NASA Astrophysics Data System (ADS)
Bian, X. X.; Gu, Y. Z.; Sun, J.; Li, M.; Liu, W. P.; Zhang, Z. G.
2013-10-01
In this study, the effects of processing temperature and vacuum applying rate on the forming quality of C-shaped carbon fiber reinforced epoxy resin matrix composite laminates during hot diaphragm forming process were investigated. C-shaped prepreg preforms were produced using a home-made hot diaphragm forming equipment. The thickness variations of the preforms and the manufacturing defects after diaphragm forming process, including fiber wrinkling and voids, were evaluated to understand the forming mechanism. Furthermore, both interlaminar slipping friction and compaction behavior of the prepreg stacks were experimentally analyzed for showing the importance of the processing parameters. In addition, autoclave processing was used to cure the C-shaped preforms to investigate the changes of the defects before and after cure process. The results show that the C-shaped prepreg preforms with good forming quality can be achieved through increasing processing temperature and reducing vacuum applying rate, which obviously promote prepreg interlaminar slipping process. The process temperature and forming rate in hot diaphragm forming process strongly influence prepreg interply frictional force, and the maximum interlaminar frictional force can be taken as a key parameter for processing parameter optimization. Autoclave process is effective in eliminating voids in the preforms and can alleviate fiber wrinkles to a certain extent.
Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process
Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato
2001-01-01
A process for the formation of shaped Group III-V semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.
Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process
Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato
2001-01-01
A process for the formation of shaped Group II-VI semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.
Shaped Charge Liner Materials: Resources, Processes, Properties, Costs, and Applications
1991-02-01
SUBTITLE 5. FUNDING NUMBERS Shaped Charge Liner Materials: Resources, Processes, Properties, Costs, and Applications 2 6. AUTHOC Steven M. Buc 7...summaries of the mineral availability, Cq prmarymetal refinement processeb, material costs in raw form and as finished shaped charge liners , relevant... liner materials. 94-11479 gI 14, SUBJECT TERMS iSt NUMBER OF PAGIS 13chrg wrhad :xplosively formed penetrators material R. PRCE COEV" processing
Perception of shapes targeting local and global processes in autism spectrum disorders.
Grinter, Emma J; Maybery, Murray T; Pellicano, Elizabeth; Badcock, Johanna C; Badcock, David R
2010-06-01
Several researchers have found evidence for impaired global processing in the dorsal visual stream in individuals with autism spectrum disorders (ASDs). However, support for a similar pattern of visual processing in the ventral visual stream is less consistent. Critical to resolving the inconsistency is the assessment of local and global form processing ability. Within the visual domain, radial frequency (RF) patterns - shapes formed by sinusoidally varying the radius of a circle to add 'bumps' of a certain number to a circle - can be used to examine local and global form perception. Typically developing children and children with an ASD discriminated between circles and RF patterns that are processed either locally (RF24) or globally (RF3). Children with an ASD required greater shape deformation to identify RF3 shapes compared to typically developing children, consistent with difficulty in global processing in the ventral stream. No group difference was observed for RF24 shapes, suggesting intact local ventral-stream processing. These outcomes support the position that a deficit in global visual processing is present in ASDs, consistent with the notion of Weak Central Coherence.
New process for preparing complex-shaped dielectric film similar to Mylar
NASA Astrophysics Data System (ADS)
Lagasse, R. R.; Kraynik, A. M.
1982-02-01
A new thermoforming/heat-treatment process yields complex-shaped dielectric film having electrical and shrinkage properties similar to those of flat Mylar film. This similarity should extend to other physical properties because the new process is directly analogous to the process used to prepare Mylar. Commercially available poly(ethylene terephthalate) film is formed into a cavity at approx. 110 C and then heat treated at approx. 180 C. A laboratory-scale forming apparatus has produced cylindrically shaped films having depth/diameter ratio approx. 1, a tapered wall-section, and variation in wall thickness of 3X. Evaluation of other forming methods suggest that the production rate and thickness uniformity can be improved with existing technology. Thermal shrinkage at 150 C, 1 kHz dielectric constant from -55 to +70 C, leakage current at 1 kV, and breakdown voltage have been measured for both the complex-shaped film and Mylar.
Near-net-shape manufacturing: Spray-formed metal matrix composites and tooling
NASA Technical Reports Server (NTRS)
Mchugh, Kevin M.
1994-01-01
Spray forming is a materials processing technology in which a bulk liquid metal is converted to a spray of fine droplets and deposited onto a substrate or pattern to form a near-net-shape solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g. refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. The Idaho National Engineering Laboratory is developing a unique spray-forming method, the Controlled Aspiration Process (CAP), to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Results from two spray-accompanying technical and economic benefits. These programs involved spray forming aluminum strip reinforced with SiC particulate, and the production of tooling, such as injection molds and dies, using low-melting-point metals.
Solute transport by flow yields geometric shocks in shape evolution
NASA Astrophysics Data System (ADS)
Huang, Jinzi (Mac); Davies Wykes, Megan; Hajjar, George; Ristroph, Leif; Shelley, Michael
2017-11-01
Geological processes such as erosion and dissolution of surfaces often lead to striking shapes with strikingly sharp features. We present observations of such features forming in dissolution under gravity. In our experiment, a dissolving body with initially smooth surface evolves into an increasingly sharp needle shape. A mathematical model of its shape dynamics, derived from a boundary layer theory, predicts that a geometric shock forms at the tip of dissolved body, with the tip curvature becoming infinite in finite time. We further discuss the model's application to similar processes, such as flow driven erosion which can yield corners.
Method of manufacturing a large-area segmented photovoltaic module
Lenox, Carl
2013-11-05
One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.
Control of anisotropic shape deviation in single point incremental forming of paperboard
NASA Astrophysics Data System (ADS)
Stein, Philipp; Franke, Wilken; Hoppe, Florian; Hesse, Daniel; Mill, Katharina; Groche, Peter
2017-10-01
The increasing social demand for sustainable material use leads to new process strategies as well as to the use of new materials in nearly all industries. In light of this demand, paperboard shows potential to substitute polymer-based components while also exhibiting improved ecological properties. However, in contrast to polymer-based products, the forming limits of paperboard are relatively low. Therefore, three dimensional forming of paperboard is subject of current research. One area of research focuses on the control of the fiber orientation dependent anisotropic material behavior of industrial paperboard in forming processes. For an examined industrial paperboard, an average elongation at break of 1.2% in the so called machine direction (fiber preferential direction, MD) has been determined at standard climate conditions. In contrast, in cross-direction (orthogonal to the machine direction, CD) a value of 2.6% was observed. With increased moisture content of the specimens the difference between the mechanical properties in MD and CD even increases. As a result of the various fiber-orientation dependent mechanical properties, forming with symmetric tools leads to asymmetrically shaped final parts. Within this article, an approach to reduce the asymmetric shape of three-dimensional formed paperboard by using single point incremental forming technology is presented. For a free spatial processing strategy the 3D Servo Press Technology, which enables circular as well as free processing strategies, is used. Based on reference tests with a circular processing strategy, it is shown that by using an adapted, elliptical tool path, an almost symmetric shaped part can be formed.
Method for Fabricating Composite Structures Using Continuous Press Forming
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1997-01-01
A method for fabricating composite structures at a low-cost. moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a net-shape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates. resulting in lower cost and high structural performance.
Method for Fabricating Composite Structures Using Pultrusion Processing
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
2000-01-01
A method for fabricating composite structures at a low-cost, moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a net-shape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.
Springback effects during single point incremental forming: Optimization of the tool path
NASA Astrophysics Data System (ADS)
Giraud-Moreau, Laurence; Belchior, Jérémy; Lafon, Pascal; Lotoing, Lionel; Cherouat, Abel; Courtielle, Eric; Guines, Dominique; Maurine, Patrick
2018-05-01
Incremental sheet forming is an emerging process to manufacture sheet metal parts. This process is more flexible than conventional one and well suited for small batch production or prototyping. During the process, the sheet metal blank is clamped by a blank-holder and a small-size smooth-end hemispherical tool moves along a user-specified path to deform the sheet incrementally. Classical three-axis CNC milling machines, dedicated structure or serial robots can be used to perform the forming operation. Whatever the considered machine, large deviations between the theoretical shape and the real shape can be observed after the part unclamping. These deviations are due to both the lack of stiffness of the machine and residual stresses in the part at the end of the forming stage. In this paper, an optimization strategy of the tool path is proposed in order to minimize the elastic springback induced by residual stresses after unclamping. A finite element model of the SPIF process allowing the shape prediction of the formed part with a good accuracy is defined. This model, based on appropriated assumptions, leads to calculation times which remain compatible with an optimization procedure. The proposed optimization method is based on an iterative correction of the tool path. The efficiency of the method is shown by an improvement of the final shape.
Spray forming of NiTi and NiTiPd shape-memory alloys
NASA Astrophysics Data System (ADS)
Smith, Ronald; Mabe, James; Ruggeri, Robert; Noebe, Ronald
2008-03-01
In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.
Spray Forming of NiTi and NiTiPd Shape-Memory Alloys
NASA Technical Reports Server (NTRS)
Mabe, James; Ruggeri, Robert; Noebe, Ronald
2008-01-01
In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, S.M.; Pelloux, R.M.; Widmer, R.
1986-01-01
Historical and advanced methods of producing, forming and polishing alloys in billets and net shapes are explored. Attention is given to the deficiencies in arc furnace melts and to the benefits which are accruing from rapid solidification processing, powder metallurgy and superplastic forming. The techniques employed in these methods for processing materials to desired shapes, mainly for aircraft gas turbine engines, are described, along with the microstructures and mechanical properties which are obtained. The state of the art in casting and forming techniques which yield the most favorable properties in intermetallic compound-based alloys, superalloys, glasses and metacrystals are identified. Finally,more » research directions being pursued to obtain higher purity, enhanced temperature, longer lifetime, damage resistant alloys which can be formed to net shapes are discussed.« less
Fabrication of micro T-shaped tubular components by hydroforming process
NASA Astrophysics Data System (ADS)
Manabe, Ken-ichi; Itai, Kenta; Tada, Kazuo
2017-10-01
This paper deals with a T-shape micro tube hydroforming (MTHF) process for 500 µm outer diameter copper microtube. The MTHF experiments were carried out using a MTHF system utilizing ultrahigh pressure. The fundamental micro hydroforming characteristics as well as forming limits are examined experimentally and numerically. From the results, a process window diagram for micro T-shape hydroforming process is created, and a suitable "success" region is revealed.
NASA Astrophysics Data System (ADS)
McHugh, K. M.; Key, J. F.
1994-06-01
Spray forming is a near- net- shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or pattern to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing, often while substantially improving product quality. Spray forming is applicable to a wide range of metals and nonmetals and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities, and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray forming technology for producing near- net- shape solids and coatings of a variety of metals, polymers, and composite materials using de Laval nozzles. This article briefly describes the atomization behavior of liquid metals in linear de Laval nozzles and illustrates the versatility of the process by summarizing results from two spray forming programs. In one program, low-carbon steel strip >0.75 mm thick was produced; in the other, polymer membranes ˜5 μm thick were spray formed.
Rawers, James C.; Alman, David E.; Petty, Jr., Arthur V.
1996-01-01
Industrial applications of composites often require that the final product have a complex shape. In this invention intermetallic or ceramic phases are formed from sheets of unreacted elemental metals. The process described in this invention allows the final product shape be formed prior to the formation of the composite. This saves energy and allows formation of shaped articles of metal-intermetallic composites composed of brittle materials that cannot be deformed without breaking.
NASA Astrophysics Data System (ADS)
Tolipov, A. A.; Elghawail, A.; Shushing, S.; Pham, D.; Essa, K.
2017-09-01
There is a growing demand for flexible manufacturing techniques that meet the rapid changes in customer needs. A finite element analysis numerical optimisation technique was used to optimise the multi-point sheet forming process. Multi-point forming (MPF) is a flexible sheet metal forming technique where the same tool can be readily changed to produce different parts. The process suffers from some geometrical defects such as wrinkling and dimpling, which have been found to be the cause of the major surface quality problems. This study investigated the influence of parameters such as the elastic cushion hardness, blank holder force, coefficient of friction, cushion thickness and radius of curvature, on the quality of parts formed in a flexible multi-point stamping die. For those reasons, in this investigation, a multipoint forming stamping process using a blank holder was carried out in order to study the effects of the wrinkling, dimpling, thickness variation and forming force. The aim was to determine the optimum values of these parameters. Finite element modelling (FEM) was employed to simulate the multi-point forming of hemispherical shapes. Using the response surface method, the effects of process parameters on wrinkling, maximum deviation from the target shape and thickness variation were investigated. The results show that elastic cushion with proper thickness and polyurethane with the hardness of Shore A90. It has also been found that the application of lubrication cans improve the shape accuracy of the formed workpiece. These final results were compared with the numerical simulation results of the multi-point forming for hemispherical shapes using a blank-holder and it was found that using cushion hardness realistic to reduce wrinkling and maximum deviation.
Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)
1999-01-01
A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.
Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling
Aoki, Michio
2018-01-01
Conventional manufacturing techniques—moulding, machining and casting—exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures. PMID:29515894
Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling
NASA Astrophysics Data System (ADS)
Aoki, Michio; Juang, Jia-Yang
2018-02-01
Conventional manufacturing techniques-moulding, machining and casting-exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures.
Nanoforging - Innovation in three-dimensional processing and shaping of nanoscaled structures.
Landefeld, Andreas; Rösler, Joachim
2014-01-01
This paper describes the shaping of freestanding objects out of metallic structures in the nano- and submicron size. The technique used, called nanoforging, is very similar to the macroscopic forging process. With spring actuated tools produced by focused ion beam milling, controlled forging is demonstrated. With only three steps, a conical bar stock is transformed to a flat- and semicircular bent bar stock. Compared with other forming techniques in the reduced scale, nanoforging represents a beneficial approach in forming freestanding metallic structures, due to its simplicity, and supplements other forming techniques.
Finite element simulation and Experimental verification of Incremental Sheet metal Forming
NASA Astrophysics Data System (ADS)
Kaushik Yanamundra, Krishna; Karthikeyan, R., Dr.; Naranje, Vishal, Dr
2018-04-01
Incremental sheet metal forming is now a proven manufacturing technique that can be employed to obtain application specific, customized, symmetric or asymmetric shapes that are required by automobile or biomedical industries for specific purposes like car body parts, dental implants or knee implants. Finite element simulation of metal forming process is being performed successfully using explicit dynamics analysis of commercial FE software. The simulation is mainly useful in optimization of the process as well design of the final product. This paper focuses on simulating the incremental sheet metal forming process in ABAQUS, and validating the results using experimental methods. The shapes generated for testing are of trapezoid, dome and elliptical shapes whose G codes are written and fed into the CNC milling machine with an attached forming tool with a hemispherical bottom. The same pre-generated coordinates are used to simulate a similar machining conditions in ABAQUS and the tool forces, stresses and strains in the workpiece while machining are obtained as the output data. The forces experimentally were recorded using a dynamometer. The experimental and simulated results were then compared and thus conclusions were drawn.
Advanced Near Net Shape Technology
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The objective of the Advanced Near Net Shape Technology (ANNST) project is to radically improve near net shape manufacturing methods from the current Technology/ Manufacturing Readiness Levels (TRL/MRL 3-4) to the point where they are viable candidates (TRL/ MRL-6) for shortening the time and cost for insertion of new aluminum alloys and revolutionary manufacturing methods into the development/improvement of space structures. Conventional cyrotank manufacturing processes require fabrication of multiple pieces welded together to form a complete tank. A variety of near net shape manufacturing processes has demonstrated excellent potential for enabling single-piece construction of components such as domes, barrels, and ring frames. Utilization of such processes can dramatically reduce the extent of welding and joining needed to construct cryogenic tanks and other aerospace structures. The specific focus of this project is to successfully mature the integrally stiffened cylinder (ISC) process in which a single-piece cylinder with integral stiffeners is formed in one spin/flow forming process. Structural launch vehicle components, like cryogenic fuel tanks (e.g., space shuttle external tank), are currently fabricated via multipiece assembly of parts produced through subtractive manufacturing techniques. Stiffened structural panels are heavily machined from thick plate, which results in excessive scrap rates. Multipiece construction requires welds to assemble the structure, which increases the risk for defects and catastrophic failures.
Interactions between motion and form processing in the human visual system.
Mather, George; Pavan, Andrea; Bellacosa Marotti, Rosilari; Campana, Gianluca; Casco, Clara
2013-01-01
The predominant view of motion and form processing in the human visual system assumes that these two attributes are handled by separate and independent modules. Motion processing involves filtering by direction-selective sensors, followed by integration to solve the aperture problem. Form processing involves filtering by orientation-selective and size-selective receptive fields, followed by integration to encode object shape. It has long been known that motion signals can influence form processing in the well-known Gestalt principle of common fate; texture elements which share a common motion property are grouped into a single contour or texture region. However, recent research in psychophysics and neuroscience indicates that the influence of form signals on motion processing is more extensive than previously thought. First, the salience and apparent direction of moving lines depends on how the local orientation and direction of motion combine to match the receptive field properties of motion-selective neurons. Second, orientation signals generated by "motion-streaks" influence motion processing; motion sensitivity, apparent direction and adaptation are affected by simultaneously present orientation signals. Third, form signals generated by human body shape influence biological motion processing, as revealed by studies using point-light motion stimuli. Thus, form-motion integration seems to occur at several different levels of cortical processing, from V1 to STS.
Interactions between motion and form processing in the human visual system
Mather, George; Pavan, Andrea; Bellacosa Marotti, Rosilari; Campana, Gianluca; Casco, Clara
2013-01-01
The predominant view of motion and form processing in the human visual system assumes that these two attributes are handled by separate and independent modules. Motion processing involves filtering by direction-selective sensors, followed by integration to solve the aperture problem. Form processing involves filtering by orientation-selective and size-selective receptive fields, followed by integration to encode object shape. It has long been known that motion signals can influence form processing in the well-known Gestalt principle of common fate; texture elements which share a common motion property are grouped into a single contour or texture region. However, recent research in psychophysics and neuroscience indicates that the influence of form signals on motion processing is more extensive than previously thought. First, the salience and apparent direction of moving lines depends on how the local orientation and direction of motion combine to match the receptive field properties of motion-selective neurons. Second, orientation signals generated by “motion-streaks” influence motion processing; motion sensitivity, apparent direction and adaptation are affected by simultaneously present orientation signals. Third, form signals generated by human body shape influence biological motion processing, as revealed by studies using point-light motion stimuli. Thus, form-motion integration seems to occur at several different levels of cortical processing, from V1 to STS. PMID:23730286
Effect of Bottoming on Material Property during Sheet Forming Process through Finite Element Method
NASA Astrophysics Data System (ADS)
Akinlabi, Stephen A.; Fatoba, Olawale S.; Mashinini, Peter M.; Akinlabi, Esther T.
2018-03-01
Metal forming is one of the conventional manufacturing processes of immense relevance till date even though modern manufacturing processes have evolved over the years. It is a known fact that material tends to return or spring back to its original form during forming or bending. The phenomena have been well managed through its application in various manufacturing processes by compensating for the spring back through overbending and bottoming. Overbending is bending the material beyond the desired shape to allow the material to spring back to the expected shape. Bottoming, on the other hand, is a process of undergoing plastic deformation at the point of bending. This study reports on the finite element analysis of the effect of bottoming on the material property during the sheet forming process with the aim of optimising the process. The result of the analysis revealed that the generated plastic strains are in the order between 1.750e00-1 at the peak of the bending and 3.604e00-2, which was at the early stage of the bending.
NASA Technical Reports Server (NTRS)
Mchugh, Kevin M.; Key, James F.
1993-01-01
Spray forming is a near-net-shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or mold to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray-forming technology for producing near-net-shape solids and coatings of a variety of metals, polymers, and composite materials. Results from several spray forming programs are presented to illustrate the range of capabilities of the technique as well as the accompanying technical and economic benefits. Low-carbon steel strip greater than 0.75 mm thick and polymer membranes for gas/gas and liquid/liquid separations that were spray formed are discussed; recent advances in spray forming molds, dies, and other tooling using low-melting-point metals are described.
Near net shape processing: A necessity for advanced materials applications
NASA Technical Reports Server (NTRS)
Kuhn, Howard A.
1993-01-01
High quality discrete parts are the backbones for successful operation of equipment used in transportation, communication, construction, manufacturing, and appliances. Traditional shapemaking for discrete parts is carried out predominantly by machining, or removing unwanted material to produce the desired shape. As the cost and complexity of modern materials escalates, coupled with the expense and environmental hazards associated with handling of scrap, it is increasingly important to develop near net shape processes for these materials. Such processes involve casting of liquid materials, consolidation of powder materials, or deformation processing of simple solid shapes into the desired shape. Frequently, several of these operations may be used in sequence to produce a finished part. The processes for near net shape forming may be applied to any type of material, including metals, polymers, ceramics, and their composites. The ability to produce shapes is the key to implementation of laboratory developments in materials science into real world applications. This seminar presents an overview of near net shapemaking processes, some application examples, current developments, and future research opportunities.
Molding cork sheets to complex shapes
NASA Technical Reports Server (NTRS)
Sharpe, M. H.; Simpson, W. G.; Walker, H. M.
1977-01-01
Partially cured cork sheet is easily formed to complex shapes and then final-cured. Temperature and pressure levels required for process depend upon resin system used and final density and strength desired. Sheet can be bonded to surface during final cure, or can be first-formed in mold and bonded to surface in separate step.
Nanoforging – Innovation in three-dimensional processing and shaping of nanoscaled structures
Rösler, Joachim
2014-01-01
Summary Background: This paper describes the shaping of freestanding objects out of metallic structures in the nano- and submicron size. The technique used, called nanoforging, is very similar to the macroscopic forging process. Results: With spring actuated tools produced by focused ion beam milling, controlled forging is demonstrated. With only three steps, a conical bar stock is transformed to a flat- and semicircular bent bar stock. Conclusion: Compared with other forming techniques in the reduced scale, nanoforging represents a beneficial approach in forming freestanding metallic structures, due to its simplicity, and supplements other forming techniques. PMID:25161840
NASA Astrophysics Data System (ADS)
Oh, S.-T.; Chang, H.-J.; Oh, K. H.; Han, H. N.
2006-04-01
It has been observed that the forming limit curve at fracture (FLCF) of steel sheets, with a relatively higher ductility limit have linear shapes, similar to those of a bulk forming process. In contrast, the FLCF of sheets with a relatively lower ductility limit have rather complex shapes approaching the forming limit curve at neck (FLCN) towards the equi-biaxial strain paths. In this study, the FLCFs of steel sheets were measured and compared with the fracture strains predicted from specific ductile fracture criteria, including a criterion suggested by the authors, which can accurately describe FLCFs with both linear and complex shapes. To predict the forming limit for hydro-mechanical deep drawing of steel sheets, the ductile fracture criteria were integrated into a finite element simulation. The simulation, results based on the criterion suggested by authors accurately predicted the experimetal, fracture limits of steel sheets for the hydro-mechanical deep drawing process.
Numerical analysis of the flexible roll forming of an automotive component from high strength steel
NASA Astrophysics Data System (ADS)
Abeyrathna, B.; Abvabi, A.; Rolfe, B.; Taube, R.; Weiss, M.
2016-11-01
Conventional roll forming is limited to components with uniform cross-section; the recently developed flexible roll forming (FRF) process can be used to form components which vary in both width and depth. It has been suggested that this process can be used to manufacture automotive components from Ultra High Strength Steel (UHSS) which has limited tensile elongation. In the flexible roll forming process, the pre-cut blank is fed through a set of rolls; some rolls are computer-numerically controlled (CNC) to follow the 3D contours of the part and hence parts with a variable cross-section can be produced. This paper introduces a new flexible roll forming technique which can be used to form a complex shape with the minimum tooling requirements. In this method, the pre-cut blank is held between two dies and the whole system moves back and forth past CNC forming rolls. The forming roll changes its angle and position in each pass to incrementally form the part. In this work, the process is simulated using the commercial software package Copra FEA. The distribution of total strain and final part quality are investigated as well as related shape defects observed in the process. Different tooling concepts are used to improve the strain distribution and hence the part quality.
Near-Net-Shape Processing of Sintered Fibrous Ceramics Achieved
NASA Technical Reports Server (NTRS)
Angel, Paul W.
2000-01-01
A variety of sintered fibrous ceramic (SFC) materials have been developed over the last 50 years as thermal barrier materials for reentry applications. SFC materials typically exhibit very low thermal conductivities combined with low densities and good thermal stability up to 2500 F. These materials have flown successfully on the space shuttle orbiters since the 1960's. More recently, the McDonnell Douglas Corporation successfully used SFC tiles as a heat shield on the underside of its DC X test vehicle. For both of these applications, tiles are machined from blocks of a specific type of SFC called an alumina-enhanced thermal barrier (AETB). The sizes of these blocks have been limited by the manufacturing process. In addition, as much as 80 to 90 percent of the material can be lost during the machining of tiles with significant amounts of curvature. To address these problems, the NASA Glenn Research Center at Lewis Field entered a cooperative contract with the Boeing Company to develop a vacuum-assisted forming process that can produce large (approximately 4 square feet), severely contoured panels of AETB while saving costs in comparison to the conventional cast-and-machine billet process. For shuttle use, AETB is slurry cast, drained, and fired to form square billets conforming to the shape of the filtration box. The billets are then cut into tiles of the appropriate size for thermally protecting the space shuttle. Processing techniques have limited the maximum size of AETB billets to 21.5 square inches by 6.5-in. thick, but the space shuttles use discrete heat shield tiles no more than 8 to 12 square inches. However, in other applications, large, complex shapes are needed, and the tiling approach is undesirable. For such applications, vacuum-assisted forming can produce large parts with complex shapes while reducing machining waste and eliminating cemented joints between bonded billets. Because it allows contoured shapes to be formed, material utilization is inherently high. Initial estimates show that the amount of material lost during machining can be reduced by 50 percent or more. In addition, a fiber alignment favorable for minimum heat transfer is maintained for all panel shapes since the fibers are aligned parallel to the contoured surface of the forming tool or mold. The vacuum-assisted forming process can complete the entire forming operation in a matter of minutes and can produce multiple parts whose size is limited only by the size of the forming tool. To date, panels as large as 2 square feet have been demonstrated The vacuum-assisted forming process starts with the fabrication of a permeable forming tool, or mold, with the proper part contour. This reusable tool is mounted over an internal rib support structure, as depicted in the diagram, such that a vacuum can be pulled on the bottom portion of the tool. AETB slurry is then poured over and around the tool, liquid is drawn from the slurry, and the part forms over the tool surface. The part is then dried, fired, and finished machined. Future plans include an evaluation of the need for additional coatings and surface-toughness treatments to extend the durability and performance of this material.
Process for forming exoergic structures with the use of a plasma
Kelly, M.D.
1987-05-29
A method of forming exoergic structures, as well as exoergic structures produced by the method, is provided. The method comprises the steps of passing a plasma-forming gas through a plasma spray gun, forming a plasma spray, introducing exoergic material into the plasma spray and directing the plasma spray toward a substrate, and allowing the exoergic material to become molten in the plasma spray and to thereafter impinge on the substrate to form a solid mass of exoergic material, the shape of which corresponds to the shape of the substrate.
NASA Astrophysics Data System (ADS)
Park, Keecheol; Park, Jongyoun; Nam, Jaebok
2011-08-01
Due to the application of thinner sheet steels, the stamped panels in the forming process, generally, are severely distorted. The wavy shape of embossed panel finally converted to residual stress embedded in the panel at final forming (edge L-bending) and it is known as the cause of twisting and oil canning of spring backed panel. Another important source of stamped shape deviation is the curvature of blank. The effects of blank curvature on the shape defects (panel curvature and twisting) after stamping were investigated from defective panel analysis, model experiment and stamping simulation. And the effect of tool conditions (BHF and bead height change) on spring backed shape of real TV bottom chassis were studied. The initial curvature of blank was remained in the flat area of stamped panels as width directional curvature. It converted from length direction curvature of blank. The curvature of initial blank reduced the wavy shape after local emboss forming, but twisting after edge L-bending was increased at large blank curvature cases. The effects of emboss forming conditions, the forming heights and blank holding force were studied and it was found that the wavy shape of stamped sheet was rapidly changed although the forming conditions altered very small amount.
Simulation of Forming and Wrinkling of Textile Composite Reinforcements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamila, N.; Wang, P.; Vidal-Salle, E.
Because of the very weak textile bending stiffness, wrinkles are frequent during composite reinforcement forming. The simulation of the shape of these wrinkles during the forming process permits to verify there is no wrinkle in the useful part of the preform. In this paper the role of tensions, in-plane shear and bending rigidities in wrinkling development are analyzed. In-plane shear plays a main role for onset of wrinkles in double-curved shape forming but wrinkling is a global phenomenon depending on all strains and stiffnesses and on boundary conditions. The bending stiffness mainly determines the shape of the wrinkles and amore » membrane approach it is not sufficient to simulate wrinkles.« less
The Role of Atomic Repertoires in Complex Behavior
ERIC Educational Resources Information Center
Palmer, David C.
2012-01-01
Evolution and reinforcement shape adaptive forms and adaptive behavior through many cycles of blind variation and selection, and therein lie their parsimony and power. Human behavior is distinctive in that this shaping process is commonly "short circuited": Critical variations are induced in a single trial. The processes by which this economy is…
Design of fabric preforms for double diaphragm forming
NASA Technical Reports Server (NTRS)
Luby, Steven; Bernardon, Edward
1992-01-01
Resin Transfer Molding (RTM) has the potential of becoming one of the most cost effective ways of producing composite structures since the raw materials used, resin and dry fabric, are less costly than prepregs. Unfortunately these low material costs are offset by the high labor costs incurred to layup the dry fabric into 3D shapes. To reduce the layup costs, double diaphragm forming is being investigated as a potential technique for creating a complex 3D preform from a simple flat layup. As part of our effort to develop double diaphragm forming into a production capable process, we have undertaken a series of experiments to investigate the interactions between process parameters, mold geometry, fabric weave, tow size, and the quality of the formed part. The results of these tests will be used to determine the forming geometry limitations of double diaphragm forming and to characterize the formability of fabric configurations. An important part of this work was the development of methods to measure and analyze fiber orientations, deformation angles, tow spreading, and shape conformation of the formed parts. This paper will describe the methods used to mark plies, the double diaphragm forming process, the techniques used to measure the formed parts, and the calculation of the parameters of interest. The results can be displayed as 3D contour plots. These experimental results have also been used to verify and improve a computer model which simulates the draping of fabrics over 3D mold shapes.
2008-12-01
Figure 4. B4C plates formed via hot pressing with a curved shape. Commercial B4C shows a large number of lenticular graphitic inclusions, Figure 5...materials and they act as crack initiation points in flexure testing. Figure 5. SEM micrograph showing large lenticular graphitic inclusions in commercial
Study on cold forming of special fasteners using finite element method
NASA Astrophysics Data System (ADS)
Hsia, Shao-Yi; Chou, Yu-Tuan; Yang, Chun-Chieh
2013-12-01
The cold forming plays an important role in the field of fasteners. It can be extended to the automotive industry, construction, aerospace and 3C products. This study used Deform-3D analysis software to investigate the effect of the preforms for standard hex nuts. The effective stress, effective strain, velocity field and other information could be obtained from the numerical simulation. The outcome was verified with the physical phenomena and experiments. Furthermore, the analytical process can also be used to explore the forming technology of the special shaped nuts. When comparing to the standard hex nuts during the different stages, the optimized cold forming parameters could be extracted from the simulation and adopted to improve the performance of manufacturing for the special shaped nuts. The results can help the multi-pass processing factory to establish a cold forming capacity in the development of new products. Consequence, the ability of self-design and self-manufacture for special shaped fasteners in Taiwan would be increased widely to enhance the international competition of domestic industries.
Tight Junction Protein 1a regulates pigment cell organisation during zebrafish colour patterning.
Fadeev, Andrey; Krauss, Jana; Frohnhöfer, Hans Georg; Irion, Uwe; Nüsslein-Volhard, Christiane
2015-04-27
Zebrafish display a prominent pattern of alternating dark and light stripes generated by the precise positioning of pigment cells in the skin. This arrangement is the result of coordinated cell movements, cell shape changes, and the organisation of pigment cells during metamorphosis. Iridophores play a crucial part in this process by switching between the dense form of the light stripes and the loose form of the dark stripes. Adult schachbrett (sbr) mutants exhibit delayed changes in iridophore shape and organisation caused by truncations in Tight Junction Protein 1a (ZO-1a). In sbr mutants, the dark stripes are interrupted by dense iridophores invading as coherent sheets. Immuno-labelling and chimeric analyses indicate that Tjp1a is expressed in dense iridophores but down-regulated in the loose form. Tjp1a is a novel regulator of cell shape changes during colour pattern formation and the first cytoplasmic protein implicated in this process.
Dynamics of contextual modulation of perceived shape in human vision
Gheorghiu, Elena; Kingdom, Frederick A. A.
2017-01-01
In biological vision, contextual modulation refers to the influence of a surround pattern on either the perception of, or the neural responses to, a target pattern. One studied form of contextual modulation deals with the effect of a surround texture on the perceived shape of a contour, in the context of the phenomenon known as the shape aftereffect. In the shape aftereffect, prolonged viewing, or adaptation to a particular contour’s shape causes a shift in the perceived shape of a subsequently viewed contour. Shape aftereffects are suppressed when the adaptor contour is surrounded by a texture of similarly-shaped contours, a surprising result given that the surround contours are all potential adaptors. Here we determine the motion and temporal properties of this form of contextual modulation. We varied the relative motion directions, speeds and temporal phases between the central adaptor contour and the surround texture and measured for each manipulation the degree to which the shape aftereffect was suppressed. Results indicate that contextual modulation of shape processing is selective to motion direction, temporal frequency and temporal phase. These selectivities are consistent with one aim of vision being to segregate contours that define objects from those that form textured surfaces. PMID:28230085
ERIC Educational Resources Information Center
Bevilacqua, Andy
2017-01-01
Recent upgrades to cognitive load theory suggest that evolutionary processes have shaped the way that working memory processes cultural and social information. According to evolutionarily educational psychologists, some forms of information are processed with lower working memory loads than other forms. The former are evolutionarily salient and…
Method for Fabricating Composite Structures Using Pultrusion Processing
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
2000-01-01
A method for fabricating composite structures at a low-cost, moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a netshape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electronbeam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.
NASA Astrophysics Data System (ADS)
Bechtold, Michael; Mohring, David; Fess, Edward
2007-05-01
OptiPro Systems has developed a new finishing process for the manufacturing of precision optical components. UltraForm Finishing (UFF) has evolved from a tire shaped tool with polishing material on its periphery, to its newest design, which incorporates a precision rubber wheel wrapped with a band of polishing material passing over it. Through our research we have developed a user friendly graphical interface giving the optician a deterministic path for finishing precision optical components. Complex UFF Algorithms combine the removal function and desired depth of removal into a motion controlled tool path which minimizes surface roughness and form errors. The UFF process includes 5 axes of computer controlled motion, (3 linear and 2 rotary) which provide the flexibility for finishing a variety of shapes including spheres, aspheres, and freeform optics. The long arm extension, along with a range of diameters for the "UltraWheel" provides a unique solution for the finishing of steep concave shapes such as ogives and domes. The UltraForm process utilizes, fixed and loose abrasives, in combination with our proprietary "UltraBelts" made of a range of materials such as polyurethane, felt, resin, diamond and others.
Process for forming exoergic structures with the use of a plasma
Kelly, Michael D.
1989-02-21
A method of forming exoergic structures, as well as exoergic structures produced by the method, is provided. The method comprises the steps of passing a plasma-forming gas through a plasma spray gun, forming a plasma spray, introducing exoergic material into the plasma spray and directing the plasma spray toward a substrate, and allowing the exoergic material to become molten, without chemically reacting in the plasma spray and to thereafter impinge on the substrate to form a solid mass of exoergic material, the shape of which corresponds to the shape of the substrate.
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1995-01-01
A method for fabricating composite structures at a low-cost, moderate-to-high production rate is disclosed. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply, and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform, and debulking the partially debulked preform to form a netshape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length, and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.
Formability Analysis of Bamboo Fabric Reinforced Poly (Lactic) Acid Composites
M. R., Nurul Fazita; Jayaraman, Krishnan; Bhattacharyya, Debes
2016-01-01
Poly (lactic) acid (PLA) composites have made their way into various applications that may require thermoforming to produce 3D shapes. Wrinkles are common in many forming processes and identification of the forming parameters to prevent them in the useful part of the mechanical component is a key consideration. Better prediction of such defects helps to significantly reduce the time required for a tooling design process. The purpose of the experiment discussed here is to investigate the effects of different test parameters on the occurrence of deformations during sheet forming of double curvature shapes with bamboo fabric reinforced-PLA composites. The results demonstrated that the domes formed using hot tooling conditions were better in quality than those formed using cold tooling conditions. Wrinkles were more profound in the warp direction of the composite domes compared to the weft direction. Grid Strain Analysis (GSA) identifies the regions of severe deformation and provides useful information regarding the optimisation of processing parameters. PMID:28773662
Forming Refractory Insulation On Copper Wire
NASA Technical Reports Server (NTRS)
Setlock, J.; Roberts, G.
1995-01-01
Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.
Stable forming conditions and geometrical expansion of L-shape rings in ring rolling process
NASA Astrophysics Data System (ADS)
Quagliato, Luca; Berti, Guido A.; Kim, Dongwook; Kim, Naksoo
2018-05-01
Based on previous research results concerning the radial-axial ring rolling process of flat rings, this paper details an innovative approach for the determination of the stable forming conditions to successfully simulate the radial ring rolling process of L-shape profiled rings. In addition to that, an analytical model for the estimation of the geometrical expansion of L-shape rings from its initial flat ring preform is proposed and validated by comparing its results with those of numerical simulations. By utilizing the proposed approach, steady forming conditions could be achieved, granting a uniform expansion of the ring throughout the process for all of the six tested cases of rings having the final outer diameter of the flange ranging from 545mm and 1440mm. The validation of the proposed approach allowed concluding that the geometrical expansion of the ring, as estimated by the proposed analytical model, is in good agreement with the results of the numerical simulation, with a maximum error of 2.18%, in the estimation of the ring wall diameter, 1.42% of the ring flange diameter and 1.87% for the estimation of the inner diameter of the ring, respectively.
Gas Forming a V-Shape Aluminum Sheet into a Trough of Saddle-Contour
NASA Astrophysics Data System (ADS)
Lee, Shyong; Lan, Hsien-Chin; Lee, Jye; Wang, Jian-Yih; Huang, J. C.; Chu, Chun Lin
2012-11-01
A sheet metal trough of aluminum alloys is manufactured by gas-forming process at 500 °C. The product with slope walls is of ~1.2 m long and ~260 mm opening width, comprising two conical sinks at two ends. The depth of one sink apex is ~350 mm, which results in the depth/width ratio reaching 1.4. To form such a complex shape with high aspect ratio, a pre-form of V-shape groove is prepared prior to the gas-forming work. When this double concave trough is turned upside down, the convex contour resembles the back of a twin hump camel. The formability of this configuration depends on the gas pressurization rate profile, the working temperature, material's micro-structure, as well as pre-form design. The latter point is demonstrated by comparing two aluminum alloys, AA5182 and SP5083, with nearly same compositions but very different grain sizes.
Numerical simulation of X90 UOE pipe forming process
NASA Astrophysics Data System (ADS)
Zou, Tianxia; Ren, Qiang; Peng, Yinghong; Li, Dayong; Tang, Ding; Han, Jianzeng; Li, Xinwen; Wang, Xiaoxiu
2013-12-01
The UOE process is an important technique to manufacture large-diameter welding pipes which are increasingly applied in oil pipelines and offshore platforms. The forming process of UOE mainly consists of five successive operations: crimping, U-forming, O-forming, welding and mechanical expansion, through which a blank is formed into a pipe in a UOE pipe mill. The blank with an appropriate edge bevel is bent into a cylindrical shape by crimping (C-forming), U-forming and O-forming successively. After the O-forming, there is an open-seam between two ends of the plate. Then, the blank is welded by automatic four-electrode submerged arc welding technique. Subsequently, the welded pipe is expanded with a mechanical expander to get a high precision circular shape. The multiple operations in the UOE mill make it difficult to control the quality of the formed pipe. Therefore, process design mainly relies on experience in practical production. In this study, the UOE forming of an API X90 pipe is studied by using finite element simulation. The mechanical properties tests are performed on the API X90 pipeline steel blank. A two-dimensional finite element model under the hypothesis of plane strain condition is developed to simulate the UOE process according to data coming from the workshop. A kinematic hardening model is used in the simulation to take the Bauschinger effect into account. The deformation characteristics of the blank during the forming processes are analyzed. The simulation results show a significant coherence in the geometric configurations comparing with the practical manufacturing.
NASA Astrophysics Data System (ADS)
Nazari, Esmaeil; Löbbe, Christian; Gallus, Stefan; Izadyar, S. Ahmad; Tekkaya, A. Erman
2018-05-01
The incremental tube forming (ITF) is a process combination of the kinematic tube bending and spinning to shape high strength and tailored tubes with variable diameters and thicknesses. In contrast to conventional bending methods, the compressive stress superposition by the spinning process facilitates low bending stresses, so that geometrical errors are avoided and the shape accuracy is improved. The study reveals the interaction of plastic strains of the rolling and bending process through an explicit FEM investigation. For this purpose, the three-dimensional machine set-up is discretized and modeled in terms of the fully disclosed spinning process during the gradual deflection of the tube end for bending. The analysis shows that, depending on the forming tool shape, the stress superposition is accompanied by high plastic strains. Furthermore, this phenomenon is explained by the three dimensional normal and shear strains during the incremental spinning. Analyzing the strains history also shows a nonlinearity between the strains by bending and spinning. It is also shown that process parameters like rotational velocity of the spinning rolls have a huge influence on the deformation pattern. Finally, the method is used for the manufacturing of an example product, which reveals the high process flexibility. In one clamp a component with a graded wall thickness and outside diameter along the longitudinal axis is produced.
Hollow form as a function of boulder size in the Valley and Ridge province, southwestern Virginia
NASA Astrophysics Data System (ADS)
Mills, Hugh H.
1989-07-01
Dells (hollows) that corrugate the antidip slopes of strike-ridge mountains in the Valley and Ridge province of southwestern Virginia vary greatly in cross-section form. This form is a function not of the underlying bedrock, but of the size and durability of boulders supplied to slopes by sandstones capping the strike ridge. Where the largest boulders are smaller than about 0.5 m in intermediate diameter, deep V-shaped dells occur. Where the largest boulders are larger than about 1.0 m, dells are shallow and U-shaped. Boulder size apparently determines the type of erosional processes that predominate in the development of the dells, and thereby dell form. Where boulder size is sufficiently small, running water is the dominant process and incises V-shaped dells. Where boulders are so large that even the largest floods cannot move them, the dell floor is armored and fluvial incision is greatly reduced. The evolution of such dells is dominated by debris flows that have recurrence intervals measured in millenia and by lateral fluvial erosion along the margins of the bouldery dell fill, both of which tend to produce shallow, U-shaped dells. Some evidence for the armoring effect of large boulders was obtained by applying a technique developed for reconstructing flash-flood peaks from boulder deposits. This procedure indicates that boulders in the V-shaped dells could be transported by high but plausible water flows, whereas movement of boulders in the U-shaped dells would require implausibly high flows.
Feeling form: the neural basis of haptic shape perception.
Yau, Jeffrey M; Kim, Sung Soo; Thakur, Pramodsingh H; Bensmaia, Sliman J
2016-02-01
The tactile perception of the shape of objects critically guides our ability to interact with them. In this review, we describe how shape information is processed as it ascends the somatosensory neuraxis of primates. At the somatosensory periphery, spatial form is represented in the spatial patterns of activation evoked across populations of mechanoreceptive afferents. In the cerebral cortex, neurons respond selectively to particular spatial features, like orientation and curvature. While feature selectivity of neurons in the earlier processing stages can be understood in terms of linear receptive field models, higher order somatosensory neurons exhibit nonlinear response properties that result in tuning for more complex geometrical features. In fact, tactile shape processing bears remarkable analogies to its visual counterpart and the two may rely on shared neural circuitry. Furthermore, one of the unique aspects of primate somatosensation is that it contains a deformable sensory sheet. Because the relative positions of cutaneous mechanoreceptors depend on the conformation of the hand, the haptic perception of three-dimensional objects requires the integration of cutaneous and proprioceptive signals, an integration that is observed throughout somatosensory cortex. Copyright © 2016 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollinger, J.; Newson, D.; Yeh, H.
1992-06-01
The objective of this program was to develop a net shape forming process for an in-situ reinforced Si{sub 3}N{sub 4} (AS-700). AS-700 was initially developed using cold isostatic pressing (CIP) of alcohol milled powders. The CIP`ed AS-700 material exhibited a moderate strength (690 MPa) and high toughness (9 MPa{radical}m) at room temperature. In addition to net-shape process development, optimization of AS-700 properties was also investigated through the refinement of densification processes, and evaluation of the effect of Si{sub 3}N{sub 4} powder properties on resulting microstructure and mechanical properties. Slip casting was chosen as the net-shape forming process. A slip castingmore » process was successfully developed for forming green parts ranging from thin plates to thick cylinders, and to large complex shaped turbine rotors. The densification cycle was optimized to achieve full density parts without any cracks or warpage, and with comparable properties and microstructure to the CIP`ed baseline AS-700 material. The evaluation of six (6) alternate Si{sub 3}N{sub 4} powders indicated that Si{sub 3}N{sub 4} powders have a very strong influence on the development of resulting AS-700 in-situ microstructures and mechanical properties. The AS-700 slip casting process and optimized densification process were then combined and a number of test specimens were fabricated. The mechanical properties and microstructure of the optimized slip cast AS-700 Si{sub 3}N{sub 4} were then fully characterized. The key property values are: 695 MPa at room temperature, 446 MPa at 1370{degree}C flexural strengths and 8.25 MPa{radical}m toughness.« less
Apparatus and process for freeform fabrication of composite reinforcement preforms
NASA Technical Reports Server (NTRS)
Yang, Junsheng (Inventor); Wu, Liangwei (Inventor); Liu, Junhai (Inventor); Jang, Bor Z. (Inventor)
2001-01-01
A solid freeform fabrication process and apparatus for making a three-dimensional reinforcement shape. The process comprises the steps of (1) operating a multiple-channel material deposition device for dispensing a liquid adhesive composition and selected reinforcement materials at predetermined proportions onto a work surface; (2) during the material deposition process, moving the deposition device and the work surface relative to each other in an X-Y plane defined by first and second directions and in a Z direction orthogonal to the X-Y plane so that the materials are deposited to form a first layer of the shape; (3) repeating these steps to deposit multiple layers for forming a three-dimensional preform shape; and (4) periodically hardening the adhesive to rigidize individual layers of the preform. These steps are preferably executed under the control of a computer system by taking additional steps of (5) creating a geometry of the shape on the computer with the geometry including a plurality of segments defining the preform shape and each segment being preferably coded with a reinforcement composition defining a specific proportion of different reinforcement materials; (6) generating programmed signals corresponding to each of the segments in a predetermined sequence; and (7) moving the deposition device and the work surface relative to each other in response to these programmed signals. Preferably, the system is also operated to generate a support structure for any un-supported feature of the 3-D preform shape.
The Precise and Efficient Identification of Medical Order Forms Using Shape Trees
NASA Astrophysics Data System (ADS)
Henker, Uwe; Petersohn, Uwe; Ultsch, Alfred
A powerful and flexible technique to identify, classify and process documents using images from a scanning process is presented. The types of documents can be described to the system as a set of differentiating features in a case base using shape trees. The features are filtered and abstracted from an extremely reduced scanner image of the document. Classification rules are stored with the cases to enable precise recognition and further mark reading and Optical Character Recognition (OCR) process. The method is implemented in a system which actually processes the majority of requests for medical lab procedures in Germany. A large practical experiment with data from practitioners was performed. An average of 97% of the forms were correctly identified; none were identified incorrectly. This meets the quality requirements for most medical applications. The modular description of the recognition process allows for a flexible adaptation of future changes to the form and content of the document’s structures.
NASA Astrophysics Data System (ADS)
Saidi, B.; Giraud-Moreau, L.; Cherouat, A.; Nasri, R.
2017-09-01
AINSI 304L stainless steel sheets are commonly formed into a variety of shapes for applications in the industrial, architectural, transportation and automobile fields, it’s also used for manufacturing of denture base. In the field of dentistry, there is a need for personalized devises that are custom made for the patient. The single point incremental forming process is highly promising in this area for manufacturing of denture base. The single point incremental forming process (ISF) is an emerging process based on the use of a spherical tool, which is moved along CNC controlled tool path. One of the major advantages of this process is the ability to program several punch trajectories on the same machine in order to obtain different shapes. Several applications of this process exist in the medical field for the manufacturing of personalized titanium prosthesis (cranial plate, knee prosthesis...) due to the need of product customization to each patient. The objective of this paper is to study the incremental forming of AISI 304L stainless steel sheets for future applications in the dentistry field. During the incremental forming process, considerable forces can occur. The control of the forming force is particularly important to ensure the safe use of the CNC milling machine and preserve the tooling and machinery. In this paper, the effect of four different process parameters on the maximum force is studied. The proposed approach consists in using an experimental design based on experimental results. An analysis of variance was conducted with ANOVA to find the input parameters allowing to minimize the maximum forming force. A numerical simulation of the incremental forming process is performed with the optimal input process parameters. Numerical results are compared with the experimental ones.
Sunter, Jack D.; Benz, Corinna; Andre, Jane; Whipple, Sarah; McKean, Paul G.; Gull, Keith; Ginger, Michael L.; Lukeš, Julius
2015-01-01
ABSTRACT The cell shape of Trypanosoma brucei is influenced by flagellum-to-cell-body attachment through a specialised structure – the flagellum attachment zone (FAZ). T. brucei exhibits numerous morphological forms during its life cycle and, at each stage, the FAZ length varies. We have analysed FLAM3, a large protein that localises to the FAZ region within the old and new flagellum. Ablation of FLAM3 expression causes a reduction in FAZ length; however, this has remarkably different consequences in the tsetse procyclic form versus the mammalian bloodstream form. In procyclic form cells FLAM3 RNAi results in the transition to an epimastigote-like shape, whereas in bloodstream form cells a severe cytokinesis defect associated with flagellum detachment is observed. Moreover, we demonstrate that the amount of FLAM3 and its localisation is dependent on ClpGM6 expression and vice versa. This evidence demonstrates that FAZ is a key regulator of trypanosome shape, with experimental perturbations being life cycle form dependent. An evolutionary cell biology explanation suggests that these differences are a reflection of the division process, the cytoskeleton and intrinsic structural plasticity of particular life cycle forms. PMID:26148511
Investigation on thixojoining to produce hybrid components with intermetallic phase
NASA Astrophysics Data System (ADS)
Seyboldt, Christoph; Liewald, Mathias
2018-05-01
Current research activities at the Institute for Metal Forming Technology of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. One process investigated is the joining of different materials in the semi-solid state and is so called "thixojoining". In this process, metallic inlays are inserted into the semi-solid forming die before the actual forming process and are then joined with a material which was heated up to its semi-solid state. Earlier investigations have shown that using this process a very well-shaped form closure can be produced. Furthermore, it was found that sometimes intermetallic phases are built between the different materials, which decisively influence the part properties of such hybrid components for its future application. Within the framework presented in this paper, inlays made of aluminum, brass and steel were joined with aluminum in the semi-solid state. The aim of the investigations was to create an intermetallic bond between the different materials. For this investigations the liquid phase fraction of the aluminum and the temperature of the inlay were varied in order to determine the influence on the formation of the intermetallic phase. Forming trials were performed using a semi-solid forming die with a disk shaped design. Furthermore, the intermetallic phase built was investigated using microsections.
The role of deep-water sedimentary processes in shaping a continental margin: The Northwest Atlantic
Mosher, David C.; Campbell, D.C.; Gardner, J.V.; Piper, D.J.W.; Chaytor, Jason; Rebesco, M.
2017-01-01
The tectonic history of a margin dictates its general shape; however, its geomorphology is generally transformed by deep-sea sedimentary processes. The objective of this study is to show the influences of turbidity currents, contour currents and sediment mass failures on the geomorphology of the deep-water northwestern Atlantic margin (NWAM) between Blake Ridge and Hudson Trough, spanning about 32° of latitude and the shelf edge to the abyssal plain. This assessment is based on new multibeam echosounder data, global bathymetric models and sub-surface geophysical information.The deep-water NWAM is divided into four broad geomorphologic classifications based on their bathymetric shape: graded, above-grade, stepped and out-of-grade. These shapes were created as a function of the balance between sediment accumulation and removal that in turn were related to sedimentary processes and slope-accommodation. This descriptive method of classifying continental margins, while being non-interpretative, is more informative than the conventional continental shelf, slope and rise classification, and better facilitates interpretation concerning dominant sedimentary processes.Areas of the margin dominated by turbidity currents and slope by-pass developed graded slopes. If sediments did not by-pass the slope due to accommodation then an above grade or stepped slope resulted. Geostrophic currents created sedimentary bodies of a variety of forms and positions along the NWAM. Detached drifts form linear, above-grade slopes along their crests from the shelf edge to the deep basin. Plastered drifts formed stepped slope profiles. Sediment mass failure has had a variety of consequences on the margin morphology; large mass-failures created out-of-grade profiles, whereas smaller mass failures tended to remain on the slope and formed above-grade profiles at trough-mouth fans, or nearly graded profiles, such as offshore Cape Fear.
Resin infiltration transfer technique
Miller, David V [Pittsburgh, PA; Baranwal, Rita [Glenshaw, PA
2009-12-08
A process has been developed for fabricating composite structures using either reaction forming or polymer infiltration and pyrolysis techniques to densify the composite matrix. The matrix and reinforcement materials of choice can include, but are not limited to, silicon carbide (SiC) and zirconium carbide (ZrC). The novel process can be used to fabricate complex, net-shape or near-net shape, high-quality ceramic composites with a crack-free matrix.
Influences on particle shape in underwater pelletizing processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kast, O., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Musialek, M., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Geiger, K., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de
2014-05-15
Underwater pelletizing has gained high importance within the last years among the different pelletizing technologies, due to its advantages in terms of throughput, automation, pellet quality and applicability to a large variety of thermoplastics. The resulting shape and quality of pellets, however, differ widely, depending on material characteristics and effects not fully understood yet. In an experimental set-up, pellets of different volumes and shapes were produced and the medium pellet mass, the pellet surface and the bulk density were analyzed in order to identify the influence of material properties and process parameters. Additionally, the shaping kinetics at the die openingmore » were watched with a specially developed camera system. It was found that rheological material properties correlate with process parameters and resulting particle form in a complex way. Higher cutting speeds were shown to have a deforming influence on the pellets, leading to less spherical s and lower bulk densities. More viscous materials, however, showed a better resistance against this. Generally, the viscous properties of polypropylene proofed to be dominant over the elastic ones in regard to their influence on pellet shape. It was also shown that the shapes filmed at the die opening and the actual form of the pellets after a cooling track do not always correlate, indicating a significant influence of thermodynamic properties during the cooling.« less
Stegemann, Sven; Riedl, Regina; Sourij, Harald
2017-01-30
The clear identification of drug products by the patients is essential for a safe and effective medication management. In order to understand the impact of shape, size and color on medication identification a study was performed in subjects with type 2 diabetes mellitus (T2D). Ten model drugs differentiated by shape, size and color were evaluated using a mixed method of medication schedule preparation by the participants followed by a semi-structured interview. Detection times were fastest for the large round tablet shape and the bi-chromatic forms. Larger size was easier to identify than the smaller sizes except for the bi-chromatic forms. The shape was the major source of errors, followed by the size and the color dimension. The results from this study suggests that color as a single dimension are perceived more effectively by subjects with T2D compared to shape and size, which requires a more demanding processing of three dimension and is dependent on the perspective. Copyright © 2016 Elsevier B.V. All rights reserved.
