 scores correlated strongly with AUC (r=0.999), but less with the other simple summary measures (−0.42≤r≤0.79). FPC2 scores gave shape information not captured by simple summary measures (−0.12≤r≤0.40). FPC2 scores, but not FPC1 nor the simple summary measures, discriminated between women who did and did not develop gestational diabetes later in pregnancy. Conclusions FDA of OGTT glucose curves in early pregnancy extracted shape information that was not identified by commonly used simple summary measures. This information discriminated between women with and without gestational diabetes later in pregnancy. PMID:23327294
NASA Astrophysics Data System (ADS)
Slezak, Thomas Joseph; Radebaugh, Jani; Christiansen, Eric
2017-10-01
The shapes of craterform morphology on planetary surfaces provides rich information about their origins and evolution. While morphologic information provides rich visual clues to geologic processes and properties, the ability to quantitatively communicate this information is less easily accomplished. This study examines the morphology of craterforms using the quantitative outline-based shape methods of geometric morphometrics, commonly used in biology and paleontology. We examine and compare landforms on planetary surfaces using shape, a property of morphology that is invariant to translation, rotation, and size. We quantify the shapes of paterae on Io, martian calderas, terrestrial basaltic shield calderas, terrestrial ash-flow calderas, and lunar impact craters using elliptic Fourier analysis (EFA) and the Zahn and Roskies (Z-R) shape function, or tangent angle approach to produce multivariate shape descriptors. These shape descriptors are subjected to multivariate statistical analysis including canonical variate analysis (CVA), a multiple-comparison variant of discriminant analysis, to investigate the link between craterform shape and classification. Paterae on Io are most similar in shape to terrestrial ash-flow calderas and the shapes of terrestrial basaltic shield volcanoes are most similar to martian calderas. The shapes of lunar impact craters, including simple, transitional, and complex morphology, are classified with a 100% rate of success in all models. Multiple CVA models effectively predict and classify different craterforms using shape-based identification and demonstrate significant potential for use in the analysis of planetary surfaces.
Research of Daily Conversation Transmitting System Based on Mouth Part Pattern Recognition
NASA Astrophysics Data System (ADS)
Watanabe, Mutsumi; Nishi, Natsuko
The authors are developing a vision-based intension transfer technique by recognizing user’s face expressions and movements, to help free and convenient communications with aged or disabled persons who find difficulties in talking, discriminating small character prints and operating keyboards by hands and fingers. In this paper we report a prototype system, where layered daily conversations are successively selected by recognizing the transition in shape of user’s mouth parts using camera image sequences settled in front of the user. Four mouth part patterns are used in the system. A method that automatically recognizes these patterns by analyzing the intensity histogram data around the mouth region is newly developed. The confirmation of a selection on the way is executed by detecting the open and shut movements of mouth through the temporal change in intensity histogram data. The method has been installed in a desktop PC by VC++ programs. Experimental results of mouth shape pattern recognition by twenty-five persons have shown the effectiveness of the method.
The impact of photon flight path on S1 pulse shape analysis in liquid xenon two-phase detectors
NASA Astrophysics Data System (ADS)
Moongweluwan, M.
2016-02-01
The LUX dark matter search experiment is a 350 kg dual-phase xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The success of two-phase xenon detectors for dark matter searches relies on their ability to distinguish electron recoil (ER) background events from nuclear recoil (NR) signal events. Typically, the NR-ER discrimination is obtained from the ratio of the electroluminescence light (S2) to the prompt scintillation light (S1). Analysis of the S1 pulse shape is an additional discrimination technique that can be used to distinguish NR from ER. Pulse-shape NR-ER discrimination can be achieved based on the ratio of the de-excitation processes from singlet and triplet states that generate the S1. The NR S1 is dominated by the de-excitation process from singlet states with a time constant of about 3 ns while the ER S1 is dominated by the de-excitation process from triplet states with a time constant of about 24 ns. As the size of the detectors increases, the variation in the S1 photon flight path can become comparable to these decay constants, reducing the utility of pulse-shape analysis to separate NR from ER. The effect of path length variations in the LUX detector has been studied using the results of simulations and the impact on the S1 pulse shape analysis is discussed.
Velocity-image model for online signature verification.
Khan, Mohammad A U; Niazi, Muhammad Khalid Khan; Khan, Muhammad Aurangzeb
2006-11-01
In general, online signature capturing devices provide outputs in the form of shape and velocity signals. In the past, strokes have been extracted while tracking velocity signal minimas. However, the resulting strokes are larger and complicated in shape and thus make the subsequent job of generating a discriminative template difficult. We propose a new stroke-based algorithm that splits velocity signal into various bands. Based on these bands, strokes are extracted which are smaller and more simpler in nature. Training of our proposed system revealed that low- and high-velocity bands of the signal are unstable, whereas the medium-velocity band can be used for discrimination purposes. Euclidean distances of strokes extracted on the basis of medium velocity band are used for verification purpose. The experiments conducted show improvement in discriminative capability of the proposed stroke-based system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joyce, M. J.; Aspinall, M. D.; Cave, F. D.
Pulse-shape discrimination (PSD) in fast, organic scintillation detectors is a long-established technique used to separate neutrons and {gamma} rays in mixed radiation fields. In the analogue domain the method can achieve separation in real time, but all knowledge of the pulses themselves is lost thereby preventing the possibility of any post- or repeated analysis. Also, it is typically reliant on electronic systems that are largely obsolete and which require significant experience to set up. In the digital domain, PSD is often more flexible but significant post-processing has usually been necessary to obtain neutron/{gamma}-ray separation. Moreover, the scintillation media on whichmore » the technique relies usually have a low flash point and are thus deemed hazardous. This complicates the ease with which they are used in industrial applications. In this paper, results obtained with a new portable digital pulse-shape discrimination instrument are described. This instrument provides real-time, digital neutron/{gamma} separation whilst preserving the synchronization with the time-of-arrival for each event, and realizing throughputs of 3 x 10{sup 6} events per second. Furthermore, this system has been tested with a scintillation medium that is non-flammable and not hazardous. (authors)« less
Performance of a neutron spectrometer based on a PIN diode.
Agosteo, S; D'Angelo, G; Fazzi, A; Para, A Foglio; Pola, A; Ventura, L; Zotto, P
2005-01-01
The neutron spectrometer discussed in this work consists of a PIN diode coupled with a polyethylene converter. Neutrons are detected through the energy deposited by recoil-protons in silicon. The maximum detectable energy is -6 MeV and is imposed by the thickness of the fully depleted layer (300 microm for the present device). The minimum detectable energy which can be assessed with pulse-shape discrimination (PSD) is -0.9 MeV. PSD is performed with a crossover method and setting the diode in the 'reverse-injection' configuration (i.e. with the N+ layer adjacent to the converter). This configuration provides longer collection times for the electron-hole pairs generated by the recoil-protons. The limited interval of detectable energies restricts the application of this spectrometer to low-energy neutron fields, such as the ones which can be produced at facilities hosting low-energy ion accelerators. The capacity to reproduce continuous neutron spectra was investigated by optimising the electronic chain for pulse-shape discrimination. In particular, the spectrometer was irradiated with neutrons that were generated by striking a thick beryllium target with protons of several energies and the measured spectra were compared with data taken from the literature.
Discriminative Features Mining for Offline Handwritten Signature Verification
NASA Astrophysics Data System (ADS)
Neamah, Karrar; Mohamad, Dzulkifli; Saba, Tanzila; Rehman, Amjad
2014-03-01
Signature verification is an active research area in the field of pattern recognition. It is employed to identify the particular person with the help of his/her signature's characteristics such as pen pressure, loops shape, speed of writing and up down motion of pen, writing speed, pen pressure, shape of loops, etc. in order to identify that person. However, in the entire process, features extraction and selection stage is of prime importance. Since several signatures have similar strokes, characteristics and sizes. Accordingly, this paper presents combination of orientation of the skeleton and gravity centre point to extract accurate pattern features of signature data in offline signature verification system. Promising results have proved the success of the integration of the two methods.
Sheets, H David; Covino, Kristen M; Panasiewicz, Joanna M; Morris, Sara R
2006-01-01
Background Geometric morphometric methods of capturing information about curves or outlines of organismal structures may be used in conjunction with canonical variates analysis (CVA) to assign specimens to groups or populations based on their shapes. This methodological paper examines approaches to optimizing the classification of specimens based on their outlines. This study examines the performance of four approaches to the mathematical representation of outlines and two different approaches to curve measurement as applied to a collection of feather outlines. A new approach to the dimension reduction necessary to carry out a CVA on this type of outline data with modest sample sizes is also presented, and its performance is compared to two other approaches to dimension reduction. Results Two semi-landmark-based methods, bending energy alignment and perpendicular projection, are shown to produce roughly equal rates of classification, as do elliptical Fourier methods and the extended eigenshape method of outline measurement. Rates of classification were not highly dependent on the number of points used to represent a curve or the manner in which those points were acquired. The new approach to dimensionality reduction, which utilizes a variable number of principal component (PC) axes, produced higher cross-validation assignment rates than either the standard approach of using a fixed number of PC axes or a partial least squares method. Conclusion Classification of specimens based on feather shape was not highly dependent of the details of the method used to capture shape information. The choice of dimensionality reduction approach was more of a factor, and the cross validation rate of assignment may be optimized using the variable number of PC axes method presented herein. PMID:16978414
Figure-ground discrimination in the avian brain: the nucleus rotundus and its inhibitory complex.
Acerbo, Martin J; Lazareva, Olga F; McInnerney, John; Leiker, Emily; Wasserman, Edward A; Poremba, Amy
2012-10-01
In primates, neurons sensitive to figure-ground status are located in striate cortex (area V1) and extrastriate cortex (area V2). Although much is known about the anatomical structure and connectivity of the avian visual pathway, the functional organization of the avian brain remains largely unexplored. To pinpoint the areas associated with figure-ground segregation in the avian brain, we used a radioactively labeled glucose analog to compare differences in glucose uptake after figure-ground, color, and shape discriminations. We also included a control group that received food on a variable-interval schedule, but was not required to learn a visual discrimination. Although the discrimination task depended on group assignment, the stimulus displays were identical for all three experimental groups, ensuring that all animals were exposed to the same visual input. Our analysis concentrated on the primary thalamic nucleus associated with visual processing, the nucleus rotundus (Rt), and two nuclei providing regulatory feedback, the pretectum (PT) and the nucleus subpretectalis/interstitio-pretecto-subpretectalis complex (SP/IPS). We found that figure-ground discrimination was associated with strong and nonlateralized activity of Rt and SP/IPS, whereas color discrimination produced strong and lateralized activation in Rt alone. Shape discrimination was associated with lower activity of Rt than in the control group. Taken together, our results suggest that figure-ground discrimination is associated with Rt and that SP/IPS may be a main source of inhibitory control. Thus, figure-ground segregation in the avian brain may occur earlier than in the primate brain. Copyright © 2012 Elsevier Ltd. All rights reserved.
Figure-ground discrimination in the avian brain: The nucleus rotundus and its inhibitory complex
Acerbo, Martin J.; Lazareva, Olga F.; McInnerney, John; Leiker, Emily; Wasserman, Edward A.; Poremba, Amy
2012-01-01
In primates, neurons sensitive to figure-ground status are located in striate cortex (area V1) and extrastriate cortex (area V2). Although much is known about the anatomical structure and connectivity of the avian visual pathway, the functional organization of the avian brain remains largely unexplored. To pinpoint the areas associated with figure-ground segregation in the avian brain, we used a radioactively labeled glucose analog to compare differences in glucose uptake after figure-ground, color, and shape discriminations. We also included a control group that received food on a variable-interval schedule, but was not required to learn a visual discrimination. Although the discrimination task depended on group assignment, the stimulus displays were identical for all three experimental groups, ensuring that all animals were exposed to the same visual input. Our analysis concentrated on the primary thalamic nucleus associated with visual processing, the nucleus rotundus (Rt), and two nuclei providing regulatory feedback, the pretectum (PT) and the nucleus subpretectalis/interstitio-pretecto-subpretectalis complex (SP/IPS). We found that figure-ground discrimination was associated with strong and nonlateralized activity of Rt and SP/IPS, whereas color discrimination produced strong and lateralized activation in Rt alone. Shape discrimination was associated with lower activity of Rt than in the control group. Taken together, our results suggest that figure-ground discrimination is associated with Rt and that SP/IPS may be a main source of inhibitory control. Thus, figure-ground segregation in the avian brain may occur earlier than in the primate brain. PMID:22917681
Wheeler, Rebecca M; Foster, Jennifer W; Hepburn, Kenneth W
2014-02-01
To document experiences of nurses educated abroad and in the USA in 2 urban hospitals in the southeastern USA. Nurses are responsible for providing quality patient care. Discrimination against nurses in the workplace may create hostile environments, potentially affecting patient care and leading to higher nurse attrition rates. Structuration theory posits that agents' interactions create structures. Agents' use of resources and rules shapes interactions, potentially changing the structures. In this study, nurses described interactions with patients and their families and other healthcare personnel, their strategies for managing interactions and rationales behind their selected strategy. This study employed a qualitative, explorative approach using structuration theory. In 2011, 42 internationally educated and 40 USA-educated nurses practising in two urban hospitals in the southeastern USA were interviewed about their experiences in the workplace. Forty-one nurses were re-interviewed to explore the issues raised in the preliminary round: 21 internationally educated and 20 USA. Transcripts were analysed using the constant comparative method. Although internationally educated nurses experienced more explicit discrimination, all nurses experienced discrimination from their patients, their nurse colleagues and/or other hospital personnel. Internationally educated nurses and USA nurses shared similar coping strategies. The prevalence of nurses' experiences of discrimination suggests that healthcare institutions need to strengthen policies to effectively address this harmful practice. More research is needed about discrimination against nurses in the workplace because discrimination may have serious psychological effects that impact nurse retention and the quality of patient care. © 2013 John Wiley & Sons Ltd.
Grain shape of basaltic ash populations: implications for fragmentation
NASA Astrophysics Data System (ADS)
Schmith, Johanne; Höskuldsson, Ármann; Holm, Paul Martin
2017-02-01
Here, we introduce a new quantitative method to produce grain shape data of bulk samples of volcanic ash, and we correlate the bulk average grain shape with magma fragmentation mechanisms. The method is based on automatic shape analysis of 2D projection ash grains in the size range 125-63 μm. Loose bulk samples from the deposits of six different basaltic eruptions were analyzed, and 20,000 shape measurements for each were obtained within 45 min using the Particle Insight™ dynamic shape analyzer (PIdsa). We used principal component analysis on a reference grain dataset to show that circularity, rectangularity, form factor, and elongation best discriminate between the grain shapes when combined. The grain population data show that the studied eruptive environments produce nearly the same range of grain shapes, although to different extents. Our new shape index (the regularity index (RI)) places an eruption on a spectrum between phreatomagmatic and dry magmatic fragmentation. Almost vesicle-free Surtseyan ash has an RI of 0.207 ± 0.002 (2σ), whereas vesiculated Hawaiian ash has an RI of 0.134 ± 0.001 (2σ). These two samples define the end-member RI, while two subglacial, one lacustrine, and another submarine ash sample show intermediate RIs of 0.168 ± 0.002 (2σ), 0.175 ± 0.002 (2σ), 0.187 ± 0.002 (2σ), and 0.191 ± 0.002 (2σ), respectively. The systematic change in RI between wet and dry eruptions suggests that the RI can be used to assess the relative roles of magmatic vs. phreatomagmatic fragmentation. We infer that both magmatic and phreatomagmatic fragmentation processes played a role in the subglacial eruptions.
Anthropometric discriminators of type 2 diabetes among White and Black American adults
Hardy, Dale S.; Stallings, Devita T.; Garvin, Jane T.; Gachupin, Francine C.; Xu, Hongyan; Racette, Susan B.
2016-01-01
Background The aim of the present study was to determine the best anthropometric discriminators of type 2 diabetes mellitus (T2DM) among White and Black males and females in a large US sample. Methods We used Atherosclerosis Risk in Communities study baseline data (1987–89) from 15 242 participants (1827 with T2DM) aged 45–65 years. Anthropometric measures included a body shape index (ABSI), body adiposity index (BAI), body mass index, waist circumference (WC), waist:height ratio (WHtR), and waist:hip ratio (WHR). All anthropometric measures were standardized to Z-scores. Using logistic regression, odds ratios for T2DM were adjusted for age, physical activity, and family history of T2DM. The Akaike information criterion and receiver operating characteristic C-statistic were used to select the best-fit models. Results Body mass index, WC, WHtR, and WHR were comparable discriminators of T2DM among White and Black males, and were superior to ABSI and BAI in predicting T2DM (P < 0.0001). Waist circumference, WHtR, and WHR were the best discriminators among White females, whereas WHR was the best discriminator among Black females. The ABSI was the poorest discriminator of T2DM for all race–gender groups except Black females. Anthropometric values distinguishing T2DM cases from non-cases were lower for Black than White adults. Conclusions Anthropometric measures that included WC, either alone or relative to height (WHtR) or hip circumference (WHR), were the strongest discriminators of T2DM across race–gender groups. Body mass index was a comparable discriminator to WC, WHtR, and WHR among males, but not females. PMID:27106521
Davis, Catherine M; Roma, Peter G; Armour, Elwood; Gooden, Virginia L; Brady, Joseph V; Weed, Michael R; Hienz, Robert D
2014-01-01
The present report describes an animal model for examining the effects of radiation on a range of neurocognitive functions in rodents that are similar to a number of basic human cognitive functions. Fourteen male Long-Evans rats were trained to perform an automated intra-dimensional set shifting task that consisted of their learning a basic discrimination between two stimulus shapes followed by more complex discrimination stages (e.g., a discrimination reversal, a compound discrimination, a compound reversal, a new shape discrimination, and an intra-dimensional stimulus discrimination reversal). One group of rats was exposed to head-only X-ray radiation (2.3 Gy at a dose rate of 1.9 Gy/min), while a second group received a sham-radiation exposure using the same anesthesia protocol. The irradiated group responded less, had elevated numbers of omitted trials, increased errors, and greater response latencies compared to the sham-irradiated control group. Additionally, social odor recognition memory was tested after radiation exposure by assessing the degree to which rats explored wooden beads impregnated with either their own odors or with the odors of novel, unfamiliar rats; however, no significant effects of radiation on social odor recognition memory were observed. These data suggest that rodent tasks assessing higher-level human cognitive domains are useful in examining the effects of radiation on the CNS, and may be applicable in approximating CNS risks from radiation exposure in clinical populations receiving whole brain irradiation.
Davis, Catherine M.; Roma, Peter G.; Armour, Elwood; Gooden, Virginia L.; Brady, Joseph V.; Weed, Michael R.; Hienz, Robert D.
2014-01-01
The present report describes an animal model for examining the effects of radiation on a range of neurocognitive functions in rodents that are similar to a number of basic human cognitive functions. Fourteen male Long-Evans rats were trained to perform an automated intra-dimensional set shifting task that consisted of their learning a basic discrimination between two stimulus shapes followed by more complex discrimination stages (e.g., a discrimination reversal, a compound discrimination, a compound reversal, a new shape discrimination, and an intra-dimensional stimulus discrimination reversal). One group of rats was exposed to head-only X-ray radiation (2.3 Gy at a dose rate of 1.9 Gy/min), while a second group received a sham-radiation exposure using the same anesthesia protocol. The irradiated group responded less, had elevated numbers of omitted trials, increased errors, and greater response latencies compared to the sham-irradiated control group. Additionally, social odor recognition memory was tested after radiation exposure by assessing the degree to which rats explored wooden beads impregnated with either their own odors or with the odors of novel, unfamiliar rats; however, no significant effects of radiation on social odor recognition memory were observed. These data suggest that rodent tasks assessing higher-level human cognitive domains are useful in examining the effects of radiation on the CNS, and may be applicable in approximating CNS risks from radiation exposure in clinical populations receiving whole brain irradiation. PMID:25099152
NASA Astrophysics Data System (ADS)
El-Saba, Aed; Sakla, Wesam A.
2010-04-01
Recently, the use of imaging polarimetry has received considerable attention for use in automatic target recognition (ATR) applications. In military remote sensing applications, there is a great demand for sensors that are capable of discriminating between real targets and decoys. Accurate discrimination of decoys from real targets is a challenging task and often requires the fusion of various sensor modalities that operate simultaneously. In this paper, we use a simple linear fusion technique known as the high-boost fusion method for effective discrimination of real targets in the presence of multiple decoys. The HBF assigns more weight to the polarization-based imagery in forming the final fused image that is used for detection. We have captured both intensity and polarization-based imagery from an experimental laboratory arrangement containing a mixture of sand/dirt, rocks, vegetation, and other objects for the purpose of simulating scenery that would be acquired in a remote sensing military application. A target object and three decoys that are identical in physical appearance (shape, surface structure and color) and different in material composition have also been placed in the scene. We use the wavelet-filter joint transform correlation (WFJTC) technique to perform detection between input scenery and the target object. Our results show that use of the HBF method increases the correlation performance metrics associated with the WFJTC-based detection process when compared to using either the traditional intensity or polarization-based images.
Gap Shape Classification using Landscape Indices and Multivariate Statistics
Wu, Chih-Da; Cheng, Chi-Chuan; Chang, Che-Chang; Lin, Chinsu; Chang, Kun-Cheng; Chuang, Yung-Chung
2016-01-01
This study proposed a novel methodology to classify the shape of gaps using landscape indices and multivariate statistics. Patch-level indices were used to collect the qualified shape and spatial configuration characteristics for canopy gaps in the Lienhuachih Experimental Forest in Taiwan in 1998 and 2002. Non-hierarchical cluster analysis was used to assess the optimal number of gap clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy gap classification. The gaps for the two periods were optimally classified into three categories. In general, gap type 1 had a more complex shape, gap type 2 was more elongated and gap type 3 had the largest gaps that were more regular in shape. The results were evaluated using Wilks’ lambda as satisfactory (p < 0.001). The agreement rate of confusion matrices exceeded 96%. Differences in gap characteristics between the classified gap types that were determined using a one-way ANOVA showed a statistical significance in all patch indices (p = 0.00), except for the Euclidean nearest neighbor distance (ENN) in 2002. Taken together, these results demonstrated the feasibility and applicability of the proposed methodology to classify the shape of a gap. PMID:27901127
Gap Shape Classification using Landscape Indices and Multivariate Statistics.
Wu, Chih-Da; Cheng, Chi-Chuan; Chang, Che-Chang; Lin, Chinsu; Chang, Kun-Cheng; Chuang, Yung-Chung
2016-11-30
This study proposed a novel methodology to classify the shape of gaps using landscape indices and multivariate statistics. Patch-level indices were used to collect the qualified shape and spatial configuration characteristics for canopy gaps in the Lienhuachih Experimental Forest in Taiwan in 1998 and 2002. Non-hierarchical cluster analysis was used to assess the optimal number of gap clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy gap classification. The gaps for the two periods were optimally classified into three categories. In general, gap type 1 had a more complex shape, gap type 2 was more elongated and gap type 3 had the largest gaps that were more regular in shape. The results were evaluated using Wilks' lambda as satisfactory (p < 0.001). The agreement rate of confusion matrices exceeded 96%. Differences in gap characteristics between the classified gap types that were determined using a one-way ANOVA showed a statistical significance in all patch indices (p = 0.00), except for the Euclidean nearest neighbor distance (ENN) in 2002. Taken together, these results demonstrated the feasibility and applicability of the proposed methodology to classify the shape of a gap.
Keane, Brian P.; Lu, Hongjing; Papathomas, Thomas V.; Silverstein, Steven M.; Kellman, Philip J.
2012-01-01
Contour interpolation is a perceptual process that fills-in missing edges on the basis of how surrounding edges (inducers) are spatiotemporally related. Cognitive encapsulation refers to the degree to which perceptual mechanisms act in isolation from beliefs, expectations, and utilities (Pylyshyn, 1999). Is interpolation encapsulated from belief? We addressed this question by having subjects discriminate briefly-presented, partially-visible fat and thin shapes, the edges of which either induced or did not induce illusory contours (relatable and non-relatable conditions, respectively). Half the trials in each condition incorporated task-irrelevant distractor lines, known to disrupt the filling-in of contours. Half of the observers were told that the visible parts of the shape belonged to a single thing (group strategy); the other half were told that the visible parts were disconnected (ungroup strategy). It was found that distractor lines strongly impaired performance in the relatable condition, but minimally in the non-relatable condition; that strategy did not alter the effects of the distractor lines for either the relatable or non-relatable stimuli; and that cognitively grouping relatable fragments improved performance whereas cognitively grouping non-relatable fragments did not. These results suggest that 1) filling-in effects during illusory contour formation cannot be easily removed via strategy; 2) filling-in effects cannot be easily manufactured from stimuli that fail to elicit interpolation; and 3) actively grouping fragments can readily improve discrimination performance, but only when those fragments form interpolated contours. Taken together, these findings indicate that discriminating filled-in shapes depends on strategy but filling-in itself may be encapsulated from belief. PMID:22440789
Liu, Yu-Ying; Chen, Mei; Wollstein, Gadi; Duker, Jay S.; Fujimoto, James G.; Schuman, Joel S.; Rehg, James M.
2011-01-01
Purpose. To develop an automated method to identify the normal macula and three macular pathologies (macular hole [MH], macular edema [ME], and age-related macular degeneration [AMD]) from the fovea-centered cross sections in three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) images. Methods. A sample of SD-OCT macular scans (macular cube 200 × 200 or 512 × 128 scan protocol; Cirrus HD-OCT; Carl Zeiss Meditec, Inc., Dublin, CA) was obtained from healthy subjects and subjects with MH, ME, and/or AMD (dataset for development: 326 scans from 136 subjects [193 eyes], and dataset for testing: 131 scans from 37 subjects [58 eyes]). A fovea-centered cross-sectional slice for each of the SD-OCT images was encoded using spatially distributed multiscale texture and shape features. Three ophthalmologists labeled each fovea-centered slice independently, and the majority opinion for each pathology was used as the ground truth. Machine learning algorithms were used to identify the discriminative features automatically. Two-class support vector machine classifiers were trained to identify the presence of normal macula and each of the three pathologies separately. The area under the receiver operating characteristic curve (AUC) was calculated to assess the performance. Results. The cross-validation AUC result on the development dataset was 0.976, 0.931, 0939, and 0.938, and the AUC result on the holdout testing set was 0.978, 0.969, 0.941, and 0.975, for identifying normal macula, MH, ME, and AMD, respectively. Conclusions. The proposed automated data-driven method successfully identified various macular pathologies (all AUC > 0.94). This method may effectively identify the discriminative features without relying on a potentially error-prone segmentation module. PMID:21911579
Won, Jong Ho; Jones, Gary L; Drennan, Ward R; Jameyson, Elyse M; Rubinstein, Jay T
2011-10-01
Spectral-ripple discrimination has been used widely for psychoacoustical studies in normal-hearing, hearing-impaired, and cochlear implant listeners. The present study investigated the perceptual mechanism for spectral-ripple discrimination in cochlear implant listeners. The main goal of this study was to determine whether cochlear implant listeners use a local intensity cue or global spectral shape for spectral-ripple discrimination. The effect of electrode separation on spectral-ripple discrimination was also evaluated. Results showed that it is highly unlikely that cochlear implant listeners depend on a local intensity cue for spectral-ripple discrimination. A phenomenological model of spectral-ripple discrimination, as an "ideal observer," showed that a perceptual mechanism based on discrimination of a single intensity difference cannot account for performance of cochlear implant listeners. Spectral modulation depth and electrode separation were found to significantly affect spectral-ripple discrimination. The evidence supports the hypothesis that spectral-ripple discrimination involves integrating information from multiple channels. © 2011 Acoustical Society of America
Ho Won, Jong; Jones, Gary L.; Drennan, Ward R.; Jameyson, Elyse M.; Rubinstein, Jay T.
2011-01-01
Spectral-ripple discrimination has been used widely for psychoacoustical studies in normal-hearing, hearing-impaired, and cochlear implant listeners. The present study investigated the perceptual mechanism for spectral-ripple discrimination in cochlear implant listeners. The main goal of this study was to determine whether cochlear implant listeners use a local intensity cue or global spectral shape for spectral-ripple discrimination. The effect of electrode separation on spectral-ripple discrimination was also evaluated. Results showed that it is highly unlikely that cochlear implant listeners depend on a local intensity cue for spectral-ripple discrimination. A phenomenological model of spectral-ripple discrimination, as an “ideal observer,” showed that a perceptual mechanism based on discrimination of a single intensity difference cannot account for performance of cochlear implant listeners. Spectral modulation depth and electrode separation were found to significantly affect spectral-ripple discrimination. The evidence supports the hypothesis that spectral-ripple discrimination involves integrating information from multiple channels. PMID:21973363
Optical Implementation Of The Synthetic Discrimination Function
NASA Astrophysics Data System (ADS)
Butler, Steve; Riggins, James
1985-01-01
Computer-generated holograms of geometrical shape and synthetic discriminant function (SDF) matched filters are modeled and produced. The models include ideal correlations and Allebach-Keegan binary holograms. A distinction between Phase-Only-Information and Phase-Only-Material Filters is demonstrated. Signal-to-noise and efficiency measurements were made on the resultant correlation planes.
Item Information and Discrimination Functions for Trinary PCM Items.
ERIC Educational Resources Information Center
Akkermans, Wies; Muraki, Eiji
1997-01-01
For trinary partial credit items, the shape of the item information and item discrimination functions is examined in relation to the item parameters. Conditions under which these functions are unimodal and bimodal are discussed, and the locations and values of maxima are derived. Practical relevance of the results is discussed. (SLD)
Formant discrimination in noise for isolated vowels
NASA Astrophysics Data System (ADS)
Liu, Chang; Kewley-Port, Diane
2004-11-01
Formant discrimination for isolated vowels presented in noise was investigated for normal-hearing listeners. Discrimination thresholds for F1 and F2, for the seven American English vowels /eye, smcapi, eh, æ, invv, aye, you/, were measured under two types of noise, long-term speech-shaped noise (LTSS) and multitalker babble, and also under quiet listening conditions. Signal-to-noise ratios (SNR) varied from -4 to +4 dB in steps of 2 dB. All three factors, formant frequency, signal-to-noise ratio, and noise type, had significant effects on vowel formant discrimination. Significant interactions among the three factors showed that threshold-frequency functions depended on SNR and noise type. The thresholds at the lowest levels of SNR were highly elevated by a factor of about 3 compared to those in quiet. The masking functions (threshold vs SNR) were well described by a negative exponential over F1 and F2 for both LTSS and babble noise. Speech-shaped noise was a slightly more effective masker than multitalker babble, presumably reflecting small benefits (1.5 dB) due to the temporal variation of the babble. .
NASA Astrophysics Data System (ADS)
Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji
2017-01-01
A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining.
Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji
2017-01-06
A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining.
Optimisation of nasal swab analysis by liquid scintillation counting.
Dai, Xiongxin; Liblong, Aaron; Kramer-Tremblay, Sheila; Priest, Nicholas; Li, Chunsheng
2012-06-01
When responding to an emergency radiological incident, rapid methods are needed to provide the physicians and radiation protection personnel with an early estimation of possible internal dose resulting from the inhalation of radionuclides. This information is needed so that appropriate medical treatment and radiological protection control procedures can be implemented. Nasal swab analysis, which employs swabs swiped inside a nostril followed by liquid scintillation counting of alpha and beta activity on the swab, could provide valuable information to quickly identify contamination of the affected population. In this study, various parameters (such as alpha/beta discrimination, swab materials, counting time and volume of scintillation cocktail etc) were evaluated in order to optimise the effectiveness of the nasal swab analysis method. An improved nasal swab procedure was developed by replacing cotton swabs with polyurethane-tipped swabs. Liquid scintillation counting was performed using a Hidex 300SL counter with alpha/beta pulse shape discrimination capability. Results show that the new method is more reliable than existing methods using cotton swabs and effectively meets the analysis requirements for screening personnel in an emergency situation. This swab analysis procedure is also applicable to wipe tests of surface contamination to minimise the source self-absorption effect on liquid scintillation counting.
Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji
2017-01-01
A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining. PMID:28059147
A shape-based account for holistic face processing.
Zhao, Mintao; Bülthoff, Heinrich H; Bülthoff, Isabelle
2016-04-01
Faces are processed holistically, so selective attention to 1 face part without any influence of the others often fails. In this study, 3 experiments investigated what type of facial information (shape or surface) underlies holistic face processing and whether generalization of holistic processing to nonexperienced faces requires extensive discrimination experience. Results show that facial shape information alone is sufficient to elicit the composite face effect (CFE), 1 of the most convincing demonstrations of holistic processing, whereas facial surface information is unnecessary (Experiment 1). The CFE is eliminated when faces differ only in surface but not shape information, suggesting that variation of facial shape information is necessary to observe holistic face processing (Experiment 2). Removing 3-dimensional (3D) facial shape information also eliminates the CFE, indicating the necessity of 3D shape information for holistic face processing (Experiment 3). Moreover, participants show similar holistic processing for faces with and without extensive discrimination experience (i.e., own- and other-race faces), suggesting that generalization of holistic processing to nonexperienced faces requires facial shape information, but does not necessarily require further individuation experience. These results provide compelling evidence that facial shape information underlies holistic face processing. This shape-based account not only offers a consistent explanation for previous studies of holistic face processing, but also suggests a new ground-in addition to expertise-for the generalization of holistic processing to different types of faces and to nonface objects. (c) 2016 APA, all rights reserved).
Berg, Eric; Roncali, Emilie; Kapusta, Maciej; Du, Junwei; Cherry, Simon R.
2016-01-01
Purpose: In support of a project to build a total-body PET scanner with an axial field-of-view of 2 m, the authors are developing simple, cost-effective block detectors with combined time-of-flight (TOF) and depth-of-interaction (DOI) capabilities. Methods: This work focuses on investigating the potential of phosphor-coated crystals with conventional PMT-based block detector readout to provide DOI information while preserving timing resolution. The authors explored a variety of phosphor-coating configurations with single crystals and crystal arrays. Several pulse shape discrimination techniques were investigated, including decay time, delayed charge integration (DCI), and average signal shapes. Results: Pulse shape discrimination based on DCI provided the lowest DOI positioning error: 2 mm DOI positioning error was obtained with single phosphor-coated crystals while 3–3.5 mm DOI error was measured with the block detector module. Minimal timing resolution degradation was observed with single phosphor-coated crystals compared to uncoated crystals, and a timing resolution of 442 ps was obtained with phosphor-coated crystals in the block detector compared to 404 ps without phosphor coating. Flood maps showed a slight degradation in crystal resolvability with phosphor-coated crystals; however, all crystals could be resolved. Energy resolution was degraded by 3%–7% with phosphor-coated crystals compared to uncoated crystals. Conclusions: These results demonstrate the feasibility of obtaining TOF–DOI capabilities with simple block detector readout using phosphor-coated crystals. PMID:26843254
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Eric, E-mail: eberg@ucdavis.edu; Roncali, Emilie; Du, Junwei
Purpose: In support of a project to build a total-body PET scanner with an axial field-of-view of 2 m, the authors are developing simple, cost-effective block detectors with combined time-of-flight (TOF) and depth-of-interaction (DOI) capabilities. Methods: This work focuses on investigating the potential of phosphor-coated crystals with conventional PMT-based block detector readout to provide DOI information while preserving timing resolution. The authors explored a variety of phosphor-coating configurations with single crystals and crystal arrays. Several pulse shape discrimination techniques were investigated, including decay time, delayed charge integration (DCI), and average signal shapes. Results: Pulse shape discrimination based on DCI providedmore » the lowest DOI positioning error: 2 mm DOI positioning error was obtained with single phosphor-coated crystals while 3–3.5 mm DOI error was measured with the block detector module. Minimal timing resolution degradation was observed with single phosphor-coated crystals compared to uncoated crystals, and a timing resolution of 442 ps was obtained with phosphor-coated crystals in the block detector compared to 404 ps without phosphor coating. Flood maps showed a slight degradation in crystal resolvability with phosphor-coated crystals; however, all crystals could be resolved. Energy resolution was degraded by 3%–7% with phosphor-coated crystals compared to uncoated crystals. Conclusions: These results demonstrate the feasibility of obtaining TOF–DOI capabilities with simple block detector readout using phosphor-coated crystals.« less
Category learning increases discriminability of relevant object dimensions in visual cortex.
Folstein, Jonathan R; Palmeri, Thomas J; Gauthier, Isabel
2013-04-01
Learning to categorize objects can transform how they are perceived, causing relevant perceptual dimensions predictive of object category to become enhanced. For example, an expert mycologist might become attuned to species-specific patterns of spacing between mushroom gills but learn to ignore cap textures attributable to varying environmental conditions. These selective changes in perception can persist beyond the act of categorizing objects and influence our ability to discriminate between them. Using functional magnetic resonance imaging adaptation, we demonstrate that such category-specific perceptual enhancements are associated with changes in the neural discriminability of object representations in visual cortex. Regions within the anterior fusiform gyrus became more sensitive to small variations in shape that were relevant during prior category learning. In addition, extrastriate occipital areas showed heightened sensitivity to small variations in shape that spanned the category boundary. Visual representations in cortex, just like our perception, are sensitive to an object's history of categorization.
High-symmetry organic scintillator systems
Feng, Patrick L.
2018-02-06
An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.
High-symmetry organic scintillator systems
Feng, Patrick L.
2017-07-18
An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.
High-symmetry organic scintillator systems
Feng, Patrick L.
2017-06-14
An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.
High-symmetry organic scintillator systems
Feng, Patrick L.
2017-09-05
An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lintereur, Azaree T.; Ely, James H.; Stave, Jean A.
The goal of this was research effort was to test the ability of two poly vinyltoluene research samples to produce recordable, distinguishable signals in response to gamma rays and neutrons. Pulse shape discrimination was performed to identify if the signal was generated by a gamma ray or a neutron. A standard figure of merit for pulse shape discrimination was used to quantify the gamma-neutron pulse separation. Measurements were made with gamma and neutron sources with and without shielding. The best figure of merit obtained was 1.77; this figure of merit was achieved with the first sample in response to anmore » un-moderated 252Cf source shielded with 5.08 cm of lead.« less
(6)Li-loaded liquid scintillators with pulse shape discrimination.
Greenwood, L R; Chellew, N R; Zarwell, G A
1979-04-01
Excellent pulse height and pulse shape discrimination performance has been obtained for liquid scintillators containing as much as 10 wt.% (6)Li-salicylate dissolved in a toluene-methanol solvent system using naphthalene and 9,10 diphenylanthracene as intermediate and secondary solutes. This solution has improved performance at higher (6)Li-loading than solutions in dioxane-water solvent systems, and remains stable at temperatures as low as -10 degrees C. Cells as large as 5 cm in diameter and 15.2 deep have been prepared which have a higher light output for slow neutron detection than (10)B-loaded liquids. Neutron efficiency calculations are also presented.
High-symmetry organic scintillator systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Patrick L.
An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based onmore » the pulse shapes of the output signals.« less
Pulse Shape Discrimination in the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Haufe, Christopher; Majorana Collaboration
2017-09-01
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decays in germanium-76 and to demonstrate the feasibility to deploy a large-scale experiment in a phased and modular fashion. It consists of two modular arrays of natural and 76Ge-enriched germanium p-type point contact detectors totaling 44.1 kg, located at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. A large effort is underway to analyze the data currently being taken by the DEMONSTRATOR. Key components of this effort are analysis tools that allow for pulse shape discrimination-techniques that significantly reduce background levels in the neutrinoless double-beta decay region of interest. These tools are able to identify and reject multi-site events from Compton scattering as well as events from alpha particle interactions. This work serves as an overview for these analysis tools and highlights the unique advantages that the HPGe p-type point contact detector provides to pulse shape discrimination. This material is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.
The role of vision on hand preshaping during reach to grasp.
Winges, Sara A; Weber, Douglas J; Santello, Marco
2003-10-01
During reaching to grasp objects with different shapes hand posture is molded gradually to the object's contours. The present study examined the extent to which the temporal evolution of hand posture depends on continuous visual feedback. We asked subjects to reach and grasp objects with different shapes under five vision conditions (VCs). Subjects wore liquid crystal spectacles that occluded vision at four different latencies from onset of the reach. As a control, full-vision trials (VC5) were interspersed among the blocked vision trials. Object shapes and all VCs were presented to the subjects in random order. Hand posture was measured by 15 sensors embedded in a glove. Linear regression analysis, discriminant analysis, and information theory were used to assess the effect of removing vision on the temporal evolution of hand shape. We found that reach duration increased when vision was occluded early in the reach. This was caused primarily by a slower approach of the hand toward the object near the end of the reach. However, vision condition did not have a significant effect on the covariation patterns of joint rotations, indicating that the gradual evolution of hand posture occurs in a similar fashion regardless of vision. Discriminant analysis further supported this interpretation, as the extent to which hand posture resembled object shape and the rate at which hand posture discrimination occurred throughout the movement were similar across vision conditions. These results extend previous observations on memory-guided reaches by showing that continuous visual feedback of the hand and/or object is not necessary to allow the hand to gradually conform to object contours.
