ERIC Educational Resources Information Center
Brown, Francis J.
The Gunning Fog Index of readability indicates both the average length of words and the difficult words (three or more syllables) in written material. This document describes a business communication course at Wayne State University in which students calculate the Gunning Fog Index of two of their writing assignments with the aid of the…
Calculate Your Body Mass Index
... Can! ) Health Professional Resources Calculate Your Body Mass Index Body mass index (BMI) is a measure of body fat based ... to content Twitter Facebook YouTube Google+ SEARCH | SITE INDEX | ACCESSIBILITY | PRIVACY STATEMENT | FOIA | OIG | CONTACT US National ...
NASA Astrophysics Data System (ADS)
Zhang, Keke; Kong, D.; Schubert, G.; Anderson, J.
2012-10-01
An accurate calculation of the rotationally distorted shape and internal structure of Jupiter is required to understand the high-precision gravitational field that will be measured by the Juno spacecraft now on its way to Jupiter. We present a three-dimensional non-spherical numerical calculation of the shape and internal structure of a model of Jupiter with a polytropic index of unity. The calculation is based on a finite element method and accounts for the full effects of rotation. After validating the numerical approach against the asymptotic solution of Chandrasekhar (1933) that is valid only for a slowly rotating gaseous planet, we apply it to a model of Jupiter whose rapid rotation causes a significant departure from spherical geometry. The two-dimensional distribution of the density and the pressure within Jupiter is then determined via a hybrid inverse approach by matching the a priori unknown coefficient in the equation of state to the observed shape of Jupiter. After obtaining the two-dimensional distribution of Jupiter's density, we then compute the zonal gravity coefficients and the total mass from the non-spherical Jupiter model that takes full account of rotation-induced shape changes. Our non-spherical model with a polytrope of unit index is able to produce the known mass and zonal gravitational coefficients of Jupiter. Chandrasekhar, S. 1933, The equilibrium of distorted polytropes, MNRAS 93, 390
Film shape calculations on supercomputers
NASA Technical Reports Server (NTRS)
Hamrock, B. J.
1982-01-01
Both scalar and vector operations are described to demonstrate usefulness of supercomputers (computers with peak computing speeds exceeding 100 million operative per second) in solving tribological problems. A simple kernel of the film shape calculations in an elastohydrodynamic lubricated rectangular contact is presented and the relevant equations are described. Both scalar and vector versions of the film shape code are presented. The run times of the two types of code indicate that over a 50-to-1 speedup of scalar to vector computational time for vector lengths typically used in elastohydrodynamic lubrication analysis is obtained.
Comparison of Polar Cap (PC) index calculations.
NASA Astrophysics Data System (ADS)
Stauning, P.
2012-04-01
The Polar Cap (PC) index introduced by Troshichev and Andrezen (1985) is derived from polar magnetic variations and is mainly a measure of the intensity of the transpolar ionospheric currents. These currents relate to the polar cap antisunward ionospheric plasma convection driven by the dawn-dusk electric field, which in turn is generated by the interaction of the solar wind with the Earth's magnetosphere. Coefficients to calculate PCN and PCS index values from polar magnetic variations recorded at Thule and Vostok, respectively, have been derived by several different procedures in the past. The first published set of coefficients for Thule was derived by Vennerstrøm, 1991 and is still in use for calculations of PCN index values by DTU Space. Errors in the program used to calculate index values were corrected in 1999 and again in 2001. In 2005 DMI adopted a unified procedure proposed by Troshichev for calculations of the PCN index. Thus there exists 4 different series of PCN index values. Similarly, at AARI three different sets of coefficients have been used to calculate PCS indices in the past. The presentation discusses the principal differences between the various PC index procedures and provides comparisons between index values derived from the same magnetic data sets using the different procedures. Examples from published papers are examined to illustrate the differences.
Atomic Force Microscopy Based Cell Shape Index
NASA Astrophysics Data System (ADS)
Adia-Nimuwa, Usienemfon; Mujdat Tiryaki, Volkan; Hartz, Steven; Xie, Kan; Ayres, Virginia
2013-03-01
Stellation is a measure of cell physiology and pathology for several cell groups including neural, liver and pancreatic cells. In the present work, we compare the results of a conventional two-dimensional shape index study of both atomic force microscopy (AFM) and fluorescent microscopy images with the results obtained using a new three-dimensional AFM-based shape index similar to sphericity index. The stellation of astrocytes is investigated on nanofibrillar scaffolds composed of electrospun polyamide nanofibers that has demonstrated promise for central nervous system (CNS) repair. Recent work by our group has given us the ability to clearly segment the cells from nanofibrillar scaffolds in AFM images. The clear-featured AFM images indicated that the astrocyte processes were longer than previously identified at 24h. It was furthermore shown that cell spreading could vary significantly as a function of environmental parameters, and that AFM images could record these variations. The new three-dimensional AFM-based shape index incorporates the new information: longer stellate processes and cell spreading. The support of NSF PHY-095776 is acknowledged.
Shape integral method for magnetospheric shapes. [boundary layer calculations
NASA Technical Reports Server (NTRS)
Michel, F. C.
1979-01-01
A method is developed for calculating the shape of any magnetopause to arbitrarily high precision. The method uses an integral equation which is evaluated for a trial shape. The resulting values of the integral equation as a function of auxiliary variables indicate how close one is to the desired solution. A variational method can then be used to improve the trial shape. Some potential applications are briefly mentioned.
GPU-based fast gamma index calculation
NASA Astrophysics Data System (ADS)
Gu, Xuejun; Jia, Xun; Jiang, Steve B.
2011-03-01
The γ-index dose comparison tool has been widely used to compare dose distributions in cancer radiotherapy. The accurate calculation of γ-index requires an exhaustive search of the closest Euclidean distance in the high-resolution dose-distance space. This is a computational intensive task when dealing with 3D dose distributions. In this work, we combine a geometric method (Ju et al 2008 Med. Phys. 35 879-87) with a radial pre-sorting technique (Wendling et al 2007 Med. Phys. 34 1647-54) and implement them on computer graphics processing units (GPUs). The developed GPU-based γ-index computational tool is evaluated on eight pairs of IMRT dose distributions. The γ-index calculations can be finished within a few seconds for all 3D testing cases on one single NVIDIA Tesla C1060 card, achieving 45-75× speedup compared to CPU computations conducted on an Intel Xeon 2.27 GHz processor. We further investigated the effect of various factors on both CPU and GPU computation time. The strategy of pre-sorting voxels based on their dose difference values speeds up the GPU calculation by about 2.7-5.5 times. For n-dimensional dose distributions, γ-index calculation time on CPU is proportional to the summation of γn over all voxels, while that on GPU is affected by γn distributions and is approximately proportional to the γn summation over all voxels. We found that increasing the resolution of dose distributions leads to a quadratic increase of computation time on CPU, while less-than-quadratic increase on GPU. The values of dose difference and distance-to-agreement criteria also have an impact on γ-index calculation time.
New unifying procedure for PC index calculations.
NASA Astrophysics Data System (ADS)
Stauning, P.
2012-04-01
The Polar Cap (PC) index is a controversial topic within the IAGA scientific community. Since 1997 discussions of the validity of the index to be endorsed as an official IAGA index have ensued. Currently, there are now the three separate PC index versions constructed from the different procedures used at the three institutes: the Arctic and Antarctic Research Institute (AARI), the Danish Meteorological Institute (DMI), and the Danish National Space Institute (DTU Space). It is demonstrated in this presentation, that two consistent unifying procedures can be built from the best elements of the three different versions. One procedure uses a set of coefficients aimed at the calculation of final PC index values to be accepted by IAGA. The other procedure uses coefficients aimed at on-line real-time production of preliminary PC index values for Space Weather monitoring applications. For each of the two cases the same procedure is used for the northern (PCN) and the southern (PCS) polar cap indices, and the derived PCN and PCS coefficients are similar.
Optimal embedding for shape indexing in medical image databases.
Qian, Xiaoning; Tagare, Hemant D
2005-01-01
Fast retrieval using organ shapes is crucial in medical image databases since shape is a clinically prominent feature. In this paper, we propose that 2-D shapes in medical image databases can be indexed by embedding them into a vector space and using efficient vector space indexing. An optimal shape space embedding is proposed for this purpose. Experimental results of indexing vertebral shapes in the NHANES II database are presented. The results show that vector space indexing following embedding gives superior performance than metric indexing.
Optimal embedding for shape indexing in medical image databases.
Qian, Xiaoning; Tagare, Hemant D; Fulbright, Robert K; Long, Rodney; Antani, Sameer
2010-06-01
This paper addresses the problem of indexing shapes in medical image databases. Shapes of organs are often indicative of disease, making shape similarity queries important in medical image databases. Mathematically, shapes with landmarks belong to shape spaces which are curved manifolds with a well defined metric. The challenge in shape indexing is to index data in such curved spaces. One natural indexing scheme is to use metric trees, but metric trees are prone to inefficiency. This paper proposes a more efficient alternative. We show that it is possible to optimally embed finite sets of shapes in shape space into a Euclidean space. After embedding, classical coordinate-based trees can be used for efficient shape retrieval. The embedding proposed in the paper is optimal in the sense that it least distorts the partial Procrustes shape distance. The proposed indexing technique is used to retrieve images by vertebral shape from the NHANES II database of cervical and lumbar spine X-ray images maintained at the National Library of Medicine. Vertebral shape strongly correlates with the presence of osteophytes, and shape similarity retrieval is proposed as a tool for retrieval by osteophyte presence and severity. Experimental results included in the paper evaluate (1) the usefulness of shape similarity as a proxy for osteophytes, (2) the computational and disk access efficiency of the new indexing scheme, (3) the relative performance of indexing with embedding to the performance of indexing without embedding, and (4) the computational cost of indexing using the proposed embedding versus the cost of an alternate embedding. The experimental results clearly show the relevance of shape indexing and the advantage of using the proposed embedding.
A GIS-based shape index for land parcels
NASA Astrophysics Data System (ADS)
Demetriou, Demetris; Stillwell, John; See, Linda
2013-08-01
Shape analysis is of interest in many fields of spatial science and planning including land management in rural areas. In particular, evaluating the shape of existing land parcels is critical when implementing rural development schemes such as land consolidation. However, existing land parcel shape indices have major deficiencies: completely different shapes of parcels may have the same index value or similar parcel shapes may have different index scores. Thus, there is a clear requirement for a more accurate and reliable measurement method. This paper therefore presents a new parcel shape index (PSI) which integrates a geographical information system (GIS) with a multi-attribute decision-making (MADM) method. It involves the amalgamated outcome of six geometric measures represented by value functions involving a mathematical representation of judgements by experts that compare each geometric measure with that of an optimum parcel shape defined for land consolidation projects. The optimum shape has a PSI value of 1 while the worst shape has a value close to 0. The shape measures used in the model include length of sides, acute angles, reflex angles, boundary points, compactness and regularity. The paper uses data for two case study areas in Cyprus to demonstrate the superiority of the new PSI over three existing shape indices employed in other studies. The methodology utilized here can be implemented in other disciplines dealing with the assessment of objects that can be compared to an optimum.
Shape matching utilizing indexed hypotheses generation and testing
NASA Technical Reports Server (NTRS)
Mehrotra, Rajiv; Grosky, William I.
1989-01-01
An indexing mechanism is developed as part of an overall scheme called SMITH (shape matching utilizing indexed hypothesis generation and testing) for two-dimensional model-based object recognition. The approach is based on a dynamic programming implementation of attributed string matching, is computationally efficient, and works effectively for both nonoccluded and occluded shapes. Another advantage of this technique is that models may be inserted or deleted with relatively little cost.
Calculation of electron wave functions and refractive index of Ne
NASA Astrophysics Data System (ADS)
Zhu, Min; Liu, Wei; Zhang, Tao
2008-10-01
The radial wave functions of inner electron shell and outer electron shell of a Ne atom were obtained by the approximate analytical method and tested by calculating the ground state energy of the Ne atom. The equivalent volume of electron cloud and the refractive index of Ne were calculated. The calculated refractive index agrees well with the experimental result. Relationship between the refractive index and the wave function of Ne was discovered.
How to Calculate an Employee Relations Index.
ERIC Educational Resources Information Center
Cash, William B., Jr.
1979-01-01
Proposes using an employee relations index (ERI) to measure factors affecting employee relations and job performance ability. Examines five of ten major ERI factors: attenance, turnover, safety, grievances/complaints, and motor vehicle accidents. Discusses weighing the factors and interpreting the outcome. (CSS)
Calculating the Candy Price Index: A Classroom Inflation Experiment.
ERIC Educational Resources Information Center
Hazlett, Denise; Hill, Cynthia D.
2003-01-01
Outlines how students develop a price index based on candy-purchasing decisions made by class members. Explains that students used the index to practice calculating inflation rates and to consider the strengths and weaknesses of the consumer price index (CPI). States that the exercise has been used in introductory and intermediate macroeconomics…
NASA Astrophysics Data System (ADS)
Kim, Ho Chul; Park, Man Sik; Lee, Seong Keon; Nam, Ki Chang; Park, Hyung Joo; Kim, Min Gi; Song, Jae-Jun; Choi, Hyuk
2015-11-01
We previously proposed a computerized index (eccentricity index [EI]) for chest-wall deformity measurements, such as pectus excavatum. We sought to define mean shapes based on normal chest walls and to propose for computerized index reference values of that are used in the quantitative analysis of the severity of chest-wall deformities. A total of 584 patients were classified into 18 groups, and a database of their chest-wall computed tomography (CT) scan images was constructed. The boundaries of the chest wall were extracted by using a segmentation algorithm, and the mean shapes were subsequently developed. The reference index values were calculated from the developed mean shapes. Reference index values for the EI were compared with a conventional index, the Haller index (HI). A close association has been shown between the two indices in multiple subjects (r = 0.974, P < 0.001). The newly developed mean shapes and reference index values supply both reliability and objectivity to the diagnosis, analysis, and treatment of chest-wall deformities. They promise to be highly useful in clinical settings.
How uncertainty bounds the shape index of simple cells.
Barbieri, D; Citti, G; Sarti, A
2014-04-17
We propose a theoretical motivation to quantify actual physiological features, such as the shape index distributions measured by Jones and Palmer in cats and by Ringach in macaque monkeys. We will adopt the uncertainty principle associated to the task of detection of position and orientation as the main tool to provide quantitative bounds on the family of simple cells concretely implemented in primary visual cortex.Mathematics Subject Classification (2000)2010: 62P10, 43A32, 81R15.
Present (unified) and past Polar Cap (PC) index calculations.
NASA Astrophysics Data System (ADS)
Stauning, Peter; Troshichev, Oleg; Janzhura, Alexander
2010-05-01
The Polar Cap (PC) index was introduced by Troshichev and Andrezen (1985). Index values are derived from polar cap magnetic variations and are mainly related to the intensity of the variable transpolar ionospheric currents. These currents relate to the polar cap antisunward ionospheric plasma convection driven by the dawn-dusk electric field, which in turn is generated by the interaction of the solar wind with the Earth's magnetosphere. Thus the PC index is an important Space Weather parameter. Coefficients to calculate PC index values from polar magnetic variations have been derived by several different procedures in the past. Now, a unified procedure (Troshichev et al., 2005) has been adopted for both the PCN (north) and the PCS (south) index values. The presentation outlines and discusses the principles and the details of the unified procedure, which will be submitted to IAGA for formal approval. The PC index can be made available on-line in real-time for Space Weather applications.
The vulnerability index calculation for determination of groundwater quality
Kurtz, D.A.; Parizek, R.R.
1995-12-01
Non-point source pollutants, such as pesticides, enter groundwater systems in a variety of means at wide-ranging concentrations. Risks in using groundwater in human consumption vary depending on the amounts of contaminants, the type of groundwater aquifer, and various use factors. We have devised a method of determining the vulnerability of an aquifer towards contamination with the Vulnerability Index. The Index can be used either as a comparative or an absolute index (comparative with a pure water source or aquifer spring or without comparison, assuming no peaks in the compared sample). Data for the calculation is obtained by extraction of a given water sample followed by analysis with a nitrogen/phosphorus detector on gas chromatography. The calculation uses the sum of peak heights as its determination. An additional peak number factor is added to emphasize higher numbers of compounds found in a given sample. Karst aquifers are considered to be highly vulnerable due to the large solution openings in its structure. Examples will be given of Vulnerability Indices taken from springs emanating from karst, intermediate, and diffuse flow aquifers taken at various times of the 1992 sampling year and compared with rainfall during that time. Comparisons will be made of the Index vs. rainfall events and vs. pesticide application data. The risk of using contaminated drinking water sources can be evaluated with the use of this index.
The PC index: method of calculation and physical sense
NASA Astrophysics Data System (ADS)
Janzhura, A.; Troshichev, O.
2012-04-01
The PC index has been introduced [Troshichev and Andrezen, 1985; Troshichev et al., 1988] to characterize magnetic activity in the polar caps generated by the solar wind coupling with the magnetosphere. The concept of the antisunward convection within the polar cap, controlled by the interplanetary electric field EKL determined by Kan and Lee (1979), served as a basis for the method of the index calculation. Value of disturbances in the polar cap geomagnetic H and D (or X and Y) components form the basis for derivation of the PC index. The technique of PC index derivation consists of two separate procedures: (1) derivation of the statistically justified regression coefficients determining relationship between the coupling function EKL and vector of polar cap magnetic disturbance δF, and (2) calculation of PC indices by data on current δF values with use of the regression coefficients established in course of the first procedure. To exclude from examination the geomagnetic field changes unrelated to the solar wind variations the value of geomagnetic disturbance is calculated in reference to the quiet daily variation. The regression coefficients α (slope) and β (intersection) describing a linear link between values δF and EKL are calculated in combination with the optimal angle φ providing the highest correlation between δF and EKL. Parameters α, β and φ are derived based on the statistically justified sets of data. As a result the PC index corresponding to the value of coupling function EKL, irrespective of UT time, season and point of observation is determined. Validation of the PC proper derivation has been testified by the following requirements imposed on the calculated PCN and PCS indices: PCN and PCS indices should be consistent with the interplanetary electric field EKL; PCN and PCS indices should be in close agreement with each other irrespective of season and UT time; indices should not demonstrate seasonal variation; indices should not
The theoretical shape of sucrose crystals from energy calculations
NASA Astrophysics Data System (ADS)
Saska, Michael; Myerson, Allan S.
1983-05-01
The surface energies of individual crystallographic faces of crystalline sucrose were calculated using two forms of the 6-exp (Buckingham) potential. Hydrogen bond energies were calculated as a sum of O-H, O…H and O…O interactions where the Lippincott-Schroeder short-range potential was used for O-H and O…H pairs and the 6-exp potential for the non-bonded O…O interactions. Assuming that the surface energy equals half of the cohesive energy of the crystal, the attachment and surface energies of most of the faces found on as sucrose crystal were calculated. A computer program was written to draw the theoretical shape of crystals given the positions (central distances) of its faces. The resulting sucrose shapes are elongated along the c-axis. It is argued that the c-axis elongated habit is an intrinsic shape for vapor grown sucrose crystals (if realizable) and it is suggested that the usual shapes of solution grown sucrose crystals can be explained in terms of solvent (water) adsorption.
New approaches for calculating Moran's index of spatial autocorrelation.
Chen, Yanguang
2013-01-01
Spatial autocorrelation plays an important role in geographical analysis; however, there is still room for improvement of this method. The formula for Moran's index is complicated, and several basic problems remain to be solved. Therefore, I will reconstruct its mathematical framework using mathematical derivation based on linear algebra and present four simple approaches to calculating Moran's index. Moran's scatterplot will be ameliorated, and new test methods will be proposed. The relationship between the global Moran's index and Geary's coefficient will be discussed from two different vantage points: spatial population and spatial sample. The sphere of applications for both Moran's index and Geary's coefficient will be clarified and defined. One of theoretical findings is that Moran's index is a characteristic parameter of spatial weight matrices, so the selection of weight functions is very significant for autocorrelation analysis of geographical systems. A case study of 29 Chinese cities in 2000 will be employed to validate the innovatory models and methods. This work is a methodological study, which will simplify the process of autocorrelation analysis. The results of this study will lay the foundation for the scaling analysis of spatial autocorrelation. PMID:23874592
Calculation of electrostatic fields in periodic structures of complex shape
NASA Technical Reports Server (NTRS)
Kravchenko, V. F.
1978-01-01
A universal algorithm is presented for calculating electrostatic fields in an infinite periodic structure consisting of electrodes of arbitrary shape which are located in mirror-symmetrical manner along the axis of electron-beam propagation. The method is based on the theory of R-functions, and the differential operators which are derived on the basis of the functions. Numerical results are presented and the accuracy of the results is examined.
Refractive Index for Atomic Waves: Theory and Detailed Calculations
NASA Astrophysics Data System (ADS)
Champenois, C.; Audouard, E.; Duplàa, P.; Vigué, J.
1997-04-01
This paper describes new theoretical results and calculations concerning the recently introduced index of refraction of a gas for atomic waves. More precisely, the motion of the atoms of the gas is taken into account and the equation describing the Doppler and Fizeau effects is introduced. The case where the atoms of the wave and the gas have spin 1/2 is also discussed and the rotatory power and circular dichroism of an optically pumped gas is calculated. Finally, the index of the rare gases for sodium waves is calculated. The results show how important it is to take into account glory scattering and Doppler averaging to make a meaningful comparison with experiments. The index appears to be very sensitive to the precise value of the quantum parameter B = 2μ D_eσ^2 (in atomic unit). Using the available interaction potential curves, we obtained a reasonably good agreement between the measurements and the corresponding calculated values. However, some experimental results appear difficult to explain with the best available interaction potentials. Ce travail présente une étude théorique de l'indice de réfraction pour une onde de matière se propageant dans un gaz. Le calcul de l'indice prend en compte le mouvement des atomes du gaz et met en évidence les effets Doppler et Fizeau. Le cas où les atomes du gaz et ceux de l'onde ont un spin 1/2 est également discuté, ce qui permet le calcul du pouvoir rotatoire et du dichroïsme circulaire d'un gaz optiquement pompé. Finalement, l'indice de l'hélium, du néon, de l'argon, du krypton et du xénon est calculé pour une onde de sodium. Ces calculs montrent l'importance des effets de gloire et de la moyenne thermique. Ces effets doivent donc être pris en compte pour l'interprétation précise des résultats expérimentaux. De plus, il apparaît que l'indice dépend fortement du paramètre quantique B = 2μ D_eσ^2 (en unité atomique). En utilisant les potentiels sodium gaz rares disponibles dans la litt
NASA Astrophysics Data System (ADS)
Ozturk, Emine; Sokmen, Ismail
2011-10-01
In this study, both the linear intersubband transitions and the refractive index changes in coupled double quantum well (DQW) with different well shapes for different electric fields are theoretically calculated within framework of the effective mass approximation. Results obtained show that intersubband transitions and the energy levels in coupled DQW can importantly be modified and controlled by the electric field strength and direction. By considering the variation of the energy differences, it should point out that by varying electric field we can obtain a blue or red shift in the intersubband optical transitions. The modulation of the absorption coefficients and the refractive index changes which can be suitable for good performance optical modulators and various infrared optical device applications can be easy obtained by tuning applied electric field strength and direction.
Calculation of bandwidth from index profiles of optical fibers. 1: Theory.
Marcuse, D
1979-06-15
This paper describes a method for calculating the impulse response and bandwidth of multimode optical fibers from measured refractive-index profiles obtained either from the fiber itself or from its preform. The computational method is based on the WKB solution of the guided-mode problem. First, the pulse delay time of each mode is calculated. The different arrival times of impulses carried by the modes are then used to construct the shape of the impulse response curve whose Fourier transform may be used to predict the signal bandwidth of the multimode fiber. By omitting mode groups or weighting the power distribution among the modes, the influence of certain mode groups on pulse distortion can be studied separately. Dispersion of the host material and of one dopant can be taken into account. The method has been used to study the effects of deviations from the desired perfect index profile and the influence of a central dip. The practical value of the computer program is its ability to predict fiber performance from index measurements made on preforms even before the fiber is drawn.
Body Mass Index: Calculator for Child and Teen
... Link BMI Percentile Calculator for Child and Teen English Version Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir ... At Home BMI Calculator for Child and Teen ( English | Metric ) 1. Birth Date : Month: Day: Year: 2. ...
Experimental study of liquid refractive index sensing based on a U-shaped optical fiber
NASA Astrophysics Data System (ADS)
Zhang, Zhi; Yan, Haitao; Li, Liben; Wang, Ming
2013-12-01
A U-shaped optical fiber sensing system designed to measure the refractive index of liquid had been proposed. The sensing mechanism of U-shaped optical fiber was discussed. A general single-mode fiber was bent into U-shaped and partially cladding of U-shaped fiber was corroded by HF acid buffer solution. Powers of different diameters of U-shaped fibers had been measured by many experiments. The results showed that the diameter of U-shaped fiber cladding 40 μm and the diameter of U-shaped was 1 cm were suitable to measure liquid refractive index. Then, this U-shaped optical fiber was immersed in liquid, such as pure water, ethanol, acetone and isopropanol, respectively. The evanescent field of the U-shaped fiber should be modulated by the liquid. The optical signal in the U-shaped fiber was measured with the optical spectrum analyzers(OSA). Finally, the experimental results were analyzed, and the spectra in the air was selected as a reference. The relative intensity was obtained for the different liquid. These results showed that the relative intensity of the liquid had a good linear relationship. This sensing device could accurately demarcate refractive index of liquid. It is simple, low cost, and it can also be applied in measuring the level of liquid.
Calculation of the room-temperature shapes of unsymmetric laminates
NASA Technical Reports Server (NTRS)
Hyer, M. W.
1981-01-01
A theory explaining the characteristics of the cured shapes of unsymmetric laminates is presented. The theory is based on an extension of classical lamination theory which accounts for geometric nonlinearities. A Rayleigh-Ritz approach to minimizing the total potential energy is used to obtain quantitative information regarding the room temperature shapes of square T300/5208 (0(2)/90(2))T and (0(4)/90(4))T graphite-epoxy laminates. It is shown that, depending on the thickness of the laminate and the length of the side the square, the saddle shape configuration is actually unstable. For values of length and thickness that render the saddle shape unstable, it is shown that two stable cylindrical shapes exist. The predictions of the theory are compared with existing experimental data.
5 CFR 591.220 - How does OPM calculate energy utility cost indexes?
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false How does OPM calculate energy utility... Areas Cost-Of-Living Allowances § 591.220 How does OPM calculate energy utility cost indexes? (a) OPM calculates energy utility cost indexes based on the relative cost of maintaining a standard size dwelling...
A short note on calculating the adjusted SAR index
Technology Transfer Automated Retrieval System (TEKTRAN)
A simple algebraic technique is presented for computing the adjusted SAR Index proposed by Suarez (1981). The statistical formula presented in this note facilitates the computation of the adjusted SAR without the use of either a look-up table, custom computer software or the need to compute exact a...
The Calculation of Adsorption Isotherms from Chromatographic Peak Shapes
ERIC Educational Resources Information Center
Neumann, M. G.
1976-01-01
Discusses the relationship between adsorption isotherms and elution peak shapes in gas chromatography, and describes a laboratory experiment which involves the adsorption of hexane, cyclohexane, and benzene on alumina at different temperatures. (MLH)
Medical image collection indexing: shape-based retrieval using KD-trees.
Robinson, G P; Tagare, H D; Duncan, J S; Jaffe, C C
1996-01-01
The capacity to retrieve images containing objects with shapes similar to a query shape is desirable in medical image databases. We propose a similarity measure and an indexing mechanism for non-rigid comparison of shape which adds this capability to image databases. The (dis-)similarity measure is based on the observations that: (1) the geometry of the same organ in different subjects is not related by a strictly rigid transformation; and (2) the orientation of the organ plays a key role in comparing shape. We propose a similarity measure that computes a non-rigid mapping between curves and uses this mapping to compare oriented shape. We also show how KD-trees can index curves so that retrieval with our similarity measure is efficient. Experiments with real-world data from a database of magnetic resonance images are provided.
Modulation index for VMAT considering both mechanical and dose calculation uncertainties.
Park, Jong Min; Park, So-Yeon; Kim, Hyoungnyoun
2015-09-21
The aim of this study is to present a modulation index considering both mechanical and dose calculation uncertainties for volumetric modulated arc therapy (VMAT). As a modulation index considering only mechanical uncertainty of VMAT, MIt has been previously suggested. In this study, we developed a weighting factor which represents dose calculation uncertainty based on the aperture shapes of fluence maps at every control point of VMAT plans. In order to calculate the weighting factor, the thinning algorithm of image processing techniques was applied to measure field aperture irregularity. By combining this weighting factor with the previously suggested modulation index, MIt, comprehensive modulation index (MIc) was designed. To evaluate the performance of MIc, gamma passing rates, differences in mechanical parameters between plans and log files and differences in dose-volume parameters between plans and the plans reconstructed from log files were acquired with a total of 52 VMAT plans. Spearman's correlation coefficients (rs) between the values of MIc and measures of VMAT delivery accuracy were calculated. The rs values of MIc (f = 0.5) to global gamma passing rates with 2%/2 mm, 1%/2 mm and 2%/1 mm were -0.728,-0.847 and -0.617, respectively (p < 0.001). Those to local gamma passing rates were -0.765,-0.767 and -0.748, respectively (p < 0.001). The rs values of MIc (f = 0.5) to multi-leaf collimator and gantry angle errors were 0.800 and -0.712, respectively (p < 0.001). The MIc (f = 0.5) showed a total of 20 rs values (p < 0.05) to the differences in dose-volumetric parameters from a total of 35 tested cases. The MIc (f = 0.5) demonstrated considerable power to predict VMAT delivery accuracy showing strong correlations to various measures of VMAT delivery accuracy.
Modulation index for VMAT considering both mechanical and dose calculation uncertainties
NASA Astrophysics Data System (ADS)
Park, Jong Min; Park, So-Yeon; Kim, Hyoungnyoun
2015-09-01
The aim of this study is to present a modulation index considering both mechanical and dose calculation uncertainties for volumetric modulated arc therapy (VMAT). As a modulation index considering only mechanical uncertainty of VMAT, MIt has been previously suggested. In this study, we developed a weighting factor which represents dose calculation uncertainty based on the aperture shapes of fluence maps at every control point of VMAT plans. In order to calculate the weighting factor, the thinning algorithm of image processing techniques was applied to measure field aperture irregularity. By combining this weighting factor with the previously suggested modulation index, MIt, comprehensive modulation index (MIc) was designed. To evaluate the performance of MIc, gamma passing rates, differences in mechanical parameters between plans and log files and differences in dose-volume parameters between plans and the plans reconstructed from log files were acquired with a total of 52 VMAT plans. Spearman’s correlation coefficients (rs) between the values of MIc and measures of VMAT delivery accuracy were calculated. The rs values of MIc (f = 0.5) to global gamma passing rates with 2%/2 mm, 1%/2 mm and 2%/1 mm were -0.728,-0.847 and -0.617, respectively (p < 0.001). Those to local gamma passing rates were -0.765,-0.767 and -0.748, respectively (p < 0.001). The rs values of MIc (f = 0.5) to multi-leaf collimator and gantry angle errors were 0.800 and -0.712, respectively (p < 0.001). The MIc (f = 0.5) showed a total of 20 rs values (p < 0.05) to the differences in dose-volumetric parameters from a total of 35 tested cases. The MIc (f = 0.5) demonstrated considerable power to predict VMAT delivery accuracy showing strong correlations to various measures of VMAT delivery accuracy.
Modulation index for VMAT considering both mechanical and dose calculation uncertainties.
Park, Jong Min; Park, So-Yeon; Kim, Hyoungnyoun
2015-09-21
The aim of this study is to present a modulation index considering both mechanical and dose calculation uncertainties for volumetric modulated arc therapy (VMAT). As a modulation index considering only mechanical uncertainty of VMAT, MIt has been previously suggested. In this study, we developed a weighting factor which represents dose calculation uncertainty based on the aperture shapes of fluence maps at every control point of VMAT plans. In order to calculate the weighting factor, the thinning algorithm of image processing techniques was applied to measure field aperture irregularity. By combining this weighting factor with the previously suggested modulation index, MIt, comprehensive modulation index (MIc) was designed. To evaluate the performance of MIc, gamma passing rates, differences in mechanical parameters between plans and log files and differences in dose-volume parameters between plans and the plans reconstructed from log files were acquired with a total of 52 VMAT plans. Spearman's correlation coefficients (rs) between the values of MIc and measures of VMAT delivery accuracy were calculated. The rs values of MIc (f = 0.5) to global gamma passing rates with 2%/2 mm, 1%/2 mm and 2%/1 mm were -0.728,-0.847 and -0.617, respectively (p < 0.001). Those to local gamma passing rates were -0.765,-0.767 and -0.748, respectively (p < 0.001). The rs values of MIc (f = 0.5) to multi-leaf collimator and gantry angle errors were 0.800 and -0.712, respectively (p < 0.001). The MIc (f = 0.5) showed a total of 20 rs values (p < 0.05) to the differences in dose-volumetric parameters from a total of 35 tested cases. The MIc (f = 0.5) demonstrated considerable power to predict VMAT delivery accuracy showing strong correlations to various measures of VMAT delivery accuracy. PMID:26317697
Calculation of eigenfunctions of bounded waveguide with quadratic refractive index
NASA Astrophysics Data System (ADS)
Kirilenko, M. S.; Zubtsov, R. O.; Khonina, S. N.
2016-08-01
In this work, the one-dimensional finite fractional Fourier transform has been considered in application to gradient optical waveguides. The eigenfunctions of it has been discussed. The relation between obtained functions, Hermite-Gaussian modes and spheroidal functions has been shown. The dependence of input domain width and number of nonzero eigenfunctions of transformation has been demonstrated. The functions which recover its form at given distance from the front plane have been calculated.
H-Index of Astrophysicists at Raman Research Institute: Performance of Different Calculators
NASA Astrophysics Data System (ADS)
Meera, B. M.; Manjunath, M.
2012-08-01
H-index, a single number proposed by J. E. Hirsch in 2005 has gained popularity as an index number to measure the research performance of individuals, institutions, universities, etc. There are many calculators to derive the h-in dex number, such as Google Scholar, Web of Science, Scopus, etc. However, h-index can be calculated manually, provided we have access to a complete list of publications of a scientist and the number of citations received by them. It is observed that h-index for a given scientist at a ny given point of time differs from one calculator to the other. Here is an attempt to calculate the H-index of scientists of the Astronomy and Astrophysics Group at Raman Research Institute using Google Scholar Free calculator, Web of Science Paid calculator and The SAO/NASA As trophysics Data System manual calculation and comparison of the results. Application of this h- index phenomenon to the research output of RRI scientists in a group is done while keeping in mi nd Hirsch's systematic in vestigation to predict the position of a scientist using h-index in physics. It is believed that the higher the academic age of a scientist, the higher will be the h-index. An attempt is made to find whether this assumption is true with respect to the sample studied by including the superannuated scientists from Astronomy and Astrophysics Group at Raman Research Institute under the purview of this study.
Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John E-mail: K.Zhang@exeter.ac.uk
2013-02-15
We present a new three-dimensional numerical method for calculating the non-spherical shape and internal structure of a model of a rapidly rotating gaseous body with a polytropic index of unity. The calculation is based on a finite-element method and accounts for the full effects of rotation. After validating the numerical approach against the asymptotic solution of Chandrasekhar that is valid only for a slowly rotating gaseous body, we apply it to models of Jupiter and a rapidly rotating, highly flattened star ({alpha} Eridani). In the case of Jupiter, the two-dimensional distributions of density and pressure are determined via a hybrid inverse approach by adjusting an a priori unknown coefficient in the equation of state until the model shape matches the observed shape of Jupiter. After obtaining the two-dimensional distribution of density, we then compute the zonal gravity coefficients and the total mass from the non-spherical model that takes full account of rotation-induced shape change. Our non-spherical model with a polytropic index of unity is able to produce the known mass of Jupiter with about 4% accuracy and the zonal gravitational coefficient J {sub 2} of Jupiter with better than 2% accuracy, a reasonable result considering that there is only one parameter in the model. For {alpha} Eridani, we calculate its rotationally distorted shape and internal structure based on the observationally deduced rotation rate and size of the star by using a similar hybrid inverse approach. Our model of the star closely approximates the observed flattening.
Calculations of oxide formation on low-index Cu surfaces.