Worsley, Marcus A; Baumann, Theodore F; Satcher, Joe H; Olson, Tammy Y; Kuntz, Joshua D; Rose, Klint A
2015-03-03
In one embodiment, an aerogel includes a layer of shaped particles having a particle packing density gradient in a thickness direction of the layer, wherein the shaped particles are characterized by being formed in an electrophoretic deposition (EPD) process using an impurity. In another embodiment, a method for forming a functionally graded porous nanostructure includes adding particles of an impurity and a solution to an EPD chamber, applying a voltage difference across the two electrodes of the EPD chamber to create an electric field in the EPD chamber, and depositing the material onto surfaces of the particles of the impurity to form shaped particles of the material. Other functionally graded materials and methods are described according to more embodiments.
Electrohydraulic Forming of Near-Net Shape Automotive Panels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovaschenko, Sergey F.
2013-09-26
The objective of this project was to develop the electrohydraulic forming (EHF) process as a near-net shape automotive panel manufacturing technology that simultaneously reduces the energy embedded in vehicles and the energy consumed while producing automotive structures. Pulsed pressure is created via a shockwave generated by the discharge of high voltage capacitors through a pair of electrodes in a liquid-filled chamber. The shockwave in the liquid initiated by the expansion of the plasma channel formed between two electrodes propagates towards the blank and causes the blank to be deformed into a one-sided die cavity. The numerical model of the EHFmore » process was validated experimentally and was successfully applied to the design of the electrode system and to a multi-electrode EHF chamber for full scale validation of the process. The numerical model was able to predict stresses in the dies during pulsed forming and was validated by the experimental study of the die insert failure mode for corner filling operations. The electrohydraulic forming process and its major subsystems, including durable electrodes, an EHF chamber, a water/air management system, a pulse generator and integrated process controls, were validated to be capable to operate in a fully automated, computer controlled mode for forming of a portion of a full-scale sheet metal component in laboratory conditions. Additionally, the novel processes of electrohydraulic trimming and electrohydraulic calibration were demonstrated at a reduced-scale component level. Furthermore, a hybrid process combining conventional stamping with EHF was demonstrated as a laboratory process for a full-scale automotive panel formed out of AHSS material. The economic feasibility of the developed EHF processes was defined by developing a cost model of the EHF process in comparison to the conventional stamping process.« less
NASA Astrophysics Data System (ADS)
Spoelstra, Paul; Djakow, Eugen; Homberg, Werner
2017-10-01
The production of complex organic shapes in sheet metals is gaining more importance in the food industry due to increasing functional and hygienic demands. Hence it is necessary to produce parts with complex geometries promoting cleanability and general sanitation leading to improvement of food safety. In this context, and especially when stainless steel has to be formed into highly complex geometries while maintaining desired surface properties, it is inevitable that alternative manufacturing processes will need to be used which meet these requirements. Rubber pad forming offers high potential when it comes to shaping complex parts with excellent surface quality, with virtually no tool marks and scratches. Especially in cases where only small series are to be produced, rubber pad forming processes offers both technological and economic advantages. Due to the flexible punch, variation in metal thickness can be used with the same forming tool. The investments to set-up Rubber pad forming is low in comparison to conventional sheet metal forming processes. The process facilitates production of shallow sheet metal parts with complex contours and bends. Different bending sequences in a multiple tool set-up can also be conducted. The planned contribution thus describes a brief overview of the rubber pad technology. It shows the prototype rubber pad forming machine which can be used to perform complex part geometries made from stainless steel (1.4301). Based on an analysis of the already existing systems and new machines for rubber pad forming processes, together with their process properties, influencing variables and areas of application, some relevant parts for the food industry are presented.
NASA Astrophysics Data System (ADS)
Shao, Jinhai; Deng, Jianan; Lu, W.; Chen, Yifang
2017-07-01
A process to fabricate T-shaped gates with the footprint scaling down to 10 nm using a double patterning procedure is reported. One of the keys in this process is to separate the definition of the footprint from that for the gate-head so that the proximity effect originated from electron forward scattering in the resist is significantly minimized, enabling us to achieve as narrow as 10-nm foot width. Furthermore, in contrast to the reported technique for 10-nm T-shaped profile in resist, this process utilizes a metallic film with a nanoslit as an etch mask to form a well-defined 10-nm-wide foot in a SiNx layer by reactive ion etch. Such a double patterning process has demonstrated enhanced reliability. The detailed process is comprehensively described, and its advantages and limitations are discussed. Nanofabrication of InP-based high-electron-mobility transistors using the developed process for 10- to 20-nm T-shaped gates is currently under the way.
Sugiura, Yuki; Tsuru, Kanji; Ishikawa, Kunio
2017-08-01
Carbonate apatite (CO 3 Ap) foam with an interconnected porous structure is highly attractive as a scaffold for bone replacement. In this study, arbitrarily shaped CO 3 Ap foam was formed from α-tricalcium phosphate (α-TCP) foam granules via a two-step process involving treatment with acidic calcium phosphate solution followed by hydrothermal treatment with NaHCO 3 . The treatment with acidic calcium phosphate solution, which is key to fabricating arbitrarily shaped CO 3 Ap foam, enables dicalcium hydrogen phosphate dihydrate (DCPD) crystals to form on the α-TCP foam granules. The generated DCPD crystals cause the α-TCP granules to interlock with each other, inducing an α-TCP/DCPD foam. The interlocking structure containing DCPD crystals can survive hydrothermal treatment with NaHCO 3 . The arbitrarily shaped CO 3 Ap foam was fabricated from the α-TCP/DCPD foam via hydrothermal treatment at 200 °C for 24 h in the presence of a large amount of NaHCO 3 .
Functional ecomorphology: Feedbacks between form and function in fluvial landscape ecosystems
NASA Astrophysics Data System (ADS)
Fisher, Stuart G.; Heffernan, James B.; Sponseller, Ryan A.; Welter, Jill R.
2007-09-01
The relationship between form and function has been a central organizing principle in biology throughout its history as a formal science. This concept has been relevant from molecules to organisms but loses meaning at population and community levels where study targets are abstract collectives and assemblages. Ecosystems include organisms and abiotic factors but ecosystem ecology too has developed until recently without a strong spatially explicit reference. Landscape ecology provides an opportunity to once again anneal form and function and to consider reciprocal causation between them. This ecomorphologic view can be applied at a variety of ecologically relevant scales and consists of an investigation of how geomorphology provides a structural template that shapes, and is shaped by ecological processes. Running water ecosystems illustrate several principles governing the interaction of landscape form and ecological function subsumed by the concept of "Functional Ecomorphology". Particularly lucrative are ecosystem-level interactions between geologic form and biogeochemical processes integrated by hydrologic flowpaths. While the utility of a flowpath-based approach is most apparent in streams, spatially explicit biogeochemical processing pervades all landscapes and may be of general ecological application.
Zovko, Monika; Kiefer, Markus
2013-02-01
According to classical theories, automatic processes operate independently of attention. Recent evidence, however, shows that masked visuomotor priming, an example of an automatic process, depends on attention to visual form versus semantics. In a continuation of this approach, we probed feature-specific attention within the perceptual domain and tested in two event-related potential (ERP) studies whether masked visuomotor priming in a shape decision task specifically depends on attentional sensitization of visual pathways for shape in contrast to color. Prior to the masked priming procedure, a shape or a color decision task served to induce corresponding task sets. ERP analyses revealed visuomotor priming effects over the occipitoparietal scalp only after the shape, but not after the color induction task. Thus, top-down control coordinates automatic processing streams in congruency with higher-level goals even at a fine-grained level. Copyright © 2012 Society for Psychophysiological Research.
NASA Astrophysics Data System (ADS)
Choi, Jongchan; Lee, Kyeong-Hwan; Yang, Sung
2011-09-01
This note presents a simple fabrication process for patterning micro through-holes in a PDMS layer by a combination of the micromolding in capillaries (MIMIC) method and the surface treatment by atmospheric-pressure CH4/He RF plasma. The fabrication process is confirmed by forming micro through-holes with various shapes including circle, C-shape, open microfluidic channel and hemisphere. All micro through-holes of various shapes in a wide range of diameters and heights are well fabricated by the proposed method. Also, a 3D micromixer containing a PDMS micro through-hole layer formed by the proposed method is built and its performance is tested as another practical demonstration of the proposed fabrication method. Therefore, we believe that the proposed fabrication process will build a PDMS micro through-hole layer in a simple and easy way and will contribute to developing highly efficient multi-layered microfluidic systems, which may require PDMS micro through-hole layers.
Sučević, Jelena; Savić, Andrej M; Popović, Mirjana B; Styles, Suzy J; Ković, Vanja
2015-01-01
There is something about the sound of a pseudoword like takete that goes better with a spiky, than a curvy shape (Köhler, 1929:1947). Yet despite decades of research into sound symbolism, the role of this effect on real words in the lexicons of natural languages remains controversial. We report one behavioural and one ERP study investigating whether sound symbolism is active during normal language processing for real words in a speaker's native language, in the same way as for novel word forms. The results indicate that sound-symbolic congruence has a number of influences on natural language processing: Written forms presented in a congruent visual context generate more errors during lexical access, as well as a chain of differences in the ERP. These effects have a very early onset (40-80 ms, 100-160 ms, 280-320 ms) and are later overshadowed by familiar types of semantic processing, indicating that sound symbolism represents an early sensory-co-activation effect. Copyright © 2015 Elsevier Inc. All rights reserved.
2016-06-29
These dark dunes are influenced by local topography. The shape and orientation of dunes can usually tell us about wind direction, but in this image, the dune-forms are very complex, so it's difficult to know the wind direction. However, a circular depression (probably an old and infilled impact crater) has limited the amount of sand available for dune formation and influenced local winds. As a result, the dunes here form distinct dots and dashes. The "dashes" are linear dunes formed by bi-directional winds, which are not traveling parallel to the dune. Instead, the combined effect of winds from two directions at right angles to the dunes, funnels material into a linear shape. The smaller "dots" (called "barchanoid dunes") occur where there is some interruption to the process forming those linear dunes. This process is not well understood at present and is one motivation for HiRISE to image this area. http://photojournal.jpl.nasa.gov/catalog/PIA20735
40 CFR 467.02 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... subcategory, but when present is an integral part of the aluminum forming process. (c) Contact cooling water.... (d) Continuous casting is the production of sheet, rod, or other long shapes by solidifying the metal... pulling metal through a die or succession of dies to reduce the metal's diameter or alter its shape. There...
40 CFR 467.02 - General definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... subcategory, but when present is an integral part of the aluminum forming process. (c) Contact cooling water.... (d) Continuous casting is the production of sheet, rod, or other long shapes by solidifying the metal... pulling metal through a die or succession of dies to reduce the metal's diameter or alter its shape. There...
Fabrication of a helical coil shape memory alloy actuator
NASA Astrophysics Data System (ADS)
Odonnell, R. E.
1992-02-01
A fabrication process was developed to form, heat treat, and join NiTi shape memory alloy helical coils for use as mechanical actuators. Tooling and procedures were developed to wind both extension and compression-type coils on a manual lathe. Heat treating fixtures and techniques were used to set the 'memory' of the NiTi alloy to the desired configuration. A swaging process was devised to fasten shape memory alloy extension coils to end fittings for use in actuator testing and for potential attachment to mechanical devices. The strength of this mechanical joint was evaluated.
How language production shapes language form and comprehension
MacDonald, Maryellen C.
2012-01-01
Language production processes can provide insight into how language comprehension works and language typology—why languages tend to have certain characteristics more often than others. Drawing on work in memory retrieval, motor planning, and serial order in action planning, the Production-Distribution-Comprehension (PDC) account links work in the fields of language production, typology, and comprehension: (1) faced with substantial computational burdens of planning and producing utterances, language producers implicitly follow three biases in utterance planning that promote word order choices that reduce these burdens, thereby improving production fluency. (2) These choices, repeated over many utterances and individuals, shape the distributions of utterance forms in language. The claim that language form stems in large degree from producers' attempts to mitigate utterance planning difficulty is contrasted with alternative accounts in which form is driven by language use more broadly, language acquisition processes, or producers' attempts to create language forms that are easily understood by comprehenders. (3) Language perceivers implicitly learn the statistical regularities in their linguistic input, and they use this prior experience to guide comprehension of subsequent language. In particular, they learn to predict the sequential structure of linguistic signals, based on the statistics of previously-encountered input. Thus, key aspects of comprehension behavior are tied to lexico-syntactic statistics in the language, which in turn derive from utterance planning biases promoting production of comparatively easy utterance forms over more difficult ones. This approach contrasts with classic theories in which comprehension behaviors are attributed to innate design features of the language comprehension system and associated working memory. The PDC instead links basic features of comprehension to a different source: production processes that shape language form. PMID:23637689
A Metric on Phylogenetic Tree Shapes
Plazzotta, G.
2018-01-01
Abstract The shapes of evolutionary trees are influenced by the nature of the evolutionary process but comparisons of trees from different processes are hindered by the challenge of completely describing tree shape. We present a full characterization of the shapes of rooted branching trees in a form that lends itself to natural tree comparisons. We use this characterization to define a metric, in the sense of a true distance function, on tree shapes. The metric distinguishes trees from random models known to produce different tree shapes. It separates trees derived from tropical versus USA influenza A sequences, which reflect the differing epidemiology of tropical and seasonal flu. We describe several metrics based on the same core characterization, and illustrate how to extend the metric to incorporate trees’ branch lengths or other features such as overall imbalance. Our approach allows us to construct addition and multiplication on trees, and to create a convex metric on tree shapes which formally allows computation of average tree shapes. PMID:28472435
Shaping metallic glasses by electromagnetic pulsing
Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.
2016-01-01
With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals. PMID:26853460
Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Tian, H; Liu, J H; Feng, J C; Yan, J C
2018-04-01
Homogeneous (Cu, Ni) 6 Sn 5 intermetallic compound (IMC) joints were rapidly formed in asymmetrical Ni/Sn/Cu system by an ultrasound-induced transient liquid phase (TLP) soldering process. In the traditional TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system consisted of major (Cu, Ni) 6 Sn 5 and minor Cu 3 Sn IMCs, and the grain morphology of (Cu, Ni) 6 Sn 5 IMCs subsequently exhibited fine rounded, needlelike and coarse rounded shapes from the Ni side to the Cu side, which was highly in accordance with the Ni concentration gradient across the joints. However, in the ultrasound-induced TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system only consisted of the (Cu, Ni) 6 Sn 5 IMCs which exhibited an uniform grain morphology of rounded shape with a remarkably narrowed Ni concentration gradient. The ultrasound-induced homogeneous intermetallic joints exhibited higher shear strength (61.6 MPa) than the traditional heterogeneous intermetallic joints (49.8 MPa). Copyright © 2017 Elsevier B.V. All rights reserved.
Nonlinear Shaping Architecture Designed with Using Evolutionary Structural Optimization Tools
NASA Astrophysics Data System (ADS)
Januszkiewicz, Krystyna; Banachowicz, Marta
2017-10-01
The paper explores the possibilities of using Structural Optimization Tools (ESO) digital tools in an integrated structural and architectural design in response to the current needs geared towards sustainability, combining ecological and economic efficiency. The first part of the paper defines the Evolutionary Structural Optimization tools, which were developed specifically for engineering purposes using finite element analysis as a framework. The development of ESO has led to several incarnations, which are all briefly discussed (Additive ESO, Bi-directional ESO, Extended ESO). The second part presents result of using these tools in structural and architectural design. Actual building projects which involve optimization as a part of the original design process will be presented (Crematorium in Kakamigahara Gifu, Japan, 2006 SANAA“s Learning Centre, EPFL in Lausanne, Switzerland 2008 among others). The conclusion emphasizes that the structural engineering and architectural design mean directing attention to the solutions which are used by Nature, designing works optimally shaped and forming their own environments. Architectural forms never constitute the optimum shape derived through a form-finding process driven only by structural optimization, but rather embody and integrate a multitude of parameters. It might be assumed that there is a similarity between these processes in nature and the presented design methods. Contemporary digital methods make the simulation of such processes possible, and thus enable us to refer back to the empirical methods of previous generations.
Advanced Materials and Fabrication Techniques for the Orion Attitude Control Motor
NASA Technical Reports Server (NTRS)
Gorti, Sridhar; Holmes, Richard; O'Dell, John; McKechnie, Timothy; Shchetkovskiy, Anatoliy
2013-01-01
Rhenium, with its high melting temperature, excellent elevated temperature properties, and lack of a ductile-to-brittle transition temperature (DBTT), is ideally suited for the hot gas components of the ACM (Attitude Control Motor), and other high-temperature applications. However, the high cost of rhenium makes fabricating these components using conventional fabrication techniques prohibitive. Therefore, near-net-shape forming techniques were investigated for producing cost-effective rhenium and rhenium alloy components for the ACM and other propulsion applications. During this investigation, electrochemical forming (EL-Form ) techniques were evaluated for producing the hot gas components. The investigation focused on demonstrating that EL-Form processing techniques could be used to produce the ACM flow distributor. Once the EL-Form processing techniques were established, a representative rhenium flow distributor was fabricated, and samples were harvested for material properties testing at both room and elevated temperatures. As a lower cost and lighter weight alternative to an all-rhenium component, rhenium- coated graphite and carbon-carbon were also evaluated. The rhenium-coated components were thermal-cycle tested to verify that they could withstand the expected thermal loads during service. High-temperature electroforming is based on electrochemical deposition of compact layers of metals onto a mandrel of the desired shape. Mandrels used for electro-deposition of near-net shaped parts are generally fabricated from high-density graphite. The graphite mandrel is easily machined and does not react with the molten electrolyte. For near-net shape components, the inner surface of the electroformed part replicates the polished graphite mandrel. During processing, the mandrel itself becomes the cathode, and scrap or refined refractory metal is the anode. Refractory metal atoms from the anode material are ionized in the molten electrolytic solution, and are deposited onto the cathodic mandrel by electrochemical reduction. Rotation of the mandrel ensures uniform distribution of refractory material. The EL-Form process allows for manufacturing in an inert atmosphere with deposition rates from 0.0004 to 0.002 in./h (10.2 to 50.8 m/h). Thicknesses typically range from microns to greater than 0.5 in. (13 mm). The refractory component produced is fabricated, dependably, to within one micron of the desired tolerances with no shrinkage or distortion as in other refractory metal manufacture techniques. The electroforming process has been used to produce solid, nonporous deposits of rhenium, iridium, niobium, tungsten, and their alloys.
Description of saturation curves and boiling process of dry air
NASA Astrophysics Data System (ADS)
Vestfálová, Magda; Petříková, Markéta; Šimko, Martin
2018-06-01
Air is a mixture of gases forming the gas wrap of Earth. It is formed by dry air, moisture and other pollutants. Dry air is a substance whose thermodynamic properties in gaseous state, as well as the thermodynamic properties of its main constituents in gaseous state, are generally known and described in detail in the literature. The liquid air is a bluish liquid and is industrially used to produce oxygen, nitrogen, argon and helium by distillation. The transition between the gaseous and liquid state (the condensation process, resp. boiling process), is usually displayed in the basic thermodynamic diagrams using the saturation curves. The saturation curves of all pure substances are of a similar shape. However, since the dry air is a mixture, the shapes of its saturation curves are modified relative to the shapes corresponding to the pure substances. This paper deals with the description of the dry air saturation curves as a mixture, i.e. with a description of the process of phase change of dry air (boiling process). The dry air saturation curves are constructed in the basic thermodynamic charts based on the values obtained from the literature. On the basis of diagrams, data appearing in various publications are interpreted and put into context with boiling process of dry air.
The Development of Occupations in Health Technology.
ERIC Educational Resources Information Center
Brown, Carol Anderson
The study examined the general question of how the place of an occupation in the economic division of labor becomes shaped and defined. The shaping was seen as basically a political process, a utilization of power in various forms by interested parties acting with the conscious intention of gaining control over the economic activity of themselves…
Adaptive scallop height tool path generation for robot-based incremental sheet metal forming
NASA Astrophysics Data System (ADS)
Seim, Patrick; Möllensiep, Dennis; Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd
2016-10-01
Incremental sheet metal forming is an emerging process for the production of individualized products or prototypes in low batch sizes and with short times to market. In these processes, the desired shape is produced by the incremental inward motion of the workpiece-independent forming tool in depth direction and its movement along the contour in lateral direction. Based on this shape production, the tool path generation is a key factor on e.g. the resulting geometric accuracy, the resulting surface quality, and the working time. This paper presents an innovative tool path generation based on a commercial milling CAM package considering the surface quality and working time. This approach offers the ability to define a specific scallop height as an indicator of the surface quality for specific faces of a component. Moreover, it decreases the required working time for the production of the entire component compared to the use of a commercial software package without this adaptive approach. Different forming experiments have been performed to verify the newly developed tool path generation. Mainly, this approach serves to solve the existing conflict of combining the working time and the surface quality within the process of incremental sheet metal forming.
3D Printed "Starmix" Drug Loaded Dosage Forms for Paediatric Applications.
Scoutaris, Nicolaos; Ross, Steven A; Douroumis, Dennis
2018-01-16
Three- dimensional (3D) printing has received significant attention as a manufacturing process for pharmaceutical dosage forms. In this study, we used Fusion Deposition Modelling (FDM) in order to print "candy - like" formulations by imitating Starmix® sweets to prepare paediatric medicines with enhanced palatability. Hot melt extrusion processing (HME) was coupled with FDM to prepare extruded filaments of indomethacin (IND), hypromellose acetate succinate (HPMCAS) and polyethylene glycol (PEG) formulations and subsequently feed them in the 3D printer. The shapes of the Starmix® objects were printed in the form of a heart, ring, bottle, ring, bear and lion. Differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier Transform Infra-red Spectroscopy (FT-IR) and confocal Raman analysis were used to assess the drug - excipient interactions and the content uniformity. Physicochemical analysis showed the presence of molecularly dispersed IND in the printed tablets. In vivo taste masking evaluation demonstrated excellent masking of the drug bitterness. The printed forms were evaluated for drug dissolution and showed immediate IND release independently of the printed shape, within 60 min. 3D printing was used successfully to process drug loaded filaments for the development of paediatric printed tablets in the form of Starmix® designs.
A novel shape-changing haptic table-top display
NASA Astrophysics Data System (ADS)
Wang, Jiabin; Zhao, Lu; Liu, Yue; Wang, Yongtian; Cai, Yi
2018-01-01
A shape-changing table-top display with haptic feedback allows its users to perceive 3D visual and texture displays interactively. Since few existing devices are developed as accurate displays with regulatory haptic feedback, a novel attentive and immersive shape changing mechanical interface (SCMI) consisting of image processing unit and transformation unit was proposed in this paper. In order to support a precise 3D table-top display with an offset of less than 2 mm, a custommade mechanism was developed to form precise surface and regulate the feedback force. The proposed image processing unit was capable of extracting texture data from 2D picture for rendering shape-changing surface and realizing 3D modeling. The preliminary evaluation result proved the feasibility of the proposed system.
NASA Astrophysics Data System (ADS)
Wernicke, S.; Dang, T.; Gies, S.; Tekkaya, A. E.
2018-05-01
The tendency to a higher variety of products requires economical manufacturing processes suitable for the production of prototypes and small batches. In the case of complex hollow-shaped parts, single point incremental forming (SPIF) represents a highly flexible process. The flexibility of this process comes along with a very long process time. To decrease the process time, a new incremental forming approach with multiple forming tools is investigated. The influence of two incremental forming tools on the resulting mechanical and geometrical component properties compared to SPIF is presented. Sheets made of EN AW-1050A were formed to frustums of a pyramid using different tool-path strategies. Furthermore, several variations of the tool-path strategy are analyzed. A time saving between 40% and 60% was observed depending on the tool-path and the radii of the forming tools while the mechanical properties remained unchanged. This knowledge can increase the cost efficiency of incremental forming processes.
Segregation and persistence of form in the lateral occipital complex.
Ferber, Susanne; Humphrey, G Keith; Vilis, Tutis
2005-01-01
While the lateral occipital complex (LOC) has been shown to be implicated in object recognition, it is unclear whether this brain area is responsive to low-level stimulus-driven features or high-level representational processes. We used scrambled shape-from-motion displays to disambiguate the presence of contours from figure-ground segregation and to measure the strength of the binding process for shapes without contours. We found persisting brain activation in the LOC for scrambled displays after the motion stopped indicating that this brain area subserves and maintains figure-ground segregation processes, a low-level function in the object processing hierarchy. In our second experiment, we found that the figure-ground segregation process has some form of spatial constancy indicating top-down influences. The persisting activation after the motion stops suggests an intermediate role in object recognition processes for this brain area and might provide further evidence for the idea that the lateral occipital complex subserves mnemonic functions mediating between iconic and short-term memory.
NASA Technical Reports Server (NTRS)
1992-01-01
A heat sealing process was developed by SEBRA based on technology that originated in work with NASA's Jet Propulsion Laboratory. The project involved connecting and transferring blood and fluids between sterile plastic containers while maintaining a closed system. SEBRA markets the PIRF Process to manufacturers of medical catheters. It is a precisely controlled method of heating thermoplastic materials in a mold to form or weld catheters and other products. The process offers advantages in fast, precise welding or shape forming of catheters as well as applications in a variety of other industries.
Autoclave heat treatment for prealloyed powder products
NASA Technical Reports Server (NTRS)
Freche, J. C.; Ashbrook, R. L.
1973-01-01
Technique could be applied directly to loose powders as part of hot pressing process of forming them to any required shapes. This would eliminate initial extrusion step commonly applied to prealloyed powders, substantially reduce cost of forming operation, and result in optimum properties.
Tension and Elasticity Contribute to Fibroblast Cell Shape in Three Dimensions.
Brand, Christoph A; Linke, Marco; Weißenbruch, Kai; Richter, Benjamin; Bastmeyer, Martin; Schwarz, Ulrich S
2017-08-22
The shape of animal cells is an important regulator for many essential processes such as cell migration or division. It is strongly determined by the organization of the actin cytoskeleton, which is also the main regulator of cell forces. Quantitative analysis of cell shape helps to reveal the physical processes underlying cell shape and forces, but it is notoriously difficult to conduct it in three dimensions. Here we use direct laser writing to create 3D open scaffolds for adhesion of connective tissue cells through well-defined adhesion platforms. Due to actomyosin contractility in the cell contour, characteristic invaginations lined by actin bundles form between adjacent adhesion sites. Using quantitative image processing and mathematical modeling, we demonstrate that the resulting shapes are determined not only by contractility, but also by elastic stress in the peripheral actin bundles. In this way, cells can generate higher forces than through contractility alone. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Method for producing melt-infiltrated ceramic composites using formed supports
Corman, Gregory Scot; Brun, Milivoj Konstantin; McGuigan, Henry Charles
2003-01-01
A method for producing shaped articles of ceramic composites provides a high degree of dimensional tolerance to these articles. A fiber preform is disposed on a surface of a stable formed support, a surface of which is formed with a plurality of indentations, such as grooves, slots, or channels. Precursors of ceramic matrix materials are provided to the fiber preform to infiltrate from both sides of the fiber preform. The infiltration is conducted under vacuum at a temperature not much greater than a melting point of the precursors. The melt-infiltrated composite article substantially retains its dimension and shape throughout the fabrication process.
Laser shock wave and its applications
NASA Astrophysics Data System (ADS)
Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin
2007-12-01
The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.
Taylor, Johanne; van de Ven, Remy; Hopkins, David L
2014-03-01
SmartShape™ is a novel meat processing technology that uses air pressure to compress and elongate whole cold-boned primals and packages them to retain form. A two stage study was conducted. The first stage established the ability of the SmartShape™ treated beef cube roll (m. longissimus lumborum) to retain shape in a commercial setting. Twelve hours chilling time following treatment was found to be adequate for steaks to retain their shape for up to 24h after slicing. Steak shape and size did not change substantially until after cooking, when the steaks looked less formed. In the second stage a survey was conducted of 421 consumers to clarify the response to the shaping of a subset of raw and cooked scotch fillet steaks. There was no difference in preference for shaped or control steaks. A secondary survey found that informed consumers were more amenable to the SmartShape™ scotch fillet steaks presented here, but would not pay a premium for them. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Process Makes Thermoplastic Prepreg Ribbon
NASA Technical Reports Server (NTRS)
Wilson, Maywood L.; Johnson, Gary S.
1995-01-01
Manufacturing process produces ribbon of composite material (prepreg) consisting of continuous lengthwise fibers impregnated with thermoplastic resin. Ribbon can later be cut into sheets of required sizes and shapes, stacked, then heated under pressure to form composite-material structural components. Process accommodates variety of thermoplastic resins and variety of fibers.
Niobium superconducting rf cavity fabrication by electrohydraulic forming
NASA Astrophysics Data System (ADS)
Cantergiani, E.; Atieh, S.; Léaux, F.; Perez Fontenla, A. T.; Prunet, S.; Dufay-Chanat, L.; Koettig, T.; Bertinelli, F.; Capatina, O.; Favre, G.; Gerigk, F.; Jeanson, A. C.; Fuzeau, J.; Avrillaud, G.; Alleman, D.; Bonafe, J.; Marty, P.
2016-11-01
Superconducting rf (SRF) cavities are traditionally fabricated from superconducting material sheets or made of copper coated with superconducting material, followed by trim machining and electron-beam welding. An alternative technique to traditional shaping methods, such as deep-drawing and spinning, is electrohydraulic forming (EHF). In EHF, half-cells are obtained through ultrahigh-speed deformation of blank sheets, using shockwaves induced in water by a pulsed electrical discharge. With respect to traditional methods, such a highly dynamic process can yield interesting results in terms of effectiveness, repeatability, final shape precision, higher formability, and reduced springback. In this paper, the first results of EHF on high purity niobium are presented and discussed. The simulations performed in order to master the multiphysics phenomena of EHF and to adjust its process parameters are presented. The microstructures of niobium half-cells produced by EHF and by spinning have been compared in terms of damage created in the material during the forming operation. The damage was assessed through hardness measurements, residual resistivity ratio (RRR) measurements, and electron backscattered diffraction analyses. It was found that EHF does not worsen the damage of the material during forming and instead, some areas of the half-cell have shown lower damage compared to spinning. Moreover, EHF is particularly advantageous to reduce the forming time, preserve roughness, and to meet the final required shape accuracy.
Forming YBa2Cu3O7-x Superconductors On Copper Substrates
NASA Technical Reports Server (NTRS)
Mackenzie, J. Devin; Young, Stanley G.
1991-01-01
Experimental process forms layer of high-critical-temperature ceramic superconductor YBa2Cu3O7-x on surface of copper substrate. Offers possible solution to problem of finishing ceramic superconductors to required final sizes and shapes (difficult problem because these materials brittle and cannot be machined or bent). Further research necessary to evaluate superconducting qualities of surface layers and optimize process.
Electrochemical formation of field emitters
Bernhardt, Anthony F.
1999-01-01
Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.
Desbiens, Raphaël; Tremblay, Pierre; Genest, Jérôme; Bouchard, Jean-Pierre
2006-01-20
The instrument line shape (ILS) of a Fourier-transform spectrometer is expressed in a matrix form. For all line shape effects that scale with wavenumber, the ILS matrix is shown to be transposed in the spectral and interferogram domains. The novel representation of the ILS matrix in the interferogram domain yields an insightful physical interpretation of the underlying process producing self-apodization. Working in the interferogram domain circumvents the problem of taking into account the effects of finite optical path difference and permits a proper discretization of the equations. A fast algorithm in O(N log2 N), based on the fractional Fourier transform, is introduced that permits the application of a constant resolving power line shape to theoretical spectra or forward models. The ILS integration formalism is validated with experimental data.
Stochastic response of human blood platelets to stimulation of shape changes and secretion.
Deranleau, D A; Lüthy, R; Lüscher, E F
1986-01-01
Stopped-flow turbidimetric data indicate that platelets stimulated with low levels of thrombin undergo a shape transformation from disc to "sphere" to smaller spiny sphere that is indistinguishable from the shape change induced by ADP through different membrane receptor sites and a dissimilar receptor trigger mechanism. Under conditions where neither secretion nor aggregation occur, the extinction coefficients for total scattering by each of the three platelet forms are independent of the stimulus applied, and both reaction mechanisms can be described as stochastic (Poisson) processes in which the rate constant for the formation of the transient species is equal to the rate constant for its disappearance. This observation is independent of the shape assignment, and as the concentration of thrombin is increased and various storage organelles secrete increasing amounts of their contents into the external medium, the stochastic pattern persists. Progressively larger decreases in the extinction coefficients of the intermediate and final platelet forms, over and above those that reflect shape alterations alone, accompany or parallel the reaction induced by the higher thrombin concentrations. The excess turbidity decrease observed when full secretion occurs can be wholly accounted for by a decrease in platelet volume equal in magnitude to the fraction of the total platelet volume occupied by alpha granules. Platelet activation, as reported by the whole body light scattering of either shape changes alone or shape changes plus parallel (but not necessarily also stochastic) alpha granule secretion, thus manifests itself as a random series of transient events conceivably with its origins in the superposition of a set of more elementary stochastic processes that could include microtubule depolymerization, actin polymerization, and possibly diffusion. Although the real nature of the control mechanism remains obscure, certain properties of pooled stochastic processes suggest that a reciprocal connection between microtubule fragmentation and the assembly of actin-containing pseudopodal structures and contractile elements--processes that may exhibit reciprocal requirements for calcium--might provide a hypothetical basis for a rate-limiting step. PMID:3457375
NASA Astrophysics Data System (ADS)
Ge, Xue-Hui; Geng, Yu-Hao; Zhang, Qiao-Chu; Shao, Meng; Chen, Jian; Luo, Guang-Sheng; Xu, Jian-Hong
2017-02-01
Here in this article, we classify and conclude the four morphologies of three-phase emulsions. Remarkably, we achieve the reversible transformations between every shape. Through theoretical analysis, we choose four liquid systems to form these four morphologies. Then monodispersed droplets with these four morphologies are formed through a microfluidic device and captured in a petri-dish. By replacing their ambient solution of the captured emulsions, in-situ morphology transformations between each shape are achieved. The process is well recorded through photographs and videos and they are systematical and reversible. Finally, we use the droplets structure to form an on-off switch to start and shut off the evaporation of one volatile phase to achieve the process monitoring. This could be used to initiate and quench a reaction, which offers a novel idea to achieve the switchable and reversible reaction control in multiple-phase reactions.
NASA Technical Reports Server (NTRS)
Curreri, Peter A.; Hoffman, Eric; Domack, Marcia; Brewster, Jeb; Russell, Carolyn
2013-01-01
With the goal of lower cost (simplified manufacturing and lower part count) and higher performance (higher strength to weight alloys) the NASA Technical Maturation Program in 2006 funded a proposal to investigate spin forming of space launch vehicle cryogenic tank domes. The project funding continued under the NASA Exploration Technology Development Program through completion in FY12. The first phase of the project involved spin forming of eight, 1 meter diameter "path finder" domes. Half of these were processed using a concave spin form process (MT Aerospace, Augsburg Germany) and the other half using a convex process (Spincraft, Boston MA). The convex process has been used to produce the Ares Common Bulkhead and the concave process has been used to produce dome caps for the Space Shuttle light weight external tank and domes for the NASDA H2. Aluminum Lithium material was chosen because of its higher strength to weight ratio than the Aluminum 2219 baseline. Aluminum lithium, in order to obtain the desired temper (T8), requires a cold stretch after the solution heat treatment and quench. This requirement favors the concave spin form process which was selected for scale up. This paper describes the results of processing four, 5.5 meter diameter (upper stage scale) net shaped spin formed Aluminum Lithium domes. In order to allow scalability beyond the limits of foundry and rolling mills (about 12 foot width) the circular blank contained one friction stir weld (heavy lifter scales require a flat blank containing two welds). Mechanical properties data (tensile, fracture toughness, stress corrosion, and simulated service testing) for the parent metal and weld will also be discussed.
The role of shape complexity in the detection of closed contours.
Wilder, John; Feldman, Jacob; Singh, Manish
2016-09-01
The detection of contours in noise has been extensively studied, but the detection of closed contours, such as the boundaries of whole objects, has received relatively little attention. Closed contours pose substantial challenges not present in the simple (open) case, because they form the outlines of whole shapes and thus take on a range of potentially important configural properties. In this paper we consider the detection of closed contours in noise as a probabilistic decision problem. Previous work on open contours suggests that contour complexity, quantified as the negative log probability (Description Length, DL) of the contour under a suitably chosen statistical model, impairs contour detectability; more complex (statistically surprising) contours are harder to detect. In this study we extended this result to closed contours, developing a suitable probabilistic model of whole shapes that gives rise to several distinct though interrelated measures of shape complexity. We asked subjects to detect either natural shapes (Exp. 1) or experimentally manipulated shapes (Exp. 2) embedded in noise fields. We found systematic effects of global shape complexity on detection performance, demonstrating how aspects of global shape and form influence the basic process of object detection. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Taoyan; Huang, Chengwu; Li, Hongxia; Wu, Fujian; Luo, Jianwen; Lu, Wenjing
2018-01-01
The use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is limited in drug discovery and cardiac disease mechanism studies due to cell immaturity. Although many approaches have been reported to improve the maturation of hiPSC-CMs, the elucidation of the process of maturation is crucial. We applied a small-molecule-based differentiation method to generate cardiomyocytes (CMs) with multiple aggregation forms. The motion analysis revealed significant physical differences in the differently shaped CMs, and the net-shaped CMs had larger motion amplitudes and faster velocities than the sheet-shaped CMs. The net-shaped CMs displayed accelerated maturation at the transcriptional level and were more similar to CMs with a prolonged culture time (30 days) than to sheet-d15. Ion channel genes and gap junction proteins were up-regulated in net-shaped CMs, indicating that robust contraction was coupled with enhanced ion channel and connexin expression. The net-shaped CMs also displayed improved myofibril ultrastructure under transmission electron microscopy. In conclusion, different multicellular hPSC-CM structures, such as the net-shaped pattern, are formed using the conditioned induction method, providing a useful tool to improve cardiac maturation. PMID:29661985
Abzhanov, Arhat
2017-12-01
In 1917, the publication of On Growth and Form by D'Arcy Wentworth Thompson challenged both mathematicians and naturalists to think about biological shapes and diversity as more than a confusion of chaotic forms generated at random, but rather as geometric shapes that could be described by principles of physics and mathematics. Thompson's work was based on the ideas of Galileo and Goethe on morphology and of Russell on functionalism, but he was first to postulate that physical forces and internal growth parameters regulate biological forms and could be revealed via geometric transformations in morphological space. Such precise mathematical structure suggested a unifying generative process, as reflected in the title of the book. To Thompson it was growth that could explain the generation of any particular biological form, and changes in ontogeny, rather than natural selection, could then explain the diversity of biological shapes. Whereas adaptationism, widely accepted in evolutionary biology, gives primacy to extrinsic factors in producing morphological variation, Thompson's 'laws of growth' provide intrinsic directives and constraints for the generation of individual shapes, helping to explain the 'profusion of forms, colours, and other modifications' observed in the living world. © 2017. Published by The Company of Biologists Ltd.
Plastic deformation history in infeed rotary swaging process
NASA Astrophysics Data System (ADS)
Liu, Yang; Herrmann, Marius; Schenck, Christian; Kuhfuss, Bernd
2017-10-01
In bulk forming processes, the net shape of a final product is achieved by plastic deformation as the material flows from the initial shape to the final shape of the workpiece. The material flow during the process is an important issue for its relationship with forging force, heat generation, microstructure transformation and energy consumption. Hence, the final properties of the product are directly influenced. Former researches showed that the material flow in the rotary swaging process is affected by different processing parameters like die angle, feeding velocity and friction condition. Thus, a profound knowledge of detailed material flow during the process is essential for a better understanding of the process. By using FEM, the material flow was investigated by the history of the plastic strain (PEEQ) development. In this study a 2D-axisymmetric model was built by using ABAQUS explicit. Both aluminum alloy (3.3206) and steel (1.0308) are studied with different feeding velocities and coefficients of friction. To achieve the development of PEEQ in different areas, the workpiece was divided into radial layers. The PEEQ history of each layer was tracked during the quasi-static forming process. Based on that, the plastic strain rate (PSR) was calculated and examined in a single stroke of the process. In that way, the material flow in different layers is presented and the material flow on the surface differs from that in the center, just the first 1/4 radial area from the surface is sensitive to different friction conditions.
A Metric on Phylogenetic Tree Shapes.
Colijn, C; Plazzotta, G
2018-01-01
The shapes of evolutionary trees are influenced by the nature of the evolutionary process but comparisons of trees from different processes are hindered by the challenge of completely describing tree shape. We present a full characterization of the shapes of rooted branching trees in a form that lends itself to natural tree comparisons. We use this characterization to define a metric, in the sense of a true distance function, on tree shapes. The metric distinguishes trees from random models known to produce different tree shapes. It separates trees derived from tropical versus USA influenza A sequences, which reflect the differing epidemiology of tropical and seasonal flu. We describe several metrics based on the same core characterization, and illustrate how to extend the metric to incorporate trees' branch lengths or other features such as overall imbalance. Our approach allows us to construct addition and multiplication on trees, and to create a convex metric on tree shapes which formally allows computation of average tree shapes. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Numerical Modeling of the Photothermal Processing for Bubble Forming around Nanowire in a Liquid
Chaari, Anis; Giraud-Moreau, Laurence
2014-01-01
An accurate computation of the temperature is an important factor in determining the shape of a bubble around a nanowire immersed in a liquid. The study of the physical phenomenon consists in solving a photothermic coupled problem between light and nanowire. The numerical multiphysic model is used to study the variations of the temperature and the shape of the created bubble by illumination of the nanowire. The optimization process, including an adaptive remeshing scheme, is used to solve the problem through a finite element method. The study of the shape evolution of the bubble is made taking into account the physical and geometrical parameters of the nanowire. The relation between the sizes and shapes of the bubble and nanowire is deduced. PMID:24795538
Metal injection molding of titanium for medical and aerospace applications
NASA Astrophysics Data System (ADS)
Scharvogel, Matthias; Winkelmueller, Wendelin
2011-02-01
Mixing of titanium powder and thermoplastic binders creates a feedstock that is injection molded similar to plastic, has a chemical and thermal debinding process, and then is sintered to form a net-shape or near-net shape part. TiJet Medizintechnik GmbH (TiJet) developed and uses its own feedstock and powder processing technology to achieve desired mechanical properties. This paper explains the theory of the process and the possibilities that result from the development of this new powder processing technology, such as new alloys, design possibilities, etc. Discussed will be the microstructure, chemical composition, and mechanical properties of the manufactured parts.
The technology and commercial status of powder-injection molding
NASA Astrophysics Data System (ADS)
Bose, Animesh
1995-08-01
The process of powder-injection molding (PIM) is a viable and competitive commercial technique that is being used to process complex-shaped parts of various materials in moderate to high volumes. The hey advantage of the process is its unique ability to combine materials selection flexibility with the complex shape-forming ability of plastics. Although the PIM process has been discussed in the open literature for more than quarter of a century, it has become a commercial reality only during the last decade or so. Currently, there is a tremendous interest in this unique technology throughout the world. As a result, the PIM industry is poised for significant growth.
Automated inspection of gaps on the free-form shape parts by laser scanning technologies
NASA Astrophysics Data System (ADS)
Zhou, Sen; Xu, Jian; Tao, Lei; An, Lu; Yu, Yan
2018-01-01
In industrial manufacturing processes, the dimensional inspection of the gaps on the free-form shape parts is critical and challenging, and is directly associated with subsequent assembly and terminal product quality. In this paper, a fast measuring method for automated gap inspection based on laser scanning technologies is presented. The proposed measuring method consists of three steps: firstly, the relative position is determined according to the geometric feature of measuring gap, which considers constraints existing in a laser scanning operation. Secondly, in order to acquire a complete gap profile, a fast and effective scanning path is designed. Finally, the range dimension of the gaps on the free-form shape parts including width, depth and flush, correspondingly, is described in a virtual environment. In the future, an appliance machine based on the proposed method will be developed for the on-line dimensional inspection of gaps on the automobile or aerospace production line.
Free-form geometric modeling by integrating parametric and implicit PDEs.
Du, Haixia; Qin, Hong
2007-01-01
Parametric PDE techniques, which use partial differential equations (PDEs) defined over a 2D or 3D parametric domain to model graphical objects and processes, can unify geometric attributes and functional constraints of the models. PDEs can also model implicit shapes defined by level sets of scalar intensity fields. In this paper, we present an approach that integrates parametric and implicit trivariate PDEs to define geometric solid models containing both geometric information and intensity distribution subject to flexible boundary conditions. The integrated formulation of second-order or fourth-order elliptic PDEs permits designers to manipulate PDE objects of complex geometry and/or arbitrary topology through direct sculpting and free-form modeling. We developed a PDE-based geometric modeling system for shape design and manipulation of PDE objects. The integration of implicit PDEs with parametric geometry offers more general and arbitrary shape blending and free-form modeling for objects with intensity attributes than pure geometric models.
Nonequiatomic NiTi Alloy Produced by Self Propagating High Temperature Synthesis
NASA Astrophysics Data System (ADS)
Bassani, P.; Bassani, E.; Tuissi, A.; Giuliani, P.; Zanotti, C.
2014-07-01
Shape memory alloy NiTi in porous form is of high interest as implantable material, as low apparent elastic modulus, comparable to that of bone, can be achieved. This condition, combined with proper pore size, allows good osteointegration. Porous NiTi can be produced by self propagating high temperature synthesis (SHS), starting from mixed powders of pure Ni and Ti. Process parameters, among which powder compaction degree and preheating temperature, strongly influence the reaction temperature and the resulting product: at low reaction temperatures, high quantity of secondary phases are formed, which are generally considered detrimental for biocompatibility. On the contrary, at higher reaction temperatures, the powders melt and crystallize in ingots. The porous structure is lost and huge pores are formed. Mechanical activation of powders through ball milling and addition of TiH x are investigated as means to reduce reaction temperature and overheating, in order to preserve high porosity and limit secondary phases content. Both processes affect SHS reaction, and require adjustment of parameters such as heating rate. Changes in porous shape and size were observed especially for TiH x additions: the latter could be a promising route to obtain shaped porous products of improved quality.
Processing of Ni30Pt20Ti50 High-Temperature Shape-Memory Alloy Into Thin Rod Demonstrated
NASA Technical Reports Server (NTRS)
Noebe, Ronald D.; Draper, Susan L.; Biles, Tiffany A.; Leonhardt, Todd
2005-01-01
High-temperature shape-memory alloys (HTSMAs) based on nickel-titanium (NiTi) with significant ternary additions of palladium (Pd), platinum (Pt), gold (Au), or hafnium (Hf) have been identified as potential high-temperature actuator materials for use up to 500 C. These materials provide an enabling technology for the development of "smart structures" used to control the noise, emissions, or efficiency of gas turbine engines. The demand for these high-temperature versions of conventional shape-memory alloys also has been growing in the automotive, process control, and energy industries. However these materials, including the NiPtTi alloys being developed at the NASA Glenn Research Center, will never find widespread acceptance unless they can be readily processed into useable forms.
Nanoparticle shape evolution and proximity effects during tip-induced electrochemical processes
Yang, Sangmo; Paranthaman, Mariappan Parans; Noh, Tae Won; ...
2016-01-08
The voltage spectroscopies in scanning probe microscopy (SPM) techniques are widely used to investigate the electrochemical processes in nanoscale volumes, which are important for current key applications, such as batteries, fuel cells, catalysts, and memristors. The spectroscopic measurements are commonly performed on a grid of multiple points to yield spatially resolved maps of reversible and irreversible electrochemical functionalities. Hence, the spacing between measurement points is an important parameter to be considered, especially for irreversible electrochemical processes. Here, we report nonlocal electrochemical dynamics in chains of Ag particles fabricated by the SPM tip on a silver ion solid electrolyte. When themore » grid spacing is small compared with the size of the formed Ag particles, anomalous chains of unequally sized particles with double periodicity evolve. This behavior is ascribed to a proximity effect during the tip-induced electrochemical process, specifically, size-dependent silver particle growth following the contact between the particles. In addition, fractal shape evolution of the formed Ag structures indicates that the growth-limiting process changes from Ag +/Ag redox reaction to Ag +-ion diffusion with the increase in the applied voltage and pulse duration. Our study shows that characteristic shapes of the electrochemical products are good indicators for determining the underlying growth-limiting process, and emergence of complex phenomena during spectroscopic mapping of electrochemical functionalities.« less
Highly curved image sensors: a practical approach for improved optical performance
NASA Astrophysics Data System (ADS)
Guenter, Brian; Joshi, Neel; Stoakley, Richard; Keefe, Andrew; Geary, Kevin; Freeman, Ryan; Hundley, Jake; Patterson, Pamela; Hammon, David; Herrera, Guillermo; Sherman, Elena; Nowak, Andrew; Schubert, Randall; Brewer, Peter; Yang, Louis; Mott, Russell; McKnight, Geoff
2017-06-01
The significant optical and size benefits of using a curved focal surface for imaging systems have been well studied yet never brought to market for lack of a high-quality, mass-producible, curved image sensor. In this work we demonstrate that commercial silicon CMOS image sensors can be thinned and formed into accurate, highly curved optical surfaces with undiminished functionality. Our key development is a pneumatic forming process that avoids rigid mechanical constraints and suppresses wrinkling instabilities. A combination of forming-mold design, pressure membrane elastic properties, and controlled friction forces enables us to gradually contact the die at the corners and smoothly press the sensor into a spherical shape. Allowing the die to slide into the concave target shape enables a threefold increase in the spherical curvature over prior approaches having mechanical constraints that resist deformation, and create a high-stress, stretch-dominated state. Our process creates a bridge between the high precision and low-cost but planar CMOS process, and ideal non-planar component shapes such as spherical imagers for improved optical systems. We demonstrate these curved sensors in prototype cameras with custom lenses, measuring exceptional resolution of 3220 line-widths per picture height at an aperture of f/1.2 and nearly 100% relative illumination across the field. Though we use a 1/2.3" format image sensor in this report, we also show this process is generally compatible with many state of the art imaging sensor formats. By example, we report photogrammetry test data for an APS-C sized silicon die formed to a 30$^\\circ$ subtended spherical angle. These gains in sharpness and relative illumination enable a new generation of ultra-high performance, manufacturable, digital imaging systems for scientific, industrial, and artistic use.
Multiwavelength digital holography for polishing tool shape measurement
NASA Astrophysics Data System (ADS)
Lédl, Vít.; Psota, Pavel; Václavík, Jan; Doleček, Roman; Vojtíšek, Petr
2013-09-01
Classical mechano-chemical polishing is still a valuable technique, which gives unbeatable results for some types of optical surfaces. For example, optics for high power lasers requires minimized subsurface damage, very high cosmetic quality, and low mid spatial frequency error. One can hardly achieve this with use of subaperture polishing. The shape of the polishing tool plays a crucial role in achieving the required form of the optical surface. Often the shape of the polishing tool or pad is not known precisely enough during the manufacturing process. The tool shape is usually premachined and later is changed during the polishing procedure. An experienced worker could estimate the shape of the tool indirectly from the shape of the polished element, and that is why he can achieve the required shape in few reasonably long iterative steps. Therefore the lack of the exact tool shape knowledge is tolerated. Sometimes, this indirect method is not feasible even if small parts are considered. Moreover, if processes on machines like planetary (continuous) polishers are considered, the incorrect shape of the polishing pad could extend the polishing times extremely. Every iteration step takes hours. Even worse, polished piece could be wasted if the pad has a poor shape. The ability of the tool shape determination would be very valuable in those types of lengthy processes. It was our primary motivation to develop a contactless measurement method for large diffusive surfaces and demonstrate its usability. The proposed method is based on application of multiwavelength digital holographic interferometry with phase shift.
Hot working behavior of selective laser melted and laser metal deposited Inconel 718
NASA Astrophysics Data System (ADS)
Bambach, Markus; Sizova, Irina
2018-05-01
The production of Nickel-based high-temperature components is of great importance for the transport and energy sector. Forging of high-temperature alloys often requires expensive dies, multiple forming steps and leads to forged parts with tolerances that require machining to create the final shape and a large amount of scrap. Additive manufacturing offers the possibility to print the desired shapes directly as net-shape components, requiring only little additional effort in machining. Especially for high-temperature alloys carrying a large amount of energy per unit mass, additive manufacturing could be more energy-efficient than forging if the energy contained in the machining scrap exceeds the energy needed for powder production and laser processing. However, the microstructure and performance of 3d-printed parts will not reach the level of forged material unless further expensive processes such as hot-isostatic pressing are used. Using the design freedom and possibilities to locally engineer material, additive manufacturing could be combined with forging operations to novel process chains, offering the possibility to reduce the number of forging steps and to create near-net shape forgings with desired local properties. Some innovative process chains combining additive manufacturing and forging have been patented recently, but almost no scientific knowledge on the workability of 3D printed preforms exists. The present study investigates the flow stress and microstructure evolution during hot working of pre-forms produced by laser powder deposition and selective laser melting (Figure 1) and puts forward a model for the flow stress.
Development and Demonstration of Adanced Tooling Alloys for Molds and Dies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin M. McHugh; Enrique J. Lavernia
2006-01-01
This report summarizes research results in the project Development and Demonstration of Advanced Tooling Alloys for Molds and Dies. Molds, dies and related tooling are used to manufacture most of the plastic and metal products we use every day. Conventional fabrication of molds and dies involves a multiplicity of machining, benching and heat treatment unit operations. This approach is very expensive and time consuming. Rapid Solidifcation Process (RSP) Tooling is a spray-forming technology tailored for producing molds and dies. The appraoch combines rapid solidifcation processing and net-shape materials processing in a single step. An atomized spray of a tool-forming alloy,more » typically a tool steel, is deposited onto an easy-to-form tool pattern to replicate the pattern's shape and surface features. By so doing, the approach eliminates many machining operations in conventional mold making, significantly reducing cost, lead time and energy. Moreover, rapid solidification creates unique microstructural features by suppressing carbide precipitation and growth, and creating metastable phases. This can result in unique material properties following heat treatment. Spray-formed and aged tool steel dies have exhibited extended life compared to conventional dies in many forming operations such as forging, extrusion and die casting. RSP Tooling technolocy was commercialized with the formation of RSP Tooling, LLC in Solon, Oh.« less
Concurrent visuomotor behaviour improves form discrimination in a patient with visual form agnosia.