Kwan, Mun Yee; Gordon, Kathryn H; Minnich, Allison M
2018-01-01
Empirical evidence suggests the importance of considering acculturative stress and perceived discrimination in understanding the mental health of ethnic minority groups, including their eating behaviors and associated psychopathology. The current study examined the effect of acculturative stress and perceived discrimination on eating disorder symptoms among ethnic minority undergraduate students. A total of 187 ethnic minority undergraduate students (41.2% men) completed this cross-sectional study by completing self-report questionnaires on a secure online system. Regression analyses revealed a main effect of acculturative stress on eating concern, shape concern, weight concern, drive for thinness, and bulimia but not restraint or body dissatisfaction. Gender moderated the effect of acculturative stress on drive for muscularity, suggesting that this effect was only significant in women, but not men. The main effect of perceived discrimination was significant for restraint, eating concern, shape concern, weight concern, and drive for muscularity but not drive for thinness, bulimia, or body dissatisfaction. Acculturative stress and perceived discrimination are important factors to consider in understanding the development and maintenance of eating disorder symptoms among ethnic minority populations. Targeting these two factors may improve the effectiveness of intervention programs for eating disorder symptoms among ethnic minority undergraduate students. Copyright © 2018 Elsevier Ltd. All rights reserved.
Differentiating defects in red oak lumber by discriminant analysis using color, shape, and density
B. H. Bond; D. Earl Kline; Philip A. Araman
2002-01-01
Defect color, shape, and density measures aid in the differentiation of knots, bark pockets, stain/mineral streak, and clearwood in red oak, (Quercus rubra). Various color, shape, and density measures were extracted for defects present in color and X-ray images captured using a color line scan camera and an X-ray line scan detector. Analysis of variance was used to...
Intermanual Transfer of Shapes in Preterm Human Infants from 33 to 34 + 6 Weeks Postconceptional Age
ERIC Educational Resources Information Center
Lejeune, Fleur; Marcus, Leila; Berne-Audeoud, Frederique; Streri, Arlette; Debillon, Thierry; Gentaz, Edouard
2012-01-01
This study investigated the ability of preterm infants to learn an object shape with one hand and discriminate a new shape in the opposite hand (without visual control). Twenty-four preterm infants between 33 and 34 + 6 gestational weeks received a tactile habituation task with either their right or left hand followed by a tactile discrimination…
Characterization of a tin-loaded liquid scintillator for gamma spectroscopy and neutron detection
NASA Astrophysics Data System (ADS)
Wen, Xianfei; Harvey, Taylor; Weinmann-Smith, Robert; Walker, James; Noh, Young; Farley, Richard; Enqvist, Andreas
2018-07-01
A tin-loaded liquid scintillator has been developed for gamma spectroscopy and neutron detection. The scintillator was characterized in regard to energy resolution, pulse shape discrimination, neutron light output function, and timing resolution. The loading of tin into scintillators with low effective atomic number was demonstrated to provide photopeaks with acceptable energy resolution. The scintillator was shown to have reasonable neutron/gamma discrimination capability based on the charge comparison method. The effect on the discrimination quality of the total charge integration time and the initial delay time for tail charge integration was studied. To obtain the neutron light output function, the time-of-flight technique was utilized with a 252Cf source. The light output function was validated with the MCNPX-PoliMi code by comparing the measured and simulated pule height spectra. The timing resolution of the developed scintillator was also evaluated. The tin-loading was found to have negligible impact on the scintillation decay times. However, a relatively large degradation of timing resolution was observed due to the reduced light yield.
Human action recognition based on point context tensor shape descriptor
NASA Astrophysics Data System (ADS)
Li, Jianjun; Mao, Xia; Chen, Lijiang; Wang, Lan
2017-07-01
Motion trajectory recognition is one of the most important means to determine the identity of a moving object. A compact and discriminative feature representation method can improve the trajectory recognition accuracy. This paper presents an efficient framework for action recognition using a three-dimensional skeleton kinematic joint model. First, we put forward a rotation-scale-translation-invariant shape descriptor based on point context (PC) and the normal vector of hypersurface to jointly characterize local motion and shape information. Meanwhile, an algorithm for extracting the key trajectory based on the confidence coefficient is proposed to reduce the randomness and computational complexity. Second, to decrease the eigenvalue decomposition time complexity, a tensor shape descriptor (TSD) based on PC that can globally capture the spatial layout and temporal order to preserve the spatial information of each frame is proposed. Then, a multilinear projection process is achieved by tensor dynamic time warping to map the TSD to a low-dimensional tensor subspace of the same size. Experimental results show that the proposed shape descriptor is effective and feasible, and the proposed approach obtains considerable performance improvement over the state-of-the-art approaches with respect to accuracy on a public action dataset.
NASA Astrophysics Data System (ADS)
Franco, Patrick; Ogier, Jean-Marc; Loonis, Pierre; Mullot, Rémy
Recently we have developed a model for shape description and matching. Based on minimum spanning trees construction and specifics stages like the mixture, it seems to have many desirable properties. Recognition invariance in front shift, rotated and noisy shape was checked through median scale tests related to GREC symbol reference database. Even if extracting the topology of a shape by mapping the shortest path connecting all the pixels seems to be powerful, the construction of graph induces an expensive algorithmic cost. In this article we discuss on the ways to reduce time computing. An alternative solution based on image compression concepts is provided and evaluated. The model no longer operates in the image space but in a compact space, namely the Discrete Cosine space. The use of block discrete cosine transform is discussed and justified. The experimental results led on the GREC2003 database show that the proposed method is characterized by a good discrimination power, a real robustness to noise with an acceptable time computing.
Giant pandas can discriminate the emotions of human facial pictures.
Li, Youxu; Dai, Qiang; Hou, Rong; Zhang, Zhihe; Chen, Peng; Xue, Rui; Feng, Feifei; Chen, Chao; Liu, Jiabin; Gu, Xiaodong; Zhang, Zejun; Qi, Dunwu
2017-08-16
Previous studies have shown that giant pandas (Ailuropoda melanoleuca) can discriminate face-like shapes, but little is known about their cognitive ability with respect to the emotional expressions of humans. We tested whether adult giant pandas can discriminate expressions from pictures of half of a face and found that pandas can learn to discriminate between angry and happy expressions based on global information from the whole face. Young adult pandas (5-7 years old) learned to discriminate expressions more quickly than older individuals (8-16 years old), but no significant differences were found between females and males. These results suggest that young adult giant pandas are better at discriminating emotional expressions of humans. We showed for the first time that the giant panda, can discriminate the facial expressions of humans. Our results can also be valuable for the daily care and management of captive giant pandas.
ERIC Educational Resources Information Center
Nagasaka, Yasuo; Brooks, Daniel I.; Wasserman, Edward A.
2010-01-01
We trained two bonobos to discriminate among occluded, complete, and incomplete stimuli. The occluded stimulus comprised a pair of colored shapes, one of which appeared to occlude the other. The complete and incomplete stimuli involved the single shape that appeared to have been partially covered in the occluded stimulus; the complete stimulus…
Sun, Huaiqiang; Chen, Ying; Huang, Qiang; Lui, Su; Huang, Xiaoqi; Shi, Yan; Xu, Xin; Sweeney, John A; Gong, Qiyong
2018-05-01
Purpose To identify cerebral radiomic features related to diagnosis and subtyping of attention deficit hyperactivity disorder (ADHD) and to build and evaluate classification models for ADHD diagnosis and subtyping on the basis of the identified features. Materials and Methods A consecutive cohort of 83 age- and sex-matched children with newly diagnosed and never-treated ADHD (mean age 10.83 years ± 2.30; range, 7-14 years; 71 boys, 40 with ADHD-inattentive [ADHD-I] and 43 with ADHD-combined [ADHD-C, or inattentive and hyperactive]) and 87 healthy control subjects (mean age, 11.21 years ± 2.51; range, 7-15 years; 72 boys) underwent anatomic and diffusion-tensor magnetic resonance (MR) imaging. Features representing the shape properties of gray matter and diffusion properties of white matter were extracted for each participant. The initial feature set was input into an all-relevant feature selection procedure within cross-validation loops to identify features with significant discriminative power for diagnosis and subtyping. Random forest classifiers were constructed and evaluated on the basis of identified features. Results No overall difference was found between children with ADHD and control subjects in total brain volume (1069830.00 mm 3 ± 90743.36 vs 1079 213.00 mm 3 ± 92742.25, respectively; P = .51) or total gray and white matter volume (611978.10 mm 3 ± 51622.81 vs 616960.20 mm 3 ± 51872.93, respectively; P = .53; 413532.00 mm 3 ± 41 114.33 vs 418173.60 mm 3 ± 42395.48, respectively; P = .47). The mean classification accuracy achieved with classifiers to discriminate patients with ADHD from control subjects was 73.7%. Alteration in cortical shape in the left temporal lobe, bilateral cuneus, and regions around the left central sulcus contributed significantly to group discrimination. The mean classification accuracy with classifiers to discriminate ADHD-I from ADHD-C was 80.1%, with significant discriminating features located in the default mode network and insular cortex. Conclusion The results of this study provide preliminary evidence that cerebral morphometric alterations can allow discrimination between patients with ADHD and control subjects and also between the most common ADHD subtypes. By identifying features relevant for diagnosis and subtyping, these findings may advance the understanding of neurodevelopmental alterations related to ADHD. © RSNA, 2017 Online supplemental material is available for this article.
Hotspot detection in pancreatic neuroendocrine tumors: density approximation by α-shape maps
NASA Astrophysics Data System (ADS)
Niazi, M. K. K.; Hartman, Douglas J.; Pantanowitz, Liron; Gurcan, Metin N.
2016-03-01
The grading of neuroendocrine tumors of the digestive system is dependent on accurate and reproducible assessment of the proliferation with the tumor, either by counting mitotic figures or counting Ki-67 positive nuclei. At the moment, most pathologists manually identify the hotspots, a practice which is tedious and irreproducible. To better help pathologists, we present an automatic method to detect all potential hotspots in neuroendocrine tumors of the digestive system. The method starts by segmenting Ki-67 positive nuclei by entropy based thresholding, followed by detection of centroids for all Ki-67 positive nuclei. Based on geodesic distance, approximated by the nuclei centroids, we compute two maps: an amoeba map and a weighted amoeba map. These maps are later combined to generate the heat map, the segmentation of which results in the hotspots. The method was trained on three and tested on nine whole slide images of neuroendocrine tumors. When evaluated by two expert pathologists, the method reached an accuracy of 92.6%. The current method does not discriminate between tumor, stromal and inflammatory nuclei. The results show that α-shape maps may represent how hotspots are perceived.
A strain energy filter for 3D vessel enhancement with application to pulmonary CT images.
Xiao, Changyan; Staring, Marius; Shamonin, Denis; Reiber, Johan H C; Stolk, Jan; Stoel, Berend C
2011-02-01
The traditional Hessian-related vessel filters often suffer from detecting complex structures like bifurcations due to an over-simplified cylindrical model. To solve this problem, we present a shape-tuned strain energy density function to measure vessel likelihood in 3D medical images. This method is initially inspired by established stress-strain principles in mechanics. By considering the Hessian matrix as a stress tensor, the three invariants from orthogonal tensor decomposition are used independently or combined to formulate distinctive functions for vascular shape discrimination, brightness contrast and structure strength measuring. Moreover, a mathematical description of Hessian eigenvalues for general vessel shapes is obtained, based on an intensity continuity assumption, and a relative Hessian strength term is presented to ensure the dominance of second-order derivatives as well as suppress undesired step-edges. Finally, we adopt the multi-scale scheme to find an optimal solution through scale space. The proposed method is validated in experiments with a digital phantom and non-contrast-enhanced pulmonary CT data. It is shown that our model performed more effectively in enhancing vessel bifurcations and preserving details, compared to three existing filters. Copyright © 2010 Elsevier B.V. All rights reserved.
Pulse-shape discrimination and energy quenching of alpha particles in Cs 2LiLaBr 6:Ce 3+
Mesick, Katherine Elizabeth; Coupland, Daniel David S.; Stonehill, Laura Catherine
2016-10-19
Cs 2LiLaBr 6:Ce 3+ (CLLB) is an elpasolite scintillator that offers excellent linearity and gamma-ray energy resolution and sensitivity to thermal neutrons with the ability to perform pulse-shape discrimination (PSD) to distinguish gammas and neutrons. Our investigation of CLLB has indicated the presence of intrinsic radioactive alpha background that we have determined to be from actinium contamination of the lanthanum component. We measured the pulse shapes for gamma, thermal neutron, and alpha events and determined that PSD can be performed to separate the alpha background with a moderate figure of merit of 0.98. Here, we also measured the electron-equivalent-energy ofmore » the alpha particles in CLLB and simulated the intrinsic alpha background from 227Ac to determine the quenching factor of the alphas.« less
Abdolali, Fatemeh; Zoroofi, Reza Aghaeizadeh; Otake, Yoshito; Sato, Yoshinobu
2017-02-01
Accurate detection of maxillofacial cysts is an essential step for diagnosis, monitoring and planning therapeutic intervention. Cysts can be of various sizes and shapes and existing detection methods lead to poor results. Customizing automatic detection systems to gain sufficient accuracy in clinical practice is highly challenging. For this purpose, integrating the engineering knowledge in efficient feature extraction is essential. This paper presents a novel framework for maxillofacial cysts detection. A hybrid methodology based on surface and texture information is introduced. The proposed approach consists of three main steps as follows: At first, each cystic lesion is segmented with high accuracy. Then, in the second and third steps, feature extraction and classification are performed. Contourlet and SPHARM coefficients are utilized as texture and shape features which are fed into the classifier. Two different classifiers are used in this study, i.e. support vector machine and sparse discriminant analysis. Generally SPHARM coefficients are estimated by the iterative residual fitting (IRF) algorithm which is based on stepwise regression method. In order to improve the accuracy of IRF estimation, a method based on extra orthogonalization is employed to reduce linear dependency. We have utilized a ground-truth dataset consisting of cone beam CT images of 96 patients, belonging to three maxillofacial cyst categories: radicular cyst, dentigerous cyst and keratocystic odontogenic tumor. Using orthogonalized SPHARM, residual sum of squares is decreased which leads to a more accurate estimation. Analysis of the results based on statistical measures such as specificity, sensitivity, positive predictive value and negative predictive value is reported. The classification rate of 96.48% is achieved using sparse discriminant analysis and orthogonalized SPHARM features. Classification accuracy at least improved by 8.94% with respect to conventional features. This study demonstrated that our proposed methodology can improve the computer assisted diagnosis (CAD) performance by incorporating more discriminative features. Using orthogonalized SPHARM is promising in computerized cyst detection and may have a significant impact in future CAD systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Blue colour preference in honeybees distracts visual attention for learning closed shapes.
Morawetz, Linde; Svoboda, Alexander; Spaethe, Johannes; Dyer, Adrian G
2013-10-01
Spatial vision is an important cue for how honeybees (Apis mellifera) find flowers, and previous work has suggested that spatial learning in free-flying bees is exclusively mediated by achromatic input to the green photoreceptor channel. However, some data suggested that bees may be able to use alternative channels for shape processing, and recent work shows conditioning type and training length can significantly influence bee learning and cue use. We thus tested the honeybees' ability to discriminate between two closed shapes considering either absolute or differential conditioning, and using eight stimuli differing in their spectral characteristics. Consistent with previous work, green contrast enabled reliable shape learning for both types of conditioning, but surprisingly, we found that bees trained with appetitive-aversive differential conditioning could additionally use colour and/or UV contrast to enable shape discrimination. Interestingly, we found that a high blue contrast initially interferes with bee shape learning, probably due to the bees innate preference for blue colours, but with increasing experience bees can learn a variety of spectral and/or colour cues to facilitate spatial learning. Thus, the relationship between bee pollinators and the spatial and spectral cues that they use to find rewarding flowers appears to be a more rich visual environment than previously thought.
Shimansky, Y; Saling, M; Wunderlich, D A; Bracha, V; Stelmach, G E; Bloedel, J R
1997-01-01
This study addresses the issue of the role of the cerebellum in the processing of sensory information by determining the capability of cerebellar patients to acquire and use kinesthetic cues received via the active or passive tracing of an irregular shape while blindfolded. Patients with cerebellar lesions and age-matched healthy controls were tested on four tasks: (1) learning to discriminate a reference shape from three others through the repeated tracing of the reference template; (2) reproducing the reference shape from memory by drawing blindfolded; (3) performing the same task with vision; and (4) visually recognizing the reference shape. The cues used to acquire and then to recognize the reference shape were generated under four conditions: (1) "active kinesthesia," in which cues were acquired by the blindfolded subject while actively tracing a reference template; (2) "passive kinesthesia," in which the tracing was performed while the hand was guided passively through the template; (3) "sequential vision," in which the shape was visualized by the serial exposure of small segments of its outline; and (4) "full vision," in which the entire shape was visualized. The sequential vision condition was employed to emulate the sequential way in which kinesthetic information is acquired while tracing the reference shape. The results demonstrate a substantial impairment of cerebellar patients in their capability to perceive two-dimensional irregular shapes based only on kinesthetic cues. There also is evidence that this deficit in part relates to a reduced capacity to integrate temporal sequences of sensory cues into a complete image useful for shape discrimination tasks or for reproducing the shape through drawing. Consequently, the cerebellum has an important role in this type of sensory information processing even when it is not directly associated with the execution of movements.
NASA Astrophysics Data System (ADS)
Caracciolo, C.; Prodi, F.; Battaglia, A.; Porcu', F.
2006-05-01
Drop size distribution is a fundamental property of rainfall for two main reasons: the shape of the distribution reflects the physics of rain formation processes, and it is of basic importance in determining most parameters used in radar-meteorology. Therefore, several authors have proposed in the past different parameterizations for the drop size distribution (DSD). The present work focuses attention on the gamma DSD properties, assumed to be the most suitable for describing the observed DSD and its variability. The data set comprises about 3 years of data (2001-2004) for about 1900 min of rain, collected in Ferrara in the Po Valley (Northern Italy) by a Joss and Waldvogel (JW) disdrometer. A new method of moments to determine the three gamma DSD parameters is developed and tested; this method involves the fourth, fifth and sixth moments of the DSD, which are less sensitive to the underestimation of small drops in the JW disdrometer. The method has been validated by comparing the observed rainfall rates with the computed ones from the fitted distribution, using two classical expressions for the hydrometeor terminal velocity. The 1-min observed spectra of some representative events that occurred in Ferrara are also presented, showing that with sufficient averaging, the distribution for the Ferrara rainfall can be approximately described by a gamma distribution. The discrimination of convective and stratiform precipitation is also an issue of intense interest. Over the past years, several works have aimed to discriminate between these two precipitation categories, on the basis of different instruments and techniques. The knowledge of the three gamma DSD parameters computed with the new method of moments is exploited to identify some characteristic parameters that give quantitative and useful information on the precipitation type and intensity. First, a key parameter derived from the knowledge of two gamma DSD parameters ( m and Λ), the peak (or modal) diameter Dp, defined as m/ Λ, is identified. A theoretical relationship between the m and Λ parameters is successively derived, conducing to a new convective/stratiform discrimination algorithm: in an m- Λ plot the line (1.635 Λ- m) = 1 can be considered as the discriminator; the stratiform events fall in the upper part, the convective ones in the lower. A classical tropical oceanic convective/stratiform discrimination algorithm is also tested, showing that it is not suitable to correctly discriminate the mid-latitude precipitations analyzed here.
Operant Conditioning in Honey Bees (Apis mellifera L.): The Cap Pushing Response.
Abramson, Charles I; Dinges, Christopher W; Wells, Harrington
2016-01-01
The honey bee has been an important model organism for studying learning and memory. More recently, the honey bee has become a valuable model to understand perception and cognition. However, the techniques used to explore psychological phenomena in honey bees have been limited to only a few primary methodologies such as the proboscis extension reflex, sting extension reflex, and free flying target discrimination-tasks. Methods to explore operant conditioning in bees and other invertebrates are not as varied as with vertebrates. This may be due to the availability of a suitable response requirement. In this manuscript we offer a new method to explore operant conditioning in honey bees: the cap pushing response (CPR). We used the CPR to test for difference in learning curves between novel auto-shaping and more traditional explicit-shaping. The CPR protocol requires bees to exhibit a novel behavior by pushing a cap to uncover a food source. Using the CPR protocol we tested the effects of both explicit-shaping and auto-shaping techniques on operant conditioning. The goodness of fit and lack of fit of these data to the Rescorla-Wagner learning-curve model, widely used in classical conditioning studies, was tested. The model fit well to both control and explicit-shaping results, but only for a limited number of trials. Learning ceased rather than continuing to asymptotically approach the physiological most accurate possible. Rate of learning differed between shaped and control bee treatments. Learning rate was about 3 times faster for shaped bees, but for all measures of proficiency control and shaped bees reached the same level. Auto-shaped bees showed one-trial learning rather than the asymptotic approach to a maximal efficiency. However, in terms of return-time, the auto-shaped bees' learning did not carry over to the covered-well test treatments.
Operant Conditioning in Honey Bees (Apis mellifera L.): The Cap Pushing Response
Abramson, Charles I.; Dinges, Christopher W.; Wells, Harrington
2016-01-01
The honey bee has been an important model organism for studying learning and memory. More recently, the honey bee has become a valuable model to understand perception and cognition. However, the techniques used to explore psychological phenomena in honey bees have been limited to only a few primary methodologies such as the proboscis extension reflex, sting extension reflex, and free flying target discrimination-tasks. Methods to explore operant conditioning in bees and other invertebrates are not as varied as with vertebrates. This may be due to the availability of a suitable response requirement. In this manuscript we offer a new method to explore operant conditioning in honey bees: the cap pushing response (CPR). We used the CPR to test for difference in learning curves between novel auto-shaping and more traditional explicit-shaping. The CPR protocol requires bees to exhibit a novel behavior by pushing a cap to uncover a food source. Using the CPR protocol we tested the effects of both explicit-shaping and auto-shaping techniques on operant conditioning. The goodness of fit and lack of fit of these data to the Rescorla-Wagner learning-curve model, widely used in classical conditioning studies, was tested. The model fit well to both control and explicit-shaping results, but only for a limited number of trials. Learning ceased rather than continuing to asymptotically approach the physiological most accurate possible. Rate of learning differed between shaped and control bee treatments. Learning rate was about 3 times faster for shaped bees, but for all measures of proficiency control and shaped bees reached the same level. Auto-shaped bees showed one-trial learning rather than the asymptotic approach to a maximal efficiency. However, in terms of return-time, the auto-shaped bees’ learning did not carry over to the covered-well test treatments. PMID:27626797
Application of Bayes' theorem for pulse shape discrimination
NASA Astrophysics Data System (ADS)
Monterial, Mateusz; Marleau, Peter; Clarke, Shaun; Pozzi, Sara
2015-09-01
A Bayesian approach is proposed for pulse shape discrimination of photons and neutrons in liquid organic scinitillators. Instead of drawing a decision boundary, each pulse is assigned a photon or neutron confidence probability. This allows for photon and neutron classification on an event-by-event basis. The sum of those confidence probabilities is used to estimate the number of photon and neutron instances in the data. An iterative scheme, similar to an expectation-maximization algorithm for Gaussian mixtures, is used to infer the ratio of photons-to-neutrons in each measurement. Therefore, the probability space adapts to data with varying photon-to-neutron ratios. A time-correlated measurement of Am-Be and separate measurements of 137Cs, 60Co and 232Th photon sources were used to construct libraries of neutrons and photons. These libraries were then used to produce synthetic data sets with varying ratios of photons-to-neutrons. Probability weighted method that we implemented was found to maintain neutron acceptance rate of up to 90% up to photon-to-neutron ratio of 2000, and performed 9% better than the decision boundary approach. Furthermore, the iterative approach appropriately changed the probability space with an increasing number of photons which kept the neutron population estimate from unrealistically increasing.
Application of Bayes' theorem for pulse shape discrimination
Marleau, Peter; Monterial, Mateusz; Clarke, Shaun; ...
2015-06-14
A Bayesian approach is proposed for pulse shape discrimination of photons and neutrons in liquid organic scinitillators. Instead of drawing a decision boundary, each pulse is assigned a photon or neutron confidence probability. In addition, this allows for photon and neutron classification on an event-by-event basis. The sum of those confidence probabilities is used to estimate the number of photon and neutron instances in the data. An iterative scheme, similar to an expectation-maximization algorithm for Gaussian mixtures, is used to infer the ratio of photons-to-neutrons in each measurement. Therefore, the probability space adapts to data with varying photon-to-neutron ratios. Amore » time-correlated measurement of Am–Be and separate measurements of 137Cs, 60Co and 232Th photon sources were used to construct libraries of neutrons and photons. These libraries were then used to produce synthetic data sets with varying ratios of photons-to-neutrons. Probability weighted method that we implemented was found to maintain neutron acceptance rate of up to 90% up to photon-to-neutron ratio of 2000, and performed 9% better than the decision boundary approach. Furthermore, the iterative approach appropriately changed the probability space with an increasing number of photons which kept the neutron population estimate from unrealistically increasing.« less
Rejection of randomly coinciding events in ZnMoO scintillating bolometers
NASA Astrophysics Data System (ADS)
Chernyak, D. M.; Danevich, F. A.; Giuliani, A.; Mancuso, M.; Nones, C.; Olivieri, E.; Tenconi, M.; Tretyak, V. I.
2014-06-01
Random coincidence of events (particularly from two neutrino double beta decay) could be one of the main sources of background in the search for neutrinoless double beta decay with cryogenic bolometers due to their poor time resolution. Pulse-shape discrimination by using front edge analysis, mean-time and methods were applied to discriminate randomly coinciding events in ZnMoO cryogenic scintillating bolometers. These events can be effectively rejected at the level of 99 % by the analysis of the heat signals with rise-time of about 14 ms and signal-to-noise ratio of 900, and at the level of 92 % by the analysis of the light signals with rise-time of about 3 ms and signal-to-noise ratio of 30, under the requirement to detect 95 % of single events. These rejection efficiencies are compatible with extremely low background levels in the region of interest of neutrinoless double beta decay of Mo for enriched ZnMoO detectors, of the order of counts/(y keV kg). Pulse-shape parameters have been chosen on the basis of the performance of a real massive ZnMoO scintillating bolometer. Importance of the signal-to-noise ratio, correct finding of the signal start and choice of an appropriate sampling frequency are discussed.
A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction.
Abulnaga, S Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M; Onyike, Chiadi U; Ying, Sarah H; Prince, Jerry L
2016-02-27
The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.
A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction
NASA Astrophysics Data System (ADS)
Abulnaga, S. Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi U.; Ying, Sarah H.; Prince, Jerry L.
2016-03-01
The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.
Shape, size, and maturity trajectories of the human ilium.
Wilson, Laura A B; Ives, Rachel; Cardoso, Hugo F V; Humphrey, Louise T
2015-01-01
Morphological traits of the ilium have consistently been more successful for juvenile sex determination than have techniques applied to other skeletal elements, however relatively little is known about the ontogeny and maturation of size and shape dimorphism in the ilium. We use a geometric morphometric approach to quantitatively separate the ontogeny of size and shape of the ilium, and analyze interpopulation differences in the onset, rate and patterning of sexual dimorphism. We captured the shape of three traits for a total of 191 ilia from Lisbon (Portugal) and London (UK) samples of known age and sex (0-17 years). Our results indicate that a) there is a clear dissociation between the ontogeny of size and shape in males and females, b) the ontogeny of size and shape are each defined by non-linear trajectories that differ between the sexes, c) there are interpopulation differences in ontogenetic shape trajectories, which point to population-specific patterning in the attainment of sexual dimorphism, and d) the rate of shape maturation and size maturation is typically higher for females than males. Male and female shape differences in the ilium are brought about by trajectory divergence. Differences in size and shape maturation between the sexes suggest that maturity may confound our ability to discriminate between the sexes by introducing variation not accounted for in age-based groupings. The accuracy of sex determination methods using the ilium may be improved by the use of different traits for particular age groups, to capture the ontogenetic development of shape in both sexes. © 2014 Wiley Periodicals, Inc.
New similarity of triangular fuzzy number and its application.
Zhang, Xixiang; Ma, Weimin; Chen, Liping
2014-01-01
The similarity of triangular fuzzy numbers is an important metric for application of it. There exist several approaches to measure similarity of triangular fuzzy numbers. However, some of them are opt to be large. To make the similarity well distributed, a new method SIAM (Shape's Indifferent Area and Midpoint) to measure triangular fuzzy number is put forward, which takes the shape's indifferent area and midpoint of two triangular fuzzy numbers into consideration. Comparison with other similarity measurements shows the effectiveness of the proposed method. Then, it is applied to collaborative filtering recommendation to measure users' similarity. A collaborative filtering case is used to illustrate users' similarity based on cloud model and triangular fuzzy number; the result indicates that users' similarity based on triangular fuzzy number can obtain better discrimination. Finally, a simulated collaborative filtering recommendation system is developed which uses cloud model and triangular fuzzy number to express users' comprehensive evaluation on items, and result shows that the accuracy of collaborative filtering recommendation based on triangular fuzzy number is higher.
NASA Astrophysics Data System (ADS)
Polewski, P.; Yao, W.; Heurich, M.; Krzystek, P.; Stilla, U.
2015-03-01
Standing dead trees, known as snags, are an essential factor in maintaining biodiversity in forest ecosystems. Combined with their role as carbon sinks, this makes for a compelling reason to study their spatial distribution. This paper presents an integrated method to detect and delineate individual dead tree crowns from color infrared aerial imagery. Our approach consists of two steps which incorporate statistical information about prior distributions of both the image intensities and the shapes of the target objects. In the first step, we perform a Gaussian Mixture Model clustering in the pixel color space with priors on the cluster means, obtaining up to 3 components corresponding to dead trees, living trees, and shadows. We then refine the dead tree regions using a level set segmentation method enriched with a generative model of the dead trees' shape distribution as well as a discriminative model of their pixel intensity distribution. The iterative application of the statistical shape template yields the set of delineated dead crowns. The prior information enforces the consistency of the template's shape variation with the shape manifold defined by manually labeled training examples, which makes it possible to separate crowns located in close proximity and prevents the formation of large crown clusters. Also, the statistical information built into the segmentation gives rise to an implicit detection scheme, because the shape template evolves towards an empty contour if not enough evidence for the object is present in the image. We test our method on 3 sample plots from the Bavarian Forest National Park with reference data obtained by manually marking individual dead tree polygons in the images. Our results are scenario-dependent and range from a correctness/completeness of 0.71/0.81 up to 0.77/1, with an average center-of-gravity displacement of 3-5 pixels between the detected and reference polygons.
Tagging radon daughters in low-energy scintillation detectors
NASA Astrophysics Data System (ADS)
McCarty, Kevin B.
2011-12-01
One problematic source of background in scintillator-based low-energy solar neutrino experiments such as Borexino is the presence of radon gas and its daughters. The mean lifetime of the α-emitter 214Po in the radon chain is sufficiently short, 0.24 ms, that its decay, together with that immediately preceding of 214Bi, is easily recognized as a “coincidence event.” This fact, combined with the capability of α/β pulse-shape discrimination, makes it possible to tag decays of 222Rn and its first four daughters via a likelihood-based method.
UK medical selection: lottery or meritocracy?
Harris, Benjamin H L; Walsh, Jason L; Lammy, Simon
2015-02-01
From senior school through to consultancy, a plethora of assessments shape medical careers. Multiple methods of assessment are used to discriminate between applicants. Medical selection in the UK appears to be moving increasingly towards non-knowledge-based testing at all career stages. We review the evidence for non-knowledge-based tests and discuss their perceived benefits. We raise the question: is the current use of non-knowledge-based tests within the UK at risk of undermining more robust measures of medical school and postgraduate performance? © 2015 Royal College of Physicians.
Differentiation and quality estimation of Cordyceps with infrared spectroscopy
NASA Astrophysics Data System (ADS)
Yang, Ping; Song, Ping; Sun, Su-Qin; Zhou, Qun; Feng, Shu; Tao, Jia-Xun
2009-11-01
Heretofore, a scientific and systemic method for differentiation and quality estimation of a well-known Chinese traditional medicine, 'Cordyceps', has not been established in modern market. In this paper, Fourier-transform infrared spectroscopy (FTIR) and two-dimensional correlation infrared spectroscopy (2D-IR) are employed to propose a method for analysis of Cordyceps. It has presented that IR spectra of real Cordyceps of different origins and counterfeits have their own macroscopic fingerprints, with discriminated shapes, positions and intensities. Their secondary derivative spectra can amplify the differences and confirm the potentially characteristic IR absorption bands 1400-1700 cm -1 to be investigated in 2D-IR. Many characteristic fingerprints are discovered in 2D-IR spectra in the range of 1400-1700 cm -1 and hetero 2D spectra of 670-780 cm -1 × 1400-1700 cm -1. The different fingerprints display different chemical constitutes. Through the three steps, different Cordyceps and their counterfeits can be discriminated effectively and their qualities distinctly display. Successful analysis of eight Cordyceps capsule products has proved the practicability of the method, which can also be applied to the quality estimation of other Chinese traditional medicines.
Optical Flow Estimation for Flame Detection in Videos
Mueller, Martin; Karasev, Peter; Kolesov, Ivan; Tannenbaum, Allen
2014-01-01
Computational vision-based flame detection has drawn significant attention in the past decade with camera surveillance systems becoming ubiquitous. Whereas many discriminating features, such as color, shape, texture, etc., have been employed in the literature, this paper proposes a set of motion features based on motion estimators. The key idea consists of exploiting the difference between the turbulent, fast, fire motion, and the structured, rigid motion of other objects. Since classical optical flow methods do not model the characteristics of fire motion (e.g., non-smoothness of motion, non-constancy of intensity), two optical flow methods are specifically designed for the fire detection task: optimal mass transport models fire with dynamic texture, while a data-driven optical flow scheme models saturated flames. Then, characteristic features related to the flow magnitudes and directions are computed from the flow fields to discriminate between fire and non-fire motion. The proposed features are tested on a large video database to demonstrate their practical usefulness. Moreover, a novel evaluation method is proposed by fire simulations that allow for a controlled environment to analyze parameter influences, such as flame saturation, spatial resolution, frame rate, and random noise. PMID:23613042
Time-over-threshold for pulse shape discrimination in a time-of-flight phoswich PET detector.
Chang, Chen-Ming; Cates, Joshua W; Levin, Craig S
2017-01-07
It is well known that a PET detector capable of measuring both photon time-of-flight (TOF) and depth-of-interaction (DOI) improves the image quality and accuracy. Phoswich designs have been realized in PET detectors to measure DOI for more than a decade. However, PET detectors based on phoswich designs put great demand on the readout circuits, which have to differentiate the pulse shape produced by different crystal layers. A simple pulse shape discrimination approach is required to realize the phoswich designs in a clinical PET scanner, which consists of thousands of scintillation crystal elements. In this work, we studied time-over-threshold (ToT) as a pulse shape parameter for DOI. The energy, timing and DOI performance were evaluated for a phoswich detector design comprising [Formula: see text] mm LYSO:Ce crystal optically coupled to [Formula: see text] mm calcium co-doped LSO:Ce,Ca(0.4%) crystal read out by a silicon photomultiplier (SiPM). A DOI accuracy of 97.2% has been achieved for photopeak events using the proposed time-over-threshold (ToT) processing. The energy resolution without correction for SiPM non-linearity was [Formula: see text]% and [Formula: see text]% FWHM at 511 keV for LYSO and LSO crystal layers, respectively. The coincidence time resolution for photopeak events ranges from 164.6 ps to 183.1 ps FWHM, depending on the layer combinations. The coincidence time resolution for inter-crystal scatter events ranges from 214.6 ps to 418.3 ps FWHM, depending on the energy windows applied. These results show great promises of using ToT for pulse shape discrimination in a TOF phoswich detector since a ToT measurement can be easily implemented in readout electronics.
Liu, Yu-Ying; Ishikawa, Hiroshi; Chen, Mei; Wollstein, Gadi; Duker, Jay S; Fujimoto, James G; Schuman, Joel S; Rehg, James M
2011-10-21
To develop an automated method to identify the normal macula and three macular pathologies (macular hole [MH], macular edema [ME], and age-related macular degeneration [AMD]) from the fovea-centered cross sections in three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) images. A sample of SD-OCT macular scans (macular cube 200 × 200 or 512 × 128 scan protocol; Cirrus HD-OCT; Carl Zeiss Meditec, Inc., Dublin, CA) was obtained from healthy subjects and subjects with MH, ME, and/or AMD (dataset for development: 326 scans from 136 subjects [193 eyes], and dataset for testing: 131 scans from 37 subjects [58 eyes]). A fovea-centered cross-sectional slice for each of the SD-OCT images was encoded using spatially distributed multiscale texture and shape features. Three ophthalmologists labeled each fovea-centered slice independently, and the majority opinion for each pathology was used as the ground truth. Machine learning algorithms were used to identify the discriminative features automatically. Two-class support vector machine classifiers were trained to identify the presence of normal macula and each of the three pathologies separately. The area under the receiver operating characteristic curve (AUC) was calculated to assess the performance. The cross-validation AUC result on the development dataset was 0.976, 0.931, 0939, and 0.938, and the AUC result on the holdout testing set was 0.978, 0.969, 0.941, and 0.975, for identifying normal macula, MH, ME, and AMD, respectively. The proposed automated data-driven method successfully identified various macular pathologies (all AUC > 0.94). This method may effectively identify the discriminative features without relying on a potentially error-prone segmentation module.
Wu, Zhaofeng; Duan, Haiming; Li, Zhijun; Guo, Jixi; Zhong, Furu; Cao, Yali; Jia, Dianzeng
2017-11-20
The multichannel fluorescent sensor array based on nanofibrous membranes loaded with ZnS quantum dots (QDs) was created and demonstrated for the discriminative detection of explosives. The synergistic effect of the high surface-to-volume ratio of QDs, the good permeability of nanofibrous membranes and the differential response introduced by surface ligands was played by constructing the sensing array using nanofibrous membranes loaded with ZnS QDs featuring several surface ligands. Interestingly, although the fluorescence quenching of the nanofibrous membranes is not linearly related to the exposure time, the fingerprint of each explosive at different times is very similar in shape, and the fingerprints of the three explosives show different shapes. Three saturated vapors of nitroaromatic explosives could be reliably detected and discriminated by the array at room temperature. This work is the first step toward devising a monitoring system for explosives in the field of public security and defense. It could, for example, be coupled with the technology of image recognition and large data analysis for a rapid diagnostic test of explosives. This work further highlights the power of differential, multichannel arrays for the rapid and discriminative detection of a wide range of chemicals.
Wu, Zhaofeng; Duan, Haiming; Li, Zhijun; Guo, Jixi; Zhong, Furu; Cao, Yali; Jia, Dianzeng
2017-01-01
The multichannel fluorescent sensor array based on nanofibrous membranes loaded with ZnS quantum dots (QDs) was created and demonstrated for the discriminative detection of explosives. The synergistic effect of the high surface-to-volume ratio of QDs, the good permeability of nanofibrous membranes and the differential response introduced by surface ligands was played by constructing the sensing array using nanofibrous membranes loaded with ZnS QDs featuring several surface ligands. Interestingly, although the fluorescence quenching of the nanofibrous membranes is not linearly related to the exposure time, the fingerprint of each explosive at different times is very similar in shape, and the fingerprints of the three explosives show different shapes. Three saturated vapors of nitroaromatic explosives could be reliably detected and discriminated by the array at room temperature. This work is the first step toward devising a monitoring system for explosives in the field of public security and defense. It could, for example, be coupled with the technology of image recognition and large data analysis for a rapid diagnostic test of explosives. This work further highlights the power of differential, multichannel arrays for the rapid and discriminative detection of a wide range of chemicals. PMID:29156627
Pulse shape discrimination of plastic scintillator EJ 299-33 with radioactive sources
NASA Astrophysics Data System (ADS)
Pagano, E. V.; Chatterjee, M. B.; De Filippo, E.; Russotto, P.; Auditore, L.; Cardella, G.; Geraci, E.; Gnoffo, B.; Guazzoni, C.; Lanzalone, G.; De Luca, S.; Maiolino, C.; Martorana, N. S.; Pagano, A.; Papa, M.; Parsani, T.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Trifirò, A.; Trimarchi, M.
2018-05-01
The present study has been carried out in order to investigate about the possibility of using EJ 299-33 scintillator in a multi-detector array to detect neutrons along with light charged particles. In a reaction induced by stable and exotic heavy-ions beams, where copious production of neutrons and other light charged particles occurs, discrimination with low identification threshold of these particles are of great importance. In view of this, EJ 299-33 scintillator having dimension of 3 cm × 3 cm × 3 cm backed by a photomultiplier tube was tested and used under vacuum to detect neutrons, gamma-rays and alpha particles emitted by radioactive sources. Anode pulses from the photomultiplier tube were digitized through GET electronics, recorded and stored in a data acquisition system for the purpose of an off-line analysis. The measurements, under vacuum and low background conditions, show good pulse shape discrimination properties characterized by low identification threshold for neutrons, gamma-rays and alpha particles. The Figures of Merit for neutron-gamma and alpha particles-gamma discriminations have been evaluated together with the energy resolution for gamma-ray and alpha particles.
Simões, Rita; van Cappellen van Walsum, Anne-Marie; Slump, Cornelis H
2014-09-01
Classification methods have been proposed to detect Alzheimer’s disease (AD) using magnetic resonance images. Most rely on features such as the shape/volume of brain structures that need to be defined a priori. In this work, we propose a method that does not require either the segmentation of specific brain regions or the nonlinear alignment to a template. Besides classification, we also analyze which brain regions are discriminative between a group of normal controls and a group of AD patients. We perform 3D texture analysis using Local Binary Patterns computed at local image patches in the whole brain, combined in a classifier ensemble.We evaluate our method in a publicly available database including very mild-to-mild AD subjects and healthy elderly controls. For the subject cohort including only mild AD subjects, the best results are obtained using a combination of large (30×30×30 and 40×40×40 voxels) patches. A spatial analysis on the best performing patches shows that these are located in the medial-temporal lobe and in the periventricular regions. When very mild AD subjects are included in the dataset, the small (10×10×10 voxels) patches perform best, with the most discriminative ones being located near the left hippocampus. We show that our method is able not only to perform accurate classification, but also to localize dis-criminative brain regions, which are in accordance with the medical literature. This is achieved without the need to segment-specific brain structures and without performing nonlinear registration to a template, indicating that the method may be suitable for a clinical implementation that can help to diagnose AD at an earlier stage.