Lian, Xin; Xiao, Penghao; Yang, Sheng-Che; Liu, Renlong; Henkelman, Graeme
2016-07-28
Density-functional theory is used to evaluate the mechanism of copper surface oxidation. Reaction pathways of O2 dissociation on the surface and oxidation of the sub-surface are found on the Cu(100), Cu(110), and Cu(111) facets. At low oxygen coverage, all three surfaces dissociate O2 spontaneously. As oxygen accumulates on the surfaces, O2 dissociation becomes more difficult. A bottleneck to further oxidation occurs when the surfaces are saturated with oxygen. The barriers for O2 dissociation on the O-saturated Cu(100)-c(2×2)-0.5 monolayer (ML) and Cu(100) missing-row structures are 0.97 eV and 0.75 eV, respectively; significantly lower than those have been reported previously. Oxidation of Cu(110)-c(6×2), the most stable (110) surface oxide, has a barrier of 0.72 eV. As the reconstructions grow from step edges, clean Cu(110) surfaces can dissociatively adsorb oxygen until the surface Cu atoms are saturated. After slight rearrangements, these surface areas form a "1 ML" oxide structure which has not been reported in the literature. The barrier for further oxidation of this "1 ML" phase is only 0.31 eV. Finally the oxidized Cu(111) surface has a relatively low reaction energy barrier for O2 dissociation, even at high oxygen coverage, and allows for facile oxidation of the subsurface by fast O diffusion through the surface oxide. The kinetic mechanisms found provide a qualitative explanation of the observed oxidation of the low-index Cu surfaces. PMID:27475390
Calculations of oxide formation on low-index Cu surfaces
NASA Astrophysics Data System (ADS)
Lian, Xin; Xiao, Penghao; Yang, Sheng-Che; Liu, Renlong; Henkelman, Graeme
2016-07-01
Density-functional theory is used to evaluate the mechanism of copper surface oxidation. Reaction pathways of O2 dissociation on the surface and oxidation of the sub-surface are found on the Cu(100), Cu(110), and Cu(111) facets. At low oxygen coverage, all three surfaces dissociate O2 spontaneously. As oxygen accumulates on the surfaces, O2 dissociation becomes more difficult. A bottleneck to further oxidation occurs when the surfaces are saturated with oxygen. The barriers for O2 dissociation on the O-saturated Cu(100)-c(2×2)-0.5 monolayer (ML) and Cu(100) missing-row structures are 0.97 eV and 0.75 eV, respectively; significantly lower than those have been reported previously. Oxidation of Cu(110)-c(6×2), the most stable (110) surface oxide, has a barrier of 0.72 eV. As the reconstructions grow from step edges, clean Cu(110) surfaces can dissociatively adsorb oxygen until the surface Cu atoms are saturated. After slight rearrangements, these surface areas form a "1 ML" oxide structure which has not been reported in the literature. The barrier for further oxidation of this "1 ML" phase is only 0.31 eV. Finally the oxidized Cu(111) surface has a relatively low reaction energy barrier for O2 dissociation, even at high oxygen coverage, and allows for facile oxidation of the subsurface by fast O diffusion through the surface oxide. The kinetic mechanisms found provide a qualitative explanation of the observed oxidation of the low-index Cu surfaces.
Shape index distribution based local surface complexity applied to the human cortex
Kim, Sun Hyung; Fonov, Vladimir; Collins, D. Louis; Gerig, Guido; Styner, Martin A.
2015-01-01
The quantification of local surface complexity in the human cortex has shown to be of interest in investigating population differences as well as developmental changes in neurodegenerative or neurodevelopment diseases. We propose a novel assessment method that represents local complexity as the difference between the observed distributions of local surface topology to its best-fit basic topology model within a given local neighborhood. This distribution difference is estimated via Earth Move Distance (EMD) over the histogram within the local neighborhood of the surface topology quantified via the Shape Index (SI) measure. The EMD scores have a range from simple complexity (0.0), which indicates a consistent local surface topology, up to high complexity (1.0), which indicates a highly variable local surface topology. The basic topology models are categorized as 9 geometric situation modeling situations such as crowns, ridges and fundi of cortical gyro and sulci. We apply a geodesic kernel to calculate the local SI histrogram distribution within a given region. In our experiments, we obtained the results of local complexity that shows generally higher complexity in the gyral/sulcal wall regions and lower complexity in some gyral ridges and lowest complexity in sulcal fundus areas. In addition, we show expected, preliminary results of increased surface complexity across most of the cortical surface within the first years of postnatal life, hypothesized to be due to the changes such as development of sulcal pits. PMID:26028803
Shape index distribution based local surface complexity applied to the human cortex
NASA Astrophysics Data System (ADS)
Kim, Sun Hyung; Fonov, Vladimir; Collins, D. Louis; Gerig, Guido; Styner, Martin A.
2015-03-01
The quantification of local surface complexity in the human cortex has shown to be of interest in investigating population differences as well as developmental changes in neurodegenerative or neurodevelopment diseases. We propose a novel assessment method that represents local complexity as the difference between the observed distributions of local surface topology to its best-fit basic topology model within a given local neighborhood. This distribution difference is estimated via Earth Move Distance (EMD) over the histogram within the local neighborhood of the surface topology quantified via the Shape Index (SI) measure. The EMD scores have a range from simple complexity (0.0), which indicates a consistent local surface topology, up to high complexity (1.0), which indicates a highly variable local surface topology. The basic topology models are categorized as 9 geometric situation modeling situations such as crowns, ridges and fundi of cortical gyro and sulci. We apply a geodesic kernel to calculate the local SI histogram distribution within a given region. In our experiments, we obtained the results of local complexity that shows generally higher complexity in the gyral/sulcal wall regions and lower complexity in some gyral ridges and lowest complexity in sulcal fundus areas. In addition, we show expected, preliminary results of increased surface complexity across most of the cortical surface within the first years of postnatal life, hypothesized to be due to the changes such as development of sulcal pits.
Detecting Growth Shape Misspecifications in Latent Growth Models: An Evaluation of Fit Indexes
ERIC Educational Resources Information Center
Leite, Walter L.; Stapleton, Laura M.
2011-01-01
In this study, the authors compared the likelihood ratio test and fit indexes for detection of misspecifications of growth shape in latent growth models through a simulation study and a graphical analysis. They found that the likelihood ratio test, MFI, and root mean square error of approximation performed best for detecting model misspecification…
The eye lens: age-related trends and individual variations in refractive index and shape parameters
Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto
2015-01-01
The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height. PMID:26416418
The eye lens: age-related trends and individual variations in refractive index and shape parameters.
Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto
2015-10-13
The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height.
The eye lens: age-related trends and individual variations in refractive index and shape parameters.
Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto
2015-10-13
The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height. PMID:26416418
NASA Astrophysics Data System (ADS)
Callegaro, Chiara; Malkinson, Dan; Ursino, Nadia; Wittenberg, Lea
2016-04-01
The properties of vegetation cover are recognized to be a key factor in determining runoff processes and yield over natural areas. Still, how the actual vegetation spatial distribution affects these processes is not completely understood. In Mediterranean semi-arid regions, patched landscapes are often found, with clumped vegetation, grass or shrubs, surrounded by bare soil patches. These two phases produce a sink-source system for runoff, as precipitation falling over bare areas barely infiltrates and rather flows downslope. In contrast, vegetated patches have high infiltrability and can partially retain the runon water. We hypothesize that, at a relatively small scale, the shape and orientation of bare soil patches with respect to the runoff flow direction is a significant for the connectivity of the runoff flow paths, and consequently for runoff values. We derive an index, FlowShape, which is candidate to be a good proxy for runoff connectivity and thus runoff production in patched environments. FlowShape is an area-weighted average of the geometrical properties of each bare soil patch. Eight experimental plots in northern Israel were monitored during 2 years after a wildfire which occurred in 2006. Runoff was collected and measured - along with rainfall depth - after each rainfall event, at different levels of vegetation cover corresponding to post-fire recovery of vegetation and seasonality. We obtained a good correlation between FlowShape and the runoff coefficient, at two conditions: a minimal percentage of vegetation cover over the plot, and minimal rainfall depth. Our results support the hypothesis that the spatial distribution of the two phases (vegetation and bare soil) in patched landscapes dictates, at least partially, runoff yield. The correlation between the runoff coefficient and FlowShape, which accounts for shape and orientation of soil patches, is higher than the correlation between the runoff coefficient and the bare soil percentage alone
NASA Astrophysics Data System (ADS)
Arasa, Josep; Pizarro, Carles; Blanco, Patricia
2016-06-01
Injection molded plastic lenses have continuously improved their performance regarding optical quality and nowadays are as usual as glass lenses in image forming devices. However, during the manufacturing process unavoidable fluctuations in material density occur, resulting in local changes in the distribution of refractive index, which degrade the imaging properties of the polymer lens. Such material density fluctuations correlate to phase delays, which opens a path for their mapping. However, it is difficult to transfer the measured variations in refractive index into conventional optical simulation tool. Thus, we propose a method to convert the local variations in refractive index into local changes of one surface of the lens, which can then be described as a free-form surface, easy to introduce in conventional simulation tools. The proposed method was tested on a commercial gradient index (GRIN) lens for a set of six different object positions, using the MTF sagittal and tangential cuts to compare the differences between the real lens and a lens with homogenous refractive index, and the last surface converted into a free-form shape containing the internal refractive index changes. The same procedure was used to reproduce the local refractive index changes of an injected plastic lens with local index changes measured using an in-house built polariscopic arrangement, showing the capability of the method to provide successful results.
Evaluation of 3D Gamma index calculation implemented in two commercial dosimetry systems
NASA Astrophysics Data System (ADS)
Xing, Aitang; Arumugam, Sankar; Deshpande, Shrikant; George, Armia; Vial, Philip; Holloway, Lois; Goozee, Gary
2015-01-01
3D Gamma index is one of the metrics which have been widely used for clinical routine patient specific quality assurance for IMRT, Tomotherapy and VMAT. The algorithms for calculating the 3D Gamma index using global and local methods implemented in two software tools: PTW- VeriSoft® as a part of OCTIVIUS 4D dosimeter systems and 3DVHTM from Sun Nuclear were assessed. The Gamma index calculated by the two systems was compared with manual calculated for one data set. The Gamma pass rate calculated by the two systems was compared using 3%/3mm, 2%/2mm, 3%/2mm and 2%/3mm for two additional data sets. The Gamma indexes calculated by the two systems were accurate, but Gamma pass rates calculated by the two software tools for same data set with the same dose threshold were different due to the different interpolation of raw dose data by the two systems and different implementation of Gamma index calculation and other modules in the two software tools. The mean difference was -1.3%±3.38 (1SD) with a maximum difference of 11.7%.
Ray tracing method in arbitrarily shaped radial graded-index waveguide.
Tsukada, Kenji; Nihei, Eisuke
2015-10-10
A ray tracing algorithm for an arbitrarily shaped axially symmetric graded index waveguide was proposed. This was achieved by considering the center of the waveguide (optical axis) as a set of discrete points. The refractive index depends on the distance of the ray position from the optical axis. This distance was approximated as the shortest distance between the ray position and a point in the set. Using this algorithm, ray tracing could be performed, regardless of the waveguide configuration. In this study, a precise explanation of the algorithm is given and the errors are evaluated. A technique to reduce computing time is also included.
D-shaped fiber grating refractive index sensor induced by an ultrashort pulse laser.
Liao, Changrui; Wang, Qiao; Xu, Lei; Liu, Shen; He, Jun; Zhao, Jing; Li, Zhengyong; Wang, Yiping
2016-03-01
The fabrication of fiber Bragg gratings was here demonstrated using ultrashort pulse laser point-by-point inscription. This is a very convenient means of creating fiber Bragg gratings with different grating periods and works by changing the translation speed of the fiber. The laser energy was first optimized in order to improve the spectral properties of the fiber gratings. Then, fiber Bragg gratings were formed into D-shaped fibers for use as refractive index sensors. A nonlinear relationship was observed between the Bragg wavelength and liquid refractive index, and a sensitivity of ∼30 nm/RIU was observed at 1.450. This shows that D-shaped fiber Bragg gratings might be used to develop promising biochemical sensors. PMID:26974608
The modified equipartition calculation for supernova remnants with the spectral index α = 0.5
NASA Astrophysics Data System (ADS)
Urošević, Dejan; Pavlović, Marko Z.; Arbutina, Bojan; Dobardžić, Aleksandra
2015-03-01
Recently, the modified equipartition calculation for supernova remnants (SNRs) has been derived by Arbutina et al. (2012). Their formulae can be used for SNRs with the spectral indices between 0.5 < α < 1. Here, by using approximately the same analytical method, we derive the equipartition formulae useful for SNRs with spectral index α=0.5. These formulae represent next step upgrade of Arbutina et al. (2012) derivation, because among 30 Galactic SNRs with available observational parameters for the equipartition calculation, 16 have spectral index α = 0.5. For these 16 Galactic SNRs we calculated the magnetic field strengths which are approximately 40 per cent higher than those calculated by using Pacholczyk (1970) equipartition and similar to those calculated by using Beck & Krause (2005) calculation.
Evaluation of shape indexing methods for content-based retrieval of x-ray images
NASA Astrophysics Data System (ADS)
Antani, Sameer; Long, L. Rodney; Thoma, George R.; Lee, Dah-Jye
2003-01-01
Efficient content-based image retrieval of biomedical images is a challenging problem of growing research interest. Feature representation algorithms used in indexing medical images on the pathology of interest have to address conflicting goals of reducing feature dimensionality while retaining important and often subtle biomedical features. At the Lister Hill National Center for Biomedical Communications, a R&D division of the National Library of Medicine, we are developing a content-based image retrieval system for digitized images of a collection of 17,000 cervical and lumbar x-rays taken as a part of the second National Health and Nutrition Examination Survey (NHANES II). Shape is the only feature that effectively describes various pathologies identified by medical experts as being consistently and reliably found in the image collection. In order to determine if the state of the art in shape representation methods is suitable for this application, we have evaluated representative algorithms selected from the literature. The algorithms were tested on a subset of 250 vertebral shapes. In this paper we present the requirements of an ideal algorithm, define the evaluation criteria, and present the results and our analysis of the evaluation. We observe that while the shape methods perform well on visual inspection of the overall shape boundaries, they fall short in meeting the needs of determining similarity between the vertebral shapes based on the pathology.
Ginzburg-Landau Calculations of Star-shaped Mo80Ge20 Superconducting Small Plates
NASA Astrophysics Data System (ADS)
Miyoshi, Hiroki; Kato, Masaru.; Huy, Ho Thanh; Dang, Vu The; Matsumoto, Hitoshi; Fujita, Norio; Ishida, Takekazu
Our study focused on vortex states in small star-shaped Mo80Ge20 plates. Vortex states are greatly influenced by the sample geometry, temperature and magnetic field, and could be exotic. We already have conducted experimental studies on small star- shaped Mo80Ge20 plates. In this work, we present the theoretical calculations on vortex structures in star-shaped superconducting. The numerical calculations of Ginzburg-Landau equation have been carried out with the aid of the finite element method, which is convenient to treat an arbitrarily shaped superconductor. We found that good agreement between theory and experiment. A distinctive feature of a star-shaped plate predicted is that the superconductivity is destroyed from the inscribed circle of the star when the magnetic field increases. Our theoretical studies will be compared to the experimental studies.
Single-mode D-shaped optical fiber sensor for the refractive index monitoring of liquid
NASA Astrophysics Data System (ADS)
Qazi, Hummad Habib; Mohammad, Abu Bakar bin; Ahmad, Harith; Zamani Zulkifli, Mohd; Wadi Harun, Sulaiman
2016-04-01
A new fabrication method is introduced for the production of D-shaped optical fiber. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of single-mode optical fiber in order to obtain a D-shaped cross section. Adjusting specific mechanical parameters allows for control of the volume of the D-shaped zone, while the fiber surface smoothness is governed by selection of polishing film grit size. To meet the accuracy and repeatability requirements, optical power loss is monitored during the entire polishing process in situ and in real time. This proposed technique possesses advantages of rapidity, safety, simplicity, repeatability and stability with high precision in comparison with contemporary methods for production. Sensor performance tests on the fiber reveal a linear response with linearity up to R2 = 0.984 for surrounding refractive index in the range of 1.320-1.342 refractive index, which corresponds to different concentrations of the glucose solution test environment. The produced D-shaped optical fiber has potential sensing and monitoring applications in chemical, environmental, biological and biochemical fields.
Global Calculations of Ground-State Axial Shape Asymmetry of Nuclei
Moeller, Peter; Bengtsson, Ragnar; Carlsson, B. Gillis; Olivius, Peter; Ichikawa, Takatoshi
2006-10-20
Important insight into the symmetry properties of the nuclear ground-state (gs) shape is obtained from the characteristics of low-lying collective energy-level spectra. In the 1950s, experimental and theoretical studies showed that in the gs many nuclei are spheroidal in shape rather than spherical. Later, a hexadecapole component of the gs shape was identified. In the 1970-1995 time frame, a consensus that reflection symmetry of the gs shape was broken for some nuclei emerged. Here we present the first calculation across the nuclear chart of axial symmetry breaking in the nuclear gs. We show that we fulfill a necessary condition: Where we calculate axial symmetry breaking, characteristic gamma bands are observed experimentally. Moreover, we find that, for those nuclei where axial asymmetry is found, a systematic deviation between calculated and measured masses is removed.
Comparison of K-index Calculations between Several Geomagnetic Stations during IQDs and IDDs
NASA Astrophysics Data System (ADS)
Hwang, Junga; Kim, Hang-Pyo; Park, Young-Deuk
2013-09-01
BOH magnetometer was installed at Mt. Bohyun in 2007 and has provided continuous dataset for 3-axis geomagnetic field over the South Korea. We have calculated real-time K-index based on BOH magnetic field data using well-known FMI method. Local K-index is calculated eight times a day, per every three hours. To calculate K-index, it is critical to get the Quiet Day Curve (QDC). For QDC calculation, we take the previous one month's average of H-component. In this paper, we compared four geomagnetic stations' magnetic field data over South Korea and Japan and K-indices of each stations; Bohyun, Gangneung, Jeju, and Kakioka for two years data, 2011-2012. To investigate the difference depending on the latitude, longitude and local time in more detail, we compare K-index on International Quiet Days (IQDs) and International Disturbed Days (IDDs). As a result, we report the correlation between local K-indices are higher than those between Kp and local K-indices, and the correlation is much better after sunset than after sunrise. As the geomagnetic activity becomes stronger, the correlation between the local K-indices and global Kp-index become higher.
NASA Technical Reports Server (NTRS)
Batina, J. T.
1985-01-01
The effects of airfoil shape, thickness, camber, and mean angle of attack on transonic unsteady airloads were investigated as calculated by the transonic small-disturbance computer code XTRAN2L. Shape effects were investigated by examining the pressure distributions, shock locations, and unsteady airloads for three 10 percent thick airfoils. NACA 0010, NACA 64A010, and parabolic arc. Thickness effects were determined by studying a single airfoil shape with three different thicknesses: NACA 0008, NACA 0010, and NACA 0012. Angle of attack and camber effects were studied by including mean angle of attack or by adding a simple parabolic camber distribution to the originally symmetric airfoils. Comparisons of unsteady airloads for different airfoil configurations show similar results caused by variations in airfoil shape, thickness, camber, or mean angle of attack. Computer costs can be reduced by limiting the number of transonic unsteady aerodynamic calculations for small changes in airfoil geometry or angle of attack.
Influence of refractive index dispersion on pulse shaping in white-light interferometry
NASA Astrophysics Data System (ADS)
Lychagov, Vladislav V.; Sdobnov, Anton Y.; Ryabukho, Vladimir P.
2015-03-01
Particularities of interference signal shaping in white-light interferometer with uncompensated dispersive layer are discussed. We especially attended to dependence of interference pulse position on the dispersive layer properties. Phase refractive index of the layer tends to be substantially nonlinear function of wavelength within the wide emission band of ultra-low coherence thermal light source. In this case, it is the group refractive index dispersion that is beginning to exert an influence on interference signal formation. It is shown experimentally that influence consists in nonlinear dependence of interference pulse position on geometrical thickness of the dispersive layer. The results show that mismatch of the dispersive layer and compensator refractive indices in the third place can produce interference signal shift on the order of pulse width.
NASA Astrophysics Data System (ADS)
Sánchez, Albert-Miquel; Piera, Jaume
2016-07-01
The scattering properties of aquatic suspended particles have many optical applications. Several data inversion methods have been proposed to estimate important features of particles, such as their size distribution or their refractive index. Most of the proposed methods are based on the Lorenz-Mie theory to solve Maxwell's equations, where particles are considered homogeneous spheres. A generalization that allows consideration of more complex-shaped particles is the T-matrix method. Although this approach imposes some geometrical restrictions (particles must be rotationally symmetrical) it is applicable to many life forms of phytoplankton. In this paper, three different scenarios are considered in order to compare the performance of several inversion methods for retrieving refractive indices. The error associated with each method is discussed and analyzed. The results suggest that inverse methods using the T-matrix approach are useful to accurately retrieve the refractive indices of particles with complex shapes, such as for many phytoplankton organisms.
Time-dependent calculations of hydrogen spectral line shapes in dense plasmas
NASA Astrophysics Data System (ADS)
Olchawa, Wiesław
2001-04-01
A new formalism has been elaborated for calculations of hydrogen line profiles emitted by dense plasmas. Calculated line shapes are broadened, shifted and asymmetrical. The formalism is very general and yields full line shapes, shifts and widths at relatively small number of assumptions. For this purpose a new basis of the appropriate subspace of the Hilbert space has been built. This basis gives an accurate description of the quadratic Stark effect and the interaction of the emitter with field gradients. A computer simulation has been used to determine the emitter perturbations by electrons and ions. Final results have been compared with experimental and theoretical findings of other authors.
Study of shape transitions in N{approx}90 isotopes with beyond mean field calculations
Rodriguez, Tomas R.; Egido, J. L.
2009-01-28
We study the spherical to prolate-deformed shape transition in {sup 144-158}Sm and {sup 146-160}Gd isotopes with modern calculations beyond the mean field with the Gogny D1S force. We compare the results with the shape-phase transition predicted by the collective Hamiltonian model and with the experimental data. Our calculations do not support the existence of a first order phase transition in these isotopic chains in the viewpoint of the Bohr Hamiltonian neither the interpretation of the nuclei N = 90 as critical points.
Taking into account nighttime annoyance in the calculation of the psophic index
NASA Technical Reports Server (NTRS)
Francois, J.
1981-01-01
The annoyance factor caused by air traffic noise on the residents of areas near airports is discussed. The psophic index is used to predict the level of overall annoyance suffered on the average by residents around airports. The calculation method differentiates between daytime and nighttime annoyance.
Electron sharing indexes at the correlated level. Application to aromaticity calculations.
Matito, Eduard; Solà, Miquel; Salvador, Pedro; Duran, Miquel
2007-01-01
Electron sharing indexes (ESI) have been applied to numerous bonding situations to provide an insight into the nature of the molecular electronic structures. Some of the most popular ESI given in the literature, namely, the delocalization index (DI), defined in the context of the quantum theory of atoms in molecules (QTAIM), and the Fuzzy-Atom bond order (FBO), are here calculated at a correlated level for a wide set of molecules. Both approaches are based on the same quantity, the exchange-correlation density, to recover the electron sharing extent, and their differences lie in the definition of an atom in a molecule. In addition, while FBO atomic regions enable accurate and fast integrations, QTAIM definition of an atom leads to atomic domains that occasionally make the integration over these ones rather cumbersome. Besides, when working with a many-body wavefunction one can decide whether to calculate the ESI from first-order density matrices, or from second-order ones. The former way is usually preferred, since it avoids the calculation of the second-order density matrix, which is difficult to handle. Results from both definitions are discussed. Although these indexes are quite similar in their definition and give similar descriptions, when analyzed in greater detail, they reproduce different features of the bonding. In this manuscript DI is shown to explain certain bonding situations that FBO fails to cope with. Finally, these indexes are applied to the description of the aromaticity, through the aromatic fluctuation (FLU) and the para-DI (PDI) indexes. FLU and PDI indexes have been successfully applied using the DI measures, but other ESI based on other partitions such as Fuzzy-Atom can be used. The results provided in this manuscript for carbon skeleton molecules encourage the use of FBO for FLU and PDI indexes even at the correlated level.
Nanoparticle shapes by using Wulff constructions and first-principles calculations
Barmparis, Georgios D; Lodziana, Zbigniew; Lopez, Nuria
2015-01-01
Summary Background: The majority of complex and advanced materials contain nanoparticles. The properties of these materials depend crucially on the size and shape of these nanoparticles. Wulff construction offers a simple method of predicting the equilibrium shape of nanoparticles given the surface energies of the material. Results: We review the mathematical formulation and the main applications of Wulff construction during the last two decades. We then focus to three recent extensions: active sites of metal nanoparticles for heterogeneous catalysis, ligand-protected nanoparticles generated as colloidal suspensions and nanoparticles of complex metal hydrides for hydrogen storage. Conclusion: Wulff construction, in particular when linked to first-principles calculations, is a powerful tool for the analysis and prediction of the shapes of nanoparticles and tailor the properties of shape-inducing species. PMID:25821675
Use of the SLW index to calculate growth function in the sea cucumber Isostichopus badionotus
Poot-Salazar, Alicia; Hernández-Flores, Álvaro; Ardisson, Pedro-Luis
2014-01-01
Age and growth analysis is essential to fisheries management. Indirect methods to calculate growth are widely used; however, length frequency data analysis in sea cucumbers is complicated by high data variability caused by body wall elasticity. Here we calculated Isostichopus badionotus parameters of the von Bertalanffy growth function. In order to address bias produced by body wall elasticity, we compared the performance of four measurements and one compound index that combines different biometric parameters: the square root of the length-width product (SLW). Results showed that variability in length data due to body wall elasticity was controlled by using body length (Le) from the SLW compound index. Growth in I. badionotus follows a negative allometric tendency. Slow or zero growth periods were observed during October and November, when weather conditions were adverse. PMID:24909262
New Approaches for Calculating Moran’s Index of Spatial Autocorrelation
Chen, Yanguang
2013-01-01
Spatial autocorrelation plays an important role in geographical analysis; however, there is still room for improvement of this method. The formula for Moran’s index is complicated, and several basic problems remain to be solved. Therefore, I will reconstruct its mathematical framework using mathematical derivation based on linear algebra and present four simple approaches to calculating Moran’s index. Moran’s scatterplot will be ameliorated, and new test methods will be proposed. The relationship between the global Moran’s index and Geary’s coefficient will be discussed from two different vantage points: spatial population and spatial sample. The sphere of applications for both Moran’s index and Geary’s coefficient will be clarified and defined. One of theoretical findings is that Moran’s index is a characteristic parameter of spatial weight matrices, so the selection of weight functions is very significant for autocorrelation analysis of geographical systems. A case study of 29 Chinese cities in 2000 will be employed to validate the innovatory models and methods. This work is a methodological study, which will simplify the process of autocorrelation analysis. The results of this study will lay the foundation for the scaling analysis of spatial autocorrelation. PMID:23874592
Model calculations on the transitions between surfactant aggregates on different shapes
Eriksson, J.C.; Ljunggren, S. )
1990-05-01
In a series of papers published earlier, the authors presented theories about the formation of surfactant micelles which include detailed treatments of the mechanics, surface thermodynamics, and small system thermodynamics of spherical, rod-shaped, and disk-shaped aggregates. In the present paper, they develop a calculation scheme which yields the volume fractions of the various kinds of sodium dodecyl sulfate (SDS) micelles and also of SDS vesicles, at different solution states. The familiar hierarchy of surfactant aggregates of different shapes is generated automatically upon raising the salt concentration, i.e., without introducing any extraneous packing or geometrical constraints, and is due to the more rapid decrease of the electrostatic free energy for the less curved aggregate surfaces.
Three-dimensional surface grid generation for calculation of thermal radiation shape factors
NASA Technical Reports Server (NTRS)
Aly, Hany M.
1992-01-01
A technique is described to generate three dimensional surface grids suitable for calculating shape factors for thermal radiative heat transfer. The surface under consideration is approximated by finite triangular elements generated in a special manner. The grid is generated by dividing the surface into a two dimensional array of nodes. Each node is defined by its coordinates. Each set of four adjacent nodes is used to construct two triangular elements. Each triangular element is characterized by the vector representation of its vertices. Vector algebra is used to calculate all desired geometric properties of grid elements. The properties are used to determine the shape factor between the element and an area element in space. The grid generation can be graphically displayed using any software with three dimensional features. DISSPLA was used to view the grids.
Basic Properties of Magnetic Shape-Memory Materials from First-Principles Calculations
NASA Astrophysics Data System (ADS)
Entel, Peter; Dannenberg, Antje; Siewert, Mario; Herper, Heike C.; Gruner, Markus E.; Comtesse, Denis; Elmers, Hans-Joachim; Kallmayer, Michael
2012-08-01
The mutual influence of phase transformations, magnetism, and electronic properties of magnetic-shape memory Heusler materials is a basic issue of electronic structure calculations based on density functional theory. In this article, we show that these calculations can be pursued to finite temperatures, which allows to derive on a first-principles basis the temperature versus composition phase diagram of the pseudo-binary Ni-Mn-(Ga, In, Sn, Sb) system. The free energy calculations show that the phonon contribution stabilizes the body-centered-cubic (bcc)-like austenite structure at elevated temperatures, whereas magnetism favors the low-temperature martensite phase with body-centered-tetragonal (bct) or rather face-centered-tetragonal (fct) structure. The calculations also allow to make predictions of magnetostructural and magnetic field induced properties of other (new) magnetic Heusler alloys not based on NiMn such as Co-Ni-(Ga-Zn) and Fe-Co-Ni-(Ga-Zn) intermetallic compounds.
Erickson, S.A. Jr.
1988-01-02
A new formulation for the amplitude and pulse shape from reflections from a linear segment for a bistatic planar geometry is presented. The formulation is useful in calculating reverberation from high intensity signals in an deep ocean basin where long range propagation can occur. This reverberation is important in calculating the acoustic interference to sonar arising from the detonation of nuclear or large chemical explosives, and for modeling long range active sonar. The reflections computed with the new formulation are significantly different from those of earlier versions of the reverberation model, with pulses generally shorter and more intense, leading to predictions of louder but more sporadic reverberation than previously estimated. 9 refs
NASA Astrophysics Data System (ADS)
Charnotskii, Mikhail; Baker, Gary J.
2011-06-01
Asymptotic theory of the finite beam scintillations (Charnotskii, WRM, 1994, JOSA A, 2010) provides an exhaustive description of the dependence of the beam scintillation index on the propagation conditions, beam size and focusing. However the complexity of the asymptotic configuration makes it difficult to apply these results for the practical calculations of the scintillation index (SI). We propose an estimation technique and demonstrate some examples of the calculations of the scintillation index dependence on the propagation path length, initial beam size, wavelength and turbulence strength for the beam geometries and propagation scenarios that are typical for applications. We suggest simple analytic bridging approximations that connect the specific asymptotes with the accuracy sufficient for the engineering estimates. Proposed technique covers propagation of the wide, narrow, collimated and focused beams under the weak and strong scintillation conditions. Direct numeric simulation of the beam waves propagation through turbulence expediently complements the asymptotic theory being most efficient when the governing scales difference is not very large. We performed numerical simulations of the beam wave propagation through turbulence for conditions that partially overlap with the major parameter space domains of the asymptotic theory. The results of the numeric simulation are used to confirm the asymptotic theory and estimate the accuracy of the bridging approximations.
SU-E-T-601: Output Factor Calculation of Irregular Shape Electron Cutout at Extended SSD
Alkhatib, H; Gebreamlak, W
2014-06-01
Purpose: To calculate the output factor of irregular shape electron beam at extended SSD using modified lateral build-up-ratio method. Methods: Circular cutouts from 2.0cm diameter to maximum possible sizes were prepared for applicator cone size of 15×15cm. In addition, different irregular cutouts were prepared. Percentage depth dose (PDD) curves were measured for each cutout using 6, 9, 12 and 16-MeV at the standard SSD of 100cm. The scanning was done using Multidata system and Scanditronix diodes on 2100SC Varian LINAC. In addition, for each cutout and electron beam energy doses were measured at SSD values of 100, 105, 110, 115cm using EDR2 films and diodes. Results: The measured PDD were normalized to the depth of 1.0mm. The lateral build-up-ratio (LBR) and the lateral scatter parameter (sigma) were calculated for each circular cutout using the open 15X15-cm2 field as the reference field. Taking the linear increase of sigma with cutout size into account, PDD of the irregular cutouts were calculated at 100 cm SSD. Furthermore, using the dose measured at different SSDs, the effective SSD value for each circular cutout and electron beam energy was determined. Employing the LBR and the effective-SSD values of the circular cutouts along with the calculated PDD of the irregular cutouts, the output factors of the irregular cutout at different extended SSD values were calculated. Finally, the calculated output factors were compared with the measured values. Conclusion: In this research, it is shown that output factor of irregular shape electron beam at extended SSD can be determined by using the LBR and the effective SSD values of circular cutouts. The percentage difference of the calculated output factor from the measured output factor for irregular cutouts at extended SSD were within 3.0%.
A Simple Model to Calculate Leaf Area Index from Lidar Data
NASA Astrophysics Data System (ADS)
Riano, D.; Sanchez-Pena, J.; Patricio, M.; Valladares, F.; Greenberg, J.; Ustin, S. L.
2006-12-01
Empirical relationships are generally established between Lidar data and field Leaf Area Index (LAI) measurements. This kind of relationships are site-specific, requiring calibration to obtain LAI when the forest structure varies. This paper presents a more holistic LAI model based on how laser pulses penetrate the vegetation canopy. This simple model obtains leaf angle distribution in order to calculate LAI, assuming leaves follow an ellipsoidal distribution, according to the Beer´s law. Lidar data within a maximum radius were selected for each site, to match field LAI measurements obtained with fish-eye photos. Elevation above the ground was calculated for each laser pulse using a digital ground model generated from the Lidar data itself. The penetration in the canopy of each laser pulse was calculated based on the distance to the ground and maximum height within the selected radius for each site. Several Lidar flight lines with different angles of incidence were processed for each site. The model calculated LAI based on the changes in angle of incidence and penetration rate, after adjusting using minimum mean squared error estimators. Results were compared with field estimates
Brittleness index calculation and evaluation for CBM reservoirs based on AVO simultaneous inversion
NASA Astrophysics Data System (ADS)
Wu, Haibo; Dong, Shouhua; Huang, Yaping; Wang, Haolong; Chen, Guiwu
2016-11-01
In this paper, a new approach is proposed for coalbed methane (CBM) reservoir brittleness index (BI) calculations. The BI, as a guide for fracture area selection, is calculated by dynamic elastic parameters (dynamic Young's modulus Ed and dynamic Poisson's ratio υd) obtained from an amplitude versus offset (AVO) simultaneous inversion. Among the three different classes of CBM reservoirs distinguished on the basis of brittleness in the theoretical part of this study, class I reservoirs with high BI values are identified as preferential target areas for fracturing. Therefore, we derive the AVO approximation equation expressed by Ed and υd first. This allows the direct inversion of the dynamic elastic parameters through the pre-stack AVO simultaneous inversion, which is based on Bayes' theorem. Thereafter, a test model with Gaussian white noise and a through-well seismic profile inversion is used to demonstrate the high reliability of the inversion parameters. Accordingly, the BI of a CBM reservoir section from the Qinshui Basin is calculated using the proposed method and a class I reservoir section detected through brittleness evaluation. From the outcome of this study, we believe the adoption of this new approach could act as a guide and reference for BI calculations and evaluations of CBM reservoirs.
Krueger, K.L.; Hubert, W.A.
1997-01-01
We collected otoliths from saugers Stizostedion canadense in Boysen Reservoir, Bighorn Reservoir, and the Bighorn River in Wyoming to evaluate age and growth. All otoliths in our samples (264 fish) were irregularly shaped, and the irregularities became more pronounced with increasing age of the fish. Age estimates with irregular otoliths were possible, but back-calculation of length at previous ages was not possible as a result of radically inconsistent lengths of radii. It should not be assumed that otoliths can be used for back calculation of length at age among all stocks of sauger. The assumption of regular otolith formation within a stock should be tested before obtaining samples of otoliths for age and growth assessment.
NASA Technical Reports Server (NTRS)
Goel, Narenda S.; Rozehnal, I.; Thompson, R. L.
1991-01-01
A general computer graphics based model is presented for computer generation of objects of arbitrary shape and for calculating Bidirectional Reflectance Factor (BRF) and scattering from them, in the optical region. The computer generation uses a modified Lindemayer system (L system) approach. For rendering on a computer screen, the object is divided into polygons, and innovative computer graphics techniques are used to display the object and to calculate the scattering and reflectance from the object. The use of the technique is illustrated with scattering from canopies of simulated corn plants and from a snow covered mountain. The scattering is quantified using measures like BRF and albedo and by rendering the objects with brightness of each of the two facets of a polygon proportional to the amount of light scattered from the object in the viewer's direction.
NASA Astrophysics Data System (ADS)
Kalyanaraman, S.; Shajinshinu, P. M.; . Vijayalakshmi, S.
2015-11-01
Single crystal of Ethylenediaminium Tetrachlorozincate has been grown by slow evaporation method. The single crystal XRD study confirms the orthorhombic structure of the crystal. The presence of functional group vibrations are ascertained through FTIR and Raman studies. In optical studies, the insulating behaviour of the material is established by Tauc plot. The refractive index and the real dielectric constant of the crystal are calculated. The electronic polarizability in the high frequency optical region is also calculated from the dielectric constant values by using the Clausius-Mossotti equation. The large value of dielectric constant is identified through dielectric studies and it points to the ferroelectric behaviour of the material. Further an experimental study confirms the ferroelectric behaviour of the material. The total polarizability of the crystal owing to the space charge, dipole, ionic and electronic polarizability contributions is obtained experimentally, and it matches well with the theoretically obtained value from Penn analysis. Further, Plasmon energy and Fermi energy of the material are also calculated using Penn analysis.
Calculation of an interaction index between extractive activity and groundwater resources
NASA Astrophysics Data System (ADS)
Collier, Louise; Hallet, Vincent; Barthélemy, Johan; Moriamé, Marie; Cartletti, Timotéo
2015-04-01
categories. A quarry matches with a combination of these categories depending on its current state. This quarry state, as will the index, can vary over time according to its extension. In order to correlate and properly weight these parameters in the calculation of the interaction index, the discrete choice model has been used (Train, 2009). Depending on the interaction index value, the quarry will present a low, a medium, a high, or a very high impact on the regional hydrogeology. This will determine the level of investigation of the feasibility study, namely (1) a geological and hydrogeological contextualization, (2) a continuous piezometric monitoring, (3) a steady flow mathematical modeling and, the most detailed, (4) a non-steady flow transient state model.
The Use of Ab Initio Wavefunctions in Line-Shape Calculations for Water Vapor
NASA Astrophysics Data System (ADS)
Gamache, Robert R.; Lamouroux, Julien; Schwenke, David W.