Schenk, Thomas; Milner, A David
2006-09-01
It is now well established that the visual brain is divided into two visual streams, the ventral and the dorsal stream. Milner and Goodale have suggested that the ventral stream is dedicated for processing vision for perception and the dorsal stream vision for action [A.D. Milner & M.A. Goodale (1995) The Visual Brain in Action, Oxford University Press, Oxford]. However, it is possible that ongoing processes in the visuomotor stream will nevertheless have an effect on perceptual processes. This possibility was examined in the present study. We have examined the visual form-discrimination performance of the form-agnosic patient D.F. with and without a concurrent visuomotor task, and found that her performance was significantly improved in the former condition. This suggests that the visuomotor behaviour provides cues that enhance her ability to recognize the form of the target object. In control experiments we have ruled out proprioceptive and efferent cues, and therefore propose that D.F. can, to a significant degree, access the object's visuomotor representation in the dorsal stream. Moreover, we show that the grasping-induced perceptual improvement disappears if the target objects only differ with respect to their shape but not their width. This suggests that shape information per se is not used for this grasping task.
Liquid Crystalline Thermosets from Ester, Ester-imide, and Ester-amide Oligomers
NASA Technical Reports Server (NTRS)
Dingemans, Theodorus J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)
2009-01-01
Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystaloligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oli-gomers are stable forup to an hour in the melt phase. They are highly processable by a variety of melt process shape forming and blending techniques. Once processed and shaped, the end-capped liquid crystal oigomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures.
One step process for producing dense aluminum nitride and composites thereof
Holt, J.B.; Kingman, D.D.; Bianchini, G.M.
1989-10-31
A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1,000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.
One step process for producing dense aluminum nitride and composites thereof
Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.
1989-01-01
A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.
A Numerical Process Control Method for Circular-Tube Hydroforming Prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Kenneth I.; Nguyen, Ba Nghiep; Davies, Richard W.
2004-03-01
This paper describes the development of a solution control method that tracks the stresses, strains and mechanical behavior of a tube during hydroforming to estimate the proper axial feed (end-feed) and internal pressure loads through time. The analysis uses the deformation theory of plasticity and Hill?s criterion to describe the plastic flow. Before yielding, the pressure and end-feed increments are estimated based on the initial tube geometry, elastic properties and yield stress. After yielding, the pressure increment is calculated based on the tube geometry at the previous solution increment and the current hoop stress increment. The end-feed increment is computedmore » from the increment of the axial plastic strain. Limiting conditions such as column buckling (of long tubes), local axi-symmetric wrinkling of shorter tubes, and bursting due to localized wall thinning are considered. The process control method has been implemented in the Marc finite element code. Hydroforming simulations using this process control method were conducted to predict the load histories for controlled expansion of 6061-T4 aluminum tubes within a conical die shape and under free hydroforming conditions. The predicted loading paths were transferred to the hydroforming equipment to form the conical and free-formed tube shapes. The model predictions and experimental results are compared for deformed shape, strains and the extent of forming at rupture.« less
On the evolution of morphology of zirconium sponge during reduction and distillation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapoor, K.; Padmaprabu, C.; Nandi, D.
2008-03-15
High purity zirconium metal is produced by magnesio-thermic reduction of zirconium tetrachloride followed by vacuum distillation. The reduction process is carried out in a batch giving metal sponge and magnesium chloride in the reduced mass. The sponge is purified to using by vacuum distillation. The morphology of the sponge formed during the reduction and its influence on further processing has significant importance. In the present study, a detailed investigation involving evolution of the morphology of sponge particles and its implication during the vacuum distillation was carried out. The study of the microstructure was done using scanning electron microscopy and X-raymore » diffraction. It is observed that the nascent sponge formed is highly unstable which transforms to a needle-like morphology almost immediately, which further transforms to rounded and finally to a bulk shape. Faceting of the surface and needle-shape formation were observed in these particles, this is probably due to anisotropy in the surface energy. The morphology of the sponge formed during the reduction influences the distillation process. The fine needle-like shape sponge morphology leads to particle ejection, which is explained to be due to curvature effect. This is responsible for the formation of unwanted mass during distillation. XRD line broadening analysis indicates that the individual sponge particles are free from structural defects (dislocation) and are nearly single crystalline in nature.« less
Just a Good Story? Shaping Organizational Learning through Storytelling
ERIC Educational Resources Information Center
Whitener, J. Kori
2007-01-01
Organizational learning is a complex phenomenon, the collective nature of which makes it difficult to study and examine. Organizational stories are cultural forms that facilitate the sensemaking processes and capabilities of the individuals and teams that form the collective organization. This paper utilizes literature to suggest possible impacts…
Electrochemical formation of field emitters
Bernhardt, A.F.
1999-03-16
Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.
Microstructural and Mechanical Property Characterization of Shear Formed Aerospace Aluminum Alloys
NASA Technical Reports Server (NTRS)
Troeger, Lillianne P.; Domack, Marcia S.; Wagner, John A.
2000-01-01
Advanced manufacturing processes such as near-net-shape forming can reduce production costs and increase the reliability of launch vehicle and airframe structural components through the reduction of material scrap and part count and the minimization of joints. The current research is an investigation of the processing-microstructure-property relationships for shear formed cylinders of the Al-Cu-Li-Mg-Ag alloy 2195 for space applications and the Al-Cu-Mg-Ag alloy C415 for airframe applications. Cylinders which had undergone various amounts of shear-forming strain were studied to correlate the grain structure, texture, and mechanical properties developed during and after shear forming.
NASA Technical Reports Server (NTRS)
Troeger, L. P.; Domack, M. S.; Wagner, J. A.
1998-01-01
Advanced manufacturing processes such as near-net-shape forming can reduce production costs and increase the reliability of launch vehicle and airframe structural components through the reduction of material scrap and part count and the minimization of joints. The current research is an investigation of the processing-microstructure-property relationship for shear formed cylinders of the Al-Cu-Li-Mg-Ag alloy 2195 for space applications and the Al-Cu-Mg-Ag alloy C415 for airframe applications. Cylinders which have undergone various amounts of shear-forming strain have been studied to assess the microstructure and mechanical properties developed during and after shear forming.
A Cartesian reflex assessment of face processing.
Polewan, Robert J; Vigorito, Christopher M; Nason, Christopher D; Block, Richard A; Moore, John W
2006-03-01
Commands to blink were embedded within pictures of faces and simple geometric shapes or forms. The faces and shapes were conditioned stimuli (CSs), and the required responses were conditioned responses, or more properly, Cartesian reflexes (CRs). As in classical conditioning protocols, response times (RTs) were measured from CS onset. RTs provided a measure of the processing cost (PC) of attending to a CS. A PC is the extra time required to respond relative to RTs to unconditioned stimulus (US) commands presented alone. They reflect the interplay between attentional processing of the informational content of a CS and its signaling function with respect to the US command. This resulted in longer RTs to embedded commands. Differences between PCs of faces and geometric shapes represent a starting place for a new mental chronometry based on the traditional idea that differences in RT reflect differences in information processing.
ERIC Educational Resources Information Center
Tapia, Evelina; Breitmeyer, Bruno G.; Jacob, Jane; Broyles, Elizabeth C.
2013-01-01
Flanker congruency effects were measured in a masked flanker task to assess the properties of spatial attention during conscious and nonconscious processing of form, color, and conjunctions of these features. We found that (1) consciously and nonconsciously processed colored shape distractors (i.e., flankers) produce flanker congruency effects;…
Coalescence and Collisions of Gold Nanoparticles
Antúnez-García, Joel; Mejía-Rosales, Sergio; Pérez-Tijerina, Eduardo; Montejano-Carrizales, Juan Martín; José-Yacamán, Miguel
2011-01-01
We study the assembling of small gold clusters subject to collisions and close contact coalescence by using molecular dynamics simulations to simulate events that occur typically in the sputtering process of synthesis. Our results support the notion that the kinetics of coalescence processes strongly determine the geometry and structure of the final particle. While impact velocities, relative orientations, and the initial shape of the interacting particles are unlikely to strictly determine the structural details of the newly formed particle, we found that high initial temperatures and/or impact velocities increase the probability of appearance of icosahedral-like structures, Wulff polyhedra are likely to be formed as a product of the interactions between nanospheres, while the appearance of fcc particles of approximately cuboctahedral shape is mainly due to the interaction between icosahedra. PMID:28879995
Coalescence and Collisions of Gold Nanoparticles.
Antúnez-García, Joel; Mejía-Rosales, Sergio; Pérez-Tijerina, Eduardo; Montejano-Carrizales, Juan Martín; José-Yacamán, Miguel
2011-01-28
We study the assembling of small gold clusters subject to collisions and close contact coalescence by using molecular dynamics simulations to simulate events that occur typically in the sputtering process of synthesis. Our results support the notion that the kinetics of coalescence processes strongly determine the geometry and structure of the final particle. While impact velocities, relative orientations, and the initial shape of the interacting particles are unlikely to strictly determine the structural details of the newly formed particle, we found that high initial temperatures and/or impact velocities increase the probability of appearance of icosahedral-like structures, Wulff polyhedra are likely to be formed as a product of the interactions between nanospheres, while the appearance of fcc particles of approximately cuboctahedral shape is mainly due to the interaction between icosahedra.
NASA Technical Reports Server (NTRS)
Noebe, Ronald; Draper, Susan; Gaydosh, Darrell; Garga, Anita; Lerch, Brad; Penney, Nicholas; Begelow, Glen; Padula, Santo, II; Brown, Jeff
2006-01-01
TiNiPt shape memory alloys are particularly promising for use as solid state actuators in environments up to 300 C, due to a reasonable balance of properties, including acceptable work output. However, one of the challenges to commercializing a viable high-temperature shape memory alloy (HTSMA) is to establish the appropriate primary and secondary processing techniques for fabrication of the material in a required product form such as rod and wire. Consequently, a Ti(50.5)Ni(29.5)Pt20 alloy was processed using several techniques including single-pass high-temperature extrusion, multiple-pass high-temperature extrusion, and cold drawing to produce bar stock, thin rod, and fine wire, respectively. The effects of heat treatment on the hardness, grain size, room temperature tensile properties, and transformation temperatures of hot- and cold-worked material were examined. Basic tensile properties as a function of temperature and the strain-temperature response of the alloy under constant load, for the determination of work output, were also investigated for various forms of the Ti(50.5)Ni(29.5)Pt20 alloy, including fine wire.
The peculiar shapes of Saturn's small inner moons as evidence of mergers of similar-sized moonlets
NASA Astrophysics Data System (ADS)
Leleu, A.; Jutzi, M.; Rubin, M.
2018-05-01
The Cassini spacecraft revealed the spectacular, highly irregular shapes of the small inner moons of Saturn1, ranging from the unique 'ravioli-like' forms of Pan and Atlas2,3 to the highly elongated structure of Prometheus. Closest to Saturn, these bodies provide important clues regarding the formation process of small moons in close orbits around their host planet4, but their range of irregular shapes has not been explained yet. Here, we show that the spectrum of shapes among Saturn's small moons is a natural outcome of merging collisions among similar-sized moonlets possessing physical properties and orbits that are consistent with those of the current moons. A significant fraction of such merging collisions take place either at the first encounter or after 1-2 hit-and-run events, with impact velocities in the range of 1-5 times the mutual escape velocity. Close to head-on mergers result in flattened objects with large equatorial ridges, as observed on Atlas and Pan. With slightly more oblique impact angles, collisions lead to elongated, Prometheus-like shapes. These results suggest that the current forms of the small moons provide direct evidence of the processes at the final stages of their formation, involving pairwise encounters of moonlets of comparable size4-6. Finally, we show that this mechanism may also explain the formation of Iapetus' equatorial ridge7, as well as its oblate shape8.
Prototyping of automotive components with variable width and depth
NASA Astrophysics Data System (ADS)
Abeyrathna, B.; Rolfe, B.; Harrasser, J.; Sedlmaier, A.; Ge, Rui; Pan, L.; Weiss, M.
2017-09-01
Roll forming enables the manufacturing of longitudinal components from materials that combine high strength with limited formability and is increasingly used in the automotive industry for the manufacture of structural and crash components. An extension of conventional roll forming is the Flexible Roll Forming (FRF) process where the rolls are no longer fixed in space but are free to move which enables the forming of components with variable cross section over the length of the part. Even though FRF components have high weight saving potential the technology has found only limited application in the automotive industry. A new flexible forming facility has recently been developed that enables proof of concept studies and the production of FRF prototypes before a full FRF line is built; this may lead to a wider uptake of the FRF technology in the automotive industry. In this process, the pre-cut blank is placed between two clamps and the whole set up moves back and forth; a forming roll that is mounted on a servo-controlled platform with six degrees of freedom forms the pre-cut blank to the desired shape. In this study an initial forming concept for the flexible roll forming of an automotive component with variable height is developed using COPRA® FEA RF. This is followed by performing experimental prototyping studies on the new concept forming facility. Using the optical strain measurement system Autogrid Compact, material deformation, part shape and wrinkling severity are analysed for some forming passes and compared with the numerical results. The results show that the numerical model gives a good representation of material behaviour and that with increasing forming severity wrinkling issues need to be overcome in the process.
Intrinsic Bayesian Active Contours for Extraction of Object Boundaries in Images
Srivastava, Anuj
2010-01-01
We present a framework for incorporating prior information about high-probability shapes in the process of contour extraction and object recognition in images. Here one studies shapes as elements of an infinite-dimensional, non-linear quotient space, and statistics of shapes are defined and computed intrinsically using differential geometry of this shape space. Prior models on shapes are constructed using probability distributions on tangent bundles of shape spaces. Similar to the past work on active contours, where curves are driven by vector fields based on image gradients and roughness penalties, we incorporate the prior shape knowledge in the form of vector fields on curves. Through experimental results, we demonstrate the use of prior shape models in the estimation of object boundaries, and their success in handling partial obscuration and missing data. Furthermore, we describe the use of this framework in shape-based object recognition or classification. PMID:21076692
ERIC Educational Resources Information Center
Simmons, Henry
1983-01-01
In determining how the Appalachian Mountains were formed, various workings of tectonic processes at continental margins are also being illuminated. The research has important implications for understanding specific processes which shaped the earth and for unraveling the record of plate movements now preserved only in present and former continental…
40 CFR 463.2 - General definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... final plastic product. It includes water used in both the detergent wash and rinse cycles of a cleaning... blended, molded, formed, or otherwise processed into intermediate or final products. (b) “Process water” is any raw, service, recycled, or reused water that contacts the plastic product or contacts shaping...
40 CFR 463.2 - General definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... final plastic product. It includes water used in both the detergent wash and rinse cycles of a cleaning... blended, molded, formed, or otherwise processed into intermediate or final products. (b) “Process water” is any raw, service, recycled, or reused water that contacts the plastic product or contacts shaping...
40 CFR 463.2 - General definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... final plastic product. It includes water used in both the detergent wash and rinse cycles of a cleaning... blended, molded, formed, or otherwise processed into intermediate or final products. (b) “Process water” is any raw, service, recycled, or reused water that contacts the plastic product or contacts shaping...
40 CFR 63.8535 - Am I subject to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... manufacturing facility is a plant site that manufactures pressed floor tile, pressed wall tile, other pressed tile, or sanitaryware (e.g., sinks and toilets). Clay ceramics manufacturing facilities typically process clay, shale, and various additives; form the processed materials into tile or sanitaryware shapes...
40 CFR 63.8535 - Am I subject to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... manufacturing facility is a plant site that manufactures pressed floor tile, pressed wall tile, other pressed tile, or sanitaryware (e.g., sinks and toilets). Clay ceramics manufacturing facilities typically process clay, shale, and various additives; form the processed materials into tile or sanitaryware shapes...
40 CFR 63.8535 - Am I subject to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... manufacturing facility is a plant site that manufactures pressed floor tile, pressed wall tile, other pressed tile, or sanitaryware (e.g., sinks and toilets). Clay ceramics manufacturing facilities typically process clay, shale, and various additives; form the processed materials into tile or sanitaryware shapes...
40 CFR 63.8535 - Am I subject to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... manufacturing facility is a plant site that manufactures pressed floor tile, pressed wall tile, other pressed tile, or sanitaryware (e.g., sinks and toilets). Clay ceramics manufacturing facilities typically process clay, shale, and various additives; form the processed materials into tile or sanitaryware shapes...
40 CFR 63.8535 - Am I subject to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... manufacturing facility is a plant site that manufactures pressed floor tile, pressed wall tile, other pressed tile, or sanitaryware (e.g., sinks and toilets). Clay ceramics manufacturing facilities typically process clay, shale, and various additives; form the processed materials into tile or sanitaryware shapes...
New 'Molecular Movie' Reveals Ultrafast Chemistry in Motion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minitti, Michael
2015-06-22
Scientists for the first time tracked ultrafast structural changes, captured in quadrillionths-of-a-second steps, as ring-shaped gas molecules burst open and unraveled. Ring-shaped molecules are abundant in biochemistry and also form the basis for many drug compounds. The study points the way to a wide range of real-time X-ray studies of gas-based chemical reactions that are vital to biological processes.
New 'Molecular Movie' Reveals Ultrafast Chemistry in Motion
Minitti, Michael
2018-02-14
Scientists for the first time tracked ultrafast structural changes, captured in quadrillionths-of-a-second steps, as ring-shaped gas molecules burst open and unraveled. Ring-shaped molecules are abundant in biochemistry and also form the basis for many drug compounds. The study points the way to a wide range of real-time X-ray studies of gas-based chemical reactions that are vital to biological processes.
Focusing light into desired patterns through turbid media by feedback-based wavefront shaping
NASA Astrophysics Data System (ADS)
Wan, Lipeng; Chen, Ziyang; Huang, Huiling; Pu, Jixiong
2016-07-01
We demonstrate that the focusing of light into desired patterns through turbid media can be realized using feedback-based wavefront shaping. Three desired focused patterns—a triangle, a circle, and a rectangle—are used as examples to study this ability. During the process of modulating scattered light, the Pearson's correlation coefficient is introduced as a feedback signal. It is found that the speckle field formed by the turbid media gradually transforms into the desired pattern through a process of modulation of the input beam wave front. The proposed approach has potential applications in biomedical treatment and laser material processing.
Continuous process for forming sheet metal from an alloy containing non-dendritic primary solid
Flemings, Merton C.; Matsuniya, Tooru
1983-01-01
A homogeneous mixture of liquid-solid metal is shaped by passing the composition from an agitation zone onto a surface moving relative to the exit of the agitation zone. A portion of the composition contacting the moving surface is solidified and the entire composition then is formed.
Alpine treeline of western North America: linking organism-to-landscape dynamics.
George P. Malanson; David R. Butler; Daniel B. Fagre; Stephen J. Walsh; Diana F. Tomback; Lori D. Daniels; Lynn M. Resler; William K. Smith; Daniel J. Weiss; David L. Peterson; Andrew G. Bunn; Christopher A. Hiemstra; Daniel Liptzin; Patrick S. Bourgeron; Zehao Shen; Constance I. Millar
2007-01-01
Although the ecological dynamics of the alpine treeline ecotone are influenced by climate, it is an imperfect indicator of climate change. Mechanistic processes that shape the ecotoneseed rain, seed germination, seedling establishment and subsequent tree growth form, or, conversely tree diebackdepend on microsite patterns. Growth forms affect wind...
High-Temperature Shape Memory Polymers
NASA Technical Reports Server (NTRS)
Yoonessi, Mitra; Weiss, Robert A.
2012-01-01
physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing radiation ( radiation, neutrons), or by chemical crosslinking to form a covalent permanent network. With respect to other shape memory polymers, this invention is novel in that it describes the use of a thermoplastic composition that can be thermally molded or solution-cast into complex "permanent" shapes, and then reheated or redissolved and recast from solution to prepare another shape. It is also unique in that the shape memory behavior is provided by a non-polymer additive.
Investigating Resulting Residual Stresses during Mechanical Forming Process
NASA Astrophysics Data System (ADS)
Akinlabi, Stephen A.; Fatoba, Olawale S.; Mashinini, Peter M.; Akinlabi, Esther T.
2018-03-01
Most manufacturing processes such as machining, welding, heat treatment, laser forming, laser cladding and, laser metal deposition, etc. are subjected to a form of heat or energy to change the geometrical shape thus changing the inherent engineering and structural properties of the material. These changes often cause the development of locked up stresses referred to as residual stresses as a result of these activities. This study reports on the residual stresses developed due to the mechanical forming process to maintain a suitable structural integrity for the formed components. The result of the analysis through the X-ray diffraction confirmed that residual stresses were induced in the manufactured parts and further revealed that residual stresses were compressive in nature as found in the parent material but with values less than the parent material.
USDA-ARS?s Scientific Manuscript database
There is a pressing need for new fry processing varieties. Successful varieties need to satisfy customer requirements for finished product taste texture and color and must lessen health concerns related to dietary intake of acrylamide. Tuber shape and size distribution need to match processor requir...
Digitalization in roll forming manufacturing
NASA Astrophysics Data System (ADS)
Sedlmaier, A.; Dietl, T.; Ferreira, P.
2017-09-01
Roll formed profiles are used in automotive chassis production as building blocks for the body-in-white. The ability to produce profiles with discontinuous cross sections, both in width and in depth, allows weight savings in the final automotive chassis through the use of load optimized cross sections. This has been the target of the 3D Roll Forming process. A machine concept is presented where a new forming concept for roll formed parts in combination with advanced robotics allowing freely positioned roll forming tooling in 3D space enables the production of complex shapes by roll forming. This is a step forward into the digitalization of roll forming manufacturing by making the process flexible and capable of rapid prototyping and production of small series of parts. Moreover, data collection in a large scale through the control system and integrated sensors lead to an increased understanding of the process and provide the basis to develop self-optimizing roll forming machines, increasing the productivity, quality and predictability of the roll-forming process. The first parts successfully manufactured with this new forming concept are presented.
A survey of visual preprocessing and shape representation techniques
NASA Technical Reports Server (NTRS)
Olshausen, Bruno A.
1988-01-01
Many recent theories and methods proposed for visual preprocessing and shape representation are summarized. The survey brings together research from the fields of biology, psychology, computer science, electrical engineering, and most recently, neural networks. It was motivated by the need to preprocess images for a sparse distributed memory (SDM), but the techniques presented may also prove useful for applying other associative memories to visual pattern recognition. The material of this survey is divided into three sections: an overview of biological visual processing; methods of preprocessing (extracting parts of shape, texture, motion, and depth); and shape representation and recognition (form invariance, primitives and structural descriptions, and theories of attention).
NASA Astrophysics Data System (ADS)
Wu, Qiang; Yang, Chaoyu; Yang, Jianxin; Huang, Fangsheng; Liu, Guangli; Zhu, Zhiqiang; Si, Ting; Xu, Ronald X.
2018-02-01
We fabricate complex emulsions with irregular shapes in the microscale by a simple but effective multiplex coaxial flow focusing process. A multiphase cone-jet structure is steadily formed, and the compound liquid jet eventually breaks up into Janus microdroplets due to the perturbations propagating along the jet interfaces. The microdroplet shapes can be exclusively controlled by interfacial tensions of adjacent phases. Crescent-moon-shaped microparticles and microcapsules with designated structural characteristics are further produced under ultraviolet light of photopolymerization after removing one hemisphere of the Janus microdroplets. These complex emulsions have potential applications in bioscience, food, functional materials, and controlled drug delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hongbo; Sheng, Ye; Zhao, Huan
2012-12-15
Graphical abstract: This picture illustration for the formation process of TiO{sub 2}:Eu{sup 3+} nanorods and spindle-shaped nanoparticles. Display Omitted Highlights: ► TiO{sub 2}:Eu{sup 3+} nanorods and spindle-shaped nanoparticles were prepared. ► The nanotubes could transform to nanorods and spindle-shaped nanoparticles. ► The luminescence properties are dependent on the increases of the bandgap. -- Abstract: TiO{sub 2}:Eu{sup 3+} nanorods and spindle-shaped nanoparticles have been successfully prepared through simple calcination and hydrothermal process respectively using titanate as the precursors. On the basis of X-ray diffraction results, the as-obtained precursors are titanate (H{sub 2}Ti{sub 2}O{sub 5}·H{sub 2}O), while nanorods and spindle-shaped nanoparticles aremore » pure anatase phase of TiO{sub 2}. TEM and SEM images show that the as-formed precursor could be transformed from nanotubes into nanorods and spindle-shaped nanoparticles by the calcination and hydrothermal process respectively. Under UV light excitation, both the TiO{sub 2}:Eu{sup 3+} nanorods and spindle-shaped nanoparticles exhibit the strong red emission. In addition, the luminescence intensity of TiO{sub 2}:Eu{sup 3+} nanorods is higher than that of TiO{sub 2}:Eu{sup 3+} spindle-shaped nanoparticles due to the increases of the bandgap of the TiO{sub 2} nanorods.« less
Supercritical antisolvent precipitation of nimesulide: preliminary experiments.
Moneghini, M; Perissutti, B; Vecchione, F; Kikic, I; Alessi, P; Cortesi, A; Princivalle, F
2007-07-01
The purpose of this preliminary study was to investigate the physico-chemical properties of nimesulide precipitated by continuous supercritical antisolvent (SAS) from different organic solvents like acetone, chloroform and dichloromethane at 40 degrees C and 80, 85 and 88 bar, respectively. Scanning electron microscopy, differential scanning calorimetry, X-Ray diffractometry and in vitro dissolution tests were employed to study how the technological process and the solvent nature would affect the final product. SAS-processed nimesulide particles showed dramatic morphological change in crystalline structure if compared to native nimesulide, resulting in needle and thin rods shaped crystals. The solid state analysis showed that using chloroform or dichloromethane as a solvent the drug solid state remained substantially unchanged, whilst if using acetone the applied method caused a transition from the starting form I to the meta-stable form II. So as to identify which process was responsible for this result, nimesulide was further precipitated from the same solvent by conventional evaporation method (RV-sample). On the basis of this comparison, the solvent was found to be responsible for the re-organization into the different polymorphic form and the potential of the SAS process to produce micronic needle shaped particles, with an enhanced dissolution rate if compared to the to the pure drug, was ascertained. Finally, the stability of the nimesulide form II, checked by DSC analysis, was ruled on over a period of 15 months.
Pedagogy, Process Drama, and Visual Anthropology.
ERIC Educational Resources Information Center
Jensen, Amy Petersen; Ashworth, Julia
2003-01-01
Notes that media shapes the way young people contextualize their world. Suggests that process drama could be a pedagogical forum where theater practitioners and young people could use dramatic tools to explore the form and content of the omnipresent media in its historical, social, political, and personal contexts. Provides examples of what this…
Process for forming coal compacts and product thereof
Gunnink, Brett; Kanunar, Jayanth; Liang, Zhuoxiong
2002-01-01
A process for forming durable, mechanically strong compacts from coal particulates without use of a binder is disclosed. The process involves applying a compressive stress to a particulate feed comprising substantially water-saturated coal particles while the feed is heated to a final compaction temperature in excess of about 100.degree. C. The water present in the feed remains substantially in the liquid phase throughout the compact forming process. This is achieved by heating and compressing the particulate feed and cooling the formed compact at a pressure sufficient to prevent water present in the feed from boiling. The compacts produced by the process have a moisture content near their water saturation point. As a result, these compacts absorb little water and retain exceptional mechanical strength when immersed in high pressure water. The process can be used to form large, cylindrically-shaped compacts from coal particles (i.e., "coal logs") so that the coal can be transported in a hydraulic coal log pipeline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kustas, Andrew B.; Susan, Donald F.; Johnson, Kyle L.
Processing of the low workability Fe-Co-1.5V (Hiperco® equivalent) alloy is demonstrated using the Laser Engineered Net Shaping (LENS) metals additive manufacturing technique. As an innovative and highly localized solidification process, LENS is shown to overcome workability issues that arise during conventional thermomechanical processing, enabling the production of bulk, near net-shape forms of the Fe-Co alloy. Bulk LENS structures appeared to be ductile with no significant macroscopic defects. Atomic ordering was evaluated and significantly reduced in as-built LENS specimens relative to an annealed condition, tailorable through selection of processing parameters. Fine equiaxed grain structures were observed in as-built specimens following solidification,more » which then evolved toward a highly heterogeneous bimodal grain structure after annealing. The microstructure evolution in Fe-Co is discussed in the context of classical solidification theory and selective grain boundary pinning processes. In conclusion, magnetic properties were also assessed and shown to fall within the extremes of conventionally processed Hiperco® alloys.« less
Kustas, Andrew B.; Susan, Donald F.; Johnson, Kyle L.; ...
2018-02-21
Processing of the low workability Fe-Co-1.5V (Hiperco® equivalent) alloy is demonstrated using the Laser Engineered Net Shaping (LENS) metals additive manufacturing technique. As an innovative and highly localized solidification process, LENS is shown to overcome workability issues that arise during conventional thermomechanical processing, enabling the production of bulk, near net-shape forms of the Fe-Co alloy. Bulk LENS structures appeared to be ductile with no significant macroscopic defects. Atomic ordering was evaluated and significantly reduced in as-built LENS specimens relative to an annealed condition, tailorable through selection of processing parameters. Fine equiaxed grain structures were observed in as-built specimens following solidification,more » which then evolved toward a highly heterogeneous bimodal grain structure after annealing. The microstructure evolution in Fe-Co is discussed in the context of classical solidification theory and selective grain boundary pinning processes. In conclusion, magnetic properties were also assessed and shown to fall within the extremes of conventionally processed Hiperco® alloys.« less
NASA Astrophysics Data System (ADS)
Liu, Shuangyu; Liu, Fengde; Zhang, Hong; Shi, Yan
2012-06-01
In this paper, CO 2 laser-metal active gas (MAG) hybrid welding technique is used to weld high strength steel and the optimized process parameters are obtained. Using LD Pumped laser with an emission wavelength of 532 nm to overcome the strong interference from the welding arc, a computer-based system is developed to collect and visualize the waveforms of the electrical welding parameters and metal transfer processes in laser-MAG. The welding electric signals of hybrid welding processes are quantitatively described and analyzed using the ANALYSATOR HANNOVER. The effect of distance between laser and arc ( DLA) on weld bead geometry, forming process of weld shape, electric signals, arc characteristic and droplet transfer behavior is investigated. It is found that arc characteristic, droplet transfer mode and final weld bead geometry are strongly affected by the distance between laser and arc. The weld bead geometry is changed from "cocktail cup" to "cone-shaped" with the increasing DLA. The droplet transfer mode is changed from globular transfer to projected transfer with the increasing DLA. Projected transfer mode is an advantage for the stability of hybrid welding processes.
Tschechne, Stephan; Neumann, Heiko
2014-01-01
Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1–V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy. PMID:25157228
Tschechne, Stephan; Neumann, Heiko
2014-01-01
Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy.
Thermo-hydroforming of a fiber-reinforced thermoplastic composites considering fiber orientations
NASA Astrophysics Data System (ADS)
Ahn, Hyunchul; Kuuttila, Nicholas Eric; Pourboghrat, Farhang
2018-05-01
The Thermoplastic woven composites were formed using a composite thermal hydroforming process, utilizing heated and pressurized fluid, similar to sheet metal forming. This study focuses on the modification of 300-ton pressure formation and predicts its behavior. Spectra Shield SR-3136 is used in this study and material properties are measured by experiments. The behavior of fiber-reinforced thermoplastic polymer composites (FRTP) was modeled using the Preferred Fiber Orientation (PFO) model and validated by comparing numerical analysis with experimental results. The thermo-hydroforming process has shown good results in the ability to form deep drawn parts with reduced wrinkles. Numerical analysis was performed using the PFO model and implemented as commercial finite element software ABAQUS / Explicit. The user subroutine (VUMAT) was used for the material properties of the thermoplastic composite layer. This model is suitable for working with multiple layers of composite laminates. Model parameters have been updated to work with cohesive zone model to calculate the interfacial properties between each composite layer. The results of the numerical modeling showed a good correlation with the molding experiment on the forming shape. Numerical results were also compared with experimental results on punch force-displacement curves for deformed geometry and forming processes of the composite layer. Overall, the shape of the deformed FRTP, including the distribution of wrinkles, was accurately predicted as shown in this study.
Form-stable silicone gel breast implants.
Jewell, Mark
2009-01-01
This article addresses the question of what is the optimal shape for a breast implant. It is oriented toward processes, system engineering, and operational excellence versus being a treatise on the author's personal technique.
NASA Astrophysics Data System (ADS)
Joghan, Hamed Dardaei; Staupendahl, Daniel; Hassan, Hamad ul; Henke, Andreas; Keesser, Thorsten; Legat, Francois; Tekkaya, A. Erman
2018-05-01
Tube hydroforming is one of the most important manufacturing processes for the production of exhaust systems. Tube hydroforming allows generating parts with highly complex geometries with the forming accuracies needed in the automotive sector. This is possible due to the form-closed nature of the production process. One of the main cost drivers is tool manufacturing, which is expensive and time consuming, especially when forming large parts. To cope with the design trend of individuality, which is gaining more and more importance and leads to a high number of product variants, a new flexible tool design was developed. The designed tool offers a high flexibility in manufacturing different shapes and geometries of tubes with just local alterations and relocation of tool segments. The tolerancing problems that segmented tools from the state of the art have are overcome by an innovative and flexible die holder design. The break-even point of this initially more expensive tool design is already overcome when forming more than 4 different tube shapes. Together with an additionally designed rotary hydraulic tube feeding system, a highly adaptable forming setup is generated. To investigate the performance of the developed tool setup, a study on geometrical and process parameters during forming of a spherical dome was done. Austenitic stainless steel (grade 1.4301) tube with a diameter of 40 mm and a thickness of 1.5 mm was used for the investigations. The experimental analyses were supported by finite element simulations and statistical analyses. The results show that the flexible tool setup can efficiently be used to analyze the interaction of the inner pressure, friction, and the location of the spherical dome and demonstrate the high influence of the feeding rate on the formed part.
The shape of a hole and that of the surface-with-hole cannot be analyzed separately.
Bertamini, Marco; Helmy, Mai Salah
2012-08-01
Figure-ground organization has a central role in visual perception, since it creates the regions to which properties, such as shape descriptions, are then assigned. However, there is disagreement on how much shape analysis is independent of figure-ground. The reversal of figure-ground of a single closed region is the purest form of figure-ground organization, and the two resulting percepts are that of an object and that of a hole. Both object and hole are nonaccidental regions and can share an identical outline. We devised a test of how figure-ground and contour ownership dramatically affect how shape is processed. Observers judged the shape of a contour that could be either the same as or different from an irrelevant surrounding contour. We report that different (incongruent) inside and outside contours produce a stronger interference effect when they form a single object-with-hole, as compared with a hierarchical set of surfaces or a single hole separating different surfaces (a trench). We conclude that (1) which surface owns the contour constrains the interference between shapes and that (2) despite some recent claims, holes do not display objectlike properties.
Laser diode assembly including a cylindrical lens
Snyder, James J.; Reichert, Patrick
1992-01-01
The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing.
Form finding in elastic gridshells.
Baek, Changyeob; Sageman-Furnas, Andrew O; Jawed, Mohammad K; Reis, Pedro M
2018-01-02
Elastic gridshells comprise an initially planar network of elastic rods that are actuated into a shell-like structure by loading their extremities. The resulting actuated form derives from the elastic buckling of the rods subjected to inextensibility. We study elastic gridshells with a focus on the rational design of the final shapes. Our precision desktop experiments exhibit complex geometries, even from seemingly simple initial configurations and actuation processes. The numerical simulations capture this nonintuitive behavior with excellent quantitative agreement, allowing for an exploration of parameter space that reveals multistable states. We then turn to the theory of smooth Chebyshev nets to address the inverse design of hemispherical elastic gridshells. The results suggest that rod inextensibility, not elastic response, dictates the zeroth-order shape of an actuated elastic gridshell. As it turns out, this is the shape of a common household strainer. Therefore, the geometry of Chebyshev nets can be further used to understand elastic gridshells. In particular, we introduce a way to quantify the intrinsic shape of the empty, but enclosed regions, which we then use to rationalize the nonlocal deformation of elastic gridshells to point loading. This justifies the observed difficulty in form finding. Nevertheless, we close with an exploration of concatenating multiple elastic gridshell building blocks.
Form finding in elastic gridshells
NASA Astrophysics Data System (ADS)
Baek, Changyeob; Sageman-Furnas, Andrew O.; Jawed, Mohammad K.; Reis, Pedro M.
2018-01-01
Elastic gridshells comprise an initially planar network of elastic rods that are actuated into a shell-like structure by loading their extremities. The resulting actuated form derives from the elastic buckling of the rods subjected to inextensibility. We study elastic gridshells with a focus on the rational design of the final shapes. Our precision desktop experiments exhibit complex geometries, even from seemingly simple initial configurations and actuation processes. The numerical simulations capture this nonintuitive behavior with excellent quantitative agreement, allowing for an exploration of parameter space that reveals multistable states. We then turn to the theory of smooth Chebyshev nets to address the inverse design of hemispherical elastic gridshells. The results suggest that rod inextensibility, not elastic response, dictates the zeroth-order shape of an actuated elastic gridshell. As it turns out, this is the shape of a common household strainer. Therefore, the geometry of Chebyshev nets can be further used to understand elastic gridshells. In particular, we introduce a way to quantify the intrinsic shape of the empty, but enclosed regions, which we then use to rationalize the nonlocal deformation of elastic gridshells to point loading. This justifies the observed difficulty in form finding. Nevertheless, we close with an exploration of concatenating multiple elastic gridshell building blocks.
Experimental Procedure for Warm Spinning of Cast Aluminum Components.
Roy, Matthew J; Maijer, Daan M
2017-02-01
High performance, cast aluminum automotive wheels are increasingly being incrementally formed via flow forming/metal spinning at elevated temperatures to improve material properties. With a wide array of processing parameters which can affect both the shape attained and resulting material properties, this type of processing is notoriously difficult to commission. A simplified, light-duty version of the process has been designed and implemented for full-size automotive wheels. The apparatus is intended to assist in understanding the deformation mechanisms and the material response to this type of processing. An experimental protocol has been developed to prepare for, and subsequently perform forming trials and is described for as-cast A356 wheel blanks. The thermal profile attained, along with instrumentation details are provided. Similitude with full-scale forming operations which impart significantly more deformation at faster rates is discussed.
Experimental Procedure for Warm Spinning of Cast Aluminum Components
Roy, Matthew J.; Maijer, Daan M.
2017-01-01
High performance, cast aluminum automotive wheels are increasingly being incrementally formed via flow forming/metal spinning at elevated temperatures to improve material properties. With a wide array of processing parameters which can affect both the shape attained and resulting material properties, this type of processing is notoriously difficult to commission. A simplified, light-duty version of the process has been designed and implemented for full-size automotive wheels. The apparatus is intended to assist in understanding the deformation mechanisms and the material response to this type of processing. An experimental protocol has been developed to prepare for, and subsequently perform forming trials and is described for as-cast A356 wheel blanks. The thermal profile attained, along with instrumentation details are provided. Similitude with full-scale forming operations which impart significantly more deformation at faster rates is discussed. PMID:28190063
Forming MOFs into spheres by use of molecular gastronomy methods.
Spjelkavik, Aud I; Aarti; Divekar, Swapnil; Didriksen, Terje; Blom, Richard
2014-07-14
A novel method utilizing hydrocolloids to prepare nicely shaped spheres of metal-organic frameworks (MOFs) has been developed. Microcrystalline CPO-27-Ni particles are dispersed in either alginate or chitosan solutions, which are added dropwise to solutions containing, respectively, either divalent group 2 cations or base that act as gelling agents. Well-shaped spheres are immediately formed, which can be dried into spheres containing mainly MOF (>95 wt %). The spheronizing procedures have been optimized with respect to maximum specific surface area, shape, and particle density of the final sphere. At optimal conditions, well-shaped 2.5-3.5 mm diameter CPO-27-Ni spheres with weight-specific surface areas <10 % lower than the nonformulated CPO-27-Ni precursor, and having sphere densities in the range 0.8 to 0.9 g cm(-3) and particle crushing strengths above 20 N, can be obtained. The spheres are well suited for use in fixed-bed catalytic or adsorption processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Salimimarand, Mina; La, Duong Duc; Kobaisi, Mohammad Al; Bhosale, Sheshanath V.
2017-02-01
The development of well-organized structures with high luminescent properties in the solid and aggregated states is of both scientific and technological interest due to their applications in nanotechnology. In this paper we described the synthesis of amphiphilic and dumbbell shaped AIE-active tetraphenylethylene (TPE) derivatives and studied their self-assembly with solvophobic control. Interestingly, both TPE derivatives form a 3D flower-shape supramolecular structure from THF/water solutions at varying water fractions. SEM microscopy was used to visualise step-wise growth of flower-shape assembly. TPE derivatives also show good mechanochromic properties which can be observed in the process of grinding, fuming and heating. These TPE derivative self-assemblies are formed due to two main important properties: (i) the TPE-core along with alkyl chains, optimizing the dispersive interactions within a construct, and (ii) amide-linkage through molecular recognition. We believe such arrangements prevent crystallization and favour the directional growth of flower-shape nanostructures in a 3D fashion.
Disciplinary power and the process of training informal carers on stroke units.
Sadler, Euan; Hawkins, Rebecca; Clarke, David J; Godfrey, Mary; Dickerson, Josie; McKevitt, Christopher
2018-01-01
This article examines the process of training informal carers on stroke units using the lens of power. Care is usually assumed as a kinship obligation but the state has long had an interest in framing the carer and caring work. Training carers in healthcare settings raises questions about the power of the state and healthcare professionals as its agents to shape expectations and practices related to the caring role. Drawing on Foucault's notion of disciplinary power, we show how disciplinary forms of power exercised in interactions between healthcare professionals and carers shape the engagement and resistance of carers in the process of training. Interview and observational field note extracts are drawn from a multi-sited study of a training programme on stroke units targeting family carers of people with stroke to consider the consequences of subjecting caring to this intervention. We found that the process of training informal carers on stroke units was not simply a matter of transferring skills from professional to lay person, but entailed disciplinary forms of power intended to shape the conduct of the carer. We interrogate the extent to which a specific kind of carer is produced through such an approach, and the wider implications for the participation of carers in training in healthcare settings and the empowerment of carers. © 2017 Foundation for the Sociology of Health & Illness.
Seepage Bifurcation as a Critical Process
NASA Astrophysics Data System (ADS)
Yi, R.; Rothman, D.
2015-12-01
Channel networks form beautiful and surprisingly intricate geometries, yet diligently evade comprehensive mathematical understanding. Work in recent years has shed light on this problem. Networks driven by seepage flow, in particular, have been shown to grow in a field that can be described by the Laplace equation, providing us with an understanding of valley growth and shape. However, the process by which such networks branch to form these ramified shapes is yet a mystery. We focus our attention on a highly ramified seepage valley network in Bristol, Florida. We study the behavior of flux to valley heads as a function of valley length, and use this result to motivate our discussion of branch formation. We then hypothesize that a critical groundwater flux demarcates a transition point where topographic diffusion is overcome by branching processes, and we present network-wide flux calculations, cosmogenic data, and simulation to support our claim. Our results ultimately suggest a mechanism for seepage bifurcation, and inform our understanding of pattern formation in river networks.
Criticality conditions of heterogeneous energetic materials under shock loading
NASA Astrophysics Data System (ADS)
Nassar, Anas; Rai, Nirmal Kumar; Sen, Oishik; Udaykumar, H. S.
2017-06-01
Shock interaction with the microstructural heterogeneities of energetic materials can lead to the formation of locally heated regions known as hot spots. These hot spots are the potential sites where chemical reaction may be initiated. However, the ability of a hot spot to initiate chemical reaction depends on its size, shape and strength (temperature). Previous study by Tarver et al. has shown that there exists a critical size and temperature for a given shape (spherical, cylindrical, and planar) of the hot spot above which reaction initiation is imminent. Tarver et al. assumed a constant temperature variation in the hot spot. However, the meso-scale simulations show that the temperature distribution within a hot spot formed from processes such as void collapse is seldom constant. Also, the shape of a hot spot can be arbitrary. This work is an attempt towards development of a critical hot spot curve which is a function of loading strength, duration and void morphology. To achieve the aforementioned goal, mesoscale simulations are conducted on porous HMX material. The process is repeated for different loading conditions and void sizes. The hot spots formed in the process are examined for criticality depending on whether they will ignite or not. The metamodel is used to obtain criticality curves and is compared with the critical hot spot curve of Tarver et al.
A novel methodology for in-process monitoring of flow forming
NASA Astrophysics Data System (ADS)
Appleby, Andrew; Conway, Alastair; Ion, William
2017-10-01
Flow forming (FF) is an incremental cold working process with near-net-shape forming capability. Failures by fracture due to high deformation can be unexpected and sometimes catastrophic, causing tool damage. If process failures can be identified in real time, an automatic cut-out could prevent costly tool damage. Sound and vibration monitoring is well established and commercially viable in the machining sector to detect current and incipient process failures, but not for FF. A broad-frequency microphone was used to record the sound signature of the manufacturing cycle for a series of FF parts. Parts were flow formed using single and multiple passes, and flaws were introduced into some of the parts to simulate the presence of spontaneously initiated cracks. The results show that this methodology is capable of identifying both introduced defects and spontaneous failures during flow forming. Further investigation is needed to categorise and identify different modes of failure and identify further potential applications in rotary forming.
NASA Astrophysics Data System (ADS)
Diabil, Hayder Azeez; Li, Xin Kai; Abdalla, Ibrahim Elrayah
2017-09-01
Large-scale organized motions (commonly referred to coherent structures) and flow topology of a transitional separated-reattached flow have been visualised and investigated using flow visualisation techniques. Two geometrical shapes including two-dimensional flat plate with rectangular leading edge and three-dimensional square cylinder are chosen to shed a light on the flow topology and present coherent structures of the flow over these shapes. For both geometries and in the early stage of the transition, two-dimensional Kelvin-Helmholtz rolls are formed downstream of the leading edge. They are observed to be twisting around the square cylinder while they stay flat in the case of the two-dimensional flat plate. For both geometrical shapes, the two-dimensional Kelvin-Helmholtz rolls move downstream of the leading edge and they are subjected to distortion to form three-dimensional hairpin structures. The flow topology in the flat plate is different from that in the square cylinder. For the flat plate, there is a merging process by a pairing of the Kelvin-Helmholtz rolls to form a large structure that breaks down directly into many hairpin structures. For the squire cylinder case, the Kelvin-Helmholtz roll evolves topologically to form a hairpin structure. In the squire cylinder case, the reattachment length is much shorter and a forming of the three-dimensional structures is closer to the leading edge than that in the flat plate case.
Optical apparatus for laser scattering by objects having complex shapes
Ellingson, William A.; Visher, Robert J.
2006-11-14
Apparatus for observing and measuring in realtime surface and subsurface characteristics of objects having complex shapes includes an optical fiber bundle having first and second opposed ends. The first end includes a linear array of fibers, where the ends of adjacent fibers are in contact and are aligned perpendicular to the surface of the object being studied. The second ends of some of the fibers are in the form of a polished ferrule forming a multi-fiber optical waveguide for receiving laser light. The second ends of the remaining fibers are formed into a linear array suitable for direct connection to a detector, such as a linear CMOS-based optical detector. The output data is analyzed using digital signal processing for the detection of anomalies such as cracks, voids, inclusions and other defects.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2009-02-24
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2009-11-24
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming maching.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2007-05-15
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.
Spray forming process for producing molds, dies and related tooling
McHugh, Kevin M.; Key, James F.
1998-01-01
A method for spray forming manufacturing of near-net-shape molds, dies and related toolings, wherein liquid material such as molten metal, metallic alloys, or polymers are atomized into fine droplets by a high temperature, high velocity gas and deposited onto a pattern. Quenching of the atomized droplets provides a heat sink, thereby allowing undercooled and partially solidified droplets to be formed in-flight. Composites can be formed by combining the atomized droplets with solid particles such as whiskers or fibers.
Spray forming process for producing molds, dies and related tooling
McHugh, K.M.; Key, J.F.
1998-02-17
A method is disclosed for spray forming manufacturing of near-net-shape molds, dies and related toolings, wherein liquid material such as molten metal, metallic alloys, or polymers are atomized into fine droplets by a high temperature, high velocity gas and deposited onto a pattern. Quenching of the atomized droplets provides a heat sink, thereby allowing undercooled and partially solidified droplets to be formed in-flight. Composites can be formed by combining the atomized droplets with solid particles such as whiskers or fibers. 17 figs.
Drop dynamics in space and interference with acoustic field (M-15)
NASA Technical Reports Server (NTRS)
Yamanaka, Tatsuo
1993-01-01
The objective of the experiment is to study contactless positioning of liquid drops, excitation of capillary waves on the surface of acoustically levitated liquid drops, and deformation of liquid drops by means of acoustic radiation pressure. Contactless positioning technologies are very important in space materials processing because the melt is processed without contacting the wall of a crucible which can easily contaminate the melt specifically for high melting temperatures and chemically reactive materials. Among the contactless positioning technologies, an acoustic technology is especially important for materials unsusceptible to electromagnetic fields such as glasses and ceramics. The shape of a levitated liquid drop in the weightless condition is determined by its surface tension and the internal and external pressure distribution. If the surface temperature is constant and there exist neither internal nor external pressure perturbations, the levitated liquid drop forms a shape of perfect sphere. If temperature gradients on the surface and internal or external pressure perturbations exist, the liquid drop forms various modes of shapes with proper vibrations. A rotating liquid drop was specifically studied not only as a classical problem of theoretical mechanics to describe the shapes of the planets of the solar system, as well as their arrangement, but it is also more a contemporary problem of modern non-linear mechanics. In the experiment, we are expecting to observe various shapes of a liquid drop such as cocoon, tri-lobed, tetropod, multi-lobed, and doughnut.
Microgravity Manufacturing Via Fused Deposition
NASA Technical Reports Server (NTRS)
Cooper, K. G.; Griffin, M. R.
2003-01-01
Manufacturing polymer hardware during space flight is currently outside the state of the art. A process called fused deposition modeling (FDM) can make this approach a reality by producing net-shaped components of polymer materials directly from a CAE model. FDM is a rapid prototyping process developed by Stratasys, Inc.. which deposits a fine line of semi-molten polymer onto a substrate while moving via computer control to form the cross-sectional shape of the part it is building. The build platen is then lowered and the process is repeated, building a component directly layer by layer. This method enables direct net-shaped production of polymer components directly from a computer file. The layered manufacturing process allows for the manufacture of complex shapes and internal cavities otherwise impossible to machine. This task demonstrated the benefits of the FDM technique to quickly and inexpensively produce replacement components or repair broken hardware in a Space Shuttle or Space Station environment. The intent of the task was to develop and fabricate an FDM system that was lightweight, compact, and required minimum power consumption to fabricate ABS plastic hardware in microgravity. The final product of the shortened task turned out to be a ground-based breadboard device, demonstrating miniaturization capability of the system.
Method of texturing a superconductive oxide precursor
DeMoranville, Kenneth L.; Li, Qi; Antaya, Peter D.; Christopherson, Craig J.; Riley, Jr., Gilbert N.; Seuntjens, Jeffrey M.
1999-01-01
A method of forming a textured superconductor wire includes constraining an elongated superconductor precursor between two constraining elongated members placed in contact therewith on opposite sides of the superconductor precursor, and passing the superconductor precursor with the two constraining members through flat rolls to form the textured superconductor wire. The method includes selecting desired cross-sectional shape and size constraining members to control the width of the formed superconductor wire. A textured superconductor wire formed by the method of the invention has regular-shaped, curved sides and is free of flashing. A rolling assembly for single-pass rolling of the elongated precursor superconductor includes two rolls, two constraining members, and a fixture for feeding the precursor superconductor and the constraining members between the rolls. In alternate embodiments of the invention, the rolls can have machined regions which will contact only the elongated constraining members and affect the lateral deformation and movement of those members during the rolling process.
VIEW OF THE HYDROSPINNING EQUIPMENT IN BUILDING 865. THE HYDROSPINNING ...
VIEW OF THE HYDROSPINNING EQUIPMENT IN BUILDING 865. THE HYDROSPINNING PROCESS FORMED METALS INTO DESIRED SHAPES BY ROLLERS WHILE THE METAL WAS ROTATED AT HIGH SPEED. BERYLLIUM, URANIUM, REFRACTORY METALS, AND OTHER NONFERROUS METALS WERE SPUN EITHER HOT OR COLD, INTO A VARIETY OF SHAPES. (11/9/73) - Rocky Flats Plant, Metal Research & Development Laboratory, South of Central Avenue at south end of terminus of Ninth Avenue, Golden, Jefferson County, CO
NASA Astrophysics Data System (ADS)
Hage, Sophie; Cartigny, Matthieu; Clare, Michael; Sumner, Esther; Talling, Peter; Vendettuoli, Daniela; Hughes Clarke, John; Hubbard, Stephen
2017-04-01
Massive sandstones have been studied in many outcrops worldwide as they form a building stone of good subsurface petroleum reservoirs. Massive sands are often associated with turbidites sequences in ancient sedimentary successions. Turbidites are widely known to result from the deceleration of turbidity currents, these underwater flows driven by the excess density of sediments they carry in suspension. Depositional processes that are associated with the formation of massive sands are still under debate in the literature and many theoretical mechanisms have been suggested based on outcrops interpretations, lab experiments and numerical models. Here we present the first field observations that show how massive sands are generated from flow instabilities associated with supercritical flow processes occurring in turbidity currents. We combine turbidity current measurements with seafloor topography observations on the active Squamish Delta, British Columbia (Canada). We show that supercritical flow processes shape crescent-shape bedforms on the seafloor, and how these crescent-shape bedforms are built by massive sands. This modern process-product link is then used to interpret massive sandstone successions found in ancient outcrops. We demonstrate that supercritical-flow processes can be recognised in outcrops and that these processes produce highly diachronous stratigraphic surfaces in the rock record. This has profound implications on how to interpret ancient geological successions and the Earth history they archive.
Stephens, Robert P
2011-01-01
Addiction films have been shaped by the internal demands of a commercial medium. Specifically, melodrama, as a genre, has defined the limits of the visual representation of addiction. Similarly, the process of intermedialization has tended to induce a metamorphosis that shapes disparate narratives with diverse goals into a generic filmic form and substantially alters the meanings of the texts. Ultimately, visual representations shape public perceptions of addiction in meaningful ways, privileging a moralistic understanding of drug addiction that makes a complex issue visually uncomplicated by reinforcing "common sense" ideas of moral failure and redemption. Copyright © 2011 Informa Healthcare USA, Inc.
Mathematical simulation of bearing ring grinding process
NASA Astrophysics Data System (ADS)
Koltunov, I. I.; Gorbunova, T. N.; Tumanova, M. B.
2018-03-01
The paper suggests the method of forming a solid finite element model of the bearing ring. Implementation of the model allowed one to evaluate the influence of the inner cylindrical surface grinding scheme on the ring shape error.
The influence of averaging and noisy decision strategies on the recognition memory ROC.