Zeng, Zhi; Pan, Xingyu; Ma, Hao; He, Jianhua; Cang, Jirong; Zeng, Ming; Mi, Yuhao; Cheng, Jianping
2017-03-01
An underwater in-situ gamma-ray spectrometer based on LaBr 3 :Ce was developed and optimized to monitor marine radioactivity. The intrinsic background mainly from 138 La and 227 Ac of LaBr 3 :Ce was well determined by low background measurement and pulse shape discrimination method. A method of self-calibration using three internal contaminant peaks was proposed to eliminate the peak shift during long-term monitoring. With experiments under different temperatures, the method was proved to be helpful for maintaining long-term stability. To monitor the marine radioactivity, the spectrometer's efficiency was calculated via water tank experiment as well as Monte Carlo simulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Variability of Grip Kinetics during Adult Signature Writing
Ghali, Bassma; Thalanki Anantha, Nayanashri; Chan, Jennifer; Chau, Tom
2013-01-01
Grip kinetics and their variation are emerging as important considerations in the clinical assessment of handwriting pathologies, fine motor rehabilitation, biometrics, forensics and ergonomic pen design. This study evaluated the intra- and inter-participant variability of grip shape kinetics in adults during signature writing. Twenty (20) adult participants wrote on a digitizing tablet using an instrumented pen that measured the forces exerted on its barrel. Signature samples were collected over 10 days, 3 times a day, to capture temporal variations in grip shape kinetics. A kinetic topography (i.e., grip shape image) was derived per signature by time-averaging the measured force at each of 32 locations around the pen barrel. The normalized cross correlations (NCC) of grip shape images were calculated within- and between-participants. Several classification algorithms were implemented to gauge the error rate of participant discrimination based on grip shape kinetics. Four different grip shapes emerged and several participants made grip adjustments (change in grip shape or grip height) or rotated the pen during writing. Nonetheless, intra-participant variation in grip kinetics was generally much smaller than inter-participant force variations. Using the entire grip shape images as a 32-dimensional input feature vector, a K-nearest neighbor classifier achieved an error rate of % in discriminating among participants. These results indicate that writers had unique grip shape kinetics that were repeatable over time but distinct from those of other participants. The topographic analysis of grip kinetics may inform the development of personalized interventions or customizable grips in clinical and industrial applications, respectively. PMID:23658812
Variability of grip kinetics during adult signature writing.
Ghali, Bassma; Thalanki Anantha, Nayanashri; Chan, Jennifer; Chau, Tom
2013-01-01
Grip kinetics and their variation are emerging as important considerations in the clinical assessment of handwriting pathologies, fine motor rehabilitation, biometrics, forensics and ergonomic pen design. This study evaluated the intra- and inter-participant variability of grip shape kinetics in adults during signature writing. Twenty (20) adult participants wrote on a digitizing tablet using an instrumented pen that measured the forces exerted on its barrel. Signature samples were collected over 10 days, 3 times a day, to capture temporal variations in grip shape kinetics. A kinetic topography (i.e., grip shape image) was derived per signature by time-averaging the measured force at each of 32 locations around the pen barrel. The normalized cross correlations (NCC) of grip shape images were calculated within- and between-participants. Several classification algorithms were implemented to gauge the error rate of participant discrimination based on grip shape kinetics. Four different grip shapes emerged and several participants made grip adjustments (change in grip shape or grip height) or rotated the pen during writing. Nonetheless, intra-participant variation in grip kinetics was generally much smaller than inter-participant force variations. Using the entire grip shape images as a 32-dimensional input feature vector, a K-nearest neighbor classifier achieved an error rate of 1.2±0.4% in discriminating among participants. These results indicate that writers had unique grip shape kinetics that were repeatable over time but distinct from those of other participants. The topographic analysis of grip kinetics may inform the development of personalized interventions or customizable grips in clinical and industrial applications, respectively.
Face adaptation improves gender discrimination.
Yang, Hua; Shen, Jianhong; Chen, Juan; Fang, Fang
2011-01-01
Adaptation to a visual pattern can alter the sensitivities of neuronal populations encoding the pattern. However, the functional roles of adaptation, especially in high-level vision, are still equivocal. In the present study, we performed three experiments to investigate if face gender adaptation could affect gender discrimination. Experiments 1 and 2 revealed that adapting to a male/female face could selectively enhance discrimination for male/female faces. Experiment 3 showed that the discrimination enhancement induced by face adaptation could transfer across a substantial change in three-dimensional face viewpoint. These results provide further evidence suggesting that, similar to low-level vision, adaptation in high-level vision could calibrate the visual system to current inputs of complex shapes (i.e. face) and improve discrimination at the adapted characteristic. Copyright © 2010 Elsevier Ltd. All rights reserved.
Shedlin, Michele G; Decena, Carlos U; Noboa, Hugo; Betancourt, Óscar
2014-02-01
This study explored factors affecting the health and well being of recent refugees from Colombia in Ecuador. Data collection focused on how sending-country violence and structural violence in a new environment affect immigrant health vulnerability and risk behaviors. A qualitative approach included ethnographic observation, media content analysis, focus groups, and individual interviews with refugees (N = 137). The focus groups (5) provided perspectives on the research domains by sex workers; drug users; male and female refugees; and service providers. Social and economic marginalization are impacting the health and well being of this growing refugee population. Data illustrate how stigma and discrimination affect food and housing security, employment and health services, and shape vulnerabilities and health risks in a new receiving environment. Widespread discrimination in Ecuador reflects fears, misunderstanding, and stereotypes about Colombian refugees. For this displaced population, the sequelae of violence, combined with survival needs and lack of support and protections, shape new risks to health and well-being.
NASA Astrophysics Data System (ADS)
Jančář, A.; Kopecký, Z.; Dressler, J.; Veškrna, M.; Matěj, Z.; Granja, C.; Solar, M.
2015-11-01
Recently invented plastic scintillator EJ-299-33 enables pulse-shape discrimination (PSD) and thus measurement of neutron and photon spectra in mixed fields. In this work we compare the PSD properties of EJ-299-33 plastic and the well-known NE-213 liquid scintillator in monoenergetic neutron fields generated by the Van de Graaff accelerator using the 3H(d, n)4He reaction. Pulses from the scintillators are processed by a newly developed digital measuring system employing the fast digitizer card. This card contains two AD converters connected to the measuring computer via 10 Gbps optical ethernet. The converters operate with a resolution of 12 bits and have two differential inputs with a sampling frequency 1 GHz. The resulting digital channels with different gains are merged into one composite channel with a higher digital resolution in a wide dynamic range of energies. Neutron signals are fully discriminated from gamma signals. Results are presented.
O'Connor, Deborah; Mann, Jim; Wiersma, Elaine
2018-03-01
The importance of stigma in shaping the experiences of people living with dementia and challenging their social citizenship emerges repeatedly as a powerful and negative force. In a recent participatory action research (PAR) study focused on understanding what people with dementia need to know to live well, this link between stigma, discrimination and social citizenship emerged once again. A group of people living with dementia (n=8) met monthly for 16months to discuss their experiences and advise on the curriculum of a proposed self-management program. From the first introduction, stigma was identified as a defining feature of the experience of living well with dementia. This paper analyses this group's talk around stigma and discrimination, drawing attention to the critical role that diagnostic disclosure has in both positioning people with dementia in a stigmatizing way and, also, acting as a strategy of resistance that facilitates full social citizenship. Copyright © 2018 Elsevier Inc. All rights reserved.
Synthesis of plastic scintillation microspheres: alpha/beta discrimination.
Santiago, L M; Bagán, H; Tarancón, A; Garcia, J F
2014-11-01
Plastic scintillation microspheres (PSm) have been developed as an alternative for liquid scintillation cocktails due to their ability to avoid the mixed waste, besides other strengths in which the possibility for alpha/beta discrimination is included. The aim of this work was to evaluate the capability of PSm containing two combinations of fluorescence solutes (PPO/POPOP and pT/Bis-MSB) and variable amounts of a second organic solvent (naphthalene) to enhance the alpha/beta discrimination. Two commercial detectors with different Pulse Shape Discrimination performances (Quantulus and Triathler) were used to evaluate the alpha/beta discrimination. An optimal discrimination of alpha/beta particles was reached, with very low misclassification values (2% for beta particles and 0.5% for alpha particles), when PSm containing PPO/POPOP and between 0.6 and 2.0 g of naphthalene were evaluated using Triathler and the appropriate programme for data processing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Can CT and MR Shape and Textural Features Differentiate Benign Versus Malignant Pleural Lesions?
Pena, Elena; Ojiaku, MacArinze; Inacio, Joao R; Gupta, Ashish; Macdonald, D Blair; Shabana, Wael; Seely, Jean M; Rybicki, Frank J; Dennie, Carole; Thornhill, Rebecca E
2017-10-01
The study aimed to identify a radiomic approach based on CT and or magnetic resonance (MR) features (shape and texture) that may help differentiate benign versus malignant pleural lesions, and to assess if the radiomic model may improve confidence and accuracy of radiologists with different subspecialty backgrounds. Twenty-nine patients with pleural lesions studied on both contrast-enhanced CT and MR imaging were reviewed retrospectively. Three texture and three shape features were extracted. Combinations of features were used to generate logistic regression models using histopathology as outcome. Two thoracic and two abdominal radiologists evaluated their degree of confidence in malignancy. Diagnostic accuracy of radiologists was determined using contingency tables. Cohen's kappa coefficient was used to assess inter-reader agreement. Using optimal threshold criteria, sensitivity, specificity, and accuracy of each feature and combination of features were obtained and compared to the accuracy and confidence of radiologists. The CT model that best discriminated malignant from benign lesions revealed an AUC CT = 0.92 ± 0.05 (P < 0.0001). The most discriminative MR model showed an AUC MR = 0.87 ± 0.09 (P < 0.0001). The CT model was compared to the diagnostic confidence of all radiologists and the model outperformed both abdominal radiologists (P < 0.002), whereas the top discriminative MR model outperformed one of the abdominal radiologists (P = 0.02). The most discriminative MR model was more accurate than one abdominal (P = 0.04) and one thoracic radiologist (P = 0.02). Quantitative textural and shape analysis may help distinguish malignant from benign lesions. A radiomics-based approach may increase diagnostic confidence of abdominal radiologists on CT and MR and may potentially improve radiologists' accuracy in the assessment of pleural lesions characterized by MR. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Rüsch, Nicolas; Todd, Andrew R.; Bodenhausen, Galen V.; Olschewski, Manfred; Corrigan, Patrick W.
2009-01-01
Perceived legitimacy of discrimination shapes reactions to mental illness stigma among stigmatized individuals. We assessed deliberately endorsed versus automatic shame-related reactions to mental illness as predictors of change in perceived legitimacy of discrimination over six months among 75 people with mental illness. Automatically activated shame-related associations with mental illness were measured using the Brief Implicit Association Test, deliberately endorsed beliefs via self-report. Controlling for depression and perceived stigma, stronger baseline automatic shame-related associations, but not deliberately endorsed beliefs, predicted higher perceived legitimacy of discrimination after six months. Automatically activated shame reactions may increase vulnerability to mental illness stigma. PMID:19897173
NASA Astrophysics Data System (ADS)
Barker, Cathleen; Zhu, Ting; Rolison, Lucas; Kiff, Scott; Jordan, Kelly; Enqvist, Andreas
2018-01-01
Using natural helium (helium-4), the Arktis 180-bar pressurized gas scintillator is capable of detecting and distinguishing fast neutrons and gammas. The detector has a unique design of three optically separated segments in which 12 silicon-photomultiplier (SiPM) pairs are positioned equilaterally across the detector to allow for them to be fully immersed in the helium-4 gas volume; consequently, no additional optical interfaces are necessary. The SiPM signals were amplified, shaped, and readout by an analog board; a 250 MHz, 14-bit digitizer was used to examine the output pulses from each SiPMpair channel. The SiPM over-voltage had to be adjusted in order to reduce pulse clipping and negative overshoot, which was observed for events with high scintillation production. Pulse shaped discrimination (PSD) was conducted by evaluating three different parameters: time over threshold (TOT), pulse amplitude, and pulse integral. In order to differentiate high and low energy events, a 30ns gate window was implemented to group pulses from two SiPM channels or more for the calculation of TOT. It was demonstrated that pulses from a single SiPM channel within the 30ns window corresponded to low-energy gamma events while groups of pulses from two-channels or more were most likely neutron events. Due to gamma pulses having lower pulse amplitude, the percentage of measured gamma also depends on the threshold value in TOT calculations. Similarly, the threshold values were varied for the optimal PSD methods of using pulse amplitude and pulse area parameters. Helium-4 detectors equipped with SiPMs are excellent for in-the-field radiation measurement of nuclear spent fuel casks. With optimized PSD methods, the goal of developing a fuel cask content monitoring and inspection system based on these helium-4 detectors will be achieved.
Joint source based analysis of multiple brain structures in studying major depressive disorder
NASA Astrophysics Data System (ADS)
Ramezani, Mahdi; Rasoulian, Abtin; Hollenstein, Tom; Harkness, Kate; Johnsrude, Ingrid; Abolmaesumi, Purang
2014-03-01
We propose a joint Source-Based Analysis (jSBA) framework to identify brain structural variations in patients with Major Depressive Disorder (MDD). In this framework, features representing position, orientation and size (i.e. pose), shape, and local tissue composition are extracted. Subsequently, simultaneous analysis of these features within a joint analysis method is performed to generate the basis sources that show signi cant di erences between subjects with MDD and those in healthy control. Moreover, in a cross-validation leave- one-out experiment, we use a Fisher Linear Discriminant (FLD) classi er to identify individuals within the MDD group. Results show that we can classify the MDD subjects with an accuracy of 76% solely based on the information gathered from the joint analysis of pose, shape, and tissue composition in multiple brain structures.
Median Filtering Methods for Non-volcanic Tremor Detection
NASA Astrophysics Data System (ADS)
Damiao, L. G.; Nadeau, R. M.; Dreger, D. S.; Luna, B.; Zhang, H.
2016-12-01
Various properties of median filtering over time and space are used to address challenges posed by the Non-volcanic tremor detection problem. As part of a "Big-Data" effort to characterize the spatial and temporal distribution of ambient tremor throughout the Northern San Andreas Fault system, continuous seismic data from multiple seismic networks with contrasting operational characteristics and distributed over a variety of regions are being used. Automated median filtering methods that are flexible enough to work consistently with these data are required. Tremor is characterized by a low-amplitude, long-duration signal-train whose shape is coherent at multiple stations distributed over a large area. There are no consistent phase arrivals or mechanisms in a given tremor's signal and even the durations and shapes among different tremors vary considerably. A myriad of masquerading noise, anthropogenic and natural-event signals must also be discriminated in order to obtain accurate tremor detections. We present here results of the median methods applied to data from four regions of the San Andreas Fault system in northern California (Geysers Geothermal Field, Napa, Bitterwater and Parkfield) to illustrate the ability of the methods to detect tremor under diverse conditions.
Response to learned threat: an fMRI study in adolescent and adult anxiety
Britton, Jennifer C.; Grillon, Christian; Lissek, Shmuel; Norcross, Maxine A.; Szuhany, Kristin L.; Chen, Gang; Ernst, Monique; Nelson, Eric E.; Leibenluft, Ellen; Shechner, Tomer; Pine, Daniel S.
2013-01-01
Objective Poor threat-safety discrimination reflects prefrontal cortex dysfunction in adult anxiety disorders. While adolescent anxiety disorders are impairing and predict high risk for adult anxiety disorders, no prior study examines neural correlates of threat-safety discrimination in this group. The current study compares prefrontal cortex function in anxious and healthy adolescents and adults following conditioning and extinction, processes requiring threat-safety learning. Method Anxious and healthy adolescents and adults (n=114) completed fear conditioning and extinction in the clinic. Conditioned stimuli (CS+) were neutral faces, paired with an aversive scream. Physiological and subjective data were acquired. Several weeks later, 82 participants viewed the CS+ and morphed images resembling the CS+ in a magnetic resonance imaging (MRI) scanner. During scanning, participants made difficult threat-safety discriminations while appraising threat and explicit memory of the CS+. Results During conditioning and extinction, anxious groups reported more fear than healthy groups, but patient groups did not differ on physiology. During imaging, both anxious adolescents and adults exhibited lower sub-genual anterior cingulate (sgACC) activation than healthy peers, specifically when appraising threat. In ventromedial prefrontal cortex (vmPFC), relative to their age-matched peer groups, anxious adults exhibited reduced activation when appraising threat, whereas anxious adolescents exhibited a U-shaped pattern of activation, with greater activation to the most extreme CS and CS−. Conclusions Two regions of the prefrontal cortex are involved in anxiety disorders. Reduced sgACC engagement is a shared feature in adult and adolescent anxiety disorders, but vmPFC dysfunction is age-specific. The unique U-shaped pattern of vmPFC activation in many anxious adolescents could reflect heightened sensitivity to threat and safety conditions. How variations in the pattern relate to later risk for adult illness remains to be determined. PMID:23929092
Automated Decision Tree Classification of Corneal Shape
Twa, Michael D.; Parthasarathy, Srinivasan; Roberts, Cynthia; Mahmoud, Ashraf M.; Raasch, Thomas W.; Bullimore, Mark A.
2011-01-01
Purpose The volume and complexity of data produced during videokeratography examinations present a challenge of interpretation. As a consequence, results are often analyzed qualitatively by subjective pattern recognition or reduced to comparisons of summary indices. We describe the application of decision tree induction, an automated machine learning classification method, to discriminate between normal and keratoconic corneal shapes in an objective and quantitative way. We then compared this method with other known classification methods. Methods The corneal surface was modeled with a seventh-order Zernike polynomial for 132 normal eyes of 92 subjects and 112 eyes of 71 subjects diagnosed with keratoconus. A decision tree classifier was induced using the C4.5 algorithm, and its classification performance was compared with the modified Rabinowitz–McDonnell index, Schwiegerling’s Z3 index (Z3), Keratoconus Prediction Index (KPI), KISA%, and Cone Location and Magnitude Index using recommended classification thresholds for each method. We also evaluated the area under the receiver operator characteristic (ROC) curve for each classification method. Results Our decision tree classifier performed equal to or better than the other classifiers tested: accuracy was 92% and the area under the ROC curve was 0.97. Our decision tree classifier reduced the information needed to distinguish between normal and keratoconus eyes using four of 36 Zernike polynomial coefficients. The four surface features selected as classification attributes by the decision tree method were inferior elevation, greater sagittal depth, oblique toricity, and trefoil. Conclusions Automated decision tree classification of corneal shape through Zernike polynomials is an accurate quantitative method of classification that is interpretable and can be generated from any instrument platform capable of raw elevation data output. This method of pattern classification is extendable to other classification problems. PMID:16357645
Discrimination of corn from monocotyledonous weeds with ultraviolet (UV) induced fluorescence.
Panneton, Bernard; Guillaume, Serge; Samson, Guy; Roger, Jean-Michel
2011-01-01
In production agriculture, savings in herbicides can be achieved if weeds can be discriminated from crop, allowing the targeting of weed control to weed-infested areas only. Previous studies demonstrated the potential of ultraviolet (UV) induced fluorescence to discriminate corn from weeds and recently, robust models have been obtained for the discrimination between monocots (including corn) and dicots. Here, we developed a new approach to achieve robust discrimination of monocot weeds from corn. To this end, four corn hybrids (Elite 60T05, Monsanto DKC 26-78, Pioneer 39Y85 (RR), and Syngenta N2555 (Bt, LL)) and four monocot weeds (Digitaria ischaemum (Schreb.) I, Echinochloa crus-galli (L.) Beauv., Panicum capillare (L.), and Setaria glauca (L.) Beauv.) were grown either in a greenhouse or in a growth cabinet and UV (327 nm) induced fluorescence spectra (400 to 755 nm) were measured under controlled or uncontrolled ambient light intensity and temperature. This resulted in three contrasting data sets suitable for testing the robustness of discrimination models. In the blue-green region (400 to 550 nm), the shape of the spectra did not contain any useful information for discrimination. Therefore, the integral of the blue-green region (415 to 455 nm) was used as a normalizing factor for the red fluorescence intensity (670 to 755 nm). The shape of the normalized red fluorescence spectra did not contribute to the discrimination and in the end, only the integral of the normalized red fluorescence intensity was left as a single discriminant variable. Applying a threshold on this variable minimizing the classification error resulted in calibration errors ranging from 14.2% to 15.8%, but this threshold varied largely between data sets. Therefore, to achieve robustness, a model calibration scheme was developed based on the collection of a calibration data set from 75 corn plants. From this set, a new threshold can be estimated as the 85% quantile on the cumulative frequency curve of the integral of the normalized red fluorescence. With this approach the classification error was nearly constant (16.0% to 18.5%), thereby indicating the potential of UV-induced fluorescence to reliably discriminate corn from monocot weeds.
Sex determination by three-dimensional geometric morphometrics of the palate and cranial base.
Chovalopoulou, Maria-Eleni; Valakos, Efstratios D; Manolis, Sotiris K
2013-01-01
The purpose of this study is to assess sexual dimorphism in the palate and base of adult crania using three-dimensional geometric morphometric methods. The study sample consisted of 176 crania of known sex (94 males, 82 females) belonging to individuals who lived during the 20th century in Greece. The three-dimensional co-ordinates of 30 ectocranial landmarks were digitized using a MicroScribe 3DX contact digitizer. Generalized Procrustes Analysis (GPA) was used to obtain size and shape variables for statistical analysis. Three discriminant function analyses were carried out: (1) using PC scores from Procrustes shape space, (2) centroid size alone, and (3) PC scores of GPA residuals which includes InCS for analysis in Procrustes form space. Results indicate that there are shape differences between sexes. In males, the palate is deepest and more elongated; the cranial base is shortened. Sex-specific shape differences for the cross-validated data give better classification results in the cranial base (77.2%) compared with the palate (68.9%). Size alone yielded better results for cranial base (82%) in opposition to palate (63.1%). As anticipated, the classification accuracy improves when both size and shape are combined (90.4% for cranial base, and 74.8% for palate).
Familiar shapes attract attention in figure-ground displays.
Nelson, Rolf A; Palmer, Stephen E
2007-04-01
We report five experiments that explore the effect of figure-ground factors on attention. We hypothesized that figural cues, such as familiar shape, would draw attention to the figural side in an attentional cuing task using bipartite figure-ground displays. The first two experiments used faces in profile as the familiar shape and found a perceptual advantage for targets presented on the meaningful side of the central contour in detection speed (Experiment 1) and discrimination accuracy (Experiment 2). The third experiment demonstrated the figural advantage in response time (RT) with nine other familiar shapes (including a sea horse, a guitar, a fir tree, etc.), but only when targets appeared in close proximity to the contour. A fourth experiment obtained a figural advantage in a discrimination task with the larger set of familiar shapes. The final experiment ruled out eye movements as a possible confounding factor by replicating the RT advantage for targets on the figural side of face displays when all trials containing eye movements were eliminated. The results are discussed in terms of ecological influences on attention, and are cast within the framework of Yantis and Jonides's hypothesis that attention is exogenously drawn to the onset of new perceptual objects. We argue that the figural side constitutes an "object" whereas the ground side does not, and that figural cues such as shape familiarity are effective in determining which areas represent objects.
Truppa, Valentina; Carducci, Paola; Trapanese, Cinzia; Hanus, Daniel
2015-01-01
Most experimental paradigms to study visual cognition in humans and non-human species are based on discrimination tasks involving the choice between two or more visual stimuli. To this end, different types of stimuli and procedures for stimuli presentation are used, which highlights the necessity to compare data obtained with different methods. The present study assessed whether, and to what extent, capuchin monkeys’ ability to solve a size discrimination problem is influenced by the type of procedure used to present the problem. Capuchins’ ability to generalise knowledge across different tasks was also evaluated. We trained eight adult tufted capuchin monkeys to select the larger of two stimuli of the same shape and different sizes by using pairs of food items (Experiment 1), computer images (Experiment 1) and objects (Experiment 2). Our results indicated that monkeys achieved the learning criterion faster with food stimuli compared to both images and objects. They also required consistently fewer trials with objects than with images. Moreover, female capuchins had higher levels of acquisition accuracy with food stimuli than with images. Finally, capuchins did not immediately transfer the solution of the problem acquired in one task condition to the other conditions. Overall, these findings suggest that – even in relatively simple visual discrimination problems where a single perceptual dimension (i.e., size) has to be judged – learning speed strongly depends on the mode of presentation. PMID:25927363
Zeugin, David; Arfa, Norhan; Notter, Michael; Murray, Micah M; Ionta, Silvio
2017-08-30
Face recognition is an apparently straightforward but, in fact, complex ability, encompassing the activation of at least visual and somatosensory representations. Understanding how identity shapes the interplay between these face-related affordances could clarify the mechanisms of self-other discrimination. To this aim, we exploited the so-called "face inversion effect" (FIE), a specific bias in the mental rotation of face images (of other people): with respect to inanimate objects, face images require longer time to be mentally rotated from the upside-down. Via the FIE, which suggests the activation of somatosensory mechanisms, we assessed identity-related changes in the interplay between visual and somatosensory affordances between self- and other-face representations. Methodologically, to avoid the potential interference of the somatosensory feedback associated with musculoskeletal movements, we introduced the tracking of gaze direction to record participants' response. Response times from twenty healthy participants showed the larger FIE for self- than other-faces, suggesting that the impact of somatosensory affordances on mental representation of faces varies according to identity. The present study lays the foundations of a quantifiable method to implicitly assess self-other discrimination, with possible translational benefits for early diagnosis of face processing disturbances (e.g. prosopagnosia), and for neurophysiological studies on self-other discrimination in ethological settings. Copyright © 2017 Elsevier B.V. All rights reserved.
Prostate contouring in MRI guided biopsy.
Vikal, Siddharth; Haker, Steven; Tempany, Clare; Fichtinger, Gabor
2009-03-27
With MRI possibly becoming a modality of choice for detection and staging of prostate cancer, fast and accurate outlining of the prostate is required in the volume of clinical interest. We present a semi-automatic algorithm that uses a priori knowledge of prostate shape to arrive at the final prostate contour. The contour of one slice is then used as initial estimate in the neighboring slices. Thus we propagate the contour in 3D through steps of refinement in each slice. The algorithm makes only minimum assumptions about the prostate shape. A statistical shape model of prostate contour in polar transform space is employed to narrow search space. Further, shape guidance is implicitly imposed by allowing only plausible edge orientations using template matching. The algorithm does not require region-homogeneity, discriminative edge force, or any particular edge profile. Likewise, it makes no assumption on the imaging coils and pulse sequences used and it is robust to the patient's pose (supine, prone, etc.). The contour method was validated using expert segmentation on clinical MRI data. We recorded a mean absolute distance of 2.0 ± 0.6 mm and dice similarity coefficient of 0.93 ± 0.3 in midsection. The algorithm takes about 1 second per slice.
Prostate contouring in MRI guided biopsy
Vikal, Siddharth; Haker, Steven; Tempany, Clare; Fichtinger, Gabor
2010-01-01
With MRI possibly becoming a modality of choice for detection and staging of prostate cancer, fast and accurate outlining of the prostate is required in the volume of clinical interest. We present a semi-automatic algorithm that uses a priori knowledge of prostate shape to arrive at the final prostate contour. The contour of one slice is then used as initial estimate in the neighboring slices. Thus we propagate the contour in 3D through steps of refinement in each slice. The algorithm makes only minimum assumptions about the prostate shape. A statistical shape model of prostate contour in polar transform space is employed to narrow search space. Further, shape guidance is implicitly imposed by allowing only plausible edge orientations using template matching. The algorithm does not require region-homogeneity, discriminative edge force, or any particular edge profile. Likewise, it makes no assumption on the imaging coils and pulse sequences used and it is robust to the patient's pose (supine, prone, etc.). The contour method was validated using expert segmentation on clinical MRI data. We recorded a mean absolute distance of 2.0 ± 0.6 mm and dice similarity coefficient of 0.93 ± 0.3 in midsection. The algorithm takes about 1 second per slice. PMID:21132083
Heart sounds analysis using probability assessment.
Plesinger, F; Viscor, I; Halamek, J; Jurco, J; Jurak, P
2017-07-31
This paper describes a method for automated discrimination of heart sounds recordings according to the Physionet Challenge 2016. The goal was to decide if the recording refers to normal or abnormal heart sounds or if it is not possible to decide (i.e. 'unsure' recordings). Heart sounds S1 and S2 are detected using amplitude envelopes in the band 15-90 Hz. The averaged shape of the S1/S2 pair is computed from amplitude envelopes in five different bands (15-90 Hz; 55-150 Hz; 100-250 Hz; 200-450 Hz; 400-800 Hz). A total of 53 features are extracted from the data. The largest group of features is extracted from the statistical properties of the averaged shapes; other features are extracted from the symmetry of averaged shapes, and the last group of features is independent of S1 and S2 detection. Generated features are processed using logical rules and probability assessment, a prototype of a new machine-learning method. The method was trained using 3155 records and tested on 1277 hidden records. It resulted in a training score of 0.903 (sensitivity 0.869, specificity 0.937) and a testing score of 0.841 (sensitivity 0.770, specificity 0.913). The revised method led to a test score of 0.853 in the follow-up phase of the challenge. The presented solution achieved 7th place out of 48 competing entries in the Physionet Challenge 2016 (official phase). In addition, the PROBAfind software for probability assessment was introduced.
Selective attention in dairy cattle.
Blackmore, T L; Temple, W; Foster, T M
2016-08-01
In a replication of Reynolds (1961), two cows learned to discriminate between compound stimuli in a forced choice procedure where pushing through a one-way gate marked with a red cross (S+) gave access to food. Pushing through a one-way gate marked with a yellow triangle (S-) gave no access to food. To investigate whether shape or colour was controlling behaviour, probe tests varied either the shape or the colour of the stimuli (e.g., a red vs. a yellow cross, and a red cross vs. a red triangle). Results suggested control by colour rather than shape, as the gate marked with the red stimulus was chosen more than the gate marked with the yellow stimulus regardless of stimulus shape, and when two shapes of the same colour (either red or yellow) were presented, cows chose both equally. Further probe tests with painted red, white, and yellow stimuli showed that the cows had learned to avoid yellow rather than to approach red, suggesting discriminative behaviour was controlled by the colour of the negative stimulus and not by either aspect of the positive stimulus. It is not clear why the negative stimulus was more salient, but it may reflect a tendency for cows to learn to avoid farm handling practices which involve mainly negative stimuli. Copyright © 2016 Elsevier B.V. All rights reserved.
Wing geometry of Culex coronator (Diptera: Culicidae) from South and Southeast Brazil
2014-01-01
Background The Coronator Group encompasses Culex coronator Dyar & Knab, Culex camposi Dyar, Culex covagarciai Forattini, Culex ousqua Dyar, Culex usquatissimus Dyar, Culex usquatus Dyar and Culex yojoae Strickman. Culex coronator has the largest geographic distribution, occurring in North, Central and South America. Moreover, it is a potential vector-borne mosquito species because females have been found naturally infected with several arboviruses, i.e., Saint Louis Encephalitis Virus, Venezuelan Equine Encephalitis Virus and West Nile Virus. Considering the epidemiological importance of Cx. coronator, we investigated the wing shape diversity of Cx. coronator from South and Southeast Brazil, a method to preliminarily estimate population diversity. Methods Field-collected immature stages of seven populations from a large geographical area in Brazil were maintained in the laboratory to obtain both females and males linked with pupal and/or larval exuviae. For each individual female, 18 landmarks of left wings were marked and digitalized. After Procrustes superimposition, discriminant analysis of shape was employed to quantify wing shape variation among populations. The isometric estimator centroid size was calculated to assess the overall wing size and allometry. Results Wing shape was polymorphic among populations of Cx. coronator. However, dissimilarities among populations were higher than those observed within each population, suggesting populational differentiation in Cx. coronator. Morphological distances between populations were not correlated to geographical distances, indicating that other factors may act on wing shape and thus, determining microevolutionary patterns in Cx. coronator. Despite the population differentiation, intrapopulational wing shape variability was equivalent among all seven populations. Conclusion The wing variability found in Cx. coronator populations brings to light a new biological problem to be investigated: the population genetics of Cx. coronator. Because of differences in the male genitalia, we also transferred Cx. yojoae to the Apicinus Subgroup. PMID:24721508
Novel Spectral Representations and Sparsity-Driven Algorithms for Shape Modeling and Analysis
NASA Astrophysics Data System (ADS)
Zhong, Ming
In this dissertation, we focus on extending classical spectral shape analysis by incorporating spectral graph wavelets and sparsity-seeking algorithms. Defined with the graph Laplacian eigenbasis, the spectral graph wavelets are localized both in the vertex domain and graph spectral domain, and thus are very effective in describing local geometry. With a rich dictionary of elementary vectors and forcing certain sparsity constraints, a real life signal can often be well approximated by a very sparse coefficient representation. The many successful applications of sparse signal representation in computer vision and image processing inspire us to explore the idea of employing sparse modeling techniques with dictionary of spectral basis to solve various shape modeling problems. Conventional spectral mesh compression uses the eigenfunctions of mesh Laplacian as shape bases, which are highly inefficient in representing local geometry. To ameliorate, we advocate an innovative approach to 3D mesh compression using spectral graph wavelets as dictionary to encode mesh geometry. The spectral graph wavelets are locally defined at individual vertices and can better capture local shape information than Laplacian eigenbasis. The multi-scale SGWs form a redundant dictionary as shape basis, so we formulate the compression of 3D shape as a sparse approximation problem that can be readily handled by greedy pursuit algorithms. Surface inpainting refers to the completion or recovery of missing shape geometry based on the shape information that is currently available. We devise a new surface inpainting algorithm founded upon the theory and techniques of sparse signal recovery. Instead of estimating the missing geometry directly, our novel method is to find this low-dimensional representation which describes the entire original shape. More specifically, we find that, for many shapes, the vertex coordinate function can be well approximated by a very sparse coefficient representation with respect to the dictionary comprising its Laplacian eigenbasis, and it is then possible to recover this sparse representation from partial measurements of the original shape. Taking advantage of the sparsity cue, we advocate a novel variational approach for surface inpainting, integrating data fidelity constraints on the shape domain with coefficient sparsity constraints on the transformed domain. Because of the powerful properties of Laplacian eigenbasis, the inpainting results of our method tend to be globally coherent with the remaining shape. Informative and discriminative feature descriptors are vital in qualitative and quantitative shape analysis for a large variety of graphics applications. We advocate novel strategies to define generalized, user-specified features on shapes. Our new region descriptors are primarily built upon the coefficients of spectral graph wavelets that are both multi-scale and multi-level in nature, consisting of both local and global information. Based on our novel spectral feature descriptor, we developed a user-specified feature detection framework and a tensor-based shape matching algorithm. Through various experiments, we demonstrate the competitive performance of our proposed methods and the great potential of spectral basis and sparsity-driven methods for shape modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashenfelter, J.; Jaffe, D.; Diwan, M. V.
A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. As a result, key design features for optimizing MeV-scale response and background rejection capabilities are identified.
NASA Technical Reports Server (NTRS)
Slassi-Sennou, S. A.; Boggs, S. E.; Feffer, P. T.; Lin, R. P.
1997-01-01
Pulse Shape Discrimination (PSD) for background reduction will be used in the INTErnational Gamma Ray Astrophysics Laboratory (INTEGRAL) imaging spectrometer (SPI) to improve the sensitivity from 200 keV to 2 MeV. The observation of significant astrophysical gamma ray lines in this energy range is expected, where the dominant component of the background is the beta(sup -) decay in the Ge detectors due to the activation of Ge nuclei by cosmic rays. The sensitivity of the SPI will be improved by rejecting beta(sup -) decay events while retaining photon events. The PSD technique will distinguish between single and multiple site events. Simulation results of PSD for INTEGRAL-type Ge detectors using a numerical model for pulse shape generation are presented. The model was shown to agree with the experimental results for a narrow inner bore closed end cylindrical detector. Using PSD, a sensitivity improvement factor of the order of 2.4 at 0.8 MeV is expected.
NASA Astrophysics Data System (ADS)
Veloce, L. M.; Kuźniak, M.; Di Stefano, P. C. F.; Noble, A. J.; Boulay, M. G.; Nadeau, P.; Pollmann, T.; Clark, M.; Piquemal, M.; Schreiner, K.
2016-06-01
Liquid noble based particle detectors often use the organic wavelength shifter 1,1,4,4-tetraphenyl-1,3-butadiene (TPB) which shifts UV scintillation light to the visible regime, facilitating its detection, but which also can scintillate on its own. Dark matter searches based on this type of detector commonly rely on pulse-shape discrimination (PSD) for background mitigation. Alpha-induced scintillation therefore represents a possible background source in dark matter searches. The timing characteristics of this scintillation determine whether this background can be mitigated through PSD. We have therefore characterized the pulse shape and light yield of alpha induced TPB scintillation at temperatures ranging from 300 K down to 4 K, with special attention given to liquid noble gas temperatures. We find that the pulse shapes and light yield depend strongly on temperature. In addition, the significant contribution of long time constants above ~50 K provides an avenue for discrimination between alpha decay events in TPB and nuclear-recoil events in noble liquid detectors.
Automatic anatomical structures location based on dynamic shape measurement
NASA Astrophysics Data System (ADS)
Witkowski, Marcin; Rapp, Walter; Sitnik, Robert; Kujawinska, Malgorzata; Vander Sloten, Jos; Haex, Bart; Bogaert, Nico; Heitmann, Kjell
2005-09-01
New image processing methods and active photonics apparatus have made possible the development of relatively inexpensive optical systems for complex shape and object measurements. We present dynamic 360° scanning method for analysis of human lower body biomechanics, with an emphasis on the analysis of the knee joint. The anatomical structure (of high medical interest) that is possible to scan and analyze, is patella. Tracking of patella position and orientation under dynamic conditions may lead to detect pathological patella movements and help in knee joint disease diagnosis. The processed data is obtained from a dynamic laser triangulation surface measurement system, able to capture slow to normal movements with a scan frequency between 15 and 30 Hz. These frequency rates are enough to capture controlled movements used e.g. for medical examination purposes. The purpose of the work presented is to develop surface analysis methods that may be used as support of diagnosis of motoric abilities of lower limbs. The paper presents algorithms used to process acquired lower limbs surface data in order to find the position and orientation of patella. The algorithms implemented include input data preparation, curvature description methods, knee region discrimination and patella assumed position/orientation calculation. Additionally, a method of 4D (3D + time) medical data visualization is proposed. Also some exemplary results are presented.
Sabik, Natalie J
2015-03-01
Social expectancy theory posits that cultural values shape how individuals perceive and evaluate others, and this influences how others evaluate themselves. Based on this theory, ageism may shape older individuals' self-evaluations. Given the cultural focus on beauty and youth, perceptions of age discrimination may be associated with lower body esteem, and this may be associated with poor psychological well-being. Because discrimination has been associated with poor health, and perceptions of health can affect body perceptions, subjective health status may also contribute to lower body esteem. These associations are assessed in a structural equation model for 244 African American and European American women in their early 60s. Perceptions of age discrimination and body esteem were associated with lower psychological well-being for both ethnic groups. Body esteem partially mediated the association between age discrimination and psychological well-being among European American women but not among African American women. Age-related discrimination is one source of psychological distress for older adults, though ageism's associations with body esteem, health, and psychological well-being vary significantly for European American and African American women. Examining body perceptions and health in the contexts of ageism and ethnicity is necessary when considering the psychological well-being of older women. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A note on statistical analysis of shape through triangulation of landmarks
Rao, C. Radhakrishna
2000-01-01
In an earlier paper, the author jointly with S. Suryawanshi proposed statistical analysis of shape through triangulation of landmarks on objects. It was observed that the angles of the triangles are invariant to scaling, location, and rotation of objects. No distinction was made between an object and its reflection. The present paper provides the methodology of shape discrimination when reflection is also taken into account and makes suggestions for modifications to be made when some of the landmarks are collinear. PMID:10737780
Interpersonal discrimination and markers of adiposity in longitudinal studies: a systematic review.
Bernardo, C de O; Bastos, J L; González-Chica, D A; Peres, M A; Paradies, Y C
2017-09-01
While the impact of interpersonal discrimination on mental health is well established, its effects on physical health outcomes have not been fully elucidated. This study systematically reviewed the literature on the prospective association between interpersonal discrimination and markers of adiposity. Medline, Web of Science, Scopus, PsycInfo, SciELO, LILACS, Google Scholar, Capes/Brazil and ProQuest databases were used to retrieve relevant information in November 2016. The results from the 10 studies that met the inclusion criteria support an association between interpersonal self-reported discrimination and the outcomes. In general, the most consistent findings were for weight and body mass index (BMI) among women, i.e. high levels of self-reported discrimination were related to increased weight and BMI. Waist circumference (WC) showed a similar pattern of association with discrimination, in a positive direction, but an inverted U-shaped association was also found. Despite a few inverse associations between discrimination and markers of adiposity, none of the associations were statistically significant. Overall, markers of adiposity were consistently associated with discrimination, mainly through direct and nonlinear associations. This review provides evidence that self-reported discrimination can play an important role in weight, BMI and WC changes. © 2017 World Obesity Federation.
Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping
NASA Astrophysics Data System (ADS)
Wahl, C. G.; Bernard, E. P.; Lippincott, W. H.; Nikkel, J. A.; Shin, Y.; McKinsey, D. N.
2014-06-01
Liquid-argon scintillation detectors are used in fundamental physics experiments and are being considered for security applications. Previous studies have suggested that the addition of small amounts of xenon dopant improves performance in light or signal yield, energy resolution, and particle discrimination. In this study, we investigate the detector response for xenon dopant concentrations from 9 ± 5 ppm to 1100 ± 500 ppm xenon (by weight) in 6 steps. The 3.14-liter detector uses tetraphenyl butadiene (TPB) wavelength shifter with dual photomultiplier tubes and is operated in single-phase mode. Gamma-ray-interaction signal yield of 4.0 ± 0.1 photoelectrons/keV improved to 5.0 ± 0.1 photoelectrons/keV with dopant. Energy resolution at 662 keV improved from (4.4 ± 0.2)% (σ) to (3.5 ± 0.2)% (σ) with dopant. Pulse-shape discrimination performance degraded greatly at the first addition of dopant, slightly improved with additional additions, then rapidly improved near the end of our dopant range, with performance becoming slightly better than pure argon at the highest tested dopant concentration. Some evidence of reduced neutron scintillation efficiency with increasing dopant concentration was observed. Finally, the waveform shape outside the TPB region is discussed, suggesting that the contribution to the waveform from xenon-produced light is primarily in the last portion of the slow component.
Cosmic growth and expansion conjoined
NASA Astrophysics Data System (ADS)
Linder, Eric V.
2017-01-01
Cosmological measurements of both the expansion history and growth history have matured, and the two together provide an important test of general relativity. We consider their joint evolutionary track, showing that this has advantages in distinguishing cosmologies relative to considering them individually or at isolated redshifts. In particular, the joint comparison relaxes the shape degeneracy that makes fσ8(z) curves difficult to separate from the overall growth amplitude. The conjoined method further helps visualization of which combinations of redshift ranges provide the clearest discrimination. We examine standard dark energy cosmologies, modified gravity, and "stuttering" growth, each showing distinct signatures.
ERIC Educational Resources Information Center
Lawson, Rebecca
2009-01-01
A sequential matching task was used to compare how the difficulty of shape discrimination influences the achievement of object constancy for depth rotations across haptic and visual object recognition. Stimuli were nameable, 3-dimensional plastic models of familiar objects (e.g., bed, chair) and morphs midway between these endpoint shapes (e.g., a…
Gender differences in adult foot shape: implications for shoe design.
Wunderlich, R E; Cavanagh, P R
2001-04-01
To analyze gender differences in foot shape in a large sample of young individuals. Univariate t-tests and multivariate discriminant analyses were used to assess 1) significant differences between men and women for each foot and leg dimension, standardized to foot length, 2) the reliability of classification into gender classes using the absolute and standardized variable sets, and 3) the relative importance of each variable to the discrimination between men and women. Men have longer and broader feet than women for a given stature. After normalization of the measurements by foot length, men and women were found to differ significantly in two calf, five ankle, and four foot shape variables. Classification by gender using absolute values was correct at least 93% of the time. Using the variables standardized to foot length, gender was correctly classified 85% of the time. This study demonstrates that female feet and legs are not simply scaled-down versions of male feet but rather differ in a number of shape characteristics, particularly at the arch, the lateral side of the foot, the first toe, and the ball of the foot. These differences should be taken into account in the design and manufacture of women's sport shoes.
Norman, Joseph; Hock, Howard; Schöner, Gregor
2014-07-01
It has long been thought (e.g., Cavanagh & Mather, 1989) that first-order motion-energy extraction via space-time comparator-type models (e.g., the elaborated Reichardt detector) is sufficient to account for human performance in the short-range motion paradigm (Braddick, 1974), including the perception of reverse-phi motion when the luminance polarity of the visual elements is inverted during successive frames. Human observers' ability to discriminate motion direction and use coherent motion information to segregate a region of a random cinematogram and determine its shape was tested; they performed better in the same-, as compared with the inverted-, polarity condition. Computational analyses of short-range motion perception based on the elaborated Reichardt motion energy detector (van Santen & Sperling, 1985) predict, incorrectly, that symmetrical results will be obtained for the same- and inverted-polarity conditions. In contrast, the counterchange detector (Hock, Schöner, & Gilroy, 2009) predicts an asymmetry quite similar to that of human observers in both motion direction and shape discrimination. The further advantage of counterchange, as compared with motion energy, detection for the perception of spatial shape- and depth-from-motion is discussed.
Frøslie, Kathrine Frey; Røislien, Jo; Qvigstad, Elisabeth; Godang, Kristin; Bollerslev, Jens; Voldner, Nanna; Henriksen, Tore; Veierød, Marit B
2013-01-17
Plasma glucose levels are important measures in medical care and research, and are often obtained from oral glucose tolerance tests (OGTT) with repeated measurements over 2-3 hours. It is common practice to use simple summary measures of OGTT curves. However, different OGTT curves can yield similar summary measures, and information of physiological or clinical interest may be lost. Our mean aim was to extract information inherent in the shape of OGTT glucose curves, compare it with the information from simple summary measures, and explore the clinical usefulness of such information. OGTTs with five glucose measurements over two hours were recorded for 974 healthy pregnant women in their first trimester. For each woman, the five measurements were transformed into smooth OGTT glucose curves by functional data analysis (FDA), a collection of statistical methods developed specifically to analyse curve data. The essential modes of temporal variation between OGTT glucose curves were extracted by functional principal component analysis. The resultant functional principal component (FPC) scores were compared with commonly used simple summary measures: fasting and two-hour (2-h) values, area under the curve (AUC) and simple shape index (2-h minus 90-min values, or 90-min minus 60-min values). Clinical usefulness of FDA was explored by regression analyses of glucose tolerance later in pregnancy. Over 99% of the variation between individually fitted curves was expressed in the first three FPCs, interpreted physiologically as "general level" (FPC1), "time to peak" (FPC2) and "oscillations" (FPC3). FPC1 scores correlated strongly with AUC (r=0.999), but less with the other simple summary measures (-0.42≤r≤0.79). FPC2 scores gave shape information not captured by simple summary measures (-0.12≤r≤0.40). FPC2 scores, but not FPC1 nor the simple summary measures, discriminated between women who did and did not develop gestational diabetes later in pregnancy. FDA of OGTT glucose curves in early pregnancy extracted shape information that was not identified by commonly used simple summary measures. This information discriminated between women with and without gestational diabetes later in pregnancy.
Duan, Lingfeng; Han, Jiwan; Guo, Zilong; Tu, Haifu; Yang, Peng; Zhang, Dong; Fan, Yuan; Chen, Guoxing; Xiong, Lizhong; Dai, Mingqiu; Williams, Kevin; Corke, Fiona; Doonan, John H; Yang, Wanneng
2018-01-01
Dynamic quantification of drought response is a key issue both for variety selection and for functional genetic study of rice drought resistance. Traditional assessment of drought resistance traits, such as stay-green and leaf-rolling, has utilized manual measurements, that are often subjective, error-prone, poorly quantified and time consuming. To relieve this phenotyping bottleneck, we demonstrate a feasible, robust and non-destructive method that dynamically quantifies response to drought, under both controlled and field conditions. Firstly, RGB images of individual rice plants at different growth points were analyzed to derive 4 features that were influenced by imposition of drought. These include a feature related to the ability to stay green, which we termed greenness plant area ratio (GPAR) and 3 shape descriptors [total plant area/bounding rectangle area ratio (TBR), perimeter area ratio (PAR) and total plant area/convex hull area ratio (TCR)]. Experiments showed that these 4 features were capable of discriminating reliably between drought resistant and drought sensitive accessions, and dynamically quantifying the drought response under controlled conditions across time (at either daily or half hourly time intervals). We compared the 3 shape descriptors and concluded that PAR was more robust and sensitive to leaf-rolling than the other shape descriptors. In addition, PAR and GPAR proved to be effective in quantification of drought response in the field. Moreover, the values obtained in field experiments using the collection of rice varieties were correlated with those derived from pot-based experiments. The general applicability of the algorithms is demonstrated by their ability to probe archival Miscanthus data previously collected on an independent platform. In conclusion, this image-based technology is robust providing a platform-independent tool for quantifying drought response that should be of general utility for breeding and functional genomics in future.
Yu, Jin; Abidi, Syed Sibte Raza; Artes, Paul; McIntyre, Andy; Heywood, Malcolm
2005-01-01
The availability of modern imaging techniques such as Confocal Scanning Laser Tomography (CSLT) for capturing high-quality optic nerve images offer the potential for developing automatic and objective methods for diagnosing glaucoma. We present a hybrid approach that features the analysis of CSLT images using moment methods to derive abstract image defining features. The features are then used to train classifers for automatically distinguishing CSLT images of normal and glaucoma patient. As a first, in this paper, we present investigations in feature subset selction methods for reducing the relatively large input space produced by the moment methods. We use neural networks and support vector machines to determine a sub-set of moments that offer high classification accuracy. We demonstratee the efficacy of our methods to discriminate between healthy and glaucomatous optic disks based on shape information automatically derived from optic disk topography and reflectance images.
Snipes, Shedra A; Cooper, Sharon P; Shipp, Eva M
2017-01-01
This article describes how perceived discrimination shapes the way Latino farmworkers encounter injuries and seek out treatment. After 5 months of ethnographic fieldwork, 89 open-ended, semistructured interviews were analyzed. NVivo was used to code and qualitatively organize the interviews and field notes. Finally, codes, notes, and co-occurring dynamics were used to iteratively assess the data for major themes. The primary source of perceived discrimination was the "boss" or farm owner. Immigrant status was also a significant influence on how farmworkers perceived the discrimination. Specifically, the ability to speak English and length of stay in the United States were related to stronger perceptions of discrimination. Finally, farm owners compelled their Latino employees to work through their injuries without treatment. This ethnographic account brings attention to how discrimination and lack of worksite protections are implicated in farmworkers' injury experiences and suggests the need for policies that better safeguard vulnerable workers.
NASA Astrophysics Data System (ADS)
Rabidas, Rinku; Midya, Abhishek; Chakraborty, Jayasree; Sadhu, Anup; Arif, Wasim
2018-02-01
In this paper, Curvelet based local attributes, Curvelet-Local configuration pattern (C-LCP), is introduced for the characterization of mammographic masses as benign or malignant. Amid different anomalies such as micro- calcification, bilateral asymmetry, architectural distortion, and masses, the reason for targeting the mass lesions is due to their variation in shape, size, and margin which makes the diagnosis a challenging task. Being efficient in classification, multi-resolution property of the Curvelet transform is exploited and local information is extracted from the coefficients of each subband using Local configuration pattern (LCP). The microscopic measures in concatenation with the local textural information provide more discriminating capability than individual. The measures embody the magnitude information along with the pixel-wise relationships among the neighboring pixels. The performance analysis is conducted with 200 mammograms of the DDSM database containing 100 mass cases of each benign and malignant. The optimal set of features is acquired via stepwise logistic regression method and the classification is carried out with Fisher linear discriminant analysis. The best area under the receiver operating characteristic curve and accuracy of 0.95 and 87.55% are achieved with the proposed method, which is further compared with some of the state-of-the-art competing methods.
Accumulation of Carotenoids and Metabolic Profiling in Different Cultivars of Tagetes Flowers.
Park, Yun Ji; Park, Soo-Yun; Valan Arasu, Mariadhas; Al-Dhabi, Naif Abdullah; Ahn, Hyung-Geun; Kim, Jae Kwang; Park, Sang Un
2017-02-18
Species of Tagetes , which belong to the family Asteraceae show different characteristics including, bloom size, shape, and color; plant size; and leaf shape. In this study, we determined the differences in primary metabolites and carotenoid yields among six cultivars from two Tagetes species, T. erecta and T. patula . In total, we detected seven carotenoids in the examined cultivars: violaxanthin, lutein, zeaxanthin, α-carotene, β-carotene, 9- cis -β-carotene, and 13- cis -β-carotene. In all the cultivars, lutein was the most abundant carotenoid. Furthermore, the contents of each carotenoid in flowers varied depending on the cultivar. Principal component analysis (PCA) facilitated metabolic discrimination between Tagetes cultivars, with the exception of Inca Yellow and Discovery Orange. Moreover, PCA and orthogonal projection to latent structure-discriminant analysis (OPLS-DA) results provided a clear discrimination between T. erecta and T. patula . Primary metabolites, including xylose, citric acid, valine, glycine, and galactose were the main components facilitating separation of the species. Positive relationships were apparent between carbon-rich metabolites, including those of the TCA cycle and sugar metabolism, and carotenoids.
NASA Astrophysics Data System (ADS)
Jebali, R.; Scherzinger, J.; Annand, J. R. M.; Chandra, R.; Davatz, G.; Fissum, K. G.; Friederich, H.; Gendotti, U.; Hall-Wilton, R.; Håkansson, E.; Kanaki, K.; Lundin, M.; Murer, D.; Nilsson, B.; Rosborg, A.; Svensson, H.
2015-09-01
A first comparison has been made between the pulse-shape discrimination characteristics of a novel 4He-based pressurized scintillation detector and a NE-213 liquid-scintillator reference detector using an Am/Be mixed-field neutron and gamma-ray source and a high-resolution scintillation-pulse digitizer. In particular, the capabilities of the two fast neutron detectors to discriminate between neutrons and gamma-rays were investigated. The NE-213 liquid-scintillator reference cell produced a wide range of scintillation-light yields in response to the gamma-ray field of the source. In stark contrast, due to the size and pressure of the 4He gas volume, the 4He-based detector registered a maximum scintillation-light yield of 750keVee to the same gamma-ray field. Pulse-shape discrimination for particles with scintillation-light yields of more than 750keVee was excellent in the case of the 4He-based detector. Above 750keVee its signal was unambiguously neutron, enabling particle identification based entirely upon the amount of scintillation light produced.
Discriminating Power of Localized Three-Dimensional Facial Morphology
Hammond, Peter; Hutton, Tim J.; Allanson, Judith E.; Buxton, Bernard; Campbell, Linda E.; Clayton-Smith, Jill; Donnai, Dian; Karmiloff-Smith, Annette; Metcalfe, Kay; Murphy, Kieran C.; Patton, Michael; Pober, Barbara; Prescott, Katrina; Scambler, Pete; Shaw, Adam; Smith, Ann C. M.; Stevens, Angela F.; Temple, I. Karen; Hennekam, Raoul; Tassabehji, May
2005-01-01
Many genetic syndromes involve a facial gestalt that suggests a preliminary diagnosis to an experienced clinical geneticist even before a clinical examination and genotyping are undertaken. Previously, using visualization and pattern recognition, we showed that dense surface models (DSMs) of full face shape characterize facial dysmorphology in Noonan and in 22q11 deletion syndromes. In this much larger study of 696 individuals, we extend the use of DSMs of the full face to establish accurate discrimination between controls and individuals with Williams, Smith-Magenis, 22q11 deletion, or Noonan syndromes and between individuals with different syndromes in these groups. However, the full power of the DSM approach is demonstrated by the comparable discriminating abilities of localized facial features, such as periorbital, perinasal, and perioral patches, and the correlation of DSM-based predictions and molecular findings. This study demonstrates the potential of face shape models to assist clinical training through visualization, to support clinical diagnosis of affected individuals through pattern recognition, and to enable the objective comparison of individuals sharing other phenotypic or genotypic properties. PMID:16380911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherepy, Nerine J.; Sanner, Robert D.; Beck, Patrick R.
In this paper, transparent plastic scintillators based on polyvinyltoluene (PVT) have been fabricated with high loading of bismuth carboxylates for gamma spectroscopy, and with lithium carboxylates for neutron detection. When activated with a combination of standard fluors, 2,5-diphenyloxazole (PPO) and tetraphenylbutadiene (TPB), gamma light yields with 15 wt% bismuth tripivalate of 5000 Ph/MeV are measured. A PVT plastic formulation including 30 wt% lithium pivalate and 30 wt% PPO offers both pulse shape discrimination, and a neutron capture peak at ~400 keVee. Finally, in another configuration, a bismuth-loaded PVT plastic is coated with ZnS( 6Li) paint, permitting simultaneous gamma and neutronmore » detection via pulse shape discrimination with a figure-of-merit of 3.8, while offering gamma spectroscopy with energy resolution of R(662 keV)=15%.« less
Bismuth- and lithium-loaded plastic scintillators for gamma and neutron detection
NASA Astrophysics Data System (ADS)
Cherepy, Nerine J.; Sanner, Robert D.; Beck, Patrick R.; Swanberg, Erik L.; Tillotson, Thomas M.; Payne, Stephen A.; Hurlbut, Charles R.
2015-04-01
Transparent plastic scintillators based on polyvinyltoluene (PVT) have been fabricated with high loading of bismuth carboxylates for gamma spectroscopy, and with lithium carboxylates for neutron detection. When activated with a combination of standard fluors, 2,5-diphenyloxazole (PPO) and tetraphenylbutadiene (TPB), gamma light yields with 15 wt% bismuth tripivalate of 5000 Ph/MeV are measured. A PVT plastic formulation including 30 wt% lithium pivalate and 30 wt% PPO offers both pulse shape discrimination, and a neutron capture peak at 400 keVee. In another configuration, a bismuth-loaded PVT plastic is coated with ZnS(6Li) paint, permitting simultaneous gamma and neutron detection via pulse shape discrimination with a figure-of-merit of 3.8, while offering gamma spectroscopy with energy resolution of R(662 keV)=15%.
NASA Astrophysics Data System (ADS)
Voss, P.; Henderson, R.; Andreoiu, C.; Ashley, R.; Ball, G. C.; Bender, P. C.; Chester, A.; Cross, D. S.; Drake, T. E.; Garnsworthy, A. B.; Hackman, G.; Ketelhut, S.; Krücken, R.; Miller, D.; Rajabali, M. M.; Starosta, K.; Svensson, C. E.; Tardiff, E.; Unsworth, C.; Wang, Z.-M.
Electromagnetic transition rate measurements play an important role in characterizing the evolution of nuclear structure with increasing proton-neutron asymmetry. At TRIUMF, the TIGRESS Integrated Plunger device and its suite of ancillary detector systems have been implemented for charged-particle tagging and light-ion identification in coincidence with gamma-ray spectroscopy for Doppler-shift lifetime studies and low-energy Coulomb excitation measurements. Digital pulse-shape analysis of signals from these ancillary detectors for particle identification improves the signal-to-noise ratio of gamma-ray energy spectra. Here, we illustrate the reaction-channel selectivity achieved by utilizing digital rise-time discrimination of waveforms from alpha particles and carbon ions detected with silicon PIN diodes, thereby enhancing gamma-ray line-shape signatures for precision lifetime studies.
NASA Astrophysics Data System (ADS)
Salyer, Kaitlin; Rogachev, Grigory; Hooker, Joshua
2016-09-01
This project studied the capabilities of two different scintillators, Cesium Iodide (CsI) and p-Terphenyl. First, the resolution of a CsI detector was investigated by exposing only very small areas of its surface at a time to an alpha source. Second, the abilities of p-Terphenyl to detect alpha particles, gamma particles, and neutrons were analyzed through pulse shape discrimination. p-Terphenyl is of particular interest because it will be used in the Mitchell Institute Neutrino Experiment at Reactor (MINER) at Texas A&M University for measuring background data. The information learned from conducting these tests will be useful in understanding and expanding the limits of the experiments in which these detectors will ultimately be used.
[The discrimination of mono-syllable words in noise in listeners with normal hearing].
Yoshida, M; Sagara, T; Nagano, M; Korenaga, K; Makishima, K
1992-02-01
The discrimination of mono-syllable words (67S word-list) pronounced by a male and a female speaker was investigated in noise in 39 normal hearing subjects. The subjects listened to the test words at a constant level of 62 dB together with white or weighted noise in four S/N conditions. By processing the data with logit transformation, S/N-discrimination curves were presumed for each combination of a speech material and a noise. Regardless of the type of noise, the discrimination scores for the female voice started to decrease gradually at a S/N ratio of +10 dB, and reached 10 to 20% at-10 dB. For the male voice in white noise, the discrimination curve was similar to those for the female voice. On the contrary, the discrimination score for the male voice in weighted noise declined rapidly from a S/N ratio of +5 dB, and went below 10% at -5 dB. The discrimination curves seem to be shaped by the interrelations between the spectrum of the speech material and that of the noise.
Efficiency of extracting stereo-driven object motions
Jain, Anshul; Zaidi, Qasim
2013-01-01
Most living things and many nonliving things deform as they move, requiring observers to separate object motions from object deformations. When the object is partially occluded, the task becomes more difficult because it is not possible to use two-dimensional (2-D) contour correlations (Cohen, Jain, & Zaidi, 2010). That leaves dynamic depth matching across the unoccluded views as the main possibility. We examined the role of stereo cues in extracting motion of partially occluded and deforming three-dimensional (3-D) objects, simulated by disk-shaped random-dot stereograms set at randomly assigned depths and placed uniformly around a circle. The stereo-disparities of the disks were temporally oscillated to simulate clockwise or counterclockwise rotation of the global shape. To dynamically deform the global shape, random disparity perturbation was added to each disk's depth on each stimulus frame. At low perturbation, observers reported rotation directions consistent with the global shape, even against local motion cues, but performance deteriorated at high perturbation. Using 3-D global shape correlations, we formulated an optimal Bayesian discriminator for rotation direction. Based on rotation discrimination thresholds, human observers were 75% as efficient as the optimal model, demonstrating that global shapes derived from stereo cues facilitate inferences of object motions. To complement reports of stereo and motion integration in extrastriate cortex, our results suggest the possibilities that disparity selectivity and feature tracking are linked, or that global motion selective neurons can be driven purely from disparity cues. PMID:23325345
Measuring sensitivity to viewpoint change with and without stereoscopic cues.
Bell, Jason; Dickinson, Edwin; Badcock, David R; Kingdom, Frederick A A
2013-12-04
The speed and accuracy of object recognition is compromised by a change in viewpoint; demonstrating that human observers are sensitive to this transformation. Here we discuss a novel method for simulating the appearance of an object that has undergone a rotation-in-depth, and include an exposition of the differences between perspective and orthographic projections. Next we describe a method by which human sensitivity to rotation-in-depth can be measured. Finally we discuss an apparatus for creating a vivid percept of a 3-dimensional rotation-in-depth; the Wheatstone Eight Mirror Stereoscope. By doing so, we reveal a means by which to evaluate the role of stereoscopic cues in the discrimination of viewpoint rotated shapes and objects.
Amodal completion of moving objects by pigeons.
Nagasaka, Yasuo; Wasserman, Edward A
2008-01-01
In a series of four experiments, we explored whether pigeons complete partially occluded moving shapes. Four pigeons were trained to discriminate between a complete moving shape and an incomplete moving shape in a two-alternative forced-choice task. In testing, the birds were presented with a partially occluded moving shape. In experiment 1, none of the pigeons appeared to complete the testing stimulus; instead, they appeared to perceive the testing stimulus as incomplete fragments. However, in experiments 2, 3, and 4, three of the birds appeared to complete the partially occluded moving shapes. These rare positive results suggest that motion may facilitate amodal completion by pigeons, perhaps by enhancing the figure - ground segregation process.
Time-over-threshold for pulse shape discrimination in a time-of-flight phoswich PET detector
Chang, Chen-Ming; Cates, Joshua W.; Levin, Craig S.
2016-01-01
It is well known that a PET detector capable of measuring both photon time-of-flight (TOF) and depth-of-interaction (DOI) improves the image quality and accuracy. Phoswich designs have been realized in PET detectors to measure DOI for more than a decade. However, PET detectors based on phoswich designs put great demand on the readout circuits, which have to differentiate the pulse shape produced by different crystal layers. A simple pulse shape discrimination approach is required to realize the phoswich designs in a clinical PET scanner, which consists of thousands of scintillation crystal elements. In this work, we studied time-over-threshold (ToT) as a pulse shape parameter for DOI. The energy, timing and DOI performance were evaluated for a phoswich detector design comprising 3 mm × 3 mm × 10 mm LYSO:Ce crystal optically coupled to 3 mm × 3 mm × 10 mm calcium co-doped LSO:Ce,Ca(0.4%) crystal read out by a silicon photomultiplier (SiPM). A DOI accuracy of 97.2% has been achieved for photopeak events using the proposed time-over-threshold (ToT) processing. The energy resolution without correction for SiPM non-linearity was 9.7 ± 0.2% and 11.3 ± 0.2% FWHM at 511 keV for LYSO and LSO crystal layers, respectively. The coincidence time resolution for photopeak events ranges from 164.6 ps to 183.1 ps FWHM, depending on the layer combinations. The coincidence time resolution for inter-crystal scatter events ranges from 214.6 ps to 418.3 ps FWHM, depending on the energy windows applied. These results show great promises of using ToT for pulse shape discrimination in a TOF phoswich detector since a ToT measurement can be easily implemented in readout electronics. PMID:27991437
Caharel, Stéphanie; Jiang, Fang; Blanz, Volker; Rossion, Bruno
2009-10-01
The human brain recognizes faces by means of two main diagnostic sources of information: three-dimensional (3D) shape and two-dimensional (2D) surface reflectance. Here we used event-related potentials (ERPs) in a face adaptation paradigm to examine the time-course of processing for these two types of information. With a 3D morphable model, we generated pairs of faces that were either identical, varied in 3D shape only, in 2D surface reflectance only, or in both. Sixteen human observers discriminated individual faces in these 4 types of pairs, in which a first (adapting) face was followed shortly by a second (test) face. Behaviorally, observers were as accurate and as fast for discriminating individual faces based on either 3D shape or 2D surface reflectance alone, but were faster when both sources of information were present. As early as the face-sensitive N170 component (approximately 160 ms following the test face), there was larger amplitude for changes in 3D shape relative to the repetition of the same face, especially over the right occipito-temporal electrodes. However, changes in 2D reflectance between the adapter and target face did not increase the N170 amplitude. At about 250 ms, both 3D shape and 2D reflectance contributed equally, and the largest difference in amplitude compared to the repetition of the same face was found when both 3D shape and 2D reflectance were combined, in line with observers' behavior. These observations indicate that evidence to recognize individual faces accumulate faster in the right hemisphere human visual cortex from diagnostic 3D shape information than from 2D surface reflectance information.
Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?
Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes
2016-01-01
Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees’ flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots. PMID:26886006
Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?
Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes
2016-01-01
Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees' flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots.
Decision strategies of hearing-impaired listeners in spectral shape discrimination
NASA Astrophysics Data System (ADS)
Lentz, Jennifer J.; Leek, Marjorie R.
2002-03-01
The ability to discriminate between sounds with different spectral shapes was evaluated for normal-hearing and hearing-impaired listeners. Listeners detected a 920-Hz tone added in phase to a single component of a standard consisting of the sum of five tones spaced equally on a logarithmic frequency scale ranging from 200 to 4200 Hz. An overall level randomization of 10 dB was either present or absent. In one subset of conditions, the no-perturbation conditions, the standard stimulus was the sum of equal-amplitude tones. In the perturbation conditions, the amplitudes of the components within a stimulus were randomly altered on every presentation. For both perturbation and no-perturbation conditions, thresholds for the detection of the 920-Hz tone were measured to compare sensitivity to changes in spectral shape between normal-hearing and hearing-impaired listeners. To assess whether hearing-impaired listeners relied on different regions of the spectrum to discriminate between sounds, spectral weights were estimated from the perturbed standards by correlating the listener's responses with the level differences per component across two intervals of a two-alternative forced-choice task. Results showed that hearing-impaired and normal-hearing listeners had similar sensitivity to changes in spectral shape. On average, across-frequency correlation functions also were similar for both groups of listeners, suggesting that as long as all components are audible and well separated in frequency, hearing-impaired listeners can use information across frequency as well as normal-hearing listeners. Analysis of the individual data revealed, however, that normal-hearing listeners may be better able to adopt optimal weighting schemes. This conclusion is only tentative, as differences in internal noise may need to be considered to interpret the results obtained from weighting studies between normal-hearing and hearing-impaired listeners.
Stigma is Associated with Delays in Seeking Care Among HIV-Infected People in India
Steward, Wayne T.; Bharat, Shalini; Ramakrishna, Jayashree; Heylen, Elsa; Ekstrand, Maria L.
2012-01-01
Background Stigma shapes the lives of people living with HIV and may affect their willingness to seek medical care. But treatment delays can compromise health and increase the risk of transmission to others. Purpose To examine whether four stigma manifestations—enacted (discrimination), vicarious (hearing stories of discrimination), felt normative (perceptions of stigma’s prevalence) and internalized (personal endorsement of stigma beliefs)—were linked with delays in seeking care among HIV-infected people in India. Methods A cross-sectional survey was conducted with 961 HIV-positive men and women in Mumbai and Bengaluru. Results Enacted and internalized stigmas were correlated with delays in seeking care after testing HIV-positive. Depression symptoms mediated the associations of enacted and internalized stigmas with care seeking delays, whereas efforts to avoiding disclosing HIV status mediated only the association between internalized stigma and care seeking delays. Conclusions It is vital to develop stigma reduction interventions to ensure timely receipt of care. PMID:22282878
Rejection of randomly coinciding 2ν2β events in ZnMoO4 scintillating bolometers
NASA Astrophysics Data System (ADS)
Chernyak, D. M.; Danevich, F. A.; Giuliani, A.; Mancuso, M.; Nones, C.; Olivieri, E.; Tenconi, M.; Tretyak, V. I.
2014-01-01
Random coincidence of 2ν2β decay events could be one of the main sources of background for 0ν2β decay in cryogenic bolometers due to their poor time resolution. Pulse-shape discrimination by using front edge analysis, the mean-time and χ2 methods was applied to discriminate randomly coinciding 2ν2β events in ZnMoO4 cryogenic scintillating bolometers. The background can be effectively rejected on the level of 99% by the mean-time analysis of heat signals with the rise time about 14 ms and the signal-to-noise ratio 900, and on the level of 98% for the light signals with 3 ms rise time and signal-to-noise ratio of 30 (under a requirement to detect 95% of single events). Importance of the signal-to-noise ratio, correct finding of the signal start and choice of an appropriate sampling frequency are discussed.
Maeda, Yoshiaki; Dobashi, Hironori; Sugiyama, Yui; Saeki, Tatsuya; Lim, Tae-kyu; Harada, Manabu; Matsunaga, Tadashi; Yoshino, Tomoko
2017-01-01
Detection and identification of microbial species are crucial in a wide range of industries, including production of beverages, foods, cosmetics, and pharmaceuticals. Traditionally, colony formation and its morphological analysis (e.g., size, shape, and color) with a naked eye have been employed for this purpose. However, such a conventional method is time consuming, labor intensive, and not very reproducible. To overcome these problems, we propose a novel method that detects microcolonies (diameter 10–500 μm) using a lensless imaging system. When comparing colony images of five microorganisms from different genera (Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans), the images showed obvious different features. Being closely related species, St. aureus and St. epidermidis resembled each other, but the imaging analysis could extract substantial information (colony fingerprints) including the morphological and physiological features, and linear discriminant analysis of the colony fingerprints distinguished these two species with 100% of accuracy. Because this system may offer many advantages such as high-throughput testing, lower costs, more compact equipment, and ease of automation, it holds promise for microbial detection and identification in various academic and industrial areas. PMID:28369067
Place of birth effects on self-reported discrimination: Variations by type of discrimination.
Brondolo, Elizabeth; Rahim, Reanne; Grimaldi, Stephanie; Ashraf, Amina; Bui, Nini; Schwartz, Joseph
2015-11-01
Researchers have suggested that perceptions of discrimination may vary depending on place of birth and the length of time spent living in the U.S., variables related to acculturation. However, the existing literature provides a mixed picture, with data suggesting that the effects of acculturation on perceptions of discrimination vary by race and other sociodemographic factors. This study evaluated the role of place of birth (POB: defined as U.S.-born vs. foreign-born), age at immigration, and length of residence in the U.S. on self-reported discrimination in a sample of urban-dwelling Asian and Black adults (n= 1454). Analyses examined POB effects on different types of discrimination including race-related stigmatization, exclusion, threat, and workplace discrimination. Sociodemographic variables (including age, gender, employment status and education level) were tested as potential moderators of the relationship between POB and discrimination. The results revealed a significant main effect for POB on discrimination, with U.S.-born individuals reporting significantly more discrimination than foreign-born individuals, although the effect was reduced when sociodemographic variables were controlled. Across the sample, POB effects were seen only for race-related stigmatization and exclusion, not for threat and workplace discrimination. With the exception of limited effects for gender, sociodemographic variables did not moderate these effects. Younger age at immigration and greater years of residence in the U.S. were also positively associated with higher levels of perceived discrimination. These findings suggest increasing acculturation may shape the experience and perception of racial and ethnic discrimination.
Salimi, Nima; Loh, Kar Hoe; Kaur Dhillon, Sarinder; Chong, Ving Ching
2016-01-01
Background. Fish species may be identified based on their unique otolith shape or contour. Several pattern recognition methods have been proposed to classify fish species through morphological features of the otolith contours. However, there has been no fully-automated species identification model with the accuracy higher than 80%. The purpose of the current study is to develop a fully-automated model, based on the otolith contours, to identify the fish species with the high classification accuracy. Methods. Images of the right sagittal otoliths of 14 fish species from three families namely Sciaenidae, Ariidae, and Engraulidae were used to develop the proposed identification model. Short-time Fourier transform (STFT) was used, for the first time in the area of otolith shape analysis, to extract important features of the otolith contours. Discriminant Analysis (DA), as a classification technique, was used to train and test the model based on the extracted features. Results. Performance of the model was demonstrated using species from three families separately, as well as all species combined. Overall classification accuracy of the model was greater than 90% for all cases. In addition, effects of STFT variables on the performance of the identification model were explored in this study. Conclusions. Short-time Fourier transform could determine important features of the otolith outlines. The fully-automated model proposed in this study (STFT-DA) could predict species of an unknown specimen with acceptable identification accuracy. The model codes can be accessed at http://mybiodiversityontologies.um.edu.my/Otolith/ and https://peerj.com/preprints/1517/. The current model has flexibility to be used for more species and families in future studies.
NASA Astrophysics Data System (ADS)
Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bonatt, J.; Boudjemline, K.; Boulay, M. G.; Broerman, B.; Bueno, J. F.; Butcher, A.; Cai, B.; Caldwell, T.; Chen, M.; Chouinard, R.; Cleveland, B. T.; Cranshaw, D.; Dering, K.; Duncan, F.; Fatemighomi, N.; Ford, R.; Gagnon, R.; Giampa, P.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Grace, E.; Graham, K.; Grant, D. R.; Hakobyan, R.; Hallin, A. L.; Hamstra, M.; Harvey, P.; Hearns, C.; Hofgartner, J.; Jillings, C. J.; Kuźniak, M.; Lawson, I.; La Zia, F.; Li, O.; Lidgard, J. J.; Liimatainen, P.; Lippincott, W. H.; Mathew, R.; McDonald, A. B.; McElroy, T.; McFarlane, K.; McKinsey, D. N.; Mehdiyev, R.; Monroe, J.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J.; Noble, A. J.; O'Dwyer, E.; Olsen, K.; Ouellet, C.; Pasuthip, P.; Peeters, S. J. M.; Pollmann, T.; Rau, W.; Retière, F.; Ronquest, M.; Seeburn, N.; Skensved, P.; Smith, B.; Sonley, T.; Tang, J.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Ward, M.
2016-12-01
The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keVee. In the surface dataset using a triple-coincidence tag we found the fraction of β events that are misidentified as nuclear recoils to be < 1.4 ×10-7 (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil acceptance of at least 90%, with 4% systematic uncertainty on the absolute energy scale. The discrimination measurement on surface was limited by nuclear recoils induced by cosmic-ray generated neutrons. This was improved by moving the detector to the SNOLAB underground laboratory, where the reduced background rate allowed the same measurement to be done with only a double-coincidence tag. The combined data set contains 1.23 × 108 events. One of those, in the underground data set, is in the nuclear-recoil region of interest. Taking into account the expected background of 0.48 events coming from random pileup, the resulting upper limit on the level of electronic recoil contamination is < 2.7 ×10-8 (90% C.L.) between 44-89 keVee and for a nuclear recoil acceptance of at least 90%, with 6% systematic uncertainty on the absolute energy scale. We developed a general mathematical framework to describe pulse-shape-discrimination parameter distributions and used it to build an analytical model of the distributions observed in DEAP-1. Using this model, we project a misidentification fraction of approximately 10-10 for an electron-equivalent energy threshold of 15 keVee for a detector with 8 PE/keVee light yield. This reduction enables a search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10-46 cm2, assuming negligible contribution from nuclear recoil backgrounds.
NASA Astrophysics Data System (ADS)
Young, Jonathan; Ridgway, Gerard; Leung, Kelvin; Ourselin, Sebastien
2012-02-01
It is well known that hippocampal atrophy is a marker of the onset of Alzheimer's disease (AD) and as a result hippocampal volumetry has been used in a number of studies to provide early diagnosis of AD and predict conversion of mild cognitive impairment patients to AD. However, rates of atrophy are not uniform across the hippocampus making shape analysis a potentially more accurate biomarker. This study studies the hippocampi from 226 healthy controls, 148 AD patients and 330 MCI patients obtained from T1 weighted structural MRI images from the ADNI database. The hippocampi are anatomically segmented using the MAPS multi-atlas segmentation method, and the resulting binary images are then processed with SPHARM software to decompose their shapes as a weighted sum of spherical harmonic basis functions. The resulting parameterizations are then used as feature vectors in Support Vector Machine (SVM) classification. A wrapper based feature selection method was used as this considers the utility of features in discriminating classes in combination, fully exploiting the multivariate nature of the data and optimizing the selected set of features for the type of classifier that is used. The leave-one-out cross validated accuracy obtained on training data is 88.6% for classifying AD vs controls and 74% for classifying MCI-converters vs MCI-stable with very compact feature sets, showing that this is a highly promising method. There is currently a considerable fall in accuracy on unseen data indicating that the feature selection is sensitive to the data used, however feature ensemble methods may overcome this.
Stewart, C M; Newlands, S D; Perachio, A A
2004-12-01
Rapid and accurate discrimination of single units from extracellular recordings is a fundamental process for the analysis and interpretation of electrophysiological recordings. We present an algorithm that performs detection, characterization, discrimination, and analysis of action potentials from extracellular recording sessions. The program was entirely written in LabVIEW (National Instruments), and requires no external hardware devices or a priori information about action potential shapes. Waveform events are detected by scanning the digital record for voltages that exceed a user-adjustable trigger. Detected events are characterized to determine nine different time and voltage levels for each event. Various algebraic combinations of these waveform features are used as axis choices for 2-D Cartesian plots of events. The user selects axis choices that generate distinct clusters. Multiple clusters may be defined as action potentials by manually generating boundaries of arbitrary shape. Events defined as action potentials are validated by visual inspection of overlain waveforms. Stimulus-response relationships may be identified by selecting any recorded channel for comparison to continuous and average cycle histograms of binned unit data. The algorithm includes novel aspects of feature analysis and acquisition, including higher acquisition rates for electrophysiological data compared to other channels. The program confirms that electrophysiological data may be discriminated with high-speed and efficiency using algebraic combinations of waveform features derived from high-speed digital records.
Representation in dynamical agents.
Ward, Ronnie; Ward, Robert
2009-04-01
This paper extends experiments by Beer [Beer, R. D. (1996). Toward the evolution of dynamical neural networks for minimally cognitive behavior. In P. Maes, M. Mataric, J. Meyer, J. Pollack, & S. Wilson (Eds.), From animals to animats 4: Proceedings of the fourth international conference on simulation of adaptive behavior (pp. 421-429). MIT Press; Beer, R. D. (2003). The dynamics of active categorical perception in an evolved model agent (with commentary and response). Adaptive Behavior, 11 (4), 209-243] with an evolved, dynamical agent to further explore the question of representation in cognitive systems. Beer's environmentally-situated visual agent was controlled by a continuous-time recurrent neural network, and evolved to perform a categorical perception task, discriminating circles from diamonds. Despite the agent's high levels of discrimination performance, Beer found no evidence of internal representation in the best-evolved agent's nervous system. Here we examine the generality of this result. We evolved an agent for shape discrimination, and performed extensive behavioral analyses to test for representation. In this case we find that agents developed to discriminate equal-width shapes exhibit what Clark [Clark, A. (1997). The dynamical challenge. Cognitive Science, 21 (4), 461-481] calls "weak-substantive representation". The agent had internal configurations that (1) were understandably related to the object in the environment, and (2) were functionally used in a task relevant way when the target was not visible to the agent.
Nine-month-old infants prefer unattractive bodies over attractive bodies
Heron-Delaney, Michelle; Quinn, Paul C.; Lee, Kang; Slater, Alan M.; Pascalis, Olivier
2013-01-01
Infant responses to adult-defined unattractive male body shapes versus attractive male body shapes were assessed using visual preference and habituation procedures. Looking behavior indicated that 9-month-olds have a preference for unattractive male body shapes over attractive ones; however, this preference is demonstrated only when head information is obscured. In contrast, 6- and 3.5-month-olds did not show a preference for unattractive or attractive bodies. The 6-month-olds discriminated between the two categories, whereas the 3.5-month-olds did not. Because unattractive body shapes are more common than attractive/athletic body shapes in our everyday environment, a preference for unattractive body shapes at 9 months of age suggests that preferences for particular human body shapes reflect level of exposure and familiarity rather than culturally defined stereotypes of body attractiveness. PMID:23473995
The compact neutron spectrometer at ASDEX Upgrade.