2014-06-01
In semi-classical line-shape calculations, the internal motions of the colliding pair are treated via quantum mechanics and the collision trajectory is determined by classical dynamics. The quantum mechanical component, i.e. the determination of reduced matrix elements (RME) for the colliding pair, requires the wavefunctions of the radiating and the perturbing molecules be known. Here the reduced matrix elements for collisions in the ground vibrational state of water vapor are calculated by two methods and compared. First, wavefunctions determined by diagonalizing an effective (Watson) Hamiltonian are used to calculate the RMEs and, second, the ab initio wavefunctions of Partridge and Schwenke are used. While the ground vibrational state will yield the best approximation of the wavefunctions from the effective Hamiltonian approach, this study clearly identifies problems for states not included in the fit of the Hamiltonian and for extrapolated states. RMEs determined using ab initio wavefunctions use ˜100000 times more computational time; however, all ro-vibrational interactions are included. Hence, the ab initio approach will yield better RMEs as the number of vibrational quanta exchanged in the optical transition increases, resulting in improvements in calculated half-widths and line shifts. It is important to note that even for pure rotational transitions the use of ab initio wavefunctions will yield improved results.
NASA Technical Reports Server (NTRS)
Obrien, S. O. (Principal Investigator)
1980-01-01
The program, LACVIN, calculates vegetative indexes numbers on limited area coverage/high resolution picture transmission data for selected IJ grid sections. The IJ grid sections were previously extracted from the full resolution data tapes and stored on disk files.
Liedes, Hilkka; Mattila, Jussi; Lingsma, Hester; Lötjönen, Jyrki; Menon, David; Tenovuo, Olli; van Gils, Mark
2016-01-01
Traumatic brain injury (TBI) is a major cause of death and disability, especially in young adults. A reliable prediction of outcome after TBI is of great importance in clinical practice and research. We aimed to compare performance of the well-established IMPACT calculator and an alternative method, Disease State Index (DSI), in the prediction of six-month outcome after TBI. Performance of the models was evaluated using 2036 patients with moderate or severe TBI from the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) database. Prediction performance of both models was similar. The models with more variables provided better performance than the simpler models. This study showed that the DSI is a valid tool with efficient visualizations that can help clinicians with their decision making process in clinical practice. PMID:27225575
NASA Astrophysics Data System (ADS)
Lukić, M.; Ćojbašić, Ž.; Rabasović, M. D.; Markushev, D. D.; Todorović, D. M.
2013-09-01
Recently, a few numerical methods based on the photoacoustic (PA) signal temporal shape analysis and energy density spatial distribution calculation, which is directly related to the laser beam spatial profile, have been presented. It has been shown that these methods allow a precise reproduction of the spatial profile and the radius of the laser beam, determining the vibrational-to-translational (V-T) relaxation time with good accuracy. Their applicability has been shown and confirmed for the analysis of an arbitrary symmetric laser beam spatial profile in cylindrical geometry. Here, the application of genetic optimization for solving the problem of a simultaneous laser beam spatial profile and V-T relaxation time determination by pulsed PAs is presented. Real-coded genetic algorithms are used to calculate the mentioned relaxation time by fitting the experimental signal with the theoretical one. The aim is to find combinations of PA signal parameters, namely, the radius of the laser beam and the V-T relaxation time that provide the best match with the given signal. A calculated PA signal with a known profile is used to simulate an experimental signal, and the sum of the square deviations representing deviations of the given and fitted signals is minimized by means of genetic optimization. In that way, the genetic algorithms are used to simultaneously estimate the radius of the laser beam and the V-T relaxation time efficiently and with high accuracy. Compared to previous methods, the presented method is much simpler and requires less time to compute.
H{sub 2}-He vibrational line-shape parameters: Measurement and semiclassical calculation
Forsman, J.W.; Bonamy, J.; Robert, D.; Berger, J.P.; Saint-Loup, R.; Berger, H.
1995-10-01
High-resolution inverse Raman spectroscopy has been used to obtain the line shifting and line broadening coefficients of H{sub 2} perturbed by He. Measurements have been made for the {ital Q}-branch transitions ({ital J}=0{r_arrow}5) in a density range of 10 to 20 amagat and from 296 to 995 K. Up to 795 K we have directly deduced from the experimental broadening coefficients the inelastic rotational state-to-state and vibrational dephasing rates. At higher temperatures, owing to the larger number of channels of relaxation which occur, the results have been analyzed using a scaling law. The line shift and broadening coefficients exhibit a square root and a linear dependence on temperature, respectively, and a significant {ital J} dependence. Semiclassical calculations based on an accurate {ital ab} {ital initio} potential lead to line-shape parameters consistent with experiment. They allow a clear understanding of their observed temperature dependence.
Calculation of Compressible Flows past Aerodynamic Shapes by Use of the Streamline Curvature
NASA Technical Reports Server (NTRS)
Perl, W
1947-01-01
A simple approximate method is given for the calculation of isentropic irrotational flows past symmetrical airfoils, including mixed subsonic-supersonic flows. The method is based on the choice of suitable values for the streamline curvature in the flow field and the subsequent integration of the equations of motion. The method yields limiting solutions for potential flow. The effect of circulation is considered. A comparison of derived velocity distributions with existing results that are based on calculation to the third order in the thickness ratio indicated satisfactory agreement. The results are also presented in the form of a set of compressibility correction rules that lie between the Prandtl-Glauert rule and the von Karman-Tsien rule (approximately). The different rules correspond to different values of the local shape parameter square root sign YC sub a, in which Y is the ordinate and C sub a is the curvature at a point on an airfoil. Bodies of revolution, completely supersonic flows, and the significance of the limiting solutions for potential flow are also briefly discussed.
Thomson, Cynthia A.; Garcia, David O.; Wertheim, Betsy C.; Hingle, Melanie D.; Bea, Jennifer W.; Zaslavsky, Oleg; Caire-Juvera, Graciela; Rohan, Thomas; Vitolins, Mara Z.; Thompson, Patricia A.; Lewis, Cora E.
2016-01-01
Objective Studies evaluating the relationship between body mass index (BMI) and mortality demonstrate a U-shaped association. To expand, this study evaluated the relationship between adiposity indices, a body shape index (ABSI) and body adiposity index (BAI), and mortality in 77,505 postmenopausal women. Methods A prospective cohort analysis was conducted in the Women’s Health Initiative to ascertain the independent relationships between adiposity indices and mortality in order to inform on the clinical usefulness of alternate measures of mortality risk. ABSI (waist circumference (cm)/[BMI2/3 × height (cm)1/2]), BAI (hip circumference (cm)/[height (m)1.5] − 18), weight, BMI, and waist circumference (WC) were evaluated in relation to mortality risk using adjusted Cox proportional hazards regression models. Results ABSI showed a linear association with mortality (HR, 1.37; 95% CI, 1.28–1.47 for quintile 5 vs. 1) while BMI and BAI had U-shaped relationships with HR of 1.30; 95% CI, 1.20–1.40 for obesity II/III BMI and 1.06, 95% CI, 0.99–1.13 for BAI. Higher WC (HR, 1.21; 95% CI, 1.13–1.29 for quintile 5 vs. 1) showed relationships similar to BMI. Conclusions ABSI appears to be a clinically useful measure for estimating mortality risk, perhaps more so than BAI and BMI in postmenopausal women. PMID:26991923
NASA Astrophysics Data System (ADS)
Holschuh, Brad; Newman, Dava
2014-03-01
Shape memory alloys (SMA) offer unique shape changing characteristics that can be exploited to produce low mass, low-bulk, large-stroke actuators. We are investigating the use of low spring index (defined as the ratio of coil diameter to wire diameter) SMA coils for use as actuators in morphing aerospace systems. Specifically, we describe the development and characterization of minimum achievable spring index coiled actuators made from 0.3048 mm (0.012") diameter shape memory alloy (SMA) wire for integration in textile architectures for future compression space suit applications. Production and shape setting of the coiled actuators, as well as experimental test methods, are described. Force, length and voltage relationships for multiple coil actuators are reported and discussed. The actuators exhibit a highly linear (R2 < 0.99) relationship between isometric blocking force and coil displacement, which is consistent with current SMA coil models; and SMA coil actuators demonstrate the ability to produce significant linear forces (i.e., greater than 8 N per coil) at strains up to 3x their initial (i.e., fully coiled) length. Discussions of both the potential use of these actuators in future compression space suit designs, and the broader viability of these actuators in both macro- and micro-systems, are presented.
Comparison of Different Methods for the Calculation of the Microvascular Flow Index
Pozo, Mario O.; Kanoore Edul, Vanina S.; Ince, Can; Dubin, Arnaldo
2012-01-01
The microvascular flow index (MFI) is commonly used to semiquantitatively characterize the velocity of microcirculatory perfusion as absent (0), intermittent (1), sluggish (2), or normal (3). There are three approaches to compute MFI: (1) the average of the predominant flow in each of the four quadrants (MFIby quadrants), (2) the direct assessment during the bedside video acquisition (MFIpoint of care), and (3) the mean value of the MFIs determined in each individual vessel (MFIvessel by vessel). We hypothesized that the agreement between the MFIs is poor and that the MFIvessel by vessel better reflects the microvascular perfusion. For this purpose, we analyzed 100 videos from septic patients. In 25 of them, red blood cell (RBC) velocity was also measured. There were wide 95% limits of agreement between MFIby quadrants and MFIpoint of care (1.46), between MFIby quadrants and MFIvessel by vessel (2.85), and between MFIby point of care and MFIvessel by vessel (2.56). The MFIs significantly correlated with the RBC velocity and with the fraction of perfused small vessels, but MFIvessel by vessel showed the best R2. Although the different methods for the calculation of MFI reflect microvascular perfusion, they are not interchangeable and MFIvessel by vessel might be better. PMID:22593824
NASA Technical Reports Server (NTRS)
Farmer, F. H.
1981-01-01
The calculation of indices of phytoplankton population composition from chlorophyll a fluorescence at 685 nm excited by narrow band light at 454 and 539 nm is discussed. The ratio of the fluorescence excited by light of these two wavelengths is a function of the distribution of the phytoplankton between two color groups, designated the golden-brown and the green. The golden-brown group consists of those species which have the highly photosynthetically active carotenoid-chlorophyll-a-protein complexes, i.e. members of the classes Bacillariophyceae, diatoms Dinophyceae, dinoflagellates, and some members of the class Prymnesiophyceae. The green color group consists those species of phytoplankton which apparently lack those complexes, i.e. members of the classes Chlorophyceae, Euglenophyceae, Prasinophyceae, Eustigmatophyceae, Xanthophyceae, and a few members of the Prymnesiophyceae. A few species of phytoplankton appear to have intermediate characteristics, and would apparently belong to neither group. Most of these species are members of the class Cryptophyceae. The composition index for this class is examined in detail.
Shooting and bouncing rays - Calculating the RCS of an arbitrarily shaped cavity
NASA Technical Reports Server (NTRS)
Ling, Hao; Chou, Ri-Chee; Lee, Shung-Wu
1989-01-01
A ray-shooting approach is presented for calculating the interior radar cross section (RCS) from a partially open cavity. In the problem considered, a dense grid of rays is launched into the cavity through the opening. The rays bounce from the cavity walls based on the laws of geometrical optics and eventually exit the cavity via the aperture. The ray-bouncing method is based on tracking a large number of rays launched into the cavity through the opening and determining the geometrical optics field associated with each ray by taking into consideration (1) the geometrical divergence factor, (2) polarization, and (3) material loading of the cavity walls. A physical optics scheme is then applied to compute the backscattered field from the exit rays. This method is so simple in concept that there is virtually no restriction on the shape or material loading of the cavity. Numerical results obtained by this method are compared with those for the modal analysis for a circular cylinder terminated by a PEC plate. RCS results for an S-bend circular cylinder generated on the Cray X-MP supercomputer show significant RCS reduction. Some of the limitations and possible extensions of this technique are discussed.
NASA Astrophysics Data System (ADS)
Lamouroux, Julien; Gamache, Robert R.
2013-06-01
A model for the prediction of the vibrational dependence of CO_2 half-widths and line shifts for several broadeners, based on a modification of the model proposed by Gamache and Hartmann, is presented. This model allows the half-widths and line shifts for a ro-vibrational transition to be expressed in terms of the number of vibrational quanta exchanged in the transition raised to a power p and a reference ro-vibrational transition. Complex Robert-Bonamy calculations were made for 24 bands for lower rotational quantum numbers J'' from 0 to 160 for N_2-, O_2-, air-, and self-collisions with CO_2. In the model a Quantum Coordinate is defined by (c_1 Δν_1 + c_2 Δν_2 + c_3 Δν_3)^p where a linear least-squares fit to the data by the model expression is made. The model allows the determination of the slope and intercept as a function of rotational transition, broadening gas, and temperature. From these fit data, the half-width, line shift, and the temperature dependence of the half-width can be estimated for any ro-vibrational transition, allowing spectroscopic CO_2 databases to have complete information for the line shape parameters. R. R. Gamache, J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer. {{83}} (2004), 119. R. R. Gamache, J. Lamouroux, J. Quant. Spectrosc. Radiat. Transfer. {{117}} (2013), 93.
5 CFR 591.220 - How does OPM calculate energy utility cost indexes?
Code of Federal Regulations, 2012 CFR
2012-01-01
... each area at a given ambient temperature and the cost of other energy uses. Although the dwelling size... process to compute a cost index(es) for heating and cooling a standard home to a given ambient temperature... practices and codes in each area, given local climatic conditions (e.g., seasonal temperature and...
5 CFR 591.220 - How does OPM calculate energy utility cost indexes?
Code of Federal Regulations, 2013 CFR
2013-01-01
... each area at a given ambient temperature and the cost of other energy uses. Although the dwelling size... process to compute a cost index(es) for heating and cooling a standard home to a given ambient temperature... practices and codes in each area, given local climatic conditions (e.g., seasonal temperature and...
5 CFR 591.220 - How does OPM calculate energy utility cost indexes?
Code of Federal Regulations, 2014 CFR
2014-01-01
... each area at a given ambient temperature and the cost of other energy uses. Although the dwelling size... process to compute a cost index(es) for heating and cooling a standard home to a given ambient temperature... practices and codes in each area, given local climatic conditions (e.g., seasonal temperature and...
5 CFR 591.220 - How does OPM calculate energy utility cost indexes?
Code of Federal Regulations, 2011 CFR
2011-01-01
... each area at a given ambient temperature and the cost of other energy uses. Although the dwelling size... process to compute a cost index(es) for heating and cooling a standard home to a given ambient temperature... practices and codes in each area, given local climatic conditions (e.g., seasonal temperature and...
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2012-01-01
New first- and second-order displacement transfer functions have been developed for deformed shape calculations of nonuniform cross-sectional beam structures such as aircraft wings. The displacement transfer functions are expressed explicitly in terms of beam geometrical parameters and surface strains (uniaxial bending strains) obtained at equally spaced strain stations along the surface of the beam structure. By inputting the measured or analytically calculated surface strains into the displacement transfer functions, one could calculate local slopes, deflections, and cross-sectional twist angles of the nonuniform beam structure for mapping the overall structural deformed shapes for visual display. The accuracy of deformed shape calculations by the first- and second-order displacement transfer functions are determined by comparing these values to the analytically predicted values obtained from finite element analyses. This comparison shows that the new displacement transfer functions could quite accurately calculate the deformed shapes of tapered cantilever tubular beams with different tapered angles. The accuracy of the present displacement transfer functions also are compared to those of the previously developed displacement transfer functions.
NASA Astrophysics Data System (ADS)
Tavakkoli, Marjan
2013-02-01
Shape invariance is an important factor of many exactly solvable quantum mechanics. Several examples of shape-invariant `discrete quantum mechanical systems' are introduced and discussed in some detail. We present the spectral properties of supersymmetric shape-invariant potentials (SIP). Here we are interested in some time-independent integrable systems which are exactly solvable owing to the existence of supersymmetric shape-invariant symmetry. In 1981 Witten proposed (0+1)-dimensional limit of supersymmetry (SUSY) quantum field theory, where the supercharges of SUSY quantum mechanics generate transformation between two orthogonal eigenstates of a given Hamiltonian wit degenerate eigenvaluesfor the non-SIP as very few lower eigenvalues can be known analytically, which are small to calculate spectral fluctuation.
The Healthy Eating Index-2010 (HEI-2010) is the latest iteration of the HEI. The HEI is a measure of diet quality, independent of quantity that can be used to assess compliance with the US Dietary Guidelines for Americans and monitor changes in dietary patterns.
Δg: The new aromaticity index based on g-factor calculation applied for polycyclic benzene rings
NASA Astrophysics Data System (ADS)
Ucun, Fatih; Tokatlı, Ahmet
2015-02-01
In this work, the aromaticity of polycyclic benzene rings was evaluated by the calculation of g-factor for a hydrogen placed perpendicularly at geometrical center of related ring plane at a distance of 1.2 Å. The results have compared with the other commonly used aromatic indices, such as HOMA, NICSs, PDI, FLU, MCI, CTED and, generally been found to be in agreement with them. So, it was proposed that the calculation of the average g-factor as Δg could be applied to study the aromaticity of polycyclic benzene rings without any restriction in the number of benzene rings as a new magnetic-based aromaticity index.
NASA Astrophysics Data System (ADS)
Feng, Qian; Cui, Songxue; Zhao, Wei
2015-09-01
Assuming spheroidal and spherical particle shapes for mineral dust aerosols, the effect of particle shape on dust aerosol optical depth retrievals, and subsequently on instantaneous shortwave direct radiative forcing (SWDRF) at the top of the atmosphere (TOA), is assessed based on Moderate Resolution Imaging Spectroradiometer (MODIS) data for a case study. Specifically, a simplified aerosol retrieval algorithm based on the principle of the Deep Blue aerosol retrieval method is employed to retrieve dust aerosol optical depths, and the Fu-Liou radiative transfer model is used to derive the instantaneous SWDRF of dust at the TOA for cloud-free conditions. Without considering the effect of particle shape on dust aerosol optical depth retrievals, the effect of particle shape on the scattering properties of dust aerosols (e.g., extinction efficiency, single scattering albedo and asymmetry factor) is negligible, which can lead to a relative difference of at most 5% for the SWDRF at the TOA. However, the effect of particle shape on the SWDRF cannot be neglected provided that the effect of particle shape on dust aerosol optical depth retrievals is also taken into account for SWDRF calculations. The corresponding results in an instantaneous case study show that the relative differences of the SWDRF at the TOA between spheroids and spheres depend critically on the scattering angles at which dust aerosol optical depths are retrieved, and can be up to 40% for low dust-loading conditions.
CALCULATIONS OF SHAPE CHANGE AND FRAGMENTATION PARAMETERS USING VERY PRECISE BOLIDE DATA.
ReVelle, D. O.; Ceplecha, Zdeněk
2001-01-01
Using the theoretical formalism of ReVelle (2001d), we have analyzed 22 European (EN) and US Prairie Network fireballs (PN) with the most precise trajectory information available for shape change and fragmentation effects. For 14 bolides the shape change parameter, {mu}, was always > 0 and for the other 8 cases there were instances of {mu} < 0, but with large oscillations in its sign with height or time. When the shape change parameter, {mu}, was < 0, the fragmentation scale height was > 0 and in a few instances was briefly even smaller than the pressure scale height. This is the necessary condition in addition to the sufficient condition of {mu} < 0 for the onset of the catastrophic fragmentation process ('pancake' break-up). A histogram of all computed {mu} values indicates that an average value was <{mu} > {approx} 0.10, indicating that substantial shape change has taken place during entry for these bolides. This is fully consistent with the recent analyses of ReVelle and Ceplecha (2001g) of the changes in the shape-density coefficient, K, with time as well. Thus, the use of the {mu} = 2/3 (self-similar solution with no shape change) is not recommended for bolide modeling efforts. From our results we can conclude that most of the US DoD bolides can be successfully modeled using single-body theory without resorting to the 'pancake' catastrophic fragmentation model that was 'rediscovered' in the early 1990's by a number of workers. These researchers included Hills and Goda, Chyba, Thomas and Zahnle, etc. who specifically developed this break-up model for studying he impact into Jupiter of the huge Shoemaker Levy-9 comet.
Line shape and ray trace calculations in saturated X-ray lasers: Application to Ni-like silver
NASA Astrophysics Data System (ADS)
Benredjem, D.; Guilbaud, O.; Möller, C.; Klisnick, A.; Ros, D.; Dubau, J.; Calisti, A.; Talin, B.
2006-05-01
Longitudinal coherence length in X-ray lasers depends strongly on the shape of the amplified line. We have modelled an experiment performed at the LULI facility of Ecole Polytechnique. The experiment was devoted to the study of the temporal (longitudinal) coherence of the transient Ni-like silver 4d 4p transition X-ray laser at 13.9 nm. Accurate line shape calculations using PPP, a spectral line shape code, confirm that the Voigt profile is a good approximation for this X-ray laser line. This allows us to extensively use the Voigt shape in conditions where the amplifier, i.e. the plasma produced by the interaction of a high intensity laser with a slab target, is neither stationary nor homogeneous. Our calculations involve a ray trace code which is a post-processor to the hydrodynamic simulation EHYBRID. As the effect of saturation is important for the level populations and gains we include the interaction between the amplified beam and the medium using the Maxwell-Bloch formalism. While the FWHM of the spontaneous emission profile is ˜10 mÅ, the amplified X-ray line exhibits gain narrowing leading to the smaller width ˜3 mÅ. Comparison with experiment is discussed.
NASA Astrophysics Data System (ADS)
Mormile, P.; Petti, L.; Rippa, M.; Guo, J.; Song, W.; Zhou, J.
2010-10-01
Light beam propagation at a prism-magnetic fluid film interface is experimentally studied. The magnetic fluid is made through dispersion of synthesized cigar-shaped sub-micron particles of Fe2O3 in an oil solution. This was injected into a glass cell with an active area of 10mm2 and a depth ranging from 10 microns to 30 microns whose base is a glass microscope slide and on the top it was covered with a glass prism. The set up was developed by one of the authors to measure light switching at a prism-liquid crystal interface in a previous publication.1 Polarized Light (TE or TM) from a He-Ne laser impinges at the prism-magnetic film interface. The external reflected light is detected by a photodiode connected to a data acquisition system. Since the properties of the magnetic fluid can be modulated by external magnetic fields, we investigated the effects of the magnetic field on the refractive index of the magnetic fluid. For our magnetic fluid, the reflection of light has been investigated as a function of particles concentration and thickness of the films with a wavelength of 633nm and both TE and TM polarization, and applied magnetic fields up to 25 Oe. It was found that the intensity of reflected light increases with increasing magnetic field up to 4 times the initial value, and saturates at 20 Oe for TE light, while decreases with increasing magnetic field up to 4 times less for TM light with the same saturation value. Moreover, under a given magnetic field, the output light increases with the increasing film thickness in TE polarization, and decreases with the increasing film thickness in TM case. The refractive index of the magnetic fluid depends on the concentration of the dilute oil-based magnetic fluid under zero field. These behaviors are explained in terms of the organization of the submicron particles when the magnetic field is applied.2 The cigar-shaped sub-micron particles are oriented along their long axis to form an organized mesostructure. The
Hazard index calculation for 31 May 1984 microburst at Erie, Colorado
NASA Technical Reports Server (NTRS)
Kropfli, R. A.
1988-01-01
Two x-band Doppler radars, operated by NOAA, were used to collect high resolution data within a small, benign looking microburst during the PHOENIX II boundary layer experiment. The lowest 2.5 km of the microbursts was observed throughout its development and dissipation over a 15 minute period. These observations presented an excellent opportunity to compute a quantitative threat to a hypothetical aircraft whose flight track would carry it through the microburst. The hazard index is based on the kinetic energy loss to the aircraft that would be produced by the microburst; it is a function of the vertical air motion, horizontal spatial derivatives of the wind field, and the assumed aircraft air speed and direction. Indices were computed and plotted for all 8 volume scans and peak values were observed to be sufficiently high to present a significant hazard to an aircraft.
NASA Astrophysics Data System (ADS)
Rahman, Mohammed Zahidur
This thesis investigates Normalized Difference Vegetation Index (NDVI) and Brightness Temperature (BT) stability in the NOAA/NESDIS Global Vegetation Index (GVI) data during 1982-2003. This data was collected from five NOAA series satellites. We have proposed to apply Empirical distribution function (EDF) to improve the stability of the NDVI and BT data derived from the AVHRR sensor on NOAA polar orbiting satellite. The instability of data results from orbit degradation as well as the circuit drifts over the life or a satellite. Degradation of NDVI and BT over time and shifts of NDVI and BT between the satellites was estimated China data set, for it includes a wide variety or different ecosystems represented globally. It was found that data for the years 1988, 1992, 1993, 1994, 1995 and 2000 are not stable enough compared to other years because of satellite orbit drift, AVHRR sensor degradation, and also Mt Pinatubo volcanic eruption in 1992. We assume data from NOAA-7(1982, 1983), NOAA-9 (1985, 1986), NOAA-11(1989, 1990), NOAA-14(1996, 1997), and NOAA-16 (2001, 2002) to be standard because theses satellite's equator crossing time falls between 1330 and 1500. Data from this particular period of the day maximized the value of coefficients. The crux of the proposed correction procedure consists of dividing standard year's data sets into two subsets. The subset 1(standard data correction sets) is used for correcting unstable years and then corrected data for this years compared with the standard data in the subset 2 (standard data validation sets). In this dissertation, we apply EDF to correct this deficiency of data for the affected years. We normalize or correct data by the method of empirical distribution functions compared with the standard. Using these normalized values, we estimate new NDVI and BT time series which provides NDVI and BT data for these years that match in subset 2 that is used for data validation.
Ellery, Adam J; Baker, Ruth E; Simpson, Matthew J
2015-01-01
Random walk models are often used to interpret experimental observations of the motion of biological cells and molecules. A key aim in applying a random walk model to mimic an in vitro experiment is to estimate the Fickian diffusivity (or Fickian diffusion coefficient), D. However, many in vivo experiments are complicated by the fact that the motion of cells and molecules is hindered by the presence of obstacles. Crowded transport processes have been modeled using repeated stochastic simulations in which a motile agent undergoes a random walk on a lattice that is populated by immobile obstacles. Early studies considered the most straightforward case in which the motile agent and the obstacles are the same size. More recent studies considered stochastic random walk simulations describing the motion of an agent through an environment populated by obstacles of different shapes and sizes. Here, we build on previous simulation studies by analyzing a general class of lattice-based random walk models with agents and obstacles of various shapes and sizes. Our analysis provides exact calculations of the Fickian diffusivity, allowing us to draw conclusions about the role of the size, shape and density of the obstacles, as well as examining the role of the size and shape of the motile agent. Since our analysis is exact, we calculate D directly without the need for random walk simulations. In summary, we find that the shape, size and density of obstacles has a major influence on the exact Fickian diffusivity. Furthermore, our results indicate that the difference in diffusivity for symmetric and asymmetric obstacles is significant. PMID:26599468
Gannon, Jennifer
2012-01-01
In this paper, the effects of the assumptions made in the calculation of the Dst index with regard to longitude sampling, hemisphere bias, and latitude correction are explored. The insights gained from this study will allow operational users to better understand the local implications of the Dst index and will lead to future index formulations that are more physically motivated. We recompute the index using 12 longitudinally spaced low-latitude stations, including the traditional 4 (in Honolulu, Kakioka, San Juan, and Hermanus), and compare it to the standard United States Geological Survey definitive Dst. We look at the hemisphere balance by comparing stations at equal geomagnetic latitudes in the Northern and Southern hemispheres. We further separate the 12-station time series into two hemispheric indices and find that there are measurable differences in the traditional Dst formulation due to the undersampling of the Southern Hemisphere in comparison with the Northern Hemisphere. To analyze the effect of latitude correction, we plot latitudinal variation in a disturbance observed during the year 2005 using two separate longitudinal observatory chains. We separate these by activity level and find that while the traditional cosine form fits the latitudinal distributions well for low levels of activity, at higher levels of disturbance the cosine form does not fit the observed variation. This suggests that the traditional latitude scaling is insufficient during active times. The effect of the Northern Hemisphere bias and the inadequate latitude scaling is such that the standard correction underestimates the true disturbance by 10–30 nT for storms of main phase magnitude deviation greater than 150 nT in the traditional Dst index.
Calculation of the shape of a two-dimensional supersonic nozzle in closed form
NASA Technical Reports Server (NTRS)
Cunsolo, Dante
1953-01-01
The idea is advanced of making a supersonic nozzle by producing one, two, or three successive turns of the whole flow; with the result that the wall contour can be calculated exactly by means of the Prandtl-Meyer "Lost Solution."
NASA Technical Reports Server (NTRS)
Jutte, Christine V.; Ko, William L.; Stephens, Craig A.; Bakalyar, John A.; Richards, W. Lance
2011-01-01
A ground loads test of a full-scale wing (175-ft span) was conducted using a fiber optic strain-sensing system to obtain distributed surface strain data. These data were input into previously developed deformed shape equations to calculate the wing s bending and twist deformation. A photogrammetry system measured actual shape deformation. The wing deflections reached 100 percent of the positive design limit load (equivalent to 3 g) and 97 percent of the negative design limit load (equivalent to -1 g). The calculated wing bending results were in excellent agreement with the actual bending; tip deflections were within +/- 2.7 in. (out of 155-in. max deflection) for 91 percent of the load steps. Experimental testing revealed valuable opportunities for improving the deformed shape equations robustness to real world (not perfect) strain data, which previous analytical testing did not detect. These improvements, which include filtering methods developed in this work, minimize errors due to numerical anomalies discovered in the remaining 9 percent of the load steps. As a result, all load steps attained +/- 2.7 in. accuracy. Wing twist results were very sensitive to errors in bending and require further development. A sensitivity analysis and recommendations for fiber implementation practices, along with, effective filtering methods are included
NASA Astrophysics Data System (ADS)
Hartmann, J.-M.; Tran, H.; Ngo, N. H.; Landsheere, X.; Chelin, P.; Lu, Y.; Liu, A.-W.; Hu, S.-M.; Gianfrani, L.; Casa, G.; Castrillo, A.; Lepère, M.; Delière, Q.; Dhyne, M.; Fissiaux, L.
2013-01-01
We present a fully ab initio model and calculations of the spectral shapes of absorption lines in a pure molecular gas under conditions where the influences of collisions and of the Doppler effect are significant. Predictions of the time dependence of dipole autocorrelation functions (DACFs) are made for pure CO2 at room temperature using requantized classical molecular dynamics simulations. These are carried, free of any adjusted parameter, on the basis of an accurate anisotropic intermolecular potential. The Fourier-Laplace transforms of these DACFs then yield calculated spectra which are analyzed, as some measured ones, through fits using Voigt line profiles. Comparisons between theory and various experiments not only show that the main line-shape parameters (Lorentz pressure-broadening coefficients) are accurately predicted, but that subtle observed non-Voigt features are also quantitatively reproduced by the model. These successes open renewed perspectives for the understanding of the mechanisms involved (translational-velocity and rotational-state changes and their dependences on the molecular speed) and the quantification of their respective contributions. The proposed model should also be of great help for the test of widely used empirical line-shape models and, if needed, the construction of more physically based ones.
NASA Astrophysics Data System (ADS)
Liu, Hao; Yue, Jiguang; Su, Yongqing; Zhan, Xingqun
2016-11-01
Global Navigation Satellite System (GNSS) data have been used in ionospheric irregularity and scintillation research for decades. However, routine GNSS data lacks raw amplitude data. To deal with the absence of the raw amplitude data, phase data can be used to estimate amplitude scintillation index S4 by phase screen model. The accuracy of the estimation depends on the phase screens constructed from sufficiently sampled phase data. Nevertheless, routine GNSS phase data and equivalent total electron content (TEC) data are all under-sampled. In order to exploit 1-Hz TEC data for accurate S4 estimations, a multiple phase screen compensation method is developed in this paper to compensate for the deficiencies in sampling rates. The multiple screen configuration technique involved in the compensation method determines whether the estimated S4 from the compensation results approximates to the measured S4 . As for the quasi-measured screens from the TEC data, both the line screen in one-dimension (1-D) and the square screen in two-dimension (2-D) have fine S4 estimations by means of the compensation method. Furthermore, power law phase screen simulations are introduced into the validation of the compensation method. The performance of artificially decimated power law screens in terms of S4 estimations is improved by the compensation method as well. In view of the TEC data involved in this paper, the compensation method identifies and fills a gap in the utilization of the under-sampled second-level phase data for estimating S4 , and thus enables routine GNSS phase measurement to trace the ionospheric irregularities at a small or intermediate scale. The multiple screen configuration, meanwhile, renders the compensation method appropriate to weak or moderate scintillations.
Lyman-alpha line as a solar activity index for calculations of solar spectrum in the EUV region
NASA Astrophysics Data System (ADS)
Nusinov, Anatoliy; Kazachevskaya, Tamara; Katyushina, Valeria; Woods, Thomas
It is investigated a possibility of retrieval of solar spectrum data using intensity observational data of the only solar spectral line L (Hydrogen Lyman-alpha, 121.6 nm).Using as an example spectra obtained by SEE instruments on TIMED satellite, it was shown, that both for lines and for continuum in the spectral range 27-105 nm, which is essential for ionization processes in the ionosphere, a correlation between their intensities and L was high. Therefore it becomes possible to use L measurements data as a natural solar activity index for calculations of EUV solar emission spectrum for solving aeronomical problems. It is noticed, that EUV model, obtained with using SEE data, does not allow to calculate correctly critical frequencies of ionospheric E-layer owing to low intensities of lines 97.7 and 102.6 nm, which produce the main part of ionization in ionospheric E-region.
Shyam, Sangeetha; Wai, Tony Ng Kock; Arshad, Fatimah
2012-01-01
This paper outlines the methodology to add glycaemic index (GI) and glycaemic load (GL) functionality to food DietPLUS, a Microsoft Excel-based Malaysian food composition database and diet intake calculator. Locally determined GI values and published international GI databases were used as the source of GI values. Previously published methodology for GI value assignment was modified to add GI and GL calculators to the database. Two popular local low GI foods were added to the DietPLUS database, bringing up the total number of foods in the database to 838 foods. Overall, in relation to the 539 major carbohydrate foods in the Malaysian Food Composition Database, 243 (45%) food items had local Malaysian values or were directly matched to International GI database and another 180 (33%) of the foods were linked to closely-related foods in the GI databases used. The mean ± SD dietary GI and GL of the dietary intake of 63 women with previous gestational diabetes mellitus, calculated using DietPLUS version3 were, 62 ± 6 and 142 ± 45, respectively. These values were comparable to those reported from other local studies. DietPLUS version3, a simple Microsoft Excel-based programme aids calculation of diet GI and GL for Malaysian diets based on food records.
Calculation of sheath and wake structure about a pillbox-shaped spacecraft in a flowing plasma
NASA Technical Reports Server (NTRS)
Parker, L. W.
1977-01-01
A computer program was used for studies of the disturbed zones around bodies in flowing plasmas, particularly spacecraft and their associated sheaths and wakes. The program solved a coupled Poisson-Vlasov system of nonlinear partial differential integral equations to obtain distributions of electric potential and ion and electron density about a finite length cylinder in a plasma flow at arbitrary ion Mach numbers. The approach was applicable to a larger range of parameters than other available approaches. In sample calculations, bodies up to 100 Debye lengths in radius were treated, that is, larger than any previously treated realistically. Applications were made to in-situ satellite experiments.
NASA Technical Reports Server (NTRS)
Allen, J. M.
1974-01-01
Analytical expressions for the effects of compressibility and heat transfer on laminar and turbulent shape factors H have been developed. Solving the turbulent equation for the power law velocity profile exponent N has resulted in a simple technique by which the N values of experimental turbulent profiles can be calculated directly from the integral parameters. Thus the data plotting, curve fitting, and slope measuring, which is the normal technique of obtaining experimental N values, is eliminated. The N values obtained by this method should be within the accuracy with which they could be measured.
Lin, Chia-Hung; Chen, Wei-Ling; Kan, Chung-Dann; Wu, Ming-Jui; Mai, Yi-Chen
2015-12-01
Venous needle dislodgement (VND) is a life-threatening complication during haemodialysis (HD) treatment. When VND occurs, it only takes a few minutes for blood loss in an adult patient. According to the ANNA (American Nephrology Nurses' Association) VND survey reports, VND is a concerning issue for the nephrology nurses/staff and patients. To ensure HD care and an effective treatment environment, this Letter proposes a combination of fractional order shape index ratio (SIR) and fuzzy colour relation analysis (CRA) to detect VND. If the venous needle drops out, clinical examinations show that both heart pulses and pressure wave variations have a low correlation at the venous anatomic site. Therefore, fractional order SIR is used to quantify the differences in transverse vibration pressures (TVPs) between the normal condition and meter reading. Linear regression shows that the fractional order SIR has a high correlation with the TVP variation. Fuzzy CRA is designed in a simple and visual message manner to identify the risk levels. A worst-case study demonstrated that the proposed model can be used for VND detection in clinical applications.