Malmberg, Kenneth J; Xu, Jing
2006-02-01
Many single- and dual-process models of recognition memory predict that the ratings and remember-know receiver operating characteristics (ROCs) are the same, but Rotello, Macmillan, and Reeder (2004) reported that the slopes of the remember-know and ratings z-transformed ROCs (zROCs) are different The authors show that averaging introduces nonlinearities to the form of the zROC and that ratings and remember-know zROCs are indistinguishable when constructed in a conventional manner. The authors show, further, that some nonoptimal decision strategies have a distinctive, nonlinear effect on the form of the single-process continuous-state zROC. The conclusion is that many factors having nothing to do with the nature of recognition memory can affect the shape of zROCs, and that therefore, the shape of the zROC does not, alone, characterize different memory models.
NASA Astrophysics Data System (ADS)
Morito, Daisuke; Nishikawa, Kouki; Hoseki, Jun; Kitamura, Akira; Kotani, Yuri; Kiso, Kazumi; Kinjo, Masataka; Fujiyoshi, Yoshinori; Nagata, Kazuhiro
2014-03-01
Moyamoya disease is an idiopathic human cerebrovascular disorder that is characterized by progressive stenosis and abnormal collateral vessels. We recently identified mysterin/RNF213 as its first susceptibility gene, which encodes a 591-kDa protein containing enzymatically active P-loop ATPase and ubiquitin ligase domains and is involved in proper vascular development in zebrafish. Here we demonstrate that mysterin further contains two tandem AAA+ ATPase modules and forms huge ring-shaped oligomeric complex. AAA+ ATPases are known to generally mediate various biophysical and mechanical processes with the characteristic ring-shaped structure. Fluorescence correlation spectroscopy and biochemical evaluation suggested that mysterin dynamically changes its oligomeric forms through ATP/ADP binding and hydrolysis cycles. Thus, the moyamoya disease-associated gene product is a unique protein that functions as ubiquitin ligase and AAA+ ATPase, which possibly contributes to vascular development through mechanical processes in the cell.
Morito, Daisuke; Nishikawa, Kouki; Hoseki, Jun; Kitamura, Akira; Kotani, Yuri; Kiso, Kazumi; Kinjo, Masataka; Fujiyoshi, Yoshinori; Nagata, Kazuhiro
2014-01-01
Moyamoya disease is an idiopathic human cerebrovascular disorder that is characterized by progressive stenosis and abnormal collateral vessels. We recently identified mysterin/RNF213 as its first susceptibility gene, which encodes a 591-kDa protein containing enzymatically active P-loop ATPase and ubiquitin ligase domains and is involved in proper vascular development in zebrafish. Here we demonstrate that mysterin further contains two tandem AAA+ ATPase modules and forms huge ring-shaped oligomeric complex. AAA+ ATPases are known to generally mediate various biophysical and mechanical processes with the characteristic ring-shaped structure. Fluorescence correlation spectroscopy and biochemical evaluation suggested that mysterin dynamically changes its oligomeric forms through ATP/ADP binding and hydrolysis cycles. Thus, the moyamoya disease-associated gene product is a unique protein that functions as ubiquitin ligase and AAA+ ATPase, which possibly contributes to vascular development through mechanical processes in the cell. PMID:24658080
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Junfeng, E-mail: chenjunfeng@fzu.edu.cn; Zou, Linchi, E-mail: zoulinchi1201@163.com; Li, Qiang
The microstructure evolution of the 7050 Al alloy treated by age-forming was studied using a designed device which can simulate the age-forming process. The grain shape, grain boundary misorientation and grain orientation evolution of 7050 Al alloy during age-forming have been quantitatively characterized by electron backscattering diffraction technique. The results show that age-forming produced abundant low-angle boundaries and elongated grains, which attributed to stress induced dislocation movement and grain boundary migration during the age-forming process. On the other side, the stress along rolling direction caused some unstable orientation grains to rotate towards the Brass and S orientations during the age-formingmore » process. Hence, the intensity of the rolling texture orientation in age-formed samples is enhanced. But this effect decays gradually with increasing aging time, since stress decreases and precipitation hardening occurs during the age-forming process. - Highlights: • Quantitative analysis of grain evolution of 7050 Al alloys during age-forming • Stress induces some grain rotation of 7050 Al alloys during age-forming. • Creep leads to elongate grain of 7050 Al alloys during age-forming. • Obtains a trend on texture evolution during age-forming applied stress.« less
Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage.
Kaucka, Marketa; Zikmund, Tomas; Tesarova, Marketa; Gyllborg, Daniel; Hellander, Andreas; Jaros, Josef; Kaiser, Jozef; Petersen, Julian; Szarowska, Bara; Newton, Phillip T; Dyachuk, Vyacheslav; Li, Lei; Qian, Hong; Johansson, Anne-Sofie; Mishina, Yuji; Currie, Joshua D; Tanaka, Elly M; Erickson, Alek; Dudley, Andrew; Brismar, Hjalmar; Southam, Paul; Coen, Enrico; Chen, Min; Weinstein, Lee S; Hampl, Ales; Arenas, Ernest; Chagin, Andrei S; Fried, Kaj; Adameyko, Igor
2017-04-17
Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale.
Laser diode assembly including a cylindrical lens
Snyder, J.J.; Reichert, P.
1992-01-14
The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. 11 figs.
Density of Spray-Formed Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin M. McHugh; Volker Uhlenwinkel; Nils Ellendr
2008-06-01
Spray Forming is an advanced materials processing technology that transforms molten metal into a near-net-shape solid by depositing atomized droplets onto a substrate. Depending on the application, the spray-formed material may be used in the as-deposited condition or it may undergo post-deposition processing. Regardless, the density of the as-deposited material is an important issue. Porosity is detrimental because it can significantly reduce strength, toughness, hardness and other properties. While it is not feasible to achieve fully-dense material in the as-deposited state, density greater than 99% of theoretical density is possible if the atomization and impact conditions are optimized. Thermal conditionsmore » at the deposit surface and droplet impact angle are key processing parameters that influence the density of the material. This paper examines the factors that contribute to porosity formation during spray forming and illustrates that very high as-deposited density is achieved by optimizing processing parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nick Cannell; Dr. Mark Samonds; Adi Sholapurwalla
The investment casting process is an expendable mold process where wax patterns of the part and rigging are molded, assembled, shelled and melted to produce a ceramic mold matching the shape of the component to be cast. Investment casting is an important manufacturing method for critical parts because of the ability to maintain dimensional shape and tolerances. However, these tolerances can be easily exceeded if the molding components do not maintain their individual shapes well. In the investment casting process there are several opportunities for the final casting shape to not maintain the intended size and shape, such as shrinkagemore » of the wax in the injection tool, the modification of the shape during shell heating, and with the thermal shrink and distortion in the casting process. Studies have been completed to look at the casting and shell distortions through the process in earlier phases of this project. Dr. Adrian Sabau at Oak Ridge National Labs performed characterizations and validations of 17-4 PH stainless steel in primarily fused silica shell systems with good agreement between analysis results and experimental data. Further tasks provided material property measurements of wax and methodology for employing a viscoelastic definition of wax materials into software. The final set of tasks involved the implementation of the findings into the commercial casting analysis software ProCAST, owned and maintained by ESI Group. This included: o the transfer of the wax material property data from its raw form into separate temperature-dependent thermophysical and mechanical property datasets o adding this wax material property data into an easily viewable and modifiable user interface within the pre-processing application of the ProCAST suite, namely PreCAST o and validating the data and viscoelastic wax model with respect to experimental results« less
PROCESS FOR MAKING NEUTRON-ABSORBING BODIES
Schippereit, G.H.; Lang, R.M.
1961-11-14
A process for making a control element for a nuclear reactor and the control element prepared by the process are described. Equally spaced, conically shaped depressions are formed in one face of a metal plate, spheres of boron of uniform size are placed in the depressions, another plate is welded on top of this place covering the depressions, and the joined plates are rolled to the desired thickness. (AEC)
NASA Astrophysics Data System (ADS)
Hautier, Lionel; Fabre, Pierre-Henri; Michaux, Jacques
2009-06-01
Squirrels include several independent lineages of dwarf forms distributed into two ecological groups: the dwarf tree and flying squirrels. The mandible of dwarf tree squirrels share a highly reduced coronoid process and a condylar process drawn backwards. Dwarf flying squirrels on the other hand, have an elongated coronoid process and a well-differentiated condylar process. To interpret such a difference, Elliptic Fourier Transform was used to evaluate how mandible shape varies with dwarfism in sciurids. The results obtained show that this clear-cut difference cannot be explained by a simple allometric relationship in relation with size decrease. We concluded that the retention of anteriorly positioned eye sockets, in relation with distance estimation, allowed the conservation of a well-differentiated coronoid process in all flying species, despite the trend towards its reduction observed among sciurids as their size decreases.
Observations on the Growth of Roughness Elements Into Icing Feathers
NASA Technical Reports Server (NTRS)
Vargas, Mario; Tsao, Jen, Ching
2007-01-01
This work presents the results of an experiment conducted in the Icing Research Tunnel at NASA Glenn Research Center to understand the process by which icing feathers are formed in the initial stages of ice accretion formation on swept wings. Close-up photographic data were taken on an aluminum NACA 0012 swept wing tip airfoil. Two types of photographic data were obtained: time sequence close-up photographic data during the run and close-up photographic data of the ice accretion at the end of each run. Icing runs were conducted for short ice accretion times from 10 to 180 sec. The time sequence close-up photographic data was used to study the process frame by frame and to create movies of how the process developed. The movies confirmed that at glaze icing conditions in the attachment line area icing feathers develop from roughness elements. The close-up photographic data at the end of each run showed that roughness elements change into a pointed shape with an upstream facet and join on the side with other elements having the same change to form ridges with pointed shape and upstream facet. The ridges develop into feathers when the upstream facet grows away to form the stem of the feather. The ridges and their growth into feathers were observed to form the initial scallop tips present in complete scallops.
Evidence of biogeochemical processes in iron duricrust formation
NASA Astrophysics Data System (ADS)
Levett, Alan; Gagen, Emma; Shuster, Jeremiah; Rintoul, Llew; Tobin, Mark; Vongsvivut, Jitraporn; Bambery, Keith; Vasconcelos, Paulo; Southam, Gordon
2016-11-01
Canga is a moderately hard iron-rich duricrust primarily composed of goethite as a result of the weathering of banded iron formations. Canga duricrusts lack a well-developed soil profile and consequently form an innate association with rupestrian plants that may become ferruginised, contributing to canga possessing macroscopic biological features. Examination of polished canga using a field emission scanning electron microscope (FE-SEM) revealed the biological textures associated with canga extended to the sub-millimetre scale in petrographic sections and polished blocks. Laminae that formed by abiotic processes and regions where goethite cements were formed in association with microorganisms were observed in canga. Biological cycling of iron within canga has resulted in two distinct forms of microbial fossilisation: permineralisation of multispecies biofilms and mineralisation of cell envelopes. Goethite permineralised biofilms frequently formed around goethite-rich kaolinite grains in close proximity to goethite bands and were composed of micrometre-scale rod-shaped, cocci and filamentous microfossils. In contrast, the cell envelopes immobilised by authigenic iron oxides were primarily of rod-shaped microorganisms, were not permineralised and occurred in pore spaces within canga. Complete mineralisation of intact rod-shaped casts and the absence of permineralisation suggested mineralised cell envelopes may represent fossilised iron-oxidising bacteria in the canga ecosystem. Replication of these iron-oxidising bacteria appeared to infill the porous regions within canga. Synchrotron-based Fourier transform infrared (FTIR) microspectroscopy demonstrated that organic biomarkers were poorly preserved with only weak bands indicative of aliphatic methylene (CH2) associated with permineralised microbial biofilms. High resolution imaging of microbial fossils in canga that had been etched with oxalic acid supported the poor preservation of organic biomarkers within canga, indicating mineralogical replacement of organic biomarkers.
Justification of the Shape of a Non-Circular Cross-Section for Drilling With a Roller Cutter
NASA Astrophysics Data System (ADS)
Buyalich, Gennady; Husnutdinov, Mikhail
2017-11-01
The parameters of the shape of non-circular cross-section affect not only the process of blasting, but also the design of the tool and the process of drilling as well. In the conditions of open-pit mining, it is reasonable to use a roller cutter to produce a non-circular cross-section of blasting holes. With regard to the roller cutter, the impact of the cross-section shape on the oscillations of the axial force arising upon its rotation is determined. It is determined that a polygonal shape with rounded comers of the borehole walls connections and their convex shape, which ensures a smaller range of the total axial force and the torque deflecting the bit from the axis of its rotation is the rational form of the non-circular cross-section of the borehole in terms of bit design. It has been shown that the ratio of the number of cutters to the number of borehole corners must be taken into account when justifying the shape of the cross-section, both from the point of view of the effectiveness of the explosion action and from the point of view of the rational design of the bit.
Developmental Changes in the Processing of Hierarchical Shapes Continue into Adolescence.
ERIC Educational Resources Information Center
Mondloch, Catherine J.; Geldart, Sybil; Maurer, Daphne; de Schonen, Scania
2003-01-01
Three experiments obtained same-different judgments from children and adults to trace normal development of local and global processing of hierarchical visual forms. Findings indicated that reaction time was faster on global trials than local trials; bias was stronger in children and diminished to adult levels between ages 10 and 14. Reaction time…
Pujol, Rémy; Pickett, Sarah B.; Nguyen, Tot Bui; Stone, Jennifer S.
2014-01-01
Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here, we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell’s base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells range in shape, size, and branching, with the longest processes extending 3–4 hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Further, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network amongst type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3–6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells, and they suggest type II hair cells may directly communicate with each other, which has not been described in vertebrates. PMID:24825750
Pujol, Rémy; Pickett, Sarah B; Nguyen, Tot Bui; Stone, Jennifer S
2014-10-01
Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells vary in shape, size, and branching, with the longest processes extending three to four hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Furthermore, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network among type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3-6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells and suggest that type II hair cells may directly communicate with each other, which has not been described in vertebrates. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Tian, W. H.; Hu, S. L.; Fan, A. L.; Wang, Z.
2002-01-01
Transmission electron microscopy (TEM) observations were carried out for examining the as-formed and post-deformed microstructures in a variety of electroformed copper liners of shaped charges. The deformation was carried out at an ultra-high strain rate. Specifically, the electron backscattering Kikuchi pattern (EBSP) technique was utilized to examine the micro-texture of these materials. TEM observations revealed that these electroformed copper liners of shaped charges have a grain size of about 1-3 mum, EBSP analysis demonstrated that the as-grown copper liners of shaped charges exhibit a l 10) fiber micro-texture which is parallel to the normal direction of the surface of the liners of shaped charges. Having undergone plastic deformation at ultra-high strain rate (10(7) s(-1)), the specimens which were recovered from the copper slugs were found to have grain size of the same order as that before deformation. EBSP analysis revealed that the (110) fiber texture existed in the as-formed copper liners disappears in the course of deformation. TEM examination results indicate that dynamic recovery and recrystallization play a significant role in this deformation process.
NASA Astrophysics Data System (ADS)
Arora, Shitij; Fourment, Lionel
2018-05-01
In the context of the simulation of industrial hot forming processes, the resultant time-dependent thermo-mechanical multi-field problem (v →,p ,σ ,ɛ ) can be sped up by 10-50 times using the steady-state methods while compared to the conventional incremental methods. Though the steady-state techniques have been used in the past, but only on simple configurations and with structured meshes, and the modern-days problems are in the framework of complex configurations, unstructured meshes and parallel computing. These methods remove time dependency from the equations, but introduce an additional unknown into the problem: the steady-state shape. This steady-state shape x → can be computed as a geometric correction t → on the domain X → by solving the weak form of the steady-state equation v →.n →(t →)=0 using a Streamline Upwind Petrov Galerkin (SUPG) formulation. There exists a strong coupling between the domain shape and the material flow, hence, a two-step fixed point iterative resolution algorithm was proposed that involves (1) the computation of flow field from the resolution of thermo-mechanical equations on a prescribed domain shape and (2) the computation of steady-state shape for an assumed velocity field. The contact equations are introduced in the penalty form both during the flow computation as well as during the free-surface correction. The fact that the contact description is inhomogeneous, i.e., it is defined in the nodal form in the former, and in the weighted residual form in the latter, is assumed to be critical to the convergence of certain problems. Thus, the notion of nodal collocation is invoked in the weak form of the surface correction equation to homogenize the contact coupling. The surface correction algorithm is tested on certain analytical test cases and the contact coupling is tested with some hot rolling problems.
Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.
2001-01-01
The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using the VPS process to form anode sections for a Lorentz force accelerator from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and accelerates the metal powder onto the mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the anode. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of the Lorentz force accelerator.
NASA Astrophysics Data System (ADS)
Besserer, Hans-Bernward; Hildenbrand, Philipp; Gerstein, Gregory; Rodman, Dmytro; Nürnberger, Florian; Merklein, Marion; Maier, Hans Jürgen
2016-03-01
To produce parts from sheet metal with thickened functional elements, bulk forming operations can be employed. For this new process class, the term sheet-bulk metal forming has been established recently. Since sheet-bulk metal forming processes such as orbital forming generates triaxial stress and strain states, ductile damage is induced in the form of voids in the microstructure. Typical parts will experience cyclic loads during service, and thus, the influence of ductile damage on the fatigue life of parts manufactured by orbital forming is of interest. Both the formation and growth of voids were characterized following this forming process and then compared to the as-received condition of the ferritic deep drawing steel DC04 chosen for this study. Subsequent to the forming operation, the specimens were fatigued and the evolution of ductile damage and the rearrangement of the dislocation networks occurring during cyclic loading were determined. It was shown, that despite an increased ductile damage due to the forming process, the induced strain hardening has a positive effect on the fatigue life of the material. However, by analyzing the fatigued specimens a development of the ductile damage by an increasing number of voids and a change in the void shape were detected.
Study of various synthesis techniques of nanomaterials
NASA Astrophysics Data System (ADS)
Patil, Madhuri; Sharma, Deepika; Dive, Avinash; Mahajan, Sandeep; Sharma, Ramphal
2018-05-01
Development of synthesis techniques of realizing nano-materials over a range of sizes, shapes, and chemical compositions is an important aspect of nanotechnology. The remarkable size dependent physical & chemical properties of particles have fascinated and inspired research activity in this direction. This paper describes some aspects on synthesis and characterization of particles of metals, metal alloys, and oxides, either in the form of thin films or bulk shapes. A brief discussion on processing of thin-films is also described.
Ultimate Atomic Bling: Nanotechnology of Diamonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahl, Jeremy
2010-05-25
Diamonds exist in all sizes, from the Hope Diamond to minuscule crystals only a few atoms across. The smallest of these diamonds are created naturally by the same processes that make petroleum. Recently, researchers discovered that these 'diamondoids' are formed in many different structural shapes, and that these shapes can be used like LEGO blocks for nanotechnology. This talk will discuss the discovery of these nano-size diamonds and highlight current SLAC/Stanford research into their applications in electronics and medicine.
Method for manufacturing lightning strike mitigation composites
NASA Technical Reports Server (NTRS)
Vaidyanathan, K. Ranji (Inventor); Campbell, Jeffrey (Inventor)
2012-01-01
A method for manufacturing a composite material utilizes a tooling material having a desired shape. The surface of the tooling material is coated with a composite film that includes a conductive filler material. A composite composition is introduced into contact with the surface of the tooling material to form a desired shape. The composite composition is processed to produce the composite material, and the composite material has a conductive composite surface layer that includes the conductive filler material.
Pre-loading of components during laser peenforming
Hackel, Lloyd A [Livermore, CA; Halpin, John M [Tracy, CA; Harris, Fritz B [Rocklin, CA
2003-12-30
A method and apparatus are provided for forming shapes and contours in metal sections by prestressing a workpiece and generating laser induced compressive stress on the surface of the metal workpiece. The step of prestressing the workpiece is carried out with a jig. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts.
Unique self-assembly properties of a bridge-shaped protein dimer with quantum dots
NASA Astrophysics Data System (ADS)
Wang, Jianhao; Jiang, Pengju; Gao, Liqian; Yu, Yongsheng; Lu, Yao; Qiu, Lin; Wang, Cheli; Xia, Jiang
2013-09-01
How protein-protein interaction affects protein-nanoparticle self-assembly is the key to the understanding of biomolecular coating of nanoparticle in biological fluids. However, the relationship between protein shape and its interaction with nanoparticles is still under-exploited because of lack of a well-conceived binding system and a method to detect the subtle change in the protein-nanoparticle assemblies. Noticing this unresolved need, we cloned and expressed a His-tagged SpeA protein that adopts a bridge-shaped dimer structure, and utilized a high-resolution capillary electrophoresis method to monitor assembly formation between the protein and quantum dots (QDs, 5 nm in diameter). We observed that the bridge-shaped structure rendered a low SpeA:QD stoichiometry at saturation. Also, close monitoring of imidazole (Im) displacement of surface-bound protein revealed a unique two-step process. High-concentration Im could displace surface-bound SpeA protein and form a transient QD-protein intermediate, through a kinetically controlled displacement process. An affinity-driven equilibrium step then followed, resulting in re-assembling of the QD-protein complex in about 1 h. Through a temporarily formed intermediate, Im causes a rearrangement of His-tagged proteins on the surface. Thus, our work showcases that the synergistic interplay between QD-His-tag interaction and protein-protein interaction can result in unique properties of protein-nanoparticle assembly for the first time.
Superelasticity of NiTi Ring-Shaped Springs Induced by Aging for Cranioplasty Applications
NASA Astrophysics Data System (ADS)
Morawiec, Henryk Z.; Lekston, Zdzisław H.; Kobus, Kazimierz F.; Węgrzyn, Marek C.; Drugacz, Jan T.
2009-08-01
This paper concerns the application of titanium-nickel rings in modeling the cranium. After being fixed to the osseous margins, the ring’s expansion at the same time broadens and shortens the cranium vault. The rings formed from a straight superelastic wire, flattened to an ellipse, do not show the presence of a typical force plateau but rather a pseudoelastic loop during loading-unloading in the relationship between the force and the deflection. Based on the idea that superelasticity in more complex shape-springs may be induced by the precipitation hardening process, the further studies were carried out on alloys with higher nickel contents (51.06 at.% Ni). The rings that had been formed were welded and aged at an optimal temperature and time. The improved superelastic behavior during compression and unloading the rings was obtained by introducing small deformation by drawing the quenched wires before forming the rings and aging. Very positive clinical reshaping by long-term distraction with the superelastic ring-shaped springs was achieved in young children under one year and a less spectacular effect was observed in the group of older children.
Dupoly process for treatment of depleted uranium and production of beneficial end products
Kalb, Paul D.; Adams, Jay W.; Lageraaen, Paul R.; Cooley, Carl R.
2000-02-29
The present invention provides a process of encapsulating depleted uranium by forming a homogenous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles.
Characterization of in situ synthesized TiB 2 reinforcements in iron-based composite coating
NASA Astrophysics Data System (ADS)
Zhang, Panpan; Wang, Xibao; Guo, Lijie; Cai, Lijuan; Sun, Hongling
2011-12-01
TiB2 reinforced iron-based composite coatings can be fabricated on the mild steel substrate with a powder mixture of Ti and B4C by plasma transferred arc (PTA) powder surfacing process. Characterizations of the TiB2 reinforcements in the coated surface were investigated in this paper. The experimental work enables the following findings to be obtained: (i) acicular shaped and blocky formed TiB2 phases could be synthesized in situ using PTA powder surfacing process in the iron-based composite coating. (ii) Gradient distributions of TiB2 reinforcements appeared in the composite coating from both the vertical and horizontal direction of the coating's cross-section. Significant changes of the size, shape and volume fraction for TiB2 particles appeared in different regions of the surface coating, due to the effects of the dilution rate and mass density. (iii) Values of coating dilution could have profound impacts on the characterization of TiB2 reinforcements in the coated surfaces. With the increase of coating dilution, TiB2 grain tends to be acicular shaped at the edge of the surface coating, while it remains to be granular formed in the center of the composite coating.
Self-sculpting of a dissolvable body due to gravitational convection
NASA Astrophysics Data System (ADS)
Davies Wykes, Megan S.; Huang, Jinzi Mac; Hajjar, George A.; Ristroph, Leif
2018-04-01
Natural sculpting processes such as erosion or dissolution often yield universal shapes that bear no imprint or memory of the initial conditions. Here we conduct laboratory experiments aimed at assessing the shape dynamics and role of memory for the simple case of a dissolvable boundary immersed in a fluid. Though no external flow is imposed, dissolution and consequent density differences lead to gravitational convective flows that in turn strongly affect local dissolving rates and shape changes, and we identify two distinct behaviors. A flat boundary dissolving from its lower surface tends to retain its overall shape (an example of near perfect memory) while bearing small-scale pits that reflect complex near-body flows. A boundary dissolving from its upper surface tends to erase its initial shape and form an upward spike structure that sharpens indefinitely. We propose an explanation for these different outcomes based on observations of the coupled shape dynamics, concentration fields, and flows.
Flexible aerogel composite for mechanical stability and process of fabrication
Coronado, Paul R.; Poco, John F.
2000-01-01
A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.
Flexible aerogel composite for mechanical stability and process of fabrication
Coronado, Paul R.; Poco, John F.
1999-01-01
A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.
Determination of optimal tool parameters for hot mandrel bending of pipe elbows
NASA Astrophysics Data System (ADS)
Tabakajew, Dmitri; Homberg, Werner
2018-05-01
Seamless pipe elbows are important components in mechanical, plant and apparatus engineering. Typically, they are produced by the so-called `Hamburg process'. In this hot forming process, the initial pipes are subsequently pushed over an ox-horn-shaped bending mandrel. The geometric shape of the mandrel influences the diameter, bending radius and wall thickness distribution of the pipe elbow. This paper presents the numerical simulation model of the hot mandrel bending process created to ensure that the optimum mandrel geometry can be determined at an early stage. A fundamental analysis was conducted to determine the influence of significant parameters on the pipe elbow quality. The chosen methods and approach as well as the corresponding results are described in this paper.
Contour forming of metals by laser peening
Hackel, Lloyd; Harris, Fritz
2002-01-01
A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.
Net-Shape HIP Powder Metallurgy Components for Rocket Engines
NASA Technical Reports Server (NTRS)
Bampton, Cliff; Goodin, Wes; VanDaam, Tom; Creeger, Gordon; James, Steve
2005-01-01
True net shape consolidation of powder metal (PM) by hot isostatic pressing (HIP) provides opportunities for many cost, performance and life benefits over conventional fabrication processes for large rocket engine structures. Various forms of selectively net-shape PM have been around for thirty years or so. However, it is only recently that major applications have been pursued for rocket engine hardware fabricated in the United States. The method employs sacrificial metallic tooling (HIP capsule and shaped inserts), which is removed from the part after HIP consolidation of the powder, by selective acid dissolution. Full exploitation of net-shape PM requires innovative approaches in both component design and materials and processing details. The benefits include: uniform and homogeneous microstructure with no porosity, irrespective of component shape and size; elimination of welds and the associated quality and life limitations; removal of traditional producibility constraints on design freedom, such as forgeability and machinability, and scale-up to very large, monolithic parts, limited only by the size of existing HIP furnaces. Net-shape PM HIP also enables fabrication of complex configurations providing additional, unique functionalities. The progress made in these areas will be described. Then critical aspects of the technology that still require significant further development and maturation will be discussed from the perspective of an engine systems builder and end-user of the technology.
Development of the Gliding Hole of the Dynamics Compression Plate
NASA Astrophysics Data System (ADS)
Salim, U. A.; Suyitno; Magetsari, R.; Mahardika, M.
2017-02-01
The gliding hole of the dynamics compression plate is designed to facilitate relative movement of pedicle screw during surgery application. The gliding hole shape is then geometrically complex. The gliding hole manufactured using machining processes used to employ ball-nose cutting tool. Then, production cost is expensive due to long production time. This study proposed to increase productivity of DCP products by introducing forming process (cold forming). The forming process used to involve any press tool devices. In the closed die forming press tool is designed with little allowance, then work-pieces is trapped in the mould after forming. Therefore, it is very important to determine hole geometry and dimensions of raw material in order to success on forming process. This study optimized the hole sizes with both geometry analytics and experiments. The success of the forming process was performed by increasing the holes size on the raw materials. The holes size need to be prepared is diameter of 5.5 mm with a length of 11.4 mm for the plate thickness 3 mm and diameter of 6 mm with a length of 12.5 mm for the plate thickness 4 mm.
ERIC Educational Resources Information Center
Ortega-Llebaria, Marta; Colantoni, Laura
2014-01-01
Although there is consistent evidence that higher levels of processing, such as learning the form-meaning associations specific to the second language (L2), are a source of difficulty in acquiring L2 speech, no study has addressed how these levels interact in shaping L2 perception and production of intonation. We examine the hypothesis of whether…
Method of making particles from an aqueous sol
Rankin, G.W.; Hooker, J.R.
1973-07-24
A process for preparing gel particles from an aqueous sol by forming the sol into droplets in a liquid system wherein the liquid phase contains a liquid organic solvent and a barrier agent. The barrier agent prevents dehydration from occurring too rapidly and permits surface tension effects to form sol droplets into the desired spheroidal shape. A preferred barrier agent is mineral oil. (Official Gazette)
NASA Astrophysics Data System (ADS)
Enneti, Ravi Kumar
2005-07-01
Powder metallurgy technology involves manufacturing of net shape or near net shape components starting from metal powders. Polymers are used to provide lubrication during shaping and handling strength to the shaped component. After shaping, the polymers are removed from the shaped components by providing thermal energy to burnout the polymers. Polymer burnout is one of the most critical step in powder metal processing. Improper design of the polymer burnout cycle will result in formation of defects, shape loss, or carbon contamination of the components. The effect of metal particles on polymer burnout and shape loss were addressed in the present research. The study addressing the effect of metal powders on polymer burnout was based on the hypothesis that metal powders act to catalyze polymer burnout. Thermogravimetric analysis (TGA) on pure polymer, ethylene vinyl acetate (EVA), and on admixed powders of 316L stainless steel and 1 wt. % EVA were carried out to verify the hypothesis. The effect of metal powders additions was studied by monitoring the onset temperature for polymer degradation and the temperature at which maximum rate of weight loss occurred from the TGA data. The catalytic behavior of the powders was verified by varying the particle size and shape of the 316L stainless powder. The addition of metal particles lowered the polymer burnout temperatures. The onset temperature for burnout was found to be sensitive to the surface area of the metal particle as well as the polymer distribution. Powders with low surface area and uniform distribution of polymer showed a lower burnout temperature. The evolution of shape loss during polymer burnout was based on the hypothesis that shape loss occurs during the softening of the polymer and depends on the sequence of chemical bonding in the polymer during burnout. In situ observation of shape loss was carried out on thin beams compacted from admixed powders of 316L stainless steel and 1 wt. % ethylene vinyl acetate (EVA). The results showed that shape loss primarily occurs by viscous creep during the softening of the polymer. At the onset of burnout of EVA, a recovery in shape loss was observed. The recovery occurred primarily during the first stage burnout of EVA and was attributed to the formation of polyethylene co-polyacetylene which forms with a carbon double bond. The in situ strength was also found to increase during the formation of polyethylene co-polyacetylene. No recovery of shape loss was observed during burnout of polymers (polyethylene and polypropylene) which convert to yield hydrocarbons without forming carbon double bonds. (Abstract shortened by UMI.)
Organogenesis in plants: initiation and elaboration of leaves
USDA-ARS?s Scientific Manuscript database
Plant organs initiate from meristems and grow into diverse forms. After initiation, organs enter a morphological phase where they develop their shape, followed by differentiation into mature tissue. Investigations into these processes have revealed numerous factors necessary for proper development, ...
Process for producing metal compounds from graphite oxide
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh (Inventor)
2000-01-01
A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.
Process for Producing Metal Compounds from Graphite Oxide
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh (Inventor)
2000-01-01
A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon. metal. chloride. and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon. metal carbonate. and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide: b) in an inert environment to produce metal oxide on carbon substrate: c) in a reducing environment. to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.
Solar-assisted synthesis of ZnO nanoparticles using lime juice: a green approach
NASA Astrophysics Data System (ADS)
Hinge, Shruti P.; Pandit, Aniruddha B.
2017-12-01
Zinc oxide (ZnO) nanoparticles are those nanoparticles which have been synthesized in various morphologies and shapes. Their size and shape dependent properties and their applications in vivid sectors of science and technology make them interesting to synthesize. Present work reports a green method for ZnO nanoparticle synthesis using lime juice and sunlight. ZnO nanoparticles were also synthesized by conventionally used methods like heating, stirring or no heating and/or stirring. The nanoparticles were characterized using different techniques like UV-vis spectroscopy, scanning electron microscopy (SEM), x-ray diffraction (XRD) and dynamic light scattering (DLS). Thermo gravimetric analysis (TGA) was also carried out for the intermediate product to select the calcination temperature. Stoichiometric study reveals that the intermediate product formed is zinc citrate dihydrate. The synthesized calcined nanoparticles have good crystallinity, uniform shape, and high purity and were in the size range of 20-30 nm. These nanoparticles formed agglomerates of various shapes in the size range of 200-750 nm. This process is ecofriendly and is amiable for easy scale up.
Method of Manufacturing Carbon Fiber Reinforced Carbon Composite Valves
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)
1998-01-01
A method for forming a carbon composite valve for internal combustion engines is discussed. The process includes the steps of braiding carbon fiber into a rope thereby forming a cylindrically shaped valve stem portion and continuing to braid said fiber while introducing into the braiding carbon fiber rope a carbon matrix plug having an outer surface in a net shape of a valve head thereby forming a valve head portion. The said carbon matrix plug acting as a mandrel over which said carbon fiber rope is braided, said carbon fiber rope and carbon matrix plug forming a valve head portion suitable for mating with a valve seat; cutting said braided carbon valve stem portion at one end to form a valve tip and cutting said braided carbon fiber after said valve head portion to form a valve face and thus provide a composite valve preform; and densifying said preform by embedding the braided carbon in a matrix of carbon to convert said valve stem portion to a valve stem and said valve head portion to a valve head thereby providing said composite valve.
The Impact Of Surface Shape Of Chip-Breaker On Machined Surface
NASA Astrophysics Data System (ADS)
Šajgalík, Michal; Czán, Andrej; Martinček, Juraj; Varga, Daniel; Hemžský, Pavel; Pitela, David
2015-12-01
Machined surface is one of the most used indicators of workpiece quality. But machined surface is influenced by several factors such as cutting parameters, cutting material, shape of cutting tool or cutting insert, micro-structure of machined material and other known as technological parameters. By improving of these parameters, we can improve machined surface. In the machining, there is important to identify the characteristics of main product of these processes - workpiece, but also the byproduct - the chip. Size and shape of chip has impact on lifetime of cutting tools and its inappropriate form can influence the machine functionality and lifetime, too. This article deals with elimination of long chip created when machining of shaft in automotive industry and with impact of shape of chip-breaker on shape of chip in various cutting conditions based on production requirements.
Production of superconductor/carbon bicomponent fibers
NASA Technical Reports Server (NTRS)
Wise, S. A.; Fain, C. C.; Leigh, H. D.
1991-01-01
Certain materials are unable to be drawn or spun into fiber form due to their improper melting characteristics or brittleness. However, fibrous samples of such materials are often necessary for the fabrication of intricate shapes and composites. In response to this problem, a unique process, referred to as the piggyback process, was developed to prepare fibrous samples of a variety of nonspinnable ceramics. In this technique, specially produced C shaped carbon fibers serve as micromolds to hold the desired materials prior to sintering. Depending on the sintering atmosphere used, bicomponent or single component fibers result. While much has been shown worldwide concerning the YBa2Cu3O(7-x) superconductor, fabrication into unique forms has proven quite difficult. However, a variety of intricate shapes are necessary for rapid commercialization of the superconducting materials. The potential for producing fibrous samples of the YBa2Cu3O(7-x) compound by the piggyback process is being studied. Various organic and acrylic materials were studied to determine suspending ability, reactivity with the YBa2Cu3O(7-x) compound during long term storage, and burn out characteristics. While many questions were answered with respect to the interfacial reactions between YBa2Cu3O(7-x) and carbon, much work is still necessary to improve the quality of the sintered material if the fibers produced are to be incorporated into useful composite or cables.
Process development and tooling design for intrinsic hybrid composites
NASA Astrophysics Data System (ADS)
Riemer, M.; Müller, R.; Drossel, W. G.; Landgrebe, D.
2017-09-01
Hybrid parts, which combine the advantages of different material classes, are moving into the focus of lightweight applications. This development is amplified by their high potential for usage in the field of crash relevant structures. By the current state of the art, hybrid parts are mainly made in separate, subsequent forming and joining processes. By using the concept of an intrinsic hybrid, the shaping of the part and the joining of the different materials are performed in a single process step for shortening the overall processing time and thereby the manufacturing costs. The investigated hybrid part is made from continuous fibre reinforced plastic (FRP), in which a metallic reinforcement structure is integrated. The connection between these layered components is realized by a combination of adhesive bonding and a geometrical form fit. The form fit elements are intrinsically generated during the forming process. This contribution regards the development of the forming process and the design of the forming tool for the single step production of a hybrid part. To this end a forming tool, which combines the thermo-forming and the metal forming process, is developed. The main challenge by designing the tool is the temperature management of the tool elements for the variothermal forming process. The process parameters are determined in basic tests and finite element (FE) simulation studies. On the basis of these investigations a control concept for the steering of the motion axes and the tool temperature is developed. Forming tests are carried out with the developed tool and the manufactured parts are analysed by computer assisted tomography (CT) scans.
Liquid Crystalline Thermosets from Ester, Ester-Imide, and Ester-Amide Oligomers
NASA Technical Reports Server (NTRS)
Dingemans, Theodornus J. (Inventor); Weiser, Erik S. (Inventor); SaintClair, Terry L. (Inventor)
2005-01-01
Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,OOO grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. These properties make the end-capped liquid crystal oligomers highly processable by a variety of melt process shape forming and blending techniques including film extrusion, fiber spinning, reactive injection molding (RIM), resin transfer molding (RTM), resin film injection (RFI), powder molding, pultrusion, injection molding, blow molding, plasma spraying and thermo-forming. Once processed and shaped, the end- capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures. The resulting thermosets display many properties that are superior to their non-end-capped high molecular weight analogs.
Liquid crystalline thermosets from ester, ester-imide, and ester-amide oligomers
NASA Technical Reports Server (NTRS)
Dingemans, Theodorous J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)
2005-01-01
Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. These properties make the end-capped liquid crystal oligomers highly processable by a variety of melt process shape forming and blending techniques including film extrusion, fiber spinning, reactive injection molding (RIM), resin transfer molding (RTM), resin film injection (RFI), powder molding, pultrusion, injection molding, blow molding, plasma spraying and thermo-forming. Once processed and shaped, the end-capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures. The resulting thermosets display many properties that are superior to their non-end-capped high molecular weight analogs.
PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES
Hamilton, N.E.
1957-12-01
A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.
NASA Technical Reports Server (NTRS)
Quilligan, Gerard; DeMonthier, Jeffrey; Suarez, George
2011-01-01
This innovation addresses challenges in lidar imaging, particularly with the detection scheme and the shapes of the detected signals. Ideally, the echoed pulse widths should be extremely narrow to resolve fine detail at high event rates. However, narrow pulses require wideband detection circuitry with increased power dissipation to minimize thermal noise. Filtering is also required to shape each received signal into a form suitable for processing by a constant fraction discriminator (CFD) followed by a time-to-digital converter (TDC). As the intervals between the echoes decrease, the finite bandwidth of the shaping circuits blends the pulses into an analog signal (luminance) with multiple modes, reducing the ability of the CFD to discriminate individual events
NASA Astrophysics Data System (ADS)
McHugh, K. M.; Key, J. F.
The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be designed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yaping; Jiang, Longtao, E-mail: longtaojiang@163.com; Chen, Guoqin
2016-03-15
In the present work, carbon fiber reinforced magnesium-gadolinium composite was fabricated by pressure infiltration method. The phase composition, micro-morphology, and crystal structure of reaction products and precipitates at the interface of the composite were investigated. Scanning electron microscopy and energy dispersive spectroscopy analysis revealed the segregation of gadolinium element at the interface between carbon fiber and matrix alloy. It was shown that block-shaped Gd4C5, GdC2 and nano-sized Gd2O3 were formed at the interface during the fabrication process due to the interfacial reaction. Furthermore, magnesium-gadolinium precipitates including needle-like Mg5Gd (or Mg24Gd5) and thin plate-shaped long period stacking-ordered phase, were also observedmore » at the interface and in the matrix near the interface. The interfacial microstructure and bonding mode were influenced by these interfacial products, which were beneficial for the improvement of the interfacial bonding strength. - Highlights: • Gadolinium element segregated on the surface of carbon fibers. • Block-shaped Gd{sub 4}C{sub 5} and GdC{sub 2} were formed at the interface via chemical reaction. • Gadolinium and oxygen reacted at the interface and formed nano-scaled Gd{sub 2}O{sub 3}. • The precipitates formed in the interface were identified to be Mg{sub 5}Gd (or Mg{sub 24}Gd{sub 5}) and plate-shaped long period stacking-ordered phase.« less
A divergent Pumilio repeat protein family for pre-rRNA processing and mRNA localization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Chen; McCann, Kathleen L.; Wine, Robert N.
Pumilio/feminization of XX and XO animals (fem)-3 mRNA-binding factor (PUF) proteins bind sequence specifically to mRNA targets using a single-stranded RNA-binding domain comprising eight Pumilio (PUM) repeats. PUM repeats have now been identified in proteins that function in pre-rRNA processing, including human Puf-A and yeast Puf6. This is a role not previously ascribed to PUF proteins. In this paper we present crystal structures of human Puf-A that reveal a class of nucleic acid-binding proteins with 11 PUM repeats arranged in an “L”-like shape. In contrast to classical PUF proteins, Puf-A forms sequence-independent interactions with DNA or RNA, mediated by conservedmore » basic residues. We demonstrate that equivalent basic residues in yeast Puf6 are important for RNA binding, pre-rRNA processing, and mRNA localization. Finally, PUM repeats can be assembled into alternative folds that bind to structured nucleic acids in addition to forming canonical eight-repeat crescent-shaped RNA-binding domains found in classical PUF proteins.« less
A divergent Pumilio repeat protein family for pre-rRNA processing and mRNA localization
Qiu, Chen; McCann, Kathleen L.; Wine, Robert N.; ...
2014-12-15
Pumilio/feminization of XX and XO animals (fem)-3 mRNA-binding factor (PUF) proteins bind sequence specifically to mRNA targets using a single-stranded RNA-binding domain comprising eight Pumilio (PUM) repeats. PUM repeats have now been identified in proteins that function in pre-rRNA processing, including human Puf-A and yeast Puf6. This is a role not previously ascribed to PUF proteins. In this paper we present crystal structures of human Puf-A that reveal a class of nucleic acid-binding proteins with 11 PUM repeats arranged in an “L”-like shape. In contrast to classical PUF proteins, Puf-A forms sequence-independent interactions with DNA or RNA, mediated by conservedmore » basic residues. We demonstrate that equivalent basic residues in yeast Puf6 are important for RNA binding, pre-rRNA processing, and mRNA localization. Finally, PUM repeats can be assembled into alternative folds that bind to structured nucleic acids in addition to forming canonical eight-repeat crescent-shaped RNA-binding domains found in classical PUF proteins.« less
[Intraosseous veins of the maxilla in the newborn].
Bogdanov, R A
1975-12-01
The intraosseous veins of the maxilla in newborns grow larger with enlargement of the bone and become disposed in three mutually perpendicular planes. The venous plexus of the alveolar process is large. V. v. vallares are thin and interlace forming a network. The veins of interdental septum are well pronounced. The thick venous network of the periosteum and the mucous membrane of the nasal surface of the palatine process includes the vessels transversal and longitudinal to the nasal septum. The venous loops of the incisor part are of triangular, pentagonal and polygonal shape. The veins of the palatine process are connected with 3-4 large vessels falling into the vessels of the tear duct. The transversal and oblique veins of the oral surface of the palatine process are connected with large vessels disposed in parallel to the medial structure of the hard palate. The venous network of the incisor part of the bone is restricted by densified small arc-shaped plexuses. Two-three largest veins lie sagittally and, connected by arc-shaped anastomoses, are tributaries of the vessels of the palate bone, soft palate and pharynx.
Alvarez, J.L.; Watson, L.D.
1988-01-21
An apparatus and method for continuously analyzing liquids by creating a supersonic spray which is shaped and sized prior to delivery of the spray to a analysis apparatus. The gas and liquid is sheared into small particles which are of a size and uniformity to form a spray which can be controlled through adjustment of pressures and gas velocity. The spray is shaped by a concentric supplemental flow of gas. 5 figs.
Bernard, Samuel; Miele, Philippe
2014-01-01
Boron nitride (BN) is a III-V compound which is the focus of important research since its discovery in the early 19th century. BN is electronic to carbon and thus, in the same way that carbon exists as graphite, BN exists in the hexagonal phase. The latter offers an unusual combination of properties that cannot be found in any other ceramics. However, these properties closely depend on the synthesis processes. This review states the recent developments in the preparation of BN through the chemistry, shaping and ceramic conversion of borazine derivatives. This concept denoted as Polymer-Derived Ceramics (PDCs) route allows tailoring the chemistry of precursors to elaborate complex BN shapes which cannot be obtained by conventional process. The effect of the chemistry of the molecular precursors, i.e., borazine and trichloroborazine, and their polymeric derivatives i.e., polyborazylene and poly[tri(methylamino)borazine], in which the specific functional groups and structural motifs determine the shaping potential by conventional liquid-phase process and plastic-forming techniques is discussed. Nanotubes, nano-fibers, coatings, monoliths and fiber-reinforced matrix composites are especially described. This leads to materials which are of significant engineering interest. PMID:28788257
Bernard, Samuel; Miele, Philippe
2014-11-21
Boron nitride (BN) is a III-V compound which is the focus of important research since its discovery in the early 19th century. BN is electronic to carbon and thus, in the same way that carbon exists as graphite, BN exists in the hexagonal phase. The latter offers an unusual combination of properties that cannot be found in any other ceramics. However, these properties closely depend on the synthesis processes. This review states the recent developments in the preparation of BN through the chemistry, shaping and ceramic conversion of borazine derivatives. This concept denoted as Polymer-Derived Ceramics (PDCs) route allows tailoring the chemistry of precursors to elaborate complex BN shapes which cannot be obtained by conventional process. The effect of the chemistry of the molecular precursors, i.e. , borazine and trichloroborazine, and their polymeric derivatives i.e. , polyborazylene and poly[tri(methylamino)borazine], in which the specific functional groups and structural motifs determine the shaping potential by conventional liquid-phase process and plastic-forming techniques is discussed. Nanotubes, nano-fibers, coatings, monoliths and fiber-reinforced matrix composites are especially described. This leads to materials which are of significant engineering interest.
Wilson, Thomas S.; Bearinger, Jane P.
2017-08-29
New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.
Wilson, Thomas S.; Bearinger, Jane P.
2015-06-09
New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.
Robot-based additive manufacturing for flexible die-modelling in incremental sheet forming
NASA Astrophysics Data System (ADS)
Rieger, Michael; Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd
2017-10-01
The paper describes the application concept of additive manufactured dies to support the robot-based incremental sheet metal forming process (`Roboforming') for the production of sheet metal components in small batch sizes. Compared to the dieless kinematic-based generation of a shape by means of two cooperating industrial robots, the supporting robot models a die on the back of the metal sheet by using the robot-based fused layer manufacturing process (FLM). This tool chain is software-defined and preserves the high geometrical form flexibility of Roboforming while flexibly generating support structures adapted to the final part's geometry. Test series serve to confirm the feasibility of the concept by investigating the process challenges of the adhesion to the sheet surface and the general stability as well as the influence on the geometric accuracy compared to the well-known forming strategies.
Vacuum Plasma Spray (VPS) Forming of Solar Thermal Propulsion Components Using Refractory Metals
NASA Technical Reports Server (NTRS)
Zimmerman, Frank; Gerish, Harold; Davis, William; Hissam, D. Andy
1998-01-01
The Thermal Spray Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using Vacuum Plasma Spray (VPS) to form structural components from a tungsten/rhenium alloy. The components were assembled into an absorption cavity for a fully-functioning, ground test unit of a solar thermal propulsion engine. The VPS process deposits refractory metal onto a graphite mandrel of the desired shape. The mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the deposit. Tungsten and tungsten/25% rhenium were used in the development and production of several absorber cavity components. These materials were selected for their high temperature (less than 2500 C) strength. Each absorber cavity comprises 3 coaxial shells with two, double-helical flow passages through which the propellant gas flows. This paper describes the processing techniques, design considerations, and process development associated with forming these engine components.
Geometrical frustration yields fibre formation in self-assembly
NASA Astrophysics Data System (ADS)
Lenz, Martin; Witten, Thomas A.
2017-11-01
Controlling the self-assembly of supramolecular structures is vital for living cells, and a central challenge for engineering at the nano- and microscales. Nevertheless, even particles without optimized shapes can robustly form well-defined morphologies. This is the case in numerous medical conditions where normally soluble proteins aggregate into fibres. Beyond the diversity of molecular mechanisms involved, we propose that fibres generically arise from the aggregation of irregular particles with short-range interactions. Using a minimal model of ill-fitting, sticky particles, we demonstrate robust fibre formation for a variety of particle shapes and aggregation conditions. Geometrical frustration plays a crucial role in this process, and accounts for the range of parameters in which fibres form as well as for their metastable character.
Microelectromechanical reciprocating-tooth indexing apparatus
Allen, James J.
1999-01-01
An indexing apparatus is disclosed that can be used to rotate a gear or move a rack in a precise, controllable manner. The indexing apparatus, based on a reciprocating shuttle driven by one or more actuators, can be formed either as a micromachine, or as a millimachine. The reciprocating shuttle of the indexing apparatus can be driven by a thermal, electrostatic or electromagnetic actuator, with one or more wedge-shaped drive teeth of the shuttle being moveable to engage and slide against indexing teeth on the gear or rack, thereby moving the gear or rack. The indexing apparatus can be formed by either surface micromachining processes or LIGA processes, depending on the size of the apparatus that is to be formed.
Townson, Jason L.; Lin, Yu-Shen; Chou, Stanley S.; ...
2014-12-08
Structural preservation of complex biological systems from the subcellular to whole organism level in robust forms, enabling dissection and imaging while preserving 3D context, represents an enduring grand challenge in biology. Here we report a simple immersion method for structurally preserving intact organisms via conformal stabilization within silica. This self-limiting process, which we refer to as silica bioreplication, occurs by condensation of water-soluble silicic acid proximally to biomolecular interfaces throughout the organism. Conformal nanoscopic silicification of all biomolecular features imparts structural rigidity enabling the preservation of shape and nano-to-macroscale dimensional features upon drying to form a biocomposite and further highmore » temperature oxidative calcination to form silica replicas or reductive pyrolysis to form electrically conductive carbon replicas of complete organisms. Ultimately, the simplicity and generalizability of this approach should facilitate efforts in biological preservation and analysis and could enable the development of new classes of biomimetic composite materials.« less
Cooper, Sam; Sadok, Amine; Bousgouni, Vicky; Bakal, Chris
2015-01-01
Melanoma cells can adopt two functionally distinct forms, amoeboid and mesenchymal, which facilitates their ability to invade and colonize diverse environments during the metastatic process. Using quantitative imaging of single living tumor cells invading three-dimensional collagen matrices, in tandem with unsupervised computational analysis, we found that melanoma cells can switch between amoeboid and mesenchymal forms via two different routes in shape space—an apolar and polar route. We show that whereas particular Rho-family GTPases are required for the morphogenesis of amoeboid and mesenchymal forms, others are required for transitions via the apolar or polar route and not amoeboid or mesenchymal morphogenesis per se. Altering the transition rates between particular routes by depleting Rho-family GTPases can change the morphological heterogeneity of cell populations. The apolar and polar routes may have evolved in order to facilitate conversion between amoeboid and mesenchymal forms, as cells are either searching for, or attracted to, particular migratory cues, respectively. PMID:26310441
Shape-morphing composites with designed micro-architectures
NASA Astrophysics Data System (ADS)
Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; Wilson, Thomas S.; Spadaccini, Christopher M.; Lewicki, James P.
2016-06-01
Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designed for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. The ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.
Method of fabricating an imaging X-ray spectrometer
NASA Technical Reports Server (NTRS)
Alcorn, G. E. (Inventor); Burgess, A. S. (Inventor)
1986-01-01
A process for fabricating an X-ray spectrometer having imaging and energy resolution of X-ray sources is discussed. The spectrometer has an array of adjoinging rectangularly shaped detector cells formed in a silicon body. The walls of the cells are created by laser drilling holes completely through the silicon body and diffusing n(+) phosphorous doping material therethrough. A thermally migrated aluminum electrode is formed centrally through each of the cells.
Self-constructed tree-shape high thermal conductivity nanosilver networks in epoxy.
Pashayi, Kamyar; Fard, Hafez Raeisi; Lai, Fengyuan; Iruvanti, Sushumna; Plawsky, Joel; Borca-Tasciuc, Theodorian
2014-04-21
We report the formation of high aspect ratio nanoscale tree-shape silver networks in epoxy, at low temperatures (<150 °C) and atmospheric pressures, that are correlated to a ∼200 fold enhancement of thermal conductivity (κ) of the nanocomposite compared to the polymer matrix. The networks form through a three-step process comprising of self-assembly by diffusion limited aggregation of polyvinylpyrrolidone (PVP) coated nanoparticles, removal of PVP coating from the surface, and sintering of silver nanoparticles in high aspect ratio networked structures. Controlling self-assembly and sintering by carefully designed multistep temperature and time processing leads to κ of our silver nanocomposites that are up to 300% of the present state of the art polymer nanocomposites at similar volume fractions. Our investigation of the κ enhancements enabled by tree-shaped network nanocomposites provides a basis for the development of new polymer nanocomposites for thermal transport and storage applications.
Head-and-face shape variations of U.S. civilian workers
Zhuang, Ziqing; Shu, Chang; Xi, Pengcheng; Bergman, Michael; Joseph, Michael
2016-01-01
The objective of this study was to quantify head-and-face shape variations of U.S. civilian workers using modern methods of shape analysis. The purpose of this study was based on previously highlighted changes in U.S. civilian worker head-and-face shape over the last few decades – touting the need for new and better fitting respirators – as well as the study's usefulness in designing more effective personal protective equipment (PPE) – specifically in the field of respirator design. The raw scan three-dimensional (3D) data for 1169 subjects were parameterized using geometry processing techniques. This process allowed the individual scans to be put in correspondence with each other in such a way that statistical shape analysis could be performed on a dense set of 3D points. This process also cleaned up the original scan data such that the noise was reduced and holes were filled in. The next step, statistical analysis of the variability of the head-and-face shape in the 3D database, was conducted using Principal Component Analysis (PCA) techniques. Through these analyses, it was shown that the space of the head-and-face shape was spanned by a small number of basis vectors. Less than 50 components explained more than 90% of the variability. Furthermore, the main mode of variations could be visualized through animating the shape changes along the PCA axes with computer software in executable form for Windows XP. The results from this study in turn could feed back into respirator design to achieve safer, more efficient product style and sizing. Future study is needed to determine the overall utility of the point cloud-based approach for the quantification of facial morphology variation and its relationship to respirator performance. PMID:23399025
Head-and-face shape variations of U.S. civilian workers.