Giacomelli, L; Zimbal, A; Tittelmeier, K; Schuhmacher, H; Tardini, G; Neu, R
2011-12-01
The first neutron spectrometer of ASDEX Upgrade (AUG) was installed in November 2008. It is a compact neutron spectrometer (CNS) based on a BC501A liquid scintillating detector, which can simultaneously measure 2.45-MeV and 14-MeV neutrons emitted from deuterium (D) plasmas and γ radiation. The scintillating detector is coupled to a digital pulse shape discrimination data acquisition (DPSD) system capable of count rates up to 10(6) s(-1). The DPSD system can operate in acquisition and processing mode. With the latter n-γ discrimination is performed off-line based on the two-gate method. The paper describes the tests of the CNS and its installation at AUG. The neutron emission from the D plasma measured during a discharge with high auxiliary heating power was used to validate the CNS performance. The study of the optimal settings for the DPSD data processing to maximize the n-γ discrimination capability of the CNS is reported. The CNS measured both 2.45-MeV and 14-MeV neutrons emitted in AUG D plasmas with a maximum count rate of 5.4 × 10(5) s(-1) (>10 times higher than similar spectrometers previously achieved) with an efficiency of 9.3 × 10(-10) events per AUG neutron.
True versus apparent shapes of bow shocks
NASA Astrophysics Data System (ADS)
Tarango-Yong, Jorge A.; Henney, William J.
2018-06-01
Astrophysical bow shocks are a common result of the interaction between two supersonic plasma flows, such as winds or jets from stars or active galaxies, or streams due to the relative motion between a star and the interstellar medium. For cylindrically symmetric bow shocks, we develop a general theory for the effects of inclination angle on the apparent shape. We propose a new two-dimensional classification scheme for bow shapes, which is based on dimensionless geometric ratios that can be estimated from observational images. The two ratios are related to the flatness of the bow's apex, which we term planitude, and the openness of its wings, which we term alatude. We calculate the expected distribution in the planitude-alatude plane for a variety of simple geometrical and physical models: quadrics of revolution, wilkinoids, cantoids, and ancantoids. We further test our methods against numerical magnetohydrodynamical simulations of stellar bow shocks and find that the apparent planitude and alatude measured from infrared dust continuum maps serve as accurate diagnostics of the shape of the contact discontinuity, which can be used to discriminate between different physical models. We present an algorithm that can determine the planitude and alatude from observed bow shock emission maps with a precision of 10 to 20 per cent.
Learning about Alpha-1 Antitrypsin Deficiency (AATD)
... Tests Genomics and Health Disparities Genetic Discrimination Human Subjects Research Informed Consent for Genomics Research Intellectual Property ... the lungs are damaged. Symptoms of emphysema include difficulty breathing, a hacking cough and a barrel-shaped ...
Kruse, Lyle W.
1985-01-01
A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.
Kruse, L.W.
1982-03-23
A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.
Bismuth- and lithium-loaded plastic scintillators for gamma and neutron detection
Cherepy, Nerine J.; Sanner, Robert D.; Beck, Patrick R.; ...
2015-01-09
In this paper, transparent plastic scintillators based on polyvinyltoluene (PVT) have been fabricated with high loading of bismuth carboxylates for gamma spectroscopy, and with lithium carboxylates for neutron detection. When activated with a combination of standard fluors, 2,5-diphenyloxazole (PPO) and tetraphenylbutadiene (TPB), gamma light yields with 15 wt% bismuth tripivalate of 5000 Ph/MeV are measured. A PVT plastic formulation including 30 wt% lithium pivalate and 30 wt% PPO offers both pulse shape discrimination, and a neutron capture peak at ~400 keVee. Finally, in another configuration, a bismuth-loaded PVT plastic is coated with ZnS( 6Li) paint, permitting simultaneous gamma and neutronmore » detection via pulse shape discrimination with a figure-of-merit of 3.8, while offering gamma spectroscopy with energy resolution of R(662 keV)=15%.« less
Recent developments in plastic scintillators with pulse shape discrimination
NASA Astrophysics Data System (ADS)
Zaitseva, N. P.; Glenn, A. M.; Mabe, A. N.; Carman, M. L.; Hurlbut, C. R.; Inman, J. W.; Payne, S. A.
2018-05-01
The paper reports results of studies conducted to improve scintillation performance of plastic scintillators capable of neutron/gamma pulse-shape discrimination (PSD). Compositional modifications made with the polymer matrix improved physical stability, allowing for increased loads of the primary dye that, in combination with selected secondary dyes, provided enhanced PSD especially important for the lower energy ranges. Additional measurements were made with a newly-introduced PSD plastic EJ-276, that replaces the first commercially produced EJ-299. Comparative studies conducted with the new materials and EJ-309 liquids at large scale (up to 10 cm) show that current plastics may provide scintillation and PSD performance sufficient for the replacement of liquid scintillators. Comparison to stilbene single crystals compliments the information about the status of the solid-state materials recently developed for fast neutron detection applications.
NASA Technical Reports Server (NTRS)
Roth, J.; Primbsch, J. H.; Lin, R. P.
1984-01-01
The possibility of rejecting the internal beta-decay background in coaxial germanium detectors by distinguishing between the multi-site energy losses characteristic of photons and the single-site energy losses of electrons in the range 0.2 - 2 MeV is examined. The photon transport was modeled with a Monte Carlo routine. Background rejection by both multiple segmentation and pulse shape discrimination techniques is investigated. The efficiency of a six 1 cm-thick segment coaxial detector operating in coincidence mode alone is compared to that of a two-segment (1 cm and 5 cm) detector employing both front-rear coincidence and PSD in the rear segment to isolate photon events. Both techniques can provide at least 95 percent rejection of single-site events while accepting at least 80 percent of the multi-site events above 500 keV.
Aging and the perception of 3-D shape from dynamic patterns of binocular disparity.
Norman, J Farley; Crabtree, Charles E; Herrmann, Molly; Thompson, Sarah R; Shular, Cassandra F; Clayton, Anna Marie
2006-01-01
In two experiments, we investigated the ability of younger and older observers to perceive and discriminate 3-D shape from static and dynamic patterns of binocular disparity. In both experiments, the younger observers' discrimination accuracies were 20% higher than those of the older observers. Despite this quantitative difference, in all other respects the older observers performed similarly to the younger observers. Both age groups were similarly affected by changes in the magnitude of binocular disparity, by reductions in binocular correspondence, and by increases in the speed of stereoscopic motion. In addition, observers in both age groups exhibited an advantage in performance for dynamic stereograms when the patterns of binocular disparity contained significant amounts of correspondence "noise." The process of aging does affect stereopsis, but the effects are quantitative rather than qualitative.
Pulse-shape discrimination and energy quenching of alpha particles in Cs2LiLaBr6:Ce3+
NASA Astrophysics Data System (ADS)
Mesick, K. E.; Coupland, D. D. S.; Stonehill, L. C.
2017-01-01
Cs2LiLaBr6:Ce3+(CLLB) is an elpasolite scintillator that offers excellent linearity and gamma-ray energy resolution and sensitivity to thermal neutrons with the ability to perform pulse-shape discrimination (PSD) to distinguish gammas and neutrons. Our investigation of CLLB has indicated the presence of intrinsic radioactive alpha background that we have determined to be from actinium contamination of the lanthanum component. We measured the pulse shapes for gamma, thermal neutron, and alpha events and determined that PSD can be performed to separate the alpha background with a moderate figure of merit of 0.98. We also measured the electron-equivalent-energy of the alpha particles in CLLB and simulated the intrinsic alpha background from 227Ac to determine the quenching factor of the alphas. A linear quenching relationship Lα =Eα × q +L0 was found at alpha particle energies above 5 MeV, with a quenching factor q = 0.71 MeVee / MeV and an offset L0 = - 1.19 MeVee .
On new physics searches with multidimensional differential shapes
NASA Astrophysics Data System (ADS)
Ferreira, Felipe; Fichet, Sylvain; Sanz, Veronica
2018-03-01
In the context of upcoming new physics searches at the LHC, we investigate the impact of multidimensional differential rates in typical LHC analyses. We discuss the properties of shape information, and argue that multidimensional rates bring limited information in the scope of a discovery, but can have a large impact on model discrimination. We also point out subtleties about systematic uncertainties cancellations and the Cauchy-Schwarz bound on interference terms.
McDonald, Linda S; Panozzo, Joseph F; Salisbury, Phillip A; Ford, Rebecca
2016-01-01
Field peas (Pisum sativum L.) are generally traded based on seed appearance, which subjectively defines broad market-grades. In this study, we developed an objective Linear Discriminant Analysis (LDA) model to classify market grades of field peas based on seed colour, shape and size traits extracted from digital images. Seeds were imaged in a high-throughput system consisting of a camera and laser positioned over a conveyor belt. Six colour intensity digital images were captured (under 405, 470, 530, 590, 660 and 850nm light) for each seed, and surface height was measured at each pixel by laser. Colour, shape and size traits were compiled across all seed in each sample to determine the median trait values. Defective and non-defective seed samples were used to calibrate and validate the model. Colour components were sufficient to correctly classify all non-defective seed samples into correct market grades. Defective samples required a combination of colour, shape and size traits to achieve 87% and 77% accuracy in market grade classification of calibration and validation sample-sets respectively. Following these results, we used the same colour, shape and size traits to develop an LDA model which correctly classified over 97% of all validation samples as defective or non-defective.
Yovel, Galit
2009-11-01
It is often argued that picture-plane face inversion impairs discrimination of the spacing among face features to a greater extent than the identity of the facial features. However, several recent studies have reported similar inversion effects for both types of face manipulations. In a recent review, Rossion (2008) claimed that similar inversion effects for spacing and features are due to methodological and conceptual shortcomings and that data still support the idea that inversion impairs the discrimination of features less than that of the spacing among them. Here I will claim that when facial features differ primarily in shape, the effect of inversion on features is not smaller than the one on spacing. It is when color/contrast information is added to facial features that the inversion effect on features decreases. This obvious observation accounts for the discrepancy in the literature and suggests that the large inversion effect that was found for features that differ in shape is not a methodological artifact. These findings together with other data that are discussed are consistent with the idea that the shape of facial features and the spacing among them are integrated rather than dissociated in the holistic representation of faces.
McDonald, Linda S.; Panozzo, Joseph F.; Salisbury, Phillip A.; Ford, Rebecca
2016-01-01
Field peas (Pisum sativum L.) are generally traded based on seed appearance, which subjectively defines broad market-grades. In this study, we developed an objective Linear Discriminant Analysis (LDA) model to classify market grades of field peas based on seed colour, shape and size traits extracted from digital images. Seeds were imaged in a high-throughput system consisting of a camera and laser positioned over a conveyor belt. Six colour intensity digital images were captured (under 405, 470, 530, 590, 660 and 850nm light) for each seed, and surface height was measured at each pixel by laser. Colour, shape and size traits were compiled across all seed in each sample to determine the median trait values. Defective and non-defective seed samples were used to calibrate and validate the model. Colour components were sufficient to correctly classify all non-defective seed samples into correct market grades. Defective samples required a combination of colour, shape and size traits to achieve 87% and 77% accuracy in market grade classification of calibration and validation sample-sets respectively. Following these results, we used the same colour, shape and size traits to develop an LDA model which correctly classified over 97% of all validation samples as defective or non-defective. PMID:27176469
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurtz, R.; Kaplan, A.
Pulse shape discrimination (PSD) is a variety of statistical classifier. Fully-realized statistical classifiers rely on a comprehensive set of tools for designing, building, and implementing. PSD advances rely on improvements to the implemented algorithm. PSD advances can be improved by using conventional statistical classifier or machine learning methods. This paper provides the reader with a glossary of classifier-building elements and their functions in a fully-designed and operational classifier framework that can be used to discover opportunities for improving PSD classifier projects. This paper recommends reporting the PSD classifier’s receiver operating characteristic (ROC) curve and its behavior at a gamma rejectionmore » rate (GRR) relevant for realistic applications.« less
[Differentiation by geometric morphometrics among 11 Anopheles (Nyssorhynchus) in Colombia].
Calle, David Alonso; Quiñones, Martha Lucía; Erazo, Holmes Francisco; Jaramillo, Nicolás
2008-09-01
The correct identification of the Anopheles species of the subgenus Nyssorhynchus is important because this subgenus includes the main malaria vectors in Colombia. This information is necessary for focusing a malaria control program. Geometric morphometrics were used to evaluate morphometric variation of 11 species of subgenus Nyssorhynchus present in Colombia and to distinguish females of each species. Materials and methods. The specimens were obtained from series and family broods from females collected with protected human hosts as attractants. The field collected specimens and their progeny were identified at each of the associated stages by conventional keys. For some species, wild females were used. Landmarks were selected on wings from digital pictures from 336 individuals, and digitized with coordinates. The coordinate matrix was processed by generalized Procrustes analysis which generated size and shape variables, free of non-biological variation. Size and shape variables were analyzed by univariate and multivariate statistics. The subdivision of subgenus Nyssorhynchus in sections is not correlated with wing shape. Discriminant analyses correctly classified 97% of females in the section Albimanus and 86% in the section Argyritarsis. In addition, these methodologies allowed the correct identification of 3 sympatric species from Putumayo which have been difficult to identify in the adult female stage. The geometric morphometrics were demonstrated to be a very useful tool as an adjunct to taxonomy of females the use of this method is recommended in studies of the subgenus Nyssorhynchus in Colombia.
Place of birth effects on self-reported discrimination: Variations by type of discrimination
Brondolo, Elizabeth; Rahim, Reanne; Grimaldi, Stephanie; Ashraf, Amina; Bui, Nini; Schwartz, Joseph
2016-01-01
Researchers have suggested that perceptions of discrimination may vary depending on place of birth and the length of time spent living in the U.S., variables related to acculturation. However, the existing literature provides a mixed picture, with data suggesting that the effects of acculturation on perceptions of discrimination vary by race and other sociodemographic factors. This study evaluated the role of place of birth (POB: defined as U.S.-born vs. foreign-born), age at immigration, and length of residence in the U.S. on self-reported discrimination in a sample of urban-dwelling Asian and Black adults (n= 1454). Analyses examined POB effects on different types of discrimination including race-related stigmatization, exclusion, threat, and workplace discrimination. Sociodemographic variables (including age, gender, employment status and education level) were tested as potential moderators of the relationship between POB and discrimination. The results revealed a significant main effect for POB on discrimination, with U.S.-born individuals reporting significantly more discrimination than foreign-born individuals, although the effect was reduced when sociodemographic variables were controlled. Across the sample, POB effects were seen only for race-related stigmatization and exclusion, not for threat and workplace discrimination. With the exception of limited effects for gender, sociodemographic variables did not moderate these effects. Younger age at immigration and greater years of residence in the U.S. were also positively associated with higher levels of perceived discrimination. These findings suggest increasing acculturation may shape the experience and perception of racial and ethnic discrimination. PMID:27647943
Non-Gaussian shape discrimination with spectroscopic galaxy surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byun, Joyce; Bean, Rachel, E-mail: byun@astro.cornell.edu, E-mail: rbean@astro.cornell.edu
2015-03-01
We consider how galaxy clustering data, from Mpc to Gpc scales, from upcoming large scale structure surveys, such as Euclid and DESI, can provide discriminating information about the bispectrum shape arising from a variety of inflationary scenarios. Through exploring in detail the weighting of shape properties in the calculation of the halo bias and halo mass function we show how they probe a broad range of configurations, beyond those in the squeezed limit, that can help distinguish between shapes with similar large scale bias behaviors. We assess the impact, on constraints for a diverse set of non-Gaussian shapes, of galaxymore » clustering information in the mildly non-linear regime, and surveys that span multiple redshifts and employ different galactic tracers of the dark matter distribution. Fisher forecasts are presented for a Euclid-like spectroscopic survey of Hα-selected emission line galaxies (ELGs), and a DESI-like survey, of luminous red galaxies (LRGs) and [O-II] doublet-selected ELGs, in combination with Planck-like CMB temperature and polarization data.While ELG samples provide better probes of shapes that are divergent in the squeezed limit, LRG constraints, centered below z<1, yield stronger constraints on shapes with scale-independent large-scale halo biases, such as the equilateral template. The ELG and LRG samples provide complementary degeneracy directions for distinguishing between different shapes. For Hα-selected galaxies, we note that recent revisions of the expected Hα luminosity function reduce the halo bias constraints on the local shape, relative to the CMB. For galaxy clustering constraints to be comparable to those from the CMB, additional information about the Gaussian galaxy bias is needed, such as can be determined from the galaxy clustering bispectrum or probing the halo power spectrum directly through weak lensing. If the Gaussian galaxy bias is constrained to better than a percent level then the LSS and CMB data could provide complementary constraints that will enable differentiation of bispectrum with distinct theoretical origins but with similar large scale, squeezed-limit properties.« less
Geologic information from satellite images
NASA Technical Reports Server (NTRS)
Lee, K.; Knepper, D. H.; Sawatzky, D. L.
1974-01-01
Extracting geologic information from ERTS and Skylab/EREP images is best done by a geologist trained in photo-interpretation. The information is at a regional scale, and three basic types are available: rock and soil, geologic structures, and landforms. Discrimination between alluvium and sedimentary or crystalline bedrock, and between units in thick sedimentary sequences is best, primarily because of topographic expression and vegetation differences. Discrimination between crystalline rock types is poor. Folds and fractures are the best displayed geologic features. They are recognizable by topographic expression, drainage patterns, and rock or vegetation tonal patterns. Landforms are easily discriminated by their familiar shapes and patterns. Several examples demonstrate the applicability of satellite images to tectonic analysis and petroleum and mineral exploration.
Discrimination of face-like patterns in the giant panda (Ailuropoda melanoleuca).
Dungl, Eveline; Schratter, Dagmar; Huber, Ludwig
2008-11-01
The black-and-white pattern of the giant panda's (Ailuropoda melanoleuca) fur is a conspicuous signal and may be used for mate-choice and intraspecific communication. Here the authors examined whether they have the perceptual and cognitive potential to make use of this information. Two juvenile subjects were trained on several discrimination problems in steps of increasing difficulty, whereby the stimuli required to discriminate ranged from geometric figures to pairs of differently orientated ellipses, pairs of ellipses with the same orientation but different angles, and finally discrimination of panda-like eye-mask patterns that differed only subtly in shape. Not only did both subjects achieve significant levels of discrimination in all these tasks, they also remembered discriminations for 6 months or even 1 year after the first presentation. Thus this study provided the first solid evidence of sufficient visual and cognitive potential in the giant panda to use the fur pattern or the facial masks for individual recognition, social communication, and perhaps, mate choice. (PsycINFO Database Record (c) 2008 APA, all rights reserved).
Honeybees can discriminate between Monet and Picasso paintings.
Wu, Wen; Moreno, Antonio M; Tangen, Jason M; Reinhard, Judith
2013-01-01
Honeybees (Apis mellifera) have remarkable visual learning and discrimination abilities that extend beyond learning simple colours, shapes or patterns. They can discriminate landscape scenes, types of flowers, and even human faces. This suggests that in spite of their small brain, honeybees have a highly developed capacity for processing complex visual information, comparable in many respects to vertebrates. Here, we investigated whether this capacity extends to complex images that humans distinguish on the basis of artistic style: Impressionist paintings by Monet and Cubist paintings by Picasso. We show that honeybees learned to simultaneously discriminate between five different Monet and Picasso paintings, and that they do not rely on luminance, colour, or spatial frequency information for discrimination. When presented with novel paintings of the same style, the bees even demonstrated some ability to generalize. This suggests that honeybees are able to discriminate Monet paintings from Picasso ones by extracting and learning the characteristic visual information inherent in each painting style. Our study further suggests that discrimination of artistic styles is not a higher cognitive function that is unique to humans, but simply due to the capacity of animals-from insects to humans-to extract and categorize the visual characteristics of complex images.
Focusing light through strongly scattering media using genetic algorithm with SBR discriminant
NASA Astrophysics Data System (ADS)
Zhang, Bin; Zhang, Zhenfeng; Feng, Qi; Liu, Zhipeng; Lin, Chengyou; Ding, Yingchun
2018-02-01
In this paper, we have experimentally demonstrated light focusing through strongly scattering media by performing binary amplitude optimization with a genetic algorithm. In the experiments, we control 160 000 mirrors of digital micromirror device to modulate and optimize the light transmission paths in the strongly scattering media. We replace the universal target-position-intensity (TPI) discriminant with signal-to-background ratio (SBR) discriminant in genetic algorithm. With 400 incident segments, a relative enhancement value of 17.5% with a ground glass diffuser is achieved, which is higher than the theoretical value of 1/(2π )≈ 15.9 % for binary amplitude optimization. According to our repetitive experiments, we conclude that, with the same segment number, the enhancement for the SBR discriminant is always higher than that for the TPI discriminant, which results from the background-weakening effect of SBR discriminant. In addition, with the SBR discriminant, the diameters of the focus can be changed ranging from 7 to 70 μm at arbitrary positions. Besides, multiple foci with high enhancement are obtained. Our work provides a meaningful reference for the study of binary amplitude optimization in the wavefront shaping field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, James T.; Thompson, Scott J.; Watson, Scott M.
We present a multi-channel, fast neutron/gamma ray detector array system that utilizes ZnS(Ag) scintillator detectors. The system employs field programmable gate arrays (FPGAs) to do real-time all digital neutron/gamma ray discrimination with pulse height and time histograms to allow count rates in excess of 1,000,000 pulses per second per channel. The system detector number is scalable in blocks of 16 channels.
NASA Astrophysics Data System (ADS)
Maier, Oskar; Wilms, Matthias; von der Gablentz, Janina; Krämer, Ulrike; Handels, Heinz
2014-03-01
Automatic segmentation of ischemic stroke lesions in magnetic resonance (MR) images is important in clinical practice and for neuroscientific trials. The key problem is to detect largely inhomogeneous regions of varying sizes, shapes and locations. We present a stroke lesion segmentation method based on local features extracted from multi-spectral MR data that are selected to model a human observer's discrimination criteria. A support vector machine classifier is trained on expert-segmented examples and then used to classify formerly unseen images. Leave-one-out cross validation on eight datasets with lesions of varying appearances is performed, showing our method to compare favourably with other published approaches in terms of accuracy and robustness. Furthermore, we compare a number of feature selectors and closely examine each feature's and MR sequence's contribution.
Electrochemical measurements on a droplet using gold microelectrodes
NASA Astrophysics Data System (ADS)
Jenabi, Amin; Souri, Asma; Rastkhadiv, Ali
2016-03-01
Facile methods of ion recognition are important for the fabrication of electronic tongue systems. In this work, we demonstrate performing pulsed conductometry on microliter electrolyte droplets dropped on gold microelectrodes vapor deposited on soda lime glass slides. A droplet is dropped between two microelectrodes when a voltage waveform from a preprogramed power supply is applied on them. The temporal variation of the electric current passing through the droplet is recorded, digitized and stored. The obtained data are compared with the database formed out of the previous experiences for the classification of the sample electrolytes. It is shown that the shape of the voltage waveform is the important parameter of the process. We devised a method for the optimization of the voltage waveform profile for obtaining the maximum of discriminating information from the recorded current variations.
Nine-month-old infants prefer unattractive bodies over attractive bodies.
Heron-Delaney, Michelle; Quinn, Paul C; Lee, Kang; Slater, Alan M; Pascalis, Olivier
2013-05-01
Infant responses to adult-defined unattractive male body shapes versus attractive male body shapes were assessed using visual preference and habituation procedures. Looking behavior indicated that 9-month-olds have a preference for unattractive male body shapes over attractive ones; however, this preference is demonstrated only when head information is obscured. In contrast, 6- and 3.5-month-olds did not show a preference for unattractive or attractive bodies. The 6-month-olds discriminated between the two categories, whereas the 3.5-month-olds did not. Because unattractive body shapes are more common than attractive/athletic body shapes in our everyday environment, a preference for unattractive body shapes at 9 months of age suggests that preferences for particular human body shapes reflect level of exposure and familiarity rather than culturally defined stereotypes of body attractiveness. Copyright © 2013 Elsevier Inc. All rights reserved.
Shape characteristics of equilibrium and non-equilibrium fractal clusters.
Mansfield, Marc L; Douglas, Jack F
2013-07-28
It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other between the viscosity and hydrodynamic radii, as potential measures of shape anisotropy. We also find a strong correlation between anisotropy and effective fractal dimension. These observations should provide new practical methods for quantifying the nature of particle clustering in diverse contexts.
NASA Astrophysics Data System (ADS)
Asztalos, Stephen J.; Hennig, Wolfgang; Warburton, William K.
2016-01-01
Pulse shape discrimination applied to certain fast scintillators is usually performed offline. In sufficiently high-event rate environments data transfer and storage become problematic, which suggests a different analysis approach. In response, we have implemented a general purpose pulse shape analysis algorithm in the XIA Pixie-500 and Pixie-500 Express digital spectrometers. In this implementation waveforms are processed in real time, reducing the pulse characteristics to a few pulse shape analysis parameters and eliminating time-consuming waveform transfer and storage. We discuss implementation of these features, their advantages, necessary trade-offs and performance. Measurements from bench top and experimental setups using fast scintillators and XIA processors are presented.
A feed-forward spiking model of shape-coding by IT cells
Romeo, August; Supèr, Hans
2014-01-01
The ability to recognize a shape is linked to figure-ground (FG) organization. Cell preferences appear to be correlated across contrast-polarity reversals and mirror reversals of polygon displays, but not so much across FG reversals. Here we present a network structure which explains both shape-coding by simulated IT cells and suppression of responses to FG reversed stimuli. In our model FG segregation is achieved before shape discrimination, which is itself evidenced by the difference in spiking onsets of a pair of output cells. The studied example also includes feature extraction and illustrates a classification of binary images depending on the dominance of vertical or horizontal borders. PMID:24904494
Cao, Liang; Yuan, Yuan; Chen, Min; Jin, Yan; Huang, Luqi
2014-01-01
Saffron (Crocus sativus L.) is one of the most important and expensive medicinal spice products in the world. Because of its high market value and premium price, saffron is often adulterated through the incorporation of other materials, such as Carthamus tinctorius L. and Calendula officinalis L. flowers, Hemerocallis L. petals, Daucus carota L. fleshy root, Curcuma longa L. rhizomes, Zea may L., and Nelumbo nucifera Gaertn. stigmas. To develop a straightforward, nonsequencing method for rapid, sensitive, and discriminating detection of these adulterants in traded saffron, we report here the application of a barcoding melting curve analysis method (Bar-MCA) that uses the universal chloroplast plant DNA barcoding region trnH-psbA to identify adulterants. When amplified at DNA concentrations and annealing temperatures optimized for the curve analysis, peaks were formed at specific locations for saffron (81.92°C) and the adulterants: D. carota (81.60°C), C. tinctorius (80.10°C), C. officinalis (79.92°C), Dendranthema morifolium (Ramat.) Tzvel. (79.62°C), N. nucifera (80.58°C), Hemerocallis fulva (L.) L. (84.78°C), and Z. mays (84.33°C). The constructed melting curves for saffron and its adulterants have significantly different peak locations or shapes. In conclusion, Bar-MCA could be a faster and more cost-effective method to authenticate saffron and detect its adulterants. PMID:25548775
Jiang, Chao; Cao, Liang; Yuan, Yuan; Chen, Min; Jin, Yan; Huang, Luqi
2014-01-01
Saffron (Crocus sativus L.) is one of the most important and expensive medicinal spice products in the world. Because of its high market value and premium price, saffron is often adulterated through the incorporation of other materials, such as Carthamus tinctorius L. and Calendula officinalis L. flowers, Hemerocallis L. petals, Daucus carota L. fleshy root, Curcuma longa L. rhizomes, Zea may L., and Nelumbo nucifera Gaertn. stigmas. To develop a straightforward, nonsequencing method for rapid, sensitive, and discriminating detection of these adulterants in traded saffron, we report here the application of a barcoding melting curve analysis method (Bar-MCA) that uses the universal chloroplast plant DNA barcoding region trnH-psbA to identify adulterants. When amplified at DNA concentrations and annealing temperatures optimized for the curve analysis, peaks were formed at specific locations for saffron (81.92°C) and the adulterants: D. carota (81.60°C), C. tinctorius (80.10°C), C. officinalis (79.92°C), Dendranthema morifolium (Ramat.) Tzvel. (79.62°C), N. nucifera (80.58°C), Hemerocallis fulva (L.) L. (84.78°C), and Z. mays (84.33°C). The constructed melting curves for saffron and its adulterants have significantly different peak locations or shapes. In conclusion, Bar-MCA could be a faster and more cost-effective method to authenticate saffron and detect its adulterants.
Pulse shape discrimination based on fast signals from silicon photomultipliers
NASA Astrophysics Data System (ADS)
Yu, Junhao; Wei, Zhiyong; Fang, Meihua; Zhang, Zixia; Cheng, Can; Wang, Yi; Su, Huiwen; Ran, Youquan; Zhu, Qingwei; Zhang, He; Duan, Kai; Chen, Ming; Liu, Meng
2018-06-01
Recent developments in organic plastic scintillators capable of pulse shape discrimination (PSD) enable a breakthrough in discrimination between neutrons and gammas. Plastic scintillator detectors coupled with silicon photomultipliers (SiPMs) offer many advantages, such as lower power consumption, smaller volume, and especially insensitivity to magnetic fields, compared with conventional photomultiplier tubes (PMTs). A SensL SiPM has two outputs: a standard output and a fast output. It is known that the charge injected into the fast output electrode is typically approximately 2% of the total charge generated during the avalanche, whereas the charge injected into the standard output electrode is nearly 98% of the total. Fast signals from SiPMs exhibit better performance in terms of timing and time-correlated measurements compared with standard signals. The pulse duration of a standard signal is on the order of hundreds of nanoseconds, whereas the pulse duration of the main monopole waveform of a fast signal is a few tens of nanoseconds. Fast signals are traditionally thought to be suitable for photon counting at very high speeds but unsuitable for PSD due to the partial charge collection. Meanwhile, the standard outputs of SiPMs coupled with discriminating scintillators have yielded nice PSD performances, but there have been no reports on PSD using fast signals. Our analysis shows that fast signals can also provide discrimination if the rate of charge injection into the fast output electrode is fixed for each event, even though only a portion of the charge is collected. In this work, we achieved successful PSD using fast signals; meanwhile, using a coincidence timing window of less 3 nanoseconds between the readouts from both ends of the detector reduced the influence of the high SiPM dark current. We experimentally achieved good timing performance and PSD capability simultaneously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Wenkai; Ghosh, Priyarshini; Harrison, Mark
The performance of traditional Hornyak buttons and two proposed variants for fast-neutron hodoscope applications was evaluated using Geant4. The Hornyak button is a ZnS(Ag)-based device previously deployed at the Idaho National Laboratory's TRansient REActor Test Facility (better known as TREAT) for monitoring fast neutrons emitted during pulsing of fissile fuel samples. Past use of these devices relied on pulse-shape discrimination to reduce the significant levels of background Cherenkov radiation. Proposed are two simple designs that reduce the overall light guide mass (here, polymethyl methacrylate or PMMA), employ silicon photomultipliers (SiPMs), and can be operated using pulse-height discrimination alone to eliminatemore » background noise to acceptable levels. Geant4 was first used to model a traditional Hornyak button, and for assumed, hodoscope-like conditions, an intrinsic efficiency of 0.35% for mono-directional fission neutrons was predicted. The predicted efficiency is in reasonably good agreement with experimental data from the literature and, hence, served to validate the physics models and approximations employed. Geant4 models were then developed to optimize the materials and geometries of two alternatives to the Hornyak button, one based on a homogeneous mixture of ZnS(Ag) and PMMA, and one based on alternating layers of ZnS(Ag) and PMMA oriented perpendicular to the incident neutron beam. For the same radiation environment, optimized, 5-cm long (along the beam path) devices of the homogeneous and layered designs were predicted to have efficiencies of approximately 1.3% and 3.3%, respectively. For longer devices, i.e., lengths larger than 25 cm, these efficiencies were shown to peak at approximately 2.2% and 5.9%, respectively. Furthermore, both designs were shown to discriminate Cherenkov noise intrinsically by using an appropriate pulse-height discriminator level, i.e., pulse-shape discrimination is not needed for these devices.« less
Joint recognition and discrimination in nonlinear feature space
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1997-09-01
A new general method for linear and nonlinear feature extraction is presented. It is novel since it provides both representation and discrimination while most other methods are concerned with only one of these issues. We call this approach the maximum representation and discrimination feature (MRDF) method and show that the Bayes classifier and the Karhunen- Loeve transform are special cases of it. We refer to our nonlinear feature extraction technique as nonlinear eigen- feature extraction. It is new since it has a closed-form solution and produces nonlinear decision surfaces with higher rank than do iterative methods. Results on synthetic databases are shown and compared with results from standard Fukunaga- Koontz transform and Fisher discriminant function methods. The method is also applied to an automated product inspection problem (discrimination) and to the classification and pose estimation of two similar objects (representation and discrimination).
Changes in area affect figure-ground assignment in pigeons.
Castro, Leyre; Lazareva, Olga F; Vecera, Shaun P; Wasserman, Edward A
2010-03-05
A critical cue for figure-ground assignment in humans is area: smaller regions are more likely to be perceived as figures than are larger regions. To see if pigeons are similarly sensitive to this cue, we trained birds to report whether a target appeared on a colored figure or on a differently colored background. The initial training figure was either smaller than (Experiments 1 and 2) or the same area as (Experiment 2) the background. After training, we increased or decreased the size of the figure. When the original training shape was smaller than the background, pigeons' performance improved with smaller figures (and worsened with larger figures); when the original training shape was the same area as the background, pigeons' performance worsened when they were tested with smaller figures. A smaller figural region appeared to improve the figure-ground discrimination only when size was a relevant cue in the initial discrimination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombigit, L., E-mail: lojius@nm.gov.my; Yussup, N., E-mail: nolida@nm.gov.my; Ibrahim, Maslina Mohd
A digital n/γ pulse shape discrimination (PSD) system is currently under development at Instrumentation and Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel ofmore » our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/γ PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume.« less
Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal
NASA Astrophysics Data System (ADS)
Lee, H. S.; Adhikari, G.; Adhikari, P.; Choi, S.; Hahn, I. S.; Jeon, E. J.; Joo, H. W.; Kang, W. G.; Kim, G. B.; Kim, H. J.; Kim, H. O.; Kim, K. W.; Kim, N. Y.; Kim, S. K.; Kim, Y. D.; Kim, Y. H.; Lee, J. H.; Lee, M. H.; Leonard, D. S.; Li, J.; Oh, S. Y.; Olsen, S. L.; Park, H. K.; Park, H. S.; Park, K. S.; Shim, J. H.; So, J. H.
2015-08-01
We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton-scattered 662 keV γ-rays from a 137Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg·year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.
Changes in Area Affect Figure-Ground Assignment in Pigeons
Castro, Leyre; Lazareva, Olga F.; Vecera, Shaun P.; Wasserman, Edward A.
2010-01-01
A critical cue for figure-ground assignment in humans is area: Smaller regions are more likely to be perceived as figures than are larger regions. To see if pigeons are similarly sensitive to this cue, we trained birds to report whether a target appeared on a colored figure or on a differently colored background. The initial training figure was either smaller than (Experiments 1 and 2) or the same area as (Experiment 2) the background. After training, we increased or decreased the size of the figure. When the original training shape was smaller than the background, pigeons’ performance improved with smaller figures (and worsened with larger figures); when the original training shape was the same area as the background, pigeons’ performance worsened when they were tested with smaller figures. A smaller figural region appeared to improve the figure-ground discrimination only when size was a relevant cue in the initial discrimination. PMID:20060406
Colombet, J; Robin, A; Lavie, L; Bettarel, Y; Cauchie, H M; Sime-Ngando, T
2007-12-01
We have described the use of Polyethylene glycol (PEG) for the precipitation of natural communities of aquatic viruses, and its comparison with the usual concentration method based on ultracentrifugation. Experimental samples were obtained from different freshwater ecosystems whose trophic status varied. Based on transmission electron microscope observations and counting of phage-shaped particles, our results showed that the greatest recovery efficiency for all ecosystems was obtained when we used the PEG protocol. On average, this protocol allowed the recovery of >2-fold more viruses, compared to ultracentrifugation. In addition, the diversity of virioplankton, based on genomic size profiling using pulsed field gel electrophoresis, was higher and better discriminated when we used the PEG method. We conclude that pegylation offers a valid, simple and cheaper alternative method to ultracentrifugation, for the concentration and the purification of pelagic viruses.
Fragility of haptic memory in human full-term newborns.
Lejeune, Fleur; Borradori Tolsa, Cristina; Gentaz, Edouard; Barisnikov, Koviljka
2018-05-31
Numerous studies have established that newborns can memorize tactile information about the specific features of an object with their hands and detect differences with another object. However, the robustness of haptic memory abilities has already been examined in preterm newborns and in full-term infants, but not yet in full-term newborns. This research is aimed to better understand the robustness of haptic memory abilities at birth by examining the effects of a change in the objects' temperature and haptic interference. Sixty-eight full-term newborns (mean postnatal age: 2.5 days) were included. The two experiments were conducted in three phases: habituation (repeated presentation of the same object, a prism or cylinder in the newborn's hand), discrimination (presentation of a novel object), and recognition (presentation of the familiar object). In Experiment 1, the change in the objects' temperature was controlled during the three phases. Results reveal that newborns can memorize specific features that differentiate prism and cylinder shapes by touch, and discriminate between them, but surprisingly they did not show evidence of recognizing them after interference. As no significant effect of the temperature condition was observed in habituation, discrimination and recognition abilities, these findings suggest that discrimination abilities in newborns may be determined by the detection of shape differences. Overall, it seems that the ontogenesis of haptic recognition memory is not linear. The developmental schedule is likely crucial for haptic development between 34 and 40 GW. Copyright © 2018 Elsevier Inc. All rights reserved.
Thayer, Zaneta M; Blair, Irene V; Buchwald, Dedra S; Manson, Spero M
2017-05-01
Hypertension prevalence is high among American Indians (AIs). AIs experience a substantial burden of interpersonal racial discrimination, which in other populations has been associated with higher blood pressure. The purpose of this study is to understand whether racial discrimination experiences are associated with higher blood pressure in AIs. We used the Everyday Discrimination Scale to evaluate the relationship between discrimination and measured blood pressure among 77 AIs from two reservation communities in the Northern Plains. We used multivariate linear regression to evaluate the association of racial discrimination with systolic and diastolic blood pressure, respectively. Racial discrimination, systolic blood pressure, and diastolic blood pressure were analyzed as continuous variables. All analyses adjusted for sex, waist circumference, age, posttraumatic stress disorder status, and education. We found that 61% of participants experienced discrimination that they attributed to their race or ancestry. Racial discrimination was associated with significantly higher diastolic blood pressure (β = 0.22, SE = 0.09, p = .02), and with a similar non-significant trend toward higher systolic blood pressure (β = 0.25, SE = 0.15, p = .09). The results of this analysis suggest that racial discrimination may contribute to higher diastolic blood pressure within Native communities. These findings highlight one pathway through which the social environment can shape patterns of biology and health in AI and other socially and politically marginalized groups. © 2017 Wiley Periodicals, Inc.
Skill-related differences between athletes and nonathletes in speed discrimination.
Thomson, Kaivo; Watt, Anthony; Liukkonen, Jarmo
2008-12-01
This study examined differences in decision-making time and accurscy as attributes of speed discrimination between participants skilled and less skilled in ball games. A total of 130 men, ages 18 to 28 years (M=21.2, SD=2.6), participated. The athlete sample (skilled group) comprised Estonian National League volleyball (n=26) and basketball players (n=27). The nonathlete sample (less skilled group) included 77 soldiers of the Estonian Defence Force with no reported top level experience in ball games. Speed-discrimination stimuli were images of red square shapes presented moving along the sagittal axis at four different virtual velocities on a computer (PC) screen which represented the frontal plane. Analysis indicated that only decision-making time was significantly different between the elite athlete and nonathlete groups. This finding suggests a possible effect of ball-game skills for decision-making time in speed discrimination.
Lungu, Claudiu N; Diudea, Mircea V; Putz, Mihai V
2017-06-27
Docking-i.e., interaction of a small molecule (ligand) with a proteic structure (receptor)-represents the ground of drug action mechanism of the vast majority of bioactive chemicals. Ligand and receptor accommodate their geometry and energy, within this interaction, in the benefit of receptor-ligand complex. In an induced fit docking, the structure of ligand is most susceptible to changes in topology and energy, comparative to the receptor. These changes can be described by manifold hypersurfaces, in terms of polynomial discriminant and Laplacian operator. Such topological surfaces were represented for each MraY (phospho-MurNAc-pentapeptide translocase) inhibitor, studied before and after docking with MraY. Binding affinities of all ligands were calculated by this procedure. For each ligand, Laplacian and polynomial discriminant were correlated with the ligand minimum inhibitory concentration (MIC) retrieved from literature. It was observed that MIC is correlated with Laplacian and polynomial discriminant.
Risk factors for eating disorders in Greek- and Anglo-Australian adolescent girls.