Lin, Chia-Hung; Chen, Wei-Ling; Kan, Chung-Dann; Wu, Ming-Jui; Mai, Yi-Chen
2015-12-01
Venous needle dislodgement (VND) is a life-threatening complication during haemodialysis (HD) treatment. When VND occurs, it only takes a few minutes for blood loss in an adult patient. According to the ANNA (American Nephrology Nurses' Association) VND survey reports, VND is a concerning issue for the nephrology nurses/staff and patients. To ensure HD care and an effective treatment environment, this Letter proposes a combination of fractional order shape index ratio (SIR) and fuzzy colour relation analysis (CRA) to detect VND. If the venous needle drops out, clinical examinations show that both heart pulses and pressure wave variations have a low correlation at the venous anatomic site. Therefore, fractional order SIR is used to quantify the differences in transverse vibration pressures (TVPs) between the normal condition and meter reading. Linear regression shows that the fractional order SIR has a high correlation with the TVP variation. Fuzzy CRA is designed in a simple and visual message manner to identify the risk levels. A worst-case study demonstrated that the proposed model can be used for VND detection in clinical applications. PMID:26713159
NASA Astrophysics Data System (ADS)
Tonttila, J.; Romakkaniemi, S.; Räisänen, P.; Kokkola, H.; Järvinen, H.
2012-04-01
Off-line calculations of cloud activation of aerosols using a probability density function (PDF) for vertical velocity (w) are performed. The focus is on the variation of the shape of the PDF using two functional formulations: the Normal distribution PDF and the Pearson type IV PDF. The Normal distribution provides a familiar example, as it has been widely used to approximate vertical velocity distributions in numerous applications, including climate models. Pearson type IV distribution provides an alternative that, to our knowledge, has not been employed before to describe the vertical velocity PDF. The advantage of the Pearson distribution is its versatility in representing skewed and more peaked distribution shapes compared to the Normal distribution, though this is obtained at the expense of increased mathematical complexity. The experiments are performed using a box model, in which the environmental conditions, including the aerosol size distribution (bi-modal) and chemical composition (ammonium-sulphate particles) are prescribed as constants. Measured size distributions comprising clean and polluted cases are used. Cloud activation of aerosols is calculated by integrating over the positive side of the PDF of w, which yields the mean number of activated particles (Nact). The mean, variance, and skewness of the PDFs along with the type of the PDF itself are altered in order to explore the effect of the PDF shape on the activation process. All experiments are repeated for three well-documented activation parameterizations: Lin & Leaitch, Abdul-Razzak & Ghan and Fountoukis & Nenes. The results show that for symmetric distributions of w (skewness = 0) there is a maximum difference of 10-15 % in Nact between the cases with w given by the Normal distribution, and the more peaked Pearson distribution. The largest differences are seen for the most polluted cases. Nact in clean cases will saturate rather quickly with respect to the maximum supersaturation and, hence
NASA Astrophysics Data System (ADS)
Cary, C.; Ly, V.; Gao, M.; Surunis, A.; Turnbull-Appell, S.; Sodergren, C.; Brooks, A. N.
2015-12-01
The Navajo Nation, located in the southwestern United States, has been increasingly impacted by severe drought events and regional changes in climate. These events are coupled with a lack of domestic water infrastructure and economic resources, leaving approximately one-third of the population without access to potable water in their homes. Current methods of monitoring climate and drought are dependent on national-scale monthly drought maps calculated by the Western Regional Climate Center (WRCC). These maps do not provide the spatial resolution needed to examine differences in drought severity across the vast Nation. To better understand and monitor drought regime changes in the Navajo Nation, this project comprises of two main components: 1) a geodatabase of historical climate information necessary to calculate Standardized Precipitation Index (SPI) values and 2) a tool that calculates SPI values for a user-selected area within the study site. The tool and geodatabase use TRMM and GPM observed precipitation data, and Parameter-elevation Relationships on Independent Slopes Model (PRISM) modeled historical precipitation data. These products allow resource managers in the Navajo Nation to utilize current and future NASA Earth observation data for increased decision-making capacity regarding future climate change impact on water resources.
Aghili Yajadda, Mir Massoud
2014-10-21
We have shown both theoretically and experimentally that tunnel currents in networks of disordered irregularly shaped nanoparticles (NPs) can be calculated by considering the networks as arrays of parallel nonlinear resistors. Each resistor is described by a one-dimensional or a two-dimensional array of equal size nanoparticles that the tunnel junction gaps between nanoparticles in each resistor is assumed to be equal. The number of tunnel junctions between two contact electrodes and the tunnel junction gaps between nanoparticles are found to be functions of Coulomb blockade energies. In addition, the tunnel barriers between nanoparticles were considered to be tilted at high voltages. Furthermore, the role of thermal expansion coefficient of the tunnel junction gaps on the tunnel current is taken into account. The model calculations fit very well to the experimental data of a network of disordered gold nanoparticles, a forest of multi-wall carbon nanotubes, and a network of few-layer graphene nanoplates over a wide temperature range (5-300 K) at low and high DC bias voltages (0.001 mV–50 V). Our investigations indicate, although electron cotunneling in networks of disordered irregularly shaped NPs may occur, non-Arrhenius behavior at low temperatures cannot be described by the cotunneling model due to size distribution in the networks and irregular shape of nanoparticles. Non-Arrhenius behavior of the samples at zero bias voltage limit was attributed to the disorder in the samples. Unlike the electron cotunneling model, we found that the crossover from Arrhenius to non-Arrhenius behavior occurs at two temperatures, one at a high temperature and the other at a low temperature.
NASA Astrophysics Data System (ADS)
Aghili Yajadda, Mir Massoud
2014-10-01
We have shown both theoretically and experimentally that tunnel currents in networks of disordered irregularly shaped nanoparticles (NPs) can be calculated by considering the networks as arrays of parallel nonlinear resistors. Each resistor is described by a one-dimensional or a two-dimensional array of equal size nanoparticles that the tunnel junction gaps between nanoparticles in each resistor is assumed to be equal. The number of tunnel junctions between two contact electrodes and the tunnel junction gaps between nanoparticles are found to be functions of Coulomb blockade energies. In addition, the tunnel barriers between nanoparticles were considered to be tilted at high voltages. Furthermore, the role of thermal expansion coefficient of the tunnel junction gaps on the tunnel current is taken into account. The model calculations fit very well to the experimental data of a network of disordered gold nanoparticles, a forest of multi-wall carbon nanotubes, and a network of few-layer graphene nanoplates over a wide temperature range (5-300 K) at low and high DC bias voltages (0.001 mV-50 V). Our investigations indicate, although electron cotunneling in networks of disordered irregularly shaped NPs may occur, non-Arrhenius behavior at low temperatures cannot be described by the cotunneling model due to size distribution in the networks and irregular shape of nanoparticles. Non-Arrhenius behavior of the samples at zero bias voltage limit was attributed to the disorder in the samples. Unlike the electron cotunneling model, we found that the crossover from Arrhenius to non-Arrhenius behavior occurs at two temperatures, one at a high temperature and the other at a low temperature.
NASA Astrophysics Data System (ADS)
Boissoles, J.; Boulet, C.; Robert, D.; Green, S.
1987-09-01
Line coupling coefficients resulting from rotational excitation of CO perturbed by He are computed within the infinite order sudden approximation (IOSA) and within the energy corrected sudden approximation (ECSA). The influence of this line coupling on the 1-0 CO-He vibration-rotation band shape is then computed for the case of weakly overlapping lines in the 292-78 K temperature range. The IOS and ECS results differ only at 78 K by a weak amount at high frequencies. Comparison with an additive superposition of Lorentzian lines shows strong modifications in the troughs between the lines. These calculated modifications are in excellent quantitative agreement with recent experimental data for all the temperatures considered. The applicability of previous approaches to CO-He system, based on either the strong collision model or exponential energy gap law, is also discussed.
NASA Astrophysics Data System (ADS)
Boissoles, J.; Boulet, C.; Robert, D.; Green, S.
1987-09-01
Line coupling coefficients resulting from rotational excitation of CO perturbed by He are computed within the infinite order sudden approximation (IOSA) and within the energy corrected sudden approximation (ECSA). The influence of this line coupling on the 1-0 CO-He vibration-rotation band shape is then computed for the case of weakly overlapping lines in the 292-78 K temperature range. The IOS and ECS results differ only at 78 K by a weak amount at high frequencies. Comparison with an additive superposition of lorentzian lines shows strong modifications in the troughs between the lines. These calculated modifications are in excellent quantitative agreement with recent experimental data for all the temperatures considered. The applicability of previous approaches to CO-He system, based on either the strong collision model or exponential energy gap law, is also discussed.
NASA Technical Reports Server (NTRS)
Boissoles, J.; Boulet, C.; Robert, D.; Green, S.
1987-01-01
Line coupling coefficients resulting from rotational excitation of CO perturbed by He are computed within the infinite order sudden approximation (IOSA) and within the energy corrected sudden approximation (ECSA). The influence of this line coupling on the 1-0 CO-He vibration-rotation band shape is then computed for the case of weakly overlapping lines in the 292-78 K temperature range. The IOS and ECS results differ only at 78 K by a weak amount at high frequencies. Comparison with an additive superposition of Lorentzian lines shows strong modifications in the troughs between the lines. These calculated modifications are in excellent quantitative agreement with recent experimental data for all the temperatures considered. The applicability of previous approaches to CO-He system, based on either the strong collision model or exponential energy gap law, is also discussed.
NASA Astrophysics Data System (ADS)
Kinner, D. A.; Kinner, D. A.; Stallard, R. F.
2001-12-01
Detailed observations of hillslope erosion are generally made in < 1 km2 watersheds to gain a process-level understanding in a given geomorphic setting. In addressing sediment and nutrient source-to-sink questions, a broader, river basin ( > 1000 km2) view of erosion and deposition is necessary to incorporate the geographic variability in the factors controlling sediment mobilization and storage. At the river basin scale, floodplain and reservoir storage become significant in sediment budgets. In this study, we used observations from USDA experimental watersheds to constrain an index-based model of hillslope erosion for the 7270 km2 Nishnabotna River Basin in the agricultural, loess-mantled region of southwest Iowa. Spatial and time-series measurements from two watersheds near Treynor, Iowa were used to calibrate the model for the row-cropped fields of the basin. By modeling rainfall events over an 18-year period, model error was quantified. We then applied the model to calculate basin-wide hillslope erosion and colluvial storage. Soil maps and the National Land-Cover Dataset were used to estimate model soil erodibility and land-use factors. By comparing modeled hillslope yields with observed basin sediment yields, we calculated that hillslope contributions to sediment yield were < 50% for the period 1974-1992. A major uncertainty in modeling is the percentage of basin area that is terraced. We will use the isotopes Cs137 and Pb210 to distinguish bank (isotope-poor) and hillslope (isotope-rich) contributions in flood plain deposits. This independent estimate of the relative hillslope contribution to sediment yield will reduce modeling uncertainty.
de Souza, Leonardo Cordeiro; Lugon, Jocemir Ronaldo
2015-01-01
ABSTRACT OBJECTIVE: The use of the rapid shallow breathing index (RSBI) is recommended in ICUs, where it is used as a predictor of mechanical ventilation (MV) weaning success. The aim of this study was to compare the performance of the RSBI calculated by the traditional method (described in 1991) with that of the RSBI calculated directly from MV parameters. METHODS: This was a prospective observational study involving patients who had been on MV for more than 24 h and were candidates for weaning. The RSBI was obtained by the same examiner using the two different methods (employing a spirometer and the parameters from the ventilator display) at random. In comparing the values obtained with the two methods, we used the Mann-Whitney test, Pearson's linear correlation test, and Bland-Altman plots. The performance of the methods was compared by evaluation of the areas under the ROC curves. RESULTS: Of the 109 selected patients (60 males; mean age, 62 ± 20 years), 65 were successfully weaned, and 36 died. There were statistically significant differences between the two methods for respiratory rate, tidal volume, and RSBI (p < 0.001 for all). However, when the two methods were compared, the concordance and the intra-observer variation coefficient were 0.94 (0.92-0.96) and 11.16%, respectively. The area under the ROC curve was similar for both methods (0.81 ± 0.04 vs. 0.82 ± 0.04; p = 0.935), which is relevant in the context of this study. CONCLUSIONS: The satisfactory performance of the RSBI as a predictor of weaning success, regardless of the method employed, demonstrates the utility of the method using the mechanical ventilator. PMID:26785962
NASA Astrophysics Data System (ADS)
Uba, S.; Bonda, A.; Uba, L.; Bekenov, L. V.; Antonov, V. N.; Ernst, A.
2016-08-01
In this joint experimental and ab initio study, we focused on the influence of the chemical composition and martensite phase transition on the electronic, magnetic, optical, and magneto-optical properties of the ferromagnetic shape-memory Ni-Mn-Ga alloys. The polar magneto-optical Kerr effect (MOKE) spectra for the polycrystalline sample of the Ni-Mn-Ga alloy of Ni60Mn13Ga27 composition were measured by means of the polarization modulation method over the photon energy range 0.8 ≤h ν ≤5.8 eV in magnetic field up to 1.5 T. The optical properties (refractive index n and extinction coefficient k ) were measured directly by spectroscopic ellipsometry using the rotating analyzer method. To complement experiments, extensive first-principles calculations were made with two different first-principles approaches combining the advantages of a multiple scattering Green function method and a spin-polarized fully relativistic linear-muffin-tin-orbital method. The electronic, magnetic, and MO properties of Ni-Mn-Ga Heusler alloys were investigated for the cubic austenitic and modulated 7M-like incommensurate martensitic phases in the stoichiometric and off-stoichiometric compositions. The optical and MOKE properties of Ni-Mn-Ga systems are very sensitive to the deviation from the stoichiometry. It was shown that the ab initio calculations reproduce well experimental spectra and allow us to explain the microscopic origin of the Ni2MnGa optical and magneto-optical response in terms of interband transitions. The band-by-band decomposition of the Ni2MnGa MOKE spectra is presented and the interband transitions responsible for the prominent structures in the spectra are identified.
Seybold-Epting, W; Fenchel, G; Stunkat, R; Seboldt, H; Hoffmeister, H E
1978-10-01
In order to determine the incidence of subendocardial ischemia after open heart surgery, subendocardial blood flow was monitored in 171 patients subjected to mitral and/or aortic valve replacement or coronary revascularization by on-line calculation of Diastolic (DPTI) and Systolic Pressure Time Index (TTI). Body hypothermia with an esophageal temperature of 25 degrees C and magnesium-aspartate-procaine cardioplegia were applied for myocardial protection. Ten patients developed low cardiac output state with two early deaths. In the two patients with fatal low cardiac output DPTI/TTI remained below 0.8. In the remaining 8 patients DPTI/TTI rose to 1.4 after a mean recovery time of 36 hours. In 161 patients (94%) no low cardiac output state evolved and DPTI/TTI rose to 1.3 within 60 min. after termination of cardiopulmonary bypass. Our results indicate that body hypothermia of 25 degrees C combined with magnesium-aspartate-procaine cardioplegia can reduce the incidence of subendocardial ischemia, but does not prevent this complication completely after anoxic times beyond 60-70 minutes. PMID:715754
Seybold-Epting, W; Fenchel, G; Stunkat, R; Seboldt, H; Hoffmeister, H E
1978-10-01
In order to determine the incidence of subendocardial ischemia after open heart surgery, subendocardial blood flow was monitored in 171 patients subjected to mitral and/or aortic valve replacement or coronary revascularization by on-line calculation of Diastolic (DPTI) and Systolic Pressure Time Index (TTI). Body hypothermia with an esophageal temperature of 25 degrees C and magnesium-aspartate-procaine cardioplegia were applied for myocardial protection. Ten patients developed low cardiac output state with two early deaths. In the two patients with fatal low cardiac output DPTI/TTI remained below 0.8. In the remaining 8 patients DPTI/TTI rose to 1.4 after a mean recovery time of 36 hours. In 161 patients (94%) no low cardiac output state evolved and DPTI/TTI rose to 1.3 within 60 min. after termination of cardiopulmonary bypass. Our results indicate that body hypothermia of 25 degrees C combined with magnesium-aspartate-procaine cardioplegia can reduce the incidence of subendocardial ischemia, but does not prevent this complication completely after anoxic times beyond 60-70 minutes.
Hatz, Florian; Hardmeier, Martin; Bousleiman, Habib; Rüegg, Stephan; Schindler, Christian; Fuhr, Peter
2016-07-01
Connectivity analysis characterizes normal and altered brain function, for example, using the phase lag index (PLI), which is based on phase relations. However, reliability of PLI over time is limited, especially for single- or regional-link analysis. One possible cause is repeated changes of network configuration during registration. These network changes may be associated with changes of the surface potential fields, which can be characterized by microstate analysis. Microstate analysis describes repeating periods of quasistable surface potential fields lasting in the subsecond time range. This study aims to describe a novel combination of PLI with microstate analysis (microstate-segmented PLI = msPLI) and to determine its impact on the reliability of single links, regional links, and derived graph measures. msPLI was calculated in a cohort of 34 healthy controls three times over 2 years. A fully automated processing of electroencephalography was used. Resulting connectomes were compared using Pearson correlation, and test-retest reliability (TRT reliability) was assessed using the intraclass correlation coefficient. msPLI resulted in higher TRT reliability than classical PLI analysis for single or regional links, average clustering coefficient, average shortest path length, and degree diversity. Combination of microstates and phase-derived connectivity measures such as PLI improves reliability of single-link, regional-link, and graph analysis. PMID:27220459
NASA Astrophysics Data System (ADS)
Barchanski, Andreas; Clemens, Markus; De Gersem, Herbert; Weiland, Thomas
2006-05-01
In this paper, we extend the scalar-potential finite-difference (SPFD) approach in order to consider arbitrarily shaped time-harmonic field sources. The SPFD approach is commonly used to compute the currents induced by an externally applied magnetic field in regions with weak, heterogeneous conductivities such as, e.g., the human body. We present the extended scalar-potential finite-difference (Ex-SPFD) approach as a two step algorithm. In the first step, the excitation is computed by solving the magnetoquasistatic curl-curl equation on a coarse grid that is well adapted for the field sources. In the second step, the magnetic vector potential is prolongated onto a finer grid and a divergence correction inside the conductor is applied. Using the Maxwell-grid-equations (MGEs) of the finite integration technique, a geometric discretization scheme for Maxwell's equations, this new approach has been implemented in a parallel environment in order to account for the memory-demanding high-resolution anatomy models used for the calculation of induced currents inside the human body. We demonstrate the validity and the improved numerical performance of the new approach for a test case. Finally, an application example of a human exposed to a realistic electromagnetic field source is presented.
Pasciak, A; Jones, A; Wagner, L
2014-06-01
Purpose: Lightweight lead-free or lead-composite protective garments exploit k-edge interactions to attenuate scattered X-rays. Manufacturers specify the protective value of garments in terms of lead equivalence at a single kVp. This is inadequate, as the protection provided by such garments varies with radiation quality in different use conditions. We present a method for matching scattered X-ray spectra to primary X-ray spectra. The resulting primary spectra can be used to measure penetration through protective garments, and such measurements can be weighted and summed to determine a Diagnostic Radiation Index for Protection (DRIP). Methods: Scattered X-ray spectra from fluoroscopic procedures were modeled using Monte Carlo techniques in MCNP-X 2.7. Data on imaging geometry, operator position, patient size, and primary beam spectra were gathered from clinical fluoroscopy procedures. These data were used to generate scattered X-ray spectra resulting from procedural conditions. Technical factors, including kV and added filtration, that yielded primary X-ray spectra that optimally matched the generated scattered X-ray spectra were identified through numerical optimization using a sequential quadratic programming (SQP) algorithm. Results: The primary spectra generated with shape functions matched the relative flux in each bin of the scattered spectra within 5%, and half and quarter-value layers matched within 0.1%. The DRIP for protective garments can be determined by measuring the penetration through protective garments using the matched primary spectra, then calculating a weighted average according to the expected clinical use of the garment. The matched primary spectra are specified in terms of first and second half-value layers in aluminum and acrylic. Conclusion: Lead equivalence is inadequate for completely specifying the protective value of garments. Measuring penetration through a garment using full scatter conditions is very difficult. The primary spectra
NASA Technical Reports Server (NTRS)
Colarco, Peter R.; Nowottnick, Edward Paul; Randles, Cynthia A.; Yi, Bingqi; Yang, Ping; Kim, Kyu-Myong; Smith, Jamison A.; Bardeen, Charles D.
2013-01-01
We investigate the radiative effects of dust aerosols in the NASA GEOS-5 atmospheric general circulation model. GEOS-5 is improved with the inclusion of a sectional aerosol and cloud microphysics module, the Community Aerosol and Radiation Model for Atmospheres (CARMA). Into CARMA we introduce treatment of the dust and sea salt aerosol lifecycle, including sources, transport evolution, and sinks. The aerosols are radiatively coupled to GEOS-5, and we perform a series of multi-decade AMIP-style simulations in which dust optical properties (spectral refractive index and particle shape distribution) are varied. Optical properties assuming spherical dust particles are from Mie theory, while those for non-spherical shape distributions are drawn from a recently available database for tri-axial ellipsoids. The climatologies of the various simulations generally compare well to data from the MODIS, MISR, and CALIOP space-based sensors, the ground-based AERONET, and surface measurements of dust deposition and concentration. Focusing on the summertime Saharan dust cycle we show significant variability in our simulations resulting from different choices of dust optical properties. Atmospheric heating due to dust enhances surface winds over important Saharan dust sources, and we find a positive feedback where increased dust absorption leads to increased dust emissions. We further find that increased dust absorption leads to a strengthening of the summertime Hadley cell circulation, increasing dust lofting to higher altitudes and strengthening the African Easterly Jet. This leads to a longer atmospheric residence time, higher altitude, and generally more northward transport of dust in simulations with the most absorbing dust optical properties. We find that particle shape, although important for radiance simulations, is a minor effect compared to choices of refractive index, although total atmospheric forcing is enhanced by greater than 10 percent for simulations incorporating a
NASA Astrophysics Data System (ADS)
Möller, Peter; Ichikawa, Takatoshi
2015-12-01
We propose a method to calculate the two-dimensional (2D) fission-fragment yield Y(Z,N) versus both proton and neutron number, with inclusion of odd-even staggering effects in both variables. The approach is to use the Brownian shape-motion on a macroscopic-microscopic potential-energy surface which, for a particular compound system is calculated versus four shape variables: elongation (quadrupole moment Q2), neck d , left nascent fragment spheroidal deformation ɛ_{f1}, right nascent fragment deformation ɛ_{f2} and two asymmetry variables, namely proton and neutron numbers in each of the two fragments. The extension of previous models 1) introduces a method to calculate this generalized potential-energy function and 2) allows the correlated transfer of nucleon pairs in one step, in addition to sequential transfer. In the previous version the potential energy was calculated as a function of Z and N of the compound system and its shape, including the asymmetry of the shape. We outline here how to generalize the model from the "compound-system" model to a model where the emerging fragment proton and neutron numbers also enter, over and above the compound system composition.
Moller, Peter; Ichikawa, Takatoshi
2015-12-23
In this study, we propose a method to calculate the two-dimensional (2D) fission-fragment yield Y(Z,N) versus both proton and neutron number, with inclusion of odd-even staggering effects in both variables. The approach is to use the Brownian shape-motion on a macroscopic-microscopic potential-energy surface which, for a particular compound system is calculated versus four shape variables: elongation (quadrupole moment Q_{2}), neck d, left nascent fragment spheroidal deformation ϵ_{f1}, right nascent fragment deformation ϵ_{f2} and two asymmetry variables, namely proton and neutron numbers in each of the two fragments. The extension of previous models 1) introduces a method to calculate this generalized potential-energy function and 2) allows the correlated transfer of nucleon pairs in one step, in addition to sequential transfer. In the previous version the potential energy was calculated as a function of Z and N of the compound system and its shape, including the asymmetry of the shape. We outline here how to generalize the model from the “compound-system” model to a model where the emerging fragment proton and neutron numbers also enter, over and above the compound system composition.
Moller, Peter; Ichikawa, Takatoshi
2015-12-23
In this study, we propose a method to calculate the two-dimensional (2D) fission-fragment yield Y(Z,N) versus both proton and neutron number, with inclusion of odd-even staggering effects in both variables. The approach is to use the Brownian shape-motion on a macroscopic-microscopic potential-energy surface which, for a particular compound system is calculated versus four shape variables: elongation (quadrupole moment Q2), neck d, left nascent fragment spheroidal deformation ϵf1, right nascent fragment deformation ϵf2 and two asymmetry variables, namely proton and neutron numbers in each of the two fragments. The extension of previous models 1) introduces a method to calculate this generalizedmore » potential-energy function and 2) allows the correlated transfer of nucleon pairs in one step, in addition to sequential transfer. In the previous version the potential energy was calculated as a function of Z and N of the compound system and its shape, including the asymmetry of the shape. We outline here how to generalize the model from the “compound-system” model to a model where the emerging fragment proton and neutron numbers also enter, over and above the compound system composition.« less
NASA Technical Reports Server (NTRS)
Lansing, Donald L.
1960-01-01
A theory for the supersonic flow about bodies in uniform flight in a homogeneous medium is reviewed and an integral which expresses the effect of body shape upon the flow parameters in the far field is reduced to a form which may be readily evaluated for arbitrary body shapes. This expression is then used to investigate the effect of nose angle, fineness ratio, and location of maximum body cross section upon the far-field pressure jump across the bow-shock of slender bodies. Curves are presented showing the variation of the shock strength with each of these parameters. It is found that, for a wide variety of shapes having equal fineness ratios, the integral has nearly a constant value.
Falcetta, Michael F; Fair, Mark C; Tharnish, Emily M; Williams, Lorna M; Hayes, Nathan J; Jordan, Kenneth D
2016-03-14
The stabilization method is used to calculate the complex potential energy curve of the (2)Π state of CO(-) as a function of bond length, with the refinement that separate potentials are determined for p-wave and d-wave attachment and detachment of the excess electron. Using the resulting complex potentials, absolute vibrational excitation cross sections are calculated as a function of electron energy and scattering angle. The calculated cross sections agree well with experiment.
NASA Astrophysics Data System (ADS)
Cai, Yong; Montague, Derek C.; Deshler, Terry
2011-01-01
Midcontinental surface aerosols have been measured at a small, minimally polluted city in summer and winter and on a nearby remote mountain in summer. Aerosol scattering, absorption, size distribution, and composition were measured using a three-wavelength nephelometer, an aethalometer, a passive cavity aerosol spectrometer, a scanning mobility particle sizer, an Aerodyne quadrupole aerosol mass spectrometer, and conventional filter systems. Size-dependent, time-dependent, and averaged refractive indices are estimated from the aerosol composition measurements and then used to calculate time-dependent aerosol scattering. The calculated scattering values show differences that are generally less than 5% on average for all three refractive indices, suggesting that the average refractive index is adequate for scattering estimations from time- or size-dependent aerosol measurements. The calculated scattering (backscattering) at 550 nm ranges from 2% less to 23% greater (11-22% smaller) than that measured. These differences decrease at 450 nm and increase at 700 nm and significantly exceed these values if optical size distribution measurements are not corrected for an appropriate index of refraction. Optimal agreement between calculated and measured scattering is achieved on 4 of the 6 days investigated in detail, if the real refractive index of the aerosol organic species ranges from 1.45 ± 0.02 at 450 nm to 1.62 ± 0.05 at 700 nm. Single-scatter albedos are also calculated and found to be in good agreement with those derived from the experimental observations, ranging from 0.79 to 0.87 in the city and constant, near 0.95, on the mountain top.
NASA Astrophysics Data System (ADS)
Kouadio, Louis; Duveiller, Grégory; Djaby, Bakary; El Jarroudi, Moussa; Defourny, Pierre; Tychon, Bernard
2012-08-01
Earth observation data, owing to their synoptic, timely and repetitive coverage, have been recognized as a valuable tool for crop monitoring at different levels. At the field level, the close correlation between green leaf area (GLA) during maturation and grain yield in wheat revealed that the onset and rate of senescence appeared to be important factors for determining wheat grain yield. Our study sought to explore a simple approach for wheat yield forecasting at the regional level, based on metrics derived from the senescence phase of the green area index (GAI) retrieved from remote sensing data. This study took advantage of recent methodological improvements in which imagery with high revisit frequency but coarse spatial resolution can be exploited to derive crop-specific GAI time series by selecting pixels whose ground-projected instantaneous field of view is dominated by the target crop: winter wheat. A logistic function was used to characterize the GAI senescence phase and derive the metrics of this phase. Four regression-based models involving these metrics (i.e., the maximum GAI value, the senescence rate and the thermal time taken to reach 50% of the green surface in the senescent phase) were related to official wheat yield data. The performances of such models at this regional scale showed that final yield could be estimated with an RMSE of 0.57 ton ha-1, representing about 7% as relative RMSE. Such an approach may be considered as a first yield estimate that could be performed in order to provide better integrated yield assessments in operational systems.
Kudla, Marek J; Kandzia, Tomasz; Alcázar, Juan Luis
2013-11-01
The aim of our study was to determine the agreement between two different methods for calculating the mean vascularization index (VI) of ovarian stroma using spatio-temporal image correlation-high definition flow (STIC-HDF) technology. Stored 4-D STIC-HDF volume data for ovaries of 34 premenopausal women were assessed retrospectively. We calculated the mean VI from the VI values derived for each 3-D volume within the STIC sequence. Then, the examiner subjectively selected the two volumes with the highest and lowest color signals, respectively. We averaged these two values. Agreement between VI measurements was estimated by calculating intra-class correlation coefficients. The intra-class correlation coefficient for the VI was 0.999 (95% confidence interval: 0.999-1.000). The mean time needed to calculate the mean VI using the entire 4-D STIC sequence was significantly longer than the mean time needed to calculate the average value from the volumes with the highest and lowest color signals determined by the operator (p < 0001). We conclude that there is significant agreement between the two methods. Calculating the average VI from the highest and lowest values is less time consuming than calculating the mean VI from the complete STIC sequence.
NASA Astrophysics Data System (ADS)
Otto, S.; Trautmann, T.; Wendisch, M.
2010-11-01
Realistic size equivalence and shape of Saharan mineral dust particles are derived from on in-situ particle, lidar and sun photometer measurements during SAMUM-1 in Morocco (19 May 2006), dealing with measured size- and altitude-resolved axis ratio distributions of assumed spheroidal model particles. The data were applied in optical property, radiative effect, forcing and heating effect simulations to quantify the realistic impact of particle non-sphericity. It turned out that volume-to-surface equivalent spheroids with prolate shape are most realistic: particle non-sphericity only slightly affects single scattering albedo and asymmetry parameter but may enhance extinction coefficient by up to 10%. At the bottom of the atmosphere (BOA) the Saharan mineral dust always leads to a loss of solar radiation, while the sign of the forcing at the top of the atmosphere (TOA) depends on surface albedo: solar cooling/warming over a mean ocean/land surface. In the thermal spectral range the dust inhibits the emission of radiation to space and warms the BOA. The most realistic case of particle non-sphericity causes changes of total (solar plus thermal) forcing by 55/5% at the TOA over ocean/land and 15% at the BOA over both land and ocean and enhances total radiative heating within the dust plume by up to 20%. Large dust particles significantly contribute to all the radiative effects reported.
NASA Astrophysics Data System (ADS)
Otto, S.; Trautmann, T.; Wendisch, M.
2011-05-01
Realistic size equivalence and shape of Saharan mineral dust particles are derived from in-situ particle, lidar and sun photometer measurements during SAMUM-1 in Morocco (19 May 2006), dealing with measured size- and altitude-resolved axis ratio distributions of assumed spheroidal model particles. The data were applied in optical property, radiative effect, forcing and heating effect simulations to quantify the realistic impact of particle non-sphericity. It turned out that volume-to-surface equivalent spheroids with prolate shape are most realistic: particle non-sphericity only slightly affects single scattering albedo and asymmetry parameter but may enhance extinction coefficient by up to 10 %. At the bottom of the atmosphere (BOA) the Saharan mineral dust always leads to a loss of solar radiation, while the sign of the forcing at the top of the atmosphere (TOA) depends on surface albedo: solar cooling/warming over a mean ocean/land surface. In the thermal spectral range the dust inhibits the emission of radiation to space and warms the BOA. The most realistic case of particle non-sphericity causes changes of total (solar plus thermal) forcing by 55/5 % at the TOA over ocean/land and 15 % at the BOA over both land and ocean and enhances total radiative heating within the dust plume by up to 20 %. Large dust particles significantly contribute to all the radiative effects reported. They strongly enhance the absorbing properties and forward scattering in the solar and increase predominantly, e.g., the total TOA forcing of the dust over land.
NASA Astrophysics Data System (ADS)
Zhou, J.; Deyhim, A.; Krueger, S.; Gregurick, S. K.
2005-08-01
A program for determining the low resolution shape of biological macromolecules, based on the optimization of a small angle neutron scattering profile to experimental data, is presented. This program, termed LORES, relies on a Monte Carlo optimization procedure and will allow for multiple scattering length densities of complex structures. It is therefore more versatile than utilizing a form factor approach to produce low resolution structural models. LORES is easy to compile and use, and allows for structural modeling of biological samples in real time. To illustrate the effectiveness and versatility of the program, we present four specific biological examples, Apoferritin (shell model), Ribonuclease S (ellipsoidal model), a 10-mer dsDNA (duplex helix) and a construct of a 10-mer DNA/PNA duplex helix (heterogeneous structure). These examples are taken from protein and nucleic acid SANS studies, of both large and small scale structures. We find, in general, that our program will accurately reproduce the geometric shape of a given macromolecule, when compared with the known crystallographic structures. We also present results to illustrate the lower limit of the experimental resolution which the LORES program is capable of modeling. Program summaryTitle of program:LORES Catalogue identifier: ADVC Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVC Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer:SGI Origin200, SGI Octane, SGI Linux, Intel Pentium PC Operating systems:UNIX64 6.5 and LINUX 2.4.7 Programming language used:C Memory required to execute with typical data:8 MB No. of lines in distributed program, including test data, etc.:2270 No. of bytes in distributed program, including test data, etc.:13 302 Distribution format:tar.gz External subprograms used:The entire code must be linked with the MATH library
NASA Astrophysics Data System (ADS)
Sauer, D. N.; Weinzierl, B.; Gasteiger, J.; Spanu, A.; Freudenthaler, V.; Gross, S.
2015-12-01
Each year huge amounts of mineral dust are mobilized in deserts and arid regions of the world and transported over large distances forming thick elevated aerosol layers with a substantial fraction of coarse mode particles. Optical properties of mineral dust, including the absorptive refractive index of some components, cause a significant effect on the atmospheric radiative energy balance from optical to infrared wavelengths. The aerosol characteristics, in particular its coarse mode size distribution, are modified during long-range transport by aging and deposition processes. This also affects the aerosol optical properties and therefore the effect on the atmospheric radiative energy budget. In-situ measurements of aerosol microphysical properties are essential to characterize those effects in order to be implemented in global climate models in parametrized form. However, in-situ measurements of airborne coarse mode aerosols such as mineral dust and volcanic ash are challenging and the measurements are usually affected by substantial uncertainties. In this work we use airborne measurements of mineral dust from our optical light-scattering spectrometer CAS-DPOL during SALTRACE 2013 to discuss the analysis of such data. We cover the effects of varying refractive index and particle shapes and develop recommendations for the configuration of the CAS-DPOL for aerosol studies. We also present an inversion method to derive coarse mode size distributions from light-scattering probes for mixtures of non-spherical, absorbing aerosols. The size distributions retrieved from the in-situ measurements are then validated using an independent analysis with a combination of sun-photometer and lidar data. We apply these methods to investigate the Saharan mineral dust particle size distributions measured on both sides of the Atlantic Ocean and discuss the influence of aerosol aging on the atmospheric radiative energy budget. With this example we also assess how the uncertainties
NASA Astrophysics Data System (ADS)
Dinger, R.; Grundmann, F.-P.; Hapke, C.; Ruppik, S.
2014-03-01
Pulsed fiber lasers and continuous-wave (cw) fiber lasers have become the tool of choice in more and more laser based industrial applications like metal cutting and welding mainly because of their robustness, compactness, high brightness, high efficiency and reasonable costs. However, to further increase the productivity with those laser types there is a great demand for even higher laser power specifications. In this context we demonstrate a pulsed high peak- and averagepower fiber laser in a Master Oscillator Power Amplifier (MOPA) configuration with selectable pulse durations between 1 ns and several hundred nanoseconds. To overcome fiber nonlinearities such as stimulated Raman scattering (SRS) and self-phase-modulation (SPM) flexible Ytterbium doped extra-large mode area (XLMA) step index fibers, prepared by novel powder-sinter technology, have been used as gain fibers. As an example, for 12 ns pulses with a repetition rate of 10 kHz, a pump power limited average laser output power of more than 400 W in combination with peak powers of more than 3.5 MW (close to self-focusing-threshold) has been achieved in stable operation. The potentials of this laser system have been further explored towards longer pulse durations in order to achieve even higher pulse energies by means of pulse shaping techniques. In addition, investigations have been conducted with reduced pulse energies and repetition rates up to 500 kHz and average powers of more than 500 W at nearly diffraction limited beam quality.
Jain, Prashant K; Lee, Kyeong Seok; El-Sayed, Ivan H; El-Sayed, Mostafa A
2006-04-13
The selection of nanoparticles for achieving efficient contrast for biological and cell imaging applications, as well as for photothermal therapeutic applications, is based on the optical properties of the nanoparticles. We use Mie theory and discrete dipole approximation method to calculate absorption and scattering efficiencies and optical resonance wavelengths for three commonly used classes of nanoparticles: gold nanospheres, silica-gold nanoshells, and gold nanorods. The calculated spectra clearly reflect the well-known dependence of nanoparticle optical properties viz. the resonance wavelength, the extinction cross-section, and the ratio of scattering to absorption, on the nanoparticle dimensions. A systematic quantitative study of the various trends is presented. By increasing the size of gold nanospheres from 20 to 80 nm, the magnitude of extinction as well as the relative contribution of scattering to the extinction rapidly increases. Gold nanospheres in the size range commonly employed ( approximately 40 nm) show an absorption cross-section 5 orders higher than conventional absorbing dyes, while the magnitude of light scattering by 80-nm gold nanospheres is 5 orders higher than the light emission from strongly fluorescing dyes. The variation in the plasmon wavelength maximum of nanospheres, i.e., from approximately 520 to 550 nm, is however too limited to be useful for in vivo applications. Gold nanoshells are found to have optical cross-sections comparable to and even higher than the nanospheres. Additionally, their optical resonances lie favorably in the near-infrared region. The resonance wavelength can be rapidly increased by either increasing the total nanoshell size or increasing the ratio of the core-to-shell radius. The total extinction of nanoshells shows a linear dependence on their total size, however, it is independent of the core/shell radius ratio. The relative scattering contribution to the extinction can be rapidly increased by increasing
NASA Astrophysics Data System (ADS)
Pan, Y.; Liu, T.; Wei, X. Y.; Zhu, Y.; Shi, D. N.; Ma, C. L.; Zhang, K. C.; Yang, Z. Q.