Zhuang, Ziqing; Shu, Chang; Xi, Pengcheng; Bergman, Michael; Joseph, Michael
2013-09-01
The objective of this study was to quantify head-and-face shape variations of U.S. civilian workers using modern methods of shape analysis. The purpose of this study was based on previously highlighted changes in U.S. civilian worker head-and-face shape over the last few decades - touting the need for new and better fitting respirators - as well as the study's usefulness in designing more effective personal protective equipment (PPE) - specifically in the field of respirator design. The raw scan three-dimensional (3D) data for 1169 subjects were parameterized using geometry processing techniques. This process allowed the individual scans to be put in correspondence with each other in such a way that statistical shape analysis could be performed on a dense set of 3D points. This process also cleaned up the original scan data such that the noise was reduced and holes were filled in. The next step, statistical analysis of the variability of the head-and-face shape in the 3D database, was conducted using Principal Component Analysis (PCA) techniques. Through these analyses, it was shown that the space of the head-and-face shape was spanned by a small number of basis vectors. Less than 50 components explained more than 90% of the variability. Furthermore, the main mode of variations could be visualized through animating the shape changes along the PCA axes with computer software in executable form for Windows XP. The results from this study in turn could feed back into respirator design to achieve safer, more efficient product style and sizing. Future study is needed to determine the overall utility of the point cloud-based approach for the quantification of facial morphology variation and its relationship to respirator performance. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Morphological decomposition of 2-D binary shapes into convex polygons: a heuristic algorithm.
Xu, J
2001-01-01
In many morphological shape decomposition algorithms, either a shape can only be decomposed into shape components of extremely simple forms or a time consuming search process is employed to determine a decomposition. In this paper, we present a morphological shape decomposition algorithm that decomposes a two-dimensional (2-D) binary shape into a collection of convex polygonal components. A single convex polygonal approximation for a given image is first identified. This first component is determined incrementally by selecting a sequence of basic shape primitives. These shape primitives are chosen based on shape information extracted from the given shape at different scale levels. Additional shape components are identified recursively from the difference image between the given image and the first component. Simple operations are used to repair certain concavities caused by the set difference operation. The resulting hierarchical structure provides descriptions for the given shape at different detail levels. The experiments show that the decomposition results produced by the algorithm seem to be in good agreement with the natural structures of the given shapes. The computational cost of the algorithm is significantly lower than that of an earlier search-based convex decomposition algorithm. Compared to nonconvex decomposition algorithms, our algorithm allows accurate approximations for the given shapes at low coding costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Sangmo; Paranthaman, Mariappan Parans; Noh, Tae Won
The voltage spectroscopies in scanning probe microscopy (SPM) techniques are widely used to investigate the electrochemical processes in nanoscale volumes, which are important for current key applications, such as batteries, fuel cells, catalysts, and memristors. The spectroscopic measurements are commonly performed on a grid of multiple points to yield spatially resolved maps of reversible and irreversible electrochemical functionalities. Hence, the spacing between measurement points is an important parameter to be considered, especially for irreversible electrochemical processes. Here, we report nonlocal electrochemical dynamics in chains of Ag particles fabricated by the SPM tip on a silver ion solid electrolyte. When themore » grid spacing is small compared with the size of the formed Ag particles, anomalous chains of unequally sized particles with double periodicity evolve. This behavior is ascribed to a proximity effect during the tip-induced electrochemical process, specifically, size-dependent silver particle growth following the contact between the particles. In addition, fractal shape evolution of the formed Ag structures indicates that the growth-limiting process changes from Ag +/Ag redox reaction to Ag +-ion diffusion with the increase in the applied voltage and pulse duration. Our study shows that characteristic shapes of the electrochemical products are good indicators for determining the underlying growth-limiting process, and emergence of complex phenomena during spectroscopic mapping of electrochemical functionalities.« less
Study on Pot Forming of Induction Heater Type Rice Cookers by Forging Cast Process
NASA Astrophysics Data System (ADS)
Ohnishi, Masayuki; Yamaguchi, Mitsugi; Ohashi, Osamu
This paper describes a study result on pot fabrication by the forging cast process of stainless steel with aluminum. Rice cooked with the new bowl-shaped pot for the induction heater type rice cookers is better tasting than rice cooked with the conventional cylindrical one, due to the achievement of better heat conduction and convection. The conventional pot is made of the clad sheet, consisting of stainless steel and aluminum. However, it is rather difficult to form a bowl shape from the clad sheet, primarily due to the problem of a material spring back. The fabrication of a new type of a pot was made possible by means of the adoption of a forging cast process instead of the clad sheet. In this process, iron powder is inserted between stainless steel and aluminum in order to alleviate the large difference on the coefficient of expansion between each material. It was made clear that the application of two kinds of iron particle, namely 10 μm size powder on the stainless steel side and 44 μm on the aluminum side, enables the joints to become strong enough. The joint strength of the new pot by this fabrication process was confirmed by the tests of the shear strength and the fatigue tests together with the stress analysis.
Impaired acquisition of novel grapheme-color correspondences in synesthesia
Brang, David; Ghiam, Michael; Ramachandran, Vilayanur S.
2013-01-01
Grapheme-color synesthesia is a neurological phenomenon in which letters and numbers (graphemes) consistently evoke particular colors (e.g., A may be experienced as red). These sensations are thought to arise through the cross-activation of grapheme processing regions in the fusiform gyrus and color area V4, supported by anatomical and functional imaging. However, the developmental onset of grapheme-color synesthesia remains elusive as research in this area has largely relied on self-report of these experiences in children. One possible account suggests that synesthesia is present at or near birth and initially binds basic shapes and forms to colors, which are later refined to grapheme-color associations through experience. Consistent with this view, studies show that similarly shaped letters and numbers tend to elicit similar colors in synesthesia and that some synesthetes consciously associate basic shapes with colors; research additionally suggests that synesthetic colors can emerge for newly learned characters with repeated presentation. This model further predicts that the initial shape-color correspondences in synesthesia may persist as implicit associations, driving the acquisition of colors for novel characters. To examine the presence of latent color associations for novel characters, synesthetes and controls were trained on pre-defined associations between colors and complex shapes, on the assumption that the prescribed shape-color correspondences would on average differ from implicit synesthetic associations. Results revealed synesthetes were less accurate than controls to learn novel shape-color associations, consistent with our suggestion that implicit form-color associations conflicted with the learned pairings. PMID:24198775
Impaired acquisition of novel grapheme-color correspondences in synesthesia.
Brang, David; Ghiam, Michael; Ramachandran, Vilayanur S
2013-01-01
Grapheme-color synesthesia is a neurological phenomenon in which letters and numbers (graphemes) consistently evoke particular colors (e.g., A may be experienced as red). These sensations are thought to arise through the cross-activation of grapheme processing regions in the fusiform gyrus and color area V4, supported by anatomical and functional imaging. However, the developmental onset of grapheme-color synesthesia remains elusive as research in this area has largely relied on self-report of these experiences in children. One possible account suggests that synesthesia is present at or near birth and initially binds basic shapes and forms to colors, which are later refined to grapheme-color associations through experience. Consistent with this view, studies show that similarly shaped letters and numbers tend to elicit similar colors in synesthesia and that some synesthetes consciously associate basic shapes with colors; research additionally suggests that synesthetic colors can emerge for newly learned characters with repeated presentation. This model further predicts that the initial shape-color correspondences in synesthesia may persist as implicit associations, driving the acquisition of colors for novel characters. To examine the presence of latent color associations for novel characters, synesthetes and controls were trained on pre-defined associations between colors and complex shapes, on the assumption that the prescribed shape-color correspondences would on average differ from implicit synesthetic associations. Results revealed synesthetes were less accurate than controls to learn novel shape-color associations, consistent with our suggestion that implicit form-color associations conflicted with the learned pairings.
NASA Astrophysics Data System (ADS)
Beeson, H. W.; McCoy, S. W.; Willett, S.
2016-12-01
Erosional river networks dissect much of Earth's surface into drainage basins. Global scaling laws such as Hack's Law suggest that river basins trend toward a particular scale-invariant shape. While erosional instabilities arising from competition between advective and diffusive processes can explain why headwaters branch, the erosional mechanics linking larger scale network branching with evolution towards a characteristic river basin shape remain poorly constrained. We map river steepness and a proxy for the steady-state elevation of river networks, χ, in simulated and real landscapes with a large range in spatial scale (102 -106 m) but with similar inclined, planar surfaces at the time of incipient network formation. We document that the evolution from narrow rill-like networks to dendritic, leaf-shaped river basins follows from drainage area differences between catchments. These serve as instabilities that grow, leading to divide migration, stream capture, lateral branching and network reorganization. As Horton hypothesized, incipient networks formed down gradient on an inclined, planar surface have an unequal distribution of drainage area and nonuniformity in response times such that larger basins erode more rapidly and branch laterally via capture of adjacent streams with lower erosion rates. Positive feedback owing to increase in drainage area furthers the process of branching at the expense of neighboring rivers. We show that drainage area exchange and the degree of network reorganization has a significant effect on river steepness in the Dragon's Back Pressure Ridge, CA, the Sierra Nevada, CA, and the Rocky Mountain High Plains, USA. Similarly, metrics of basin shape reveal that basins are evolving from narrow basins towards more common leaf shapes. Our results suggest that divide migration and stream capture driven by erosional disequilibrium could be fundamental processes by which river basins reach their characteristic geometry and dendritic form.
Elongated dust particles growth in a spherical glow discharge in ethanol
NASA Astrophysics Data System (ADS)
Fedoseev, A. V.; Sukhinin, G. I.; Sakhapov, S. Z.; Zaikovskii, A. V.; Novopashin, S. A.
2018-01-01
The formation of elongated dust particles in a spherical dc glow discharge in ethanol was observed for the first time. Dust particles were formed in the process of coagulation of ethanol dissociation products in the plasma of gas discharge. During the process the particles were captured into clouds in the electric potential wells of strong striations of spherical discharge. The size and the shape of dust particles are easily detected by naked eye after the illumination of the laser sheet. The description of the experimental setup and conditions, the analysis of size, shape and composition of the particles, the explanation of spatial ordering and orientation of these particles are presented.
DUPoly process for treatment of depleted uranium and production of beneficial end products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalb, P.D.; Adams, J.W.; Lageraaen, P.R.
2000-02-29
The present invention provides a process of encapsulating depleted uranium by forming a homogeneous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships,more » missiles, armor or projectiles.« less
Formation and maintenance of tubular membrane projections: experiments and numerical calculations.
Umeda, Tamiki; Inaba, Takehiko; Ishijima, Akihiko; Takiguchi, Kingo; Hotani, Hirokazu
2008-01-01
To study the mechanical properties of lipid membranes, we manipulated liposomes by using a system comprising polystyrene beads and laser tweezers, and measured the force required to transform their shapes. When two beads pushed the membrane from inside, spherical liposomes transformed into a lemon-shape. Then a discontinuous shape transformation occurred to form a membrane tube from either end of the liposomes, and the force dropped drastically. We analyzed these processes using a mathematical model based on the bending elasticity of the membranes. Numerical calculations showed that when the bead size was taken into account, the model reproduced both the liposomal shape transformation and the force-extension relation. This result suggests that the size of the beads is responsible for the existence of a force barrier for the tube formation.
NASA Astrophysics Data System (ADS)
Chung, Moo K.; Kim, Seung-Goo; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matthew J.; Davidson, Richard J.
2014-03-01
The sparse regression framework has been widely used in medical image processing and analysis. However, it has been rarely used in anatomical studies. We present a sparse shape modeling framework using the Laplace- Beltrami (LB) eigenfunctions of the underlying shape and show its improvement of statistical power. Tradition- ally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes as a form of Fourier descriptors. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we present a LB-based method to filter out only the significant eigenfunctions by imposing a sparse penalty. For dense anatomical data such as deformation fields on a surface mesh, the sparse regression behaves like a smoothing process, which will reduce the error of incorrectly detecting false negatives. Hence the statistical power improves. The sparse shape model is then applied in investigating the influence of age on amygdala and hippocampus shapes in the normal population. The advantage of the LB sparse framework is demonstrated by showing the increased statistical power.
NASA Astrophysics Data System (ADS)
Jeong, Ja Hoon; Kang, In Seok
2000-09-01
Effects of the operating conditions on the crystal-melt interface shape are analytically investigated for the Czochralski process of the oxide single crystals. The ideas, which were used for the silicon single-crystal growth by Jeong et al. (J. Crystal Growth 177 (1997) 157), are extended to the oxide single-crystal growth problem by considering the internal radiation in the crystal phase and the melt phase heat transfer with the high Prandtl number. The interface shape is approximated in the simplest form as a quadratic function of radial position and an expression for the deviation from the flat interface shape is derived as a function of operating conditions. The radiative heat transfer rate between the interface and the ambient is computed by calculating the view factors for the curved interface shape with the assumption that the crystal phase is completely transparent. For the melt phase, the well-known results from the thermal boundary layer analysis are applied for the asymptotic case of high Prandtl number based on the idea that the flow field near the crystal-melt interface can be modeled as either a uniaxial or a biaxial flow. Through this work, essential information on the interface shape deformation and the effects of operating conditions are brought out for the oxide single-crystal growth.
Filmmaking as a Composing Process.
ERIC Educational Resources Information Center
Cox, Carole
1985-01-01
Discusses learning how to compose a film as one way children can learn the valuable lesson of how to give form to ideas and shape to thought. Presents the stages of composing a film and a sequence of filmmaking activities for introduction at progressive grade levels. (HTH)
Helicopter force-feel and stability augmentation system with parallel servo-actuator
NASA Technical Reports Server (NTRS)
Hoh, Roger H. (Inventor)
2006-01-01
A force-feel system is implemented by mechanically coupling a servo-actuator to and in parallel with a flight control system. The servo-actuator consists of an electric motor, a gearing device, and a clutch. A commanded cockpit-flight-controller position is achieved by pilot actuation of a trim-switch. The position of the cockpit-flight-controller is compared with the commanded position to form a first error which is processed by a shaping function to correlate the first error with a commanded force at the cockpit-flight-controller. The commanded force on the cockpit-flight-controller provides centering forces and improved control feel for the pilot. In an embodiment, the force-feel system is used as the basic element of stability augmentation system (SAS). The SAS provides a stabilization signal that is compared with the commanded position to form a second error signal. The first error is summed with the second error for processing by the shaping function.
The efficiency of backward magnetic-pulse processing
NASA Astrophysics Data System (ADS)
Kudasov, Yu. B.; Maslov, D. A.; Surdin, O. M.
2017-01-01
The dependence of the efficiency of magnetic-pulse processing of materials on the pulsed magnetic-field shape has been studied. It is shown that, by using a pulse train instead of a single pulse in the fast-rising component of a magnetic field applied during the backward forming process, it is possible to increase the specific mechanical impulse transferred to a workpiece and, thus, improve the efficiency of processing. Possible applications of the proposed method to removing dents from car chassis and aircraft parts are considered
Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage
Kaucka, Marketa; Zikmund, Tomas; Tesarova, Marketa; Gyllborg, Daniel; Hellander, Andreas; Jaros, Josef; Kaiser, Jozef; Petersen, Julian; Szarowska, Bara; Newton, Phillip T; Dyachuk, Vyacheslav; Li, Lei; Qian, Hong; Johansson, Anne-Sofie; Mishina, Yuji; Currie, Joshua D; Tanaka, Elly M; Erickson, Alek; Dudley, Andrew; Brismar, Hjalmar; Southam, Paul; Coen, Enrico; Chen, Min; Weinstein, Lee S; Hampl, Ales; Arenas, Ernest; Chagin, Andrei S; Fried, Kaj; Adameyko, Igor
2017-01-01
Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale. DOI: http://dx.doi.org/10.7554/eLife.25902.001 PMID:28414273
Active materials by four-dimension printing
NASA Astrophysics Data System (ADS)
Ge, Qi; Qi, H. Jerry; Dunn, Martin L.
2013-09-01
We advance a paradigm of printed active composite materials realized by directly printing glassy shape memory polymer fibers in an elastomeric matrix. We imbue the active composites with intelligence via a programmed lamina and laminate architecture and a subsequent thermomechanical training process. The initial configuration is created by three-dimension (3D) printing, and then the programmed action of the shape memory fibers creates time dependence of the configuration—the four-dimension (4D) aspect. We design and print laminates in thin plate form that can be thermomechanically programmed to assume complex three-dimensional configurations including bent, coiled, and twisted strips, folded shapes, and complex contoured shapes with nonuniform, spatially varying curvature. The original flat plate shape can be recovered by heating the material again. We also show how the printed active composites can be directly integrated with other printed functionalities to create devices; here we demonstrate this by creating a structure that can assemble itself.
Matzen, Laura E.; Taylor, Eric G.; Benjamin, Aaron S.
2010-01-01
It has been suggested that both familiarity and recollection contribute to the recognition decision process. In this paper, we leverage the form of false alarm rate functions—in which false-alarm rates describe an inverted U-shaped function as the time between study and test increases—to assess how these processes support retention of semantic and surface form information from previously studied words. We directly compare the maxima of these functions for lures that are semantically related and lures that are related by surface form to previously studied material. This analysis reveals a more rapid loss of access to surface form than to semantic information. To separate the contributions of item familiarity and reminding-induced recollection rejection to this effect, we use a simple multinomial process model; this analysis reveals that this loss of access reflects both a more rapid loss of familiarity and lower rates of recollection for surface form information. PMID:21240745
NASA Technical Reports Server (NTRS)
Wooden, Diane H.; Lindsay, Sean S.
2011-01-01
Crystalline silicates in comets are a product of the condensation in the hot inner regions (T > or approx. equals 1400 K [1]) of our proto-planetary disk or annealing at somewhat lower temperatures (T > or approx. equals 1000-1200 K) [2, 3, 4] in shocks coupled with disk evolutionary processes that include radial transport of crystals from their formation locations out to the cold outer regions where comet nuclei formed. The grain shape of forsterite (crystals) could be indicative of their formation pathways at high temperatures through vapor-solid condensation or at lower temperatures through vapor-liquid-solid formation and growth [5, 6, 7]. Experiments demonstrate that crystals that formed from a rapidly cooled highly supersaturated silicate vapor are characterized by bulky, platy, columnar/needle and droplet shapes for values of temperature and supersaturation, T and sigma, of 1000-1450 C and < 97, 700-1000 C and 97-161, 580-820 C and 131-230, and <500 C and > 230, respectively [7]. The experimental columnar/needle shapes, which form by vapor-liquid-solid at lower temperatures (<820 C), are extended stacks of plates, where the extension is not correlated with an axial direction: columnar/needles may be extended in the c-axis or a-axis direction, can change directions, and/or are off-kilter or a bit askew extending in a combination of the a- and c-axis direction.
NASA Astrophysics Data System (ADS)
Patou, J.; De Luycker, E.; Bonnaire, R.; Cutard, T.; Bernhart, G.
2018-05-01
In this research work, the influence of the forming process on commingled thermoplastic composite parts mechanical behavior was investigated. The aim of this work is to evaluate the influence of fabric shearing on the mechanical response of composite laminate. Different sheets with a given shear angle are manufactured. Tensile experimental results are compared with the properties obtained from a simple model based on the laminate plate theory for various off angles. Later, the link with a tetrahedron shape 3D part manufactured by punch deep drawing will be made.
NASA Astrophysics Data System (ADS)
Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Ju, Li
2017-01-01
Research on compact manufacturing technology for shape and performance controllability of metallic components can realize the simplification and high-reliability of manufacturing process on the premise of satisfying the requirement of macro/micro-structure. It is not only the key paths in improving performance, saving material and energy, and green manufacturing of components used in major equipments, but also the challenging subjects in frontiers of advanced plastic forming. To provide a novel horizon for the manufacturing in the critical components is significant. Focused on the high-performance large-scale components such as bearing rings, flanges, railway wheels, thick-walled pipes, etc, the conventional processes and their developing situations are summarized. The existing problems including multi-pass heating, wasting material and energy, high cost and high-emission are discussed, and the present study unable to meet the manufacturing in high-quality components is also pointed out. Thus, the new techniques related to casting-rolling compound precise forming of rings, compact manufacturing for duplex-metal composite rings, compact manufacturing for railway wheels, and casting-extruding continuous forming of thick-walled pipes are introduced in detail, respectively. The corresponding research contents, such as casting ring blank, hot ring rolling, near solid-state pressure forming, hot extruding, are elaborated. Some findings in through-thickness microstructure evolution and mechanical properties are also presented. The components produced by the new techniques are mainly characterized by fine and homogeneous grains. Moreover, the possible directions for further development of those techniques are suggested. Finally, the key scientific problems are first proposed. All of these results and conclusions have reference value and guiding significance for the integrated control of shape and performance in advanced compact manufacturing.
When apperceptive agnosia is explained by a deficit of primary visual processing.
Serino, Andrea; Cecere, Roberto; Dundon, Neil; Bertini, Caterina; Sanchez-Castaneda, Cristina; Làdavas, Elisabetta
2014-03-01
Visual agnosia is a deficit in shape perception, affecting figure, object, face and letter recognition. Agnosia is usually attributed to lesions to high-order modules of the visual system, which combine visual cues to represent the shape of objects. However, most of previously reported agnosia cases presented visual field (VF) defects and poor primary visual processing. The present case-study aims to verify whether form agnosia could be explained by a deficit in basic visual functions, rather that by a deficit in high-order shape recognition. Patient SDV suffered a bilateral lesion of the occipital cortex due to anoxia. When tested, he could navigate, interact with others, and was autonomous in daily life activities. However, he could not recognize objects from drawings and figures, read or recognize familiar faces. He was able to recognize objects by touch and people from their voice. Assessments of visual functions showed blindness at the centre of the VF, up to almost 5°, bilaterally, with better stimulus detection in the periphery. Colour and motion perception was preserved. Psychophysical experiments showed that SDV's visual recognition deficits were not explained by poor spatial acuity or by the crowding effect. Rather a severe deficit in line orientation processing might be a key mechanism explaining SDV's agnosia. Line orientation processing is a basic function of primary visual cortex neurons, necessary for detecting "edges" of visual stimuli to build up a "primal sketch" for object recognition. We propose, therefore, that some forms of visual agnosia may be explained by deficits in basic visual functions due to widespread lesions of the primary visual areas, affecting primary levels of visual processing. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.
2004-01-01
The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center, working with the Jet Propulsion Laboratory, has developed and demonstrated a fabrication technique using the VPS process to form anode and cathode sections for a Lorentz force accelerator made from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and deposits the molten metal powder onto a mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions for the inside surface of the anode or cathode of the accelerator. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of Lorentz force accelerator components.
Local field potentials and border ownership: A conjecture about computation in visual cortex.
Zucker, Steven W
2012-01-01
Border ownership is an intermediate-level visual task: it must integrate (upward flowing) image information about edges with (downward flowing) shape information. This highlights the familiar local-to-global aspect of border formation (linking of edge elements to form contours) with the much less studied global-to-local aspect (which edge elements form part of the same shape). To address this task we show how to incorporate certain high-level notions of distance and geometric arrangement into a form that can influence image-based edge information. The center of the argument is a reaction-diffusion equation that reveals how (global) aspects of the distance map (that is, shape) can be "read out" locally, suggesting a solution to the border ownership problem. Since the reaction-diffusion equation defines a field, a possible information processing role for the local field potential can be defined. We argue that such fields also underlie the Gestalt notion of closure, especially when it is refined using modern experimental techniques. An important implication of this theoretical argument is that, if true, then network modeling must be extended to include the substrate surrounding spiking neurons, including glia. Copyright © 2012 Elsevier Ltd. All rights reserved.
Using artificial neural networks to model aluminium based sheet forming processes and tools details
NASA Astrophysics Data System (ADS)
Mekras, N.
2017-09-01
In this paper, a methodology and a software system will be presented concerning the use of Artificial Neural Networks (ANNs) for modeling aluminium based sheet forming processes. ANNs models’ creation is based on the training of the ANNs using experimental, trial and historical data records of processes’ inputs and outputs. ANNs models are useful in cases that processes’ mathematical models are not accurate enough, are not well defined or are missing e.g. in cases of complex product shapes, new material alloys, new process requirements, micro-scale products, etc. Usually, after the design and modeling of the forming tools (die, punch, etc.) and before mass production, a set of trials takes place at the shop floor for finalizing processes and tools details concerning e.g. tools’ minimum radii, die/punch clearance, press speed, process temperature, etc. and in relation with the material type, the sheet thickness and the quality achieved from the trials. Using data from the shop floor trials and forming theory data, ANNs models can be trained and created, and can be used to estimate processes and tools final details, hence supporting efficient set-up of processes and tools before mass production starts. The proposed ANNs methodology and the respective software system are implemented within the EU H2020 project LoCoMaTech for the aluminium-based sheet forming process HFQ (solution Heat treatment, cold die Forming and Quenching).
Disruptive collisions as the origin of 67P/C-G and small bilobate comets
NASA Astrophysics Data System (ADS)
Michel, Patrick; Schwartz, Stephen R.; Jutzi, Martin; Marchi, Simone; Richardson, Derek C.; Zhang, Yun
2016-10-01
Images of comets sent by spacecraft have shown us that bilobate shapes seem to be common in the cometary population. This has been most recently evidenced by the images of comet 67P/C-G obtained by the ESA Rosetta mission, which show a low-density elongated body interpreted as a contact binary. The origin of such bilobate comets has been thought to be primordial because it requires the slow accretion of two bodies that become the two main components of the final object. However, slow accretion does not only occur during the primordial phase of the Solar System, but also later during the reaccumulation processes immediately following collisional disruptions of larger bodies. We perform numerical simulations of disruptions of large bodies. We demonstrate that during the ensuing gravitational phase, in which the generated fragments interact under their mutual gravity, aggregates with bi-lobed or elongated shapes formed form by reaccumulation at speeds that are at or below the range of those assumed in primordial accretion scenarios [1]. The same scenario has been demonstrated to occur in the asteroid belt to explain the origin of asteroid families [2] and has provided insight into the shapes of thus-far observed asteroids such as 25143 Itokawa [3]. Here we show that it is also a more general outcome that applies to disruption events in the outer Solar System. Moreover, we show that high temperature regions are very localized during the impact process, which solves the problem of the survival of organics and volatiles in the collisional process. The advantage of this scenario for the formation of small bilobate shapes, including 67P/C-G, is that it does not necessitate a primordial origin, as such disruptions can occur at later stages of the Solar System. This demonstrates how such comets can be relatively young, consistent with other studies that show that these shapes are unlikely to be formed early on and survive the entire history of the Solar System [4].[1] Schwartz, S.R. et al. 2016, in preparation; [2] Michel, P. et al. 2001, Science 294, 1696; [3] Michel, P., Richardson, D.C. 2013, A&A 554, L1; [4] Jutzi, M. et al. 2016 submitted to A&A.
New Insights into Shape Memory Alloy Bimorph Actuators Formed by Electron Beam Evaporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Hao; Nykypanchuk, Dmytro
In order to create shape memory alloy (SMA) bimorph microactuators with high-precision features, a novel fabrication process combined with electron beam (E-beam) evaporation, lift-off resist and isotropic XeF2 dry etching method was developed. To examine the effect of E-beam deposition and annealing process on nitinol (NiTi) characteristics, the NiTi thin film samples with different deposition rate and overflow conditions during annealing process were investigated. With the characterizations using scanning electron microscope and x-ray diffraction, the results indicated that low E-beam deposition rate and argon employed annealing process could benefit the formation of NiTi crystalline structure. In addition, SMA bimorph microactuatorsmore » with high-precision features as small as 5 microns were successfully fabricated. Furthermore, the thermomechanical performance was experimentally verified and compared with finite element analysis simulation results.« less
Permanent wire splicing by an explosive joining process
NASA Technical Reports Server (NTRS)
Bement, Laurence J. (Inventor); Kushnick, Anne C. (Inventor)
1991-01-01
The invention is an apparatus and method for wire splicing using an explosive joining process. The apparatus consists of a prebent, U-shaped strap of metal that slides over prepositioned wires. A standoff means separates the wires from the strap before joining. An adhesive means holds two ribbon explosives in position centered over the U-shaped strap. A detonating means connects to the ribbon explosives. The process involves spreading strands of each wire to be joined into a flat plane. The process then requires alternating each strand in alignment to form a mesh-like arrangement with an overlapped area. The strap slides over the strands of the wires, and the standoff means is positioned between the two surfaces. The detonating means then initiates the ribbon explosives that drive the strap to accomplish a high velocity, angular collision between the mating surfaces. This collision creates surface melts and collision bonding results in electron sharing linkups.
Boyle, Michael J.
1994-01-01
Cementitious compositions useful as lightweight aggregates are formed from a blend of spent bed material from fluidized bed combustion and fly ash. The proportions of the blend are chosen so that ensuing reactions eliminate undesirable constituents. The blend is then mixed with water and formed into a shaped article. The shaped article is preferably either a pellet or a "brick" shape that is later crushed. The shaped articles are cured at ambient temperature while saturated with water. It has been found that if used sufficiently, the resulting aggregate will exhibit minimal dimensional change over time. The aggregate can be certified by also forming standardized test shapes, e.g., cylinders while forming the shaped articles and measuring the properties of the test shapes using standardized techniques including X-ray diffraction.
Study of the solid state of carbamazepine after processing with gas anti-solvent technique.
Moneghini, M; Kikic, I; Voinovich, D; Perissutti, B; Alessi, P; Cortesi, A; Princivalle, F; Solinas, D
2003-09-01
The purpose of this study was to investigate the influence of supercritical CO2 processing on the physico-chemical properties of carbamazepine, a poorly soluble drug. The gas anti-solvent (GAS) technique was used to precipitate the drug from three different solvents (acetone, ethylacetate and dichloromethane) to study how they would affect the final product. The samples were analysed before and after treatment by scanning electron microscopy analysis and laser granulometry for possible changes in the habitus of the crystals. In addition, the solid state of the samples was studied by means of X-ray powder diffraction, differential scanning calorimetry, diffuse reflectance Fourier-transform infrared spectroscopy and hot stage microscopy. Finally, the in vitro dissolution tests were carried out. The solid state analysis of both samples untreated and treated with CO2, showed that the applied method caused a transition from the starting form III to the form I as well as determined a dramatic change of crystal morphology, resulting in needle-shaped crystals, regardless of the chosen solvent. In order to identify which process was responsible for the above results, carbamazepine was further precipitated from the same three solvents by traditional evaporation method (RV-samples). On the basis of this cross-testing, the solvents were found to be responsible for the reorganisation into a different polymorphic form, and the potential of the GAS process to produce micronic needle shaped particles, with an enhanced dissolution rate compared to the RV-carbamazepine, was ascertained.
40 CFR 463.2 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY General Provisions § 463.2 General definitions... part: (a) “Plastics molding and forming” is a manufacturing process in which plastic materials are...” is any raw, service, recycled, or reused water that contacts the plastic product or contacts shaping...
3 CFR 8454 - Proclamation 8454 of November 19, 2009. National Entrepreneurship Week, 2009
Code of Federal Regulations, 2010 CFR
2010-01-01
... America A Proclamation Throughout our history, American entrepreneurs have been an effective force for..., they have pioneered technologies, products, and processes that have improved lives and shaped the... and technologies. The recently formed Office of Innovation and Entrepreneurship at the Department of...
A low cost, disposable cable-shaped Al-air battery for portable biosensors
NASA Astrophysics Data System (ADS)
Fotouhi, Gareth; Ogier, Caleb; Kim, Jong-Hoon; Kim, Sooyeun; Cao, Guozhong; Shen, Amy Q.; Kramlich, John; Chung, Jae-Hyun
2016-05-01
A disposable cable-shaped flexible battery is presented using a simple, low cost manufacturing process. The working principle of an aluminum-air galvanic cell is used for the cable-shaped battery to power portable and point-of-care medical devices. The battery is catalyzed with a carbon nanotube (CNT)-paper matrix. A scalable manufacturing process using a lathe is developed to wrap a paper layer and a CNT-paper matrix on an aluminum wire. The matrix is then wrapped with a silver-plated copper wire to form the battery cell. The battery is activated through absorption of electrolytes including phosphate-buffered saline, NaOH, urine, saliva, and blood into the CNT-paper matrix. The maximum electric power using a 10 mm-long battery cell is over 1.5 mW. As a demonstration, an LED is powered using two groups of four batteries in parallel connected in series. Considering the material composition and the cable-shaped configuration, the battery is fully disposable, flexible, and potentially compatible with portable biosensors through activation by either reagents or biological fluids.
Rapid solidification processing system for producing molds, dies and related tooling
McHugh, Kevin M.
2004-06-08
A system for the spray forming manufacturing of near-net-shape molds, dies and related toolings, wherein liquid material such as molten metal, metallic alloys, or polymers are atomized into fine droplets by a high temperature, high velocity gas and deposited onto a pattern. Quenching of the in-flight atomized droplets provides a heat sink, thereby allowing undercooled and partially solidified droplets to be formed in-flight. Composites can be formed by combining the atomized droplets with solid particles such as powders, whiskers or fibers.
Geometrical accuracy improvement in flexible roll forming lines
NASA Astrophysics Data System (ADS)
Larrañaga, J.; Berner, S.; Galdos, L.; Groche, P.
2011-01-01
The general interest to produce profiles with variable cross section in a cost-effective way has increased in the last few years. The flexible roll forming process allows producing profiles with variable cross section lengthwise in a continuous way. Until now, only a few flexible roll forming lines were developed and built up. Apart from the flange wrinkling along the transition zone of u-profiles with variable cross section, the process limits have not been investigated and solutions for shape deviations are unknown. During the PROFOM project a flexible roll forming machine has been developed with the objective of producing high technological components for automotive body structures. In order to investigate the limits of the process, different profile geometries and steel grades including high strength steels have been applied. During the first experimental tests, several errors have been identified, as a result of the complex stress states generated during the forming process. In order to improve the accuracy of the target profiles and to meet the tolerance demands of the automotive industry, a thermo-mechanical solution has been proposed. Additional mechanical devices, supporting flexible the roll forming process, have been implemented in the roll forming line together with local heating techniques. The combination of both methods shows a significant increase of the accuracy. In the present investigation, the experimental results of the validation process are presented.
Ray, Poulomi; Chapman, Susan C
2015-01-01
Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.
Ray, Poulomi; Chapman, Susan C.
2015-01-01
Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis. PMID:26237312
Roll forming of eco-friendly stud
NASA Astrophysics Data System (ADS)
Keum, Y. T.; Lee, S. Y.; Lee, T. H.; Sim, J. K.
2013-12-01
In order to manufacture an eco-friendly stud, the sheared pattern is designed by the Taguchi method and expanded by the side rolls. The seven geometrical shape of sheared pattern are considered in the structural and thermal analyses to select the best functional one in terms of the durability and fire resistance of dry wall. For optimizing the size of the sheared pattern chosen, the L9 orthogonal array and smaller-the-better characteristics of the Taguchi method are used. As the roll gap causes forming defects when the upper-and-lower roll type is adopted for expanding the sheared pattern, the side roll type is introduced. The stress and strain distributions obtained by the FEM simulation of roll-forming processes are utilized for the design of expanding process. The expanding process by side rolls shortens the length of expanding process and minimizes the cost of dies. Furthermore, the stud manufactured by expanding the sheared pattern of the web is an eco-friend because of the scrapless roll-forming process. In addition, compared to the conventionally roll-formed stud, the material cost is lessened about 13.6% and the weight is lightened about 15.5%.
Mehndiratta, Aditi; Bembalagi, Mahantesh; Patil, Raghunath
2017-12-27
To assess the different forms of maxillary central incisors (MCI) and determine their association with the shape of the face for men and women. A total of 200 subjects (100 women, 100 men) aged between 18 and 30 years with healthy dentition were randomly selected from K.L.E. V.K Institute of Dental Sciences, Belagavi, India. Two standardized photographs (portrait and shape of the MCI) were taken for each subject and opened in AutoCAD 2009 software that was used to prepare technical drawings of face and tooth forms. The dental ratios (extent of line TA: extent of line TB) obtained after the tracings, were classified as tapered (≤0.61), ovoid (>0.61 and <0.69), or square (≥0.70). This classification was used to relate tooth form to the shape of the face and compare the form of MCI between men and women. Association between the shape of the MCI and the face was determined by Chi-square test using R 3.3.1 software. The most prevalent tooth form among the subjects was ovoid (women, 32%; men, 31%) followed by tapered (women, 13%; men, 16%). The least prevalent shape was square (women, 5%; men, 3%). The most prevalent face shape was tapered (women, 34%; men, 25%) followed by ovoid (women, 15%; men, 22%) and the least prevalent was square (women, 1%; men, 3%). An association between face shape and tooth form was statistically not significant. The most prevalent tooth form in both men and women was ovoid, and the least prevalent was square. The association between face shape and tooth form was not significant and did not abide by William's "Law of Harmony." However, there was an association between face shape and gender. © 2017 by the American College of Prosthodontists.
Strain E?ect on the Instability of Island Formation in Submonolayer Heteroepitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, yugui; Li, Maozhi; Wu, Biao
2009-01-01
Strain e ect on the instability of island formation in submonolayer heteroepitaxy is studied in both thermodynamic and kinetic regimes. By using linear stability analysis, the energy change of an island due to small perturbations is analyzed. A phase diagram is constructed to illustrate the interplay between kinetic processes and strain e ect on the shape instability. Critical island sizes beyond which islands grow unstable are also derived for various growth conditions and can be used to estimate energy parameters. The scaling forms of shape instability are also discussed.
Alvarez, Joseph L.; Watson, Lloyd D.
1989-01-01
An apparatus and method for continuously analyzing liquids by creating a supersonic spray which is shaped and sized prior to delivery of the spray to a analysis apparatus. The gas and liquid are mixed in a converging-diverging nozzle where the liquid is sheared into small particles which are of a size and uniformly to form a spray which can be controlled through adjustment of pressures and gas velocity. The spray is shaped by a concentric supplemental flow of gas.
Improved Gaussian Beam-Scattering Algorithm
NASA Technical Reports Server (NTRS)
Lock, James A.
1995-01-01
The localized model of the beam-shape coefficients for Gaussian beam-scattering theory by a spherical particle provides a great simplification in the numerical implementation of the theory. We derive an alternative form for the localized coefficients that is more convenient for computer computations and that provides physical insight into the details of the scattering process. We construct a FORTRAN program for Gaussian beam scattering with the localized model and compare its computer run time on a personal computer with that of a traditional Mie scattering program and with three other published methods for computing Gaussian beam scattering. We show that the analytical form of the beam-shape coefficients makes evident the fact that the excitation rate of morphology-dependent resonances is greatly enhanced for far off-axis incidence of the Gaussian beam.
NASA Technical Reports Server (NTRS)
Huyse, Luc; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
Free-form shape optimization of airfoils poses unexpected difficulties. Practical experience has indicated that a deterministic optimization for discrete operating conditions can result in dramatically inferior performance when the actual operating conditions are different from the - somewhat arbitrary - design values used for the optimization. Extensions to multi-point optimization have proven unable to adequately remedy this problem of "localized optimization" near the sampled operating conditions. This paper presents an intrinsically statistical approach and demonstrates how the shortcomings of multi-point optimization with respect to "localized optimization" can be overcome. The practical examples also reveal how the relative likelihood of each of the operating conditions is automatically taken into consideration during the optimization process. This is a key advantage over the use of multipoint methods.
Kim, Se-Hee; Choi, Keun-Ho; Cho, Sung-Ju; Choi, Sinho; Park, Soojin; Lee, Sang-Young
2015-08-12
Forthcoming flexible/wearable electronic devices with shape diversity and mobile usability garner a great deal of attention as an innovative technology to bring unprecedented changes in our daily lives. From the power source point of view, conventional rechargeable batteries (one representative example is a lithium-ion battery) with fixed shapes and sizes have intrinsic limitations in fulfilling design/performance requirements for the flexible/wearable electronics. Here, as a facile and efficient strategy to address this formidable challenge, we demonstrate a new class of printable solid-state batteries (referred to as "PRISS batteries"). Through simple stencil printing process (followed by ultraviolet (UV) cross-linking), solid-state composite electrolyte (SCE) layer and SCE matrix-embedded electrodes are consecutively printed on arbitrary objects of complex geometries, eventually leading to fully integrated, multilayer-structured PRISS batteries with various form factors far beyond those achievable by conventional battery technologies. Tuning rheological properties of SCE paste and electrode slurry toward thixotropic fluid characteristics, along with well-tailored core elements including UV-cured triacrylate polymer and high boiling point electrolyte, is a key-enabling technology for the realization of PRISS batteries. This process/material uniqueness allows us to remove extra processing steps (related to solvent drying and liquid-electrolyte injection) and also conventional microporous separator membranes, thereupon enabling the seamless integration of shape-conformable PRISS batteries (including letters-shaped ones) into complex-shaped objects. Electrochemical behavior of PRISS batteries is elucidated via an in-depth analysis of cell impedance, which provides a theoretical basis to enable sustainable improvement of cell performance. We envision that PRISS batteries hold great promise as a reliable and scalable platform technology to open a new concept of cell architecture and fabrication route toward flexible power sources with exceptional shape conformability and aesthetic versatility.
Common developmental pathways link tooth shape to regeneration
Fraser, Gareth J.; Bloomquist, Ryan F.; Streelman, J. Todd
2013-01-01
In many non-mammalian vertebrates, adult dentitions result from cyclical rounds of tooth regeneration wherein simple unicuspid teeth are replaced by more complex forms. Therefore and by contrast to mammalian models, the numerical majority of vertebrate teeth develop shape during the process of replacement. Here, we exploit the dental diversity of Lake Malawi cichlid fishes to ask how vertebrates generally replace their dentition and in turn how this process acts to influence resulting tooth morphologies. First, we used immunohistochemistry to chart organogenesis of continually replacing cichlid teeth and discovered an epithelial down-growth that initiates the replacement cycle via a labial proliferation bias. Next, we identified sets of co-expressed genes from common pathways active during de novo, lifelong tooth replacement and tooth morphogenesis. Of note, we found two distinct epithelial cell populations, expressing markers of dental competence and cell potency, which may be responsible for tooth regeneration. Related gene sets were simultaneously active in putative signaling centers associated with the differentiation of replacement teeth with complex shapes. Finally, we manipulated targeted pathways (BMP, FGF, Hh, Notch, Wnt/β-catenin) in vivo with small molecules and demonstrated dose-dependent effects on both tooth replacement and tooth shape. Our data suggest that the processes of tooth regeneration and tooth shape morphogenesis are integrated via a common set of molecular signals. This linkage has subsequently been lost or decoupled in mammalian dentitions where complex tooth shapes develop in first generation dentitions that lack the capacity for lifelong replacement. Our dissection of the molecular mechanics of vertebrate tooth replacement coupled to complex shape pinpoints aspects of odontogenesis that might be re-evolved in the lab to solve problems in regenerative dentistry. PMID:23422830
Gohel, Bakul; Lee, Peter; Jeong, Yong
2016-08-01
Brain regions that respond to more than one sensory modality are characterized as multisensory regions. Studies on the processing of shape or object information have revealed recruitment of the lateral occipital cortex, posterior parietal cortex, and other regions regardless of input sensory modalities. However, it remains unknown whether such regions show similar (modality-invariant) or different (modality-specific) neural oscillatory dynamics, as recorded using magnetoencephalography (MEG), in response to identical shape information processing tasks delivered to different sensory modalities. Modality-invariant or modality-specific neural oscillatory dynamics indirectly suggest modality-independent or modality-dependent participation of particular brain regions, respectively. Therefore, this study investigated the modality-specificity of neural oscillatory dynamics in the form of spectral power modulation patterns in response to visual and tactile sequential shape-processing tasks that are well-matched in terms of speed and content between the sensory modalities. Task-related changes in spectral power modulation and differences in spectral power modulation between sensory modalities were investigated at source-space (voxel) level, using a multivariate pattern classification (MVPC) approach. Additionally, whole analyses were extended from the voxel level to the independent-component level to take account of signal leakage effects caused by inverse solution. The modality-specific spectral dynamics in multisensory and higher-order brain regions, such as the lateral occipital cortex, posterior parietal cortex, inferior temporal cortex, and other brain regions, showed task-related modulation in response to both sensory modalities. This suggests modality-dependency of such brain regions on the input sensory modality for sequential shape-information processing. Copyright © 2016 Elsevier B.V. All rights reserved.
Analyzing Multimodal Interaction within a Classroom Setting
ERIC Educational Resources Information Center
Moura, Heloisa
2006-01-01
Human interactions are multimodal in nature. From simple to complex forms of transferal of information, human beings draw on a multiplicity of communicative modes, such as intonation and gaze, to make sense of everyday experiences. Likewise, the learning process, either within traditional classrooms or Virtual Learning Environments, is shaped by…
Southwestern Grassland Ecology
Paulette L. Ford; Deborah U. Potter; Rosemary Pendleton; Burton Pendleton; Wayne A. Robbie; Gerald J. Gottfried
2004-01-01
This chapter provides a brief overview, and selected in-depth coverage, of the factors and processes that have formed, and continue to shape, our Southwestern grasslands. In general, this chapter looks at how distributions of grasslands are regulated by soils and climate, and modified by disturbance (natural and/or anthropogenic). The attendant ecological components of...
Resisting Exile in the "Land of the Free:" Indigenous Groundwork at Colonial Intersections
ERIC Educational Resources Information Center
Clark, D. Anthony Tyeeme; Powell, Malea
2008-01-01
The guest editorialists argue in this introduction that the phrase "indigenous groundwork at colonial intersections" identifies versatile cultural, historical, and social processes that fundamentally--at times devastatingly--shape relations among differently situated life forms on this planet. In short, Indigenous groundwork marks Indigenous…
ERIC Educational Resources Information Center
Tetlow, Linda
2009-01-01
Display took a wide variety of forms ranging from students presenting their initial planning and thought processes, to displays of their finished work, and their suggestions for extending the task should they, or others, have time to return to it in the future. A variety of different media were used from traditional posters in many shapes and…
Method for net-shaping using aerogels
Brinker, C. Jeffrey; Ashey, Carol S.; Reed, Scott T.; Sriram, Chunangad S.; Harris, Thomas M.
2001-01-01
A method of net-shaping using aerogel materials is provided by first forming a sol, aging the sol to form a gel, with the gel having a fluid component and having been formed into a medium selected from the group consisting of a powder, bulk material, or granular aerobeads, derivatizing the surface of the gel to render the surface unreactive toward further condensation, removing a portion of the fluid component of the final shaped gel to form a partially dried medium, placing the medium into a cavity, wherein the volume of said medium is less that the volume of the cavity, and removing a portion of the fluid component of the medium. The removal, such as by heating at a temperature of approximately less than 50.degree. C., applying a vacuum, or both, causes the volume of the medium to increase and to form a solid aerogel. The material can be easily removed by exposing the material to a solvent, thereby reducing the volume of the material. In another embodiment, the gel is derivatized and then formed into a shaped medium, where subsequent drying reduces the volume of the shaped medium, forming a net-shaping material. Upon further drying, the material increases in volume to fill a cavity. The present invention is both a method of net-shaping and the material produced by the method.
Shape-morphing composites with designed micro-architectures
Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; ...
2016-06-15
Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designedmore » for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. As a result, the ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.« less
NASA Astrophysics Data System (ADS)
Isliker, H.; Pisokas, Th.; Strintzi, D.; Vlahos, L.
2010-08-01
A new self-organized criticality (SOC) model is introduced in the form of a cellular automaton (CA) for ion temperature gradient (ITG) mode driven turbulence in fusion plasmas. Main characteristics of the model are that it is constructed in terms of the actual physical variable, the ion temperature, and that the temporal evolution of the CA, which necessarily is in the form of rules, mimics actual physical processes as they are considered to be active in the system, i.e., a heating process and a local diffusive process that sets on if a threshold in the normalized ITG R /LT is exceeded. The model reaches the SOC state and yields ion temperature profiles of exponential shape, which exhibit very high stiffness, in that they basically are independent of the loading pattern applied. This implies that there is anomalous heat transport present in the system, despite the fact that diffusion at the local level is imposed to be of a normal kind. The distributions of the heat fluxes in the system and of the heat out-fluxes are of power-law shape. The basic properties of the model are in good qualitative agreement with experimental results.
NASA Astrophysics Data System (ADS)
Prabhakaran, A.; Jawahar Raj, N.
2018-03-01
The present study attempts to understand the form and geomorphic/hydrologic processes of the 20 watersheds of the Pachamalai hills and its adjoinings located in Tamil Nadu State of southern India from the analysis of its drainage morphometric characteristics. Survey of India's topographic sheets of 1:50,000 is the data source from which stream networks and watersheds of the study area were demarcated followed by the analysis of their morphometric characteristics using ArcGIS software. The results of the analysis formed the basis for deducing the form and processes of the watersheds of the study area. The form of the watersheds inferred from the analysis includes shape, length, slope steepness and length, degree of branching of streams, dissection and elongation of watersheds. The geomorphic/hydrologic processes inferred include denudation rate, potential energy, intensity of erosion, mean annual run off, mean discharge, discharge rate, rock resistivity and infiltration potential, amount of sediment transported, mean annual rainfall, rainfall intensity, lagtime, flash flood potential, flood discharge per unit area, sediment yield and speed of the water flow in the streams. The understanding of variations of form and processes mentioned can be used towards prioritizing the watersheds for development, management and conservation planning.
To shape a cell: an inquiry into the causes of morphogenesis of microorganisms.
Harold, F M
1990-01-01
We recognize organisms first and foremost by their forms, but how they grow and shape themselves still largely passes understanding. The objective of this article is to survey what has been learned of morphogenesis of walled eucaryotic microorganisms as a set of problems in cellular heredity, biochemistry, physiology, and organization. Despite the diversity of microbial forms and habits, some common principles can be discerned. (i) That the form of each organism represents the expression of a genetic program is almost universally taken for granted. However, reflection on the findings with morphologically aberrant mutants suggests that the metaphor of a genetic program is misleading. Cellular form is generated by a web of interacting chemical and physical processes, whose every strand is woven of multiple gene products. The relationship between genes and form is indirect and cumulative; therefore, morphogenesis must be addressed as a problem not of molecular genetics but of cellular physiology. (ii) The shape of walled cells is determined by the manner in which the wall is laid down during growth and development. Turgor pressure commonly, perhaps always, supplies the driving force for surface enlargement. Cells yield to this scalar force by localized, controlled wall synthesis; their forms represent variations on the theme of local compliance with global force. (iii) Growth and division in bacteria display most immediately the interplay of hydrostatic pressure, localized wall synthesis, and structural constraints. Koch's surface stress theory provides a comprehensive and quantitative framework for understanding bacterial shapes. (iv) In the larger and more versatile eucaryotic cells, expansion is mediated by the secretion of vesicles. Secretion and ancillary processes, such as cytoplasmic transport, are spatially organized on the micrometer scale. The diversity of vectorial physiology and of the forms it generates is illustrated by examples: apical growth of fungal hyphae, bud formation in yeasts, germination of fucoid zygotes, and development of cells of Nitella, Closterium, and other unicellular algae. (v) Unicellular organisms, no less than embryos, have a remarkable capacity to impose spatial order upon themselves with or without the help of directional cues. Self-organization is reviewed here from two perspectives: the theoretical exploration of morphogens, gradients, and fields, and experimental study of polarization in Fucus cells, extension of hyphal tips, and pattern formation in ciliates. Here is the heart of the matter, yet self-organization remains nearly as mysterious as it was a century ago, a subject in search of a paradigm. Images PMID:2128368
Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria.
Domínguez-Escobar, Julia; Chastanet, Arnaud; Crevenna, Alvaro H; Fromion, Vincent; Wedlich-Söldner, Roland; Carballido-López, Rut
2011-07-08
The peptidoglycan cell wall and the actin-like MreB cytoskeleton are major determinants of cell shape in rod-shaped bacteria. The prevailing model postulates that helical, membrane-associated MreB filaments organize elongation-specific peptidoglycan-synthesizing complexes along sidewalls. We used total internal reflection fluorescence microscopy to visualize the dynamic relation between MreB isoforms and cell wall synthesis in live Bacillus subtilis cells. During exponential growth, MreB proteins did not form helical structures. Instead, together with other morphogenetic factors, they assembled into discrete patches that moved processively along peripheral tracks perpendicular to the cell axis. Patch motility was largely powered by cell wall synthesis, and MreB polymers restricted diffusion of patch components in the membrane and oriented patch motion.
Improvements on a non-invasive, parameter-free approach to inverse form finding
NASA Astrophysics Data System (ADS)
Landkammer, P.; Caspari, M.; Steinmann, P.
2017-08-01
Our objective is to determine the optimal undeformed workpiece geometry (material configuration) within forming processes when the prescribed deformed geometry (spatial configuration) is given. For solving the resulting shape optimization problem—also denoted as inverse form finding—we use a novel parameter-free approach, which relocates in each iteration the material nodal positions as design variables. The spatial nodal positions computed by an elasto-plastic finite element (FE) forming simulation are compared with their prescribed values. The objective function expresses a least-squares summation of the differences between the computed and the prescribed nodal positions. Here, a recently developed shape optimization approach (Landkammer and Steinmann in Comput Mech 57(2):169-191, 2016) is investigated with a view to enhance its stability and efficiency. Motivated by nonlinear optimization theory a detailed justification of the algorithm is given. Furthermore, a classification according to shape changing design, fixed and controlled nodal coordinates is introduced. Two examples with large elasto-plastic strains demonstrate that using a superconvergent patch recovery technique instead of a least-squares (L2 )-smoothing improves the efficiency. Updating the interior discretization nodes by solving a fictitious elastic problem also reduces the number of required FE iterations and avoids severe mesh distortions. Furthermore, the impact of the inclusion of the second deformation gradient in the Hessian of the Quasi-Newton approach is analyzed. Inverse form finding is a crucial issue in metal forming applications. As a special feature, the approach is designed to be coupled in a non-invasive fashion to arbitrary FE software.
Improvements on a non-invasive, parameter-free approach to inverse form finding
NASA Astrophysics Data System (ADS)
Landkammer, P.; Caspari, M.; Steinmann, P.
2018-04-01
Our objective is to determine the optimal undeformed workpiece geometry (material configuration) within forming processes when the prescribed deformed geometry (spatial configuration) is given. For solving the resulting shape optimization problem—also denoted as inverse form finding—we use a novel parameter-free approach, which relocates in each iteration the material nodal positions as design variables. The spatial nodal positions computed by an elasto-plastic finite element (FE) forming simulation are compared with their prescribed values. The objective function expresses a least-squares summation of the differences between the computed and the prescribed nodal positions. Here, a recently developed shape optimization approach (Landkammer and Steinmann in Comput Mech 57(2):169-191, 2016) is investigated with a view to enhance its stability and efficiency. Motivated by nonlinear optimization theory a detailed justification of the algorithm is given. Furthermore, a classification according to shape changing design, fixed and controlled nodal coordinates is introduced. Two examples with large elasto-plastic strains demonstrate that using a superconvergent patch recovery technique instead of a least-squares (L2)-smoothing improves the efficiency. Updating the interior discretization nodes by solving a fictitious elastic problem also reduces the number of required FE iterations and avoids severe mesh distortions. Furthermore, the impact of the inclusion of the second deformation gradient in the Hessian of the Quasi-Newton approach is analyzed. Inverse form finding is a crucial issue in metal forming applications. As a special feature, the approach is designed to be coupled in a non-invasive fashion to arbitrary FE software.