Mildred, H; Paxton, S J; Wertheim, E H
1995-01-01
Past research indicates ethnicity may be related to eating disorder and related risk factors. The present study examines risk factors for eating disorders in 50 Anglo- and 50 Greek-Australian girls (mean age = 13.5 years). The variables assessed included bulimic tendencies, body dissatisfaction, use of extreme weight loss behaviors (EWLBs), self-esteem, depression and family cohesion and adaptability. Cultural eating patterns were also explored. A stepwise discriminant function analysis to examine whether the two groups could be discriminated on these variables was significant and correctly classified 73.9% of the sample, the chief discriminating variables being Pressure to Eat, EWLBs, and Family Adaptability. Univariate analyses indicated differences between the groups on Pressure to Eat, Family Adaptability, and Mother's Shape. Although the groups were discriminable, a number of variables generally associated with eating disorder did not contribute to the function. These data are discussed in terms of cultural assimilation.
Digitized Spiral Drawing: A Possible Biomarker for Early Parkinson’s Disease
San Luciano, Marta; Wang, Cuiling; Ortega, Roberto A.; Yu, Qiping; Boschung, Sarah; Soto-Valencia, Jeannie; Bressman, Susan B.; Lipton, Richard B.; Pullman, Seth; Saunders-Pullman, Rachel
2016-01-01
Introduction Pre-clinical markers of Parkinson’s Disease (PD) are needed, and to be relevant in pre-clinical disease, they should be quantifiably abnormal in early disease as well. Handwriting is impaired early in PD and can be evaluated using computerized analysis of drawn spirals, capturing kinematic, dynamic, and spatial abnormalities and calculating indices that quantify motor performance and disability. Digitized spiral drawing correlates with motor scores and may be more sensitive in detecting early changes than subjective ratings. However, whether changes in spiral drawing are abnormal compared with controls and whether changes are detected in early PD are unknown. Methods 138 PD subjects (50 with early PD) and 150 controls drew spirals on a digitizing tablet, generating x, y, z (pressure) data-coordinates and time. Derived indices corresponded to overall spiral execution (severity), shape and kinematic irregularity (second order smoothness, first order zero-crossing), tightness, mean speed and variability of spiral width. Linear mixed effect adjusted models comparing these indices and cross-validation were performed. Receiver operating characteristic analysis was applied to examine discriminative validity of combined indices. Results All indices were significantly different between PD cases and controls, except for zero-crossing. A model using all indices had high discriminative validity (sensitivity = 0.86, specificity = 0.81). Discriminative validity was maintained in patients with early PD. Conclusion Spiral analysis accurately discriminates subjects with PD and early PD from controls supporting a role as a promising quantitative biomarker. Further assessment is needed to determine whether spiral changes are PD specific compared with other disorders and if present in pre-clinical PD. PMID:27732597
Hu, Ben; Kuang, Zheng-Kun; Feng, Shi-Yu; Wang, Dong; He, Song-Bing; Kong, De-Xin
2016-11-17
The crystallized ligands in the Protein Data Bank (PDB) can be treated as the inverse shapes of the active sites of corresponding proteins. Therefore, the shape similarity between a molecule and PDB ligands indicated the possibility of the molecule to bind with the targets. In this paper, we proposed a shape similarity profile that can be used as a molecular descriptor for ligand-based virtual screening. First, through three-dimensional (3D) structural clustering, 300 diverse ligands were extracted from the druggable protein-ligand database, sc-PDB. Then, each of the molecules under scrutiny was flexibly superimposed onto the 300 ligands. Superimpositions were scored by shape overlap and property similarity, producing a 300 dimensional similarity array termed the "Three-Dimensional Biologically Relevant Spectrum (BRS-3D)". Finally, quantitative or discriminant models were developed with the 300 dimensional descriptor using machine learning methods (support vector machine). The effectiveness of this approach was evaluated using 42 benchmark data sets from the G protein-coupled receptor (GPCR) ligand library and the GPCR decoy database (GLL/GDD). We compared the performance of BRS-3D with other 2D and 3D state-of-the-art molecular descriptors. The results showed that models built with BRS-3D performed best for most GLL/GDD data sets. We also applied BRS-3D in histone deacetylase 1 inhibitors screening and GPCR subtype selectivity prediction. The advantages and disadvantages of this approach are discussed.
Accomando, Alyssa W.; Vargas-Irwin, Carlos E.; Simmons, James A.
2018-01-01
Bats emit biosonar pulses in complex temporal patterns that change to accommodate dynamic surroundings. Efforts to quantify these patterns have included analyses of inter-pulse intervals, sonar sound groups, and changes in individual signal parameters such as duration or frequency. Here, the similarity in temporal structure between trains of biosonar pulses is assessed. The spike train similarity space (SSIMS) algorithm, originally designed for neural activity pattern analysis, was applied to determine which features of the environment influence temporal patterning of pulses emitted by flying big brown bats, Eptesicus fuscus. In these laboratory experiments, bats flew down a flight corridor through an obstacle array. The corridor varied in width (100, 70, or 40 cm) and shape (straight or curved). Using a relational point-process framework, SSIMS was able to discriminate between echolocation call sequences recorded from flights in each of the corridor widths. SSIMS was also able to tell the difference between pulse trains recorded during flights where corridor shape through the obstacle array matched the previous trials (fixed, or expected) as opposed to those recorded from flights with randomized corridor shape (variable, or unexpected), but only for the flight path shape in which the bats had previous training. The results show that experience influences the temporal patterns with which bats emit their echolocation calls. It is demonstrated that obstacle proximity to the bat affects call patterns more dramatically than flight path shape. PMID:29472848
Accomando, Alyssa W; Vargas-Irwin, Carlos E; Simmons, James A
2018-01-01
Bats emit biosonar pulses in complex temporal patterns that change to accommodate dynamic surroundings. Efforts to quantify these patterns have included analyses of inter-pulse intervals, sonar sound groups, and changes in individual signal parameters such as duration or frequency. Here, the similarity in temporal structure between trains of biosonar pulses is assessed. The spike train similarity space (SSIMS) algorithm, originally designed for neural activity pattern analysis, was applied to determine which features of the environment influence temporal patterning of pulses emitted by flying big brown bats, Eptesicus fuscus . In these laboratory experiments, bats flew down a flight corridor through an obstacle array. The corridor varied in width (100, 70, or 40 cm) and shape (straight or curved). Using a relational point-process framework, SSIMS was able to discriminate between echolocation call sequences recorded from flights in each of the corridor widths. SSIMS was also able to tell the difference between pulse trains recorded during flights where corridor shape through the obstacle array matched the previous trials (fixed, or expected) as opposed to those recorded from flights with randomized corridor shape (variable, or unexpected), but only for the flight path shape in which the bats had previous training. The results show that experience influences the temporal patterns with which bats emit their echolocation calls. It is demonstrated that obstacle proximity to the bat affects call patterns more dramatically than flight path shape.
Shape Distributions of Nonlinear Dynamical Systems for Video-Based Inference.
Venkataraman, Vinay; Turaga, Pavan
2016-12-01
This paper presents a shape-theoretic framework for dynamical analysis of nonlinear dynamical systems which appear frequently in several video-based inference tasks. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. A novel approach we propose is the use of descriptors of the shape of the dynamical attractor as a feature representation of nature of dynamics. The proposed framework has two main advantages over traditional approaches: a) representation of the dynamical system is derived directly from the observational data, without any inherent assumptions, and b) the proposed features show stability under different time-series lengths where traditional dynamical invariants fail. We illustrate our idea using nonlinear dynamical models such as Lorenz and Rossler systems, where our feature representations (shape distribution) support our hypothesis that the local shape of the reconstructed phase space can be used as a discriminative feature. Our experimental analyses on these models also indicate that the proposed framework show stability for different time-series lengths, which is useful when the available number of samples are small/variable. The specific applications of interest in this paper are: 1) activity recognition using motion capture and RGBD sensors, 2) activity quality assessment for applications in stroke rehabilitation, and 3) dynamical scene classification. We provide experimental validation through action and gesture recognition experiments on motion capture and Kinect datasets. In all these scenarios, we show experimental evidence of the favorable properties of the proposed representation.
Choi, Sanghun; Hoffman, Eric A; Wenzel, Sally E; Castro, Mario; Lin, Ching-Long
2014-09-15
Lung air trapping is estimated via quantitative computed tomography (CT) using density threshold-based measures on an expiration scan. However, the effects of scanner differences and imaging protocol adherence on quantitative assessment are known to be problematic. This study investigates the effects of protocol differences, such as using different CT scanners and breath-hold coaches in a multicenter asthmatic study, and proposes new methods that can adjust intersite and intersubject variations. CT images of 50 healthy subjects and 42 nonsevere and 52 severe asthmatics at total lung capacity (TLC) and functional residual capacity (FRC) were acquired using three different scanners and two different coaching methods at three institutions. A fraction threshold-based approach based on the corrected Hounsfield unit of air with tracheal density was applied to quantify air trapping at FRC. The new air-trapping method was enhanced by adding a lung-shaped metric at TLC and the lobar ratio of air-volume change between TLC and FRC. The fraction-based air-trapping method is able to collapse air-trapping data of respective populations into distinct regression lines. Relative to a constant value-based clustering scheme, the slope-based clustering scheme shows the improved performance and reduced misclassification rate of healthy subjects. Furthermore, both lung shape and air-volume change are found to be discriminant variables for differentiating among three populations of healthy subjects and nonsevere and severe asthmatics. In conjunction with the lung shape and air-volume change, the fraction-based measure of air trapping enables differentiation of severe asthmatics from nonsevere asthmatics and nonsevere asthmatics from healthy subjects, critical for the development and evaluation of new therapeutic interventions. Copyright © 2014 the American Physiological Society.
Choi, Sanghun; Hoffman, Eric A.; Wenzel, Sally E.; Castro, Mario
2014-01-01
Lung air trapping is estimated via quantitative computed tomography (CT) using density threshold-based measures on an expiration scan. However, the effects of scanner differences and imaging protocol adherence on quantitative assessment are known to be problematic. This study investigates the effects of protocol differences, such as using different CT scanners and breath-hold coaches in a multicenter asthmatic study, and proposes new methods that can adjust intersite and intersubject variations. CT images of 50 healthy subjects and 42 nonsevere and 52 severe asthmatics at total lung capacity (TLC) and functional residual capacity (FRC) were acquired using three different scanners and two different coaching methods at three institutions. A fraction threshold-based approach based on the corrected Hounsfield unit of air with tracheal density was applied to quantify air trapping at FRC. The new air-trapping method was enhanced by adding a lung-shaped metric at TLC and the lobar ratio of air-volume change between TLC and FRC. The fraction-based air-trapping method is able to collapse air-trapping data of respective populations into distinct regression lines. Relative to a constant value-based clustering scheme, the slope-based clustering scheme shows the improved performance and reduced misclassification rate of healthy subjects. Furthermore, both lung shape and air-volume change are found to be discriminant variables for differentiating among three populations of healthy subjects and nonsevere and severe asthmatics. In conjunction with the lung shape and air-volume change, the fraction-based measure of air trapping enables differentiation of severe asthmatics from nonsevere asthmatics and nonsevere asthmatics from healthy subjects, critical for the development and evaluation of new therapeutic interventions. PMID:25103972
Modeling the human body shape in bioimpedance vector measurements.
Kim, Chul-Hyun; Park, Jae-Hyeon; Kim, Hyeoijin; Chung, Sochung; Park, Seung-Hun
2010-01-01
Human body shape, called somatotype, has described physique of humans in health and sports applications, relating anthropometric measurements to fatness, muscularity and linearity in a structured way. Here we propose a new method based on bioelectric impedance vector analysis (BIVA) of R/H and Xc/H to represent the cross-sectional area and the body cell mass in a given surface area (m(2)) respectively. Data from six gymnasts, ten dancers, and five fashion models, groups whose physiques and BMI ranges were distinct from one another, were measured for somatotype and BIVA. The models had highest values of the R/H and gymnasts the lowest. Xc/H was lower in models than in the dancers and gymnasts (p < 0.05). Phase angle was lowest in the models and highest in gymnasts significantly (p < 0.05). Pattern analysis from BIVA corresponded to the calculated anthropometric somatotype supporting the hypothesis that BIA's resistance (R) and reactance (Xc) are meaningful discriminates of body size and function which relate to physique in a purposive way.
Voogd, Jan; van Baarsen, Kirsten
2014-02-01
Up till the 1840s, gross dissection was the only method available to study the tracts and fascicles of the white matter of the human brain. This changed dramatically with the introduction by Stilling (1842, 1843, 1846) of the microscopy of serial sections and his demonstration of the discriminative power of this method. The decussation of the brachium conjunctivum (the superior cerebellar peduncle) (International Anatomical Terminology (1998)) originally was known as the horseshoe-shaped commissure of Wernekinck. The first use of this name and the first illustrations of this commissure date from a book by Wernekinck’s successor, Wilbrand (1840).Using gross dissection, he concluded that the commissure connects the dentate nucleus with the contralateral inferior olive. A few years later, Stilling (1846), using microscopy of serial sections through the human brain stem, illustrated the entire course of the brachium conjunctivum, its decussation,and its crossed ascending branch, up to the red nucleus. From his work, it became clear that Wernekinck and Wilbrand had included the central tegmental tract in their commissure, and that they had failed to identify its ascending branch.
Influence of musical expertise and musical training on pitch processing in music and language.
Besson, Mireille; Schön, Daniele; Moreno, Sylvain; Santos, Andréia; Magne, Cyrille
2007-01-01
We review a series of experiments aimed at studying pitch processing in music and speech. These studies were conducted with musician and non musician adults and children. We found that musical expertise improved pitch processing not only in music but also in speech. Demonstrating transfer of training between music and language has interesting applications for second language learning. We also addressed the issue of whether the positive effects of musical expertise are linked with specific predispositions for music or with extensive musical practice. Results of longitudinal studies argue for the later. Finally, we also examined pitch processing in dyslexic children and found that they had difficulties discriminating strong pitch changes that are easily discriminate by normal readers. These results argue for a strong link between basic auditory perception abilities and reading abilities. We used conjointly the behavioral method (Reaction Times and error rates) and the electrophysiological method (recording of the changes in brain electrical activity time-locked to stimulus presentation, Event-Related brain Potentials or ERPs). A set of common processes may be responsible for pitch processing in music and in speech and these processes are shaped by musical practice. These data add evidence in favor of brain plasticity and open interesting perspectives for the remediation of dyslexia using musical training.
Perceived racial, socioeconomic and gender discrimination and its impact on contraceptive choice
Kossler, Karla; Kuroki, Lindsay M.; Allsworth, Jenifer E.; Secura, Gina M.; Roehl, Kimberly A.; Peipert, Jeffrey F.
2012-01-01
Background The study was conducted to determine whether perceived racial, economic, and gender discrimination has an impact on contraception use and choice of method. Methods We analyzed the first 2,500 women, aged 14–45 years enrolled in the Contraceptive CHOICE Project, a prospective cohort study aimed to reduce barriers to long-acting reversible contraception. Items from the “Experiences of Discrimination” (EOD) scale measured experienced race-, gender-, and economic-based discrimination. Results Overall, 57% of women reported a history of discrimination. Thirty-three percent reported gender- or race-based discrimination and 24% reported discrimination attributed to socioeconomic status (SES). Prior to study enrollment, women reporting discrimination were more likely to report any contraception use (61% vs. 51%, p<0.001), but were more likely to use less effective methods (e.g., barrier methods, natural family planning or withdrawal; 41% vs. 32%, p<0.001). In adjusted analyses, gender-, race- or SES-based discrimination were associated with increased current use of less effective methods (adjusted risk ratio (aRR) 1.22, CI 1.06–1.41; aRR 1.25, CI 1.08–1.45; aRR 1.23, CI 1.06–1.43, respectively). After enrollment, 67% of women with history of experience of discrimination chose a long-acting reversible contraceptive method (intrauterine device or implantable) and 33% chose a depo-medroxyprogesterone acetate or contraceptive pill, patch or ring. Conclusions Discrimination negatively impacts a woman’s use of contraception. However, after financial and structural barriers to contraceptive use were eliminated, women with EOD overwhelmingly selected effective methods of contraception. Future interventions to improve access and utilization of contraception should focus on eliminating barriers and targeting interventions that encompass race-, gender-, and economic-based discrimination. PMID:21843693
McDevitt-Murphy, Meghan E; Weathers, Frank W; Flood, Amanda M; Eakin, David E; Benson, Trisha A
2007-06-01
This study investigated the Minnesota Multiphasic Personality Inventory-Revised (MMPI-2; Butcher, Dahlstrom, Graham, Tellegen, & Kaemmer, 1989) and the Personality Assessment Inventory (PAI; Morey, 1991) with regard to each instrument's utility for discriminating post-traumatic stress disorder (PTSD) from depression and social phobia in a sample of college students with mixed civilian trauma exposure. Participants were 90 trauma-exposed undergraduates (16 male, 74 female) classified into one of four groups: PTSD, depressive disorders, social phobia, and well-adjusted. For both the PAI and the MMPI-2, profile analysis revealed that the groups differed in the elevation and shape of their profiles. The PAI Traumatic Stress subscale demonstrated good discriminant validity.
Perceived racial, socioeconomic and gender discrimination and its impact on contraceptive choice.
Kossler, Karla; Kuroki, Lindsay M; Allsworth, Jenifer E; Secura, Gina M; Roehl, Kimberly A; Peipert, Jeffrey F
2011-09-01
The study was conducted to determine whether perceived racial, economic and gender discrimination has an impact on contraception use and choice of method. We analyzed the first 2,500 women aged 14-45 years enrolled in the Contraceptive CHOICE Project, a prospective cohort study aimed to reduce barriers to obtaining long-acting reversible contraception. Items from the "Experiences of Discrimination" (EOD) scale measured experienced race-, gender- and economic-based discrimination. Overall, 57% of women reported a history of discrimination. Thirty-three percent reported gender- or race-based discrimination, and 24% reported discrimination attributed to socioeconomic status (SES). Prior to study enrollment, women reporting discrimination were more likely to report any contraception use (61% vs. 52%, p<.001) but were more likely to use less effective methods (e.g., barrier methods, natural family planning or withdrawal; 41% vs. 32%, p<.001). In adjusted analyses, gender-, race- or SES-based discrimination were associated with increased current use of less effective methods [adjusted risk ratio (aRR) 1.22, 95% confidence interval (CI) 1.06-1.41; aRR 1.25, CI 1.08-1.45; aRR 1.23, CI 1.06-1.43, respectively]. After enrollment, 66% of women with a history of experience of discrimination chose a long-acting reversible contraceptive method (intrauterine device or implantable) and 35% chose a depo-medroxyprogesterone acetate or contraceptive pill, patch or ring. Discrimination negatively impacts a woman's use of contraception. However, after financial and structural barriers to contraceptive use were eliminated, women with EOD overwhelmingly selected effective methods of contraception. Future interventions to improve access and utilization of contraception should focus on eliminating barriers and targeting interventions that encompass race-, gender- and economic-based discrimination. Copyright © 2011 Elsevier Inc. All rights reserved.
Methods for the scientific study of discrimination and health: an ecosocial approach.
Krieger, Nancy
2012-05-01
The scientific study of how discrimination harms health requires theoretically grounded methods. At issue is how discrimination, as one form of societal injustice, becomes embodied inequality and is manifested as health inequities. As clarified by ecosocial theory, methods must address the lived realities of discrimination as an exploitative and oppressive societal phenomenon operating at multiple levels and involving myriad pathways across both the life course and historical generations. An integrated embodied research approach hence must consider (1) the structural level-past and present de jure and de facto discrimination; (2) the individual level-issues of domains, nativity, and use of both explicit and implicit discrimination measures; and (3) how current research methods likely underestimate the impact of racism on health.
Development of a new type of germanium detector for dark matter searches
NASA Astrophysics Data System (ADS)
Wei, Wenzhao
Monte Carlo simulation is an important tool used to develop a better understanding of important physical processes. This thesis describes three Monte Carlo simulations used to understand germanium detector response to low energy nuclear recoils and radiogenic backgrounds for direct dark matter searches. The first simulation is the verification of Barker-Mei model, a theoretical model for calculating the ionization efficiency for germanium detector for the energy range of 1 - 100 keV. Utilizing the shape analysis, a bin-to-bin comparison between simulation and experimental data was performed for verifying the accuracy of the Barker-Mei model. A percentage difference within 4% was achieved between data and simulation, which showed the validity of the Barker-Mei model. The second simulation is the study of a new type of germanium detector for n/gamma discrimination at 77 K with plasma time difference in pulse shape. Due to the poor time resolution, conventional P-type Point Contact (PPC) and coaxial germanium detectors are not capable of discriminating nuclear recoils from electron recoils. In this thesis, a new idea of using great detector granularity and plasma time difference in pulse shape to discriminate nuclear recoils from electron recoils with planar germanium detectors in strings was discussed. The anticipated sensitivity of this new detector array is shown for detecting dark matter. The last simulation is a study of a new type of germanium-detector array serving as a PMT screening facility for ultra-low background dark matter experiments using noble liquid xenon as detector material such LUX/LZ and XENON100/XENON1T. A well-shaped germanium detector array and a PMT were simulated to study the detector response to the signal and background for a better understanding of the radiogenic gamma rays from PMTs. The detector efficiency and other detector performance were presented in this work.
Advances in Neutron Spectroscopy with Deuterated Organic Scintillators
NASA Astrophysics Data System (ADS)
Febbraro, Michael; Pain, Steve; Becchetti, Frederick
2015-10-01
Deuterated organic scintillators have shown promise as neutron detectors for nuclear science as well as applications in nuclear non-proliferation and safeguards. In particular, they can extract neutron spectra without the use of neutron time-of-flight measurement (n-ToF) utilizing spectrum unfolding techniques. This permits the measure of cross sections of bound and unbound states with high efficiency and angular coverage. In the case of measurements with radioactive ion beams where low beam intensities limit long path n-ToF, short path n-ToF can be used to discriminate neutrons of interest from room return and background neutrons. This presentation will provide recent advances with these types of detectors. Digital pulse-shape discrimination using fast waveform digitizers, spectrum unfolding methods for extraction of neutron spectra, and a new safer deuterated-xylene formulation EJ-301D will be discussed. In addition, experimental results from measurements of discrete and continuous neutron spectra which illustrate the advantage of these detectors for certain applications in nuclear physics research and nuclear security will be shown. This work is supported by NSF and DOE.
Monstrey, Jolijn; Deeks, John M.; Macherey, Olivier
2014-01-01
Objective To evaluate a speech-processing strategy in which the lowest frequency channel is conveyed using an asymmetric pulse shape and “phantom stimulation”, where current is injected into one intra-cochlear electrode and where the return current is shared between an intra-cochlear and an extra-cochlear electrode. This strategy is expected to provide more selective excitation of the cochlear apex, compared to a standard strategy where the lowest-frequency channel is conveyed by symmetric pulses in monopolar mode. In both strategies all other channels were conveyed by monopolar stimulation. Design Within-subjects comparison between the two strategies. Four experiments: (1) discrimination between the strategies, controlling for loudness differences, (2) consonant identification, (3) recognition of lowpass-filtered sentences in quiet, (4) sentence recognition in the presence of a competing speaker. Study sample Eight users of the Advanced Bionics CII/Hi-Res 90k cochlear implant. Results Listeners could easily discriminate between the two strategies but no consistent differences in performance were observed. Conclusions The proposed method does not improve speech perception, at least in the short term. PMID:25358027
Carlyon, Robert P; Monstrey, Jolijn; Deeks, John M; Macherey, Olivier
2014-12-01
To evaluate a speech-processing strategy in which the lowest frequency channel is conveyed using an asymmetric pulse shape and "phantom stimulation", where current is injected into one intra-cochlear electrode and where the return current is shared between an intra-cochlear and an extra-cochlear electrode. This strategy is expected to provide more selective excitation of the cochlear apex, compared to a standard strategy where the lowest-frequency channel is conveyed by symmetric pulses in monopolar mode. In both strategies all other channels were conveyed by monopolar stimulation. Within-subjects comparison between the two strategies. Four experiments: (1) discrimination between the strategies, controlling for loudness differences, (2) consonant identification, (3) recognition of lowpass-filtered sentences in quiet, (4) sentence recognition in the presence of a competing speaker. Eight users of the Advanced Bionics CII/Hi-Res 90k cochlear implant. Listeners could easily discriminate between the two strategies but no consistent differences in performance were observed. The proposed method does not improve speech perception, at least in the short term.
NASA Astrophysics Data System (ADS)
Zhang, Linna; Ding, Hongyan; Lin, Ling; Wang, Yimin; Guo, Xin
2018-01-01
Noncontact discriminating human blood is significantly crucial for import-export ports and inspection and quarantine departments. We had already demonstrated that visible diffuse reflectance spectroscopy combining PLS-DA method can successfully realize noncontact human blood discrimination. However, the circulated blood vessels may be produced with different materials. The use of various kinds of blood tubes may have a negative effect on the discrimination, based on ;M+N; theory (Li et al., 2016). In this research, we explored the impact of different material of blood vessels, such as glass tube and plastic tube, on the prediction ability of the discrimination model. Furthermore, we searched for the modification method to reduce the influence from the blood tubes. Our work indicated that generalized diffuse reflectance method can greatly improve the discrimination accuracy. This research can greatly facilitate the application of noncontact discrimination method based on visible and near-infrared diffuse reflectance spectroscopy.
Prostate segmentation in MR images using discriminant boundary features.
Yang, Meijuan; Li, Xuelong; Turkbey, Baris; Choyke, Peter L; Yan, Pingkun
2013-02-01
Segmentation of the prostate in magnetic resonance image has become more in need for its assistance to diagnosis and surgical planning of prostate carcinoma. Due to the natural variability of anatomical structures, statistical shape model has been widely applied in medical image segmentation. Robust and distinctive local features are critical for statistical shape model to achieve accurate segmentation results. The scale invariant feature transformation (SIFT) has been employed to capture the information of the local patch surrounding the boundary. However, when SIFT feature being used for segmentation, the scale and variance are not specified with the location of the point of interest. To deal with it, the discriminant analysis in machine learning is introduced to measure the distinctiveness of the learned SIFT features for each landmark directly and to make the scale and variance adaptive to the locations. As the gray values and gradients vary significantly over the boundary of the prostate, separate appearance descriptors are built for each landmark and then optimized. After that, a two stage coarse-to-fine segmentation approach is carried out by incorporating the local shape variations. Finally, the experiments on prostate segmentation from MR image are conducted to verify the efficiency of the proposed algorithms.
A functional analysis of photo-object matching skills of severely retarded adolescents.
Dixon, L S
1981-01-01
Matching-to-sample procedures were used to assess picture representation skills of severely retarded, nonverbal adolescents. Identity matching within the classes of objects and life-size, full-color photos of the objects was first used to assess visual discrimination, a necessary condition for picture representation. Picture representation was then assessed through photo-object matching tasks. Five students demonstrated visual discrimination (identity matching) within the two classes of photos and the objects. Only one student demonstrated photo-object matching. The results of the four students who failed to demonstrate photo-object matching suggested that physical properties of photos (flat, rectangular) and depth dimensions of objects may exert more control over matching than the similarities of the objects and images within the photos. An analysis of figure-ground variables was conducted to provide an empirical basis for program development in the use of pictures. In one series of tests, rectangular shape and background were removed by cutting out the figures in the photos. The edge shape of the photo and the edge shape of the image were then identical. The results suggest that photo-object matching may be facilitated by using cut-out figures rather than the complete rectangular photo.
Interactive lesion segmentation with shape priors from offline and online learning.
Shepherd, Tony; Prince, Simon J D; Alexander, Daniel C
2012-09-01
In medical image segmentation, tumors and other lesions demand the highest levels of accuracy but still call for the highest levels of manual delineation. One factor holding back automatic segmentation is the exemption of pathological regions from shape modelling techniques that rely on high-level shape information not offered by lesions. This paper introduces two new statistical shape models (SSMs) that combine radial shape parameterization with machine learning techniques from the field of nonlinear time series analysis. We then develop two dynamic contour models (DCMs) using the new SSMs as shape priors for tumor and lesion segmentation. From training data, the SSMs learn the lower level shape information of boundary fluctuations, which we prove to be nevertheless highly discriminant. One of the new DCMs also uses online learning to refine the shape prior for the lesion of interest based on user interactions. Classification experiments reveal superior sensitivity and specificity of the new shape priors over those previously used to constrain DCMs. User trials with the new interactive algorithms show that the shape priors are directly responsible for improvements in accuracy and reductions in user demand.
Metzger, Marc C; Vogel, Mathias; Hohlweg-Majert, Bettina; Mast, Hansjörg; Fan, Xianqun; Rüdell, Alexandra; Schlager, Stefan
2011-09-01
The purpose of this study was to evaluate and analyze statistical shapes of the outer mandible contour of Caucasian and Chinese people, offering data for the production of preformed mandible reconstruction plates. A CT-database of 925 Caucasians (male: n=463, female: n=462) and 960 Chinese (male: n=469, female: n=491) including scans of unaffected mandibles were used and imported into the 3D modeling software Voxim (IVS-Solutions, Chemnitz, Germany). Anatomical landmarks (n=22 points for both sides) were set using the 3D view along the outer contour of the mandible at the area where reconstruction plates are commonly located. We used morphometric methods for statistical shape analysis. We found statistical relevant differences between populations including a distinct discrimination given by the landmarks at the mandible. After generating a metric model this shape information which separated the populations appeared to be of no clinical relevance. The metric size information given by ramus length however provided a profound base for the production of standard reconstruction plates. Clustering by ramus length into three sizes and calculating means of these size-clusters seem to be a good solution for constructing preformed reconstruction plates that will fit a vast majority. Copyright © 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Measuring the Density of Different Materials by Using the Collimated Fast Neutron Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudac, D.; Nad, K.; Orlic, Z.
It was demonstrated in the previous work that various threat materials could be detected inside the sea going cargo container by measuring the three variables, carbon and oxygen concentration and density of investigated material. Density was determined by measuring transmitted neutrons, which is not always practical in terms of setting up the instrument geometry. In order to enable more geometry flexibility, we have investigated the possibility of using the scattered neutrons in cargo material identification. For that purpose, the densities of different materials were measured depending on the position of neutron detectors and neutron generator with respect to the targetmore » position. One neutron detector was put above the target, one behind and one in front of the target, above the neutron generator. It was shown that all three positions of neutron detectors can be successfully used to measure the target density, but only if the detected neutrons are successfully discriminated from the gamma rays. Although the associated alpha particle technique/associate particle imaging (API) was used to discriminate the neutrons from the gamma rays, it is believed that the same results would be obtained by using the pulse shape discrimination method. In that way API technique can be avoided and the neutron generator which produces much higher beam intensity than 10{sup 8} n/s can be used. (authors)« less
The evaluation of uncertainty in low-level LSC measurements of water samples.
Rusconi, R; Forte, M; Caresana, M; Bellinzona, S; Cazzaniga, M T; Sgorbati, G
2006-01-01
The uncertainty in measurements of gross alpha and beta activities in water samples by liquid scintillation counting with alpha/beta discrimination has been evaluated considering the problems typical of low-level measurements of environmental samples. The use of a pulse shape analysis device to discriminate alpha and beta events introduces a correlation between some of the input quantities, and it has to be considered. Main contributors to total uncertainty have been assessed by specifically designed experimental tests. Results have been fully examined and discussed.
Richardson, Bridget L; Macon, Tamarie A; Mustafaa, Faheemah N; Bogan, Erin D; Cole-Lewis, Yasmin; Chavous, Tabbye M
2015-06-01
Research links racial identity to important developmental outcomes among African American adolescents, but less is known about the contextual experiences that shape youths' racial identity. In a sample of 491 African American adolescents (48% female), associations of youth-reported experiences of racial discrimination and parental messages about preparation for racial bias with adolescents' later racial identity were examined. Cluster analysis resulted in four profiles of adolescents varying in reported frequency of racial discrimination from teachers and peers at school and frequency of parental racial discrimination coping messages during adolescents' 8th grade year. Boys were disproportionately over-represented in the cluster of youth experiencing more frequent discrimination but receiving fewer parental discrimination coping messages, relative to the overall sample. Also examined were clusters of adolescents' 11th grade racial identity attitudes about the importance of race (centrality), personal group affect (private regard), and perceptions of societal beliefs about African Americans (public regard). Girls and boys did not differ in their representation in racial identity clusters, but 8th grade discrimination/parent messages clusters were associated with 11th grade racial identity cluster membership, and these associations varied across gender groups. Boys experiencing more frequent discrimination but fewer parental coping messages were over-represented in the racial identity cluster characterized by low centrality, low private regard, and average public regard. The findings suggest that adolescents who experience racial discrimination but receive fewer parental supports for negotiating and coping with discrimination may be at heightened risk for internalizing stigmatizing experiences. Also, the findings suggest the need to consider the context of gender in adolescents' racial discrimination and parental racial socialization.
Task-irrelevant emotion facilitates face discrimination learning.
Lorenzino, Martina; Caudek, Corrado
2015-03-01
We understand poorly how the ability to discriminate faces from one another is shaped by visual experience. The purpose of the present study is to determine whether face discrimination learning can be facilitated by facial emotions. To answer this question, we used a task-irrelevant perceptual learning paradigm because it closely mimics the learning processes that, in daily life, occur without a conscious intention to learn and without an attentional focus on specific facial features. We measured face discrimination thresholds before and after training. During the training phase (4 days), participants performed a contrast discrimination task on face images. They were not informed that we introduced (task-irrelevant) subtle variations in the face images from trial to trial. For the Identity group, the task-irrelevant features were variations along a morphing continuum of facial identity. For the Emotion group, the task-irrelevant features were variations along an emotional expression morphing continuum. The Control group did not undergo contrast discrimination learning and only performed the pre-training and post-training tests, with the same temporal gap between them as the other two groups. Results indicate that face discrimination improved, but only for the Emotion group. Participants in the Emotion group, moreover, showed face discrimination improvements also for stimulus variations along the facial identity dimension, even if these (task-irrelevant) stimulus features had not been presented during training. The present results highlight the importance of emotions for face discrimination learning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Methods for the Scientific Study of Discrimination and Health: An Ecosocial Approach
2012-01-01
The scientific study of how discrimination harms health requires theoretically grounded methods. At issue is how discrimination, as one form of societal injustice, becomes embodied inequality and is manifested as health inequities. As clarified by ecosocial theory, methods must address the lived realities of discrimination as an exploitative and oppressive societal phenomenon operating at multiple levels and involving myriad pathways across both the life course and historical generations. An integrated embodied research approach hence must consider (1) the structural level—past and present de jure and de facto discrimination; (2) the individual level—issues of domains, nativity, and use of both explicit and implicit discrimination measures; and (3) how current research methods likely underestimate the impact of racism on health. PMID:22420803
Williams, Kate; Haire, Bridget G; Nathan, Sally
2017-10-01
Little is known about the experiences of people with HIV in the small island nation of Timor-Leste. This study explored the HIV-related stigma experiences of adults aged between 18 and 40 living with HIV in Dili, Timor-Leste. Participants were interviewed on topics related to living with HIV, both as key informants describing the experience of others with HIV known to them, and also with respect to their own personal experiences. Findings suggest that people with HIV in Timor-Leste face stigma and discrimination in various contexts. In this predominantly Catholic country, perceptions of HIV and attitudes towards people with HIV appear to be commonly shaped by religious beliefs. In families and communities, participants encountered gossip, social exclusion and threats of violence. In health settings, participants experienced discrimination from health providers in the form of failing to maintain confidentiality and inappropriate treatment. The impact of stigma was profoundly negative and influenced participants' decision to disclose their status to others. Participants attributed stigma to a lack of information about HIV among the general public. Unless stigma reduction interventions also address the Church's role in shaping perceptions of HIV, education campaigns are unlikely to be effective in reducing HIV-related stigma.
Wang, Yamin; Fu, Xiaolan; Johnston, Robert A.; Yan, Zheng
2013-01-01
Using Garner’s speeded classification task existing studies demonstrated an asymmetric interference in the recognition of facial identity and facial expression. It seems that expression is hard to interfere with identity recognition. However, discriminability of identity and expression, a potential confounding variable, had not been carefully examined in existing studies. In current work, we manipulated discriminability of identity and expression by matching facial shape (long or round) in identity and matching mouth (opened or closed) in facial expression. Garner interference was found either from identity to expression (Experiment 1) or from expression to identity (Experiment 2). Interference was also found in both directions (Experiment 3) or in neither direction (Experiment 4). The results support that Garner interference tends to occur under condition of low discriminability of relevant dimension regardless of facial property. Our findings indicate that Garner interference is not necessarily related to interdependent processing in recognition of facial identity and expression. The findings also suggest that discriminability as a mediating factor should be carefully controlled in future research. PMID:24391609
Velocity-based motion categorization by pigeons.
Cook, Robert G; Beale, Kevin; Koban, Angie
2011-04-01
To examine if animals could learn action-like categorizations in a manner similar to noun-based categories, eight pigeons were trained to categorize rates of object motion. Testing 40 different objects in a go/no-go discrimination, pigeons were first trained to discriminate between fast and slow rates of object rotation around their central y-axis. They easily learned this velocity discrimination and transferred it to novel objects and rates. This discrimination also transferred to novel types of motions including the other two axes of rotation and two new translations around the display. Comparable tests with rapid and slow changes in the objects' size, color, and shape failed to support comparable transfer. This difference in discrimination transfer between motion-based and property-based changes suggests the pigeons had learned motion concept rather than one based on change per se. The results provide evidence that pigeons can acquire an understanding of motion-based actions, at least with regard to the property of object velocity. This may be similar to our use of verbs and adverbs to categorize different classes of behavior or motion (e.g., walking, jogging, or running slow vs. fast).
Quesada, James; Arreola, Sonya; Kral, Alex; Khoury, Sahar; Organista, Kurt C.; Worby, Paula
2014-01-01
Undocumented Latino day laborers in the United States are vulnerable to being arrested and expelled at any time. This social fact shapes their everyday lives in terms of actions taken and strategies deployed to mitigate being confronted, profiled, and possibly incarcerated and deported. While perceptions of threat and bouts of discrimination are routine among undocumented Latino day laborers, their specific nature vary according to multiple social factors and structural forces that differ significantly from locale to locale. The experience of discrimination is often tacitly negotiated through perceptions, decisions, and actions toward avoiding or moderating its ill effects. This essay examines urban undocumented Latino day laborers over a variety of sites in the greater San Francisco Bay Area, which, compared to many metropolitan areas in the U.S. is “as good as it gets” in terms of being socially tolerated and relatively safe from persecution. Nonetheless, tacit negotiations are necessary to withstand or overcome challenges presented by idiosyncratic and ever changing global, national/state, and local dynamics of discrimination. [undocumented Latino laborers, social exclusion, discrimination, tacit negotiation] PMID:24910501
[The NIR spectra based variety discrimination for single soybean seed].
Zhu, Da-Zhou; Wang, Kun; Zhou, Guang-Hua; Hou, Rui-Feng; Wang, Cheng
2010-12-01
With the development of soybean producing and processing, the quality breeding becomes more and more important for soybean breeders. Traditional sampling detection methods for soybean quality need to destroy the seed, and does not satisfy the requirement of earlier generation materials sieving for breeding. Near infrared (NIR) spectroscopy has been widely used for soybean quality detection. However, all these applications were referred to mass samples, and they were not suitable for little or single seed detection in breeding procedure. In the present study, the acousto--optic tunable filter (AOTF) NIR spectroscopy was used to measure the single soybean seed. Two varieties of soybean were measured, which contained 60 KENJIANDOU43 seeds and 60 ZHONGHUANG13 seeds. The results showed that NIR spectra combined with soft independent modeling of class analogy (SIMCA) could accurately discriminate the soybean varieties. The classification accuracy for KENJIANDOU43 seeds and ZHONGHUANG13 was 100%. The spectra of single soybean seed were measured at different positions, and it showed that the seed shape has significant influence on the measurement of spectra, therefore, the key point for single seed measurement was how to accurately acquire the spectra and keep their representativeness. The spectra for soybeans with glossy surface had high repeatability, while the spectra of seeds with external defects had significant difference for several measurements. For the fast sieving of earlier generation materials in breeding, one could firstly eliminate the seeds with external defects, then apply NIR spectra for internal quality detection, and in this way the influence of seed shape and external defects could be reduced.
Clock distribution for BaF2 readout electronics at CSNS-WNS
NASA Astrophysics Data System (ADS)
He, Bing; Cao, Ping; Zhang, De-Liang; Wang, Qi; Zhang, Ya-Xi; Qi, Xin-Cheng; An, Qi
2017-01-01
A BaF2 (Barium Fluoride) detector array is designed to precisely measure the (n, γ) cross section at the CSNS-WNS (white neutron source at China Spallation Neutron Source). It is a 4π solid angle-shaped detector array consisting of 92 BaF2 crystal elements. To discriminate signals from the BaF2 detector, a pulse shape discrimination method is used, supported by a waveform digitization technique. There are 92 channels for digitizing. The precision and synchronization of clock distribution restricts the performance of waveform digitizing. In this paper, a clock prototype for the BaF2 readout electronics at CSNS-WNS is introduced. It is based on the PXIe platform and has a twin-stage tree topology. In the first stage, clock is synchronously distributed from the tree root to each PXIe crate through a coaxial cable over a long distance, while in the second stage, the clock is further distributed to each electronic module through a PXIe dedicated differential star bus. With the help of this topology, each tree node can fan out up to 20 clocks with 3U size. Test results show the clock jitter is less than 20 ps, which meets the requirements of the BaF2 readout electronics. Besides, this clock system has the advantages of high density, simplicity, scalability and cost saving, so it can be useful for other clock distribution applications. Supported by National Research and Development plan (2016 YFA0401602) NSAF (U1530111) and National Natural Science Foundation of China (11005107)
ZnO:Zn/6LiF scintillator-A low afterglow alternative to ZnS:Ag/6LiF for thermal neutron detection
NASA Astrophysics Data System (ADS)
Sykora, G. Jeff; Schooneveld, Erik M.; Rhodes, Nigel J.