2015-11-01
By local-density approximation plus U (LDA + U) calculations, diluted magnetic semiconductors (DMS) δ-(Zn, Mn, Li)Se are dominated by Zener's p-d exchange, which is different from Zener's double exchange mechanism by PBE calculations. The main peak of Mn d states is shifted to lower energy -3.9 eV versus Fermi energy. All configurations under shape deformation are strong ferromagnetic (FM) ones due to the large splitting of Mn d states. Because of the two-dimensional (2D) ordered Mn atoms with hole and long ranged effect of p-d exchange coupling, exchange energy of the supercell with crystal constant is much larger with p-d exchange than that with double exchange. The largest exchange energy is around the crystal constant. Fermi level across the valley of FM Mn d states makes the FM state much stable. Comparing with pure ZnSe, p-type co-doping of Li in δ-(Zn, Mn, Li)Se has a significant effect on the atomic structure. These results are useful in the research of DMS with shape deformation and p-type co-doping for spintronic applications.
Daily, Michael D.; Chun, Jaehun; Heredia-Langner, Alejandro; Wei, Guowei; Baker, Nathan A.
2013-11-28
Implicit solvent models are important tools for calculating solvation free energies for chemical and biophysical studies since they require fewer computational resources but can achieve accuracy comparable to that of explicit-solvent models. In past papers, geometric flow-based solvation models have been established for solvation analysis of small and large compounds. In the present work, the use of realistic experiment-based parameter choices for the geometric flow models is studied. We find that the experimental parameters of solvent internal pressure p = 172 MPa and surface tension γ = 72 mN/m produce solvation free energies within 1 RT of the global minimum root-mean-squared deviation from experimental data over the expanded set. Our results demonstrate that experimental values can be used for geometric flow solvent model parameters, thus eliminating the need for additional parameterization. We also examine the correlations between optimal values of p and γ which are strongly anti-correlated. Geometric analysis of the small molecule test set shows that these results are inter-connected with an approximately linear relationship between area and volume in the range of molecular sizes spanned by the data set. In spite of this considerable degeneracy between the surface tension and pressure terms in the model, both terms are important for the broader applicability of the model.
NASA Astrophysics Data System (ADS)
Daily, Michael D.; Chun, Jaehun; Heredia-Langner, Alejandro; Wei, Guowei; Baker, Nathan A.
2013-11-01
Implicit solvent models are important tools for calculating solvation free energies for chemical and biophysical studies since they require fewer computational resources but can achieve accuracy comparable to that of explicit-solvent models. In past papers, geometric flow-based solvation models have been established for solvation analysis of small and large compounds. In the present work, the use of realistic experiment-based parameter choices for the geometric flow models is studied. We find that the experimental parameters of solvent internal pressure p = 172 MPa and surface tension γ = 72 mN/m produce solvation free energies within 1 RT of the global minimum root-mean-squared deviation from experimental data over the expanded set. Our results demonstrate that experimental values can be used for geometric flow solvent model parameters, thus eliminating the need for additional parameterization. We also examine the correlations between optimal values of p and γ which are strongly anti-correlated. Geometric analysis of the small molecule test set shows that these results are inter-connected with an approximately linear relationship between area and volume in the range of molecular sizes spanned by the data set. In spite of this considerable degeneracy between the surface tension and pressure terms in the model, both terms are important for the broader applicability of the model.
Ionascut-Nedelcescu, A.; Carlone, C.; Kogelschatz, U.; Gravelle, D. V.; Boulos, M. I
2008-03-15
An analysis of spectral line profiles is used to calculate the gas temperature and to estimate the upper limit of the electron density in an atmospheric pressure dielectric barrier discharge torch. Two transitions are studied, that of helium (He) at 587.5 nm and that of hydrogen (H{sub {beta}}) at 486.1 nm, both observed in the spectra of the light emitted from the gap-space region. Relevant broadening mechanisms including the Doppler and Stark effects, as well as the collision processes between an emitter and a neutral particle, are reviewed. It is deduced that the main contribution to the broadened profiles is due to collisions. Through knowledge of the van der Waals interaction potential, a general expression for determining the gas temperature is derived and applied to each transition. The results obtained from both lines are in agreement; i.e., the gas temperature is found to be 460{+-}60 K at the highest voltage applied. This value is consistent with the experimental observation that at these conditions the afterglow plasma cannot ignite paper, whose ignition temperature is 507 K. Since no signature of the Stark effect can be detected either in He or H{sub {beta}} transition, the upper limit of the electron density, estimated from the uncertainty on the H{sub {beta}} linewidth, is 4x10{sup 12} cm{sup -3}. The generality of the method allows one to determine the temperature as a function of other parameters, such as voltage and flow rate. Concerning the applied voltage, the gas temperature increases linearly from 315{+-}30 to 460{+-}60 K, as derived from both lines. Over the same voltage range, a similar behavior is found for the rotational temperature, as deduced from the first negative B({sup 2}{sigma}{sub u}{sup +},v=0){yields}X({sup 2}{sigma}{sub g}{sup +},v=0) transition of the molecular nitrogen ion. However, the temperature varies between 325{+-}30 and 533{+-}15 K, indicating an overestimation of the gas temperature. On the other hand, the gas
Wang, Bing; Shen, Hao; Fang, Aiqin; Huang, De-Shuang; Jiang, Changjun; Zhang, Jun; Chen, Peng
2016-06-17
Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC/TOF-MS) system has become a key analytical technology in high-throughput analysis. Retention index has been approved to be helpful for compound identification in one-dimensional gas chromatography, which is also true for two-dimensional gas chromatography. In this work, a novel regression model was proposed for calculating the second dimension retention index of target components where n-alkanes were used as reference compounds. This model was developed to depict the relationship among adjusted second dimension retention time, temperature of the second dimension column and carbon number of n-alkanes by an exponential nonlinear function with only five parameters. Three different criteria were introduced to find the optimal values of parameters. The performance of this model was evaluated using experimental data of n-alkanes (C7-C31) at 24 temperatures which can cover all 0-6s adjusted retention time area. The experimental results show that the mean relative error between predicted adjusted retention time and experimental data of n-alkanes was only 2%. Furthermore, our proposed model demonstrates a good extrapolation capability for predicting adjusted retention time of target compounds which located out of the range of the reference compounds in the second dimension adjusted retention time space. Our work shows the deviation was less than 9 retention index units (iu) while the number of alkanes were added up to 5. The performance of our proposed model has also been demonstrated by analyzing a mixture of compounds in temperature programmed experiments. PMID:27208985
NASA Astrophysics Data System (ADS)
Wiest, Roland; Demuynck, Jean; Bénard, Marc; Rohmer, Marie-Madeleine; Ernenwein, René
1991-01-01
This series of three papers presents a program system for ab initio molecular orbital calculations on vector and parallel computers. Part III is devoted to the four-index transformation on a molecular orbital basis of size NMO of the file of two-electron integrals ( pq∥ rs) generated by a contracted Gaussian set of size NATO (number of atomic orbitals). A fast Yoshimine algorithm first sorts the ( pq∥ rs) integrals with respect to index pq only. This file of half-sorted integrals labelled by their rs-index can be processed without further modification to generate either the transformed integrals or the supermatrix elements. The large memory available on the CRAY-2 has made possible to implement the transformation algorithm proposed by Bender in 1972, which requires a core-storage allocation varying as (NATO) 3. Two versions of Bender's algorithm are included in the present program. The first version is an in-core version, where the complete file of accumulated contributions to transformed integrals is stored and updated in central memory. This version has been parallelized by distributing over a limited number of logical tasks the NATO steps corresponding to the scanning of the most external loop. The second version is an out-of-core version, in which twin fires are alternatively used as input and output for the accumulated contributions to transformed integrals. This version is not parallel. The choice of one or another version and (for version 1) the determination of the number of tasks depends upon the balance between the available and the requested amounts of storage. The storage management and the choice of the proper version are carried out automatically using dynamic storage allocation. Both versions are vectorized and take advantage of the molecular symmetry.
Diler, Songül Budak; Çelik, Ayla
2011-10-01
The micronucleus (MN) assay in exfoliated buccal cells is a minimally invasive method for monitoring genetic damage in human populations and is used as an indicator of genotoxic exposition, as it is associated with chromosome aberrations. In this study, we evaluated MN frequencies and other nuclear changes (NCs), such as karyorrhexis (KR), karyolysis (KL), broken egg (BE), and binucleus in buccal mucosa cells of 50 carpet fabric workers (25 smokers and 25 nonsmokers) and 50 healthy control subjects (25 smokers and 25 nonsmokers). Microscopic observation of 2000 cells per individual was performed in both workers and control subjects. In both the control group and the exposed group, for each person a repair index (RI) was calculated via the following formula: (KR+KL)/(BE+MN). The results showed a statistically significant increase in the frequency of MN in buccal epithelial cells of exposed group compared with control group. There is a significant difference between worker and control groups (p<0.001) for RI. We believe that the calculation of RI values, in addition to nuclear changes, presents a new approach in risk assessment in relation to occupational exposure.
NASA Astrophysics Data System (ADS)
Dudaryonok, A. S.; Lavrentieva, N. N.; Buldyreva, J.; Margulès, L.; Motiyenko, R. A.; Rohart, F.
2014-09-01
Rotational transitions in CH335Cl mixed with CO2 are recorded at 296 K and total pressures up to 0.6 Torr in the frequency interval 186-901 GHz (1.6-0.3 mm) for J=6→7, 10→11, 17→18, 22→23, 31→32, 33→34 and K=0-6, using the frequency-modulation spectrometer of the Laboratory PhLAM (Lille, France). These line-shapes are analyzed with the commonly used Voigt profile as well as with more refined Speed-Dependent Voigt and Galatry models accounting for the line narrowing induced, respectively, by the speed-dependence of the relaxation parameters and by velocity-changing collisions. Due to the high line intensities, the fitting procedure involves the full implementation of the Bee-Lambert law instead of its traditional linear approximation. The experimentally deduced J- and K-dependences of the pressure-broadening coefficients are further used to obtain the model parameters of a semi-empirical approach allowing massive calculations of line-shape parameters for enlarged ranges of rotational quantum numbers requested by spectroscopic databases.
van Stee, Leo L P; Brinkman, Udo A Th
2011-10-28
A method is presented to facilitate the non-target analysis of data obtained in temperature-programmed comprehensive two-dimensional (2D) gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-ToF-MS). One main difficulty of GC×GC data analysis is that each peak is usually modulated several times and therefore appears as a series of peaks (or peaklets) in the one-dimensionally recorded data. The proposed method, 2DAid, uses basic chromatographic laws to calculate the theoretical shape of a 2D peak (a cluster of peaklets originating from the same analyte) in order to define the area in which the peaklets of each individual compound can be expected to show up. Based on analyte-identity information obtained by means of mass spectral library searching, the individual peaklets are then combined into a single 2D peak. The method is applied, amongst others, to a complex mixture containing 362 analytes. It is demonstrated that the 2D peak shapes can be accurately predicted and that clustering and further processing can reduce the final peak list to a manageable size.
Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.
2011-01-01
The crystallographic, magnetic and electronic structures of the ferromagnetic shape memory alloys Ni{sub 2}XGa (X=Mn, Fe, and Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The lattice parameters of both austenitic and martensitic phases in Ni{sub 2}MnGa have been calculated. The formation energies of the cubic phase of Ni{sub 2}XGa are estimated, and show a destabilization tendency if Mn atom is substituted by Fe or Co. From Ni{sub 2}MnGa to Ni{sub 2}CoGa, the down spin total density of states (DOS) at Fermi level is gradually increasing, whereas that of the up spin part remains almost unchanged. This is the main origin of the difference of the magnetic moment in these alloys. The partial DOS is dominated by the Ni and Mn 3d states in the bonding region below E{sub F}. There are two bond types existing in Ni{sub 2}XGa: one is between neighboring Ni atoms in Ni{sub 2}MnGa; the other is between Ni and X atoms in Ni{sub 2}FeGa and Ni{sub 2}CoGa alloys.
Pernpointner, M.; Visscher, Lucas; De Jong, Wibe A.; Broer, R.
2000-10-01
The treatment of relativity and electron correlation on an equal footing is essential for the computation of systems containing heavy elements. Correlation treatments that are based on four-component Dirac-Hartree-Fock calculations presently provide the most accurate, albeit costly, way of taking relativity into account. The requirement of having two expansion basis sets for the molecular wave function puts a high demand on computer resources. The treatment of larger systems is thereby often prohibited by the very large run times and files that arise in a conventional Dirac-Hartree-Fock approach. A possible solution for this bottleneck is a parallel approach that not only reduces the turnaround time but also spreads out the large files over a number of local disks. Here, we present a distributed-memory parallelization of the program package MOLFDIR for the integral generation, Dirac-Hartree-Fock and four-index MS transformation steps. This implementation scales best for large AO spaces and moderately sized active spaces.
Chen, Qianghua; Liu, Jinghai; He, Yongxi; Luo, Huifu; Luo, Jun; Wang, Feng
2015-02-10
The refractive index of air (RIA) is an important parameter in precision measurement. The revisions to Edlen's equations by Boensch and Potulski [Metrologia 35, 133 (1998)] are mostly used to calculate the RIA at present. Since the humidity correction coefficients in the formulas were performed with four wavelengths of a Cd(114) lamp (644.0, 508.7, 480.1, and 467.9 nm) and at the temperature range of 19.6°C-20.1°C, the application is restricted when an He-Ne laser is used as the light source, which is mostly applied in optical precision measurement, and the environmental temperature is far away from 20°C as well. To solve this problem, a measurement system based on phase step interferometry for measuring the effect of the humidity to the RIA is presented, and a corresponding humidity correction equation is derived. The analysis and comparison results show that the uncertainty of the presented equation is better than that of Boensch and Potulski's. It is more suitable in present precision measurements by He-Ne laser, and the application temperature range extends to 14.6°C-24.0°C as well. PMID:25968028
NASA Astrophysics Data System (ADS)
Zhang, Weiwei; Serna, Samuel; Le Roux, Xavier; Vivien, Laurent; Cassan, Eric
2016-05-01
breakthrough of the performance of slot ring resonator sensing ability. Different from the normal sensing regime by monitoring one specific resonance (λres) peak shift, the proposed approach stems from the sensitivity of the RR critical coupling. The critical coupling peak is auto-selected out by matching the following condition: the ring resonator's round trip attenuation coefficient a(λ) being equal to the coupler self-coupling coefficient k(λ), thus resulting in the deepest extinction ratio (ER) among the spectrum RR comb. The obtained sensing comb, based on a V-shape spectrum envelop, is engineered by controlling a(λ) and k(λ) with opposite monotonicities. Both a(λ)and k(λ) are tuned to have a large dispersion along the wavelength, which means that |a(λ)-k(λ)| keeps rapidly increasing as λres is far away from λc, eliminating the resonance ER quickly down to 0. Experimentally, slot waveguide ring resonators with a radius of 50µm have been fabricated on a standard silicon platform with a Si thickness of 220nm, loaded by racetrack couplers with a straight coupling length of 20µm. Sensing experiments have been carried out by changing the top cladding material from a series of Cargille optical liquids with refraction index values ranging from 1.3 to 1.5. The Q factors of critical coupling resonances was monitored from 2,000 to 6,000, and measured wavelength shifts of this peak are from 1.41µm to 1.56µm. The maximum sensitivity of 1300nm/RIU is observed in the cladding index range 1.30-1.35. To conclude, a new sensing regime by tracking the critical coupling resonance λc of slot waveguide ring resonators is demonstrated. The reported sensitivity is up 1300nm/RIU around the water RI of 1.33, and the monitored sensing FOM is about 2300, which is very close to the FOM values achieved from nanobeam cavities. This work can thus contribute to future integrated optical sensing schemes based on slot RRs.
NASA Astrophysics Data System (ADS)
Predoi-Cross, A.; Malathy Devi, V.; Sutradhar, P.; Sinyakova, T.; Buldyreva, J.; Sung, K.; Smith, M. A. H.; Mantz, A. W.
2016-07-01
This paper presents the results of a spectroscopic line shape study of self- and nitrogen-broadened 12CH3D transitions in the ν3 and ν5 bands in the Triad region. We combined five pure gas spectra with eighteen spectra of lean mixtures of 12CH3D and nitrogen, all recorded with a Bruker IFS-125 HR Fourier transform spectrometer. The spectra have been analyzed simultaneously using a multispectrum nonlinear least squares fitting technique. N2-broadened line parameters for 184 transitions in the ν3 band and 205 transitions in the ν5 band were measured. In addition, line positions and line intensities were measured for 168 transitions in the ν3 band and 214 transitions in the ν5 band. We have observed 10 instances of weak line mixing corresponding to K″=3 A1 or A2 transitions. Comparisons were made for the N2-broadening coefficients and associated temperature exponents with corresponding values calculated using a semi-classical Robert Bonamy type formalism that involved an inter-molecular potential with terms corresponding to short- and long-range interactions, and exact classical molecular trajectories. The theoretical N2-broadened coefficients are overestimated for high J values, but are in good agreement with the experimental values for small and middle range J values.
NASA Astrophysics Data System (ADS)
Buzan, J. R.; Huber, M.
2014-12-01
We show the new climatic tool, HumanIndexMod (HIM), for quantitatively assessing key climatic variables that are critical for decision making. The HIM calculates 9 different heat stress and 4 moist thermodynamic quantities using meteorological inputs of T, P, and Q. These heat stress metrics are commonly used throughout the world. We show new methods for integrating and standardizing practices for applying these metrics with the latest Earth system models. We implemented the HIM into CLM4.5, a component of CESM, maintained by NCAR. These heat stress metrics cover philosophical approaches of comfort, physiology, and empirically based algorithms. The metrics are directly connected to the Urban, Canopy, Bare Ground, and Lake modules, to differentiate distinct regimes within each grid cell. The module calculates the instantaneous moisture-temperature covariance at every model time step and in every land surface type, capturing all aspects of non-linearity. The HIM uses the most accurate and computationally efficient moist thermodynamic algorithms available. Additionally, we show ways that the HIM may be effectively integrated into climate modeling and observations. The module is flexible. The user may decide which metrics to call, and there is an offline version of the HIM that is available to be used with weather and climate datasets. Examples include using high temporal resolution CMIP5 archive data, local weather station data, and weather and forecasting models. To provide comprehensive standards for applying the HIM to climate data, we executed a CLM4.5 simulation using the RCP8.5 boundary conditions. Preliminary results show moist thermodynamic and heat stress quantities have smaller variability in the extremes as compared to extremes in T (both at the 95th percentile). Additionally, the magnitude of the moist thermodynamic changes over land is similar to sea surface temperature changes. The metric changes from the early part of the 21st century as compared to the
Nieto, Jake A.; Yamin, Michael A.; Goldberg, Itzhak D.
2016-01-01
Autosomal recessive polycystic kidney disease (ARPKD) is associated with progressive enlargement of the kidneys fuelled by the formation and expansion of fluid-filled cysts. The disease is congenital and children that do not succumb to it during the neonatal period will, by age 10 years, more often than not, require nephrectomy+renal replacement therapy for management of both pain and renal insufficiency. Since increasing cystic index (CI; percent of kidney occupied by cysts) drives both renal expansion and organ dysfunction, management of these patients, including decisions such as elective nephrectomy and prioritization on the transplant waitlist, could clearly benefit from serial determination of CI. So also, clinical trials in ARPKD evaluating the efficacy of novel drug candidates could benefit from serial determination of CI. Although ultrasound is currently the imaging modality of choice for diagnosis of ARPKD, its utilization for assessing disease progression is highly limited. Magnetic resonance imaging or computed tomography, although more reliable for determination of CI, are expensive, time-consuming and somewhat impractical in the pediatric population. Using a well-established mammalian model of ARPKD, we undertook a big data-like analysis of minimally- or non-invasive blood and urine biomarkers of renal injury/dysfunction to derive a family of equations for estimating CI. We then applied a signal averaging protocol to distill these equations to a single empirical formula for calculation of CI. Such a formula will eventually find use in identifying and monitoring patients at high risk for progressing to end-stage renal disease and aid in the conduct of clinical trials. PMID:27695033
NASA Astrophysics Data System (ADS)
Brualla, L.; Mayorga, P. A.; Flühs, A.; Lallena, A. M.; Sempau, J.; Sauerwein, W.
2012-11-01
Retinoblastoma is the most common eye tumour in childhood. According to the available long-term data, the best outcome regarding tumour control and visual function has been reached by external beam radiotherapy. The benefits of the treatment are, however, jeopardized by a high incidence of radiation-induced secondary malignancies and the fact that irradiated bones grow asymmetrically. In order to better exploit the advantages of external beam radiotherapy, it is necessary to improve current techniques by reducing the irradiated volume and minimizing the dose to the facial bones. To this end, dose measurements and simulated data in a water phantom are essential. A Varian Clinac 2100 C/D operating at 6 MV is used in conjunction with a dedicated collimator for the retinoblastoma treatment. This collimator conforms a ‘D’-shaped off-axis field whose irradiated area can be either 5.2 or 3.1 cm2. Depth dose distributions and lateral profiles were experimentally measured. Experimental results were compared with Monte Carlo simulations’ run with the penelope code and with calculations performed with the analytical anisotropic algorithm implemented in the Eclipse treatment planning system using the gamma test. penelope simulations agree reasonably well with the experimental data with discrepancies in the dose profiles less than 3 mm of distance to agreement and 3% of dose. Discrepancies between the results found with the analytical anisotropic algorithm and the experimental data reach 3 mm and 6%. Although the discrepancies between the results obtained with the analytical anisotropic algorithm and the experimental data are notable, it is possible to consider this algorithm for routine treatment planning of retinoblastoma patients, provided the limitations of the algorithm are known and taken into account by the medical physicist and the clinician. Monte Carlo simulation is essential for knowing these limitations. Monte Carlo simulation is required for optimizing the
Nakamura, H; Suzuki, M
2007-10-01
An ideal toxicity assay should utilize multiple indexes obtained from transient changes of metabolic activities. Here, we demonstrate the possibility for a novel toxicity bioassay using the damped glycolytic oscillation phenomenon occurring in starved yeast cells. In a previous study, the phenomenon was characterized in detail. Under optimum conditions to induce the phenomenon, the wave shapes of the damped glycolytic oscillations were changed by the instantaneous addition of both glucose and chemicals and by changing the chemical concentration. We estimated the changes in the oscillation wave shapes as six indexes, i.e., the number of wave cycles, maximum amplitude, oscillation frequency, attenuation coefficient, initial peak height, and non-steady-state time. These index changes were obtained from several kinds of chemicals. The chemicals, especially those for acids (0.01-100 mM HCl and 0.01-50 mM citric acid), bases (0.001-50 mM KOH), heavy metal ions (1-1,000 mg L(-1); Cu(2+), Pb(2+), Cd(2+), Hg(2+)), respiratory inhibitors (3-500 mg L(-1) NaN(3)), dissolved oxygen removers (10-300 mg L(-1) NaSO(3)), surfactants (10-200 mg L(-1) benzalkonium chloride), and aldehyde (10-1,000 mg L(-1) acetaldehyde), showed characteristic patterns depending on each chemical and its concentration. These significant results demonstrate the possibilities of new methods for both toxicity qualification and quantification.
Wei, Lu; Zhou, Zhi-You; Chen, Sheng-Pei; Xu, Chang-Deng; Su, Dangsheng; Schuster, Manfred Erwin; Sun, Shi-Gang
2013-12-11
Pt triambic icosahedral nanocrystals (TIH NCs) enclosed by {771} high-index facets were successfully synthesized electrochemically, for the first time, in ChCl-urea based deep eutectic solvents, and exhibited higher electrocatalytic activity and stability towards ethanol electrooxidation than a commercial Pt black catalyst. PMID:24084858
Wei, Lu; Zhou, Zhi-You; Chen, Sheng-Pei; Xu, Chang-Deng; Su, Dangsheng; Schuster, Manfred Erwin; Sun, Shi-Gang
2013-12-11
Pt triambic icosahedral nanocrystals (TIH NCs) enclosed by {771} high-index facets were successfully synthesized electrochemically, for the first time, in ChCl-urea based deep eutectic solvents, and exhibited higher electrocatalytic activity and stability towards ethanol electrooxidation than a commercial Pt black catalyst.
Gao, Xiao; Li, Xiaojing; Yang, Xiaoying; Wang, Yang; Jackson, Todd; Chen, Hong
2013-03-01
Although attentional biases toward body-related information contribute to the etiology and maintenance of body dissatisfaction (BD) and eating disorders (EDs), attentional disengagement in women with BD and EDs is not clear. The present study investigated the association between weight dissatisfaction and attentional disengagement from body-related pictures and the possible moderating effect of body mass index (BMI) on this relation. Two hundred and four undergraduate women engaged in an experiment using a pictorial spatial cueing paradigm including fat/thin bodies and neutral household photos. Partial correlations and simple slopes regression analyses were conducted with attentional disengagement index scores of each category of cues. Findings suggested that independent of BMI, weight dissatisfaction was directly associated with attentional disengagement from both fat and thin pictures. In addition, among women with low and medium BMIs, the more they were dissatisfied with their bodyweight, the more difficulty they had disengaging their attention from fat body pictures. PMID:23352761
Debye series expansion of shaped beam scattering by GI-POF
NASA Astrophysics Data System (ADS)
Renxian, Li; Xiang'e, Han; Fang, Ren Kuan
2009-11-01
We derive Debye series expansion (DSE) for infinitely long multilayered cylinders normally incident by shaped beam. Typically the interaction between multilayered cylinders and Gaussian beam is derived in detail, and localized approximation is introduced to calculate the beam shaped coefficients. Finally DSE is employed to the study of rainbow scattering by graded-index polymer optical fiber (GI-POF).
ERIC Educational Resources Information Center
Dlutowski, Jay; Cardenas-Valencia, Andres M.; Fries, David; Langebrake, Larry
2006-01-01
An experiment which enables students to determine the index of refraction at various wavelengths is demonstrated by using two polymers examples, poly(dimethyl siloxane) (PDMS) and poly(methyl methacrylate) (PMMA). This experiment would be suitable for a course in organic chemistry or any course discussing the optical properties of polymeric…
Layne, Clyde B.
1988-01-01
A retroreflector is formed of a graded index lens with a reflective coating at one end. The lens has a length of an odd multiple of a quarter period thereof. Hexagonally shaped graded index lenses may be closely packed in an array to form a retroreflecting surface.
Koenderink, Jan; van Doorn, Andrea
2015-01-01
Local solid shape applies to the surface curvature of small surface patches—essentially regions of approximately constant curvatures—of volumetric objects that are smooth volumetric regions in Euclidean 3-space. This should be distinguished from local shape in pictorial space. The difference is categorical. Although local solid shape has naturally been explored in haptics, results in vision are not forthcoming. We describe a simple experiment in which observers judge shape quality and magnitude of cinematographic presentations. Without prior training, observers readily use continuous shape index and Casorati curvature scales with reasonable resolution. PMID:27648217
Koenderink, Jan; van Doorn, Andrea
2015-01-01
Local solid shape applies to the surface curvature of small surface patches—essentially regions of approximately constant curvatures—of volumetric objects that are smooth volumetric regions in Euclidean 3-space. This should be distinguished from local shape in pictorial space. The difference is categorical. Although local solid shape has naturally been explored in haptics, results in vision are not forthcoming. We describe a simple experiment in which observers judge shape quality and magnitude of cinematographic presentations. Without prior training, observers readily use continuous shape index and Casorati curvature scales with reasonable resolution.
Koenderink, Jan; van Doorn, Andrea; Wagemans, Johan
2015-10-01
Local solid shape applies to the surface curvature of small surface patches-essentially regions of approximately constant curvatures-of volumetric objects that are smooth volumetric regions in Euclidean 3-space. This should be distinguished from local shape in pictorial space. The difference is categorical. Although local solid shape has naturally been explored in haptics, results in vision are not forthcoming. We describe a simple experiment in which observers judge shape quality and magnitude of cinematographic presentations. Without prior training, observers readily use continuous shape index and Casorati curvature scales with reasonable resolution. PMID:27648217
Marley, N. A.; Gaffney, J. S.; Baird, J. C.; Drayton, P. J.; Frederick, J. E.; Environmental Research; Univ. of Chicago
2001-06-01
To adequately assess the effects of atmospheric aerosols on climate, their optical constants (scattering and absorption coefficients) must be known. The absorption and scattering coefficients of the aerosols are derived from the real and imaginary parts of the complex refractive index and are dependent on their size and chemical composition. Because aerosol properties vary significantly with location, it is difficult to assign values for the absorption and scattering of solar radiation by aerosols in models of global climate change. This study reports a new method of collecting size-fractionated atmospheric aerosol samples for the purpose of directly measuring their transmission and reflectance spectra followed by the determination of the complex refractive index across the entire atmospherically relevant spectral range. The samples were collected with a modified Sierra high-volume cascade impactor with the usual filter collection surfaces replaced with Teflon sheets machined to hold quartz (ultraviolet [UV]/visible transparent) and/or silver chloride (infrared transparent) sample collection plates. Reflectance and transmission spectra can be obtained on the aerosol samples directly as a function of wavelength, from 280 nm to 2.5 m, with an integrating sphere coupled to an UV/visible or a Fourier transform infrared (FTIR) spectrophotometer. The effective real and imaginary components of the refractive index of the bulk sample material can then be approximated, as a function of wavelength, from the sample spectra. Preliminary results are presented for carbon soot samples generated in the laboratory and for standard diesel soot samples in the UV/visible spectral range. These are compared to results obtained for size-fractionated atmospheric aerosol samples collected near Pasco, WA, West Mesa, AZ, and Argonne, IL.
Water absorption in a refractive index model for bacterial spores
NASA Astrophysics Data System (ADS)
Siegrist, K. M.; Thrush, E.; Airola, M.; Carr, A. K.; Limsui, D. M.; Boggs, N. T.; Thomas, M. E.; Carter, C. C.
2009-05-01
The complexity of biological agents can make it difficult to identify the important factors impacting scattering characteristics among variables such as size, shape, internal structure and biochemical composition, particle aggregation, and sample additives. This difficulty is exacerbated by the environmentally interactive nature of biological organisms. In particular, bacterial spores equilibrate with environmental humidity by absorption/desorption of water which can affect both the complex refractive index and the size/shape distributions of particles - two factors upon which scattering characteristics depend critically. Therefore accurate analysis of experimental data for determination of refractive index must take account of particle water content. First, spectral transmission measurements to determine visible refractive index done on suspensions of bacterial spores must account for water (or other solvent) uptake. Second, realistic calculations of aerosol scattering cross sections should consider effects of atmospheric humidity on particle water content, size and shape. In this work we demonstrate a method for determining refractive index of bacterial spores bacillus atropheus (BG), bacillus thuringiensis (BT) and bacillus anthracis Sterne (BAs) which accounts for these effects. Visible index is found from transmission measurements on aqueous and DMSO suspensions of particles, using an anomalous diffraction approximation. A simplified version of the anomalous diffraction theory is used to eliminate the need for knowledge of particle size. Results using this approach indicate the technique can be useful in determining the visible refractive index of particles when size and shape distributions are not well known but fall within the region of validity of anomalous dispersion theory.
Pedicini, Piernicola; Strigari, Lidia; Benassi, Marcello; Caivano, Rocchina; Fiorentino, Alba; Nappi, Antonio; Salvatore, Marco; Storto, Giovanni
2014-04-01
To increase the efficacy of radiotherapy for non–small cell lung cancer (NSCLC), many schemes of dose fractionation were assessed by a new “toxicity index” (I), which allows one to choose the fractionation schedules that produce less toxic treatments. Thirty-two patients affected by non resectable NSCLC were treated by standard 3-dimensional conformal radiotherapy (3DCRT) with a strategy of limited treated volume. Computed tomography datasets were employed to re plan by simultaneous integrated boost intensity-modulated radiotherapy (IMRT). The dose distributions from plans were used to test various schemes of dose fractionation, in 3DCRT as well as in IMRT, by transforming the dose-volume histogram (DVH) into a biological equivalent DVH (BDVH) and by varying the overall treatment time. The BDVHs were obtained through the toxicity index, which was defined for each of the organs at risk (OAR) by a linear quadratic model keeping an equivalent radiobiological effect on the target volume. The less toxic fractionation consisted in a severe/moderate hyper fractionation for the volume including the primary tumor and lymph nodes, followed by a hypofractionation for the reduced volume of the primary tumor. The 3DCRT and IMRT resulted, respectively, in 4.7% and 4.3% of dose sparing for the spinal cord, without significant changes for the combined-lungs toxicity (p < 0.001). Schedules with reduced overall treatment time (accelerated fractionations) led to a 12.5% dose sparing for the spinal cord (7.5% in IMRT), 8.3% dose sparing for V{sub 20} in the combined lungs (5.5% in IMRT), and also significant dose sparing for all the other OARs (p < 0.001). The toxicity index allows to choose fractionation schedules with reduced toxicity for all the OARs and equivalent radiobiological effect for the tumor in 3DCRT, as well as in IMRT, treatments of NSCLC.
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1999-01-01
The far-wing line shape theory within the binary collision and quasistatic framework has been developed using the coordinate representation. Within this formalism, the main computational task is the evaluation of multidimensional integrals whose variables are the orientational angles needed to specify the initial and final positions of the system during transition processes. Using standard methods, one is able to evaluate the 7-dimensional integrations required for linear molecular systems, or the 7-dimensional integrations for more complicated asymmetric-top (or symmetric-top) molecular systems whose interaction potential contains cyclic coordinates. In order to obviate this latter restriction on the form of the interaction potential, a Monte Carlo method is used to evaluate the 9-dimensional integrations required for systems consisting of one asymmetric-top (or symmetric-top) and one linear molecule, such as H20-N2. Combined with techniques developed previously to deal with sophisticated potential models, one is able to implement realistic potentials for these systems and derive accurate, converged results for the far-wing line shapes and the corresponding absorption coefficients. Conversely, comparison of the far-wing absorption with experimental data can serve as a sensitive diagnostic tool in order to obtain detailed information on the short-range anisotropic dependence of interaction potentials.
Approximate line shapes for hydrogen
NASA Technical Reports Server (NTRS)
Sutton, K.
1978-01-01
Two independent methods are presented for calculating radiative transport within hydrogen lines. In Method 1, a simple equation is proposed for calculating the line shape. In Method 2, the line shape is assumed to be a dispersion profile and an equation is presented for calculating the half half-width. The results obtained for the line shapes and curves of growth by the two approximate methods are compared with similar results using the detailed line shapes by Vidal et al.
Fölster-Holst, R; Abeck, D; Torrelo, A
2016-03-01
Hydrocortisone 17-butyrate 21-propionate (hydrocortisone buteprate, HBP) is a medium potent, non-halogenated double-ester of hydrocortisone with a favorable benefit/risk ratio for the treatment of inflammatory skin disorders. HBP is available as a 0.1% cream or ointment formulation. Good results were obtained with a once-daily topical treatment. HBP is characterized by a strong topical anti-inflammatory activity and weak systemic action. It is considered to have potency comparable to that of betamethasone 17-valerate (BV), but its systemic effects are less pronounced. HBP was shown to have a good efficacy in the treatment of various oozing and lichenified eczematous skin diseases including atopic dermatitis (AD) and in the treatment of psoriasis vulgaris. Even in very young children, HBP proved successful as an effective and safe drug. A therapeutic index of 2.0 can be attributed to this glucocorticoid. In this respect, there is no difference between topical HBP and other topical glucocorticoids with increased benefit/risk ratio, e.g. prednicarbate (PC), methylprednisolone aceponate (MPA) and mometasone furoate (MM). PMID:27183704
Kinoshita, N; Sugihara, H; Nakamura, T; Ito, K; Azuma, A; Maeda, T; Nakagawa, M
1997-01-01
We designed a new method to evaluate the rate of change of myocardial 99mTc-tetrofosmin (TF) uptake between exercise and rest images with a 1-day protocol. Fifteen normal cases were studied. A 370 MBq of TF was injected at peak exercise. Initial (TF1) and delayed (TF2) exercise SPECT images were acquired 30 min and 3 hr after the injection. A 740 MBq of TF was reinjected soon after TF2 acquisition, and rest SPECT images (TF3) were obtained 30 min after the reinjection. Myocardial counts of TF1, TF2 and TF3 were defined C1, C2 and C3 respectively. Then, the rate of change of myocardial TF uptake between exercise and rest (delta MTU: delta myocardial TF uptake) was determined by the following formula. delta MTU = [(C1/(C3-C2)] x R-1] x 100 (%) (R: dose ratio). delta MTU was 57.8 +/- 9.9% in normal cases and roughly correlated with maximal heart rates and double product. If the extraction fraction of TF is not changed under the exercise and resting condition, delta MTU may have some relation with the coronary flow/cardiac output ratio at exercise. In conclusion, delta MTU is a useful index to evaluate coronary flow reserve non-invasively.