Thurman, Steven M; Lu, Hongjing
2014-01-01
Visual form analysis is fundamental to shape perception and likely plays a central role in perception of more complex dynamic shapes, such as moving objects or biological motion. Two primary form-based cues serve to represent the overall shape of an object: the spatial position and the orientation of locations along the boundary of the object. However, it is unclear how the visual system integrates these two sources of information in dynamic form analysis, and in particular how the brain resolves ambiguities due to sensory uncertainty and/or cue conflict. In the current study, we created animations of sparsely-sampled dynamic objects (human walkers or rotating squares) comprised of oriented Gabor patches in which orientation could either coincide or conflict with information provided by position cues. When the cues were incongruent, we found a characteristic trade-off between position and orientation information whereby position cues increasingly dominated perception as the relative uncertainty of orientation increased and vice versa. Furthermore, we found no evidence for differences in the visual processing of biological and non-biological objects, casting doubt on the claim that biological motion may be specialized in the human brain, at least in specific terms of form analysis. To explain these behavioral results quantitatively, we adopt a probabilistic template-matching model that uses Bayesian inference within local modules to estimate object shape separately from either spatial position or orientation signals. The outputs of the two modules are integrated with weights that reflect individual estimates of subjective cue reliability, and integrated over time to produce a decision about the perceived dynamics of the input data. Results of this model provided a close fit to the behavioral data, suggesting a mechanism in the human visual system that approximates rational Bayesian inference to integrate position and orientation signals in dynamic form analysis.
Low density biodegradable shape memory polyurethane foams for embolic biomedical applications
Singhal, Pooja; Small, Ward; Cosgriff-Hernandez, Elizabeth; Maitland, Duncan J; Wilson, Thomas S
2014-01-01
Low density shape memory polymer foams hold significant interest in the biomaterials community for their potential use in minimally invasive embolic biomedical applications. The unique shape memory behavior of these foams allows them to be compressed to a miniaturized form, which can be delivered to an anatomical site via a transcatheter process, and thereafter actuated to embolize the desired area. Previous work in this field has described the use of a highly covalently crosslinked polymer structure for maintaining excellent mechanical and shape memory properties at the application-specific ultra low densities. This work is aimed at further expanding the utility of these biomaterials, as implantable low density shape memory polymer foams, by introducing controlled biodegradability. A highly covalently crosslinked network structure was maintained by use of low molecular weight, symmetrical and polyfunctional hydroxyl monomers such as Polycaprolactone triol (PCL-t, Mn 900 g), N,N,N0,N0-Tetrakis (hydroxypropyl) ethylenediamine (HPED), and Tris (2-hydroxyethyl) amine (TEA). Control over the degradation rate of the materials was achieved by changing the concentration of the degradable PCL-t monomer, and by varying the material hydrophobicity. These porous SMP materials exhibit a uniform cell morphology and excellent shape recovery, along with controllable actuation temperature and degradation rate. We believe that they form a new class of low density biodegradable SMP scaffolds that can potentially be used as “smart” non-permanent implants in multiple minimally invasive biomedical applications. PMID:24090987
NASA Technical Reports Server (NTRS)
Hung, Ching-Chen (Inventor)
1999-01-01
A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a percursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be further processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh (Inventor)
1999-01-01
A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be further processed by direct exposure to carbonate-solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.
Finite Element Peen Forming Simulation
NASA Astrophysics Data System (ADS)
Gariépy, Alexandre; Larose, Simon; Perron, Claude; Bocher, Philippe; Lévesque, Martin
Shot peening consists of projecting multiple small particles onto a ductile part in order to induce compressive residual stresses near the surface. Peen forming, a derivative of shot peening, is a process that creates an unbalanced stress state which in turn leads to a deformation to shape thin parts. This versatile and cost-effective process is commonly used to manufacture aluminum wing skins and rocket panels. This paper presents the finite element modelling approach that was developed by the authors to simulate the process. The method relies on shell elements and calculated stress profiles and uses an approximation equation to take into account the incremental nature of the process. Finite element predictions were in good agreement with experimental results for small-scale tests. The method was extended to a hypothetical wing skin model to show its potential applications.
Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. David M. Bowden; Dr. William H. Peter
2012-03-31
The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operationsmore » to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical feasibility studies were performed to identify the most viable approaches to NNS preform fabrication using basic powder metallurgy mill product forms as the building blocks and advanced joining techniques including fusion and solid state joining to assemble these building blocks into efficient machining performs.« less
Near net shape processing of continuous lengths of superconducting wire
Danyluk, Steven; McNallan, Michael; Troendly, Robert; Poeppel, Roger; Goretta, Kenneth; Lanagan, Michael
1997-01-01
A system and method for mechanically forming a ceramic superconductor product. A system for making the ceramic superconductor includes a metallic channel portion having a cross section for receiving a ceramic superconductor powder, a roll to mechanically reduce the channel cross section and included superconductor powder and a cap portion welded to the channel portion using a localized high energy source. The assembled bar is then mechanically reduced to form a tape or wire end product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blue, C.A.; Sikka, V.K.; Chun, Jung-Hoon
1997-04-01
The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets thatmore » can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.« less
DOT National Transportation Integrated Search
1974-03-01
Three experiments were conducted on form discrimination to select and evaluate forms for shape coding of daymarks. The discriminability of the forms was measured by the frequency with which each form was identified correctly and the frequency with wh...
Activated carbon fiber composite material and method of making
Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit
2000-01-01
An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.
Activated carbon fiber composite material and method of making
Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit
2001-01-01
An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.
Vacuum Plasma Spray (VPS) Forming of Solar Thermal Propulsion Components Using Refractory Metals
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.; Hissam, David A.; Gerrish, Harold P.; Davis, William M.
1999-01-01
The Thermal Spray Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using Vacuum Plasma Spray (VPS) to form structural components from a tungsten/rhenium alloy. The components were assembled into an absorber cavity for a fully-functioning, ground test unit of a solar then-nal propulsion engine. The VPS process deposits refractory metal onto a graphite mandrel of the desired shape. The mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the deposit. Tungsten and tungsten/25% rhenium were used in the development and production of several absorber cavity components. These materials were selected for their high temperature (greater than 25000 C [greater than 4530 F]) strength. Each absorber cavity comprises 3 coaxial shells with two, double-helical flow passages through which the propellant gas flows. This paper describes the processing techniques, design considerations, and process development associated with forming these engine components.
Using cell deformation and motion to predict forces and collective behavior in morphogenesis.
Merkel, Matthias; Manning, M Lisa
2017-07-01
In multi-cellular organisms, morphogenesis translates processes at the cellular scale into tissue deformation at the scale of organs and organisms. To understand how biochemical signaling regulates tissue form and function, we must understand the mechanical forces that shape cells and tissues. Recent progress in developing mechanical models for tissues has led to quantitative predictions for how cell shape changes and polarized cell motility generate forces and collective behavior on the tissue scale. In particular, much insight has been gained by thinking about biological tissues as physical materials composed of cells. Here we review these advances and discuss how they might help shape future experiments in developmental biology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cavina-Pratesi, C; Kentridge, R W; Heywood, C A; Milner, A D
2010-10-01
Previous neuroimaging research suggests that although object shape is analyzed in the lateral occipital cortex, surface properties of objects, such as color and texture, are dealt with in more medial areas, close to the collateral sulcus (CoS). The present study sought to determine whether there is a single medial region concerned with surface properties in general or whether instead there are multiple foci independently extracting different surface properties. We used stimuli varying in their shape, texture, or color, and tested healthy participants and 2 object-agnosic patients, in both a discrimination task and a functional MR adaptation paradigm. We found a double dissociation between medial and lateral occipitotemporal cortices in processing surface (texture or color) versus geometric (shape) properties, respectively. In Experiment 2, we found that the medial occipitotemporal cortex houses separate foci for color (within anterior CoS and lingual gyrus) and texture (caudally within posterior CoS). In addition, we found that areas selective for shape, texture, and color individually were quite distinct from those that respond to all of these features together (shape and texture and color). These latter areas appear to correspond to those associated with the perception of complex stimuli such as faces and places.
Rapid Freeform Sheet Metal Forming: Technology Development and System Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiridena, Vijitha; Verma, Ravi; Gutowski, Timothy
The objective of this project is to develop a transformational RApid Freeform sheet metal Forming Technology (RAFFT) in an industrial environment, which has the potential to increase manufacturing energy efficiency up to ten times, at a fraction of the cost of conventional technologies. The RAFFT technology is a flexible and energy-efficient process that eliminates the need for having geometry-specific forming dies. The innovation lies in the idea of using the energy resource at the local deformation area which provides greater formability, process control, and process flexibility relative to traditional methods. Double-Sided Incremental Forming (DSIF), the core technology in RAFFT, ismore » a new concept for sheet metal forming. A blank sheet is clamped around its periphery and gradually deformed into a complex 3D freeform part by two strategically aligned stylus-type tools that follow a pre-described toolpath. The two tools, one on each side of the blank, can form a part with sharp features for both concave and convex shapes. Since deformation happens locally, the forming force at any instant is significantly decreased when compared to traditional methods. The key advantages of DSIF are its high process flexibility, high energy-efficiency, low capital investment, and the elimination of the need for massive amounts of die casting and machining. Additionally, the enhanced formability and process flexibility of DSIF can open up design spaces and result in greater weight savings.« less
Modeling and FE Simulation of Quenchable High Strength Steels Sheet Metal Hot Forming Process
NASA Astrophysics Data System (ADS)
Liu, Hongsheng; Bao, Jun; Xing, Zhongwen; Zhang, Dejin; Song, Baoyu; Lei, Chengxi
2011-08-01
High strength steel (HSS) sheet metal hot forming process is investigated by means of numerical simulations. With regard to a reliable numerical process design, the knowledge of the thermal and thermo-mechanical properties is essential. In this article, tensile tests are performed to examine the flow stress of the material HSS 22MnB5 at different strains, strain rates, and temperatures. Constitutive model based on phenomenological approach is developed to describe the thermo-mechanical properties of the material 22MnB5 by fitting the experimental data. A 2D coupled thermo-mechanical finite element (FE) model is developed to simulate the HSS sheet metal hot forming process for U-channel part. The ABAQUS/explicit model is used conduct the hot forming stage simulations, and ABAQUS/implicit model is used for accurately predicting the springback which happens at the end of hot forming stage. Material modeling and FE numerical simulations are carried out to investigate the effect of the processing parameters on the hot forming process. The processing parameters have significant influence on the microstructure of U-channel part. The springback after hot forming stage is the main factor impairing the shape precision of hot-formed part. The mechanism of springback is advanced and verified through numerical simulations and tensile loading-unloading tests. Creep strain is found in the tensile loading-unloading test under isothermal condition and has a distinct effect on springback. According to the numerical and experimental results, it can be concluded that springback is mainly caused by different cooling rats and the nonhomogengeous shrink of material during hot forming process, the creep strain is the main factor influencing the amount of the springback.
A self-organizing learning account of number-form synaesthesia.
Makioka, Shogo
2009-09-01
Some people automatically and involuntarily "see" mental images of numbers in spatial arrays when they think of numbers. This phenomenon, called number forms, shares three key characteristics with the other types of synaesthesia, within-individual consistency, between-individual variety, and mixture of regularity and randomness. A theoretical framework called SOLA (self-organizing learning account of number forms) is proposed, which explains the generation process of number forms and the origin of those three characteristics. The simulations replicated the qualitative properties of the shapes of number forms, the property that numbers are aligned in order of size, that discontinuity usually occurs at the point of carry, and that continuous lines tend to have many bends.
Evidence for two attentional components in visual working memory.
Allen, Richard J; Baddeley, Alan D; Hitch, Graham J
2014-11-01
How does executive attentional control contribute to memory for sequences of visual objects, and what does this reveal about storage and processing in working memory? Three experiments examined the impact of a concurrent executive load (backward counting) on memory for sequences of individually presented visual objects. Experiments 1 and 2 found disruptive concurrent load effects of equivalent magnitude on memory for shapes, colors, and colored shape conjunctions (as measured by single-probe recognition). These effects were present only for Items 1 and 2 in a 3-item sequence; the final item was always impervious to this disruption. This pattern of findings was precisely replicated in Experiment 3 when using a cued verbal recall measure of shape-color binding, with error analysis providing additional insights concerning attention-related loss of early-sequence items. These findings indicate an important role for executive processes in maintaining representations of earlier encountered stimuli in an active form alongside privileged storage of the most recent stimulus. PsycINFO Database Record (c) 2014 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Mukunda, P. G.; Shailesh, Rao A.; Rao, Shrikantha S.
2010-02-01
Although the manner in which the molten metal flows plays a major role in the formation of the uniform cylinder in centrifugal casting, not much information is available on this topic. The flow in the molten metal differs at various rotational speeds, which in turn affects the final casting. In this paper, the influence of the flow of molten metal of hyper eutectic Al-2Si alloys at various rotational speeds is discussed. At an optimum speed of 800 rpm, a uniform cylinder was formed. For the rotational speeds below and above these speeds, an irregular shaped casting was formed, which is mainly due to the influence of melt. Primary á-Al particles were formed in the tube periphery at low rotational speed, and their sizes and shapes were altered with changes in rotational speeds. The wear test for the inner surface of the casting showed better wear properties for the casting prepared at the optimum speed of rotation.
NASA Astrophysics Data System (ADS)
Kamh, G. M. E.
2005-08-01
The weathering factors act on the recent and archaeological sites through different processes based on the dominant environmental conditions. The net result of weathering is deformation of the original form of construction rock. In the current case study, the main aim is to find out the mechanism of formation of two different weathering forms recorded on many old buildings taking Chester City as a case study. The construction rock in the case study is arenitic sandstone with carbonate content ranging from 0.0 to 15.6%. The sandstone blocks are cemented together by hydraulic lime mortar that can easily be altered chemically to salts by acid rain that dominates at the study area. In case of mortar with worse geotechnical limits than the sandstone blocks, the net result is convex “domal” shape blocks, but in case of mortar with better geotechnical limits than the construction sandstone, the net result of weathering is tafoni “concave” weathering form.
Micro devices using shape memory polymer patches for mated connections
Lee, Abraham P.; Fitch, Joseph P.
2000-01-01
A method and micro device for repositioning or retrieving miniature devices located in inaccessible areas, such as medical devices (e.g., stents, embolic coils, etc.) located in a blood vessel. The micro repositioning or retrieving device and method uses shape memory polymer (SMP) patches formed into mating geometries (e.g., a hoop and a hook) for re-attachment of the deposited medical device to a catheter or guidewire. For example, SMP or other material hoops are formed on the medical device to be deposited in a blood vessel, and SMP hooks are formed on the micro device attached to a guidewire, whereby the hooks on the micro device attach to the hoops on the medical device, or vice versa, enabling deposition, movement, re-deposit, or retrieval of the medical device. By changing the temperature of the SMP hooks, the hooks can be attached to or released from the hoops located on the medical device. An exemplary method for forming the hooks and hoops involves depositing a sacrificial thin film on a substrate, patterning and processing the thin film to form openings therethrough, depositing or bonding SMP materials in the openings so as to be attached to the substrate, and removing the sacrificial thin film.
NASA Astrophysics Data System (ADS)
Stackpoole, Margaret Mary
Use of preceramic polymers offers many advantages over conventional ceramic processing routes. Advantages include being able to plastically form the part, form a pyrolized ceramic material at lower temperatures and form high purity microstructures which are tailorable depending on property requirements. To date preceramic polymers are mostly utilized in the production of low dimensional products such as fibers since loss of volatiles during pyrolysis leads to porosity and large shrinkage (in excess of 30%). These problems have been partially solved by use of active fillers (e.g. Ti, Cr, B). The reactive filler converts to a ceramic material with a volume expansion and this increases the density and reduces shrinkage and porosity. The expansion of the reactive filler thus compensates for the polymer shrinkage if the appropriate volume fraction of filler is present in a reactive atmosphere (e.g. N2 or NH3). This approach has resulted in structural composites with limited success. The present research investigates the possibility of using filled preceramic polymers to form net shaped ceramic composite materials and to investigate the use of these unique composite materials to join and coat ceramics and ceramic composites. The initial research focused on phase and microstructural development of bulk composites from the filled polymer/ceramic systems. A processing technique was developed to insure consistency between different samples and the most promising filler/polymer choices for this application have been determined. The processing temperatures and atmospheres have also been optimized. The work covers processing and characterization of bulk composites, joints and coatings. With careful control of processing near net shape bulk composites were fabricated. Both ambient and high temperature strength and fracture toughness was obtained for these composite systems. The potential of using reactively filled preceramic polymers to process joints and coatings was also investigated. A critical thickness below which crack free joints/coatings could be processed was determined. Finally, mechanical properties of the joints and coatings at ambient and elevated temperatures (including oxidation studies) have been evaluated. The interfacial fracture behavior of the joints and coatings was also evaluated.
Modeling of additive manufacturing processes for metals: Challenges and opportunities
Francois, Marianne M.; Sun, Amy; King, Wayne E.; ...
2017-01-09
Here, with the technology being developed to manufacture metallic parts using increasingly advanced additive manufacturing processes, a new era has opened up for designing novel structural materials, from designing shapes and complex geometries to controlling the microstructure (alloy composition and morphology). The material properties used within specific structural components are also designable in order to meet specific performance requirements that are not imaginable with traditional metal forming and machining (subtractive) techniques.
The Design of Case Products’ Shape Form Information Database Based on NURBS Surface
NASA Astrophysics Data System (ADS)
Liu, Xing; Liu, Guo-zhong; Xu, Nuo-qi; Zhang, Wei-she
2017-07-01
In order to improve the computer design of product shape design,applying the Non-uniform Rational B-splines(NURBS) of curves and surfaces surface to the representation of the product shape helps designers to design the product effectively.On the basis of the typical product image contour extraction and using Pro/Engineer(Pro/E) to extract the geometric feature of scanning mold,in order to structure the information data base system of value point,control point and node vector parameter information,this paper put forward a unified expression method of using NURBS curves and surfaces to describe products’ geometric shape and using matrix laboratory(MATLAB) to simulate when products have the same or similar function.A case study of electric vehicle’s front cover illustrates the access process of geometric shape information of case product in this paper.This method can not only greatly reduce the capacity of information debate,but also improve the effectiveness of computer aided geometric innovation modeling.
Shaped nanocrystal particles and methods for making the same
Alivisatos, A Paul [Oakland, CA; Scher, Erik C [Menlo Park, CA; Manna, Liberato [Berkeley, CA
2011-11-22
Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.
Shaped nanocrystal particles and methods for making the same
Alivisatos, A. Paul; Scher, Erik C; Manna, Liberato
2013-12-17
Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.
Shaped nanocrystal particles and methods for working the same
Alivisatos, A. Paul; Sher, Eric C.; Manna, Liberato
2007-12-25
Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.
Shaped Nonocrystal Particles And Methods For Making The Same
Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato
2005-02-15
Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.
9 CFR 318.23 - Heat-processing and stabilization requirements for uncured meat patties.
Code of Federal Regulations, 2012 CFR
2012-01-01
... requirements for uncured meat patties. 318.23 Section 318.23 Animals and Animal Products FOOD SAFETY AND... uncured meat patties. (a) Definitions. For purposes of this section, the following definitions shall apply: (1) Patty. A shaped and formed, comminuted, flattened cake of meat food product. (2) Comminuted. A...
9 CFR 318.23 - Heat-processing and stabilization requirements for uncured meat patties.
Code of Federal Regulations, 2014 CFR
2014-01-01
... requirements for uncured meat patties. 318.23 Section 318.23 Animals and Animal Products FOOD SAFETY AND... uncured meat patties. (a) Definitions. For purposes of this section, the following definitions shall apply: (1) Patty. A shaped and formed, comminuted, flattened cake of meat food product. (2) Comminuted. A...
9 CFR 318.23 - Heat-processing and stabilization requirements for uncured meat patties.
Code of Federal Regulations, 2013 CFR
2013-01-01
... requirements for uncured meat patties. 318.23 Section 318.23 Animals and Animal Products FOOD SAFETY AND... uncured meat patties. (a) Definitions. For purposes of this section, the following definitions shall apply: (1) Patty. A shaped and formed, comminuted, flattened cake of meat food product. (2) Comminuted. A...
Lin, Yiliang; Liu, Yang
2017-01-01
Stable suspensions of eutectic gallium indium (EGaIn) liquid metal nanoparticles form by probe-sonicating the metal in an aqueous solution. Positively-charged molecular or macromolecular surfactants in the solution, such as cetrimonium bromide or lysozyme, respectively, stabilize the suspension by interacting with the negative charges of the surface oxide that forms on the metal. The liquid metal breaks up into nanospheres via sonication, yet can transform into rods of gallium oxide monohydroxide (GaOOH) via moderate heating in solution either during or after sonication. Whereas heating typically drives phase transitions from solid to liquid (via melting), here heating drives the transformation of particles from liquid to solid via oxidation. Interestingly, indium nanoparticles form during the process of shape transformation due to the selective removal of gallium. This dealloying provides a mechanism to create indium nanoparticles at temperatures well below the melting point of indium. To demonstrate the versatility, we show that it is possible to shape transform and dealloy other alloys of gallium including ternary liquid metal alloys. Scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDS) mapping, and X-ray diffraction (XRD) confirm the dealloying and transformation mechanism. PMID:28580116
Yamana, Yusuke; Tanaka, Hayato
2017-10-31
A new apodid sea cucumber, Chiridota impatiens sp. nov., is described from the intertidal zone of Okinawa, Japan, and C. rigida Semper, 1867 is also described from the intertidal zone of Wakayama, as new to Japan. C. impatiens sp. nov. is approximately 60-70 mm, with 12 tentacles and 4-7 pairs of digits per tentacle, red or reddish brown in living specimens. The tentacles contain curved rod ossicles, with spinous processes and many branches in C. rigida, however, in C. impatiens sp. nov., the curved rod ossicles are crescent-shaped, sometimes distally, with spinous processes and rarely a few branches on the circumference. In both species, the body wall contains flattened rod ossicles, mostly present along the longitudinal muscle and mesentery, curved rod ossicles primarily in the body wall, and wheel ossicles only in the wheel-papillae. In C. rigida, the contents of the wheel-papillae form a hemispherical sack-shaped structures, in which the teeth-side of the wheel ossicles mostly faces towards the outside of the body. In C. impatiens sp. nov., the contents of the wheel-papillae form a cord-shaped structure (present in both preserved and living specimens), in which the teeth-side of the wheel ossicles faces various directions, and that can be induced to break through the skin of the papillae if stimulated in living specimens.
Shape and Size of Microfine Aggregates: X-ray Microcomputed Tomgraphy vs. Laser Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdogan,S.; Garboczi, E.; Fowler, D.
Microfine rock aggregates, formed naturally or in a crushing process, pass a No. 200 ASTM sieve, so have at least two orthogonal principal dimensions less than 75 {mu}m, the sieve opening size. In this paper, for the first time, we capture true 3-D shape and size data of several different types of microfine aggregates, using X-ray microcomputed tomography ({mu}CT) with a voxel size of 2 {mu}m. This information is used to generate shape analyses of various kinds. Particle size distributions are also generated from the {mu}CT data and quantitatively compared to the results of laser diffraction, which is the leadingmore » method for measuring particle size distributions of sub-millimeter size particles. By taking into account the actual particle shape, the differences between {mu}CT and laser diffraction can be qualitatively explained.« less
Control of nitromethane photoionization efficiency with shaped femtosecond pulses.
Roslund, Jonathan; Shir, Ofer M; Dogariu, Arthur; Miles, Richard; Rabitz, Herschel
2011-04-21
The applicability of adaptive femtosecond pulse shaping is studied for achieving selectivity in the photoionization of low-density polyatomic targets. In particular, optimal dynamic discrimination (ODD) techniques exploit intermediate molecular electronic resonances that allow a significant increase in the photoionization efficiency of nitromethane with shaped near-infrared femtosecond pulses. The intensity bias typical of high-photon number, nonresonant ionization is accounted for by reference to a strictly intensity-dependent process. Closed-loop adaptive learning is then able to discover a pulse form that increases the ionization efficiency of nitromethane by ∼150%. The optimally induced molecular dynamics result from entry into a region of parameter space inaccessible with intensity-only control. Finally, the discovered pulse shape is demonstrated to interact with the molecular system in a coherent fashion as assessed from the asymmetry between the response to the optimal field and its time-reversed counterpart.
Assembly of Reconfigurable Colloidal Structures by Multidirectional Field-Induced Interactions.
Bharti, Bhuvnesh; Velev, Orlin D
2015-07-28
Field-directed colloidal assembly has shown remarkable recent progress in increasing the complexity, degree of control, and multiscale organization of the structures. This has largely been achieved by using particles of complex shapes and polarizabilites (Janus, patchy, shaped, and faceted). We review the fundamentals of the interactions leading to the directed assembly of such structures, the ways to simulate the dynamics of the process, and the effect of particle size, shape, and properties on the type of structure obtained. We discuss how directional polarization interactions induced by external electric and magnetic fields can be used to assemble complex particles or particle mixtures into lattices of tailored structure. Examples of such systems include isotropic and anisotropic shaped particles with surface patches, which form networks and crystals of unusual symmetry by dipolar, quadrupolar, and multipolar interactions in external fields. The emerging trends in making reconfigurable and dynamic structures are discussed.
A Generic Self-Assembly Process in Microcompartments and Synthetic Protein Nanotubes.
Uddin, Ismail; Frank, Stefanie; Warren, Martin J; Pickersgill, Richard W
2018-05-01
Bacterial microcompartments enclose a biochemical pathway and reactive intermediate within a protein envelope formed by the shell proteins. Herein, the orientation of the propanediol-utilization (Pdu) microcompartment shell protein PduA in bacterial microcompartments and in synthetic nanotubes, and the orientation of PduB in synthetic nanotubes are revealed. When produced individually, PduA hexamers and PduB trimers, tessellate to form flat sheets in the crystal, or they can self-assemble to form synthetic protein nanotubes in solution. Modelling the orientation of PduA in the 20 nm nanotube so as to preserve the shape complementarity and key interactions seen in the crystal structure suggests that the concave surface of the PduA hexamer faces out. This orientation is confirmed experimentally in synthetic nanotubes and in the bacterial microcompartment produced in vivo. The PduB nanotubes described here have a larger diameter, 63 nm, with the concave surface of the trimer again facing out. The conserved concave surface out characteristic of these nano-structures reveals a generic assembly process that causes the interface between adjacent subunits to bend in a common direction that optimizes shape complementarity and minimizes steric clashes. This understanding underpins engineering strategies for the biotechnological application of protein nanotubes. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Worthwhile optical method for free-form mirrors qualification
NASA Astrophysics Data System (ADS)
Sironi, G.; Canestrari, R.; Toso, G.; Pareschi, G.
2013-09-01
We present an optical method for free-form mirrors qualification developed by the Italian National Institute for Astrophysics (INAF) in the context of the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Project which includes, among its items, the design, development and installation of a dual-mirror telescope prototype for the Cherenkov Telescope Array (CTA) observatory. The primary mirror panels of the telescope prototype are free-form concave mirrors with few microns accuracy required on the shape error. The developed technique is based on the synergy between a Ronchi-like optical test performed on the reflecting surface and the image, obtained by means of the TraceIT ray-tracing proprietary code, a perfect optics should generate in the same configuration. This deflectometry test allows the reconstruction of the slope error map that the TraceIT code can process to evaluate the measured mirror optical performance at the telescope focus. The advantages of the proposed method is that it substitutes the use of 3D coordinates measuring machine reducing production time and costs and offering the possibility to evaluate on-site the mirror image quality at the focus. In this paper we report the measuring concept and compare the obtained results to the similar ones obtained processing the shape error acquired by means of a 3D coordinates measuring machine.
Explosive Spot Joining of Metals
NASA Technical Reports Server (NTRS)
Bement, Laurence J. (Inventor); Perry, Ronnie B. (Inventor)
1997-01-01
The invention is an apparatus and method for wire splicing using an explosive joining process. The apparatus consists of a prebend, U-shaped strap of metal that slides over prepositioned wires. A standoff means separates the wires from the strap before joining. An adhesive means holds two ribbon explosives in position centered over the U-shaped strap. A detonating means connects to the ribbon explosives. The process involves spreading strands of each wire to be joined into a flat plane. The process then requires alternating each strand in alignment to form a mesh-like arrangement with an overlapped area. The strap slides over the strands of the wires. and the standoff means is positioned between the two surfaces. The detonating means then initiates the ribbon explosives that drive the strap to accomplish a high velocity. angular collision between the mating surfaces. This collision creates surface melts and collision bonding resulting in electron-sharing linkups.
Religious beliefs influence neural substrates of self-reflection in Tibetans
Wang, Cheng; He, Xi; Mao, Lihua
2010-01-01
Previous transcultural neuroimaging studies have shown that the neural substrates of self-reflection can be shaped by different cultures. There are few studies, however, on the neural activity of self-reflection where religion is viewed as a form of cultural expression. The present study examined the self-processing of two Chinese ethnic groups (Han and Tibetan) to investigate the significant role of religion on the functional anatomy of self-representation. We replicated the previous results in Han participants with the ventral medial prefrontal cortex and left anterior cingulate cortex showing stronger activation in self-processing when compared with other-processing conditions. However, no typical self-reference pattern was identified in Tibetan participants on behavioral or neural levels. This could be explained by the minimal subjective sense of 'I-ness’ in Tibetan Buddhists. Our findings lend support to the presumed role of culture and religion in shaping the neural substrate of self. PMID:20197287
Religious beliefs influence neural substrates of self-reflection in Tibetans.
Wu, Yanhong; Wang, Cheng; He, Xi; Mao, Lihua; Zhang, Li
2010-06-01
Previous transcultural neuroimaging studies have shown that the neural substrates of self-reflection can be shaped by different cultures. There are few studies, however, on the neural activity of self-reflection where religion is viewed as a form of cultural expression. The present study examined the self-processing of two Chinese ethnic groups (Han and Tibetan) to investigate the significant role of religion on the functional anatomy of self-representation. We replicated the previous results in Han participants with the ventral medial prefrontal cortex and left anterior cingulate cortex showing stronger activation in self-processing when compared with other-processing conditions. However, no typical self-reference pattern was identified in Tibetan participants on behavioral or neural levels. This could be explained by the minimal subjective sense of 'I-ness' in Tibetan Buddhists. Our findings lend support to the presumed role of culture and religion in shaping the neural substrate of self.
Tailoring Selective Laser Melting Process Parameters for NiTi Implants
NASA Astrophysics Data System (ADS)
Bormann, Therese; Schumacher, Ralf; Müller, Bert; Mertmann, Matthias; de Wild, Michael
2012-12-01
Complex-shaped NiTi constructions become more and more essential for biomedical applications especially for dental or cranio-maxillofacial implants. The additive manufacturing method of selective laser melting allows realizing complex-shaped elements with predefined porosity and three-dimensional micro-architecture directly out of the design data. We demonstrate that the intentional modification of the applied energy during the SLM-process allows tailoring the transformation temperatures of NiTi entities within the entire construction. Differential scanning calorimetry, x-ray diffraction, and metallographic analysis were employed for the thermal and structural characterizations. In particular, the phase transformation temperatures, the related crystallographic phases, and the formed microstructures of SLM constructions were determined for a series of SLM-processing parameters. The SLM-NiTi exhibits pseudoelastic behavior. In this manner, the properties of NiTi implants can be tailored to build smart implants with pre-defined micro-architecture and advanced performance.
Cold comfort at the Magh Mela: social identity processes and physical hardship.
Pandey, Kavita; Stevenson, Clifford; Shankar, Shail; Hopkins, Nicholas P; Reicher, Stephen D
2014-12-01
Humans inhabit environments that are both social and physical, and in this article we investigate if and how social identity processes shape the experience and negotiation of physically demanding environmental conditions. Specifically, we consider how severe cold can be interpreted and experienced in relation to group members' social identity. Our data comprise ethnographic observation and semi-structured interviews with pilgrims attending a month-long winter Hindu religious festival that is characterized by near-freezing conditions. The analysis explores (1) how pilgrims appraised the cold and how these appraisals were shaped by their identity as pilgrims; (2) how shared identity with other pilgrims led to forms of mutual support that made it easier to cope with the cold. Our findings therefore extend theorizing on social identity processes to highlight their relevance to physical as well as social conditions. © 2013 The British Psychological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skupov, A. V., E-mail: skav10@mail.ru
TRISQD software is developed for the computer simulation of processes in which radiation defects are formed under the corpuscular irradiation of semiconductor heterostructures with lenticular nanoinclusions of various shapes. The computer program is used to study defect-formation processes in p-i-n diodes with the i region having a built-in 20-period lattice of self-assembled Ge(Si) nanoislands formed under irradiation with high-energy neutrons. It is found that the fraction of Ge(Si) nanoislands in which point radiation defects are formed under the impact of atomic-displacement cascades is ≤3% of their total number in the lattice. More than 94% of the defects are localized inmore » the bulk of the p, n, and i regions of the diode and in silicon layers that separate sheets of Ge(Si) nanoislands.« less
Differences between perception of human faces and body shapes: evidence from the composite illusion.
Soria Bauser, Denise A; Suchan, Boris; Daum, Irene
2011-01-01
The present study aimed to investigate whether human body forms--like human faces--undergo holistic processing. Evidence for holistic face processing comes from the face composite effect: two identical top halves of a face are perceived as being different if they are presented with different bottom parts. This effect disappears if both bottom halves are shifted laterally (misaligned) or if the stimulus is rotated by 180°. We investigated whether comparable composite effects are observed for human faces and human body forms. Matching of upright faces was more accurate and faster for misaligned compared to aligned presentations. By contrast, there were no processing differences between aligned and misaligned bodies. An inversion effect emerged, with better recognition performance for upright compared to inverted bodies but not faces. The present findings provide evidence for the assumption that holistic processing--investigated with the composite illusion--is not involved in the perception of human body forms. Copyright © 2010 Elsevier Ltd. All rights reserved.
Morphologies, Processing and Properties of Ceramic Foams and Their Potential as TPS Materials
NASA Technical Reports Server (NTRS)
Stackpoole, Mairead; Simoes, Conan R.; Johnson, Sylvia M.
2002-01-01
The current research is focused on processing ceramic foams with compositions that have potential as a thermal protection material. The use of pre-ceramic polymers with the addition of sacrificial blowing agents or sacrificial fillers offers a viable approach to form either open or closed cell insulation. Our work demonstrates that this is a feasible method to form refractory ceramic foams at relatively low processing temperatures. It is possible to foam complex shapes then pyrolize the system to form a ceramic while retaining the shape of the unfired foam. Initial work focused on identifying suitable pre-ceramic polymers with desired properties such as ceramic yield and chemical make up of the pyrolysis product after firing. We focused on making foams in the Si system (Sic, Si02, Si-0-C), which is in use in current acreage TPS systems. Ceramic foams with different architectures were formed from the pyrolysis of pre-ceramic polymers at 1200 C in different atmospheres. In some systems a sacrificial polyurethane was used as the blowing agent. We have also processed foams using sacrificial fillers to introduce controlled cell sizes. Each sacrificial filler or blowing agent leads to a unique morphology. The effect of different fillers on foam morphologies and the characterization of these foams in terms of mechanical and thermal properties are presented. We have conducted preliminary arc jet testing on selected foams with the materials being exposed to typical re-entry conditions for acreage TPS and these results will be discussed. Foams processed using these approaches have bulk densities ranging from 0.15 to 0.9 g/cm3 and cell sizes ranging from 5 to 500 pm. Compression strengths ranged from 2 to 7 MPa for these systems. Finally, preliminary oxidation studies have been conducted on selected systems and will be discussed.
NASA Astrophysics Data System (ADS)
Kubit, Andrzej; Wydrzynski, Dawid; Bucior, Magdalena; Krasowski, Bogdan
2018-05-01
This paper presents the results of experimental tests on the fabrication of longitudinal stiffening ribs in 2024-T3 ALCLAD aluminum alloy sheet, which is widely used in the aircraft structures. The problem presented in this paper concerns the concept of rib-stiffening of the structure of aircraft skin. The ribs are intended to stiffen integral thin-walled structure. Different shapes and different parameters of the forming process were studied. The rib-stiffened samples of various depths of the ribs were tested experimentally in the buckling test.
Robust Design of Sheet Metal Forming Process Based on Kriging Metamodel
NASA Astrophysics Data System (ADS)
Xie, Yanmin
2011-08-01
Nowadays, sheet metal forming processes design is not a trivial task due to the complex issues to be taken into account (conflicting design goals, complex shapes forming and so on). Optimization methods have also been widely applied in sheet metal forming. Therefore, proper design methods to reduce time and costs have to be developed mostly based on computer aided procedures. At the same time, the existence of variations during manufacturing processes significantly may influence final product quality, rendering non-robust optimal solutions. In this paper, a small size of design of experiments is conducted to investigate how a stochastic behavior of noise factors affects drawing quality. The finite element software (LS_DYNA) is used to simulate the complex sheet metal stamping processes. The Kriging metamodel is adopted to map the relation between input process parameters and part quality. Robust design models for sheet metal forming process integrate adaptive importance sampling with Kriging model, in order to minimize impact of the variations and achieve reliable process parameters. In the adaptive sample, an improved criterion is used to provide direction in which additional training samples can be added to better the Kriging model. Nonlinear functions as test functions and a square stamping example (NUMISHEET'93) are employed to verify the proposed method. Final results indicate application feasibility of the aforesaid method proposed for multi-response robust design.
Au nanorice assemble electrolytically into mesostars.
Bardhan, Rizia; Neumann, Oara; Mirin, Nikolay; Wang, Hui; Halas, Naomi J
2009-02-24
Star-shaped mesotructures are formed when an aqueous suspension of Au nanorice particles, which consist of prolate hematite cores and a thin Au shell, is subjected to an electric current. The nanorice particles assemble to form hyperbranched micrometer-scale mesostars. To our knowledge, this is the first reported observation of nanoparticle assembly into larger ordered structures under the influence of an electrochemical process (H(2)O electrolysis). The assembly is accompanied by significant modifications in the morphology, dimensions, chemical composition, crystallographic structure, and optical properties of the constituent nanoparticles.
Fabrication of tungsten wire reinforced nickel-base alloy composites
NASA Technical Reports Server (NTRS)
Brentnall, W. D.; Toth, I. J.
1974-01-01
Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.
Near net shape processing of continuous lengths of superconducting wire
Danyluk, S.; McNallan, M.; Troendly, R.; Poeppel, R.; Goretta, K.; Lanagan, M.
1997-08-26
A system and method for mechanically forming a ceramic superconductor product are disclosed. A system for making the ceramic superconductor includes a metallic channel portion having a cross section for receiving a ceramic superconductor powder, a roll to mechanically reduce the channel cross section and included superconductor powder and a cap portion welded to the channel portion using a localized high energy source. The assembled bar is then mechanically reduced to form a tape or wire end product. 9 figs.
Process for preparing silicon carbide foam
Whinnery, LeRoy Louis; Nichols, Monte Carl; Wheeler, David Roger; Loy, Douglas Anson
1997-01-01
A method of preparing near net shape, monolithic, porous SiC foams is disclosed. Organosilicon precursors are used to produce polymeric gels by thermally induced phase separation, wherein, a sufficiently concentrated solution of an organosilicon polymer is cooled below its solidification temperature to form a gel. Following solvent removal from the gel, the polymer foam is pretreated in an oxygen plasma in order to raise its glass transition temperature. The pretreated foam is then pyrolized in an inert atmosphere to form a SiC foam.
Process for preparing silicon carbide foam
Whinnery, L.L.; Nichols, M.C.; Wheeler, D.R.; Loy, D.A.
1997-09-16
A method of preparing near net shape, monolithic, porous SiC foams is disclosed. Organosilicon precursors are used to produce polymeric gels by thermally induced phase separation, wherein, a sufficiently concentrated solution of an organosilicon polymer is cooled below its solidification temperature to form a gel. Following solvent removal from the gel, the polymer foam is pretreated in an oxygen plasma in order to raise its glass transition temperature. The pretreated foam is then pyrolyzed in an inert atmosphere to form a SiC foam. 9 figs.
NASA Astrophysics Data System (ADS)
Zakharevich, Arkadiy V.
2015-01-01
The results of an experimental study of laws governing the ignition of liquid propellants (kerosene, diesel fuel and petroleum residue) by the single spherical steel particle heated to high temperatures are presented. Is carried out the comparison of the ignition delay times of the investigated flammable substances by the particles in the sphere and disk forms. It is established that the particle shape does not exert a substantial influence on the ignition process characteristics.
NASA Astrophysics Data System (ADS)
Polilov, A. N.; Tatus’, N. A.
2018-04-01
The goal of this paper is analysis of design methods for composite beams and plates with curvilinear fiber trajectories. The novelty of this approach is determined by the fact that traditional composite materials are typically formed using prepregs with rectilinear fibers only. The results application area is associated with design process for shaped composite structure element by using of biomechanical principles. One of the related problems is the evaluation of fiber’s misorientation effect on stiffness and load carry capacity of shaped composite element with curvilinear fiber trajectories. Equistrong beam with constant cross-section area is considered as example, and it can be produced by unidirectional fiber bunch forming, impregnated with polymer matrix. Effective elastic modulus evaluation methods for structures with curvilinear fiber trajectories are validated. Misorientation angle range (up to 5o) when material with required accuracy can be considered as homogeneous, neglecting fiber misorientation, is determined. It is shown that for the beams with height-to-width ratio small enough it is possible to consider 2D misorientation only.
The Tharsis Montes, Mars - Comparison of volcanic and modified landforms
NASA Technical Reports Server (NTRS)
Zimbelman, James R.; Edgett, Kenneth S.
1992-01-01
The three Tharsis Montes shield volcanos, Arsia Mons, Pavonis Mons, and Ascraeus Mons, have broad similarities that have been recognized since the Mariner 9 reconnaissance in 1972. Upon closer examination the volcanos are seen to have significant differences that are due to individual volcanic histories. All three volcanos exhibit the following characteristics: gentle (less than 5 deg) flank slopes, entrants in the northwestern and southeastern flanks that were the source for lavas extending away from each shield, summit caldera(s), and enigmatic lobe-shaped features extending over the plains to the west of each volcano. The three volcanos display different degrees of circumferential graben and trough development in the summit regions, complexity of preserved caldera collapse events, secondary summit-region volcanic construction, and erosion on the lower western flanks due to mass wasting and the processes that formed the large lobe-shaped features. All three lobe-shaped features start at elevations of 10 to 11 km and terminate at 6 km. The complex morphology of the lobe deposits appear to involve some form of catastrophic mass movement followed by effusive and perhaps pyroclastic volcanism.
NASA Astrophysics Data System (ADS)
Sabri, Siti Noorzidah Mohd; Othman, Rohaya; Othman, Anuar
2017-12-01
Precipitated calcium carbonate (PCC) is also known as synthetic calcium carbonate. In this paper, PCC was synthesized from carbide lime, which is the by-product from acetylene gas industry. The method used to produce PCC from carbide lime waste was ionic sucrose precipitation technique. The experiments were performed by varying the stirring rate. In this technique, carbide lime was first dissolved in ionic sucrose solution and then chilled at 10 °C for 24 hours before carbon dioxide gasses was introduced into the solution. The carbonation and precipitation process was took place and PCC was formed. The PCC was further filtered to obtain the solid PCC. The sample was then further characterised by using FESEM and XRD to determine the morphology and to identify the phase that exists in the synthesized compound respectively. The XRD and FESEM results clearly shown that the PCC obtained has mixed phases of calcite and vaterite, with mixtures of spherical and irregular shape morphologies formed. The irregular shapes corresponded to vaterite formation, meanwhile spherical shapes corresponded to calcite formation.
The sediments transport outcome from granite
NASA Astrophysics Data System (ADS)
Petre, Maria
2014-05-01
A landscape can be characterized by natural elements but also by the activity of the people. The shape of the landscape depends on the nature's type of rocks which compose the subsoil and on their physical-chemical properties. The action of the atmospheric factors and the presence of the water at the surface of the Earth can also shape or reshape a landscape and create new elements of the landscape. The rocks who are shaped by natural agents like the water are transformed into small particles or sediments. After this process, they can be transported by the rivers and deposed in different spots on the river according to the size of the sediments. For instance, the sand and the gravels do not travel on the same distances. The sand can be transported on a long distance and deposed near the oceans or seas, while the gravels are not transported to far from the source area. Once the sediments are no longer transported by the water, they are forming sedimentary deposits and. The sedimentary deposits suffer some transformations: a compaction and a cementation which will form the sedimentary rocks.
Katz, David C; Grote, Mark N; Weaver, Timothy D
2017-08-22
Agricultural foods and technologies are thought to have eased the mechanical demands of diet-how often or how hard one had to chew-in human populations worldwide. Some evidence suggests correspondingly worldwide changes in skull shape and form across the agricultural transition, although these changes have proved difficult to characterize at a global scale. Here, adapting a quantitative genetics mixed model for complex phenotypes, we quantify the influence of diet on global human skull shape and form. We detect modest directional differences between foragers and farmers. The effects are consistent with softer diets in preindustrial farming groups and are most pronounced and reliably directional when the farming class is limited to dairying populations. Diet effect magnitudes are relatively small, affirming the primary role of neutral evolutionary processes-genetic drift, mutation, and gene flow structured by population history and migrations-in shaping diversity in the human skull. The results also bring an additional perspective to the paradox of why Homo sapiens , particularly agriculturalists, appear to be relatively well suited to efficient (high-leverage) chewing.
Binding of intrinsic and extrinsic features in working memory.
Ecker, Ullrich K H; Maybery, Murray; Zimmer, Hubert D
2013-02-01
There is ongoing debate concerning the mechanisms of feature binding in working memory. In particular, there is controversy regarding the extent to which these binding processes are automatic. The present article demonstrates that binding mechanisms differ depending on whether the to-be-integrated features are perceived as forming a coherent object. We presented a series of experiments that investigated the binding of color and shape, whereby color was either an intrinsic feature of the shape or an extrinsic feature of the shape's background. Results show that intrinsic color affected shape recognition, even when it was incidentally studied and irrelevant for the recognition task. In contrast, extrinsic color did not affect shape recognition, even when the association of color and shape was encoded and retrievable on demand. This strongly suggests that binding of intrinsic intra-item information but not extrinsic contextual information is obligatory in visual working memory. We highlight links to perception as well as implicit and explicit long-term memory, which suggest that the intrinsic-extrinsic dimension is a principle relevant to multiple domains of human cognition. 2013 APA, all rights reserved
A stress-induced phase transition model for semi-crystallize shape memory polymer
NASA Astrophysics Data System (ADS)
Guo, Xiaogang; Zhou, Bo; Liu, Liwu; Liu, Yanju; Leng, Jinsong
2014-03-01
The developments of constitutive models for shape memory polymer (SMP) have been motivated by its increasing applications. During cooling or heating process, the phase transition which is a continuous time-dependent process happens in semi-crystallize SMP and the various individual phases form at different temperature and in different configuration. Then, the transformation between these phases occurred and shape memory effect will emerge. In addition, stress applied on SMP is an important factor for crystal melting during phase transition. In this theory, an ideal phase transition model considering stress or pre-strain is the key to describe the behaviors of shape memory effect. So a normal distributed model was established in this research to characterize the volume fraction of each phase in SMP during phase transition. Generally, the experiment results are partly backward (in heating process) or forward (in cooling process) compared with the ideal situation considering delay effect during phase transition. So, a correction on the normal distributed model is needed. Furthermore, a nonlinear relationship between stress and phase transition temperature Tg is also taken into account for establishing an accurately normal distributed phase transition model. Finally, the constitutive model which taking the stress as an influence factor on phase transition was also established. Compared with the other expressions, this new-type model possesses less parameter and is more accurate. For the sake of verifying the rationality and accuracy of new phase transition and constitutive model, the comparisons between the simulated and experimental results were carried out.
Applications of Computer Simulation Methods in Plastic Forming Technologies for Magnesium Alloys
NASA Astrophysics Data System (ADS)
Zhang, S. H.; Zheng, W. T.; Shang, Y. L.; Wu, X.; Palumbo, G.; Tricarico, L.
2007-05-01
Applications of computer simulation methods in plastic forming of magnesium alloy parts are discussed. As magnesium alloys possess very poor plastic formability at room temperature, various methods have been tried to improve the formability, for example, suitable rolling process and annealing procedures should be found to produce qualified magnesium alloy sheets, which have the reduced anisotropy and improved formability. The blank can be heated to a warm temperature or a hot temperature; a suitable temperature field is designed, tools should be heated or the punch should be cooled; suitable deformation speed should be found to ensure suitable strain rate range. Damage theory considering non-isothermal forming is established. Various modeling methods have been tried to consider above situations. The following situations for modeling the forming process of magnesium alloy sheets and tubes are dealt with: (1) modeling for predicting wrinkling and anisotropy of sheet warm forming; (2) damage theory used for predicting ruptures in sheet warm forming; (3) modeling for optimizing of blank shape and dimensions for sheet warm forming; (4) modeling in non-steady-state creep in hot metal gas forming of AZ31 tubes.
Methods for the continuous production of plastic scintillator materials
Bross, Alan; Pla-Dalmau, Anna; Mellott, Kerry
1999-10-19
Methods for producing plastic scintillating material employing either two major steps (tumble-mix) or a single major step (inline-coloring or inline-doping). Using the two step method, the polymer pellets are mixed with silicone oil, and the mixture is then tumble mixed with the dopants necessary to yield the proper response from the scintillator material. The mixture is then placed in a compounder and compounded in an inert gas atmosphere. The resultant scintillator material is then extruded and pelletized or formed. When only a single step is employed, the polymer pellets and dopants are metered into an inline-coloring extruding system. The mixture is then processed under a inert gas atmosphere, usually argon or nitrogen, to form plastic scintillator material in the form of either scintillator pellets, for subsequent processing, or as material in the direct formation of the final scintillator shape or form.
Peanut-shaped metallicity distributions in bulges of edge-on galaxies: the case of NGC 4710
NASA Astrophysics Data System (ADS)
Gonzalez, Oscar A.; Debattista, Victor P.; Ness, Melissa; Erwin, Peter; Gadotti, Dimitri A.
2017-03-01
Bulges of edge-on galaxies are often boxy/peanut-shaped (B/PS), and unsharp masks reveal the presence of an X shape. Simulations show that these shapes can be produced by dynamical processes driven by a bar which vertically thickens the centre. In the Milky Way, which contains such a B/PS bulge, the X-shaped structure is traced by the metal-rich stars but not by the metal-poor ones. Recently, Debattista et al. interpreted this property as a result of the varying effect of the bar on stellar populations with different starting kinematics. This kinematic fractionation model predicts that cooler populations at the time of bar formation go on to trace the X shape, whereas hotter populations are more uniformly distributed. As this prediction is not specific to the Milky Way, we test it with Multi Unit Spectroscopic Explorer (MUSE) observations of the B/PS bulge in the nearby galaxy NGC 4710. We show that the metallicity map is more peanut-shaped than the density distribution itself, in good agreement with the prediction. This result indicates that the X-shaped structure in B/PS bulges is formed of relatively metal-rich stars that have been vertically redistributed by the bar, whereas the metal-poor stars have a more uniform, box-shaped distribution.
Khasnobish, Anwesha; Pal, Monalisa; Sardar, Dwaipayan; Tibarewala, D N; Konar, Amit
2016-08-01
This work is a preliminary study towards developing an alternative communication channel for conveying shape information to aid in recognition of items when tactile perception is hindered. Tactile data, acquired during object exploration by sensor fitted robot arm, are processed to recognize four basic geometric shapes. Patterns representing each shape, classified from tactile data, are generated using micro-controller-driven vibration motors which vibrotactually stimulate users to convey the particular shape information. These motors are attached on the subject's arm and their psychological (verbal) responses are recorded to assess the competence of the system to convey shape information to the user in form of vibrotactile stimulations. Object shapes are classified from tactile data with an average accuracy of 95.21 %. Three successive sessions of shape recognition from vibrotactile pattern depicted learning of the stimulus from subjects' psychological response which increased from 75 to 95 %. This observation substantiates the learning of vibrotactile stimulation in user over the sessions which in turn increase the system efficacy. The tactile sensing module and vibrotactile pattern generating module are integrated to complete the system whose operation is analysed in real-time. Thus, the work demonstrates a successful implementation of the complete schema of artificial tactile sensing system for object-shape recognition through vibrotactile stimulations.
Numerical simulation on chain-die forming of an AHSS top-hat section
NASA Astrophysics Data System (ADS)
Majji, Raju; Xiang, Yang; Ding, Scott; Yang, Chunhui
2018-05-01
The applications of Advanced High-Strength Steels (AHSS) in the automotive industry are rapidly increasing due to a demand for a lightweight material that significantly reduces fuel consumption without compromising passenger safety. Automotive industries and material suppliers are expected by consumers to deliver reliable and affordable products, thus stimulating these manufacturers to research solutions to meet these customer requirements. The primary advantage of AHSS is its extremely high strength to weight ratio, an ideal material for the automotive industry. However, its low ductility is a major disadvantage, in particular, when using traditional cold forming processes such as roll forming and deep drawing process to form profiles. Consequently, AHSS parts frequently fail to form. Thereby, in order to improve quality and reliability on manufacturing AHSS products, a recently-developed incremental cold sheet metal forming technology called Chain-die Forming (CDF) is recognised as a potential solution to the forming process of AHSS. The typical CDF process is a combination of bending and roll forming processes which is equivalent to a roll with a large deforming radius, and incrementally forms the desired shape with split die and segments. This study focuses on manufacturing an AHSS top-hat section with minimum passes without geometrical or surface defects by using finite element modelling and simulations. The developed numerical simulation is employed to investigate the influences on the main control parameter of the CDF process while forming AHSS products and further develop new die-punch sets of compensation design via a numerical optimal process. In addition, the study focuses on the tool design to compensate spring-back and reduce friction between tooling and sheet-metal. This reduces the number of passes, thereby improving productivity and reducing energy consumption and material waste. This numerical study reveals that CDF forms AHSS products of complex profiles with much less residual stress, low spring back, low strain and of higher geometrical accuracy compared to other traditional manufacturing processes.
Colloidal isopressing: A new shaping method for ceramic suspensions
NASA Astrophysics Data System (ADS)
Yu, Benjamin Christopher
Colloidal Isopressing is a new processing method for shaping compacts from particulate suspensions. The study of interparticle interactions within a suspension, and their effect on the overall slurry behavior, has led to the prior discovery of a plastic-to-brittle transition in powder compacts formed by pressure filtration. Colloidal Isopressing utilizes this pressure dependent behavior for slurries with a short-range repulsive potential to rapidly transform plastic consolidated bodies into more complex shapes. The first results are presented for aqueous alumina suspensions where electrostatic double layer repulsion is compressed to short interparticle separations by the addition of ammonium chloride. Consolidation at low pressures produces a high relative density slurry that is plastic and can be extruded into a rubber mold. The application of an hydrostatic pressure forces a small amount of liquid into a porous portion of the mold and pushes particles together into a rigid network. As the pressure is released, the newly formed powder compact will partially separate from the lower modulus rubber mold. The body can then be ejected from the mold, dried, and densified to produce the final ceramic component. Colloidal Isopressing has been successfully modeled as a special case of consolidation via pressure filtration. Theoretical analyses have accurately predicted the time required for the rapid transformation from plastic slurry to elastic powder compact. The effects of slurry composition on processing were studied. The electrolyte concentration, powder particle size, slurry pH, and polymer concentration were shown to alter the flow behavior of filter pressed and liquefied compacts. As the free volume of liquid decreased and/or the relative attraction between particles increased, the concentrated slurry became more difficult to process. Finally, drying of compacts formed by Colloidal Isopressing did not result in any shrinkage during drying, thus allowing for very rapid heating rates to be used. In fact, the drying, burnout, and densification could be combined into one step, with final densities approaching the theoretical limit.