2018-03-01
Current ZnS:Ag/6LiF based scintillation detectors are often count rate limited by the long lifetime afterglow in the scintillator. Despite this drawback, new instruments at neutron scattering facilities, like ISIS in the UK, would still like to use ZnS:Ag/6LiF detectors due to their low gamma sensitivity, high light output, simplicity of detector design and relatively inexpensive production. One particular advantage of ZnS:Ag/6LiF detectors is their ability to provide strong pulse shape discrimination between neutrons and gammas. Despite the advantages of these detectors, it is becoming clear that new and upgraded instruments will be limited by the count rate capability of ZnS:Ag/6LiF, so an alternative scintillator technology with equivalent simplicity is being sought. ZnO:Zn/6LiF is investigated here as a low afterglow alternative to ZnS:Ag/6LiF. Basic scintillation properties of ZnO:Zn are studied and are discussed. Pulse shape discrimination between neutrons and gammas is explored and taken advantage of through simple single photon counting methods. A further step toward a realistic detector for neutron scattering is also taken by fiber coupling the ZnO:Zn/6LiF to a PMT. In an initial study of this fiber coupled configuration, 60Co gamma sensitivity of ∼ 7 × 10-6 is shown and improvements in count rate capability of at least a factor of 6 over ZnS:Ag/6LiF based neutron detectors are demonstrated.
NASA Astrophysics Data System (ADS)
Sheet, Debdoot; Karamalis, Athanasios; Kraft, Silvan; Noël, Peter B.; Vag, Tibor; Sadhu, Anup; Katouzian, Amin; Navab, Nassir; Chatterjee, Jyotirmoy; Ray, Ajoy K.
2013-03-01
Breast cancer is the most common form of cancer in women. Early diagnosis can significantly improve lifeexpectancy and allow different treatment options. Clinicians favor 2D ultrasonography for breast tissue abnormality screening due to high sensitivity and specificity compared to competing technologies. However, inter- and intra-observer variability in visual assessment and reporting of lesions often handicaps its performance. Existing Computer Assisted Diagnosis (CAD) systems though being able to detect solid lesions are often restricted in performance. These restrictions are inability to (1) detect lesion of multiple sizes and shapes, and (2) differentiate between hypo-echoic lesions from their posterior acoustic shadowing. In this work we present a completely automatic system for detection and segmentation of breast lesions in 2D ultrasound images. We employ random forests for learning of tissue specific primal to discriminate breast lesions from surrounding normal tissues. This enables it to detect lesions of multiple shapes and sizes, as well as discriminate between hypo-echoic lesion from associated posterior acoustic shadowing. The primal comprises of (i) multiscale estimated ultrasonic statistical physics and (ii) scale-space characteristics. The random forest learns lesion vs. background primal from a database of 2D ultrasound images with labeled lesions. For segmentation, the posterior probabilities of lesion pixels estimated by the learnt random forest are hard thresholded to provide a random walks segmentation stage with starting seeds. Our method achieves detection with 99.19% accuracy and segmentation with mean contour-to-contour error < 3 pixels on a set of 40 images with 49 lesions.
[Discrimination of Rice Syrup Adulterant of Acacia Honey Based Using Near-Infrared Spectroscopy].
Zhang, Yan-nan; Chen, Lan-zhen; Xue, Xiao-feng; Wu, Li-ming; Li, Yi; Yang, Juan
2015-09-01
At present, the rice syrup as a low price of the sweeteners was often adulterated into acacia honey and the adulterated honeys were sold in honey markets, while there is no suitable and fast method to identify honey adulterated with rice syrup. In this study, Near infrared spectroscopy (NIR) combined with chemometric methods were used to discriminate authenticity of honey. 20 unprocessed acacia honey samples from the different honey producing areas, mixed? with different proportion of rice syrup, were prepared of seven different concentration gradient? including 121 samples. The near infrared spectrum (NIR) instrument and spectrum processing software have been applied in the? spectrum? scanning and data conversion on adulterant samples, respectively. Then it was analyzed by Principal component analysis (PCA) and canonical discriminant analysis methods in order to discriminating adulterated honey. The results showed that after principal components analysis, the first two principal components accounted for 97.23% of total variation, but the regionalism of the score plot of the first two PCs was not obvious, so the canonical discriminant analysis was used to make the further discrimination, all samples had been discriminated correctly, the first two discriminant functions accounted for 91.6% among the six canonical discriminant functions, Then the different concentration of adulterant samples can be discriminated correctly, it illustrate that canonical discriminant analysis method combined with NIR spectroscopy is not only feasible but also practical for rapid and effective discriminate of the rice syrup adulterant of acacia honey.
Rapid discrimination of three Uighur medicine of Eremurus by FT-IR combined with 2DCOS-IR
NASA Astrophysics Data System (ADS)
Zhu, Yun; Xu, Chang-hua; Huang, Jian; Li, Guo-yu; Zhou, Qun; Liu, Xin-Hu; Sun, Su-qin; Wang, Jin-hui
2014-07-01
As complicated mixture systems, traditional Chinese medicines (TCMs) are difficult to be identified and discriminated, especially for the drug samples originated from the same source. In this study, a tri-step infrared spectroscopy method, i.e., conventional infrared spectroscopy (FT-IR) combined with second derivatives spectra and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was employed to study and identify three Uighur drugs of Eremurus in Xinjiang, i.e. Eremurus altaicus (Pall.) Stev (AET), E. inderiensis (M.Bieb.)Regel(CB), E. anisopterus (Kar.et Kir.) Regel(YC). It was founded that the conventional IR spectra of the three species Eremurus were very similar based on the peak positions and shapes, indicating that the three had similar chemical profiles. On the basis of the different IR spectra of reference compounds and microscopic identification, the roots of YC, CB and AET all have comparable amount of calcium oxalate. The second derivative spectra of Eremurus enhanced the spectral resolution and amplified the small differences, especially at about 1468 cm-1, 1454 cm-1, and 1164 cm-1, and subsequently provided some dissimilarity in their calcium oxalate content. AET has relatively higher content of calcium oxalate but the lower content of anthraquinones. Moreover, the 2D-IR spectra revealed tiny differences among the three species by providing dynamic structural information of their chemical components in a more direct and visual way. The differences embodied mainly on the intensity of the auto-peaks at 971 cm-1, 1008 cm-1, 1468 cm-1 and 1578 cm-1. As a result, it was demonstrated that the macroscopic IR fingerprint method could discriminate the three similar Uighur drugs, YC, CB and AET.
Life history dependent morphometric variation in stream-dwelling Atlantic salmon
Letcher, B.H.
2003-01-01
The time course of morphometric variation among life histories for stream-dwelling Atlantic salmon (Salmo salar L.) parr (age-0+ to age-2+) was analyzed. Possible life histories were combinations of parr maturity status in the autumn (mature or immature) and age at outmigration (smolt at age-2+ or later age). Actual life histories expressed with enough fish for analysis in the 1997 cohort were immature/age-2+ smolt, mature/age-2 +smolt, and mature/age-2+ non-smolt. Tagged fish were assigned to one of the three life histories and digital pictures from the field were analyzed using landmark-based geometric morphometrics. Results indicated that successful grouping of fish according to life history varied with fish age, but that fish could be grouped before the actual expression of the life histories. By March (age-1+), fish were successfully grouped using a descriptive discriminant function and successful assignment ranged from 84 to 97% for the remainder of stream residence. A jackknife of the discriminant function revealed an average life history prediction success of 67% from age-1+ summer to smolting. Low sample numbers for one of the life histories may have limited prediction success. A MANOVA on the shape descriptors (relative warps) also indicated significant differences in shape among life histories from age-1+ summer through to smolting. Across all samples, shape varied significantly with size. Within samples, shape did not vary significantly with size for samples from December (age-0+) to May (age-1+). During the age-1+ summer however, shape varied significantly with size, but the relationship between shape and size was not different among life histories. In the autumn (age-1+) and winter (age-2+), life history differences explained a significant portion of the change in shape with size. Life history dependent morphometric variation may be useful to indicate the timing of early expressions of life history variation and as a tool to explore temporal and spatial variation in life history expression.
ERIC Educational Resources Information Center
Hendrickson, Homer
1988-01-01
Spelling problems arise due to problems with form discrimination and inadequate visualization. A child's sequence of visual development involves learning motor control and coordination, with vision directing and monitoring the movements; learning visual comparison of size, shape, directionality, and solidity; developing visual memory or recall;…
Four pi-recoil proportional counter used as neutron spectrometer
NASA Technical Reports Server (NTRS)
Bennett, E. F.
1968-01-01
Study considers problems encountered in using 4 pi-recoil counters for neutron spectra measurement. Emphasis is placed on calibration, shape discrimination, variation of W, the average energy loss per ion pair, and the effects of differentiation on the intrinsic counter resolution.
Versatile analog pulse height computer performs real-time arithmetic operations
NASA Technical Reports Server (NTRS)
Brenner, R.; Strauss, M. G.
1967-01-01
Multipurpose analog pulse height computer performs real-time arithmetic operations on relatively fast pulses. This computer can be used for identification of charged particles, pulse shape discrimination, division of signals from position sensitive detectors, and other on-line data reduction techniques.
Model-Free Reconstruction of Excitatory Neuronal Connectivity from Calcium Imaging Signals
Stetter, Olav; Battaglia, Demian; Soriano, Jordi; Geisel, Theo
2012-01-01
A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium imaging. We focus in this study on the inference of excitatory synaptic links. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the functional network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (bursting or non-bursting). Thus by conditioning with respect to the global mean activity, we improve the performance of our method. This allows us to focus the analysis to specific dynamical regimes of the network in which the inferred functional connectivity is shaped by monosynaptic excitatory connections, rather than by collective synchrony. Our method can discriminate between actual causal influences between neurons and spurious non-causal correlations due to light scattering artifacts, which inherently affect the quality of fluorescence imaging. Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good estimation of the excitatory network clustering coefficient, allowing for discrimination between weakly and strongly clustered topologies. Finally, we demonstrate the applicability of our method to analyses of real recordings of in vitro disinhibited cortical cultures where we suggest that excitatory connections are characterized by an elevated level of clustering compared to a random graph (although not extreme) and can be markedly non-local. PMID:22927808
Preferential amygdala reactivity to the negative assessment of neutral faces.
Blasi, Giuseppe; Hariri, Ahmad R; Alce, Guilna; Taurisano, Paolo; Sambataro, Fabio; Das, Saumitra; Bertolino, Alessandro; Weinberger, Daniel R; Mattay, Venkata S
2009-11-01
Prior studies suggest that the amygdala shapes complex behavioral responses to socially ambiguous cues. We explored human amygdala function during explicit behavioral decision making about discrete emotional facial expressions that can represent socially unambiguous and ambiguous cues. During functional magnetic resonance imaging, 43 healthy adults were required to make complex social decisions (i.e., approach or avoid) about either relatively unambiguous (i.e., angry, fearful, happy) or ambiguous (i.e., neutral) facial expressions. Amygdala activation during this task was compared with that elicited by simple, perceptual decisions (sex discrimination) about the identical facial stimuli. Angry and fearful expressions were more frequently judged as avoidable and happy expressions most often as approachable. Neutral expressions were equally judged as avoidable and approachable. Reaction times to neutral expressions were longer than those to angry, fearful, and happy expressions during social judgment only. Imaging data on stimuli judged to be avoided revealed a significant task by emotion interaction in the amygdala. Here, only neutral facial expressions elicited greater activity during social judgment than during sex discrimination. Furthermore, during social judgment only, neutral faces judged to be avoided were associated with greater amygdala activity relative to neutral faces that were judged as approachable. Moreover, functional coupling between the amygdala and both dorsolateral prefrontal (social judgment > sex discrimination) and cingulate (sex discrimination > social judgment) cortices was differentially modulated by task during processing of neutral faces. Our results suggest that increased amygdala reactivity and differential functional coupling with prefrontal circuitries may shape complex decisions and behavioral responses to socially ambiguous cues.
Ward, Julia B; Feinstein, Lydia; Vines, Anissa I; Robinson, Whitney R; Haan, Mary N; Aiello, Allison E
2017-04-12
Despite growing evidence that discrimination may contribute to poor mental health, few studies have assessed this association among US Latinos. Furthermore, the interaction between discrimination and educational attainment in shaping Latino mental health is virtually unexplored. This study aims to examine the association between perceived discrimination and depressive symptoms and the modifying role of education among a population of Mexican-origin adults. We utilized population-based data from 629 Mexican-origin adults (mean age = 52.8 years) participating the Niños Lifestyle and Diabetes Study (2013-2014). Perceived discrimination was defined as responding 'sometimes' or 'often' to at least one item on the 9-item Everyday Discrimination Scale. High depressive symptoms were defined as scoring ≥10 on the CESD-10. We used log-binomial and linear-binomial models to estimate prevalence ratios (PR) and prevalence differences (PD), respectively, of high depressive symptoms for levels of perceived discrimination. Final models were adjusted for age, sex, education, cultural orientation, and nativity. General estimating equations were employed to account for within-family clustering. Prevalence of perceived discrimination and high depressive symptoms were 49.5% and 29.2%, respectively. Participants experiencing discrimination had higher depressive symptom prevalence than those never or rarely experiencing discrimination [PR = 1.94, 95% confidence interval (CI): 1.46-2.58; PD = 0.19, 95% CI: 0.12-0.27]. The strength of this association varied by education level. The association between discrimination and depressive symptoms was stronger among those with >12 years of education (PR = 2.69; PD = 0.24) compared to those with ≤12 years of education (PR = 1.36; PD = 0.09). US Latinos suffer a high burden of depressive symptoms, and discrimination may be an important driver of this burden. Our results suggest that effortful coping strategies, such as achieving high education despite high perceived discrimination, may magnify discrimination's adverse effect on Latino mental health.
Nunez-Parra, Alexia; Maurer, Robert K; Krahe, Krista; Smith, Richard S; Araneda, Ricardo C
2013-09-03
Granule cells (GCs) are the most abundant inhibitory neuronal type in the olfactory bulb and play a critical role in olfactory processing. GCs regulate the activity of principal neurons, the mitral cells, through dendrodendritic synapses, shaping the olfactory bulb output to other brain regions. GC excitability is regulated precisely by intrinsic and extrinsic inputs, and this regulation is fundamental for odor discrimination. Here, we used channelrhodopsin to stimulate GABAergic axons from the basal forebrain selectively and show that this stimulation generates reliable inhibitory responses in GCs. Furthermore, selective in vivo inhibition of GABAergic neurons in the basal forebrain by targeted expression of designer receptors exclusively activated by designer drugs produced a reversible impairment in the discrimination of structurally similar odors, indicating an important role of these inhibitory afferents in olfactory processing.
Gordon, Allegra R; Austin, S Bryn; Krieger, Nancy; White Hughto, Jaclyn M; Reisner, Sari L
2016-09-01
The impact of societal femininity ideals on disordered eating behaviors in non-transgender women has been well described, but scant research has explored these processes among transgender women. The present study explored weight and shape control behaviors among low-income, ethnically diverse young transgender women at high risk for HIV or living with HIV in a Northeastern metropolitan area. Semi-structured in-depth interviews were conducted with 21 participants (ages 18-31 years; mean annual income <$10,000; ethnic identity: Multiracial [n = 8], Black [n = 4], Latina [n = 4], White [n = 4], Asian [n = 1]). Interviews were transcribed and double-coded using a template organizing method, guided by ecosocial theory and a gender affirmation framework. Of 21 participants, 16 reported engaging in past-year disordered eating or weight and shape control behaviors, including binge eating, fasting, vomiting, and laxative use. Study participants described using a variety of strategies to address body image concerns in the context of gender-related and other discriminatory experiences, which shaped participants' access to social and material resources as well as stress and coping behaviors. Disordered weight and shape control behaviors were discussed in relation to four emergent themes: (1) gender socialization and the development of femininity ideals, (2) experiences of stigma and discrimination, (3) biological processes, and (4) multi-level sources of strength and resilience. This formative study provides insight into disordered eating and weight and shape control behaviors among at-risk transgender women, illuminating avenues for future research, treatment, and public health intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gordon, Allegra R.; Austin, S. Bryn; Krieger, Nancy; White Hughto, Jaclyn M.; Reisner, Sari L.
2016-01-01
The impact of societal femininity ideals on disordered eating behaviors in non-transgender women has been well described, but scant research has explored these processes among transgender women. The present study explored weight and shape control behaviors among low-income, ethnically diverse young transgender women at high risk for HIV or living with HIV in a Northeastern metropolitan area. Semi-structured in-depth interviews were conducted with 21 participants (ages 18–31 years; mean annual income <$10,000; ethnic identity: Multiracial [n = 8], Black [n = 4], Latina [n = 4], White [n = 4], Asian [n = 1]). Interviews were transcribed and double-coded using a template organizing method, guided by ecosocial theory and a gender affirmation framework. Of 21 participants, 16 reported engaging in past-year disordered eating or weight and shape control behaviors, including binge eating, fasting, vomiting, and laxative use. Study participants described using a variety of strategies to address body image concerns in the context of gender-related and other discriminatory experiences, which shaped participants’ access to social and material resources as well as stress and coping behaviors. Disordered weight and shape control behaviors were discussed in relation to four emergent themes: (1) gender socialization and the development of femininity ideals, (2) experiences of stigma and discrimination, (3) biological processes, and (4) multi-level sources of strength and resilience. This formative study provides insight into disordered eating and weight and shape control behaviors among at-risk transgender women, illuminating avenues for future research, treatment, and public health intervention. PMID:27518756
Yong, Robin; Ranjitkar, Sarbin; Lekkas, Dimitra; Halazonetis, Demetrios; Evans, Alistair; Brook, Alan; Townsend, Grant
2018-06-01
This study aimed to investigate size and shape variation of human premolars between Indigenous Australians and Australians of European ancestry, and to assess whether sex and ancestry could be differentiated between these groups using 3D geometric morphometrics. Seventy dental casts from each group, equally subdivided by sex, were scanned using a structured-light scanner. The 3D meshes of upper and lower premolars were processed using geometric morphometric methods. Seventy-two landmarks were recorded for upper premolars and 50 landmarks for lower premolars. For each tooth type, two-way ANOVA was used to assess group differences in centroid size. Shape variations were explored using principal component analysis and visualized using 3D morphing. Two-way Procrustes ANOVA was applied to test group differences for ancestry and sex, and a "leave-one-out" discriminant function was applied to assess group assignment. Centroid size and shape did not display significant difference between the sexes. Centroid size was larger in Indigenous Australians for upper premolars and lower second premolars compared to the Australians of European ancestry. Significant shape variation was noted between the two ancestral groups for upper premolars and the lower first premolar. Correct group assignment of individual teeth to their ancestral groups ranged between 80.0 and 92.8% for upper premolars and 60.0 and 75.7% for lower premolars. Our findings provide evidence of significant size and shape variation in human premolars between the two ancestral groups. High classification rates based on shape analysis of upper premolars highlight potential application of geometric morphometrics in anthropological, bioarcheological and forensic contexts. © 2018 Wiley Periodicals, Inc.
Chovalopoulou, Maria-Eleni; Valakos, Efstratios D; Manolis, Sotiris K
2016-06-01
The aim of this study is to assess sexual dimorphism of adult crania in the vault and midsagittal curve of the vault using three-dimensional geometric morphometric methods. The study sample consisted of 176 crania of known sex (94 males, 82 females) belonging to individuals who lived during the 20th century in Greece. The three-dimensional co-ordinates of 31 ecto-cranial landmarks and 30 semi-landmarks were digitized using a MicroScribe 3DX contact digitizer. Generalized Procrustes analysis (GPA) was used to obtain size and shape variables for statistical analysis. Shape, size and form analyses were carried out by logistic regression and three discriminant function analyses. Results indicate that there are shape differences between sexes. Females in the region of the parietal bones are narrower and the axis forming the frontal and occipital bones is more elongated; the frontal bone is more vertical. Sex-specific shape differences give better classification results in the vault (79%) compared with the midsagittal curve of the neurocranium (68.8%). Size alone yielded better results for cranial vault (82%), while for the midsagittal curve of the vault the result is poorer (68.1%). As anticipated, the classification accuracy improves when both size and shape are combined (89.2% for vault, and 79.4% for midsagittal curve of the vault). These latter findings imply that, in contrast to the midsagittal curve of the neurocranium, the shape of the cranial vault can be used as an indicator of sex in the modern Greek population. Copyright © 2016. Published by Elsevier GmbH.
USDA-ARS?s Scientific Manuscript database
Two simple fingerprinting methods, flow-injection UV spectroscopy (FIUV) and 1H nuclear magnetic resonance (NMR), for discrimination of Aurantii FructusImmaturus and Fructus Poniciri TrifoliataeImmaturususing were described. Both methods were combined with partial least-squares discriminant analysis...
Reisner, Sari L.; Gamarel, Kristi E.; Nemoto, Tooru; Operario, Don
2014-01-01
Background Despite evidence that interpersonal processes shape health behaviors, research concerning the dyadic effects of gender minority stressors on substance use behaviors of transgender people is scarce. The objective of this study was to use dyadic analysis to examine whether transgender discrimination was associated with substance use among transgender women and their male partners. Methods Transgender women and their male partners (N=191 couples; N=382 individuals) completed questionnaires. Participants’ mean age was 37.1; 79.1% were racial/ethnic minority; 61.3% earned <$500 per-month. The mean relationship duration was 37.9 months. Actor-Partner Interdependence Models were used to examine the associations between transgender-related discrimination and past 30-day non-marijuana illicit drug use adjusting for age, relationship length, financial hardship, and depressive distress among partners in these dyads. Results Illicit drug use was reported by 31.4% of transgender women and 25.1% of their male partners. Perceived transgender discrimination was independently associated with increased odds of illicit drug use for transgender women (actor effect) but not for their male partners. Financial hardship statistically predicted drug use for both partners (actor effects). There were no partner effects for financial hardship on drug use. Overall, 34.5% of dyads had discrepant substance use. Discrimination scores of male partners differentiated dyads who reported discrepant substance use. Discussion Gender minority stressors are critical to understanding substance use among transgender women and their male partners. Integrating socioeconomic status into gender minority stress frameworks is essential. Results have implications for substance use prevention and treatment, including the need to incorporate gender minority stressors into interventions. PMID:25642440
NASA Astrophysics Data System (ADS)
Chen, Nai-dong; Chen, Han; Li, Jun; Sang, Mang-mang; Ding, Shen; Yu, Hao
2015-04-01
The FTIR method was applied to evaluate the similarity of tissue-cultured and wild Dendrobium huoshanense C.Z. Tang et S.J. Cheng, Dendrobium officinale Kimura et Migo and Dendrobium moniliforme (Linn.) Sw and discriminate different Dendrobium species, especially D. huoshanense and its main goldbrick Dendrobium henanense J.L. Lu et L.X. Gao. Despite the general pattern of the IR spectra, different intensities, shapes and peak positions were found in the IR spectra of these samples, especially in the range of 1800-600 cm-1, which could be used to discriminate them. The methanol, aqueous extracting procedure and the second derivative transformation obviously enlarged the tiny spectral differences among these samples. The similarity evaluation based on the IR spectra and the second derivative IR spectrum revealed that the similarity of the methanol extracts between tissue-cultured and wild Dendrobiums might be lower than that between different Dendrobium species. The similarities of the powders and aqueous extracts between tissue-cultured and wild Dendrobiums were higher than those between different Dendrobium species. The further principal component analysis showed that the first three components explained 99.7%, 87.7% and 85.1% of data variance for powder, methanol extract and aqueous extract, respectively, demonstrating a good discrimination between samples. Our research suggested that the variations of secondary metabolites between different origins of the investigated Dendrobiums might be higher than what we had supposed. Tissue culture techniques were widely used in the conversation of rare and endangered medicinal amedica, however, our study suggested that the chemical constituents of tissue-cultured plants might be quite different from their wild correspondences.
Quantifying and visualizing variations in sets of images using continuous linear optimal transport
NASA Astrophysics Data System (ADS)
Kolouri, Soheil; Rohde, Gustavo K.
2014-03-01
Modern advancements in imaging devices have enabled us to explore the subcellular structure of living organisms and extract vast amounts of information. However, interpreting the biological information mined in the captured images is not a trivial task. Utilizing predetermined numerical features is usually the only hope for quantifying this information. Nonetheless, direct visual or biological interpretation of results obtained from these selected features is non-intuitive and difficult. In this paper, we describe an automatic method for modeling visual variations in a set of images, which allows for direct visual interpretation of the most significant differences, without the need for predefined features. The method is based on a linearized version of the continuous optimal transport (OT) metric, which provides a natural linear embedding for the image data set, in which linear combination of images leads to a visually meaningful image. This enables us to apply linear geometric data analysis techniques such as principal component analysis and linear discriminant analysis in the linearly embedded space and visualize the most prominent modes, as well as the most discriminant modes of variations, in the dataset. Using the continuous OT framework, we are able to analyze variations in shape and texture in a set of images utilizing each image at full resolution, that otherwise cannot be done by existing methods. The proposed method is applied to a set of nuclei images segmented from Feulgen stained liver tissues in order to investigate the major visual differences in chromatin distribution of Fetal-Type Hepatoblastoma (FHB) cells compared to the normal cells.
Computer-assisted shape descriptors for skull morphology in craniosynostosis.
Shim, Kyu Won; Lee, Min Jin; Lee, Myung Chul; Park, Eun Kyung; Kim, Dong Seok; Hong, Helen; Kim, Yong Oock
2016-03-01
Our aim was to develop a novel method for characterizing common skull deformities with high sensitivity and specificity, based on two-dimensional (2D) shape descriptors in computed tomography (CT) images. Between 2003 and 2014, 44 normal subjects and 39 infants with craniosynostosis (sagittal, 29; bicoronal, 10) enrolled for analysis. Mean age overall was 16 months (range, 1-120 months), with a male:female ratio of 56:29. Two reference planes, sagittal (S-plane: through top of lateral ventricle) and coronal (C-plane: at maximum dimension of fourth ventricle), were utilized to formulate three 2D shape descriptors (cranial index [CI], cranial radius index [CR], and cranial extreme spot index [CES]), which were then applied to S- and C-plane target images of both groups. In infants with sagittal craniosynostosis, CI in S-plane (S-CI) usually was <1.0 (mean, 0.78; range, 0.67-0.95), with CR consistently at 3 and a characteristic CES pattern of two discrete hot spots oriented diagonally. In the bicoronal craniosynostosis subset, CI was >1.0 (mean 1.11; range, 1.04-1.25), with CR at -3 and a CES pattern of four discrete diagonally oriented hot spots. Scatter plots underscored the highly intuitive joint performance of CI and CES in distinguishing normal and deformed states. Altogether, these novel 2D shape descriptors enabled effective discrimination of sagittal and bicoronal skull deformities. Newly developed 2D shape descriptors for cranial CT imaging enabled recognition of common skull deformities with statistical significance, perhaps providing impetus for automated CT-based diagnosis of craniosynostosis.
Dehaene, S
1989-07-01
Treisman and Gelade's (1980) feature-integration theory of attention states that a scene must be serially scanned before the objects in it can be accurately perceived. Is serial scanning compatible with the speed observed in the perception of real-world scenes? Most real scenes consist of many more dimensions (color, size, shape, depth, etc.) than those generally found in search paradigms. Furthermore, real objects differ from each other along many of these dimensions. The present experiment assessed the influence of the total number of dimensions and target/distractor discriminability (the number of dimensions that suffice to separate a target from distractors) on search times for a conjunction of features. Search was always found to be serial. However, for the most discriminable targets, search rate was so fast that search times were in the same range as pop-out detection times. Apparently, greater discriminability enables subjects to direct attention at a faster rate and at only a fraction of the items in a scene.
Diudea, Mircea V.; Putz, Mihai V.
2017-01-01
Docking—i.e., interaction of a small molecule (ligand) with a proteic structure (receptor)—represents the ground of drug action mechanism of the vast majority of bioactive chemicals. Ligand and receptor accommodate their geometry and energy, within this interaction, in the benefit of receptor–ligand complex. In an induced fit docking, the structure of ligand is most susceptible to changes in topology and energy, comparative to the receptor. These changes can be described by manifold hypersurfaces, in terms of polynomial discriminant and Laplacian operator. Such topological surfaces were represented for each MraY (phospho-MurNAc-pentapeptide translocase) inhibitor, studied before and after docking with MraY. Binding affinities of all ligands were calculated by this procedure. For each ligand, Laplacian and polynomial discriminant were correlated with the ligand minimum inhibitory concentration (MIC) retrieved from literature. It was observed that MIC is correlated with Laplacian and polynomial discriminant. PMID:28653980
Update on the MiniCLEAN dark matter experiment
Rielage, K.; Akashi-Ronquest, M.; Bodmer, M.; ...
2015-03-24
The direct search for dark matter is entering a period of increased sensitivity to the hypothetical Weakly Interacting Massive Particle (WIMP). One such technology that is being examined is a scintillation only noble liquid experiment, MiniCLEAN. MiniCLEAN utilizes over 500 kg of liquid cryogen to detect nuclear recoils from WIMP dark matter and serves as a demonstration for a future detector of order 50 to 100 tonnes. The liquid cryogen is interchangeable between argon and neon to study the A² dependence of the potential signal and examine backgrounds. MiniCLEAN utilizes a unique modular design with spherical geometry to maximize themore » light yield using cold photomultiplier tubes in a single-phase detector. Pulse shape discrimination techniques are used to separate nuclear recoil signals from electron recoil backgrounds. MiniCLEAN will be spiked with additional ³⁹Ar to demonstrate the effective reach of the pulse shape discrimination capability. Assembly of the experiment is underway at SNOLAB and an update on the project is given.« less
Mayer, Uwe; Pecchia, Tommaso; Bingman, Verner Peter; Flore, Michele; Vallortigara, Giorgio
2016-01-01
We employed a standard reference memory task to study the involvement of the hippocampal formation (HF) of domestic chicks that used the boundary geometry of a test environment to orient to and locate a reward. Using the immediate early gene product c-Fos as a neuronal activity marker, we found enhanced HF activation in chicks that learned to locate rewarded corners using the shape of a rectangular arena compared to chicks trained to solve the task by discriminating local features in a square-shaped arena. We also analyzed neuronal activity in the medial part of the medial striatum (mMSt). Surprisingly, in mMSt we observed a reverse pattern, with higher activity in the chicks that were trained to locate the goal by local features. Our results identify two seemingly parallel, memory systems in chicks, with HF central to the processing of spatial-geometrical information and mMSt important in supporting local feature discrimination. © 2015 Wiley Periodicals, Inc.
Pulse shape discrimination performance of inverted coaxial Ge detectors
NASA Astrophysics Data System (ADS)
Domula, A.; Hult, M.; Kermaïdic, Y.; Marissens, G.; Schwingenheuer, B.; Wester, T.; Zuber, K.
2018-05-01
We report on the characterization of two inverted coaxial Ge detectors in the context of being employed in future 76Ge neutrinoless double beta (0 νββ) decay experiments. It is an advantage that such detectors can be produced with bigger Ge mass as compared to the planar Broad Energy Ge (BEGe) or p-type Point Contact (PPC) detectors that are currently used in the GERDA and MAJORANA DEMONSTRATOR 0 νββ decay experiments respectively. This will result in a lower background for the search of 0 νββ decay due to a reduction of detector surface to volume ratio, cables, electronics and holders which are dominating nearby radioactive sources. The measured resolution near the 76Ge Q-value at 2039 keV is 2.3 keV FWHM and their pulse-shape discrimination of background events are similar to BEGe and PPC detectors. It is concluded that this type of Ge-detector is suitable for usage in 76Ge 0 νββ decay experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rielage, K.; Akashi-Ronquest, M.; Bodmer, M.
The direct search for dark matter is entering a period of increased sensitivity to the hypothetical Weakly Interacting Massive Particle (WIMP). One such technology that is being examined is a scintillation only noble liquid experiment, MiniCLEAN. MiniCLEAN utilizes over 500 kg of liquid cryogen to detect nuclear recoils from WIMP dark matter and serves as a demonstration for a future detector of order 50 to 100 tonnes. The liquid cryogen is interchangeable between argon and neon to study the A² dependence of the potential signal and examine backgrounds. MiniCLEAN utilizes a unique modular design with spherical geometry to maximize themore » light yield using cold photomultiplier tubes in a single-phase detector. Pulse shape discrimination techniques are used to separate nuclear recoil signals from electron recoil backgrounds. MiniCLEAN will be spiked with additional ³⁹Ar to demonstrate the effective reach of the pulse shape discrimination capability. Assembly of the experiment is underway at SNOLAB and an update on the project is given.« less
NASA Astrophysics Data System (ADS)
Lawrence, Chris C.; Polack, J. K.; Febbraro, Michael; Kolata, J. J.; Flaska, Marek; Pozzi, S. A.; Becchetti, F. D.
2017-02-01
The literature discussing pulse-shape discrimination (PSD) in organic scintillators dates back several decades. However, little has been written about PSD techniques that are optimized for neutron spectrum unfolding. Variation in n-γ misclassification rates and in γ/n ratio of incident fields can distort the neutron pulse-height response of scintillators and these distortions can in turn cause large errors in unfolded spectra. New applications in arms-control verification call for detection of lower-energy neutrons, for which PSD is particularly problematic. In this article, we propose techniques for removing distortions on pulse-height response that result from the merging of PSD distributions in the low-pulse-height region. These techniques take advantage of the repeatable shapes of PSD distributions that are governed by the counting statistics of scintillation-photon populations. We validate the proposed techniques using accelerator-based time-of-flight measurements and then demonstrate them by unfolding the Watt spectrum from measurement with a 252Cf neutron source.
Brenn, T; Arnesen, E
1985-01-01
For comparative evaluation, discriminant analysis, logistic regression and Cox's model were used to select risk factors for total and coronary deaths among 6595 men aged 20-49 followed for 9 years. Groups with mortality between 5 and 93 per 1000 were considered. Discriminant analysis selected variable sets only marginally different from the logistic and Cox methods which always selected the same sets. A time-saving option, offered for both the logistic and Cox selection, showed no advantage compared with discriminant analysis. Analysing more than 3800 subjects, the logistic and Cox methods consumed, respectively, 80 and 10 times more computer time than discriminant analysis. When including the same set of variables in non-stepwise analyses, all methods estimated coefficients that in most cases were almost identical. In conclusion, discriminant analysis is advocated for preliminary or stepwise analysis, otherwise Cox's method should be used.
Tooth shape preferences in an esthetic smile.
Anderson, Kurt M; Behrents, Rolf G; McKinney, Thomas; Buschang, Peter H
2005-10-01
The purpose of this study was to evaluate the contributions of tooth shape to the esthetic smile. Restorative dentists (120), laypeople (102), and orthodontists (113) evaluated a series of color photographs of men's and women's smiles. The photographs were randomly presented to test the effects of 3 different shapes of maxillary incisors and canines on the same patient. For women, orthodontists preferred round and square-round incisors (P < .01), and restorative dentists preferred round incisors (P < or = .03). Laypeople did not discriminate between incisor shapes. For men, all 3 groups preferred square-round incisors (P < or = .042). There was also a tendency for male judges to rate female images more attractive than did female judges. Restorative dentists, orthodontists, and laypeople share similarities and display differences when considering esthetic preferences in tooth shape. Although there was no consensus in preference among the laypeople as a group, their preferences differed from those of the dental professionals.
Stallings, Devita T.; Garvin, Jane T.; Xu, Hongyan; Racette, Susan B.
2017-01-01
Objective To determine which anthropometric measures are the strongest discriminators of incident type 2 diabetes (T2DM) among White and Black males and females in a large U.S. cohort. Methods We used Atherosclerosis Risk in Communities study data from 12,121 participants aged 45–64 years without diabetes at baseline who were followed for over 11 years. Anthropometric measures included a body shape index (ABSI), body adiposity index (BAI), body mass index (BMI), waist circumference (WC), waist to hip ratio (WHR), waist to height ratio (WHtR), and waist to hip to height ratio (WHHR). All anthropometric measures were repeated at each visit and converted to Z-scores. Hazard ratios and 95% confidence intervals adjusted for age were calculated using repeated measures Cox proportional hazard regression analysis. Akaike Information Criteria was used to select best-fit models. The magnitude of the hazard ratio effect sizes and the Harrell’s C-indexes were used to rank the highest associations and discriminators, respectively. Results There were 1,359 incident diabetes cases. Higher values of all anthropometric measures increased the risk for development of T2DM (p < 0.0001) except ABSI, which was not significant in White and Black males. Statistically significant hazard ratios ranged from 1.26–1.63 for males and 1.15–1.88 for females. In general, the largest hazard ratios were those that corresponded to the highest Harrell’s C-Index and lowest Akaike Information Criteria values. Among White and Black males and females, BMI, WC, WHR, and WHtR were comparable in discriminating cases from non-cases of T2DM. ABSI, BAI, and WHHR were inferior discriminators of incident T2DM across all race-gender groups. Conclusions BMI, the most commonly used anthropometric measure, and three anthropometric measures that included waist circumference (i.e., WC, WHR, WHtR) were the best anthropometric discriminators of incident T2DM across all race-gender groups in the ARIC cohort. PMID:28141847
Three-dimensional Procrustes analysis of modern human craniofacial form.
Badawi-Fayad, Jackie; Cabanis, Emmanuel-Alain
2007-03-01
The objective of this study was to analyze modern human craniofacial form using 3D Procrustes superimposition in order to establish a reference model and validate it on computed tomography (CT). The sample consists of 136 specimens from five modern human regional groups. Thirty-three craniofacial landmark coordinates have been recorded using a Microscribe and calculated on CT scans for five crania from the sample. Procrustes superimposition has been performed to calculate the mean shape, and a discriminant analysis has also been carried out to estimate the variability of shape. The results show that the repeatability of measurements made on CT and on Microscribe is excellent (R = 0.99). There is no major distinctiveness in the craniofacial shape; however, discriminant function 1 separates out the European crania from the others, especially African and American. It includes the width and the length of the face, the flatness of the upper face, the prognathism of the maxilla, as well as the length and the inclination of the palate. The width of the maxilla and the palate do not show a great variability. This may be the common invariant feature responsible for the alignment of the teeth in all specimens. It may correspond to functional patterns related to masticatory constraints manifested by the important interproximal and occlusal dental wear in all specimens. This study confirms the high accuracy of measurements made on CT scan and the importance of geometric morphometrics, which provides an accurate characterization of the overall craniofacial shape and its variation within the entire population.
Lan, Tian; Jia, Xuji; Liu, Xia
2018-05-01
Previous study has indicated that perceived discrimination affected the children's behaviors, but whether belief in a just world moderates the relationship between perceived discrimination and problem behaviors among left-behind children and whether there are differences between boys and girls are still unknown. This study aims at exploring whether perceived discrimination influences the left-behind children's behaviors and the moderating role of belief in a just world among both boys and girls. Using cross-sectional data on rural left-behind children in Henan Province of China, this study examined the relationships among perceived discrimination (personal and group), belief in a just world and problem behaviors for both boys and girls. The participants included 336 boys and 310 girls. Self-report questionnaires captured perceived discrimination, belief in a just world and problem behaviors. The results demonstrated that Chinese left-behind boys who perceived a high amount of personal discrimination were prone to exhibit problem behaviors. Yet, neither perceived personal nor group discrimination was associated with problem behaviors among the left-behind girls. Moreover, the children's belief in a just world moderated the association between perceived discrimination and problem behaviors among the boys; in those who reported higher levels of belief in a just world, the negative effect of perceived personal discrimination on problem behaviors appeared weaker, comparing to those who reported lower levels of belief in a just world. In addition, the negative effect of perceived group discrimination on problem behaviors appeared stronger among the left-behind boys who reported higher levels of belief in a just world. Belief in a just world provided a protect function for the left-behind children when facing perceived personal discrimination. More attention should be paid on belief in a just world, perceived discrimination and problem behaviors among left-behind children.
Parker, Caroline M; Garcia, Jonathan; Philbin, Morgan M; Wilson, Patrick A; Parker, Richard G; Hirsch, Jennifer S
2017-03-01
Black men who have sex with men in the USA face disproportionate incidence rates of HIV. This paper presents findings from an ethnographic study conducted in New York City that explored the structural and socio-cultural factors shaping men's sexual relationships with the goal of furthering understandings of their HIV-related vulnerability. Methods included participant observation and in-depth interviews with 31 Black men who have sex with men (three times each) and 17 key informants. We found that HIV vulnerability is perceived as produced through structural inequalities including economic insecurity, housing instability, and stigma and discrimination. The theoretical concepts of social risk, intersectional stigma, and the social production of space are offered as lenses through which to analyse how structural inequalities shape HIV vulnerability. We found that social risk shaped HIV vulnerability by influencing men's decisions in four domains: 1) where to find sexual partners, 2) where to engage in sexual relationships, 3) what kinds of relationships to seek, and 4) whether to carry and to use condoms. Advancing conceptualisations of social risk, we show that intersectional stigma and the social production of space are key processes through which social risk generates HIV vulnerability among Black men who have sex with men.
Parker, Caroline M.; Garcia, Jonathan; Philbin, Morgan M.; Wilson, Patrick A.; Parker, Richard G.; Hirsch, Jennifer S.