Arabi-Hashemi, A.; Mayr, S. G.
2015-03-02
Conductivity in Fe{sub 7}Pd{sub 3} is characterized by an anomalous increase when traversing the face–centered–cubic (fcc) austenite to face–centered–tetragonal (fct) martensite transition, contrary to most other conventional and ferromagnetic shape memory alloys. Experiments on molecular– beam–epitaxy–grown single crystals indicate a resistivity change of ≈20% during the transformation on top of a quadratic temperature dependence reaching up to room temperature. The physical foundations of residual resistivity changes along the full Bain path are addressed by a Kubo– Greenwood approach within the framework of density functional theory. To do so, a concept to reliably extract the DC conductivities is proposed that yields reproducible results consistent with experiments. Finding that conductivity peaks in the fct phase, we identify a large density of states paired with high velocities at the Fermi level in the majority spin sub–bands in presence of minimum s–d electron scattering as underlying physical origin.
NASA Astrophysics Data System (ADS)
de Melo, Cristiane Cabral; Moreira, Wania da Conceição; Martins, Tássia Joi; Cordeiro, Márcia Regina; Ellena, Javier; Guimarães, Freddy Fernandes; Martins, Felipe Terra
2014-11-01
Many studies about porphyrins have emerged in recent years, including studies using porphyrins as building blocks for supramolecular assemblies. Understanding new solid state forms of porphyrins and the elucidation of their structures can have remarkable benefits for nanoscience and synthetic biology. In this study, a new pseudopolymorph of cobalt (II) meso-tetraphenylporphyrin, (CoTPP), was synthesized in a known one-pot reaction, rather than using many-step conventional methods, was isolated and was characterized for the first time by low-temperature single crystal X-ray diffraction. It is a nonstoichiometric solvate assembled into dichloromethane channels. The most striking feature of this structure is the conformation adopted by the porphyrin macrocycle. In contrast to the non-solvated form of CoTPP that exhibits a ruffled core distortion and crystallizes in the tetragonal space group I-42d, this solvated form has been crystallized in the triclinic space group Pī and shows a distinct saddle-shaped macrocycle distortion. In the triclinic form, the conformation of one of the four phenyl rings is remarkably different from the others. A potential energy surface scan of the torsional angles around the bonds between this phenyl moiety and the macrocycle of CoTPP in both the non-solvated and the solvate forms demonstrates that the saddle-shaped macrocycle distortion depends on the unusual phenyl conformation. The distortion is responsible for the symmetry decrease in the channel solvate form, causing a loss of the 4-fold rotoinversion axis observed in the non-solvated tetragonal phase, which has identical phenyl conformations.
Refractive index of air. 2. Group index.
Ciddor, P E; Hill, R J
1999-03-20
In a previous paper [Appl. Opt. 35, 1566 (1996)] one of us presented new equations for evaluation of the phase refractive index of air over a range of wavelengths and atmospheric parameters. That paper also gave an incorrect, although sufficiently accurate, procedure for calculating the group refractive index. Here we describe the results of a more rigorous derivation of the group index that takes proper account of the Lorentz-Lorenz formula, and we demonstrate that deviations from the Lorentz-Lorenz formula are insignificant to within a foreseeable precision of dispersion measurements for atmospheric conditions. We also derive and evaluate a simplification of the resultant equation that is useful for exploratory calculations. We clarify the limits of validity of the standard equation for the group refractive index and correct some minor errors in the previous paper.
Xiao, H. B.; Yang, C. P. Wang, R. L.; Luo, X.; Marchenkov, V. V.
2014-05-28
The effect of the alloying element Indium (In) on the martensitic transition, magnetic properties, and phase stabilities of Ni{sub 8}Mn{sub 6}Sn{sub 2−x}In{sub x} shape memory alloys has been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The energy difference between the austenitic and martensitic phases was found to increase with increasing In content, which implies an enhancement of the martensitic phase transition temperature (T{sub M}). Moreover, the formation energy results indicate that In-doping increases the relative stability of Ni{sub 8}Mn{sub 6}Sn{sub 2−x}In{sub x} both in austenite and martensite. This results from a reduction in density of states near the Fermi level regions caused by Ni-3d–In-5p hybridization when Sn is replaced by In. The equilibrium equation of state results show that the alloys Ni{sub 8}Mn{sub 6}Sn{sub 2−x}In{sub x} exhibit an energetically degenerated effect for an In content of x = ∼1.5. This implies the coexistence of antiparallel and parallel configurations in the austenite.
ERIC Educational Resources Information Center
Rasmussen, Edie M.
1997-01-01
Focuses on access to digital image collections by means of manual and automatic indexing. Contains six sections: (1) Studies of Image Systems and their Use; (2) Approaches to Indexing Images; (3) Image Attributes; (4) Concept-Based Indexing; (5) Content-Based Indexing; and (6) Browsing in Image Retrieval. Contains 105 references. (AEF)
Are dental indexes useful in sex assessment?
Acharya, A B; Mainali, S
2008-12-01
This study describes sexual dimorphism in dental indexes derived from the permanent dentition. Three dental indices--'crown area,' 'crown module' and 'crown index'--were calculated from the buccolingual (BL) and mesiodistal (MD) measurements of 123 permanent dentitions (58 females and 65 males) belonging to young Nepalese adults (age-range 19-28 years). Sex differences in the dental indexes were assessed using univariate and multivariate statistics and compared to that of linear measurements reported previously on the same sample. Univariate sex dimorphism exhibited by crown area and crown module was similar to that of linear measurements whereas crown index displayed marked variation. The unusual results shown by the latter is explained as the result of it not being a representation of tooth size per se; rather, crown index is an expression of the difference between BL and MD dimensions and may be better suited as an indicator of tooth 'shape'. Stepwise discriminant analyses undertaken for the indices gave moderate to high accuracy rates in sexing (69.8-81.1%). However, this is lower to the classification accuracy reported for linear measurements. Therefore, it is concluded that dental indexes have no added utility in forensic sex assessment.
NASA Astrophysics Data System (ADS)
Izzo, Dario; Petazzi, Lorenzo
2006-08-01
We present a satellite path planning technique able to make identical spacecraft aquire a given configuration. The technique exploits a behaviour-based approach to achieve an autonomous and distributed control over the relative geometry making use of limited sensorial information. A desired velocity is defined for each satellite as a sum of different contributions coming from generic high level behaviours: forcing the final desired configuration the behaviours are further defined by an inverse dynamic calculation dubbed Equilibrium Shaping. We show how considering only three different kind of behaviours it is possible to acquire a number of interesting formations and we set down the theoretical framework to find the entire set. We find that allowing a limited amount of communication the technique may be used also to form complex lattice structures. Several control feedbacks able to track the desired velocities are introduced and discussed. Our results suggest that sliding mode control is particularly appropriate in connection with the developed technique.
General shape optimization capability
NASA Technical Reports Server (NTRS)
Chargin, Mladen K.; Raasch, Ingo; Bruns, Rudolf; Deuermeyer, Dawson
1991-01-01
A method is described for calculating shape sensitivities, within MSC/NASTRAN, in a simple manner without resort to external programs. The method uses natural design variables to define the shape changes in a given structure. Once the shape sensitivities are obtained, the shape optimization process is carried out in a manner similar to property optimization processes. The capability of this method is illustrated by two examples: the shape optimization of a cantilever beam with holes, loaded by a point load at the free end (with the shape of the holes and the thickness of the beam selected as the design variables), and the shape optimization of a connecting rod subjected to several different loading and boundary conditions.
NASA Astrophysics Data System (ADS)
Bi, Cuixia; Feng, Cong; Miao, Tingting; Song, Yahui; Wang, Dayang; Xia, Haibing
2015-11-01
In this study, irregularly shaped, concave cuboidal Au@AuPd nanoparticles (ISCC-Au@AuPd NPs) with high-index facets were synthesized via Pd overgrowth on pre-formed ISCC-Au NPs with a concentration of Pd precursors as low as 2%. The AuPd alloy nature of the resulting shells was confirmed by X-ray photoelectron spectroscopy, cyclic voltammogram analysis, and energy dispersive X-ray spectroscopy. Among the irregularly shaped NPs obtained, the ISCC-Au97.5@Au0.5Pd2.0 NPs display the largest electrochemically active surface area (up to 92.11 m2 g-1), as their closed-packed agglomeration was prevented, and the best long-term stability with respect to ethanol oxidation (0.50 M) in alkaline media (0.30 KOH) by efficiently removing intermediates. Their mass- and ECSA-normalized current densities (4.15 A mgPd-1 and 4.51 mA cm-2) are about 20.7 times and 6.9 times higher than those of commercial Pd/C catalysts (0.20 A mgPd-1 and 0.65 mA cm-2), respectively.In this study, irregularly shaped, concave cuboidal Au@AuPd nanoparticles (ISCC-Au@AuPd NPs) with high-index facets were synthesized via Pd overgrowth on pre-formed ISCC-Au NPs with a concentration of Pd precursors as low as 2%. The AuPd alloy nature of the resulting shells was confirmed by X-ray photoelectron spectroscopy, cyclic voltammogram analysis, and energy dispersive X-ray spectroscopy. Among the irregularly shaped NPs obtained, the ISCC-Au97.5@Au0.5Pd2.0 NPs display the largest electrochemically active surface area (up to 92.11 m2 g-1), as their closed-packed agglomeration was prevented, and the best long-term stability with respect to ethanol oxidation (0.50 M) in alkaline media (0.30 KOH) by efficiently removing intermediates. Their mass- and ECSA-normalized current densities (4.15 A mgPd-1 and 4.51 mA cm-2) are about 20.7 times and 6.9 times higher than those of commercial Pd/C catalysts (0.20 A mgPd-1 and 0.65 mA cm-2), respectively. Electronic supplementary information (ESI) available: High magnification TEM
Simpson, J R; McPherson, E G
2011-01-01
Urban trees can produce a number of benefits, among them improved air quality. Biogenic volatile organic compounds (BVOCs) emitted by some species are ozone precursors. Modifying future tree planting to favor lower-emitting species can reduce these emissions and aid air management districts in meeting federally mandated emissions reductions for these compounds. Changes in BVOC emissions are calculated as the result of transitioning to a lower-emitting species mix in future planting. A simplified method for calculating the emissions reduction and a Tree BVOC index based on the calculated reduction is described. An example illustrates the use of the index as a tool for implementation and monitoring of a tree program designed to reduce BVOC emissions as a control measure being developed as part of the State Implementation Plan (SIP) for the Sacramento Federal Nonattainment Area. PMID:21435760
Kock, L.J.
1959-09-22
A device is presented for loading and unloading fuel elements containing material fissionable by neutrons of thermal energy. The device comprises a combination of mechanical features Including a base, a lever pivotally attached to the base, an Indexing plate on the base parallel to the plane of lever rotation and having a plurality of apertures, the apertures being disposed In rows, each aperture having a keyway, an Index pin movably disposed to the plane of lever rotation and having a plurality of apertures, the apertures being disposed in rows, each aperture having a keyway, an index pin movably disposed on the lever normal to the plane rotation, a key on the pin, a sleeve on the lever spaced from and parallel to the index pin, a pair of pulleys and a cable disposed between them, an open collar rotatably attached to the sleeve and linked to one of the pulleys, a pin extending from the collar, and a bearing movably mounted in the sleeve and having at least two longitudinal grooves in the outside surface.
Refractive index dependence of Papilio Ulysses butterfly wings reflectance spectra
NASA Astrophysics Data System (ADS)
Isnaeni, Muslimin, Ahmad Novi; Birowosuto, Muhammad Danang
2016-02-01
We have observed and utilized butterfly wings of Papilio Ulysses for refractive index sensor. We noticed this butterfly wings have photonic crystal structure, which causes blue color appearance on the wings. The photonic crystal structure, which consists of cuticle and air void, is approximated as one dimensional photonic crystal structure. This photonic crystal structure opens potential to several optical devices application, such as refractive index sensor. We have utilized small piece of Papilio Ulysses butterfly wings to characterize refractive index of several liquid base on reflectance spectrum of butterfly wings in the presence of sample liquid. For comparison, we simulated reflectance spectrum of one dimensional photonic crystal structure having material parameter based on real structure of butterfly wings. We found that reflectance spectrum peaks shifted as refractive index of sample changes. Although there is a slight difference in reflectance spectrum peaks between measured spectrum and calculated spectrum, the trend of reflectance spectrum peaks as function of sample's refractive index is the similar. We assume that during the measurement, the air void that filled by sample liquid is expanded due to liquid pressure. This change of void shape causes non-similarity between measured spectrum and calculated spectrum.
Kim, Sun Hyung; Lyu, Ilwoo; Fonov, Vladimir S; Vachet, Clement; Hazlett, Heather C; Smith, Rachel G; Piven, Joseph; Dager, Stephen R; Mckinstry, Robert C; Pruett, John R; Evans, Alan C; Collins, D Louis; Botteron, Kelly N; Schultz, Robert T; Gerig, Guido; Styner, Martin A
2016-07-15
The quantification of local surface morphology in the human cortex is important for examining population differences as well as developmental changes in neurodegenerative or neurodevelopmental disorders. We propose a novel cortical shape measure, referred to as the 'shape complexity index' (SCI), that represents localized shape complexity as the difference between the observed distributions of local surface topology, as quantified by the shape index (SI) measure, to its best fitting simple topological model within a given neighborhood. We apply a relatively small, adaptive geodesic kernel to calculate the SCI. Due to the small size of the kernel, the proposed SCI measure captures fine differences of cortical shape. With this novel cortical feature, we aim to capture comparatively small local surface changes that capture a) the widening versus deepening of sulcal and gyral regions, as well as b) the emergence and development of secondary and tertiary sulci. Current cortical shape measures, such as the gyrification index (GI) or intrinsic curvature measures, investigate the cortical surface at a different scale and are less well suited to capture these particular cortical surface changes. In our experiments, the proposed SCI demonstrates higher complexity in the gyral/sulcal wall regions, lower complexity in wider gyral ridges and lowest complexity in wider sulcal fundus regions. In early postnatal brain development, our experiments show that SCI reveals a pattern of increased cortical shape complexity with age, as well as sexual dimorphisms in the insula, middle cingulate, parieto-occipital sulcal and Broca's regions. Overall, sex differences were greatest at 6months of age and were reduced at 24months, with the difference pattern switching from higher complexity in males at 6months to higher complexity in females at 24months. This is the first study of longitudinal, cortical complexity maturation and sex differences, in the early postnatal period from 6 to 24months
Barantsev, K A; Litvinov, A N
2014-10-31
A theory of a closed excitation contour (Δ system) of a three-level atom in an optically dense medium is constructed with allowance for temperature. The spatial quasi-periodic oscillations of the refractive index in the system under study are shown to damp with increasing temperature. The range of temperatures at which these oscillations are most pronounced is found. (quantum optics)
Reconstruction of low-index graphite surfaces
NASA Astrophysics Data System (ADS)
Thinius, Sascha; Islam, Mazharul M.; Bredow, Thomas
2016-07-01
The low-index graphite surfaces (10 1 -0), (10 1 -1), (11 2 -0) and (11 2 - 1) have been studied by density functional theory (DFT) including van-der-Waals (vdW) corrections. Different from the (0001) surface which has been extensively investigated both experimentally and theoretically, there is no comprehensive study on the (10 1 -0)- (10 1 -1)-, (11 2 -0)- and (11 2 - 1)-surfaces available, although they are of relevance for Li insertion processes, e.g. in Li-ion batteries. In this study the structure and stability of all non-(0001) low-index surfaces were calculated with RPBE-D3 and converged slab models. In all cases reconstruction involving bond formation between unsaturated carbon atoms of two neighboring graphene sheets reduces the surface energy dramatically. Two possible reconstruction patterns have been considered. The first possibility leads to formation of oblong nanotubes. Alternatively, the graphene sheets form bonds to different neighboring sheets at the upper and lower sides and sinusoidal structures are formed. Both structure types have similar stabilities. Based on the calculated surface energies the Gibbs-Wulff theorem was applied to construct the macroscopic shape of graphite single crystals.
An electronic aromaticity index for large rings.
Matito, Eduard
2016-04-28
We introduce a new electronic aromaticity index, AV1245, consisting of an average of the 4-center multicenter indices (MCI) along the ring that keeps a positional relationship of 1, 2, 4, 5. AV1245 measures the extent of transferability of the delocalized electrons between bonds 1-2 and 4-5, which is expected to be large in conjugated circuits and, therefore, in aromatic molecules. A new algorithm for the calculation of MCI for large rings is also introduced and used to produce the data for the calibration of the new aromaticity index. AV1245 does not rely on reference values, does not suffer from large numerical precision errors, and it does not present any limitation on the nature of atoms, the molecular geometry or the level of calculation. It is a size-extensive measure with low computational cost that grows linearly with the number of ring members. Therefore, it is especially suitable to study the aromaticity of large molecular rings such as those occurring in belt-shaped Möbius structures or porphyrins. The analysis of AV1245 in free-base and bis-metalated Pd [32]octaphyrins(1,0,1,0,1,0,1,0) completes this study. PMID:26878146
A Simple Method to Determine the Refractive Index of Glass.
ERIC Educational Resources Information Center
Mak, Se-yuen
1988-01-01
Describes an experiment for determining the refractive index. Discusses the experiment procedure and mathematical expression for calculating the index. Provides two geometrical diagrams and a graph for determining the index with a typical data. (YP)
Waters, Thomas; Occhipinti, Enrico; Colombini, Daniela; Alvarez-Casado, Enrique; Fox, Robert
2015-01-01
Objective: We seek to develop a new approach for analyzing the physical demands of highly variable lifting tasks through an adaptation of the Revised NIOSH (National Institute for Occupational Safety and Health) Lifting Equation (RNLE) into a Variable Lifting Index (VLI). Background: There are many jobs that contain individual lifts that vary from lift to lift due to the task requirements. The NIOSH Lifting Equation is not suitable in its present form to analyze variable lifting tasks. Method: In extending the prior work on the VLI, two procedures are presented to allow users to analyze variable lifting tasks. One approach involves the sampling of lifting tasks performed by a worker over a shift and the calculation of the Frequency Independent Lift Index (FILI) for each sampled lift and the aggregation of the FILI values into six categories. The Composite Lift Index (CLI) equation is used with lifting index (LI) category frequency data to calculate the VLI. The second approach employs a detailed systematic collection of lifting task data from production and/or organizational sources. The data are organized into simplified task parameter categories and further aggregated into six FILI categories, which also use the CLI equation to calculate the VLI. Results: The two procedures will allow practitioners to systematically employ the VLI method to a variety of work situations where highly variable lifting tasks are performed. Conclusions: The scientific basis for the VLI procedure is similar to that for the CLI originally presented by NIOSH; however, the VLI method remains to be validated. Application: The VLI method allows an analyst to assess highly variable manual lifting jobs in which the task characteristics vary from lift to lift during a shift. PMID:26646300
NASA Astrophysics Data System (ADS)
Boyd, Joseph T.; Servizzi, Anthony J.; Sriram, S.; Kingsley, Stuart A.
1995-07-01
To examine aspects of an integrated photonic electric-field sensor, we calculate electro-optically induced refractive-index change in regular and reverse-poled LiNbO3. Specifically, for y-propagating extraordinary modes, we determine how index change depends on electric-field magnitude and direction. To accomplish this, changes in index-ellipsoid shape and orientation are found by the use of a numerical eigenvalue procedure to diagonalize the impermeability tensor; then, refractive index is calculated by the use of a vector reference-frame transformation and a small perturbation approximation. A general formula is inferred from calculations for specific field directions. Electro-optic coefficients for reverse-poled LiNbO3 are obtained by application of a tensor reference-frame transformation to those of LiNbO3. The index-calculation procedure has utility beyond the problem that is considered.
Lasasso, M.; Runyan, B.; Napoli, J.
1995-06-01
This paper describes a method of tracking unit performance through the use of a reference number called the Heat Rate Index Indicator. The ABB Power Plant Controls OTIS performance monitor is used to determine when steady load conditions exist and then to collect controllable and equipment loss data which significantly impact thermal efficiency. By comparing these loss parameters to those found during the previous heat balance, it is possible to develop a new adjusted heat rate curve. These impacts on heat rate are used to changes the shape of the tested heat rate curve by the appropriate percentages over a specified load range. Mathcad is used to determine the Heat Rate Index by integrating for the areas beneath the adjusted heat rate curve and a heat rate curve that represents the unit`s ideal heat rate curve is the Heat Rate Index. An index of 1.0 indicates that the unit is operating at an ideal efficiency, while an index of less than 1.0 indicates that the unit is operating at less than ideal conditions. A one per cent change in the Heat Rate Index is equivalent to a one percent change in heat rate. The new shape of the adjusted heat rate curve and the individual curves generated from the controllable and equipment loss parameters are useful for determining performance problems in specific load ranges.
Updated Methods for Seed Shape Analysis
Cervantes, Emilio; Martín, José Javier; Saadaoui, Ezzeddine
2016-01-01
Morphological variation in seed characters includes differences in seed size and shape. Seed shape is an important trait in plant identification and classification. In addition it has agronomic importance because it reflects genetic, physiological, and ecological components and affects yield, quality, and market price. The use of digital technologies, together with development of quantification and modeling methods, allows a better description of seed shape. Image processing systems are used in the automatic determination of seed size and shape, becoming a basic tool in the study of diversity. Seed shape is determined by a variety of indexes (circularity, roundness, and J index). The comparison of the seed images to a geometrical figure (circle, cardioid, ellipse, ellipsoid, etc.) provides a precise quantification of shape. The methods of shape quantification based on these models are useful for an accurate description allowing to compare between genotypes or along developmental phases as well as to establish the level of variation in different sets of seeds. PMID:27190684
Scattering amplitudes for multi-indexed extensions of solvable potentials
Ho, C.-L.; Lee, J.-C.; Sasaki, R.
2014-04-15
New solvable one-dimensional quantum mechanical scattering problems are presented. They are obtained from known solvable potentials by multiple Darboux transformations in terms of virtual and pseudo virtual wavefunctions. The same method applied to confining potentials, e.g. Pöschl–Teller and the radial oscillator potentials, has generated the multi-indexed Jacobi and Laguerre polynomials. Simple multi-indexed formulas are derived for the transmission and reflection amplitudes of several solvable potentials. -- Highlights: •Scattering amplitudes calculated for infinitely many new solvable potentials. •New scattering potentials obtained by deforming six known solvable potentials. •Multiple Darboux transformations in terms of (pseudo) virtual states employed. •Scattering amplitudes checked to obey the shape invariance relation. •Errors in scattering amplitudes of some undeformed potentials in the literature corrected.
Bagieński, Zbigniew
2015-02-01
Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI.
Archer, James E; Gardner, Adrian; Berryman, Fiona; Pynsent, Paul
2016-10-01
The Haller index is a ratio of thoracic width and height, measured from an axial CT image and used to describe the internal dimensions of the thoracic cage. Although the Haller index for a normal thorax has been established (Haller et al. 1987; Daunt et al. 2004), this is only at one undefined vertebral level in the thorax. What is not clear is how the Haller index describes the thorax at every vertebral level in the absence of sternal deformity, or how this is affected by age. This paper documents the shape of the thorax using the Haller index calculated from the thoracic width and height at all vertebral levels of the thorax between 8 and 18 years of age. The Haller Index changes with vertebral level, with the largest ratio seen in the most cranial levels of the thorax. Increasing age alters the shape of the thorax, with the most cranial vertebral levels having a greater Haller index over the mid thorax, which does not change. A slight increase is seen in the more caudal vertebral levels. These data highlight that a 'one size fits all' rule for chest width and depth ratio at all ages and all thoracic levels is not appropriate. The normal range for width to height ratio should be based on a patient's age and vertebral level.
Archer, James E; Gardner, Adrian; Berryman, Fiona; Pynsent, Paul
2016-10-01
The Haller index is a ratio of thoracic width and height, measured from an axial CT image and used to describe the internal dimensions of the thoracic cage. Although the Haller index for a normal thorax has been established (Haller et al. 1987; Daunt et al. 2004), this is only at one undefined vertebral level in the thorax. What is not clear is how the Haller index describes the thorax at every vertebral level in the absence of sternal deformity, or how this is affected by age. This paper documents the shape of the thorax using the Haller index calculated from the thoracic width and height at all vertebral levels of the thorax between 8 and 18 years of age. The Haller Index changes with vertebral level, with the largest ratio seen in the most cranial levels of the thorax. Increasing age alters the shape of the thorax, with the most cranial vertebral levels having a greater Haller index over the mid thorax, which does not change. A slight increase is seen in the more caudal vertebral levels. These data highlight that a 'one size fits all' rule for chest width and depth ratio at all ages and all thoracic levels is not appropriate. The normal range for width to height ratio should be based on a patient's age and vertebral level. PMID:27240848
Bookstein, Fred L
2015-01-01
A frequent concern in today's functional morphology is the relation of a landmark configuration to some a priori index or suite of indices of function. When an index is itself a generic mathematical or biomechanical shape function of landmark locations, meaning a dimensionless expression that has a nonzero gradient everywhere in the feasible region of morphospace, the question becomes sharper: how can we exploit it as a reference direction for representations within the realm of the customary geometric morphometric (GM) analyses? This article argues that the only valid approach to this problem is geometric, not statistical: to represent any such a priori index by way of its differential (its gradient) calculated as an explicit vector in the Procrustes dual space of the complete list of landmarks whether or not involved in the formulation of the index. Interpretation of the index follows by comparing its direction after this embedding with other interesting directions in the same shape space, such as principal warps, relative warps, group mean shape contrasts, specific form factors extracted independently, or directions corresponding to other functional indices. Here, I work an artificial but realistic example of this technique in complete detail: the construction of a Procrustes shape formula exactly aligned with a specific angle among three landmarks within an arbitrary configuration of six. A closing discussion traces the spirit of this intervention to comments by W. W. Howells and C. E. Oxnard, originally intended for anthropometric contexts other than GM, on the different purposes of systematics and functional morphology. PMID:25339502
Bookstein, Fred L
2015-01-01
A frequent concern in today's functional morphology is the relation of a landmark configuration to some a priori index or suite of indices of function. When an index is itself a generic mathematical or biomechanical shape function of landmark locations, meaning a dimensionless expression that has a nonzero gradient everywhere in the feasible region of morphospace, the question becomes sharper: how can we exploit it as a reference direction for representations within the realm of the customary geometric morphometric (GM) analyses? This article argues that the only valid approach to this problem is geometric, not statistical: to represent any such a priori index by way of its differential (its gradient) calculated as an explicit vector in the Procrustes dual space of the complete list of landmarks whether or not involved in the formulation of the index. Interpretation of the index follows by comparing its direction after this embedding with other interesting directions in the same shape space, such as principal warps, relative warps, group mean shape contrasts, specific form factors extracted independently, or directions corresponding to other functional indices. Here, I work an artificial but realistic example of this technique in complete detail: the construction of a Procrustes shape formula exactly aligned with a specific angle among three landmarks within an arbitrary configuration of six. A closing discussion traces the spirit of this intervention to comments by W. W. Howells and C. E. Oxnard, originally intended for anthropometric contexts other than GM, on the different purposes of systematics and functional morphology.
Edge energies and shapes of nanoprecipitates.
Hamilton, John C.
2006-01-01
In this report we present a model to explain the size-dependent shapes of lead nano-precipitates in aluminum. Size-dependent shape transitions, frequently observed at nanolength scales, are commonly attributed to edge energy effects. This report resolves an ambiguity in the definition and calculation of edge energies and presents an atomistic calculation of edge energies for free clusters. We also present a theory for size-dependent shapes of Pb nanoprecipitates in Al, introducing the concept of ''magic-shapes'' defined as precipitate shapes having near zero elastic strains when inserted into similarly shaped voids in the Al matrix. An algorithm for constructing a complete set of magic-shapes is presented. The experimental observations are explained by elastic strain energies and interfacial energies; edge energies play a negligible role. We replicate the experimental observations by selecting precipitates having magic-shapes and interfacial energies less than a cutoff value.
NASA Astrophysics Data System (ADS)
Scientists at the National Oceanic and Atmospheric Administration (NOAA) and the University of Delaware have refined the wind-chill factor, a common measurement of weather discomfort, into a new misery register called the weather stress index. In addition to the mix of temperature and wind speed data used to calculate wind chill, the recipe for the index adds two new ingredients—humidity and a dash of benchmark statistics—to estimate human reaction to weather conditions. NOAA says that the weather stress index estimates human reaction to weather conditions and that the reaction depends on variations from the ‘normal’ conditions in the locality involved.Discomfort criteria for New Orleans, La., and Bismarck, N.D., for example, differ drastically. According to NOAA, when it's the middle of winter and it's -10°C with a relative humidity of 80% and 24 km/h winds, persons in New Orleans would be highly stressed while those in Bismarck wouldn't bat an eye.
Relationships between glide efficiency and swimmers' size and shape characteristics.
Naemi, Roozbeh; Psycharakis, Stelios G; McCabe, Carla; Connaboy, Chris; Sanders, Ross H
2012-08-01
Glide efficiency, the ability of a body to minimize deceleration over the glide, can change with variations in the body's size and shape. The purpose of this study was to investigate the relationships between glide efficiency and the size and shape characteristics of swimmers. Eight male and eight female swimmers performed a series of horizontal glides at a depth of 70 cm below the surface. Glide efficiency parameters were calculated for velocities ranging from 1.4 to 1.6 m/s for female swimmers (and at the Reynolds number of 3.5 million) and from 1.6 to 1.8 m/s for male swimmers (and at the Reynolds number of 4.5 million). Several morphological indices were calculated to account for the shape characteristics, with the use of a photogrammetric method. Relationships between the variables of interest were explored with correlations, while repeated-measures ANOVA was used to assess within-group differences between different velocities for each gender group. Glide efficiency of swimmers increased when velocity decreased. Some morphological indices and postural angles showed a significant correlation with glide efficiency. The glide coefficient was significantly correlated to the chest to waist taper index for both gender groups. For the male group, the glide coefficient correlated significantly to the fineness ratio of upper body, the chest to hip cross-section. For the female group the glide coefficient had a significant correlation with the waist to hip taper index. The findings suggested that gliding efficiency was more dependent on shape characteristics and appropriate postural angles rather than being dependent on size characteristics. PMID:22086090
Shape reconstruction from gradient data
Ettl, Svenja; Kaminski, Juergen; Knauer, Markus C.; Haeusler, Gerd
2008-04-20
We present a generalized method for reconstructing the shape of an object from measured gradient data. A certain class of optical sensors does not measure the shape of an object but rather its local slope. These sensors display several advantages, including high information efficiency, sensitivity, and robustness. For many applications, however, it is necessary to acquire the shape, which must be calculated from the slopes by numerical integration. Existing integration techniques show drawbacks that render them unusable in many cases. Our method is based on an approximation employing radial basis functions. It can be applied to irregularly sampled, noisy, and incomplete data, and it reconstructs surfaces both locally and globally with high accuracy.
Superordinate Shape Classification Using Natural Shape Statistics
ERIC Educational Resources Information Center
Wilder, John; Feldman, Jacob; Singh, Manish
2011-01-01
This paper investigates the classification of shapes into broad natural categories such as "animal" or "leaf". We asked whether such coarse classifications can be achieved by a simple statistical classification of the shape skeleton. We surveyed databases of natural shapes, extracting shape skeletons and tabulating their parameters within each…
National Institute of Standards and Technology Data Gateway
SRD 166 MEMS Calculator (Web, free access) This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.
ERIC Educational Resources Information Center
Chenery, Gordon
1991-01-01
Uses chaos theory to investigate the nonlinear phenomenon of population growth fluctuation. Illustrates the use of computers and computer programs to make calculations in a nonlinear difference equation system. (MDH)
Indexing Consistency and Quality.
ERIC Educational Resources Information Center
Zunde, Pranas; Dexter, Margaret E.
A measure of indexing consistency is developed based on the concept of 'fuzzy sets'. It assigns a higher consistency value if indexers agree on the more important terms than if they agree on less important terms. Measures of the quality of an indexer's work and exhaustivity of indexing are also proposed. Experimental data on indexing consistency…
Bhatia, Nirmanmoh; Dawn, Buddhadeb; Siddiqui, Tariq S.
2015-01-01
Determining aortic stenosis (AS) severity is clinically important. Calculating aortic valve (AV) area by means of the continuity equation assumes a circular left ventricular outflow tract (LVOT). The full impact of this assumption in calculating AV area is unknown. Predictors of noncircular LVOT shape in patients with AS are undefined. In 109 adult patients with AS who underwent multiplanar transesophageal echocardiography, we calculated AV area by means of the standard continuity method and by a modified method involving planimetric LVOT area. We found 54 circular, 37 horizontal-oval, 8 vertical-oval, and 10 irregular LVOTs. Area derived by direct planimetry correlated better with the modified than the standard continuity method (r=0.89 vs r=0.85; both P=0.0001). Valve areas of patients with mild, moderate, or severe AS by planimetry were more often mischaracterized with use of the standard than modified method (29 vs 18; P <0.0001). Horizontal-oval AV area derived by planimetry (1.28 ± 0.55 cm2) was underestimated by the standard method (1.05 ± 0.47 cm2; P=0.001), but not by the modified method. Congenital AV morphology and low cardiac index were the only multivariate predictors of horizontal-oval shape. Low cardiac index was the only predictor of noncircular shape. More than half our patients with AS had noncircular LVOTs. Using the modified method reduces mischaracterizations of AS severity. Congenital AV morphology and low cardiac index predict horizontal-oval or noncircular shape. These data suggest the value of direct LVOT measurement to calculate AS severity in patients who have congenital AV or a low cardiac index. PMID:25873793
Karthika, Manjush; Al Enezi, Farhan A.; Pillai, Lalitha V.; Arabi, Yaseen M.
2016-01-01
Predicting successful liberation of patients from mechanical ventilation has been a focus of interest to clinicians practicing in intensive care. Various weaning indices have been investigated to identify an optimal weaning window. Among them, the rapid shallow breathing index (RSBI) has gained wide use due to its simple technique and avoidance of calculation of complex pulmonary mechanics. Since its first description, several modifications have been suggested, such as the serial measurements and the rate of change of RSBI, to further improve its predictive value. The objective of this paper is to review the utility of RSBI in predicting weaning success. In addition, the use of RSBI in specific patient populations and the reported modifications of RSBI technique that attempt to improve the utility of RSBI are also reviewed. PMID:27512505
Rapid shallow breathing index.
Karthika, Manjush; Al Enezi, Farhan A; Pillai, Lalitha V; Arabi, Yaseen M
2016-01-01
Predicting successful liberation of patients from mechanical ventilation has been a focus of interest to clinicians practicing in intensive care. Various weaning indices have been investigated to identify an optimal weaning window. Among them, the rapid shallow breathing index (RSBI) has gained wide use due to its simple technique and avoidance of calculation of complex pulmonary mechanics. Since its first description, several modifications have been suggested, such as the serial measurements and the rate of change of RSBI, to further improve its predictive value. The objective of this paper is to review the utility of RSBI in predicting weaning success. In addition, the use of RSBI in specific patient populations and the reported modifications of RSBI technique that attempt to improve the utility of RSBI are also reviewed. PMID:27512505
Bagieński, Zbigniew
2015-02-01
Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI. PMID:25461063
A Calibrated Index of Human Development
ERIC Educational Resources Information Center
Lind, Niels
2010-01-01
The weightings of the four component indicators of the UNDP's Human Development Index HDI appear to be arbitrary and have not been given justification. This paper develops a variant of the HDI, calculated to reflect peoples' revealed evaluations of education and the productivity of work. The resulting Calibrated human Development Index CDI has a…
[Journal selection and indexing for Index Medicus and Chinese periodicals indexed in Index Medicus].
Zhou, Qing-Hui; Ling, Chang-Quan; Bai, Yu-Jin; Yin, Hui-Xia
2005-01-01
Index Medicus/MEDLINE/PubMed published by U. S. National Library of Medicine (NLM) is the most important and commonly used biomedical literature retrieval system in the world. According to the"List of Journals Indexed in Index Medicus (2004)", 4,098 journals are indexed for Index Medicus, including 70 journals from mainland China and Hong Kong and 9 journals from Taiwan. Journal of Chinese Integrative Medicine established in May, 2003 is indexed in Index Medicus in 2004. This article outlines the critical elements of journal selection for Index Medicus/MEDLINE and the journal selection process for indexing at NLM, and introduces some measures for the Journal of Chinese Integrative Medicine being indexed in Index Medicus/MEDLINE.
Indexing Consistency and Quality.
ERIC Educational Resources Information Center
Zunde, Pranas; Dexter, Margaret E.
Proposed is a measure of indexing consistency based on the concept of "fuzzy sets." By this procedure a higher consistency value is assigned if indexers agree on the more important terms than if they agree on less important terms. Measures of the quality of an indexer's work and exhaustivity of indexing are also proposed. Experimental data on…
ERIC Educational Resources Information Center
Rasheed, Muhammad Abdur
1989-01-01
Describes a study that compared indexing terms suggested by authors of articles in "The American Journal of the Medical Science" and indexing terms assigned to the same articles in MEDLARS. Case studies are used to examine the differences between author and indexer indexing. (CLB)
Quaker Resources Online Index.
ERIC Educational Resources Information Center
Beke-Harrigan, Heidi
The Quaker Resources Online Index is a World Wide Web-based index, including author, title, subject, and meeting indexes, that provides access to Quaker materials available on the Web. Given the current failings and shortcomings of search engines and automated key word searches, this index brings together information from a variety of sources and…
Guilfoyle, Richard A.; Guo, Zhen
1999-01-01
A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.
Guilfoyle, Richard A.; Guo, Zhen
2001-01-01
A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.