NASA Astrophysics Data System (ADS)
Jung, Yong Chan; Seong, Sejong; Lee, Taehoon; Kim, Seon Yong; Park, In-Sung; Ahn, Jinho
2018-03-01
The anode interface effects on the resistive switching characteristics of Pt/HfO2/Pt resistors are investigated by changing the forming and switching polarity. Resistive switching properties are evaluated and compared with the polarity operation procedures, such as the reset voltage (Vr), set voltage (Vs), and current levels at low and high resistance states. When the same forming and switching voltage polarity are applied to the resistor, their switching parameters are widely distributed. However, the opposite forming and switching voltage polarity procedures enhance the uniformity of the switching parameters. In particular, the Vs distribution is strongly affected by the voltage polarity variation. A model is proposed based on cone-shaped filament formation through the insulator and the cone diameter at the anode interface to explain the improved resistive switching characteristics under opposite polarity operation. The filament cone is thinner near the anode interface during the forming process; hence, the anode is altered by the application of a switching voltage with opposite polarity to the forming voltage polarity and the converted anode interface becomes the thicker part of the cone. The more uniform and stable switching behavior is attributed to control over the formation and rupture of the cone-shaped filaments at their thicker parts.
Variations in clast morphology for different till fractions: implementation of digital imagery
NASA Astrophysics Data System (ADS)
Dominiczak, Aleksander
2014-05-01
The form of clastic particles provides information about debris history including abrasion and transportation which are vital to geomorphological research because of its usefulness for differentiating subglacial debris form englacialy, supraglacialy and fluvially transported sediments, and for understanding subglacial processes. There are numerous attempts to clastic particles form assessment, both qualitative and quantitative and advance in technology enables the use of digital imaging and image processing in order to calculate the precise indicators of shape and roundness (small-scale surface features superimposed on shape and roundness are not a subject of this study). Computer calculations are fast, reliable and objective and its use decrease probability of errors. They are applicable to till deposits analysis and may help in understanding the processes of glacial deposition. Till deposits consist of a mixture of various fractions of sediment, where coarser and thinner grains are together activated, entrained in ice, transported, deposited and post-depositional transformed together in the same time and conditions. That implies similarity of processes acting on the particles, but not necessarily theirs effects. Physical properties of grain are of great significance for its vulnerability to acting forces. An important feature of the tills is grain size, which has a high volatility in a sample. The hypothesis of this issue suggests it is possible that different fractions of till sediment have significantly different form characteristics. Verification of the thesis is important because standardly only one fraction is selected to analysis and to draw conclusions from. Main objective is to test differences in clast morphology for different till fraction. In order to answer the research problem, the author has examined samples from a contemporary glaciated region, Nordenskiöld glacier foreland in central Spitsbergen. During the field work samples were collected from surface sediments, cobbles axes were measured, their roundness was evaluated with comparison charts and additionally photographs of debris from a bird's eye were taken. Further analyzes were performed in the laboratory using automated imaging for fractions less than 2 mm and digital photography for gravels. All the information, describing in detail the shape of the particles in the different fractions of tills, allowed to verify of the existence of statistically significant differences between the deposits of different sizes. The study was funded by the National Science Centre as granted by decision number DEC-2011/01/D/ST10/06494
On the issue of equifinality in glacial geomorphology
NASA Astrophysics Data System (ADS)
Möller, Per; Dowling, Thomas; Cleland, Carol; Johnson, Mark
2016-04-01
A contemporary trend in glacial geomorphology is the quest for some form of unifying theory for drumlin and/or ribbed moraine formation: there MUST be ONE explanation. The result of this is attempts to apply 'instability theory' to the formation of all drumlinoid and ribbed moraine formation or, as an alternative to this, the 'erodent layer hypothesis' for single processes driven formation. However, based on field geology evidence on internal composition and architecture and the internals relation to the exterior, i.e. the shape of drumlins or ribbed moraine, many glacial sedimentologists would argue that it is instead different processes in their own or in combination that lead to similar form, i.e. look-alike geomorphologic expression or equifinality in spite of different process background for their formation. As expressed by Cleland (2013) from a philosophical point of view of a 'common cause explanation', as exemplified with mass extinctions through geologic time, there is probably a 'common cause explanation' for the K/T boundary extinction (massive meteorite impact on Earth), but this is not a common explanation for every other mass extinction. The parallel to our Quaternary enigma is that there can of course be a single common cause for explaining a specific drumlinoid flow set (a particular case), but that does not have to be the explanation of another flow set showing other sedimentological/structural attributes, in turn suggesting that the particular case cause cannot be used for explaining the general case, i.e. all drumlins over glaciated terrain on the globe. We argue in the case of streamlined terrain, which often have considerable morphologic difference between features at local landscape scale whilst still remaining part of the drumlinoid continuum on regional scale, is a product of different processes or process combinations (erosion/deformation/accumulation) in the subglacial system, tending towards the most efficient obstacle shape and thus bedform for sliding to take place on. The logic for this in the first order is that obstacles enhance sliding speed by increasing melting and plastic flow. However, if an obstacle is too 'rough' the increase in basal drag counteracts this. Therefore the subglacial system finds an efficiency equilibrium whereby an obstacle is shaped so that it enhances flow with a minimum of drag, i.e. the typical streamlined form is the result of a positive feedback cycle that tends towards efficiency. From Swedish geomorphologic data sets we find the dominating rock-cored drumlins to be formed by accumulation around rock obstacles, in some areas with deep drift the streamlined surface expression is due to combinations of excavational and constructive deformation without any 'seed cores', and in some areas with pre-LGM deglacial sediment successions there is erosional carving into drumlinoid forms. In the case of ribbed moraine it is evident from field geology that such are not single-process bedforms but form in a number of ways (i.e. equifinality); examples from the Swedish Quaternary landscape are ribbed moraine formed (i) from melt-out of stagnant ice, (ii) from remoulding of pre-existing landforms and (iii) from subglacial stacking/folding of sediment and lee-side cavity infill.
Fabrication of GRCop-84 Rocket Thrust Chambers
NASA Technical Reports Server (NTRS)
Loewenthal, William; Ellis, David
2006-01-01
GRCop-84, a copper alloy, Cu-8 at% Cr-4 at% Nb developed at NASA Glenn Research Center for regenerative1y cooled rocket engine liners has excellent combinations of elevated temperature strength, creep resistance, thermal conductivity and low cycle fatigue. GRCop-84 is produced from pre-alloyed atomized powder and has been fabricated into plate, sheet and tube forms as well as near net shapes. Fabrication processes to produce demonstration rocket combustion chambers will be presented and includes powder production, extruding, rolling, forming, friction stir welding, and metal spinning. GRCop-84 has excellent workability and can be readily fabricated into complex components using conventional powder and wrought metallurgy processes. Rolling was examined in detail for process sensitivity at various levels of total reduction, rolling speed and rolling temperature representing extremes of commercial processing conditions. Results indicate that process conditions can range over reasonable levels without any negative impact to properties.
Fabrication of GRCop-84 Rocket Thrust Chambers
NASA Technical Reports Server (NTRS)
Loewenthal, William S.; Ellis, David L.
2005-01-01
GRCop-84, a copper alloy, Cu-8 at% Cr-4 at% Nb developed at NASA Glenn Research Center for regeneratively cooled rocket engine liners has excellent combinations of elevated temperature strength, creep resistance, thermal conductivity and low cycle fatigue. GRCop-84 is produced from prealloyed atomized powder and has been fabricated into plate, sheet and tube forms as well as near net shapes. Fabrication processes to produce demonstration rocket combustion chambers will be presented and includes powder production, extruding, rolling, forming, friction stir welding, and metal spinning. GRCop-84 has excellent workability and can be readily fabricated into complex components using conventional powder and wrought metallurgy processes. Rolling was examined in detail for process sensitivity at various levels of total reduction, rolling speed and rolling temperature representing extremes of commercial processing conditions. Results indicate that process conditions can range over reasonable levels without any negative impact to properties.
Artificial tektites: an experimental technique for capturing the shapes of spinning drops
NASA Astrophysics Data System (ADS)
Baldwin, K. A.
2014-12-01
Tektites are small stones formed from rapidly cooling drops of molten rock ejected from high velocity asteroid impacts with the Earth, that freeze into a myriad of shapes during flight. Many splash-form tektites have an elongated or dumb-bell shape owing to their rotation prior to solidification[1]. Here we present a novel method for creating 'artificial tektites' from spinning drops of molten wax, using diamagnetic levitation to suspend the drops[2]. We find that the solid wax models produced this way are the stable equilibrium shapes of a spinning liquid droplet held together by surface tension. In addition to the geophysical interest in tektite formation, the stable equilibrium shapes of liquid drops have implications for many physical phenomena, covering a wide range of length scales, from nuclear physics (e.g. in studies of rapidly rotating atomic nuclei), to astrophysics (e.g. in studies of the shapes of astronomical bodies such as asteroids, rapidly rotating stars and event horizons of rotating black holes). For liquid drops bound by surface tension, analytical and numerical methods predict a series of stable equilibrium shapes with increasing angular momentum. Slowly spinning drops have an oblate-like shape. With increasing angular momentum these shapes become secularly unstable to a series of triaxial pseudo-ellipsoids that then evolve into a family of two-lobed 'dumb-bell' shapes as the angular momentum is increased still further. Our experimental method allows accurate measurements of the drops to be taken, which are useful to validate numerical models. This method has provided a means for observing tektite formation, and has additionally confirmed experimentally the stable equilibrium shapes of liquid drops, distinct from the equivalent shapes of rotating astronomical bodies. Potentially, this technique could be applied to observe the non-equilibrium dynamic processes that are also important in real tektite formation, involving, e.g. viscoelastic effects, non-uniform solidification, surface wrinkling (Schlieren), and rapid separation/fission of dumb-bells via the Rayleigh-Plateau instability. [1] M. R. Stauffer and S. L. Butler, Earth Moon Planets, 107, 169 (2009). [2] R. J. A. Hill and L. Eaves, Phys. Rev. Lett. 101, 234501 (2008).
Tectonic and kinematics of curved orogenic systems: insights from AMS analysis and paleomagnetism
NASA Astrophysics Data System (ADS)
Cifelli, Francesca; Mattei, Massimo
2016-04-01
During the past few years, paleomagnetism has been considered a unique tool for constraining kinematic models of curved orogenic systems, because of its great potential in quantifying vertical axis rotations and in discriminating between primary and secondary (orocline s.l.) arcs. In fact, based on the spatio-temporal relationships between deformation and vertical axis rotation, curved orogens can be subdivided as primary or secondary (oroclines s.l.), if they formed respectively in a self-similar manner without undergoing important variations in their original curved shape or if their curvature in map-view is the result of a bending about a vertical axis of rotation. In addition to the kinematics of the arc and the timing of its curvature, a crucial factor for understanding the origin of belts curvature is the knowledge of the geodynamic process governing arc formation. In this context, the detailed reconstruction of the rotational history is mainly based on paleomagnetic and structural analyses (fold axes, kinematic indicators), which include the magnetic fabric. In fact, in curved fold and thrust belts, assuming that the magnetic lineation is tectonically originated and formed during layer-parallel shortening (LPS) before vertical axis rotations, the orientation of the magnetic lineation often strictly follows the curvature of the orogeny. This assumption represents a fundamental prerequisite to fully understand the origin of orogenic arcs and to unravel the geodynamic processes responsible for their curvature. We present two case studies: the central Mediterranean arcs and the Alborz Mts in Iran. The Mediterranean area has represented an attractive region to apply paleomagnetic analysis, as it shows a large number of narrow arcs, whose present-day shape has been driven by the space-time evolution of the Mediterranean subduction system, which define a irregular and rather diffuse plate boundary. The Alborz Mts. form a sinuous range over 1,200 km long, defining from west to east a salient with a southward concavity which results in the wrapping of the South Caspian basin to the north, and a southward reentrant with apex which encircles the Central Iranian block to the south. The integration of paleomagnetic and AMS data indicates that this orogen started to form as an almost straight E-W oriented range and acquired its present-day curved shape by means of opposite vertical axis rotations. Such a process was probably caused by the relative motion between different rigid blocks (South Caspian, Central Iran, and the Eastern Iranian Blocks) forming the collision zone and hence must be a crustal to lithospheric-scale process.
Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing
NASA Technical Reports Server (NTRS)
Hofmann, Douglas C.; Borgonia, John Paul C.; Dillon, Robert P.; Suh, Eric J.; Mulder, jerry L.; Gardner, Paul B.
2013-01-01
Recently, additive manufacturing (AM) techniques have been developed that may shift the paradigm of traditional metal production by allowing complex net-shaped hardware to be built up layer-by-layer, rather than being machined from a billet. The AM process is ubiquitous with polymers due to their low melting temperatures, fast curing, and controllable viscosity, and 3D printers are widely available as commercial or consumer products. 3D printing with metals is inherently more complicated than with polymers due to their higher melting temperatures and reactivity with air, particularly when heated or molten. The process generally requires a high-power laser or other focused heat source, like an electron beam, for precise melting and deposition. Several promising metal AM techniques have been developed, including laser deposition (also called laser engineered net shaping or LENS® and laser deposition technology (LDT)), direct metal laser sintering (DMLS), and electron beam free-form (EBF). These machines typically use powders or wire feedstock that are melted and deposited using a laser or electron beam. Complex net-shape parts have been widely demonstrated using these (and other) AM techniques and the process appears to be a promising alternative to machining in some cases. Rather than simply competing with traditional machining for cost and time savings, the true advantage of AM involves the fabrication of hardware that cannot be produced using other techniques. This could include parts with "blind" features (like foams or trusses), parts that are difficult to machine conventionally, or parts made from materials that do not exist in bulk forms. In this work, the inventors identify that several AM techniques can be used to develop metal parts that change composition from one location in the part to another, allowing for complete control over the mechanical or physical properties. This changes the paradigm for conventional metal fabrication, which relies on an assortment of "post-processing" methods to locally alter properties (such as coating, heat treating, work hardening, shot peening, etching, anodizing, among others). Building the final part in an additive process allows for the development of an entirely new class of metals, so-called "functionally graded metals" or "gradient alloys." By carefully blending feedstock materials with different properties in an AM process, hardware can be developed with properties that cannot be obtained using other techniques but with the added benefit of the net-shaped fabrication that AM allows.
A Multi-D-Shaped Optical Fiber for Refractive Index Sensing
Chen, Chien-Hsing; Tsao, Tzu-Chein; Tang, Jaw-Luen; Wu, Wei-Te
2010-01-01
A novel class of multi-D-shaped optical fiber suited for refractive index measurements is presented. The multi-D-shaped optical fiber was constructed by forming several D-sections in a multimode optical fiber at localized regions with femtosecond laser pulses. The total number of D-shaped zones fabricated could range from three to seven. Each D-shaped zone covered a sensor volume of 100 μm depth, 250 μm width, and 1 mm length. The mean roughness of the core surface obtained by the AFM images was 231.7 nm, which is relatively smooth. Results of the tensile test indicated that the fibers have sufficient mechanical strength to resist damage from further processing. The multi-D-shaped optical fiber as a high sensitive refractive-index sensor to detect changes in the surrounding refractive index was studied. The results for different concentrations of sucrose solution show that a resolution of 1.27 × 10−3–3.13 × 10−4 RIU is achieved for refractive indices in the range of 1.333 to 1.403, suggesting that the multi-D-shaped fibers are attractive for chemical, biological, and biochemical sensing with aqueous solutions. PMID:22399908
The effect of shape on the fracture of a soft elastic gel subjected to shear load.
Kundan, Krishna Kant; Ghatak, Animangsu
2018-02-21
For brittle solids, the fracture energy is the energy required to create a unit area of new surface through the process of division. For crosslinked materials, it is a function of the intrinsic properties like crosslinking density and bond strength of the crosslinks. Here we show that the energy released due to fracture can depend also on the shape of a joint made of this material. Our experiment involves two gel blocks connected via a thin gel disk. The disk is formed into different regular and exotic shapes, but with identical areas of cross-section. When one of the blocks is sheared with respect to the other, the shear load increases with vertical displacement, eventually causing a fracture at a threshold load. The maximum fracture load is different for different disks and among different regularly shaped disks, it is at a maximum for pentagon and hexagon shapes. The fracture energy release rate of the joint depends also on the aspect ratio (height/width) of the shapes. Our experiments also throw light on possible reasons for such a dependence on the shape of the joints.
Guided by curvature: shaping cells by coupling curved membrane proteins and cytoskeletal forces.
Gov, N S
2018-05-26
Eukaryote cells have flexible membranes that allow them to have a variety of dynamical shapes. The shapes of the cells serve important biological functions, both for cells within an intact tissue, and during embryogenesis and cellular motility. How cells control their shapes and the structures that they form on their surface has been a subject of intensive biological research, exposing the building blocks that cells use to deform their membranes. These processes have also drawn the interest of theoretical physicists, aiming to develop models based on physics, chemistry and nonlinear dynamics. Such models explore quantitatively different possible mechanisms that the cells can employ to initiate the spontaneous formation of shapes and patterns on their membranes. We review here theoretical work where one such class of mechanisms was investigated: the coupling between curved membrane proteins, and the cytoskeletal forces that they recruit. Theory indicates that this coupling gives rise to a rich variety of membrane shapes and dynamics, while experiments indicate that this mechanism appears to drive many cellular shape changes.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).
Derbidge, Renatus; Feiten, Linus; Conradt, Oliver; Heusser, Peter; Baumgartner, Stephan
2013-01-01
Photographs of mistletoe (Viscum album L.) berries taken by a permanently fixed camera during their development in autumn were subjected to an outline shape analysis by fitting path curves using a mathematical algorithm from projective geometry. During growth and maturation processes the shape of mistletoe berries can be described by a set of such path curves, making it possible to extract changes of shape using one parameter called Lambda. Lambda describes the outline shape of a path curve. Here we present methods and software to capture and measure these changes of form over time. The present paper describes the software used to automatize a number of tasks including contour recognition, optimization of fitting the contour via hill-climbing, derivation of the path curves, computation of Lambda and blinding the pictures for the operator. The validity of the program is demonstrated by results from three independent measurements showing circadian rhythm in mistletoe berries. The program is available as open source and will be applied in a project to analyze the chronobiology of shape in mistletoe berries and the buds of their host trees. PMID:23565255
Endoplasmatic reticulum shaping by generic mechanisms and protein-induced spontaneous curvature.
Sackmann, Erich
2014-06-01
The endoplasmatic reticulum (ER) comprises flattened vesicles (cisternae) with worm holes dubbed with ribosomes coexisting with a network of interconnected tubes which can extend to the cell periphery or even penetrate nerve axons. The coexisting topologies enclose a continuous luminal space. The complex ER topology is specifically controlled by a group of ER-shaping proteins often called reticulons (discovered by the group of Tom Rapoport). They include atlastin, reticulon, REEP and the MT severing protein spastin. A generic ER shape controlling factor is the necessity to maximize the area-to-volume ratio of ER membranes in the highly crowded cytoplasmic space. I present a model of the ER-shaping function of the reticulons based on the Helfrich bending elasticity concept of soft shell shape changes. Common structural motifs of the reticulons are hydrophobic sequences forming wedge shaped hairpins which penetrate the lipid bilayer of the cell membranes. The wedge-like hydrophobic anchors can both induce the high curvature of the tubular ER fraction and ensure the preferred distribution of the reticulons along the tubules. Tubular junctions may be stabilized by the reticulons forming two forceps twisted by 90°. The ER extensions to the cell periphery and the axons are mediated by coupling of the tubes to the microtubules which is mediated by REEP and spastin. At the end I present a model of the tension driven homotype fusion of ER-membranes by atlastin, based on analogies to the SNARE-complexin-SNARE driven heterotype fusion process. Copyright © 2014 Elsevier B.V. All rights reserved.
Laser and Surface Processes of NiTi Shape Memory Elements for Micro-actuation
NASA Astrophysics Data System (ADS)
Nespoli, Adelaide; Biffi, Carlo Alberto; Previtali, Barbara; Villa, Elena; Tuissi, Ausonio
2014-04-01
In the current microtechnology for actuation field, shape memory alloys (SMA) are considered one of the best candidates for the production of mini/micro devices thanks to their high power-to-weight ratio as function of the actuator weight and hence for their capability of generating high mechanical performance in very limited spaces. In the microscale the most suitable conformation of a SMA actuator is given by a planar wavy formed arrangement, i.e., the snake-like shape, which allows high strokes, considerable forces, and devices with very low sizes. This uncommon and complex geometry becomes more difficult to be realized when the actuator dimensions are scaled down to micrometric values. In this work, micro-snake-like actuators are laser machined using a nanosecond pulsed fiber laser, starting from a 120- μm-thick NiTi sheet. Chemical and electrochemical surface polishes are also investigated for the removal of the thermal damages of the laser process. Calorimetric and thermo-mechanical tests are accomplished to assess the NiTi microdevice performance after each step of the working process. It is shown that laser machining has to be followed by some post-processes in order to obtain a micro-actuator with good thermo-mechanical properties.
Orlov, Tanya; Zohary, Ehud
2018-01-17
We typically recognize visual objects using the spatial layout of their parts, which are present simultaneously on the retina. Therefore, shape extraction is based on integration of the relevant retinal information over space. The lateral occipital complex (LOC) can represent shape faithfully in such conditions. However, integration over time is sometimes required to determine object shape. To study shape extraction through temporal integration of successive partial shape views, we presented human participants (both men and women) with artificial shapes that moved behind a narrow vertical or horizontal slit. Only a tiny fraction of the shape was visible at any instant at the same retinal location. However, observers perceived a coherent whole shape instead of a jumbled pattern. Using fMRI and multivoxel pattern analysis, we searched for brain regions that encode temporally integrated shape identity. We further required that the representation of shape should be invariant to changes in the slit orientation. We show that slit-invariant shape information is most accurate in the LOC. Importantly, the slit-invariant shape representations matched the conventional whole-shape representations assessed during full-image runs. Moreover, when the same slit-dependent shape slivers were shuffled, thereby preventing their spatiotemporal integration, slit-invariant shape information was reduced dramatically. The slit-invariant representation of the various shapes also mirrored the structure of shape perceptual space as assessed by perceptual similarity judgment tests. Therefore, the LOC is likely to mediate temporal integration of slit-dependent shape views, generating a slit-invariant whole-shape percept. These findings provide strong evidence for a global encoding of shape in the LOC regardless of integration processes required to generate the shape percept. SIGNIFICANCE STATEMENT Visual objects are recognized through spatial integration of features available simultaneously on the retina. The lateral occipital complex (LOC) represents shape faithfully in such conditions even if the object is partially occluded. However, shape must sometimes be reconstructed over both space and time. Such is the case in anorthoscopic perception, when an object is moving behind a narrow slit. In this scenario, spatial information is limited at any moment so the whole-shape percept can only be inferred by integration of successive shape views over time. We find that LOC carries shape-specific information recovered using such temporal integration processes. The shape representation is invariant to slit orientation and is similar to that evoked by a fully viewed image. Existing models of object recognition lack such capabilities. Copyright © 2018 the authors 0270-6474/18/380659-20$15.00/0.
NASA Astrophysics Data System (ADS)
Biba, Nikolay; Alimov, Artem; Shitikov, Andrey; Stebunov, Sergei
2018-05-01
The demand for high performance and energy efficient transportation systems have boosted interest in lightweight design solutions. To achieve maximum weight reductions, it is not enough just to replace steel parts by their aluminium analogues, but it is necessary to change the entire concept of vehicle design. In this case we must develop methods for manufacturing a variety of critical parts with unusual and difficult to produce shapes. The mechanical properties of the material in these parts must also be optimised and tightly controlled to provide the best distribution within the part volume. The only way to achieve these goals is to implement technology development methods based on simulation of the entire manufacturing chain from preparing a billet through the forming operations and heat treatment of the product. The paper presents an approach to such technology development. The simulation of the technological chain starts with extruding a round billet. Depending on the extrusion process parameters, the billet can have different levels of material workout and variation of grain size throughout the volume. After extrusion, the billet gets formed into the required shape in a forging process. The main requirements at this stage are to get the near net shape of the product without defects and to provide proper configuration of grain flow that strengthens the product in the most critical direction. Then the product undergoes solution treatment, quenching and ageing. The simulation of all these stages are performed by QForm FEM code that provides thermo-mechanical coupled deformation of the material during extrusion and forging. To provide microstructure and heat treatment simulation, special subroutines has been developed by the authors. The proposed approach is illustrated by an industrial case study.
NASA Astrophysics Data System (ADS)
Benito, G.; Del Campo, P. Pérez; Gutiérrez-Elorza, M.; Sancho, C.
1995-04-01
The central Ebro Basin comprises thick evaporite materials whose high solubility produces typically karstic landforms. The sinkhole morphology developed in the overlying alluvium has been studied using gravimetry and ground-penetrating radar (GPR) on stream terraces, as well as analyzing the evolution of sinkhole morphologies observed in aerial photographs taken in 1928, 1957, and 1985. The sinkhole morphologies give some idea of possible subsurface processes as well as an indication of the final mechanisms involve in sinkhole development. On stream terraces and cover pediments the most commonly encountered dolines are bowl-shaped in their morphology with both diffuse and scarped edges. In contrast, dolines developed in the gypsiferous silt infilled valleys have a funnel and well-shaped morphology. The diffuse-edged bowl-shaped dolines are developed through the progressive subsidence of the alluvial cover, due to washing down of alluvial particles through small voids and cracks into deeper subsurface caves, resulting in a decrease alluvial density. Future compaction of the alluvial cover will produce surface subsidences. This type of dolines are associated with negative gravity anomalies. In contrast, the scarped-edge dolines are formed by the sudden collapse of a cavity roof. The cavities and cracks formed in the gypsum karst may migrate to the surface through the alluvial deposits by piping, and they may subsequently collapse. In this instance, the cavities can be detected by both gravity and GPR anomalies where the voids are not deeper than 4 5 m from the surface. These processes forming sinkholes can be enhanced by man-induced changes in the groundwater hydrologic regime by both inflows, due to irrigation, ditch losses, or pipe leakages, and by outflows from pumping activities.
Håkansson, Sebastian; Morisaki, Hiroshi; Heuser, John; Sibley, L. David
1999-01-01
Toxoplasma gondii is a member of the phylum Apicomplexa, a diverse group of intracellular parasites that share a unique form of gliding motility. Gliding is substrate dependent and occurs without apparent changes in cell shape and in the absence of traditional locomotory organelles. Here, we demonstrate that gliding is characterized by three distinct forms of motility: circular gliding, upright twirling, and helical rotation. Circular gliding commences while the crescent-shaped parasite lies on its right side, from where it moves in a counterclockwise manner at a rate of ∼1.5 μm/s. Twirling occurs when the parasite rights itself vertically, remaining attached to the substrate by its posterior end and spinning clockwise. Helical gliding is similar to twirling except that it occurs while the parasite is positioned horizontally, resulting in forward movement that follows the path of a corkscrew. The parasite begins lying on its left side (where the convex side is defined as dorsal) and initiates a clockwise revolution along the long axis of the crescent-shaped body. Time-lapse video analyses indicated that helical gliding is a biphasic process. During the first 180o of the turn, the parasite moves forward one body length at a rate of ∼1–3 μm/s. In the second phase, the parasite flips onto its left side, in the process undergoing little net forward motion. All three forms of motility were disrupted by inhibitors of actin filaments (cytochalasin D) and myosin ATPase (butanedione monoxime), indicating that they rely on an actinomyosin motor in the parasite. Gliding motility likely provides the force for active penetration of the host cell and may participate in dissemination within the host and thus is of both fundamental and practical interest. PMID:10564254
Understanding the High Temperature Behavior of Niobium Aluminides; First Year Summary Report
1990-11-08
characterization to follow. Near-net shape processing may be used to form test specimens. A transmission elec- tron microscopy effort will be used ...to identify deformation mechanisms. ,, 20 DISTRIBUTION/AVAII ABILITY OF ABSTRACT SK’NCI ASSIFIFD’UNL MITED • SAME AS R"T • DTC USEDS J...ingots have been processed for us (gratis) by Nippon Mining Corporation by vacuum induction melted from a stock of niobium oxide and elemental aluminum
Aerial 3D display by use of a 3D-shaped screen with aerial imaging by retro-reflection (AIRR)
NASA Astrophysics Data System (ADS)
Kurokawa, Nao; Ito, Shusei; Yamamoto, Hirotsugu
2017-06-01
The purpose of this paper is to realize an aerial 3D display. We design optical system that employs a projector below a retro-reflector and a 3D-shaped screen. A floating 3D image is formed with aerial imaging by retro-reflection (AIRR). Our proposed system is composed of a 3D-shaped screen, a projector, a quarter-wave retarder, a retro-reflector, and a reflective polarizer. Because AIRR forms aerial images that are plane-symmetric of the light sources regarding the reflective polarizer, the shape of the 3D screen is inverted from a desired aerial 3D image. In order to expand viewing angle, the 3D-shaped screen is surrounded by a retro-reflector. In order to separate the aerial image from reflected lights on the retro- reflector surface, the retro-reflector is tilted by 30 degrees. A projector is located below the retro-reflector at the same height of the 3D-shaped screen. The optical axis of the projector is orthogonal to the 3D-shaped screen. Scattered light on the 3D-shaped screen forms the aerial 3D image. In order to demonstrate the proposed optical design, a corner-cube-shaped screen is used for the 3D-shaped screen. Thus, the aerial 3D image is a cube that is floating above the reflective polarizer. For example, an aerial green cube is formed by projecting a calculated image on the 3D-shaped screen. The green cube image is digitally inverted in depth by our developed software. Thus, we have succeeded in forming aerial 3D image with our designed optical system.
Rapid shape detection signals in area V4
Weiner, Katherine F.; Ghose, Geoffrey M.
2014-01-01
Vision in foveate animals is an active process that requires rapid and constant decision-making. For example, when a new object appears in the visual field, we can quickly decide to inspect it by directing our eyes to the object's location. We studied the contribution of primate area V4 to these types of rapid foveation decisions. Animals performed a reaction time task that required them to report when any shape appeared within a peripherally-located noisy stimulus by making a saccade to the stimulus location. We found that about half of the randomly sampled V4 neurons not only rapidly and precisely represented the appearance of this shape, but they were also predictive of the animal's saccades. A neuron's ability to predict the animal's saccades was not related to the specificity with which the cell represented a single type of shape but rather to its ability to signal whether any shape was present. This relationship between sensory sensitivity and behavioral predictiveness was not due to global effects such as alertness, as it was equally likely to be observed for cells with increases and decreases in firing rate. Careful analysis of the timescales of reliability in these neurons implies that they reflect both feedforward and feedback shape detecting processes. In approximately 7% of our recorded sample, individual neurons were able to predict both the delay and precision of the animal's shape detection performance. This suggests that a subset of V4 neurons may have been directly and causally contributing to task performance and that area V4 likely plays a critical role in guiding rapid, form-based foveation decisions. PMID:25278828
NASA Astrophysics Data System (ADS)
Marchi, S.; A'Hearn, M. F.; Barbieri, C.; Barucci, M. A.; Besse, S.; Cremonese, G.; Ip, W. H.; Keller, H. U.; Koschny, D.; Kuhrt, E.; Lamy, P. L.; Marzari, F.; Massironi, M.; Pajola, M.; Rickman, H.; Rodrigo, R.; Sierks, H.; Snodgrass, C.; Thomas, N.; Vincent, J. B.
2014-12-01
In this paper we present the major geomorphological features of comet Churymov-Gerasimenko (C-G), with emphasis on those that may have formed through collisional processes. The C-G nucleus has been imaged with the Rosetta/OSIRIS camera system at varying spatial resolution. At the moment of this writing the maximum spatial resolution achieved is ~20 meter per pixel, and it will improve to reach the unprecedented centimeter-scale in November 2014. This resolution should allow us to identify and characterize pits, lineaments and blocks that could be the result of collisional evolution. Indeed, C-G has spent some 1000 years on orbits crossing the main asteroid belt, and a much longer time in the outer solar system. Collisions may have, therefore, shaped the morphology of the nucleus in various ways. Previously imaged Jupiter Family Comets (e.g., Tempel 1) show significant numbers of pits and lineaments, some of which could be due to collisions. Additional proposed formation mechanisms are related to cometary activity processes, such as volatile outgassing.In addition to small scale features, the overall shape of C-G could also provide insights into the role of collisional processes. A striking feature is that C-G's shape is that of a contact binary. Similar shapes have been observed on rocky asteroids (e.g., Itokawa) and are generally interpreted as an indication of their rubble pile nature. A possibility is that C-G underwent similar processes, and therefore it may be constituted by reaccumulated fragments ejected from a larger precursor. An alternative view is that the current shape is the result of inhomogeneous outgassing activity, which may have dug a ~1-km deep trench responsible for the apparent contact binary shape.The role of the various proposed formation mechanisms (collisional vs outgassing) for both small scale and global features will be investigated and their implications for the evolution of C-G will be discussed.
Copper Deposits in Sedimentary and Volcanogenic Rocks
Tourtelot, Elizabeth B.; Vine, James David
1976-01-01
Copper deposits occur in sedimentary and volcanogenic rocks within a wide variety of geologic environments where there may be little or no evidence of hydrothermal alteration. Some deposits may be hypogene and have a deep-seated source for the ore fluids, but because of rapid cooling and dilution during syngenetic deposition on the ocean floor, the resulting deposits are not associated with hydrothermal alteration. Many of these deposits are formed at or near major tectonic features on the Earth's crust, including plate boundaries, rift valleys, and island arcs. The resulting ore bodies may be stratabound and either massive or disseminated. Other deposits form in rocks deposited in shallow-marine, deltaic, and nonmarine environments by the movement and reaction of interstratal brines whose metal content is derived from buried sedimentary and volcanic rocks. Some of the world's largest copper deposits were probably formed in this manner. This process we regard as diagenetic, but some would regard it as syngenetic, if the ore metals are derived from disseminated metal in the host-rock sequence, and others would regard the process as epigenetic, if there is demonstrable evidence of ore cutting across bedding. Because the oxidation associated with diagenetic red beds releases copper to ground-water solutions, red rocks and copper deposits are commonly associated. However, the ultimate size, shape, and mineral zoning of a deposit result from local conditions at the site of deposition - a logjam in fluvial channel sandstone may result in an irregular tabular body of limited size; a petroleum-water interface in an oil pool may result in a copper deposit limited by the size and shape of the petroleum reservoir; a persistent thin bed of black shale may result in a copper deposit the size and shape of that single bed. The process of supergene enrichment has been largely overlooked in descriptions of copper deposits in sedimentary rocks. However, supergene processes may be involved during erosion of any primary ore body and its ultimate displacement and redeposition as a secondary deposit. Bleached sandstone at the surface may indicate significant ore deposits near the water table.
NASA Astrophysics Data System (ADS)
Guan, Chao; Hasi, Eerdun; Zhang, Ping; Tao, Binbin; Liu, Dan; Zhou, Yanguang
2017-10-01
Since the 1970s, parabolic dunes at the southern fringe of the Hobq Desert, Inner Mongolia, China have exhibited many different shapes (V-shaped, U-shaped, and palmate) each with a unique mode of development. In the study area, parabolic dunes are mainly distributed in Regions A, B, and C with an intermittent river running from the south to the north. We used high-resolution remote-sensing images from 1970 to 2014 and RTK-GPS measurements to study the development modes of different dune shapes; the modes are characterized by the relationship between the intermittent river and dunes, formation of the incipient dune patterns, the predominant source supply of dunes, and the primary formation of different shapes (V-shaped, U-shaped, and palmate). Most parabolic dunes in Region A are V-shaped and closer to the bank of the river. The original barchans in this region exhibit "disconnected arms" behavior. With the sand blown out of the riverbed through gullies, the nebkhas on the disconnected arms acquire the external sand source through the "fertile island effect", thereby developing into triangular sand patches and further developing into V-shaped parabolic dunes. Most parabolic dunes in Regions B and C are palmate. The residual dunes cut by the re-channelization of river from transverse dune fields on the west bank are the main sand source of Region B. The parabolic dunes in Region C are the original barchans having then been transformed. The stoss slopes of V-shaped parabolic dunes along the riverbank are gradual and the dunes are flat in shape. The dune crest of V-shaped parabolic dune is the deposition area, which forms the "arc-shaped sand ridge". Their two arms are non-parallel; the lateral airflow of the arms jointly transport sand to the middle part of dunes, resulting in a narrower triangle that gradually becomes V-shaped. Palmate parabolic dunes have a steeper stoss slope and height. The dune crest of the palmate parabolic dune is the erosion area, which forms a long and narrow trough between nebkhas by the "funnelling effect". This process forces sand towards lee slopes, which transform from concave (original barchans) into convex, ultimately resulting in the formation of palmate parabolic dunes.
Process influences and correction possibilities for high precision injection molded freeform optics
NASA Astrophysics Data System (ADS)
Dick, Lars; Risse, Stefan; Tünnermann, Andreas
2016-08-01
Modern injection molding processes offer a cost-efficient method for manufacturing high precision plastic optics for high volume applications. Besides form deviation of molded freeform optics, internal material stress is a relevant influencing factor for the functionality of a freeform optics in an optical system. This paper illustrates dominant influence parameters of an injection molding process relating to form deviation and internal material stress based on a freeform demonstrator geometry. Furthermore, a deterministic and efficient way for 3D mold correcting of systematic, asymmetrical shrinkage errors is shown to reach micrometer range shape accuracy at diameters up to 40 mm. In a second case, a stress-optimized parameter combination using unusual molding conditions was 3D corrected to reach high precision and low stress freeform polymer optics.
Machining process influence on the chip form and surface roughness by neuro-fuzzy technique
NASA Astrophysics Data System (ADS)
Anicic, Obrad; Jović, Srđan; Aksić, Danilo; Skulić, Aleksandar; Nedić, Bogdan
2017-04-01
The main aim of the study was to analyze the influence of six machining parameters on the chip shape formation and surface roughness as well during turning of Steel 30CrNiMo8. Three components of cutting forces were used as inputs together with cutting speed, feed rate, and depth of cut. It is crucial for the engineers to use optimal machining parameters to get the best results or to high control of the machining process. Therefore, there is need to find the machining parameters for the optimal procedure of the machining process. Adaptive neuro-fuzzy inference system (ANFIS) was used to estimate the inputs influence on the chip shape formation and surface roughness. According to the results, the cutting force in direction of the depth of cut has the highest influence on the chip form. The testing error for the cutting force in direction of the depth of cut has testing error 0.2562. This cutting force determines the depth of cut. According to the results, the depth of cut has the highest influence on the surface roughness. Also the depth of cut has the highest influence on the surface roughness. The testing error for the cutting force in direction of the depth of cut has testing error 5.2753. Generally the depth of cut and the cutting force which provides the depth of cut are the most dominant factors for chip forms and surface roughness. Any small changes in depth of cut or in cutting force which provide the depth of cut could drastically affect the chip form or surface roughness of the working material.
Effect of Punch Stroke on Deformation During Sheet Forming Through Finite Element
NASA Astrophysics Data System (ADS)
Akinlabi, Stephen; Akinlabi, Esther
2017-08-01
Forming is one of the traditional methods of making shapes, bends and curvature in metallic components during a fabrication process. Mechanical forming, in particular, employs the use of a punch, which is pressed against the sheet material to be deformed into a die by the application of an external force. This study reports on the finite element analysis of the effects of punch stroke on the resulting sheet deformation, which is directly a function of the structural integrity of the formed components for possible application in the automotive industry. The results show that punch stroke is directly proportional to the resulting bend angle of the formed components. It was further revealed that the developed plastic strain increases as the punch stroke increases.
Incorporating the cultural diversity of family and close relationships into the study of health.
Campos, Belinda; Kim, Heejung S
2017-09-01
Relationships are at the center of the human social environment, and their quality and longevity are now recognized to have particular relevance for health. The goal of this article is to bring attention to the role of culture in how relationships, particularly close relationships and family relationships, influence health. To this end, 2 contexts that are characterized by 2 distinct forms of cultural collectivism (East Asian and Latino) are spotlighted to highlight the unique patterns that underlie broader cultural categories (e.g., collectivism). In addition, related research on other understudied cultures and nonethnic or nonnational forms of culture (e.g., social class, religion) is also discussed. The review centers on social support, a key pathway through which relationships shape psychological and physical health, as the psychological process that has received the most empirical attention in this area. Overall, it is clear that new and more systematic approaches are needed to generate a more comprehensive, novel, and inclusive understanding of the role of culture in relationship processes that shape health. Three recommendations are offered for researchers and professionals to generate and incorporate knowledge of culture-specific relationship processes into their understanding of health. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Khoei, A. R.; Samimi, M.; Azami, A. R.
2007-02-01
In this paper, an application of the reproducing kernel particle method (RKPM) is presented in plasticity behavior of pressure-sensitive material. The RKPM technique is implemented in large deformation analysis of powder compaction process. The RKPM shape function and its derivatives are constructed by imposing the consistency conditions. The essential boundary conditions are enforced by the use of the penalty approach. The support of the RKPM shape function covers the same set of particles during powder compaction, hence no instability is encountered in the large deformation computation. A double-surface plasticity model is developed in numerical simulation of pressure-sensitive material. The plasticity model includes a failure surface and an elliptical cap, which closes the open space between the failure surface and hydrostatic axis. The moving cap expands in the stress space according to a specified hardening rule. The cap model is presented within the framework of large deformation RKPM analysis in order to predict the non-uniform relative density distribution during powder die pressing. Numerical computations are performed to demonstrate the applicability of the algorithm in modeling of powder forming processes and the results are compared to those obtained from finite element simulation to demonstrate the accuracy of the proposed model.
Containerless processing of glass forming melts in space
NASA Technical Reports Server (NTRS)
Day, D. E.; Ray, C. S.
1988-01-01
The near weightlessness of a material in the reduced gravity environment of space offers the opportunity of melting and cooling glass forming compositions without a container. This reduces the heterogeneous nucleation/crystallization which usually occurs at the walls of the container, thereby, extending the range of glass forming compositions. Based primarily on this idea, containerless glass forming experiments, which used a single axis acoustic levitator/furnace (SAAL), were conducted on SPAR rocket flights, 6 and 8, and on Space Shuttle mission, STS-7 and STS-61A. The experiments on the Space Shuttle were designed to include other studies related to melt homogenization and mixing, development of techniques for preparing uncontaminated preflight samples, and simple shaping experiments.
Teachers' Beliefs in English Language Teaching and Learning: A Review of the Literature
ERIC Educational Resources Information Center
Gilakjani, Abbas Pourhosein; Sabouri, Narjes Banou
2017-01-01
Beliefs form part of the process of understanding how teachers shape their work which is significant to the comprehending of their teaching methods and their decisions in the classroom. Teachers' beliefs have been an interesting topic for researchers due to the input they provide for the improvement of English language teaching and learning.…
Function Follows Form: Activation of Shape and Function Features during Object Identification
ERIC Educational Resources Information Center
Yee, Eiling; Huffstetler, Stacy; Thompson-Schill, Sharon L.
2011-01-01
Most theories of semantic memory characterize knowledge of a given object as comprising a set of semantic features. But how does conceptual activation of these features proceed during object identification? We present the results of a pair of experiments that demonstrate that object recognition is a dynamically unfolding process in which function…
Strain-Detecting Composite Materials
NASA Technical Reports Server (NTRS)
Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)
2016-01-01
A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.
Signature detection and matching for document image retrieval.
Zhu, Guangyu; Zheng, Yefeng; Doermann, David; Jaeger, Stefan
2009-11-01
As one of the most pervasive methods of individual identification and document authentication, signatures present convincing evidence and provide an important form of indexing for effective document image processing and retrieval in a broad range of applications. However, detection and segmentation of free-form objects such as signatures from clustered background is currently an open document analysis problem. In this paper, we focus on two fundamental problems in signature-based document image retrieval. First, we propose a novel multiscale approach to jointly detecting and segmenting signatures from document images. Rather than focusing on local features that typically have large variations, our approach captures the structural saliency using a signature production model and computes the dynamic curvature of 2D contour fragments over multiple scales. This detection framework is general and computationally tractable. Second, we treat the problem of signature retrieval in the unconstrained setting of translation, scale, and rotation invariant nonrigid shape matching. We propose two novel measures of shape dissimilarity based on anisotropic scaling and registration residual error and present a supervised learning framework for combining complementary shape information from different dissimilarity metrics using LDA. We quantitatively study state-of-the-art shape representations, shape matching algorithms, measures of dissimilarity, and the use of multiple instances as query in document image retrieval. We further demonstrate our matching techniques in offline signature verification. Extensive experiments using large real-world collections of English and Arabic machine-printed and handwritten documents demonstrate the excellent performance of our approaches.
NASA Technical Reports Server (NTRS)
Locci, Ivan E.; Noebe, Ronald D.
1989-01-01
Advanced composite processing techniques for fiber reinforced metal matrix composites require the flexibility to meet several widespread objectives. The development of uniquely desired matrix microstructures and uniformly arrayed fiber spacing with sufficient bonding between fiber and matrix to transmit load between them without degradation to the fiber or matrix are the minimum requirements necessary of any fabrication process. For most applications these criteria can be met by fabricating composite monotapes which are then consolidated into composite panels or more complicated components such as fiber reinforced turbine blades. Regardless of the end component, composite monotapes are the building blocks from which near net shape composite structures can be formed. The most common methods for forming composite monotapes are the powder cloth, foil/fiber, plasma spray, and arc spray processes. These practices, however, employ rapid solidification techniques in processing of the composite matrix phase. Consequently, rapid solidification processes play a vital and yet generally overlooked role in composite fabrication. The future potential of rapid solidification processing is discussed.
Biomass characterization of laboratory-scale thermophilic-mesophilic wastewater treatment processes.
Suvilampi, J; Lehtomäki, A; Rintala, J
2006-01-01
Two thermophilic-mesophilic wastewater treatment processes, one as the combination of the thermophilic activated sludge process (ASP), followed by the mesophilic ASP and the other as thermophilic suspended carrier biofilm process (SCBP), followed by the mesophilic ASP, were used to study sludge characteristics and floc formation. Thermophilic bacteria in both ASP and SCBP were able to form flocs, which were <50 microm in size and had a weak structure and irregular shape. Flocs in both the mesophilic ASPs were larger in size (50-500 microm) and had more compact structures. Filamentous bacteria played an important role in both the thermophilic and mesophilic processes by forming bridges between small flocs. Both thermophilic processes showed a high density of dispersed particles, such as free bacteria. When hydraulic retention time (HRT) was decreased the biofilm was retained in the thermophilic SCBP better than the flocs in the thermophilic ASP. The mesophilic ASPs efficiently removed dispersed particles originating from the thermophilic processes.
Harada, Ryuhei; Mashiko, Takako; Tachikawa, Masanori; Hiraoka, Shuichi; Shigeta, Yasuteru
2018-04-04
Self-organization processes of a gear-shaped amphiphile molecule (1) to form a hexameric structure (nanocube, 16) were inferred from sequential dissociation processes by using molecular dynamics (MD) simulations. Our MD study unveiled that programed dynamic ordering exists in the dissociation processes of 16. According to the dissociation processes, it is proposed that triple π-stacking among three 3-pyridyl groups and other weak molecular interactions such as CH-π and van der Waals interactions, some of which arise from the solvophobic effect, were sequentially formed in stable and transient oligomeric states in the self-organization processes, i.e.12, 13, 14, and 15. By subsequent analyses on structural stabilities, it was found that 13 and 14 are stable intermediate oligomers, whereas 12 and 15 are transient ones. Thus, the formation of 13 from three monomers and of 16 from 14 and two monomers via corresponding transients is time consuming in the self-assembly process.
The development of complex tooth shape in reptiles
Zahradnicek, Oldrich; Buchtova, Marcela; Dosedelova, Hana; Tucker, Abigail S.
2014-01-01
Reptiles have a diverse array of tooth shapes, from simple unicuspid to complex multicuspid teeth, reflecting functional adaptation to a variety of diets and eating styles. In addition to cusps, often complex longitudinal labial and lingual enamel crests are widespread and contribute to the final shape of reptile teeth. The simplest shaped unicuspid teeth have been found in piscivorous or carnivorous ancestors of recent diapsid reptiles and they are also present in some extant carnivores such as crocodiles and snakes. However, the ancestral tooth shape for squamate reptiles is thought to be bicuspid, indicating an insectivorous diet. The development of bicuspid teeth in lizards has recently been published, indicating that the mechanisms used to create cusps and crests are very distinct from those that shape cusps in mammals. Here, we introduce the large variety of tooth shapes found in lizards and compare the morphology and development of bicuspid, tricuspid, and pentacuspid teeth, with the aim of understanding how such tooth shapes are generated. Next, we discuss whether the processes used to form such morphologies are conserved between divergent lizards and whether the underlying mechanisms share similarities with those of mammals. In particular, we will focus on the complex teeth of the chameleon, gecko, varanus, and anole lizards using SEM and histology to compare the tooth crown morphology and embryonic development. PMID:24611053
Shape changing thin films powered by DNA hybridization
NASA Astrophysics Data System (ADS)
Shim, Tae Soup; Estephan, Zaki G.; Qian, Zhaoxia; Prosser, Jacob H.; Lee, Su Yeon; Chenoweth, David M.; Lee, Daeyeon; Park, So-Jung; Crocker, John C.
2017-01-01
Active materials that respond to physical and chemical stimuli can be used to build dynamic micromachines that lie at the interface between biological systems and engineered devices. In principle, the specific hybridization of DNA can be used to form a library of independent, chemically driven actuators for use in such microrobotic applications and could lead to device capabilities that are not possible with polymer- or metal-layer-based approaches. Here, we report shape changing films that are powered by DNA strand exchange reactions with two different domains that can respond to distinct chemical signals. The films are formed from DNA-grafted gold nanoparticles using a layer-by-layer deposition process. Films consisting of an active and a passive layer show rapid, reversible curling in response to stimulus DNA strands added to solution. Films consisting of two independently addressable active layers display a complex suite of repeatable transformations, involving eight mechanochemical states and incorporating self-righting behaviour.
NASA Astrophysics Data System (ADS)
Li, M. P.; Sun, Q. P.
2018-01-01
We investigate the roles of grain size (lg) and grain boundary thickness (lb) on the stress-induced phase transition (PT) behaviors of nanocrystalline shape memory alloys (SMAs) by using a Core-shell type "crystallite-amorphous composite" model. A non-dimensionalized length scale lbarg(=lg /lb) is identified as the governing parameter which is indicative of the energy competition between the crystallite and the grain boundary. Closed form analytical solutions of a reduced effective 1D model with embedded microstructure length scales of lg and lb are presented in this paper. It is shown that, with lbarg reduction, the energy of the elastic non-transformable grain boundary will gradually become dominant in the phase transition process, and eventually bring fundamental changes of the deformation behaviors: breakdown of two-phase coexistence and vanishing of superelastic hysteresis. The predictions are supported by experimental data of nanocrystalline NiTi SMAs.
Leishmania mexicana differentiation involves a selective plasma membrane autophagic-like process.
Dagger, Francehuli; Bengio, Camila; Martinez, Angel; Ayesta, Carlos
2017-11-23
Parasites of the Leishmania genus, which are the causative agents of leishmaniasis, display a complex life cycle, from a flagellated form (promastigotes) residing in the midgut of the phlebotomine vector to a non-flagellated form (amastigote) invading the mammalian host. The cellular process for the conversion between these forms is an interesting biological phenomenon involving modulation of the plasma membrane. In this study, we describe a selective autophagic-like process during the in vitro differentiation of Leishmania mexicana promastigote to amastigote-like cells. This process is responsible for size reduction and shape change of the promastigote (15-20 μm long) to the rounded amastigote-like form (4-5 μm long), identical to the one that infects host macrophages. This autophagic-like process is characterized by a profound folding of the plasma membrane and the presence of abundant cytoplasmic lipid droplets that may be the product of changes in the lipid metabolism. The key feature for the differentiation process at either pH 7.0 or pH 5.5 is the shift in temperature from 25 to 35 °C. Flagella shortening during the differentiation process appears as the product of continuous flagellar microtubular disassembly that is also accompanied by changes in mitochondrion localization. Drugs directed at blocking the parasite autophagic-like process could be important as new strategies to fight the disease.
Egorov, Vladimir V
2017-05-01
Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E.
2017-01-01
Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E. PMID:28572984
NASA Astrophysics Data System (ADS)
Egorov, Vladimir V.
2017-05-01
Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E.
PVDF-based semicrystalline-amorphous blends: Phase behavior and thermomechanical properties
NASA Astrophysics Data System (ADS)
Campo, Cheryl Josephine
Poly(vinylidene fluoride) [PVDF]-based semicrystalline-amorphous blends were studied to better understand the degree to which transition temperatures and mechanical properties could be varied as a function of composition. Changes in the amorphous component, processing parameters, MW, and filler content were used to manipulate blend properties. Compositional and MW series of PVDF:poly(vinyl acetate) [PVAc] blends were prepared and characterized. Varying PVDF content led to appreciable changes in crystallinity. In contrast, the effect of composition on blend glass transition temperature, Tg, was manifested only at low PVDF contents. The effect of MWPVA, on the 30:70 PVDF:PVAc composition was manifested primarily in the materials' viscoelastic response to deformation. Ternary blends of PVDF, PVAc, and poly(methyl methacrylate) [PMMA] showed limited miscibility with both a PVAc- and PMMA-rich amorphous phase apparent in all the compositions tested. PVDF:PMMA blends on the other hand exhibited good miscibility characterized by tunable Tg values which were further exploited by varying the processing conditions in order to obtain thermomechanical properties ideal for bio-related shape memory applications. PVDF:poly(ethyl methacrylate) [PEMA] blends, despite having very broad transitions, similarly exhibited desirable transition temperatures for in vivo actuation. The effect of boron nitride (BN), short carbon fibers (SCF), and clay on blend properties was also assessed. SCF filler in 50:50 PVDF:PMMA led mainly to the formation of PVDF crystals in the alpha form, clay was observed to promote growth of the beta crystal form, and BN led to a mixture of crystal forms. BN also exhibited interesting effects in the creep behavior of this system as well as the crystallization behavior of the 50:50 PVDF:PEMA blend, suppressed kinetic crystallization competing with enhanced nucleation effect under isothermal conditions observed in the latter. Depending on the processing conditions used, SCF was found to have similar nucleation effects in the 50:50 PVDF:PMMA blend but diminished degrees of crystallinity overall. Finally, shape memory behavior of PVDF:PVAc blends as well as SCF-filled 50:50 PVDF:PMMA was characterized using single and multiple shape memory cycles. Increasing PVDF content had a negative impact on PVDF:PVAc shape memory properties while increasing stress was found to have an enhancing effect as did low SCF filler content in 50:50 PVDF:PMMA.