2017-01-01
Black men who have sex with men in the USA face disproportionate incidence rates of HIV. This paper presents findings from an ethnographic study conducted in New York City that explored the structural and socio-cultural factors shaping men’s sexual relationships with the goal of furthering understandings of their HIV-related vulnerability. Methods included participant observation and in-depth interviews with 31 Black men who have sex with men (three times each) and 17 key informants. We found that HIV vulnerability is perceived as produced through structural inequalities including economic insecurity, housing instability, and stigma and discrimination. The theoretical concepts of social risk, intersectional stigma, and the social production of space are offered as lenses through which to analyse how structural inequalities shape HIV vulnerability. We found that social risk shaped HIV vulnerability by influencing men’s decisions in four domains: 1) where to find sexual partners, 2) where to engage in sexual relationships, 3) what kinds of relationships to seek, and 4) whether to carry and to use condoms. Advancing conceptualisations of social risk, we show that intersectional stigma and the social production of space are key processes through which social risk generates HIV vulnerability among Black men who have sex with men. PMID:27550415
Discrimination and sleep: a systematic review
Slopen, Natalie; Lewis, Tené T.; Williams, David R.
2015-01-01
An increasing body of literature indicates that discrimination has a negative impact on health; poor sleep may be an underlying mechanism. The primary objective of this review was to examine existing studies on the relationship between discrimination and sleep to clarify (a) the potential role of discrimination in shaping population patterns of sleep and sleep disparities, and (b) research needed to develop interventions at individual and institutional levels. We identified articles from English-language publications in Pubmed and Ebsco databases from inception through July 2014. We employed a broad definition of discrimination to include any form of unfair treatment and all self-reported and objectively-assessed sleep outcomes, including duration, difficulties, and sleep architecture. Seventeen studies were identified: four prospective, twelve cross-sectional, and one that utilized a daily-diary design. Fifteen of the 17 studies evaluated interpersonal discrimination as the exposure and the majority of studies included self-reported sleep as the outcome. Only four studies incorporated objective sleep assessments. All 17 studies identified at least one association between discrimination and a measure of poorer sleep, although studies with more detailed consideration of either discrimination or sleep architecture revealed some inconsistencies. Taken together, existing studies demonstrate consistent evidence that discrimination is associated with poorer sleep outcomes. This evidence base can be strengthened with additional prospective studies that incorporate objectively-measured aspects of sleep. We outline important extensions for this field of inquiry that can inform the development of interventions to improve sleep outcomes, and consequently promote wellbeing and reduce health inequities across the life course. PMID:25770043
Discrimination and sleep: a systematic review.
Slopen, Natalie; Lewis, Tené T; Williams, David R
2016-02-01
An increasing body of literature indicates that discrimination has a negative impact on health; poor sleep may be an underlying mechanism. The primary objective of this review was to examine existing studies on the relationship between discrimination and sleep to clarify (a) the potential role of discrimination in shaping population patterns of sleep and sleep disparities, and (b) the research needed to develop interventions at individual and institutional levels. We identified articles from English-language publications in PubMed and EBSCO databases from inception through July 2014. We employed a broad definition of discrimination to include any form of unfair treatment and all self-reported and objectively assessed sleep outcomes, including duration, difficulties, and sleep architecture. Seventeen studies were identified: four prospective, 12 cross-sectional, and one that utilized a daily-diary design. Fifteen of the 17 studies evaluated interpersonal discrimination as the exposure and the majority of studies included self-reported sleep as the outcome. Only four studies incorporated objective sleep assessments. All 17 studies identified at least one association between discrimination and a measure of poorer sleep, although studies with more detailed consideration of either discrimination or sleep architecture revealed some inconsistencies. Taken together, existing studies demonstrate consistent evidence that discrimination is associated with poorer sleep outcomes. This evidence base can be strengthened with additional prospective studies that incorporate objectively measured aspects of sleep. We outline important extensions for this field of inquiry that can inform the development of interventions to improve sleep outcomes, and consequently promote well-being and reduce health inequities across the life course. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Yingjun; Ye, Zhenjiang; Liu, Qun; Cao, Liang
2011-01-01
Otolith shape is species specific and is an ideal marker of fish population affiliation. In this study, otolith shape of spottedtail goby Synechogobius ommaturus is used to identify stocks in different spawning locations in the Yellow Sea. The main objectives of this study are to explore the potential existence of local stocks of spottedtail goby in the Yellow Sea by analysis of otolith shape, and to investigate ambient impacts on otolith shape. Spottedtail goby was sampled in five locations in the Yellow Sea in 2007 and 2008. Otoliths are described using variables correlated to size (otolith area, perimeter, length, width, and weight) and shape (rectangularity, circularity, and 20 Fourier harmonics). Only standardized otolith variables are used so that the effect of otolith size on the shape variables could be eliminated. There is no significant difference among variables of sex, year, and side (left and right). However, the otolith shapes of the spring stocks and the autumn stocks differ significantly. Otolith shape differences are greater among locations than between years. Correct classification rate of spottedtail goby with the otolith shape at different sampling locations range from 29.7%-77.4%.
Examining the sexual harassment experiences of Mexican immigrant farmworking women.
Waugh, Irma Morales
2010-03-01
This study examined sexual harassment experiences of Mexican immigrant farmworking women (n = 150) employed on California farms. Of the estimated one million California farmworkers, 78% are Latino, mostly from Mexico, and 28% are women. Unlike gender-segregated worksites of Mexico, women farmworkers in the United States labor alongside men, facilitating harassment from coworkers and supervisors. Simultaneous sexist, racist, and economic discrimination are comparable to converging lanes of automobile traffic (Crenshaw, 2000) that women, standing at the intersections, manage to avoid harm. Findings highlight how discrimination shapes women's experiences and demonstrate the need for institutional policies to protect them.
NASA Technical Reports Server (NTRS)
Squires, K. C.; Hillyard, S. A.; Lindsay, P. H.
1973-01-01
Vertex potentials elicited by visual feedback signals following an auditory intensity discrimination have been studied with eight subjects. Feedback signals which confirmed the prior sensory decision elicited small P3s, while disconfirming feedback elicited P3s that were larger. On the average, the latency of P3 was also found to increase with increasing disparity between the judgment and the feedback information. These effects were part of an overall dichotomy in wave shape following confirming vs disconfirming feedback. These findings are incorporated in a general model of the role of P3 in perceptual decision making.
Forensic analysis of tire rubbers based on their sulfur chemical states.
Funatsuki, Atsushi; Shiota, Kenji; Takaoka, Masaki; Tamenori, Yusuke
2015-05-01
The chemical states of sulfur in 11 tires were analyzed using X-ray absorption near-edge structure (XANES) in order to discriminate between various tire rubbers. All tires had peaks around 2471.5 and 2480.5eV, and the shapes and heights of these peaks differed among tires, suggesting that the sulfur chemical state could be used for discrimination between tire rubbers. Based on t-tests on the results of XANES, 43 of 55 combinations were different at a significance level of 5%. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection.
Dyer, Adrian G; Spaethe, Johannes; Prack, Sabina
2008-07-01
Bumblebee (Bombus terrestris) discrimination of targets with broadband reflectance spectra was tested using simultaneous viewing conditions, enabling an accurate determination of the perceptual limit of colour discrimination excluding confounds from memory coding (experiment 1). The level of colour discrimination in bumblebees, and honeybees (Apis mellifera) (based upon previous observations), exceeds predictions of models considering receptor noise in the honeybee. Bumblebee and honeybee photoreceptors are similar in spectral shape and spacing, but bumblebees exhibit significantly poorer colour discrimination in behavioural tests, suggesting possible differences in spatial or temporal signal processing. Detection of stimuli in a Y-maze was evaluated for bumblebees (experiment 2) and honeybees (experiment 3). Honeybees detected stimuli containing both green-receptor-contrast and colour contrast at a visual angle of approximately 5 degrees , whilst stimuli that contained only colour contrast were only detected at a visual angle of 15 degrees . Bumblebees were able to detect these stimuli at a visual angle of 2.3 degrees and 2.7 degrees , respectively. A comparison of the experiments suggests a tradeoff between colour discrimination and colour detection in these two species, limited by the need to pool colour signals to overcome receptor noise. We discuss the colour processing differences and possible adaptations to specific ecological habitats.
A Geant4 evaluation of the Hornyak button and two candidate detectors for the TREAT hodoscope
NASA Astrophysics Data System (ADS)
Fu, Wenkai; Ghosh, Priyarshini; Harrison, Mark J.; McGregor, Douglas S.; Roberts, Jeremy A.
2018-05-01
The performance of traditional Hornyak buttons and two proposed variants for fast-neutron hodoscope applications was evaluated using Geant4. The Hornyak button is a ZnS(Ag)-based device previously deployed at the Idaho National Laboratory's TRansient REActor Test Facility (better known as TREAT) for monitoring fast neutrons emitted during pulsing of fissile fuel samples. Past use of these devices relied on pulse-shape discrimination to reduce the significant levels of background Cherenkov radiation. Proposed are two simple designs that reduce the overall light guide mass (here, polymethyl methacrylate or PMMA), employ silicon photomultipliers (SiPMs), and can be operated using pulse-height discrimination alone to eliminate background noise to acceptable levels. Geant4 was first used to model a traditional Hornyak button, and for assumed, hodoscope-like conditions, an intrinsic efficiency of 0.35% for mono-directional fission neutrons was predicted. The predicted efficiency is in reasonably good agreement with experimental data from the literature and, hence, served to validate the physics models and approximations employed. Geant4 models were then developed to optimize the materials and geometries of two alternatives to the Hornyak button, one based on a homogeneous mixture of ZnS(Ag) and PMMA, and one based on alternating layers of ZnS(Ag) and PMMA oriented perpendicular to the incident neutron beam. For the same radiation environment, optimized, 5-cm long (along the beam path) devices of the homogeneous and layered designs were predicted to have efficiencies of approximately 1.3% and 3.3%, respectively. For longer devices, i.e., lengths larger than 25 cm, these efficiencies were shown to peak at approximately 2.2% and 5.9%, respectively. Moreover, both designs were shown to discriminate Cherenkov noise intrinsically by using an appropriate pulse-height discriminator level, i.e., pulse-shape discrimination is not needed for these devices.
NASA Astrophysics Data System (ADS)
McNitt-Gray, Michael F.; Hart, Eric M.; Goldin, Jonathan G.; Yao, Chih-Wei; Aberle, Denise R.
1996-04-01
The purpose of our study was to characterize solitary pulmonary nodules (SPN) as benign or malignant based on pattern classification techniques using size, shape, density and texture features extracted from HRCT images. HRCT images of patients with a SPN are acquired, routed through a PACS and displayed on a thoracic radiology workstation. Using the original data, the SPN is semiautomatically contoured using a nodule/background threshold. The contour is used to calculate size and several shape parameters, including compactness and bending energy. Pixels within the interior of the contour are used to calculate several features including: (1) nodule density-related features, such as representative Hounsfield number and moment of inertia, and (2) texture measures based on the spatial gray level dependence matrix and fractal dimension. The true diagnosis of the SPN is established by histology from biopsy or, in the case of some benign nodules, extended follow-up. Multi-dimensional analyses of the features are then performed to determine which features can discriminate between benign and malignant nodules. When a sufficient number of cases are obtained two pattern classifiers, a linear discriminator and a neural network, are trained and tested using a select subset of features. Preliminary data from nine (9) nodule cases have been obtained and several features extracted. While the representative CT number is a reasonably good indicator, it is an inconclusive predictor of SPN diagnosis when considered by itself. Separation between benign and malignant nodules improves when other features, such as the distribution of density as measured by moment of inertia, are included in the analysis. Software has been developed and preliminary results have been obtained which show that individual features may not be sufficient to discriminate between benign and malignant nodules. However, combinations of these features may be able to discriminate between these two classes. With additional cases and more features, we will be able to perform a feature selection procedure and ultimately to train and test pattern classifiers in this discrimination task.
A Geant4 evaluation of the Hornyak button and two candidate detectors for the TREAT hodoscope
Fu, Wenkai; Ghosh, Priyarshini; Harrison, Mark; ...
2018-02-05
The performance of traditional Hornyak buttons and two proposed variants for fast-neutron hodoscope applications was evaluated using Geant4. The Hornyak button is a ZnS(Ag)-based device previously deployed at the Idaho National Laboratory's TRansient REActor Test Facility (better known as TREAT) for monitoring fast neutrons emitted during pulsing of fissile fuel samples. Past use of these devices relied on pulse-shape discrimination to reduce the significant levels of background Cherenkov radiation. Proposed are two simple designs that reduce the overall light guide mass (here, polymethyl methacrylate or PMMA), employ silicon photomultipliers (SiPMs), and can be operated using pulse-height discrimination alone to eliminatemore » background noise to acceptable levels. Geant4 was first used to model a traditional Hornyak button, and for assumed, hodoscope-like conditions, an intrinsic efficiency of 0.35% for mono-directional fission neutrons was predicted. The predicted efficiency is in reasonably good agreement with experimental data from the literature and, hence, served to validate the physics models and approximations employed. Geant4 models were then developed to optimize the materials and geometries of two alternatives to the Hornyak button, one based on a homogeneous mixture of ZnS(Ag) and PMMA, and one based on alternating layers of ZnS(Ag) and PMMA oriented perpendicular to the incident neutron beam. For the same radiation environment, optimized, 5-cm long (along the beam path) devices of the homogeneous and layered designs were predicted to have efficiencies of approximately 1.3% and 3.3%, respectively. For longer devices, i.e., lengths larger than 25 cm, these efficiencies were shown to peak at approximately 2.2% and 5.9%, respectively. Furthermore, both designs were shown to discriminate Cherenkov noise intrinsically by using an appropriate pulse-height discriminator level, i.e., pulse-shape discrimination is not needed for these devices.« less
A multiple maximum scatter difference discriminant criterion for facial feature extraction.
Song, Fengxi; Zhang, David; Mei, Dayong; Guo, Zhongwei
2007-12-01
Maximum scatter difference (MSD) discriminant criterion was a recently presented binary discriminant criterion for pattern classification that utilizes the generalized scatter difference rather than the generalized Rayleigh quotient as a class separability measure, thereby avoiding the singularity problem when addressing small-sample-size problems. MSD classifiers based on this criterion have been quite effective on face-recognition tasks, but as they are binary classifiers, they are not as efficient on large-scale classification tasks. To address the problem, this paper generalizes the classification-oriented binary criterion to its multiple counterpart--multiple MSD (MMSD) discriminant criterion for facial feature extraction. The MMSD feature-extraction method, which is based on this novel discriminant criterion, is a new subspace-based feature-extraction method. Unlike most other subspace-based feature-extraction methods, the MMSD computes its discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. The MMSD is theoretically elegant and easy to calculate. Extensive experimental studies conducted on the benchmark database, FERET, show that the MMSD out-performs state-of-the-art facial feature-extraction methods such as null space method, direct linear discriminant analysis (LDA), eigenface, Fisherface, and complete LDA.
Multi-Absorber Transition-Edge Sensors for X-Ray Astronomy Applications
NASA Technical Reports Server (NTRS)
Smith, S. J.; Adams, J. S.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.;
2012-01-01
We are developing multi-absorber Transition-Edge Sensors (TESs) for applications in x-ray astronomy. These position-sensitive devices consist of multiple x-ray absorbers each with a different thermal coupling to a single readout TES. Heat diffusion between the absorbers and the TES gives rise to a characteristic pulse shape corresponding to each absorber element and enables position discrimination. The development of these detectors is motivated by a desire to maximize focal plane arrays with the fewest number of readout channels. In this contribution we report on the first results from devices consisting of nine) 65 X 65 sq. microns Au x-ray absorbers) 5 microns thick. These are coupled to a single 35 X 35 sq. microns Mo/Au bilayer TES. These devices have demonstrated full-width-half-maximum (FWHM) energy resolution of 2.1 eV at 1.5 keV) 2.5 eV at 5.9 keV and 3.3 eV at 8 keV. This is coupled with position discrimination from pulse shape over the same energy range. We use a finite-element model to reproduce the measured pulse shapes and investigate the detector non-linearity with energy) which impacts on the devices position sensitivity and energy resolution.
NASA Astrophysics Data System (ADS)
Lopes, Marta; Murta, Alberto G.; Cabral, Henrique N.
2006-03-01
The existence of two species of the genus Macroramphosus Lacepède 1803, has been discussed based on morphometric characters, diet composition and depth distribution. Another species, the boarfish Capros aper (Linnaeus 1758), caugth along the Portuguese coast, shows two different morphotypes, one type with smaller eyes and a deeper body than the other, occurring with intermediate forms. In both snipefish and boarfish no sexual dimorphism was found with respect to shape and length relationships. However, females in both genera were on average bigger than males. A multidimensional scaling analysis was performed using Procrustes distances, in order to check if shape geometry was effective in distinguishing the species of snipefish as well as the morphotypes of boarfish. A multivariate discriminant analysis using morphometric characters of snipefish and boarfish was carried out to validate the visual criteria for a distinction of species and morphotypes, respectively. Morphometric characters revealed a great discriminatory power to distinguish morphotypes. Both snipefish and boarfish are very abundant in Portuguese waters, showing two well-defined morphologies and intermediate forms. This study suggests that there may be two different species in each genus and that further studies on these fish should be carried out to investigate if there is reproductive isolation between the morphotypes of boarfish and to validate the species of snipefish.
Smith, David; Ruston, Annmarie
2013-11-01
Gypsies and Travellers are the unhealthiest group in British society, suffering from higher levels of physical and mental illness, lower life expectancy and with low levels of healthcare utilisation. They also continue to experience the highest level of prejudice and discrimination in society. While studies indicate that social networks play an important role in shaping health beliefs and the response to symptoms, evidence on the influence of networks on health is unclear and contradictory. This article draws on social network theory and research into the relation between discrimination and health to critically examine how networks mediate between collective experiences of racism and health-related behavior. Qualitative interviews with 39 adult Gypsies and Travellers were conducted in the South-East of England to explore the wider structural and institutional context and the influence those contexts play in shaping health beliefs and decisions whether to access formal health services. The findings indicate that the influence networks play in shaping health behaviour is dependent on the particular social context of the group and its status in relation to wider social structures, making generalization problematic. © 2013 The Authors. Sociology of Health & Illness © 2013 Foundation for the Sociology of Health & Illness/John Wiley & Sons Ltd.
Khansari, Maziyar M; O’Neill, William; Penn, Richard; Chau, Felix; Blair, Norman P; Shahidi, Mahnaz
2016-01-01
The conjunctiva is a densely vascularized mucus membrane covering the sclera of the eye with a unique advantage of accessibility for direct visualization and non-invasive imaging. The purpose of this study is to apply an automated quantitative method for discrimination of different stages of diabetic retinopathy (DR) using conjunctival microvasculature images. Fine structural analysis of conjunctival microvasculature images was performed by ordinary least square regression and Fisher linear discriminant analysis. Conjunctival images between groups of non-diabetic and diabetic subjects at different stages of DR were discriminated. The automated method’s discriminate rates were higher than those determined by human observers. The method allowed sensitive and rapid discrimination by assessment of conjunctival microvasculature images and can be potentially useful for DR screening and monitoring. PMID:27446692
Bailey, Shara E; Benazzi, Stefano; Souday, Caroline; Astorino, Claudia; Paul, Kathleen; Hublin, Jean-Jacques
2014-07-01
A significant number of Middle to Late Pleistocene sites contain primarily (and sometimes only) deciduous teeth (e.g., Grotta del Cavallo, Mezmaiskaya, Blombos). Not surprisingly, there has been a recent renewed interest in deciduous dental variation, especially in the context of distinguishing Homo neanderthalensis and Homo sapiens. Most studies of the deciduous dentition of fossil hominins have focused on standard metrical variation but morphological (non-metric and morphometric) variation also promises to shed light on long standing taxonomic questions. This study examines the taxonomic significance of the crown outline of the deciduous upper second molar through principal components analysis and linear discriminant analysis. We examine whether or not the crown shape of the upper deciduous second molar separates H. neanderthalensis from H. sapiens and explore whether it can be used to correctly assign individuals to taxa. It builds on previous studies by focusing on crown rather than cervical outline and by including a large sample of geographically diverse recent human populations. Our samples include 17 H. neanderthalensis, five early H. sapiens, and 12 Upper Paleolithic H. sapiens. In addition, we include two Homo erectus specimens in order to evaluate the polarity of crown shape differences observed between H. neanderthalensis and H. sapiens. Our results show that crown outline shape discriminates H. sapiens and H. neanderthalensis quite well, but does not do well at distinguishing H. erectus from H. sapiens. We conclude that the crown outline shape observed in H. sapiens is a primitive retention and that the skewed shape observed in H. neanderthalensis is a derived condition. Finally, we explore the phylogenetic implications of the results for the H. erectus molars. Copyright © 2014 Elsevier Ltd. All rights reserved.
Branch length similarity entropy-based descriptors for shape representation
NASA Astrophysics Data System (ADS)
Kwon, Ohsung; Lee, Sang-Hee
2017-11-01
In previous studies, we showed that the branch length similarity (BLS) entropy profile could be successfully used for the shape recognition such as battle tanks, facial expressions, and butterflies. In the present study, we proposed new descriptors, roundness, symmetry, and surface roughness, for the recognition, which are more accurate and fast in the computation than the previous descriptors. The roundness represents how closely a shape resembles to a circle, the symmetry characterizes how much one shape is similar with another when the shape is moved in flip, and the surface roughness quantifies the degree of vertical deviations of a shape boundary. To evaluate the performance of the descriptors, we used the database of leaf images with 12 species. Each species consisted of 10 - 20 leaf images and the total number of images were 160. The evaluation showed that the new descriptors successfully discriminated the leaf species. We believe that the descriptors can be a useful tool in the field of pattern recognition.
NASA Astrophysics Data System (ADS)
Eakins, John P.; Edwards, Jonathan D.; Riley, K. Jonathan; Rosin, Paul L.
2001-01-01
Many different kinds of features have been used as the basis for shape retrieval from image databases. This paper investigates the relative effectiveness of several types of global shape feature, both singly and in combination. The features compared include well-established descriptors such as Fourier coefficients and moment invariants, as well as recently-proposed measures of triangularity and ellipticity. Experiments were conducted within the framework of the ARTISAN shape retrieval system, and retrieval effectiveness assessed on a database of over 10,000 images, using 24 queries and associated ground truth supplied by the UK Patent Office . Our experiments revealed only minor differences in retrieval effectiveness between different measures, suggesting that a wide variety of shape feature combinations can provide adequate discriminating power for effective shape retrieval in multi-component image collections such as trademark registries. Marked differences between measures were observed for some individual queries, suggesting that there could be considerable scope for improving retrieval effectiveness by providing users with an improved framework for searching multi-dimensional feature space.
NASA Astrophysics Data System (ADS)
Eakins, John P.; Edwards, Jonathan D.; Riley, K. Jonathan; Rosin, Paul L.
2000-12-01
Many different kinds of features have been used as the basis for shape retrieval from image databases. This paper investigates the relative effectiveness of several types of global shape feature, both singly and in combination. The features compared include well-established descriptors such as Fourier coefficients and moment invariants, as well as recently-proposed measures of triangularity and ellipticity. Experiments were conducted within the framework of the ARTISAN shape retrieval system, and retrieval effectiveness assessed on a database of over 10,000 images, using 24 queries and associated ground truth supplied by the UK Patent Office . Our experiments revealed only minor differences in retrieval effectiveness between different measures, suggesting that a wide variety of shape feature combinations can provide adequate discriminating power for effective shape retrieval in multi-component image collections such as trademark registries. Marked differences between measures were observed for some individual queries, suggesting that there could be considerable scope for improving retrieval effectiveness by providing users with an improved framework for searching multi-dimensional feature space.
Development of CANDLES low background HPGe detector and half-life measurement of 180Tam
NASA Astrophysics Data System (ADS)
Chan, W. M.; Kishimoto, T.; Umehara, S.; Matsuoka, K.; Suzuki, K.; Yoshida, S.; Nakajima, K.; Iida, T.; Fushimi, K.; Nomachi, M.; Ogawa, I.; Tamagawa, Y.; Hazama, R.; Takemoto, Y.; Nakatani, N.; Takihira, Y.; Tozawa, M.; Kakubata, H.; Trang, V. T. T.; Ohata, T.; Tetsuno, K.; Maeda, T.; Khai, B. T.; Li, X. L.; Batpurev, T.
2018-01-01
A low background HPGe detector system was developed at CANDLES Experimental Hall for multipurpose use. Various low background techniques were employed, including hermatic shield design, radon gas suppression, and background reduction analysis. A new pulse shape discrimination (PSD) method was specially created for coaxial Ge detector. Using this PSD method, microphonics noise and background event at low energy region less than 200 keV can be rejected effectively. Monte Carlo simulation by GEANT4 was performed to acquire the detection efficiency and study the interaction of gamma-rays with detector system. For rare decay measurement, the detector was utilized to detect the nature's most stable isomer tantalum-180m (180Tam) decay. Two phases of tantalum physics run were completed with total livetime of 358.2 days, which Phase II has upgraded shield configuration. The world most stringent half-life limit of 180Tam has been successfully achieved.
Ship detection in optical remote sensing images based on deep convolutional neural networks
NASA Astrophysics Data System (ADS)
Yao, Yuan; Jiang, Zhiguo; Zhang, Haopeng; Zhao, Danpei; Cai, Bowen
2017-10-01
Automatic ship detection in optical remote sensing images has attracted wide attention for its broad applications. Major challenges for this task include the interference of cloud, wave, wake, and the high computational expenses. We propose a fast and robust ship detection algorithm to solve these issues. The framework for ship detection is designed based on deep convolutional neural networks (CNNs), which provide the accurate locations of ship targets in an efficient way. First, the deep CNN is designed to extract features. Then, a region proposal network (RPN) is applied to discriminate ship targets and regress the detection bounding boxes, in which the anchors are designed by intrinsic shape of ship targets. Experimental results on numerous panchromatic images demonstrate that, in comparison with other state-of-the-art ship detection methods, our method is more efficient and achieves higher detection accuracy and more precise bounding boxes in different complex backgrounds.
Measured neutron and gamma spectra from californium-252 in a tissue-equivalent medium.
Elson, H R; Stupar, T A; Shapiro, A; Kereiakes, J G
1979-01-01
A method of experimentally obtaining both neutron and gamma-ray spectra in a scattering medium is described. The method utilizes a liquid-organic scintillator (NE-213) coupled with a pulse-shape discrimination circuit. This allows the separation of the neutron-induced pulse-height data from the gamma-ray pulse-height data. Using mathematical unfolding techniques, the two sets of pulse-height data were transformed to obtain the neutron and gamma-ray energy spectra. A small spherical detector was designed and constructed to reduce the errors incurred by attempting spectral measurements in a scattering medium. Demonstration of the utility of the system to obtain the neutron and gamma-ray spectra in a scattering medium was performed by characterizing the neutron and gamma-ray spectra at various sites about a 3.7-microgram (1.5 cm active length) californium-252 source in a tissue-equivalent medium.
Method and apparatus for linear low-frequency feedback in monolithic low-noise charge amplifiers
DeGeronimo, Gianluigi
2006-02-14
A charge amplifier includes an amplifier, feedback circuit, and cancellation circuit. The feedback circuit includes a capacitor, inverter, and current mirror. The capacitor is coupled across the signal amplifier, the inverter is coupled to the output of the signal amplifier, and the current mirror is coupled to the input of the signal amplifier. The cancellation circuit is coupled to the output of the signal amplifier. A method of charge amplification includes providing a signal amplifier; coupling a first capacitor across the signal amplifier; coupling an inverter to the output of the signal amplifier; coupling a current mirror to the input of the signal amplifier; and coupling a cancellation circuit to the output of the signal amplifier. A front-end system for use with radiation sensors includes a charge amplifier and a current amplifier, shaping amplifier, baseline stabilizer, discriminator, peak detector, timing detector, and logic circuit coupled to the charge amplifier.
An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images.
Chin Neoh, Siew; Srisukkham, Worawut; Zhang, Li; Todryk, Stephen; Greystoke, Brigit; Peng Lim, Chee; Alamgir Hossain, Mohammed; Aslam, Nauman
2015-10-09
This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm, and background regions. Subsequently, a total of eighty features consisting of shape, texture, and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method.
An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images
Chin Neoh, Siew; Srisukkham, Worawut; Zhang, Li; Todryk, Stephen; Greystoke, Brigit; Peng Lim, Chee; Alamgir Hossain, Mohammed; Aslam, Nauman
2015-01-01
This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm, and background regions. Subsequently, a total of eighty features consisting of shape, texture, and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method. PMID:26450665
Lague, Michael R; Collard, Nicole J; Richmond, Brian G; Wood, Bernard A
2008-12-01
Mandibular corpora are well represented in the hominin fossil record, yet few studies have rigorously assessed the utility of mandibular corpus morphology for species recognition, particularly with respect to the linear dimensions that are most commonly available. In this study, we explored the extent to which commonly preserved mandibular corpus morphology can be used to: (i) discriminate among extant hominid taxa and (ii) support species designations among fossil specimens assigned to the genus Homo. In the first part of the study, discriminant analysis was used to test for significant differences in mandibular corpus shape at different taxonomic levels (genus, species and subspecies) among extant hominid taxa (i.e. Homo, Pan, Gorilla, Pongo). In the second part of the study, we examined shape variation among fossil mandibles assigned to Homo (including H. habilis sensu stricto, H. rudolfensis, early African H. erectus/H. ergaster, late African H. erectus, Asian H. erectus, H. heidelbergensis, H. neanderthalensis and H. sapiens). A novel randomization procedure designed for small samples (and using group 'distinctness values') was used to determine whether shape variation among the fossils is consistent with conventional taxonomy (or alternatively, whether a priori taxonomic groupings are completely random with respect to mandibular morphology). The randomization of 'distinctness values' was also used on the extant samples to assess the ability of the test to recognize known taxa. The discriminant analysis results demonstrated that, even for a relatively modest set of traditional mandibular corpus measurements, we can detect significant differences among extant hominids at the genus and species levels, and, in some cases, also at the subspecies level. Although the randomization of 'distinctness values' test is more conservative than discriminant analysis (based on comparisons with extant specimens), we were able to detect at least four distinct groups among the fossil specimens (i.e. H. sapiens, H. heidelbergensis, Asian H. erectus and a combined 'African Homo' group consisting of H. habilis sensu stricto, H. rudolfensis, early African H. erectus/H. ergaster and late African H. erectus). These four groups appear to be distinct at a level similar to, or greater than, that of modern hominid species. In addition, the mandibular corpora of H. neanderthalensis could be distinguished from those of 'African Homo', although not from those of H. sapiens, H. heidelbergensis, or the Asian H. erectus group. The results suggest that the features most commonly preserved on the hominin mandibular corpus have some taxonomic utility, although they are unlikely to be useful in generating a reliable alpha taxonomy for early African members of the genus Homo.
Discriminant Validity Assessment: Use of Fornell & Larcker criterion versus HTMT Criterion
NASA Astrophysics Data System (ADS)
Hamid, M. R. Ab; Sami, W.; Mohmad Sidek, M. H.
2017-09-01
Assessment of discriminant validity is a must in any research that involves latent variables for the prevention of multicollinearity issues. Fornell and Larcker criterion is the most widely used method for this purpose. However, a new method has emerged for establishing the discriminant validity assessment through heterotrait-monotrait (HTMT) ratio of correlations method. Therefore, this article presents the results of discriminant validity assessment using these methods. Data from previous study was used that involved 429 respondents for empirical validation of value-based excellence model in higher education institutions (HEI) in Malaysia. From the analysis, the convergent, divergent and discriminant validity were established and admissible using Fornell and Larcker criterion. However, the discriminant validity is an issue when employing the HTMT criterion. This shows that the latent variables under study faced the issue of multicollinearity and should be looked into for further details. This also implied that the HTMT criterion is a stringent measure that could detect the possible indiscriminant among the latent variables. In conclusion, the instrument which consisted of six latent variables was still lacking in terms of discriminant validity and should be explored further.
NASA Astrophysics Data System (ADS)
Mahl, Adam; Yemam, Henok; Remedes, Tyler; Stuntz, Jack; Koldemir, Unsal; Sellinger, Alan; Greife, Uwe
2015-10-01
This presentation will review the efforts made by an interdisciplinary development project aimed at cost-effective, thermal neutron sensitive, plastic scintillators as part of the communities efforts towards replacing 3He based detectors. Colorado School of Mines researchers with backgrounds in Physics and Chemistry have worked on the incorporation of 10B in plastics through admixture of various commercial and novel dopants developed at CSM. In addition, new fluorescent dopants have been developed for plastic scintillators in an effort towards better understanding quenching effects and scintillator response to thermal neutrons via pulse shape discrimination methods. Results on transparent samples using fluorescent spectroscopy and gamma/neutron excitation will be presented. Funded via Department of Homeland Security - Domestic Nuclear Detection Office.
Remote photoacoustic detection of liquid contamination of a surface.
Perrett, Brian; Harris, Michael; Pearson, Guy N; Willetts, David V; Pitter, Mark C
2003-08-20
A method for the remote detection and identification of liquid chemicals at ranges of tens of meters is presented. The technique uses pulsed indirect photoacoustic spectroscopy in the 10-microm wavelength region. Enhanced sensitivity is brought about by three main system developments: (1) increased laser-pulse energy (150 microJ/pulse), leading to increased strength of the generated photoacoustic signal; (2) increased microphone sensitivity and improved directionality by the use of a 60-cm-diameter parabolic dish; and (3) signal processing that allows improved discrimination of the signal from noise levels through prior knowledge of the pulse shape and pulse-repetition frequency. The practical aspects of applying the technique in a field environment are briefly examined, and possible applications of this technique are discussed.
Shape of intrinsic alpha pulse height spectra in lanthanide halide scintillators
NASA Astrophysics Data System (ADS)
Wolszczak, W.; Dorenbos, P.
2017-06-01
Internal contamination with actinium-227 and its daughters is a serious drawback in low-background applications of lanthanide-based scintillators. In this work we showed the important role of nuclear γ de-excitations on the shape of the internal alpha spectrum measured in scintillators. We calculated with Bateman equations the activities of contamination isotopes and the time evolution of actinium-227 and its progenies. Next, we measured the intrinsic background spectra of LaBr3(Ce), LaBr3(Ce,Sr) and CeBr3 with a digital spectroscopy technique, and we analyzed them with a pulse shape discrimination method (PSD) and a time-amplitude analysis. Finally, we simulated the α background spectrum with Geant4 tool-kit, consequently taking into account complex α-γ-electron events, the α / β ratio dependence on the α energy, and the electron/γ nonproportionality. We found that α-γ mixed events have higher light yield than expected for alpha particles alone, which leads to overestimation of the α / β ratio when it is measured with internal 227Th and 223Ra isotopes. The time-amplitude analysis showed that the α peaks of 219Rn and 215Po in LaBr3(Ce) and LaBr3(Ce,Sr) are not symmetric. We compared the simulation results with the measured data and provided further evidence of the important role of mixed α-γ-electron events for understanding the shape of the internal α spectrum in scintillators.
Measurement of ortho-positronium properties in liquid scintillators
NASA Astrophysics Data System (ADS)
Perasso, S.; Consolati, G.; Franco, D.; Hans, S.; Jollet, C.; Meregaglia, A.; Tonazzo, A.; Yeh, M.
2013-08-01
Pulse shape discrimination in liquid scintillator detectors is a well-established technique for the discrimination of heavy particles from light particles. Nonetheless, it is not efficient in the separation of electrons and positrons, as they give rise to indistinguishable scintillator responses. This inefficiency can be overtaken through the exploitation of the formation of ortho-Positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants currently used in neutrino experiments, Gd and Nd. Further measurements for Li-loaded and Tl-loaded liquid scintillators are foreseen. We found that the o-Ps properties are suitable for enhancing the electron-positron discrimination.
Assessing and minimizing contamination in time of flight based validation data
NASA Astrophysics Data System (ADS)
Lennox, Kristin P.; Rosenfield, Paul; Blair, Brenton; Kaplan, Alan; Ruz, Jaime; Glenn, Andrew; Wurtz, Ronald
2017-10-01
Time of flight experiments are the gold standard method for generating labeled training and testing data for the neutron/gamma pulse shape discrimination problem. As the popularity of supervised classification methods increases in this field, there will also be increasing reliance on time of flight data for algorithm development and evaluation. However, time of flight experiments are subject to various sources of contamination that lead to neutron and gamma pulses being mislabeled. Such labeling errors have a detrimental effect on classification algorithm training and testing, and should therefore be minimized. This paper presents a method for identifying minimally contaminated data sets from time of flight experiments and estimating the residual contamination rate. This method leverages statistical models describing neutron and gamma travel time distributions and is easily implemented using existing statistical software. The method produces a set of optimal intervals that balance the trade-off between interval size and nuisance particle contamination, and its use is demonstrated on a time of flight data set for Cf-252. The particular properties of the optimal intervals for the demonstration data are explored in detail.
Encoding frequency contrast in primate auditory cortex
Scott, Brian H.; Semple, Malcolm N.
2014-01-01
Changes in amplitude and frequency jointly determine much of the communicative significance of complex acoustic signals, including human speech. We have previously described responses of neurons in the core auditory cortex of awake rhesus macaques to sinusoidal amplitude modulation (SAM) signals. Here we report a complementary study of sinusoidal frequency modulation (SFM) in the same neurons. Responses to SFM were analogous to SAM responses in that changes in multiple parameters defining SFM stimuli (e.g., modulation frequency, modulation depth, carrier frequency) were robustly encoded in the temporal dynamics of the spike trains. For example, changes in the carrier frequency produced highly reproducible changes in shapes of the modulation period histogram, consistent with the notion that the instantaneous probability of discharge mirrors the moment-by-moment spectrum at low modulation rates. The upper limit for phase locking was similar across SAM and SFM within neurons, suggesting shared biophysical constraints on temporal processing. Using spike train classification methods, we found that neural thresholds for modulation depth discrimination are typically far lower than would be predicted from frequency tuning to static tones. This “dynamic hyperacuity” suggests a substantial central enhancement of the neural representation of frequency changes relative to the auditory periphery. Spike timing information was superior to average rate information when discriminating among SFM signals, and even when discriminating among static tones varying in frequency. This finding held even when differences in total spike count across stimuli were normalized, indicating both the primacy and generality of temporal response dynamics in cortical auditory processing. PMID:24598525
Motor Oil Classification Based on Time-Resolved Fluorescence
Mu, Taotao; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He; Meng, Fandong
2014-01-01
A time-resolved fluorescence (TRF) technique is presented for classifying motor oils. The system is constructed with a third harmonic Nd:YAG laser, a spectrometer, and an intensified charge coupled device (ICCD) camera. Steady-state and time-resolved fluorescence (TRF) measurements are reported for several motor oils. It is found that steady-state fluorescence is insufficient to distinguish the motor oil samples. Then contour diagrams of TRF intensities (CDTRFIs) are acquired to serve as unique fingerprints to identify motor oils by using the distinct TRF of motor oils. CDTRFIs are preferable to steady-state fluorescence spectra for classifying different motor oils, making CDTRFIs a particularly choice for the development of fluorescence-based methods for the discrimination and characterization of motor oils. The two-dimensional fluorescence contour diagrams contain more information, not only the changing shapes of the LIF spectra but also the relative intensity. The results indicate that motor oils can be differentiated based on the new proposed method, which provides reliable methods for analyzing and classifying motor oils. PMID:24988439
Kostopoulos, Spiros A; Asvestas, Pantelis A; Kalatzis, Ioannis K; Sakellaropoulos, George C; Sakkis, Theofilos H; Cavouras, Dionisis A; Glotsos, Dimitris T
2017-09-01
The aim of this study was to propose features that evaluate pictorial differences between melanocytic nevus (mole) and melanoma lesions by computer-based analysis of plain photography images and to design a cross-platform, tunable, decision support system to discriminate with high accuracy moles from melanomas in different publicly available image databases. Digital plain photography images of verified mole and melanoma lesions were downloaded from (i) Edinburgh University Hospital, UK, (Dermofit, 330moles/70 melanomas, under signed agreement), from 5 different centers (Multicenter, 63moles/25 melanomas, publicly available), and from the Groningen University, Netherlands (Groningen, 100moles/70 melanomas, publicly available). Images were processed for outlining the lesion-border and isolating the lesion from the surrounding background. Fourteen features were generated from each lesion evaluating texture (4), structure (5), shape (4) and color (1). Features were subjected to statistical analysis for determining differences in pictorial properties between moles and melanomas. The Probabilistic Neural Network (PNN) classifier, the exhaustive search features selection, the leave-one-out (LOO), and the external cross-validation (ECV) methods were used to design the PR-system for discriminating between moles and melanomas. Statistical analysis revealed that melanomas as compared to moles were of lower intensity, of less homogenous surface, had more dark pixels with intensities spanning larger spectra of gray-values, contained more objects of different sizes and gray-levels, had more asymmetrical shapes and irregular outlines, had abrupt intensity transitions from lesion to background tissue, and had more distinct colors. The PR-system designed by the Dermofit images scored on the Dermofit images, using the ECV, 94.1%, 82.9%, 96.5% for overall accuracy, sensitivity, specificity, on the Multicenter Images 92.0%, 88%, 93.7% and on the Groningen Images 76.2%, 73.9%, 77.8% respectively. The PR-system as designed by the Dermofit image database could be fine-tuned to classify with good accuracy plain photography moles/melanomas images of other databases employing different image capturing equipment and protocols. Copyright © 2017 Elsevier B.V. All rights reserved.