2015-05-20
A new plastic developed by ORNL and Washington State University transforms from its original shape through a series of temporary shapes and returns to its initial form. The shape-shifting process is controlled through changes in temperature
Refractive index measurements of single, spherical cells using digital holographic microscopy.
Schürmann, Mirjam; Scholze, Jana; Müller, Paul; Chan, Chii J; Ekpenyong, Andrew E; Chalut, Kevin J; Guck, Jochen
2015-01-01
In this chapter, we introduce digital holographic microscopy (DHM) as a marker-free method to determine the refractive index of single, spherical cells in suspension. The refractive index is a conclusive measure in a biological context. Cell conditions, such as differentiation or infection, are known to yield significant changes in the refractive index. Furthermore, the refractive index of biological tissue determines the way it interacts with light. Besides the biological relevance of this interaction in the retina, a lot of methods used in biology, including microscopy, rely on light-tissue or light-cell interactions. Hence, determining the refractive index of cells using DHM is valuable in many biological applications. This chapter covers the main topics that are important for the implementation of DHM: setup, sample preparation, and analysis. First, the optical setup is described in detail including notes and suggestions for the implementation. Following that, a protocol for the sample and measurement preparation is explained. In the analysis section, an algorithm for the determination of quantitative phase maps is described. Subsequently, all intermediate steps for the calculation of the refractive index of suspended cells are presented, exploiting their spherical shape. In the last section, a discussion of possible extensions to the setup, further measurement configurations, and additional analysis methods are given. Throughout this chapter, we describe a simple, robust, and thus easily reproducible implementation of DHM. The different possibilities for extensions show the diverse fields of application for this technique.
Refractive index measurements of single, spherical cells using digital holographic microscopy.
Schürmann, Mirjam; Scholze, Jana; Müller, Paul; Chan, Chii J; Ekpenyong, Andrew E; Chalut, Kevin J; Guck, Jochen
2015-01-01
In this chapter, we introduce digital holographic microscopy (DHM) as a marker-free method to determine the refractive index of single, spherical cells in suspension. The refractive index is a conclusive measure in a biological context. Cell conditions, such as differentiation or infection, are known to yield significant changes in the refractive index. Furthermore, the refractive index of biological tissue determines the way it interacts with light. Besides the biological relevance of this interaction in the retina, a lot of methods used in biology, including microscopy, rely on light-tissue or light-cell interactions. Hence, determining the refractive index of cells using DHM is valuable in many biological applications. This chapter covers the main topics that are important for the implementation of DHM: setup, sample preparation, and analysis. First, the optical setup is described in detail including notes and suggestions for the implementation. Following that, a protocol for the sample and measurement preparation is explained. In the analysis section, an algorithm for the determination of quantitative phase maps is described. Subsequently, all intermediate steps for the calculation of the refractive index of suspended cells are presented, exploiting their spherical shape. In the last section, a discussion of possible extensions to the setup, further measurement configurations, and additional analysis methods are given. Throughout this chapter, we describe a simple, robust, and thus easily reproducible implementation of DHM. The different possibilities for extensions show the diverse fields of application for this technique. PMID:25640428
Calculation of Electron Trajectories
1982-06-01
EGUN, the SLAC Electron Trajectory Program, computes trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child''s Law conditions on cathodes of various shapes, user-specified initial conditions for each ray, and a combination of Child''s Law conditions and user specifications. Either rectangular or cylindrically symmetric geometry may be used. Magnetic fields may be specified using arbitrary configuration of coils, or the outputmore » of a magnet program, such as Poisson, or by an externally calculated array of the axial fields.« less
Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...
Hunter, Charles H.
2000-05-22
This software calculates a Wet Bulb Globe Temperature (WBGT) using standard measurements from a meteorological station. WBGT is used by Industrial Hygenists (IH) to determine heat stress potential to outdoor workers. Through the mid 1990''s, SRS technicians were dispatched several times daily to measure WBGT with a custom hand held instrument and results were dessiminated via telephone. Due to workforce reductions, the WSRC IH Department asked for the development of an automated method to simulate the WBGT measurement using existing real time data from the Atmospheric Technologies Group''s meteorological monitoring network.
2000-05-22
This software calculates a Wet Bulb Globe Temperature (WBGT) using standard measurements from a meteorological station. WBGT is used by Industrial Hygenists (IH) to determine heat stress potential to outdoor workers. Through the mid 1990''s, SRS technicians were dispatched several times daily to measure WBGT with a custom hand held instrument and results were dessiminated via telephone. Due to workforce reductions, the WSRC IH Department asked for the development of an automated method to simulatemore » the WBGT measurement using existing real time data from the Atmospheric Technologies Group''s meteorological monitoring network.« less
Microelectromechanical reciprocating-tooth indexing apparatus
Allen, James J.
1999-01-01
An indexing apparatus is disclosed that can be used to rotate a gear or move a rack in a precise, controllable manner. The indexing apparatus, based on a reciprocating shuttle driven by one or more actuators, can be formed either as a micromachine, or as a millimachine. The reciprocating shuttle of the indexing apparatus can be driven by a thermal, electrostatic or electromagnetic actuator, with one or more wedge-shaped drive teeth of the shuttle being moveable to engage and slide against indexing teeth on the gear or rack, thereby moving the gear or rack. The indexing apparatus can be formed by either surface micromachining processes or LIGA processes, depending on the size of the apparatus that is to be formed.
Refractive Index of Sodium Iodide
Jellison Jr, Gerald Earle; Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Ramey, Lucas A; Singh, David J
2012-01-01
The refractive index of sodium iodide, an important scintillator material that is widely used for radiation detection, is based on a single measurement made by Spangenberg at one wavelength using the index-matching liquid immersion method (Z. Kristallogr., 57, 494-534 (1923)). In the present paper, we present new results for the refractive index of sodium iodide as measured by the minimum deviation technique at six wavelengths between 436 nm (n=1.839 0.002) and 633 nm (n=1.786 0.002). These 6 measurements can be fit to a Sellmeier model, resulting in a 2 of 1.02, indicating a good fit to the data. In addition, we report on ellipsometry measurements, which suggest that the near-surface region of the air sensitive NaI crystal seriously degrades, even in a moisture-free environment, resulting in a significantly lower value of the refractive index near the surface. First-principles theoretical calculations of the NaI refractive index that agree with the measured values within 0.025-0.045 are also presented and discussed.
NASA Technical Reports Server (NTRS)
1994-01-01
The CENDI Indexing Workshop held at NASA Headquarters, Two Independence Square, 300 E Street, Washington, DC, on September 21-22, 1994 focused on the following topics: machine aided indexing, indexing quality, an indexing pilot project, the MedIndEx Prototype, Department of Energy/Office of Scientific and Technical Information indexing activities, high-tech coding structures, category indexing schemes, and the Government Information Locator Service. This publication consists mostly of viewgraphs related to the above noted topics. In an appendix is a description of the Government Information Locator Service.
Thermodynamic Stability of Low- and High-Index Spinel LiMn2O4 Surface Terminations.
Warburton, Robert E; Iddir, Hakim; Curtiss, Larry A; Greeley, Jeffrey
2016-05-01
Density functional theory calculations are performed within the generalized gradient approximation (GGA+U) to determine stable terminations of both low- and high-index spinel LiMn2O4 (LMO) surfaces. A grand canonical thermodynamic approach is employed, permitting a direct comparison of off-stoichiometric surfaces with previously reported stoichiometric surface terminations at various environmental conditions. Within this formalism, we have identified trends in the structure of the low-index surfaces as a function of the Li and O chemical potentials. The results suggest that, under a range of chemical potentials for which bulk LMO is stable, Li/O and Li-rich (111) surface terminations are favored, neither of which adopts an inverse spinel structure in the subsurface region. This thermodynamic analysis is extended to identify stable structures for certain high-index surfaces, including (311), (331), (511), and (531), which constitute simple models for steps or defects that may be present on real LMO particles. The low- and high-index results are combined to determine the relative stability of each surface facet under a range of environmental conditions. The relative surface energies are further employed to predict LMO particle shapes through a Wulff construction approach, which suggests that LMO particles will adopt either an octahedron or a truncated octahedron shape at conditions in which LMO is thermodynamically stable. These results are in agreement with the experimental observations of LMO particle shapes. PMID:27031889
Thermodynamic Stability of Low- and High-Index Spinel LiMn2O4 Surface Terminations.
Warburton, Robert E; Iddir, Hakim; Curtiss, Larry A; Greeley, Jeffrey
2016-05-01
Density functional theory calculations are performed within the generalized gradient approximation (GGA+U) to determine stable terminations of both low- and high-index spinel LiMn2O4 (LMO) surfaces. A grand canonical thermodynamic approach is employed, permitting a direct comparison of off-stoichiometric surfaces with previously reported stoichiometric surface terminations at various environmental conditions. Within this formalism, we have identified trends in the structure of the low-index surfaces as a function of the Li and O chemical potentials. The results suggest that, under a range of chemical potentials for which bulk LMO is stable, Li/O and Li-rich (111) surface terminations are favored, neither of which adopts an inverse spinel structure in the subsurface region. This thermodynamic analysis is extended to identify stable structures for certain high-index surfaces, including (311), (331), (511), and (531), which constitute simple models for steps or defects that may be present on real LMO particles. The low- and high-index results are combined to determine the relative stability of each surface facet under a range of environmental conditions. The relative surface energies are further employed to predict LMO particle shapes through a Wulff construction approach, which suggests that LMO particles will adopt either an octahedron or a truncated octahedron shape at conditions in which LMO is thermodynamically stable. These results are in agreement with the experimental observations of LMO particle shapes.
Representation, indexing, and retrieval of moving objects
NASA Astrophysics Data System (ADS)
Ye, Huanzhuo; Gong, Jianya; Li, Deren; Pan, Jianping; Chen, Yumin
2003-12-01
Moving objects are complicated to manage because they involve temporal attributes as well as spatial attributes. There are two methods to represent the motion of moving objects, function method and sampling method. Motion state modeling, based on sampling method, can give object's position, orientation and their changes at a specific epoch, and encapsulates all the calculation by object orientation method. A big job is to search the motion state vectors efficiently, which can be performed with the help of 2n index trees. 2n index tree is an efficient index method to multi-dimensional data. Different kinds of motion data retrieval can be transformed to basic searching in 2n index trees. With proper operation algorithm, 2n index trees work well with the indexing and retrieval of moving objects.
Quantum chemistry of macromolecular shape
NASA Astrophysics Data System (ADS)
Mezey, Paul G.
Some of the new developments in the quantum-chemical study of macromolecular shapes are reviewed, with special emphasis on the additive fuzzy electron density fragmentation methods and on the algebraic-topological shape group analysis of global and local shape features of fuzzy three-dimensional bodies of electron densities of macromolecules. Earlier applications of these methods to actual macromolecules are reviewed, including studies on the anticancer drug taxol, the proteins bovine insulin and HIV protease, and other macromolecules. The results of test calculations establishing the accuracy of these methods are also reviewed. The spherically weighted affine transformation technique is described and proposed for the deformation of electron densities approximating the changes occurring in small conformational displacements of atomic nuclei in macromolecules.
Global nuclear-structure calculations
Moeller, P.; Nix, J.R.
1990-04-20
The revival of interest in nuclear ground-state octupole deformations that occurred in the 1980's was stimulated by observations in 1980 of particularly large deviations between calculated and experimental masses in the Ra region, in a global calculation of nuclear ground-state masses. By minimizing the total potential energy with respect to octupole shape degrees of freedom in addition to {epsilon}{sub 2} and {epsilon}{sub 4} used originally, a vastly improved agreement between calculated and experimental masses was obtained. To study the global behavior and interrelationships between other nuclear properties, we calculate nuclear ground-state masses, spins, pairing gaps and {Beta}-decay and half-lives and compare the results to experimental qualities. The calculations are based on the macroscopic-microscopic approach, with the microscopic contributions calculated in a folded-Yukawa single-particle potential.
Wilson, Thomas S.; Bearinger, Jane P.
2015-06-09
New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.
ERIC Educational Resources Information Center
Olsgaard, John N.; Evans, John Edward
1981-01-01
Examines some of the most frequently cited criticisms of keyword indexing, including (1) the absence of general subject headings, (2) limited entry points, and (3) irrelevant indexing. Six references are cited. (FM)
... page: //medlineplus.gov/ency/article/007196.htm Body mass index To use the sharing features on this ... your height is to figure out your body mass index (BMI). You and your health care provider ...
ERIC Educational Resources Information Center
Rahnlom, Harold F.; Pedrick, Lillian
1978-01-01
This article describes Zimdex, an audio indexing system developed to solve the problem of indexing audio materials for individual instruction in the content area of the mathematics of life insurance. (Author)
... Families ( We Can! ) Health Professional Resources Body Mass Index Table 1 for BMI greater than 35, go ... to content Twitter Facebook YouTube Google+ SEARCH | SITE INDEX | ACCESSIBILITY | PRIVACY STATEMENT | FOIA | OIG | CONTACT US National ...
NASA Astrophysics Data System (ADS)
Marriott, R. A.
2001-02-01
The Subject Index references items under general headings; where a contribution covers two or more clearly defined subjects, each is separately referenced, but otherwise sub-headings within the same topic are not included. Book and other reviews are indexed as such, but their subjects are not further cross-indexed. The Author Index details all named contributions, including talks at Ordinary Meetings, but not questions from the floor.
Automatic Versus Manual Indexing
ERIC Educational Resources Information Center
Vander Meulen, W. A.; Janssen, P. J. F. C.
1977-01-01
A comparative evaluation of results in terms of recall and precision from queries submitted to systems with automatic and manual subject indexing. Differences were attributed to query formulation. The effectiveness of automatic indexing was found equivalent to manual indexing. (Author/KP)
ERIC Educational Resources Information Center
Jacobs, Charles R.
Progress is reported at the 1,000,000 word level on the development of a partial syntatic analysis technique for indexing text. A new indexing subroutine for hyphens is provided. New grammars written and programmed for Machine Aided Indexing (MAI) are discussed. (ED 069 290 is a related document) (Author)
ERIC Educational Resources Information Center
Pasimeni, Paolo
2013-01-01
This paper presents a new index to quantify, measure and monitor the progress towards the objectives of the Europe 2020 strategy. This index is based on a set of relevant, accepted, credible, easy to monitor and robust indicators presented by the European Commission at the time the strategy was launched. The internal analysis of the index shows…
Brouns, F; Bjorck, I; Frayn, K N; Gibbs, A L; Lang, V; Slama, G; Wolever, T M S
2005-06-01
The glycaemic index (GI) concept was originally introduced to classify different sources of carbohydrate (CHO)-rich foods, usually having an energy content of >80 % from CHO, to their effect on post-meal glycaemia. It was assumed to apply to foods that primarily deliver available CHO, causing hyperglycaemia. Low-GI foods were classified as being digested and absorbed slowly and high-GI foods as being rapidly digested and absorbed, resulting in different glycaemic responses. Low-GI foods were found to induce benefits on certain risk factors for CVD and diabetes. Accordingly it has been proposed that GI classification of foods and drinks could be useful to help consumers make 'healthy food choices' within specific food groups. Classification of foods according to their impact on blood glucose responses requires a standardised way of measuring such responses. The present review discusses the most relevant methodological considerations and highlights specific recommendations regarding number of subjects, sex, subject status, inclusion and exclusion criteria, pre-test conditions, CHO test dose, blood sampling procedures, sampling times, test randomisation and calculation of glycaemic response area under the curve. All together, these technical recommendations will help to implement or reinforce measurement of GI in laboratories and help to ensure quality of results. Since there is current international interest in alternative ways of expressing glycaemic responses to foods, some of these methods are discussed.
Differentiation of hand posture to object shape in children with unilateral spastic cerebral palsy.
Wolff, Aviva L; Raghavan, Preeti; Kaminski, Terry; Hillstrom, Howard J; Gordon, Andrew M
2015-01-01
Quantifying hand-shaping in children with unilateral spastic cerebral palsy (USCP) is the first step in understanding hand posture differentiation. To quantify this ability and determine how hand posture evolves during reach toward various object shapes in children with unilateral spastic cerebral palsy (USCP), 2 groups of children (10 typically developing, and 10 USCP, ages 6-13) were studied in a single-session cross-sectional study. Subjects grasped rectangular, concave, and convex objects with each hand. Metacarpal and proximal interphalangeal joint finger flexion and finger abduction angles were calculated. The extent to which hand posture reflects object shape was calculated using a "visuomotor efficiency (VME) index" (a score of 100 reflects perfect discrimination between objects). A mixed design ANOVA with repeated measures on time was used to compare the VME between groups. Children with USCP demonstrated a lower VME than controls in the affected hand, indicating less effective hand-shaping; p<.01. There was also a difference between groups in the evolution of VME throughout reach; p<.01. No difference in hand-shaping in the less affected hand in USCP was observed. Analysis of joint angles at contact and VME throughout reach demonstrated that children with USCP differentiated their hand posture to objects of different shapes, but demonstrated deficits in the timing and magnitude of hand-shaping isolated to the affected side. The present study suggests it may be important to consider the quality of hand activity using quantitative approaches such as VME analyses. Rehabilitation approaches that target these deficits to improve joint mobility and motor control are worth testing.
Accurate bulk density determination of irregularly shaped translucent and opaque aerogels
NASA Astrophysics Data System (ADS)
Petkov, M. P.; Jones, S. M.
2016-05-01
We present a volumetric method for accurate determination of bulk density of aerogels, calculated from extrapolated weight of the dry pure solid and volume estimates based on the Archimedes' principle of volume displacement, using packed 100 μm-sized monodispersed glass spheres as a "quasi-fluid" media. Hard particle packing theory is invoked to demonstrate the reproducibility of the apparent density of the quasi-fluid. Accuracy rivaling that of the refractive index method is demonstrated for both translucent and opaque aerogels with different absorptive properties, as well as for aerogels with regular and irregular shapes.
Improved deterministic calculational methods for irregularly shaped shields
Dorning, J.J.
1992-12-01
A new discrete nodal transport method has been developed for general two-dimensional curvilinear geometry by using a boundary-fitted coordinate transformation from the general 'physical' coordinates to square 'computational' coordinates. The metrics which appear in the transformed transport equation are expanded using a simple polynomial function, and the angular divergence term is treated in the same way it is treated in S[sub N] methods for curved geometries. Because the metrics of the transformation depend upon the computational coordinates, the technical details of the formal development of the nodal method differ from those of ordinary nodal methods for rectangular geometry. However, the computational process in the transformed rectangular coordinate system is very similar to that used in conventional discrete nodal transport methods. A discrete S[sub N] method also has been developed to solve the boundary-fitted coordinate transformed transport equation. Simple test problems for non-simple geometries were solved using the zeroth-order nodal method, the first-order nodal method, and the S[sub N] method for the same physical and computational grids. The results for the test problems studied showed that, for most performance criteria, the computational efficiency of the zeroth-order nodal method was the highest of the three methods.
National hospital input price index.
Freeland, M S; Anderson, G; Schendler, C E
1979-01-01
The national community hospital input price index presented here isolates the effects of prices of goods and services required to produce hospital care and measures the average percent change in prices for a fixed market basket of hospital inputs. Using the methodology described in this article, weights for various expenditure categories were estimated and proxy price variables associated with each were selected. The index is calculated for the historical period 1970 through 1978 and forecast for 1979 through 1981. During the historical period, the input price index increased an average of 8.0 percent a year, compared with an average rate of increase of 6.6 percent for overall consumer prices. For the period 1979 through 1981, the average annual increase is forecast at between 8.5 and 9.0 per cent. Using the index to deflate growth in expenses, the level of real growth in expenditures per inpatient day (net service intensity growth) averaged 4.5 percent per year with considerable annual variation related to government and hospital industry policies. PMID:10309052
National hospital input price index.
Freeland, M S; Anderson, G; Schendler, C E
1979-01-01
The national community hospital input price index presented here isolates the effects of prices of goods and services required to produce hospital care and measures the average percent change in prices for a fixed market basket of hospital inputs. Using the methodology described in this article, weights for various expenditure categories were estimated and proxy price variables associated with each were selected. The index is calculated for the historical period 1970 through 1978 and forecast for 1979 through 1981. During the historical period, the input price index increased an average of 8.0 percent a year, compared with an average rate of increase of 6.6 percent for overall consumer prices. For the period 1979 through 1981, the average annual increase is forecast at between 8.5 and 9.0 per cent. Using the index to deflate growth in expenses, the level of real growth in expenditures per inpatient day (net service intensity growth) averaged 4.5 percent per year with considerable annual variation related to government and hospital industry policies.
The Structure of Relationally Indexed Titles and Abstracts.
ERIC Educational Resources Information Center
Seymour, R. J.; Yates-Mercer, Penelope A.
1980-01-01
Reports a study that examined 10 collections of mainly scientific subject areas indexed using Farradane's system of relational indexing. It compared (1) the use of relations, (2) the use of concept types, (3) the cross sections (or shape) of abstracts, and (4) the properties of "nodes." Statistical tables and graphs are included. (Author/JD)
Incidences from modifications of the computational methods of the psophic index
NASA Technical Reports Server (NTRS)
Francois, J.
1981-01-01
In France, the level of annoyance in areas around airports is represented by the psyphic index N. Various modifications were proposed in the method of calculating this indexing order to improve the index as an annoyance indicator. The quality of the modified N index as a prognosis index for annoyance caused by aircraft noise is included.
Dose calculation for electron therapy
NASA Astrophysics Data System (ADS)
Gebreamlak, Wondesen T.
The dose delivered by electron beams has a complex dependence on the shape of the field; any field shaping shields, design of collimator systems, and energy of the beam. This complicated dependence is due to multiple scattering of the electron beam as the beam travels from the accelerator head to the patient. The dosimetry of only regular field shapes (circular, square, or rectangular) is well developed. However, most tumors have irregular shapes and their dosimetry is calculated by direct measurement. This is laborious and time consuming. In addition, error can be introduced during measurements. The lateral build up ratio method (LBR), which is based on the Fermi-Eyges multiple scattering theory, calculates the dosimetry of irregular electron beam shapes. The accuracy of this method depends on the function sigma r(r,E) (the mean square radial displacement of the electron beam in the medium) used in the calculation. This research focuses on improving the accuracy of electron dose calculations using lateral build up ratio method by investigating the properties of sigmar(r,E). The percentage depth dose curves of different circular cutouts were measured using four electron beam energies (6, 9, 12, and 15 MeV), four electron applicator sizes (6x6, 10x10, 14x14, and 20x20 cm), three source-surface distance values (100, 105, 110 cm). The measured percentage depth dose curves were normalized at a depth of 0.05 cm. Using the normalized depth dose, the lateral build up ratio curves were determined. Using the cutout radius and the lateral build up ratio values, sigmar(z,E) were determined. It is shown that the sigma value increases linearly with cutout size until the cutout radius reaches the equilibrium range of the electron beam. The sigma value of an arbitrary circular cutout was determined from the interpolation of sigma versus cutout curve. The corresponding LBR value of the circular cutout was determined using its radius and sigma values. The depth dose distribution of
SHANK, R
1965-07-01
Recent trends in indexing emphasize mechanical, not intellectual, developments. Mechanized operations have produced indexes in depth (1) of information on limited areas of science or (2) utilizing limited parameters for analysis. These indexes may include only citations or both useful data and citations of source literature. Both keyword-in-context and citation indexing seem to be passing the test of the marketplace. Mechanical equipment has also been successfully used to manipulate EAM cards for production of index copy. Information centers are increasingly being used as control devices in narrowly defined subject areas. Authors meet growing pressures to participate in information control work by preparing abstracts of their own articles. Mechanized image systems persist, although large systems are scarce and the many small systems may bring only limited relief for information control and retrieval problems. Experimentation and limited development continue on theory and technique of automatic indexing and abstracting.
Fragment oriented molecular shapes.
Hain, Ethan; Camacho, Carlos J; Koes, David Ryan
2016-05-01
Molecular shape is an important concept in drug design and virtual screening. Shape similarity typically uses either alignment methods, which dynamically optimize molecular poses with respect to the query molecular shape, or feature vector methods, which are computationally less demanding but less accurate. The computational cost of alignment can be reduced by pre-aligning shapes, as is done with the Volumetric-Aligned Molecular Shapes (VAMS) method. Here, we introduce and evaluate fragment oriented molecular shapes (FOMS), where shapes are aligned based on molecular fragments. FOMS enables the use of shape constraints, a novel method for precisely specifying molecular shape queries that provides the ability to perform partial shape matching and supports search algorithms that function on an interactive time scale. When evaluated using the challenging Maximum Unbiased Validation dataset, shape constraints were able to extract significantly enriched subsets of compounds for the majority of targets, and FOMS matched or exceeded the performance of both VAMS and an optimizing alignment method of shape similarity search. PMID:27085751
ERIC Educational Resources Information Center
Markson, Lori; Diesendruck, Gil; Bloom, Paul
2008-01-01
When children learn the name of a novel object, they tend to extend that name to other objects similar in shape--a phenomenon referred to as the shape bias. Does the shape bias stem from learned associations between names and categories of objects, or does it derive from more general properties of children's understanding of language and the…
ERIC Educational Resources Information Center
Albertazzi, Liliana; Da Pos, Osvaldo; Canal, Luisa; Micciolo, Rocco; Malfatti, Michela; Vescovi, Massimo
2013-01-01
This article presents an experimental study on the naturally biased association between shape and color. For each basic geometric shape studied, participants were asked to indicate the color perceived as most closely related to it, choosing from the Natural Color System Hue Circle. Results show that the choices of color for each shape were not…
Solar granulation and statistical crystallography: A modeling approach using size-shape relations
NASA Technical Reports Server (NTRS)
Noever, D. A.
1994-01-01
The irregular polygonal pattern of solar granulation is analyzed for size-shape relations using statistical crystallography. In contrast to previous work which has assumed perfectly hexagonal patterns for granulation, more realistic accounting of cell (granule) shapes reveals a broader basis for quantitative analysis. Several features emerge as noteworthy: (1) a linear correlation between number of cell-sides and neighboring shapes (called Aboav-Weaire's law); (2) a linear correlation between both average cell area and perimeter and the number of cell-sides (called Lewis's law and a perimeter law, respectively) and (3) a linear correlation between cell area and squared perimeter (called convolution index). This statistical picture of granulation is consistent with a finding of no correlation in cell shapes beyond nearest neighbors. A comparative calculation between existing model predictions taken from luminosity data and the present analysis shows substantial agreements for cell-size distributions. A model for understanding grain lifetimes is proposed which links convective times to cell shape using crystallographic results.
Geometry-invariant gradient refractive index lens: analytical ray tracing
NASA Astrophysics Data System (ADS)
Bahrami, Mehdi; Goncharov, Alexander V.
2012-05-01
A new class of gradient refractive index (GRIN) lens is introduced and analyzed. The interior iso-indicial contours mimic the external shape of the lens, which leads to an invariant geometry of the GRIN structure. The lens model employs a conventional surface representation using a coincoid of revolution with a higher-order aspheric term. This model has a unique feature, namely, it allows analytical paraxial ray tracing. The height and the angle of an arbitrary incident ray can be found inside the lens in a closed-form expression, which is used to calculate the main optical characteristics of the lens, including the optical power and third-order monochromatic aberration coefficients. Moreover, due to strong coupling of the external surface shape to the GRIN structure, the proposed GRIN lens is well suited for studying accommodation mechanism in the eye. To show the power of the model, several examples are given emphasizing the usefulness of the analytical solution. The presented geometry-invariant GRIN lens can be used for modeling and reconstructing the crystalline lens of the human eye and other types of eyes featuring a GRIN lens.
Mandibular shape and skeletal divergency.
Ferrario, V F; Sforza, C; De Franco, D J
1999-04-01
Pre-treatment lateral cephalograms of 41 skeletal Class I girls aged 11 to 15 were divided according to MP-SN angle: lower than 28 degrees (hypodivergent, 10 girls), between 31 and 34 degrees (normodivergent, 18 girls), or larger than 37 degrees (hyperdivergent, 13 girls). The mandibular outlines were traced and digitized, and differences in shape were quantified using the elliptic Fourier series. Size differences were measured from the areas enclosed by the mandibular outlines. Shape differences were assessed by calculating a morphological distance (MD) between the size-independent mean mathematical reconstructions of the mandibular outlines of the three divergency classes. Mandibular shape was different in the three classes: large variations were found in hyperdivergent girls versus normodivergent girls (MD = 4.61), while smaller differences were observed in hypodivergent girls (MD versus normodivergent 2.91). Mean size-independent mandibular shapes were superimposed on an axis passing through the centres of gravity of the condyle and of the chin. Normodivergent and hyperdivergent mandibles differed mostly at gonion, the coronoid process, sigmoid notch, alveolar process, posterior border of the ramus, and along the mandibular plane. A significant size effect was also found, with smaller mandibles in the hyperdivergent girls.
Body surface ECG signal shape dispersion.
Khaddoumi, Balkine; Rix, Hervé; Meste, Olivier; Fereniec, Małgorzata; Maniewski, Roman
2006-12-01
The spatial distribution of the shape of the electrocardiography (ECG) waves obtained by body surface potential mapping (BSPM) is studied, using a 64-channel high-resolution ECG system. The index associated to each lead is the shape difference between its ECG wave and a reference computed taking into account all the leads on the same column. The reference is either a selected real wave or a synthetic signal computed by integral shape averaging (ISA). Better results are obtained with the ISA signal using the distribution function method (DFM) for computing the shape difference. The spatial dispersion of ECG waves is showed to allow the separation of patients after myocardial infarction (MI) from healthy subjects. In addition, the reference signal position for each column is computed. The path linking these positions appears as an invariant, i.e., it is independent of the subject and the ECG wave.
Simplifying the calculation of light scattering properties for black carbon fractal aggregates
NASA Astrophysics Data System (ADS)
Smith, A. J. A.; Grainger, R. G.
2014-08-01
Black carbon fractal aggregates have complicated shapes that make the calculation of their optical properties particularly computationally expensive. Here, a method is presented to estimate fractal aggregate light scattering properties by optimising simplified models to full light scattering calculations. It is found that there are no possible spherical models (at any size or refractive index) that well represent the light scattering in the visible or near-thermal infrared. As such, parameterisations of the light scattering as a function of the number of aggregate particles is presented as the most pragmatic choice for modelling distributions of black carbon when the large computational overheads of rigorous scattering calculations cannot be justified. This parameterisation can be analytically integrated to provide light scattering properties for lognormal distributions of black carbon fractal aggregates and return extinction cross sections with 0.1% accuracy for typical black carbon size distributions. Scattering cross sections and the asymmetry parameter can be obtained to within 3%.
Simplifying the calculation of light scattering properties for black carbon fractal aggregates
NASA Astrophysics Data System (ADS)
Smith, A. J. A.; Grainger, R. G.
2014-02-01
Black carbon fractal aggregates have complicated shapes that make the calculation of their optical properties particularly computationally expensive. Here, a method is presented to estimate fractal aggregate light scattering properties by optimising simplified models to full light scattering calculations. It is found that there are no possible spherical models (at any size or refractive index) that well represent the light scattering in the visible, or near-thermal infrared. As such, parameterisations of the light scattering as a function of the number of aggregate particles is presented as the most pragmatic choice for modelling distributions of black carbon when the large computational overheads of rigorous scattering calculations cannot be justified. This parameterisation can be analytically integrated to provide light scattering properties for log-normal distributions of black carbon fractal aggregates and return extinction cross-sections with 0.1% accuracy for typical black carbon size distributions. Scattering cross-sections and the asymmetry parameter can be obtained to within 3%.
ERIC Educational Resources Information Center
Falcione, Carol
1984-01-01
Concentrates on four specialized indexes that are devoted exclusively to personnel and human resources topics: "Personnel Literature,""Personnel Management Abstracts,""Human Resources Abstracts," and "Work Related Abstracts." A concluding section compares strengths and weaknesses of these publications to three broader indexes: "The Business…
ERIC Educational Resources Information Center
Hewitt, Clifford A., Comp.; McKinstry, Herbert A., Comp.
This index provides a topical taxonomy of media which have been selected for their relevance in the teaching of materials science and engineering. The index is keyed to a matrix which matches topical and/or class material with six classifications of media: print, 16mm film, super 8 film, slide/tape, videotape, and other (including interactive…
Transfer Index: One Definition.
ERIC Educational Resources Information Center
Heinselman, James L.
A transfer index of the proportion of students in California's community colleges transferring to the University of California (UC) and the California State University (CSU) system for fall 1982, 1983, and 1984 is presented in this report. Introductory material provides one definition of an appropriate index of transfer rates, i.e., the ratio of…
ERIC Educational Resources Information Center
Lorenzo-Seva, Urbano
2003-01-01
Proposes an index for assessing the degree of factor simplicity in the context of principal components and exploratory factor analysis. The index does not depend on the scale of the factors, and its maximum and minimum are related only to the degree of simplicity in the loading matrix. (SLD)
ERIC Educational Resources Information Center
Sherman, Dianne, Ed.
1993-01-01
This double issue of the "ZPG Reporter" focuses on the theme of ZPG's Children's Stress Index", the first national survey of children's well-being based on population- related pressures. Using an extensive list of social, economic, and environmental factors that affect the lives of children, the index ranks 828 cities, counties, and metropolitan…
Exploring Volumetrically Indexed Cups
ERIC Educational Resources Information Center
Jones, Dustin L.
2011-01-01
This article was inspired by a set of 12 cylindrical cups, which are volumetrically indexed; that is to say, the volume of cup "n" is equal to "n" times the volume of cup 1. Various sets of volumetrically indexed cylindrical cups are explored. I demonstrate how this children's toy is ripe for mathematical investigation, with connections to…
Shape regression for vertebra fracture quantification
NASA Astrophysics Data System (ADS)
Lund, Michael Tillge; de Bruijne, Marleen; Tanko, Laszlo B.; Nielsen, Mads
2005-04-01
Accurate and reliable identification and quantification of vertebral fractures constitute a challenge both in clinical trials and in diagnosis of osteoporosis. Various efforts have been made to develop reliable, objective, and reproducible methods for assessing vertebral fractures, but at present there is no consensus concerning a universally accepted diagnostic definition of vertebral fractures. In this project we want to investigate whether or not it is possible to accurately reconstruct the shape of a normal vertebra, using a neighbouring vertebra as prior information. The reconstructed shape can then be used to develop a novel vertebra fracture measure, by comparing the segmented vertebra shape with its reconstructed normal shape. The vertebrae in lateral x-rays of the lumbar spine were manually annotated by a medical expert. With this dataset we built a shape model, with equidistant point distribution between the four corner points. Based on the shape model, a multiple linear regression model of a normal vertebra shape was developed for each dataset using leave-one-out cross-validation. The reconstructed shape was calculated for each dataset using these regression models. The average prediction error for the annotated shape was on average 3%.
Asymmetric shape transitions of epitaxial quantum dots
NASA Astrophysics Data System (ADS)
Wei, Chaozhen; Spencer, Brian J.
2016-06-01
We construct a two-dimensional continuum model to describe the energetics of shape transitions in fully faceted epitaxial quantum dots (strained islands) via minimization of elastic energy and surface energy at fixed volume. The elastic energy of the island is based on a third-order approximation, enabling us to consider shape transitions between pyramids, domes, multifaceted domes and asymmetric intermediate states. The energetics of the shape transitions are determined by numerically calculating the facet lengths that minimize the energy of a given island type of prescribed island volume. By comparing the energy of different island types with the same volume and analysing the energy surface as a function of the island shape parameters, we determine the bifurcation diagram of equilibrium solutions and their stability, as well as the lowest barrier transition pathway for the island shape as a function of increasing volume. The main result is that the shape transition from pyramid to dome to multifaceted dome occurs through sequential nucleation of facets and involves asymmetric metastable transition shapes. We also explicitly determine the effect of corner energy (facet edge energy) on shape transitions and interpret the results in terms of the relative stability of asymmetric island shapes as observed in experiment.
NASA Astrophysics Data System (ADS)
Pramanik, Dibyadyuti; Sarkar, S.; Saha Sarkar, M.; Bisoi, Abhijit; Ray, Sudatta; Dasgupta, Shinjinee; Chakraborty, A.; Krishichayan, Kshetri, Ritesh; Ray, Indrani; Ganguly, S.; Pradhan, M. K.; Ray Basu, M.; Raut, R.; Ganguly, G.; Ghugre, S. S.; Sinha, A. K.; Basu, S. K.; Bhattacharya, S.; Mukherjee, A.; Banerjee, P.; Goswami, A.
2016-08-01
The high-spin states in 153Ho have been studied by the La57(20Ne139,6 n ) reaction at a projectile energy of 139 MeV at the Variable Energy Cyclotron Centre (VECC), Kolkata, India, utilizing an earlier campaign of the Indian National Gamma Array (INGA) setup. Data from γ -γ coincidence, directional correlation, and polarization measurements have been analyzed to assign and confirm the spins and parities of the levels. We have suggested a few additions and revisions of the reported level scheme of 153Ho. The RF-γ time difference spectra have been useful to confirm the half-life of an isomer in this nucleus. From the comparison of experimental and theoretical results, it is found that there are definite indications of shape coexistence in this nucleus. The experimental and calculated lifetimes of several isomers have been compared to follow the coexistence and evolution of shape with increasing spin.
Pattern nulling by reflector shaping
NASA Astrophysics Data System (ADS)
Havens, D. A.