A geomorphic process law for detachment-limited hillslopes
NASA Astrophysics Data System (ADS)
Turowski, Jens
2015-04-01
Geomorphic process laws are used to assess the shape evolution of structures at the Earth's surface over geological time scales, and are routinely used in landscape evolution models. There are two currently available concepts on which process laws for hillslope evolution rely. In the transport-limited concept, the evolution of a hillslope is described by a linear or a non-linear diffusion equation. In contrast, in the threshold slope concept, the hillslope is assumed to collapse to a slope equal to the internal friction angle of the material when the load due to the relief exists the material strength. Many mountains feature bedrock slopes, especially in the high mountains, and material transport along the slope is limited by the erosion of the material from the bedrock. Here, I suggest a process law for detachment-limited or threshold-dominated hillslopes, in which the erosion rate is a function of the applied stress minus the surface stress due to structural loading. The process law leads to the prediction of an equilibrium form that compares well to the shape of many mountain domes.
Plastic mechanism of multi-pass double-roller clamping spinning for arc-shaped surface flange
NASA Astrophysics Data System (ADS)
Fan, Shuqin; Zhao, Shengdun; Zhang, Qi; Li, Yongyi
2013-11-01
Compared with the conventional single-roller spinning process, the double-roller clamping spinning(DRCS) process can effectively prevent the sheet metal surface wrinkling and improve the the production efficiency and the shape precision of final spun part. Based on ABAQUS/Explicit nonlinear finite element software, the finite element model of the multi-pass DRCS for the sheet metal is established, and the material model, the contact definition, the mesh generation, the loading trajectory and other key technical problems are solved. The simulations on the multi-pass DRCS of the ordinary Q235A steel cylindrical part with the arc-shaped surface flange are carried out. The effects of number of spinning passes on the production efficiency, the spinning moment, the shape error of the workpiece, and the wall thickness distribution of the final part are obtained. It is indicated definitely that with the increase of the number of spinning passes the geometrical precision of the spun part increases while the production efficiency reduces. Moreover, the variations of the spinning forces and the distributions of the stresses, strains, wall thickness during the multi-pass DRCS process are revealed. It is indicated that during the DRCS process the radical force is the largest, and the whole deformation area shows the tangential tensile strain and the radial compressive strain, while the thickness strain changes along the generatrix directions from the compressive strain on the outer edge of the flange to the tensile strain on the inner edge of the flange. Based on the G-CNC6135 NC lathe, the three-axis linkage computer-controlled experimental device for DRCS which is driven by the AC servo motor is developed. And then using the experimental device, the Q235A cylindrical parts with the arc-shape surface flange are formed by the DRCS. The simulation results of spun parts have good consistency with the experimental results, which verifies the feasibility of DRCS process and the reliability of the finite element model for DRCS.
Research on width control of Metal Fused-coating Additive Manufacturing based on active control
NASA Astrophysics Data System (ADS)
Ren, Chuan qi; Wei, Zheng ying; Wang, Xin; Du, Jun; Zhang, Shan; Zhang, Zhitong; Bai, Hao
2017-12-01
Given the stability of the shape of the forming layer is one of the key problems that affect the final quality of the sample morphology, taking a study on the forming process and the control method of morphology make a significant difference to metal fused-coating additive manufacturing (MFCAM) in achieving the efficient and stable forming. To improve the quality and precision of the samples of single-layer single pass, a control method of morphology based on active control was established by this paper. The real-time acquisition of image was realized by CCD and the characteristics of morphology of the forming process were simultaneously extracted. Making analysis of the characteristics of the width during the process, the relationship between the relative difference of different frames and moving speed was given. A large number of experiments are used to verify the response speed and accuracy of the system. The results show that the active system can improve the morphology of the sample and the smoothness of the width of the single channel, and increase the uniformity of width by 55.16%.
Laser production of articles from powders
Lewis, Gary K.; Milewski, John O.; Cremers, David A.; Nemec, Ronald B.; Barbe, Michael R.
1998-01-01
Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path.
Laser production of articles from powders
Lewis, G.K.; Milewski, J.O.; Cremers, D.A.; Nemec, R.B.; Barbe, M.R.
1998-11-17
Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path. 20 figs.
NASA Astrophysics Data System (ADS)
Slange, T. K.; Warnet, L. L.; Grouve, W. J. B.; Akkerman, R.
2018-05-01
Stamp forming is a rapid manufacturing technology used to shape flat blanks of thermoplastic composite material into three-dimensional components. The combination with rapid AFP as blank manufacturing technology can further extend the applicability of stamp forming by allowing rapid lay-up of tailored blanks and offering partial preconsolidation. In an experimental study it is demonstrated that high quality laminates with good flexural strength can be obtained by following this process route. The consolidation of ply-drop regions is demonstrated by flat laminates with a thickness step. The influence of fiber orientations, blank-tooling misalignments and AFP tolerances is investigated.
NASA Astrophysics Data System (ADS)
Jang, Munseon; Yun, Kwang-Seok
2017-12-01
In this paper, we presents a MEMS pressure sensor integrated with a readout circuit on a chip for an on-chip signal processing. The capacitive pressure sensor is formed on a CMOS chip by using a post-CMOS MEMS processes. The proposed device consists of a sensing capacitor that is square in shape, a reference capacitor and a readout circuitry based on a switched-capacitor scheme to detect capacitance change at various environmental pressures. The readout circuit was implemented by using a commercial 0.35 μm CMOS process with 2 polysilicon and 4 metal layers. Then, the pressure sensor was formed by wet etching of metal 2 layer through via hole structures. Experimental results show that the MEMS pressure sensor has a sensitivity of 11 mV/100 kPa at the pressure range of 100-400 kPa.
NASA Astrophysics Data System (ADS)
Turan, Cabir; Cora, Ömer Necati; Koç, Muammer
2013-12-01
In this study, results of an investigation on the effects of manufacturing and coating process sequence on the contact resistance (ICR) of metallic bipolar plates (BPP) for polymer electrolyte membrane fuel cells (PEMFCs) are presented. Firstly, uncoated stainless steel 316L blanks were formed into BPP through hydroforming and stamping processes. Then, these formed BPP samples were coated with three different PVD coatings (CrN, TiN and ZrN) at three different thicknesses (0.1, 0.5 and 1 μm). Secondly, blanks of the same alloy were coated first with the same coatings, thickness and technique; then, they were formed into BPPs of the same shape and dimensions using the manufacturing methods as in the first group. Finally, these two groups of BPP samples were tested for their ICR to reveal the effect of process sequence. ICR tests were also conducted on the BPP plates both before and after exposure to corrosion to disclose the effect of corrosion on ICR. Coated-then-formed BPP samples exhibited similar or even better ICR performance than formed-then-coated BPP samples. Thus, manufacturing of coated blanks can be concluded to be more favorable and worth further investigation in quest of making cost effective BPPs for mass production of PEMFC.
Utilization of gas-atomized titanium and titanium-aluminide powder
NASA Astrophysics Data System (ADS)
Moll, John H.
2000-05-01
A gas-atomization process has been developed producing clean, high-quality, prealloyed spherical titanium and titanium-aluminide powder. The powder is being used to manufacture hot-isostatically pressed consolidated shapes for aerospace and nonaerospace allocations. These include gamma titanium-aluminide sheet and orthorhombic titanium-aluminide wire as well as niche markets, such as x-ray drift standards and sputtering targets. The powder is also being used in specialized processes, including metal-matrix composites, laser forming, and metal-injection molding.
Ultraminiature broadband light source with spiral shaped filament
NASA Technical Reports Server (NTRS)
McConaghy, Charles F. (Inventor); Olsen, Barry L. (Inventor); Tuma, Margaret L. (Inventor); Collura, Joseph S. (Inventor); Pocha, Michael D. (Inventor); Helvajian, Henry (Inventor); Meyer, Glenn A. (Inventor); Hansen, William W (Inventor)
2012-01-01
An ultraminiature light source using a double-spiral shaped tungsten filament includes end contact portions which are separated to allow for radial and length-wise unwinding of the spiral. The double-spiral filament is spaced relatively far apart at the end portions thereof so that contact between portions of the filament upon expansion is avoided. The light source is made by fabricating a double-spiral ultraminiature tungsten filament from tungsten foil and housing the filament in a ceramic package having a reflective bottom and a well wherein the filament is suspended. A vacuum furnace brazing process attaches the filament to contacts of the ceramic package. Finally, a cover with a transparent window is attached onto the top of the ceramic package by solder reflow in a second vacuum furnace process to form a complete hermetically sealed package.
Aerodynamic shape optimization of a HSCT type configuration with improved surface definition
NASA Technical Reports Server (NTRS)
Thomas, Almuttil M.; Tiwari, Surendra N.
1994-01-01
Two distinct parametrization procedures of generating free-form surfaces to represent aerospace vehicles are presented. The first procedure is the representation using spline functions such as nonuniform rational b-splines (NURBS) and the second is a novel (geometrical) parametrization using solutions to a suitably chosen partial differential equation. The main idea is to develop a surface which is more versatile and can be used in an optimization process. Unstructured volume grid is generated by an advancing front algorithm and solutions obtained using an Euler solver. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an automatic differentiator precompiler software tool. Aerodynamic shape optimization of a complete aircraft with twenty four design variables is performed. High speed civil transport aircraft (HSCT) configurations are targeted to demonstrate the process.
Integrated Analysis of Flow, Form, and Function for River Management and Design Testing
NASA Astrophysics Data System (ADS)
Lane, B. A. A.; Pasternack, G. B.; Sandoval Solis, S.
2017-12-01
Rivers are highly complex, dynamic systems that support numerous ecosystem functions including transporting sediment, modulating biogeochemical processes, and regulating habitat availability for native species. The extent and timing of these functions is largely controlled by the interplay of hydrologic dynamics (i.e. flow) and the shape and composition of the river corridor (i.e. form). This study applies synthetic channel design to the evaluation of river flow-form-function linkages, with the aim of evaluating these interactions across a range of flows and forms to inform process-driven management efforts with limited data and financial requirements. In an application to California's Mediterranean-montane streams, the interacting roles of channel form, water year type, and hydrologic impairment were evaluated across a suite of ecosystem functions related to hydrogeomorphic processes, aquatic habitat, and riparian habitat. Channel form acted as the dominant control on hydrogeomorphic processes considered, while water year type controlled salmonid habitat functions. Streamflow alteration for hydropower increased redd dewatering risk and altered aquatic habitat availability and riparian recruitment dynamics. Study results highlight critical tradeoffs in ecosystem function performance and emphasize the significance of spatiotemporal diversity of flow and form at multiple scales for maintaining river ecosystem integrity. The approach is broadly applicable and extensible to other systems and ecosystem functions, where findings can be used to characterize complex controls on river ecosystems, assess impacts of proposed flow and form alterations, and inform river restoration strategies.
Material cutting, shaping, and forming: A compilation
NASA Technical Reports Server (NTRS)
1974-01-01
Information is presented concerning cutting, shaping, and forming of materials, and the equipment and techniques required for utilizing these materials. The use of molds, electrical fields, and mechanical devices are related to forming materials. Material cutting methods by devices including borers and slicers are presented along with chemical techniques. Shaping and fabrication techniques are described for tubing, honeycomb panels, and ceramic structures. The characteristics of the materials are described. Patent information is included.
Production of superconductor/carbon bicomponent fibers
NASA Technical Reports Server (NTRS)
Wise, S. A.; Fain, C. C.; Leigh, H. D.; Sherrill, M.
1990-01-01
Certain materials are unable to be drawn or spun into fiber form due to their improper melting characteristics or brittleness. However, fibrous samples of such materials are often necessary for the fabrication of intricate shapes and composites. In response to this problem, a unique process, referred to as the piggyback process, was developed to prepare fibrous samples of a variety of nonspinnable ceramics. In this technique, specially produced C-shaped carbon fibers serve as micromolds to hold the desired materials prior to sintering. Depending on the sintering atmosphere used, bicomponent or single component fibers result. While much has been demonstrated worldwide concerning the YBa2Cu3O(7-x) superconductor, fabrication into unique forms has proven quite difficult. However, a variety of intricate shapes are necessary for rapid commercialization of the superconducting materials. The potential for producing fibrous samples of the YBa2Cu3O(7-x) compound by the piggyback process is being investigated. Various organic and acrylic materials were investigated to determine suspending ability, reactivity with the YBa2Cu3O(7-x) compound during long term storage, and burn out characteristics. While many questions were answered with respect to the interfacial reactions between YBa2Cu3O(7-x) and carbon, much work is still necessary to improve the quality of the sintered material if the fibers produced are to be incorporated into useful composites or cables. Additional research is necessary to evaluate quality of the barrier layer during long soakings at the peak temperature; adjust the firing schedule to avoid microcracking and improve densification; and increase the solids loading in the superconductive suspension to decrease porosity.
Microbial shaping of wrinkle structures in siliciclastic deposits
NASA Astrophysics Data System (ADS)
Bosak, T.; Mariotti, G.; Pruss, S. B.; Perron, J.; O'Grady, M.
2013-12-01
Wrinkle structures are millimeter- to centimeter-scale elongated or reticulate sedimentary structures that resemble symmetric ripples. Sharp-crested and flat-topped wrinkle structures up to 1 cm wide occur on numerous bedding planes in the Neoproterozoic and Cambrian, as well as in some Archean and Phanerozoic siliciclastic deposits. Because similar, but unlithified structures occur in some modern, microbially-colonized sands, wrinkle structures are typically interpreted as microbially induced sedimentary structures. However, it is unclear if physical processes, such as the motion of suspended sand grains, can produce similar features in sand even before microbial colonization. We introduced mat fragments to the surface of silica sand in wave tanks and generated sharp-crested, flat-topped and pitted wrinkle structures. The abrasion of the sandy surface by rolling, low density, millimeter-size fragments of microbial mats produces wrinkle structures at extremely weak orbital velocities that cannot move sand grains in the absence of light particles. Wrinkle structures form in a few hours and can become colonized by microbial mats within weeks. Thus, wrinkle structures are patterns formed by microbially mediated sand motion at low orbital velocities in the absence of bioturbation. Once formed, wrinkle structures can be colonized and stabilized by microbial mats, but the shape of these mats does not dictate the shape of wrinkle structures. These experiments bolster the interpretation of wrinkle structures as morphological signatures of organic particles and early life in Archean and Proterozoic siliciclastic deposits.
Nuclear reactor fuel rod attachment system
Not Available
1980-09-17
A reusable system is described for removably attaching a nuclear reactor fuel rod to a support member. A locking cap is secured to the fuel rod and a locking strip is fastened to the support member. The locking cap has two opposing fingers shaped to form a socket having a body portion. The locking strip has an extension shaped to rigidly attach to the socket's body portion. The locking cap's fingers are resiliently deflectable. For attachment, the locking cap is longitudinally pushed onto the locking strip causing the extension to temporarily deflect open the fingers to engage the socket's body portion. For removal, the process is reversed.
Fabrication of polystyrene/gold nanotubes and nanostructure-controlled growth of aluminate.
Zhu, Haifeng; Ai, Sufen; He, Qiang; Cui, Yue; Li, Junbai
2007-07-01
Direct adsorption of gold nanoparticles in the inner of alumina template and following immersion of polystyrene (PS) dichloromethane solution in the template resulted in the fabrication of composite nanotubes of PS and gold nanoparticles. Several methods have been used to characterize the tubular structure. Nanostructured sodium aluminates were formed when the anodic alumina oxide membrane was dissolved by the sodium hydroxide. A "flower" shape was found after etching the template while the synthesis process was recorded as function of a time. The results demonstrate that the shape and size of the aluminates nanostructure can be controlled by etching time and the pore diameter of the alumina membrane.
Sol-gel optics for biomeasurements
NASA Astrophysics Data System (ADS)
Lechna-Marczynska, Monika I.; Podbielska, Halina; Ulatowska-Jarza, Agnieszka; Holowacz, Iwona; Andrzejewski, Damian
2001-10-01
Sol-gel technique is a method for producing of glass-like materials without involving a melting process. Organic compounds such as alcoholates of silicon, sodium or calcium can be used. The irregular non-crystalline network forms a gel structure where the metallic atoms are bonded to oxygen atoms. Low-temperature treatment turns this gel into an inorganic glass-like structure. There are numbers of applications of these materials that can be produced in various forms and shapes. Here, silica based sol-gel bulks and thin films optodes for biomedical applications will be presented.
Mapping and distortions of auroral structures in the quiet magnetosphere
NASA Technical Reports Server (NTRS)
Kaufmann, Richard L.; Larson, Douglas J.; Lu, Chen
1990-01-01
The closed quiet magnetosphere model of Beard (1979) and Beard et al. (1982) is used to identify those features of commonly observed dayside auroras that can be explained by either of two processes: mapping distortions or distortions caused by nearby Birkeland currents. It is shown that single and multiple linear and hooked auroral forms can be easily explained in terms of mapping distortions in a quiet magnetosphere. On the other hand, the shapes of bright twisted or folded auroral forms can be more easily explained as distortions produced by localized Birkeland currents.
Controlled laser production of elongated articles from particulates
Dixon, Raymond D.; Lewis, Gary K.; Milewski, John O.
2002-01-01
It has been discovered that wires and small diameter rods can be produced using laser deposition technology in a novel way. An elongated article such as a wire or rod is constructed by melting and depositing particulate material into a deposition zone which has been designed to yield the desired article shape and dimensions. The article is withdrawn from the deposition zone as it is formed, thus enabling formation of the article in a continuous process. Alternatively, the deposition zone is moved along any of numerous deposition paths away from the article being formed.
An assessment technique for computer-socket manufacturing
Sanders, Joan; Severance, Michael
2015-01-01
An assessment strategy is presented for testing the quality of carving and forming of individual computer aided manufacturing facilities. The strategy is potentially useful to facilities making sockets and companies marketing manufacturing equipment. To execute the strategy, an evaluator fabricates a collection of test models and sockets using the manufacturing suite under evaluation, and then measures their shapes using scanning equipment. Overall socket quality is assessed by comparing socket shapes with electronic file shapes. Then model shapes are compared with electronic file shapes to characterize carving performance. Socket shapes are compared with model shapes to characterize forming performance. The mean radial error (MRE), which is the average difference in radii between the two shapes being compared, provides insight into sizing quality. Inter-quartile range (IQR), the range of radial error for the best matched half of the points on the surfaces being compared, provides insight into shape quality. By determining MRE and IQR for carving and forming separately, the source(s) of socket shape error may be pinpointed. The developed strategy may provide a useful tool to the prosthetics community and industry to help identify problems and limitations in computer aided manufacturing and insight into appropriate modifications to overcome them. PMID:21938663
Laser rapid forming technology of high-performance dense metal components with complex structure
NASA Astrophysics Data System (ADS)
Huang, Weidong; Chen, Jing; Li, Yanming; Lin, Xin
2005-01-01
Laser rapid forming (LRF) is a new and advanced manufacturing technology that has been developed on the basis of combining high power laser cladding technology with rapid prototyping (RP) to realize net shape forming of high performance dense metal components without dies. Recently we have developed a set of LRF equipment. LRF experiments were carried out on the equipment to investigate the influences of processing parameters on forming characterizations systematically with the cladding powder materials as titanium alloys, superalloys, stainless steel, and copper alloys. The microstructure of laser formed components is made up of columnar grains or columnar dendrites which grow epitaxially from the substrate since the solid components were prepared layer by layer additionally. The result of mechanical testing proved that the mechanical properties of laser formed samples are similar to or even over that of forging and much better than that of casting. It is shown in this paper that LRF technology is providing a new solution for some difficult processing problems in the high tech field of aviation, spaceflight and automobile industries.
Sundaram, Meera V.; Buechner, Matthew
2016-01-01
The excretory system of the nematode Caenorhabditis elegans is a superb model of tubular organogenesis involving a minimum of cells. The system consists of just three unicellular tubes (canal, duct, and pore), a secretory gland, and two associated neurons. Just as in more complex organs, cells of the excretory system must first adopt specific identities and then coordinate diverse processes to form tubes of appropriate topology, shape, connectivity, and physiological function. The unicellular topology of excretory tubes, their varied and sometimes complex shapes, and the dynamic reprogramming of cell identity and remodeling of tube connectivity that occur during larval development are particularly fascinating features of this organ. The physiological roles of the excretory system in osmoregulation and other aspects of the animal’s life cycle are only beginning to be explored. The cellular mechanisms and molecular pathways used to build and shape excretory tubes appear similar to those used in both unicellular and multicellular tubes in more complex organs, such as the vertebrate vascular system and kidney, making this simple organ system a useful model for understanding disease processes. PMID:27183565
Erlikhman, Gennady; Gurariy, Gennadiy; Mruczek, Ryan E.B.; Caplovitz, Gideon P.
2016-01-01
Oftentimes, objects are only partially and transiently visible as parts of them become occluded during observer or object motion. The visual system can integrate such object fragments across space and time into perceptual wholes or spatiotemporal objects. This integrative and dynamic process may involve both ventral and dorsal visual processing pathways, along which shape and spatial representations are thought to arise. We measured fMRI BOLD response to spatiotemporal objects and used multi-voxel pattern analysis (MVPA) to decode shape information across 20 topographic regions of visual cortex. Object identity could be decoded throughout visual cortex, including intermediate (V3A, V3B, hV4, LO1-2,) and dorsal (TO1-2, and IPS0-1) visual areas. Shape-specific information, therefore, may not be limited to early and ventral visual areas, particularly when it is dynamic and must be integrated. Contrary to the classic view that the representation of objects is the purview of the ventral stream, intermediate and dorsal areas may play a distinct and critical role in the construction of object representations across space and time. PMID:27033688
Dangerous mating systems: signal complexity, signal content and neural capacity in spiders.
Herberstein, M E; Wignall, A E; Hebets, E A; Schneider, J M
2014-10-01
Spiders are highly efficient predators in possession of exquisite sensory capacities for ambushing prey, combined with machinery for launching rapid and determined attacks. As a consequence, any sexually motivated approach carries a risk of ending up as prey rather than as a mate. Sexual selection has shaped courtship to effectively communicate the presence, identity, motivation and/or quality of potential mates, which help ameliorate these risks. Spiders communicate this information via several sensory channels, including mechanical (e.g. vibrational), visual and/or chemical, with examples of multimodal signalling beginning to emerge in the literature. The diverse environments that spiders inhabit have further shaped courtship content and form. While our understanding of spider neurobiology remains in its infancy, recent studies are highlighting the unique and considerable capacities of spiders to process and respond to complex sexual signals. As a result, the dangerous mating systems of spiders are providing important insights into how ecology shapes the evolution of communication systems, with future work offering the potential to link this complex communication with its neural processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Novel deployable morphing wing based on SMP composite
NASA Astrophysics Data System (ADS)
Yu, Kai; Sun, Shouhua; Liu, Liwu; Zhang, Zhen; Liu, Yanju; Leng, Jinsong
2009-07-01
In this paper, a novel kind of deployable morphing wing base on shape memory polymer (SMP) composite is designed and tested. While the deployment of the morphing wing still relies on the mechanisms to ensure the recovery force and the stability performance, the deploying process tends to be more steady and accurate by the application of SMP composite, which overcomes the inherent drawbacks of the traditional one, such as harmful impact to the flight balance, less accuracy during the deployment and complex mechanical masses. On the other hand, SMP composite is also designed as the wing's filler. During its shape recovery process, SMP composite stuffed in the wing helps to form an aerofoil for the wing and withstand the aerodynamic loads, leading to the compressed aerofoil recovering its original shape. To demonstrate the feasibility and the controllability of the designed deployable morphing wing, primary tests are also conducted, including the deploying speed of the morphing wing and SMP filler as the main testing aspects. Finally, Wing's deformation under the air loads is also analyzed by using the finite element method to validate the flight stability.
Outflow and clogging of shape-anisotropic grains in hoppers with small apertures.
Ashour, A; Wegner, S; Trittel, T; Börzsönyi, T; Stannarius, R
2017-01-04
Outflow of granular material through a small orifice is a fundamental process in many industrial fields, for example in silo discharge, and in everyday's life. Most experimental studies of the dynamics have been performed so far with monodisperse disks in two-dimensional (2D) hoppers or spherical grains in 3D. We investigate this process for shape-anisotropic grains in 3D hoppers and discuss the role of size and shape parameters on avalanche statistics, clogging states, and mean flow velocities. It is shown that an increasing aspect ratio of the grains leads to lower flow rates and higher clogging probabilities compared to spherical grains. On the other hand, the number of grains forming the clog is larger for elongated grains of comparable volumes, and the long axis of these blocking grains is preferentially aligned towards the center of the orifice. We find a qualitative transition in the hopper discharge behavior for aspect ratios larger than ≈6. At still higher aspect ratios >8-12, the outflowing material leaves long vertical holes in the hopper that penetrate the complete granular bed. This changes the discharge characteristics qualitatively.
NASA Astrophysics Data System (ADS)
Li, Ci; Yuan, Xinjian; Wu, Kanglong; Wang, Haodong; Hu, Zhan; Pan, Xueyu
2017-05-01
Resistance spot welded joints in different configurations of DP600 and DC54D were investigated to elucidate the nugget formation process and mechanical properties of the resultant joints. Results show that, when the welding time was less than 4 cycles, the fusion zone (FZ) was not formed, but the heat-affected zone (HAZ) occurred with a "butterfly" shape. In 4 cycles, the FZ in dissimilar sheets occurred with an "abnormal butterfly" shape because of nugget shift. When the welding time increased to 14 cycles, the FZ exhibited a "bread loaf" shape and the weld shifted to "dog bones." The nugget can be divided into three regions, namely, FZ, HAZ1, and HAZ2, and the FZ consisted of lath martensite. The micro hardness of DP600 FZ was lower than that of HAZ because of the dilution of DC54D. The failure mode of B changed from interfacial failure to plug failure during the nugget formation process. The tensile-shear load of sound weld is 6.375, 6.016, and 19.131 kN.
Droplet Breakup Mechanisms in Air-blast Atomizers
NASA Astrophysics Data System (ADS)
Aliabadi, Amir Abbas; Taghavi, Seyed Mohammad; Lim, Kelly
2011-11-01
Atomization processes are encountered in many natural and man-made phenomena. Examples are pollen release by plants, human cough or sneeze, engine fuel injectors, spray paint and many more. The physics governing the atomization of liquids is important in understanding and utilizing atomization processes in both natural and industrial processes. We have observed the governing physics of droplet breakup in an air-blast water atomizer using a high magnification, high speed, and high resolution LASER imaging technique. The droplet breakup mechanisms are investigated in three major categories. First, the liquid drops are flattened to form an oblate ellipsoid (lenticular deformation). Subsequent deformation depends on the magnitude of the internal forces relative to external forces. The ellipsoid is converted into a torus that becomes stretched and disintegrates into smaller drops. Second, the drops become elongated to form a long cylindrical thread or ligament that break up into smaller drops (Cigar-shaped deformation). Third, local deformation on the drop surface creates bulges and protuberances that eventually detach themselves from the parent drop to form smaller drops.
A neural model of the temporal dynamics of figure-ground segregation in motion perception.
Raudies, Florian; Neumann, Heiko
2010-03-01
How does the visual system manage to segment a visual scene into surfaces and objects and manage to attend to a target object? Based on psychological and physiological investigations, it has been proposed that the perceptual organization and segmentation of a scene is achieved by the processing at different levels of the visual cortical hierarchy. According to this, motion onset detection, motion-defined shape segregation, and target selection are accomplished by processes which bind together simple features into fragments of increasingly complex configurations at different levels in the processing hierarchy. As an alternative to this hierarchical processing hypothesis, it has been proposed that the processing stages for feature detection and segregation are reflected in different temporal episodes in the response patterns of individual neurons. Such temporal epochs have been observed in the activation pattern of neurons as low as in area V1. Here, we present a neural network model of motion detection, figure-ground segregation and attentive selection which explains these response patterns in an unifying framework. Based on known principles of functional architecture of the visual cortex, we propose that initial motion and motion boundaries are detected at different and hierarchically organized stages in the dorsal pathway. Visual shapes that are defined by boundaries, which were generated from juxtaposed opponent motions, are represented at different stages in the ventral pathway. Model areas in the different pathways interact through feedforward and modulating feedback, while mutual interactions enable the communication between motion and form representations. Selective attention is devoted to shape representations by sending modulating feedback signals from higher levels (working memory) to intermediate levels to enhance their responses. Areas in the motion and form pathway are coupled through top-down feedback with V1 cells at the bottom end of the hierarchy. We propose that the different temporal episodes in the response pattern of V1 cells, as recorded in recent experiments, reflect the strength of modulating feedback signals. This feedback results from the consolidated shape representations from coherent motion patterns and the attentive modulation of responses along the cortical hierarchy. The model makes testable predictions concerning the duration and delay of the temporal episodes of V1 cell responses as well as their response variations that were caused by modulating feedback signals. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Anjos, Pedro H. A.; Lira, Sérgio A.; Miranda, José A.
2018-04-01
We examine the formation of interfacial patterns when a magnetic liquid droplet (ferrofluid, or a magnetorheological fluid), surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. By using a vortex-sheet formalism, we find exact stationary solutions for the fluid-fluid interface in the form of n -fold polygonal shapes. A weakly nonlinear, mode-coupling method is then utilized to find time-evolving perturbative solutions for the interfacial patterns. The stability of such nonzero surface tension exact solutions is checked and discussed, by trying to systematically approach the exact stationary shapes through perturbative solutions containing an increasingly larger number of participating Fourier modes. Our results indicate that the exact stationary solutions of the problem are stable, and that a good matching between exact and perturbative shape solutions is achieved just by using a few Fourier modes. The stability of such solutions is substantiated by a linearization process close to the stationary shape, where a system of mode-coupling equations is diagonalized, determining the eigenvalues which dictate the stability of a fixed point.
Forming maps of targets having multiple reflectors with a biomimetic audible sonar.
Kuc, Roman
2018-05-01
A biomimetic audible sonar mimics human echolocation by emitting clicks and sensing echoes binaurally to investigate the limitations in acoustic mapping of 2.5 dimensional targets. A monaural sonar that provides only echo time-of-flight values produces biased maps that lie outside the target surfaces. Reflector bearing estimates derived from the first echoes detected by a binaural sonar are employed to form unbiased maps. Multiple echoes from a target introduce phantom-reflector artifacts into its map because later echoes are produced by reflectors at bearings different from those determined from the first echoes. In addition, overlapping echoes interfere to produce bearing errors. Addressing the causes of these bearing errors motivates a processing approach that employs template matching to extract valid echoes. Interfering echoes can mimic a valid echo and also form PR artifacts. These artifacts are eliminated by recognizing the bearing fluctuations that characterize echo interference. Removing PR artifacts produces a map that resembles the physical target shape to within the resolution capabilities of the sonar. The remaining differences between the target shape and the final map are void artifacts caused by invalid or missing echoes.
Chlorine effect on the formation of carbon nanofibers.
Lin, Wang-Hua; Takahashi, Yusuke; Li, Yuan-Yao; Sakoda, Akiyoshi
2012-12-01
Platelet graphite nanofibers (GNFs) and turbostratic carbon nanofibers (CNFs) are synthesized by the thermal evaporation and decomposition of a polymer-based mixture at 700 degrees C using Ni as a catalyst. The mixture consists of poly(ethylene glycol) (PEG), serving as the carbon source, and hydrochloric acid solution (HCl(aq)), serving as the promoter/additive for the growth of CNFs. High-purity zigzag-shaped platelet GNFs form with 10 wt% HCl(aq) as an additive in the PEG. The diameters of the platelet GNFs are in the range of 40-60 nm, with lengths of a few micrometers. High-resolution transmission electron microscopy images indicate a high degree of graphitization and well ordered graphene layers along the fiber axis. In contrast, high-purity turbostratic CNFs form with 20 wt% HCl(aq) in the PEG. The diameter and length of the turbostratic CNFs are 20-40 nm and a few micrometers, respectively. The participation of HCl in the thermal process leads to the formation of Ni-Cl compounds. The amount of chlorine affects the shape of the Ni catalyst, which determines the type of CNF formed.
Method for fabrication of cylindrical microlenses of selected shape
Snyder, J.J.; Baer, T.M.
1992-01-14
The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. The present invention has many applications, such as integrated optics, optical detectors and laser diodes. The lens, when connected to a laser diode bar, can provide a high intensity source of laser radiation for pumping a high average power solid state laser. In integrated optics, a lens can be used to couple light into and out of apertures such as waveguides. The lens can also be used to collect light, and focus it on a detector. 11 figs.
Method for fabrication of cylindrical microlenses of selected shape
Snyder, James J.; Baer, Thomas M.
1992-01-01
The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. The present invention has many applications, such as integrated optics, optical detectors and laser diodes. The lens, when connected to a laser diode bar, can provide a high intensity source of laser radiation for pumping a high average power solid state laser. In integrated optics, a lens can be used to couple light into and out of apertures such as waveguides. The lens can also be used to collect light, and focus it on a detector.
Barchan and Linear Dunes on Earth and Mars - Comparative Research
NASA Astrophysics Data System (ADS)
Tsoar, H.; Edgett, K. S.; Schatz, V.; Parteli, E. J.; Herrmann, H. J.
2007-05-01
High resolution images from MGS and MRO reveal, in detail, ripples and dunes on Mars that were not discerned in old Viking images. The two basic dune types known on Earth, barchan (and transverse) and seif (linear), are also common on Mars, although seif dunes are quite rare on that planet. Some Martian barchan and seif dunes have a different morphology, particularly as evident in the Martian north polar region. Some of the barchans have an elongated, elliptical shape, while some of the linear dunes lack the sinuosity commonly associated with terrestrial seif dunes. These barchan and linear dunes occur together, side-by-side, and in some cases are merged to create a single bed-form. Induration of the dunes, or crust formation, can explain the occurrence of these dunes of unusual morphology in the Martian north polar region. Crusts may form as water vapor diffuses into and out of the fine-grained materials on the planet's surface. Salts would be deposited as intergranular cement. Because these bedforms occur in the polar region, the cementing agent could be ice instead of salts; indeed, the dunes spend more than half each Martian year beneath a covering of seasonal frost, mostly frozen carbon dioxide. Elliptical shaped barchans were created artificially in Saudi Arabia by spraying advancing barchan dunes with crude oil to stabilize them until the dunes reached a streamlined body shape. Simulation work indicates that the same process can occur on the indurated Martian barchans, but by cementation of grains rather than introduction of oil. Short lee dunes that have a linear shape with a sharp-edged crest are known to form from sand accumulation at the lee side of obstacles. Once a dune is stabilized by induration or crust, it functions as an obstacle to the wind. Linear lee dunes stabilized by ice (water or carbon dioxide) or mineral crust may elongate and form a long linear dune that aligns parallel to the wind. Melting of the ice will set up a straight linear dune, with loose sand, parallel to the dominant wind. Field observations on terrestrial deserts show that such a dune can only be formed when it is covered by vegetation. If vegetation is removed the bare linear dune disintegrates into small barchans. Simulation also shows that linear dune is unstable and deforms until it takes the shape of a string of barchans, which are the stable shape under unidirectional winds.
Fabrication of focus-tunable liquid crystal microlens array with spherical electrode
NASA Astrophysics Data System (ADS)
Huang, Wei-Ming; Su, Guo-Dung J.
2016-09-01
In this paper, a new approach to fabricate a liquid crystal (LC) microlens array with spherical-shaped electrode is demonstrated, which can create the inhomogeneous electric field. Inkjet-printing, hydrophilic confinement, self-assemble and replication process is used to form the convex microlens array on glass. After the spherical-shaped electrode is done, we assemble it with ITO glass to form a liquid crystal cell. We used Zemax® to simulate the liquid crystal lens as a Gradient-index (GRIN) lens. The simulation results show that a GRIN lens model can well match with the theoretical focal length of liquid crystal lens. The dimension of the glass is 1.5 cm x 1.5 cm x 0.7 mm which has 7 concave microlens on the top surface. These microlens have same diameter and height about 300 μm and 85 μm. The gap between each other is 100 μm. We first fabricate microlens array on silicon substrate by hydrophilic confinement, which between hydrophilicity of silicon substrate and hydrophobicity of SU-8, and inkjet printing process. Then we start replication process with polydimethylsiloxane (PDMS) to transfer microlens array form silicon to glass substrate. After the transparent conducted polymer, PEDOT:PSS, is spin-coated on the microlens arrays surface, we flatten it by NOA65. Finally we assemble it with ITO glass and inkjet liquid crystal. From measuring the interference rings, the optical power range is from 47.28 to 331 diopter. This will be useful for the optical zoom system or focus-tunable lens applications.
Digital analysis of changes by Plasmodium vivax malaria in erythrocytes.
Edison, Maombi; Jeeva, J B; Singh, Megha
2011-01-01
Blood samples of malaria patients (n = 30), selected based on the severity of parasitemia, were divided into low (LP), medium (MP) and high (HP) parasitemia, which represent increasing levels of the disease severity. Healthy subjects (n = 10) without any history of disease were selected as a control group. By processing of erythrocytes images their contours were obtained and from these the shape parameters area, perimeter and form factor were obtained. The gray level intensity was determined by scanning of erythrocyte along its largest diameter. A comparison of these with that of normal cells showed a significant change in shape parameters. The gray level intensity decreases with the increase of severity of the disease. The changes in shape parameters directly and gray level intensity variation inversely are correlated with the increase in parasite density due to the disease.
In-air microfluidics: Drop and jet coalescence enables rapid multi-phase 3D printing
NASA Astrophysics Data System (ADS)
Visser, Claas Willem; Kamperman, Tom; Lohse, Detlef; Karperien, Marcel; University of Twente Collaboration
2016-11-01
For the first time, we connect and integrate the fields of microfluidics and additive manufacturing, by presenting a unifying technology that we call In-air microfluidics (IAMF). We impact two liquid jets or a jet and a droplet train while flying in-air, and control their coalescence and solidification. This approach enables producing monodisperse emulsions, particles, and fibers with controlled shape and size (10 to 300 µm) and production rates 100x higher than droplet microfluidics. A single device is sufficient to process a variety of materials, and to produce different particle or fiber shapes, in marked contrast to current microfluidic devices or printers. In-air microfluidics also enables rapid deposition onto substrates, for example to form 3D printed (bio)materials which are partly-liquid but still shape-stable.
Using template/hotwire cutting to demonstrate moldless composite fabrication
NASA Technical Reports Server (NTRS)
Coleman, J. Mario
1990-01-01
The objective of this experiment is to provide a simple, inexpensive composite fabrication technique which can be easily performed with a minimum of equipment and facilities. This process eliminates expensive female molds and uses only male molds which are easily formed from foam blocks. Once the mold is shaped, it is covered with fiberglass and becomes a structural component of the product.
ERIC Educational Resources Information Center
Kollontai, Pauline
2015-01-01
The use of emotional intelligence in peace-building has grown significantly during the past few years. Many projects across the world include some form of art activity to help victims of conflict, both individually and together across conflicting parties, in shaping a political process which enables a more profound understanding of each other with…
Constitutive modeling of glassy shape memory polymers
NASA Astrophysics Data System (ADS)
Khanolkar, Mahesh
The aim of this research is to develop constitutive models for non-linear materials. Here, issues related for developing constitutive model for glassy shape memory polymers are addressed in detail. Shape memory polymers are novel material that can be easily formed into complex shapes, retaining memory of their original shape even after undergoing large deformations. The temporary shape is stable and return to the original shape is triggered by a suitable mechanism such heating the polymer above a transition temperature. Glassy shape memory polymers are called glassy because the temporary shape is fixed by the formation of a glassy solid, while return to the original shape is due to the melting of this glassy phase. The constitutive model has been developed to capture the thermo-mechanical behavior of glassy shape memory polymers using elements of nonlinear mechanics and polymer physics. The key feature of this framework is that a body can exist stress free in numerous natural configurations, the underlying natural configuration of the body changing during the process, with the response of the body being elastic from these evolving natural configurations. The aim of this research is to formulate a constitutive model for glassy shape memory polymers (GSMP) which takes in to account the fact that the stress-strain response depends on thermal expansion of polymers. The model developed is for the original amorphous phase, the temporary glassy phase and transition between these phases. The glass transition process has been modeled using a framework that was developed recently for studying crystallization in polymers and is based on the theory of multiple natural configurations. Using the same frame work, the melting of the glassy phase to capture the return of the polymer to its original shape is also modeled. The effect of nanoreinforcement on the response of shape memory polymers (GSMP) is studied and a model is developed. In addition to modeling and solving boundary value problems for GSMP's, problems of importance for CSMP, specifically a shape memory cycle (Torsion of a Cylinder) is solved using the developed crystallizable shape memory polymer model. To solve complex boundary value problems in realistic geometries a user material subroutine (UMAT) for GSMP model has been developed for use in conjunction with the commercial finite element software ABAQUS. The accuracy of the UMAT has been verified by testing it against problems for which the results are known.
Editors' Introduction: Abstract Concepts: Structure, Processing, and Modeling.
Bolognesi, Marianna; Steen, Gerard
2018-06-22
Our ability to deal with abstract concepts is one of the most intriguing faculties of human cognition. Still, we know little about how such concepts are formed, processed, and represented in mind. For example, because abstract concepts do not designate referents that can be experienced through our body, the role of perceptual experiences in shaping their content remains controversial. Current theories suggest a variety of alternative explanations to the question of "how abstract concepts are represented in the human mind." These views pinpoint specific streams of semantic information that would play a prominent role in shaping the content of abstract concepts, such as situation-based information (e.g., Barsalou & Wiemer-Hastings, ), affective information (Kousta, Vigliocco, Vinson, Andrews, & Del Campo, ), and linguistic information (Louwerse, ). Rarely, these theoretical views are directly compared. In this special issue, current views are presented in their most recent and advanced form, and directly compared and discussed in a debate, which is reported at the end of each article. As a result, new exciting questions and challenges arise. These questions and challenges, reported in this introductory article, can arguably pave the way to new empirical studies and theoretical developments on the nature of abstract concepts. © 2018 Cognitive Science Society, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hack, Madeline; Zhu, Guangdong; Wendelin, Timothy J.
As a line-focus concentrating solar power (CSP) technology, linear Fresnel collectors have the potential to become a low-cost solution for electricity production and a variety of thermal energy applications. However, this technology often suffers from relatively low performance. A secondary reflector is a key component used to improve optical performance of a linear Fresnel collector. The shape of a secondary reflector is particularly critical in determining solar power captured by the absorber tube(s), and thus, the collector's optical performance. However, to the authors' knowledge, no well-established process existed to derive the optimal secondary shape prior to the development of amore » new adaptive method to optimize the secondary reflector shape. The new adaptive method does not assume any pre-defined analytical form; rather, it constitutes an optimum shape through an adaptive process by maximizing the energy collection onto the absorber tube. In this paper, the adaptive method is compared with popular secondary-reflector designs with respect to a collector's optical performance under various scenarios. For the first time, a comprehensive, in-depth comparison was conducted on all popular secondary designs for CSP applications. In conclusion, it is shown that the adaptive design exhibits the best optical performance.« less
Cavina-Pratesi, C; Kentridge, R W; Heywood, C A; Milner, A D
2010-02-01
Real-life visual object recognition requires the processing of more than just geometric (shape, size, and orientation) properties. Surface properties such as color and texture are equally important, particularly for providing information about the material properties of objects. Recent neuroimaging research suggests that geometric and surface properties are dealt with separately within the lateral occipital cortex (LOC) and the collateral sulcus (CoS), respectively. Here we compared objects that differed either in aspect ratio or in surface texture only, keeping all other visual properties constant. Results on brain-intact participants confirmed that surface texture activates an area in the posterior CoS, quite distinct from the area activated by shape within LOC. We also tested 2 patients with visual object agnosia, one of whom (DF) performed well on the texture task but at chance on the shape task, whereas the other (MS) showed the converse pattern. This behavioral double dissociation was matched by a parallel neuroimaging dissociation, with activation in CoS but not LOC in patient DF and activation in LOC but not CoS in patient MS. These data provide presumptive evidence that the areas respectively activated by shape and texture play a causally necessary role in the perceptual discrimination of these features.
Hack, Madeline; Zhu, Guangdong; Wendelin, Timothy J.
2017-09-13
As a line-focus concentrating solar power (CSP) technology, linear Fresnel collectors have the potential to become a low-cost solution for electricity production and a variety of thermal energy applications. However, this technology often suffers from relatively low performance. A secondary reflector is a key component used to improve optical performance of a linear Fresnel collector. The shape of a secondary reflector is particularly critical in determining solar power captured by the absorber tube(s), and thus, the collector's optical performance. However, to the authors' knowledge, no well-established process existed to derive the optimal secondary shape prior to the development of amore » new adaptive method to optimize the secondary reflector shape. The new adaptive method does not assume any pre-defined analytical form; rather, it constitutes an optimum shape through an adaptive process by maximizing the energy collection onto the absorber tube. In this paper, the adaptive method is compared with popular secondary-reflector designs with respect to a collector's optical performance under various scenarios. For the first time, a comprehensive, in-depth comparison was conducted on all popular secondary designs for CSP applications. In conclusion, it is shown that the adaptive design exhibits the best optical performance.« less
Slumping monitoring of glass and silicone foils for x-ray space telescopes
NASA Astrophysics Data System (ADS)
Mika, M.; Pina, L.; Landova, M.; Sveda, L.; Havlikova, R.; Semencova, V.; Hudec, R.; Inneman, A.
2011-09-01
We developed a non-contact method for in-situ monitoring of the thermal slumping of glass and silicone foils to optimize this technology for the production of high quality mirrors for large aperture x-ray space telescopes. The telescope's crucial part is a high throughput, heavily nested mirror array with the angular resolution better than 5 arcsec. Its construction requires precise and light-weight segmented optics with surface micro-roughness on the order of 0.1 nm. Promising materials are glass or silicon foils shaped by thermal forming. The desired parameters can be achieved only through optimizing the slumping process. We monitored the slumping by taking the snapshots of the shapes every five minutes at constant temperature and the final shapes we measured with the Taylor Hobson profilometer. The shapes were parabolic and the deviations from a circle had the peak-to-valley values of 20-30 μm. The observed hot plastic deformation of the foils was controlled by viscous flow. We calculated and plotted the relations between the middle part deflection, viscosity, and heat-treatment time. These relations have been utilized for the development of a numerical model enabling computer simulation. By the simulation, we verify the material's properties and generate new data for the thorough optimization of the slumping process.
Architectural setup for online monitoring and control of process parameters in robot-based ISF
NASA Astrophysics Data System (ADS)
Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd
2017-10-01
This article describes new developments in an incremental, robot-based sheet metal forming process (Roboforming) for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet forming (ISF) machines, this system offers high geometrical design flexibility without the need of any part-dependent tools. However, the industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors introduce a new architectural setup extending the current one by a superordinate process control. This sophisticated control consists of two modules, i.e. the compensation of the two industrial robots' low structural stiffness as well as a combined force/torque control. It is assumed that this contribution will lead to future research and development projects in which the authors will thoroughly investigate ISF process parameters influencing the geometric accuracy of the forming results.
Intrusion of Magmatic Bodies Into the Continental Crust: 3-D Numerical Models
NASA Astrophysics Data System (ADS)
Gorczyk, Weronika; Vogt, Katharina
2018-03-01
Magma intrusion is a major material transfer process in the Earth's continental crust. Yet the mechanical behavior of the intruding magma and its host are a matter of debate. In this study we present a series of numerical thermomechanical simulations on magma emplacement in 3-D. Our results demonstrate the response of the continental crust to magma intrusion. We observe change in intrusion geometries between dikes, cone sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions, and injection time. The rheology and temperature of the host are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favors host rock displacement and plutons at the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. Here the passage of magmatic and hydrothermal fluids from the intrusion through the fracture pattern may result in the formation of ore deposits. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle crust. Intrusion of low-density magma may more over result in T-shaped intrusions in cross section with magma sheets at the surface.
Dispersion of Cobalt Nanoparticles on Nanowires Grown on Silicon Carbide-Alumina Nanocomposites.
Kim, Inho; Seo, Kyeong Won; Ahn, Byoung Sung; Moon, Dong Ju; Kim, Sang Woo
2017-04-01
Silicon carbide-alumina nanocomposite supports including a nanowire architecture for a high dispersion of cobalt nanocatalysts were fabricated using a modified sol–gel process and paste extrusion process to form cylindrical shape beads, followed by thermal treatment. Well-developed aluminosilicate nanowires were formed on a nanoporous support, which are grown from a catalytic metal seed at the nanowire growth tips during heat treatment at 1,100 °C for 1 h under nitrogen gas flow. Cobalt oxide precursors were highly dispersed on the nanowires grown on the surface of the nanoporous bodies through a supercritical carbon dioxide fluid-assisted wet-impregnation process. The highly-dispersed Co nanoparticles with size of less than 10 nm were finally obtained on the nanowires via phase transitions from Co₃O₄ to CoO and from CoO to Co during the thermal reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Hong Soo; Lee, Myung Gyoon, E-mail: hspark@astro.snu.ac.kr, E-mail: mglee@astro.snu.ac.kr
We present a determination of the two-dimensional shape parameters of the blue and red globular cluster systems (GCSs) in a large number of elliptical galaxies and lenticular galaxies (early-type galaxies, called ETGs). We use a homogeneous data set of the globular clusters in 23 ETGs obtained from the HST/ACS Virgo Cluster Survey. The position angles of both blue and red GCSs show a correlation with those of the stellar light distribution, showing that the major axes of the GCSs are well aligned with those of their host galaxies. However, the shapes of the red GCSs show a tight correlation withmore » the stellar light distribution as well as with the rotation property of their host galaxies, while the shapes of the blue GCSs do much less. These provide clear geometric evidence that the origins of the blue and red globular clusters are distinct and that ETGs may have dual halos: a blue (metal-poor) halo and a red (metal-rich) halo. These two halos show significant differences in metallicity, structure, and kinematics, indicating that they are formed in two distinguishable ways. The red halos might have formed via dissipational processes with rotation, while the blue halos are through accretion.« less
Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.
Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M
2001-01-25
Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.
Shape‐Controlled, Self‐Wrapped Carbon Nanotube 3D Electronics
Wang, Huiliang; Wang, Yanming; Tee, Benjamin C.‐K.; Kim, Kwanpyo; Lopez, Jeffrey; Cai, Wei
2015-01-01
The mechanical flexibility and structural softness of ultrathin devices based on organic thin films and low‐dimensional nanomaterials have enabled a wide range of applications including flexible display, artificial skin, and health monitoring devices. However, both living systems and inanimate systems that are encountered in daily lives are all 3D. It is therefore desirable to either create freestanding electronics in a 3D form or to incorporate electronics onto 3D objects. Here, a technique is reported to utilize shape‐memory polymers together with carbon nanotube flexible electronics to achieve this goal. Temperature‐assisted shape control of these freestanding electronics in a programmable manner is demonstrated, with theoretical analysis for understanding the shape evolution. The shape control process can be executed with prepatterned heaters, desirable for 3D shape formation in an enclosed environment. The incorporation of carbon nanotube transistors, gas sensors, temperature sensors, and memory devices that are capable of self‐wrapping onto any irregular shaped‐objects without degradations in device performance is demonstrated. PMID:27980972
Microwave sintering of boron carbide
Blake, R.D.; Katz, J.D.; Petrovic, J.J.; Sheinberg, H.
1988-06-10
A method for forming boron carbide into a particular shape and densifying the green boron carbide shape. Boron carbide in powder form is pressed into a green shape and then sintered, using a microwave oven, to obtain a dense boron carbide body. Densities of greater than 95% of theoretical density have been obtained. 1 tab.
Article and method for making an article
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Benjamin Paul; Schick, David Edward; Kottilingam, Srikanth Chandrudu
An article and a method for making shaped cooling holes in an article are provided. The method includes the steps of providing a metal alloy powder; forming an initial layer with the metal alloy powder, the initial layer having a preselected thickness and a preselected shape, the preselected shape including at least one aperture; sequentially forming an additional layer over the initial layer with the metal alloy powder, the additional layer having a second preselected thickness and a second preselected shape, the second preselected shape including at least one aperture corresponding to the at least one aperture in the initialmore » layer; and joining the additional layer to the initial layer, forming a structure having a predetermined thickness, a predetermined shape, and at least one aperture having a predetermined profile. The structure is attached to a substrate to make the article.« less
Cauchy integral method for two-dimensional solidification interface shapes
NASA Astrophysics Data System (ADS)
Siegel, R.; Sosoka, D. J.
1982-07-01
A method is developed to determine the shape of steady state solidification interfaces formed when liquid above its freezing point circulates over a cold surface. The solidification interface, which is at uniform temperature, will form in a shape such that the non-uniform energy convected to it is locally balanced by conduction into the solid. The interface shape is of interest relative to the crystal structure formed during solidification; regulating the crystal structure has application in casting naturally strengthened metallic composites. The results also pertain to phase-change energy storage devices, where the solidified configuration and overall heat transfer are needed. The analysis uses a conformal mapping technique to relate the desired interface coordinates to the components of the temperature gradient at the interface. These components are unknown because the interface shape is unknown. A Cauchy integral formulation provides a second relation involving the components, and a simultaneous solution yields the interface shape.
NASA Astrophysics Data System (ADS)
Cabrol, Nathalie A.; Herkenhoff, Kenneth; Knoll, Andrew H.; Farmer, Jack; Arvidson, Raymond; Grin, Edmond; Li, Ronxing; Fenton, Lori; Cohen, Barbara; Bell, James F.; Aileen Yingst, R.
2014-05-01
Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).
Cabrol, Nathalie A.; Herkenhoff, Kenneth E.; Knoll, Andrew H.; Farmer, Jack D.; Arvidson, Raymond E.; Grin, E.A.; Li, Ron; Fenton, Lori; Cohen, B.; Bell, J.F.; Yingst, R. Aileen
2014-01-01
Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).
On the Encoding of Panoramic Visual Scenes in Navigating Wood Ants.
Buehlmann, Cornelia; Woodgate, Joseph L; Collett, Thomas S
2016-08-08
A natural visual panorama is a complex stimulus formed of many component shapes. It gives an animal a sense of place and supplies guiding signals for controlling the animal's direction of travel [1]. Insects with their economical neural processing [2] are good subjects for analyzing the encoding and memory of such scenes [3-5]. Honeybees [6] and ants [7, 8] foraging from their nest can follow habitual routes guided only by visual cues within a natural panorama. Here, we analyze the headings that ants adopt when a familiar panorama composed of two or three shapes is manipulated by removing a shape or by replacing training shapes with unfamiliar ones. We show that (1) ants recognize a component shape not only through its particular visual features, but also by its spatial relation to other shapes in the scene, and that (2) each segmented shape [9] contributes its own directional signal to generating the ant's chosen heading. We found earlier that ants trained to a feeder placed to one side of a single shape [10] and tested with shapes of different widths learn the retinal position of the training shape's center of mass (CoM) [11, 12] when heading toward the feeder. They then guide themselves by placing the shape's CoM in the remembered retinal position [10]. This use of CoM in a one-shape panorama combined with the results here suggests that the ants' memory of a multi-shape panorama comprises the retinal positions of the horizontal CoMs of each major component shape within the scene, bolstered by local descriptors of that shape. Copyright © 2016 Elsevier Ltd. All rights reserved.