1983-12-01
The applicability of adaptive array concepts to continuous aperture antennas was studied and appropriate aperture field distributions for pattern nulling were found from them. The adaptive array weights were found to be useful as discrete points in a continuous distribution. This distribution could then be used in an aperture integration scheme to produce a nulled pattern. Also studied was the use of geometrical optics to calculate the aperture field distribution of an arbitrarily shaped reflector. Under some restrictions, geometrical optics can provide a useful approximation. Constructing the aperture field of a reflector defined by a discrete grid of points using a numerical ray tracing scheme was also investigated. Certain numerical problems were identified. Finally, an attempt was made to implement the nulled pattern by a well known beam shaping method based on geometrical optics principles. This technique was found to be inadequate. More promising techniques for implementing the aperture distributions were suggested but not pursued in this work.
Calculation of the radiative properties of photosynthetic microorganisms
NASA Astrophysics Data System (ADS)
Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard
2015-08-01
A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers-Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively
Two-dimensional shape memory graphene oxide
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe
2016-01-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices. PMID:27325441
Two-dimensional shape memory graphene oxide
NASA Astrophysics Data System (ADS)
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe
2016-06-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.
Two-dimensional shape memory graphene oxide.
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G; Yan, Wenyi; Liu, Jefferson Zhe
2016-01-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.
Braking index of isolated pulsars
NASA Astrophysics Data System (ADS)
Hamil, O.; Stone, J. R.; Urbanec, M.; Urbancová, G.
2015-03-01
Isolated pulsars are rotating neutron stars with accurately measured angular velocities Ω , and their time derivatives that show unambiguously that the pulsars are slowing down. Although the exact mechanism of the spin-down is a question of detailed debate, the commonly accepted view is that it arises through emission of magnetic dipole radiation (MDR) from a rotating magnetized body. Other processes, including the emission of gravitational radiation, and of relativistic particles (pulsar wind), are also being considered. The calculated energy loss by a rotating pulsar with a constant moment of inertia is assumed proportional to a model dependent power of Ω . This relation leads to the power law Ω ˙ =-K Ωn where n is called the braking index. The MDR model predicts n exactly equal to 3. Selected observations of isolated pulsars provide rather precise values of n , individually accurate to a few percent or better, in the range 1
Quantitative shape measurements of distal volcanic ash
NASA Astrophysics Data System (ADS)
Riley, Colleen M.; Rose, William I.; Bluth, Gregg J. S.
2003-10-01
Large-scale volcanic eruptions produce fine ash (<200 μm) which has a long atmospheric residence time (1 hour or more) and can be transported great distances from the volcanic source, thus, becoming a hazard to aircraft and public health. Ash particles have irregular shapes, so data on particle shape, size, and terminal velocities are needed to understand how the irregular-shaped particles affect transport processes and radiative transfer measurements. In this study, a methodology was developed to characterize particle shapes, sizes, and terminal velocities for three ash samples of different compositions. The shape and size of 2500 particles from (1) distal fallout (˜100 km) of the 14 October 1974 Fuego eruption (basaltic), (2) the secondary maxima (˜250 km) of the 18 August 1992 Spurr eruption (andesitic), and (3) the Miocene Ash Hollow member, Nebraska (rhyolitic) were measured using image analysis techniques. Samples were sorted into 10 to 19 terminal velocity groups (0.6-59.0 cm/s) using an air elutriation device. Grain-size distributions for the samples were measured using laser diffraction. Aspect ratio, feret diameter, and perimeter measurements were found to be the most useful descriptors of how particle shape affects terminal velocity. These measurement values show particle shape differs greatly from a sphere (commonly used in models and algorithms). The diameters of ash particles were 10-120% larger than ideal spheres at the same terminal velocity, indicating that irregular particle shape greatly increases drag. Gas-adsorption derived surface areas are 1 to 2 orders of magnitude higher than calculated surface areas based on measured dimensions and simple geometry, indicating that particle shapes are highly irregular. Correction factors for surface area were derived from the ash sample measurements so that surface areas calculated by assuming spherical particle shapes can be corrected to reflect more realistic values.
NASA Astrophysics Data System (ADS)
Kallus, Yoav
2014-03-01
The question of which convex shapes leave the most empty space in their densest packing is the subject of Reinhardt's conjecture in two dimensions and Ulam's conjecture in three dimensions. Such conjectures about pessimal packing shapes have proven notoriously difficult to make progress on. I show that the regular heptagon is a local pessimum among all convex shapes, and that the 3D ball is a local pessimum among origin-symmetric shapes. Any shape sufficiently close in the space of shapes to these local pessima can be packed at a greater efficiency than they. In two dimensions and in dimensions above three, the ball is not a local pessimum, so the situation in 3D is unusual and intriguing. I will discuss what conditions conspire to make the 3D ball a local pessimum and whether we can prove that it is also a global pessimum.
NASA Technical Reports Server (NTRS)
Thomas, P. C.; Dermott, S. F.
1991-01-01
After considering the most important relationships between density, rotation rate, shape, and internal structure on the basis of equilibrium figures, the shape of the Saturn satellite Tethys is established from limb-coordinate data. Attention is given to the shape's significance for Tethys' internal structure. It is alternatively concluded that Tethys is either differentiated, and possesses a small rocky core, or has been interpreted as possessing a mass that is too low by about 15 percent.
Computing discharge using the index velocity method
Levesque, Victor A.; Oberg, Kevin A.
2012-01-01
Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression
NASA Technical Reports Server (NTRS)
2000-01-01
Looking at a few pictures of Eros under the right lighting conditions gives a reasonable idea of the shape of the asteroid, but analysis of NEAR Shoemaker data requires a very accurate digital model of Eros' shape. This 'shape model' helps the NEAR team analyze images and other types of data. For example, comparing the brightness of imaged regions with the orientation of the corresponding parts of the surface, taken from the shape model, allows scientists to determine whether bright areas are due to just surface orientation or also to surface properties. By 'filling
NASA Astrophysics Data System (ADS)
Ouaknin, Gaddiel; Laachi, Nabil; Delaney, Kris; Fredrickson, Glenn; Gibou, Frederic
2016-03-01
Directed self-assembly using block copolymers for positioning vertical interconnect access in integrated circuits relies on the proper shape of a confined domain in which polymers will self-assemble into the targeted design. Finding that shape, i.e., solving the inverse problem, is currently mainly based on trial and error approaches. We introduce a level-set based algorithm that makes use of a shape optimization strategy coupled with self-consistent field theory to solve the inverse problem in an automated way. It is shown that optimal shapes are found for different targeted topologies with accurate placement and distances between the different components.
DISJUNCTIVE NORMAL SHAPE MODELS
Ramesh, Nisha; Mesadi, Fitsum; Cetin, Mujdat; Tasdizen, Tolga
2016-01-01
A novel implicit parametric shape model is proposed for segmentation and analysis of medical images. Functions representing the shape of an object can be approximated as a union of N polytopes. Each polytope is obtained by the intersection of M half-spaces. The shape function can be approximated as a disjunction of conjunctions, using the disjunctive normal form. The shape model is initialized using seed points defined by the user. We define a cost function based on the Chan-Vese energy functional. The model is differentiable, hence, gradient based optimization algorithms are used to find the model parameters. PMID:27403233
Larm, Petra; Hongisto, Valtteri
2006-02-01
During the acoustical design of, e.g., auditoria or open-plan offices, it is important to know how speech can be perceived in various parts of the room. Different objective methods have been developed to measure and predict speech intelligibility, and these have been extensively used in various spaces. In this study, two such methods were compared, the speech transmission index (STI) and the speech intelligibility index (SII). Also the simplification of the STI, the room acoustics speech transmission index (RASTI), was considered. These quantities are all based on determining an apparent speech-to-noise ratio on selected frequency bands and summing them using a specific weighting. For comparison, some data were needed on the possible differences of these methods resulting from the calculation scheme and also measuring equipment. Their prediction accuracy was also of interest. Measurements were made in a laboratory having adjustable noise level and absorption, and in a real auditorium. It was found that the measurement equipment, especially the selection of the loudspeaker, can greatly affect the accuracy of the results. The prediction accuracy of the RASTI was found acceptable, if the input values for the prediction are accurately known, even though the studied space was not ideally diffuse. PMID:16521772
Larm, Petra; Hongisto, Valtteri
2006-02-01
During the acoustical design of, e.g., auditoria or open-plan offices, it is important to know how speech can be perceived in various parts of the room. Different objective methods have been developed to measure and predict speech intelligibility, and these have been extensively used in various spaces. In this study, two such methods were compared, the speech transmission index (STI) and the speech intelligibility index (SII). Also the simplification of the STI, the room acoustics speech transmission index (RASTI), was considered. These quantities are all based on determining an apparent speech-to-noise ratio on selected frequency bands and summing them using a specific weighting. For comparison, some data were needed on the possible differences of these methods resulting from the calculation scheme and also measuring equipment. Their prediction accuracy was also of interest. Measurements were made in a laboratory having adjustable noise level and absorption, and in a real auditorium. It was found that the measurement equipment, especially the selection of the loudspeaker, can greatly affect the accuracy of the results. The prediction accuracy of the RASTI was found acceptable, if the input values for the prediction are accurately known, even though the studied space was not ideally diffuse.
An Absolute Index (Ab-index) to Measure a Researcher’s Useful Contributions and Productivity
Biswal, Akshaya Kumar
2013-01-01
Bibliographic analysis has been a very powerful tool in evaluating the effective contributions of a researcher and determining his/her future research potential. The lack of an absolute quantification of the author’s scientific contributions by the existing measurement system hampers the decision-making process. In this paper, a new metric system, Absolute index (Ab-index), has been proposed that allows a more objective comparison of the contributions of a researcher. The Ab-index takes into account the impact of research findings while keeping in mind the physical and intellectual contributions of the author(s) in accomplishing the task. The Ab-index and h-index were calculated for 10 highly cited geneticists and molecular biologist and 10 young researchers of biological sciences and compared for their relationship to the researchers input as a primary author. This is the first report of a measuring method clarifying the contributions of the first author, corresponding author, and other co-authors and the sharing of credit in a logical ratio. A java application has been developed for the easy calculation of the Ab-index. It can be used as a yardstick for comparing the credibility of different scientists competing for the same resources while the Productivity index (Pr-index), which is the rate of change in the Ab-index per year, can be used for comparing scientists of different age groups. The Ab-index has clear advantage over other popular metric systems in comparing scientific credibility of young scientists. The sum of the Ab-indices earned by individual researchers of an institute per year can be referred to as Pr-index of the institute. PMID:24391941
A revised metric for quantifying body shape in vertebrates.
Collar, David C; Reynaga, Crystal M; Ward, Andrea B; Mehta, Rita S
2013-08-01
Vertebrates exhibit tremendous diversity in body shape, though quantifying this variation has been challenging. In the past, researchers have used simplified metrics that either describe overall shape but reveal little about its anatomical basis or that characterize only a subset of the morphological features that contribute to shape variation. Here, we present a revised metric of body shape, the vertebrate shape index (VSI), which combines the four primary morphological components that lead to shape diversity in vertebrates: head shape, length of the second major body axis (depth or width), and shape of the precaudal and caudal regions of the vertebral column. We illustrate the usefulness of VSI on a data set of 194 species, primarily representing five major vertebrate clades: Actinopterygii, Lissamphibia, Squamata, Aves, and Mammalia. We quantify VSI diversity within each of these clades and, in the course of doing so, show how measurements of the morphological components of VSI can be obtained from radiographs, articulated skeletons, and cleared and stained specimens. We also demonstrate that head shape, secondary body axis, and vertebral characteristics are important independent contributors to body shape diversity, though their importance varies across vertebrate groups. Finally, we present a functional application of VSI to test a hypothesized relationship between body shape and the degree of axial bending associated with locomotor modes in ray-finned fishes. Altogether, our study highlights the promise VSI holds for identifying the morphological variation underlying body shape diversity as well as the selective factors driving shape evolution.
A revised metric for quantifying body shape in vertebrates.
Collar, David C; Reynaga, Crystal M; Ward, Andrea B; Mehta, Rita S
2013-08-01
Vertebrates exhibit tremendous diversity in body shape, though quantifying this variation has been challenging. In the past, researchers have used simplified metrics that either describe overall shape but reveal little about its anatomical basis or that characterize only a subset of the morphological features that contribute to shape variation. Here, we present a revised metric of body shape, the vertebrate shape index (VSI), which combines the four primary morphological components that lead to shape diversity in vertebrates: head shape, length of the second major body axis (depth or width), and shape of the precaudal and caudal regions of the vertebral column. We illustrate the usefulness of VSI on a data set of 194 species, primarily representing five major vertebrate clades: Actinopterygii, Lissamphibia, Squamata, Aves, and Mammalia. We quantify VSI diversity within each of these clades and, in the course of doing so, show how measurements of the morphological components of VSI can be obtained from radiographs, articulated skeletons, and cleared and stained specimens. We also demonstrate that head shape, secondary body axis, and vertebral characteristics are important independent contributors to body shape diversity, though their importance varies across vertebrate groups. Finally, we present a functional application of VSI to test a hypothesized relationship between body shape and the degree of axial bending associated with locomotor modes in ray-finned fishes. Altogether, our study highlights the promise VSI holds for identifying the morphological variation underlying body shape diversity as well as the selective factors driving shape evolution. PMID:23746908
NASA Technical Reports Server (NTRS)
1982-01-01
An index of representative photographs is presented. Color transparencies and black and white glossies of major launches, Mariner spacecraft, Pioneer spacecraft, planets and other space phenomena, Skylab, space shuttle, Viking spacecraft, and Voyager spacecraft are included.
Audio Indexing for Individualization
ERIC Educational Resources Information Center
Rahmlow, Harold F.; And Others
1973-01-01
Article describes a new development in indexing audiotapes called Zimdex. The system was developed in response to the problem of individualizing review materials for candidates studying the mathematics of life insurance. (Author/HB)
NASA Astrophysics Data System (ADS)
Chen, C. Y. Roger; Meliksetian, Dikran S.; Liu, Larry J.; Chang, Martin C.
1996-01-01
A data model for long objects (such as video files) is introduced, to support general referencing structures, along with various system implementation strategies. Based on the data model, various indexing techniques for video are then introduced. A set of basic functionalities is described, including all the frame level control, indexing, and video clip editing. We show how the techniques can be used to automatically index video files based on closed captions with a typical video capture card, for both compressed and uncompressed video files. Applications are presented using those indexing techniques in security control and viewers' rating choice, general video search (from laser discs, CD ROMs, and regular disks), training videos, and video based user or system manuals.
Core number representations are shaped by language.
Salillas, Elena; Carreiras, Manuel
2014-03-01
Language and math have been predominantly related through exact calculation. In the present study we investigated a more fundamental link between language and math: whether the most basic quantity representation used for the contrast of numerosities could be shaped by language. We selected two groups of balanced, equally proficient Basque-Spanish bilinguals. Crucially, the two groups differed with respect to the language in which math had been learned at the point of earliest formal instruction in mathematics (Language of learning Math - LL(math)). They performed a simple comparison task between pairs of Arabic digits related through the decimal system or through the vigesimal system. The vigesimal system is retained in Basque for the naming of certain numerals, while for other numerals the decimal system is used, just as for all Spanish number words. Event-related potential (ERP) distance effects were taken as the dependent variable, indexing the activation of quantity. Results showed an N1-P2 distance effect during the comparison of digit pairs related through the base-10 system in both groups. Importantly, this N1-P2 effect appeared only for the group whose LL(math) was Basque when base-20 related digits were compared, even if both groups were perfectly fluent in Basque. Thus the early N1-P2 component appears to be sensitive to verbal components contained in quantity representation. Since the task did not contain any verbal input, the present data suggest that quantity representation may have verbal traces inherited from early learning. In turn, LL(math) should be the optimal medium for numerical communication.
NASA Technical Reports Server (NTRS)
1988-01-01
The Johnson Space Center (JSC) document index is intended to provide a single source listing of all published JSC-numbered documents their authors, and the designated offices of prime responsibility (OPR's) by mail code at the time of publication. The index contains documents which have been received and processed by the JSC Technical Library as of January 13, 1988. Other JSC-numbered documents which are controlled but not available through the JSC Library are also listed.
Exploring volumetrically indexed cups
NASA Astrophysics Data System (ADS)
Jones, Dustin L.
2011-03-01
This article was inspired by a set of 12 cylindrical cups, which are volumetrically indexed; that is to say, the volume of cup n is equal to n times the volume of cup 1. Various sets of volumetrically indexed cylindrical cups are explored. I demonstrate how this children's toy is ripe for mathematical investigation, with connections to geometry, algebra and differential calculus. Students with an understanding of these topics should be able to complete the analysis and related exercises contained herein.
Waveform command shaping control of multimode systems
NASA Astrophysics Data System (ADS)
Alhazza, Khaled A.; Masoud, Ziyad N.
2016-02-01
A method for eliminating residual vibrations in multimode systems is presented using a command shaping technique. The proposed command shaping technique captures two main advantages. Namely, the independence of the time length of the shaped command from the resonant frequencies of the system, and the ability to generate the command profile without a full system model. Experiments on systems with partial models represented by their resonant frequencies show that shaped command profiles generated using actual measured resonant frequencies of a system outperform those based on mathematical models. This feature of the proposed command shaping technique makes it very attractive for complicated multimode systems where mathematical models are difficult to build. Profiles of the proposed shaped command are simple and do not require intensive calculations. Performance of the proposed shaped command is validated using numerical simulations and experiments. Numerical simulations prove that the shaped commands are capable of completely eliminating residual vibrations of multimode systems. Experiments show that residual vibration elimination depends on the level of accuracy of the measured resonant frequencies of the system.
New generic indexing technology
NASA Technical Reports Server (NTRS)
Freeston, Michael
1996-01-01
There has been no fundamental change in the dynamic indexing methods supporting database systems since the invention of the B-tree twenty-five years ago. And yet the whole classical approach to dynamic database indexing has long since become inappropriate and increasingly inadequate. We are moving rapidly from the conventional one-dimensional world of fixed-structure text and numbers to a multi-dimensional world of variable structures, objects and images, in space and time. But, even before leaving the confines of conventional database indexing, the situation is highly unsatisfactory. In fact, our research has led us to question the basic assumptions of conventional database indexing. We have spent the past ten years studying the properties of multi-dimensional indexing methods, and in this paper we draw the strands of a number of developments together - some quite old, some very new, to show how we now have the basis for a new generic indexing technology for the next generation of database systems.
Body shape preferences: associations with rater body shape and sociosexuality.
Price, Michael E; Pound, Nicholas; Dunn, James; Hopkins, Sian; Kang, Jinsheng
2013-01-01
There is accumulating evidence of condition-dependent mate choice in many species, that is, individual preferences varying in strength according to the condition of the chooser. In humans, for example, people with more attractive faces/bodies, and who are higher in sociosexuality, exhibit stronger preferences for attractive traits in opposite-sex faces/bodies. However, previous studies have tended to use only relatively simple, isolated measures of rater attractiveness. Here we use 3D body scanning technology to examine associations between strength of rater preferences for attractive traits in opposite-sex bodies, and raters' body shape, self-perceived attractiveness, and sociosexuality. For 118 raters and 80 stimuli models, we used a 3D scanner to extract body measurements associated with attractiveness (male waist-chest ratio [WCR], female waist-hip ratio [WHR], and volume-height index [VHI] in both sexes) and also measured rater self-perceived attractiveness and sociosexuality. As expected, WHR and VHI were important predictors of female body attractiveness, while WCR and VHI were important predictors of male body attractiveness. Results indicated that male rater sociosexuality scores were positively associated with strength of preference for attractive (low) VHI and attractive (low) WHR in female bodies. Moreover, male rater self-perceived attractiveness was positively associated with strength of preference for low VHI in female bodies. The only evidence of condition-dependent preferences in females was a positive association between attractive VHI in female raters and preferences for attractive (low) WCR in male bodies. No other significant associations were observed in either sex between aspects of rater body shape and strength of preferences for attractive opposite-sex body traits. These results suggest that among male raters, rater self-perceived attractiveness and sociosexuality are important predictors of preference strength for attractive opposite
Interferometry to Determine Stellar Shapes: Application to Achernar
NASA Astrophysics Data System (ADS)
Kervella, Pierre
2016-04-01
The <IndexTerm> <IndexTerm> shape of stellar photospheres can depart significantly from the spherical geometry, due e.g. to fast rotation. In this chapter, I focus on the application of long-baseline interferometry to the determination of the photospheric shape of fast rotating stars. I present the example of the VLT Interferometer observations of the nearby Be star Achernar (α Eri), using the VINCI (two telescopes) and PIONIER (four telescopes) beam combiners. I present the adjustment of a simplified model of the light distribution of Achernar to the measured interferometric visibilities<IndexTerm> and closure phases<IndexTerm> . This example application is based on the LITpro <IndexTerm> software from the JMMC.
NASA Astrophysics Data System (ADS)
Pendrill, Ann-Marie
2005-11-01
Many modern rollercoasters feature loops. Although textbook loops are often circular, real rollercoaster loops are not. In this paper, we look into the mathematical description of various possible loop shapes, as well as their riding properties. We also discuss how a study of loop shapes can be used in physics education.
ERIC Educational Resources Information Center
Rule, Audrey C.
This document describes a game that provides students with practice in recognizing three dimensional crystal shapes and planar geometric shapes of crystal faces. It contains information on the objective of the game, game preparation, and rules for playing. Play cards are included (four to a page). (ASK)
Wavefront shaping through emulated curved space in waveguide settings
Sheng, Chong; Bekenstein, Rivka; Liu, Hui; Zhu, Shining; Segev, Mordechai
2016-01-01
The past decade has witnessed remarkable progress in wavefront shaping, including shaping of beams in free space, of plasmonic wavepackets and of electronic wavefunctions. In all of these, the wavefront shaping was achieved by external means such as masks, gratings and reflection from metasurfaces. Here, we propose wavefront shaping by exploiting general relativity (GR) effects in waveguide settings. We demonstrate beam shaping within dielectric slab samples with predesigned refractive index varying so as to create curved space environment for light. We use this technique to construct very narrow non-diffracting beams and shape-invariant beams accelerating on arbitrary trajectories. Importantly, the beam transformations occur within a mere distance of 40 wavelengths, suggesting that GR can inspire any wavefront shaping in highly tight waveguide settings. In such settings, we demonstrate Einstein's Rings: a phenomenon dating back to 1936. PMID:26899285
Wavefront shaping through emulated curved space in waveguide settings.
Sheng, Chong; Bekenstein, Rivka; Liu, Hui; Zhu, Shining; Segev, Mordechai
2016-01-01
The past decade has witnessed remarkable progress in wavefront shaping, including shaping of beams in free space, of plasmonic wavepackets and of electronic wavefunctions. In all of these, the wavefront shaping was achieved by external means such as masks, gratings and reflection from metasurfaces. Here, we propose wavefront shaping by exploiting general relativity (GR) effects in waveguide settings. We demonstrate beam shaping within dielectric slab samples with predesigned refractive index varying so as to create curved space environment for light. We use this technique to construct very narrow non-diffracting beams and shape-invariant beams accelerating on arbitrary trajectories. Importantly, the beam transformations occur within a mere distance of 40 wavelengths, suggesting that GR can inspire any wavefront shaping in highly tight waveguide settings. In such settings, we demonstrate Einstein's Rings: a phenomenon dating back to 1936. PMID:26899285
Skeldon, Mark D.; Letzring, Samuel A.
1999-03-23
Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses.
Skeldon, M.D.; Letzring, S.A.
1999-03-23
Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses. 8 figs.
Improving the S-Shape Solar Radiation Estimation Method for Supporting Crop Models
Fodor, Nándor
2012-01-01
In line with the critical comments formulated in relation to the S-shape global solar radiation estimation method, the original formula was improved via a 5-step procedure. The improved method was compared to four-reference methods on a large North-American database. According to the investigated error indicators, the final 7-parameter S-shape method has the same or even better estimation efficiency than the original formula. The improved formula is able to provide radiation estimates with a particularly low error pattern index (PIdoy) which is especially important concerning the usability of the estimated radiation values in crop models. Using site-specific calibration, the radiation estimates of the improved S-shape method caused an average of 2.72 ± 1.02 (α = 0.05) relative error in the calculated biomass. Using only readily available site specific metadata the radiation estimates caused less than 5% relative error in the crop model calculations when they were used for locations in the middle, plain territories of the USA. PMID:22645451
Body Mass Index, Perceived Health, and Happiness: Their Determinants and Structural Relationships
ERIC Educational Resources Information Center
Cornelisse-Vermaat, Judith R.; Antonides, Gerrit; Van Ophem, Johan A. C.; Van Den Brink, Henriette Maassen
2006-01-01
The structural relationships between body mass index, perceived health and happiness have been studied in a survey of 700 native Dutch citizens. We found an indirect effect of body mass index on happiness, via perceived health. Age had an inverted U-shaped relationship with body mass index, and both education and smoking had a negative effect on…
Needs for Research in Indexing.
ERIC Educational Resources Information Center
Milstead, Jessica L.
1994-01-01
Uncovers issues in indexing that need scientific research, including the cognitive processes of indexers and users; vocabulary control; how best to supplement human indexers' intellectual effort with computer capabilities; structure and layout of indexes on the printed page and on the computer screen; and evaluation of indexes. (Contains 21…
On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...
2010-01-01
Background Landmark based geometric morphometrics (GM) allows the quantitative comparison of organismal shapes. When applied to systematics, it is able to score shape changes which often are undetectable by traditional morphological studies and even by classical morphometric approaches. It has thus become a fast and low cost candidate to identify cryptic species. Due to inherent mathematical properties, shape variables derived from one set of coordinates cannot be compared with shape variables derived from another set. Raw coordinates which produce these shape variables could be used for data exchange, however they contain measurement error. The latter may represent a significant obstacle when the objective is to distinguish very similar species. Results We show here that a single user derived dataset produces much less classification error than a multiple one. The question then becomes how to circumvent the lack of exchangeability of shape variables while preserving a single user dataset. A solution to this question could lead to the creation of a relatively fast and inexpensive systematic tool adapted for the recognition of cryptic species. Conclusions To preserve both exchangeability of shape and a single user derived dataset, our suggestion is to create a free access bank of reference images from which one can produce raw coordinates and use them for comparison with external specimens. Thus, we propose an alternative geometric descriptive system that separates 2-D data gathering and analyzes. PMID:20964872
NASA Astrophysics Data System (ADS)
Kirschner, Matthias; Wesarg, Stefan
2011-03-01
Active Shape Models (ASMs) are a popular family of segmentation algorithms which combine local appearance models for boundary detection with a statistical shape model (SSM). They are especially popular in medical imaging due to their ability for fast and accurate segmentation of anatomical structures even in large and noisy 3D images. A well-known limitation of ASMs is that the shape constraints are over-restrictive, because the segmentations are bounded by the Principal Component Analysis (PCA) subspace learned from the training data. To overcome this limitation, we propose a new energy minimization approach which combines an external image energy with an internal shape model energy. Our shape energy uses the Distance From Feature Space (DFFS) concept to allow deviations from the PCA subspace in a theoretically sound and computationally fast way. In contrast to previous approaches, our model does not rely on post-processing with constrained free-form deformation or additional complex local energy models. In addition to the energy minimization approach, we propose a new method for liver detection, a new method for initializing an SSM and an improved k-Nearest Neighbour (kNN)-classifier for boundary detection. Our ASM is evaluated with leave-one-out tests on a data set with 34 tomographic CT scans of the liver and is compared to an ASM with standard shape constraints. The quantitative results of our experiments show that we achieve higher segmentation accuracy with our energy minimization approach than with standard shape constraints.nym
Scattering from arbitrarily shaped microstrip patch antennas
NASA Technical Reports Server (NTRS)
Shively, David G.; Deshpande, Manohar D.; Cockrell, Capers R.
1992-01-01
The scattering properties of arbitrarily shaped microstrip patch antennas are examined. The electric field integral equation for a current element on a grounded dielectric slab is developed for a rectangular geometry based on Galerkin's technique with subdomain rooftop basis functions. A shape function is introduced that allows a rectangular grid approximation to the arbitrarily shaped patch. The incident field on the patch is expressed as a function of incidence angle theta(i), phi(i). The resulting system of equations is then solved for the unknown current modes on the patch, and the electromagnetic scattering is calculated for a given angle. Comparisons are made with other calculated results as well as with measurements.
Delving Deeper: Transforming Shapes Physically and Analytically
ERIC Educational Resources Information Center
Rathouz, Margaret; Novak, Christopher; Clifford, John
2013-01-01
Constructing formulas "from scratch" for calculating geometric measurements of shapes--for example, the area of a triangle--involves reasoning deductively and drawing connections between different methods (Usnick, Lamphere, and Bright 1992). Visual and manipulative models also play a role in helping students understand the underlying…
The Shape of a Baseball Field.
ERIC Educational Resources Information Center
Eisner, Milton P.
1993-01-01
Uses conic sections, trigonometric functions, and polar coordinates to solve the problem of determining the shape of a baseball outfield fence, given the distances along the foul lines and to straightaway center field. Graphing programs and calculators are utilized to plot different solutions. (MDH)
NASA Astrophysics Data System (ADS)
Santo, Loredana
2016-02-01
Recent advances in shape memory polymer (SMP) foam research are reviewed. The SMPs belong to a new class of smart polymers which can have interesting applications in microelectromechanical systems, actuators and biomedical devices. They can respond to specific external stimulus changing their configuration and then remember the original shape. In the form of foams, the shape memory behaviour can be enhanced because they generally have higher compressibility. Considering also the low weight, and recovery force, the SMP foams are expected to have great potential applications primarily in aerospace. This review highlights the recent progress in characterization, evaluation, and proposed applications of SMP foams mainly for aerospace applications.
NASA Astrophysics Data System (ADS)
Tatartchenko, Vitali A.
Crystals of specified shape and size (shaped crystals) with controlled crystal growth (SCG) defect and impurity structure have to be grown for the successful development of modern engineering. Since the 1950s many hundreds of papers and patents concerned with shaped growth have been published. In this chapter, we do not try to enumerate the successful applications of shaped growth to different materials but rather to carry out a fundamental physical and mathematical analysis of shaping as well as the peculiarities of shaped crystal structures. Four main techniques, based on which the lateral surface can be shaped without contact with the container walls, are analyzed: the Czochralski technique (CZT), the Verneuil technique (VT), the floating zone technique (FZT), and technique of pulling from shaper (TPS). Modifications of these techniques are analyzed as well. In all these techniques the shape of the melt meniscus is controlled by surface tension forces, i.e., capillary forces, and here they are classified as capillary shaping techniques (CST). We look for conditions under which the crystal growth process in each CST is dynamically stable. Only in this case are all perturbations attenuated and a crystal of constant cross section shaping technique (CST) grown without any special regulation. The dynamic stability theory of the crystal growth process for all CST is developed on the basis of Lyapunov's dynamic stability theory. Lyapunov's equations for the crystal growth processes follow from fundamental laws. The results of the theory allow the choice of stable regimes for crystal growth by all CST as well as special designs of shapers in TPS. SCG experiments by CZT, VT, and FZT are discussed but the main consideration is given to TPS. Shapers not only allow crystal of very complicated cross section to be grown but provide a special distribution of impurities. A history of TPS is provided later in the chapter, because it can only be described after explanation of the
Quarantine document system indexing procedure
NASA Technical Reports Server (NTRS)
1972-01-01
The Quarantine Document System (QDS) is described including the indexing procedures and thesaurus of indexing terms. The QDS consists of these functional elements: acquisition, cataloging, indexing, storage, and retrieval. A complete listing of the collection, and the thesaurus are included.
Eberl, D.D.; Velde, B.
1989-01-01
The value of peak width at half-height for the illite 001 XRD reflection is known as the Kubler index or the illite "crystallinity' index. This measurement, which has been related to the degree of metamorphism of very low-grade, pelitic rocks, is a function of at least two crystal-chemical factors: 1) illite X-ray scattering domain size; and 2) illite structural distortions (especially swelling). Reynolds' NEWMOD computer program is used to construct a grid with which these two contributions to illite peak width can be determined independently from measurements of the 001 peak width at half-height and the Srodon intensity ratio. This method yields more information about changes undergone by illite during metamorphism than application of the Kubler index method alone. -Authors
Electrostatically shaped membranes
NASA Technical Reports Server (NTRS)
Silverberg, Larry M. (Inventor)
1994-01-01
Disclosed is a method and apparatus for electrostatically shaping a membrane suitable for use in antennas or the like, comprising an electrically conductive thin membrane where the periphery of said membrane is free to move in at least one direction, a first charge on the electrically conductive thin membrane to electrostatically stiffen the membrane, a second charge which shapes the electrostatically stiffened thin membrane and a restraint for limiting the movement of at least one point of the thin membrane relative to the second charge. Also disclosed is a method and apparatus for adaptively controlling the shape of the thin membrane by sensing the shape of the membrane and selectively controlling the first and second charge to achieve a desired performance characteristic of the membrane.
Total Gaussian curvature, drop shapes and the range of applicability of drop shape techniques.
Saad, Sameh M I; Neumann, A Wilhelm
2014-02-01
Drop shape techniques are used extensively for surface tension measurement. It is well-documented that, as the drop/bubble shape becomes close to spherical, the performance of all drop shape techniques deteriorates. There have been efforts quantifying the range of applicability of drop techniques by studying the deviation of Laplacian drops from the spherical shape. A shape parameter was introduced in the literature and was modified several times to accommodate different drop constellations. However, new problems arise every time a new configuration is considered. Therefore, there is a need for a universal shape parameter applicable to pendant drops, sessile drops, liquid bridges as well as captive bubbles. In this work, the use of the total Gaussian curvature in a unified approach for the shape parameter is introduced for that purpose. The total Gaussian curvature is a dimensionless quantity that is commonly used in differential geometry and surface thermodynamics, and can be easily calculated for different Laplacian drop shapes. The new definition of the shape parameter using the total Gaussian curvature is applied here to both pendant and constrained sessile drops as an illustration. The analysis showed that the new definition is superior and reflects experimental results better than previous definitions, especially at extreme values of the Bond number.
Total Gaussian curvature, drop shapes and the range of applicability of drop shape techniques.
Saad, Sameh M I; Neumann, A Wilhelm
2014-02-01
Drop shape techniques are used extensively for surface tension measurement. It is well-documented that, as the drop/bubble shape becomes close to spherical, the performance of all drop shape techniques deteriorates. There have been efforts quantifying the range of applicability of drop techniques by studying the deviation of Laplacian drops from the spherical shape. A shape parameter was introduced in the literature and was modified several times to accommodate different drop constellations. However, new problems arise every time a new configuration is considered. Therefore, there is a need for a universal shape parameter applicable to pendant drops, sessile drops, liquid bridges as well as captive bubbles. In this work, the use of the total Gaussian curvature in a unified approach for the shape parameter is introduced for that purpose. The total Gaussian curvature is a dimensionless quantity that is commonly used in differential geometry and surface thermodynamics, and can be easily calculated for different Laplacian drop shapes. The new definition of the shape parameter using the total Gaussian curvature is applied here to both pendant and constrained sessile drops as an illustration. The analysis showed that the new definition is superior and reflects experimental results better than previous definitions, especially at extreme values of the Bond number. PMID:24373931
The pulsar spectral index distribution
NASA Astrophysics Data System (ADS)
Bates, S. D.; Lorimer, D. R.; Verbiest, J. P. W.
2013-05-01
The flux-density spectra of radio pulsars are known to be steep and, to first order, described by a power-law relationship of the form Sν ∝ να, where Sν is the flux density at some frequency ν and α is the spectral index. Although measurements of α have been made over the years for several hundred pulsars, a study of the intrinsic distribution of pulsar spectra has not been carried out. From the result of pulsar surveys carried out at three different radio frequencies, we use population synthesis techniques and a likelihood analysis to deduce what underlying spectral index distribution is required to replicate the results of these surveys. We find that in general the results of the surveys can be modelled by a Gaussian distribution of spectral indices with a mean of -1.4 and unit standard deviation. We also consider the impact of the so-called gigahertz-peaked spectrum pulsars proposed by Kijak et al. The fraction of peaked-spectrum sources in the population with any significant turnover at low frequencies appears to be at most 10 per cent. We demonstrate that high-frequency (>2 GHz) surveys preferentially select flatter spectrum pulsars and the converse is true for lower frequency (<1 GHz) surveys. This implies that any correlations between α and other pulsar parameters (for example age or magnetic field) need to carefully account for selection biases in pulsar surveys. We also expect that many known pulsars which have been detected at high frequencies will have shallow, or positive, spectral indices. The majority of pulsars do not have recorded flux density measurements over a wide frequency range, making it impossible to constrain their spectral shapes. We also suggest that such measurements would allow an improved description of any populations of pulsars with `non-standard' spectra. Further refinements to this picture will soon be possible from the results of surveys with the Green Bank Telescope and LOFAR.
Universality of fragment shapes
Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea
2015-01-01
The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism. PMID:25772300
On Characterizing Particle Shape
NASA Technical Reports Server (NTRS)
Ennis, Bryan J.; Rickman, Douglas; Rollins, A. Brent; Ennis, Brandon
2014-01-01
It is well known that particle shape affects flow characteristics of granular materials, as well as a variety of other solids processing issues such as compaction, rheology, filtration and other two-phase flow problems. The impact of shape crosses many diverse and commercially important applications, including pharmaceuticals, civil engineering, metallurgy, health, and food processing. Two applications studied here include the dry solids flow of lunar simulants (e.g. JSC-1, NU-LHT-2M, OB-1), and the flow properties of wet concrete, including final compressive strength. A multi-dimensional generalized, engineering method to quantitatively characterize particle shapes has been developed, applicable to both single particle orientation and multi-particle assemblies. The two-dimension, three dimension inversion problem is also treated, and the application of these methods to DEM model particles will be discussed. In the case of lunar simulants, flow properties of six lunar simulants have been measured, and the impact of particle shape on flowability - as characterized by the shape method developed here -- is discussed, especially in the context of three simulants of similar size range. In the context of concrete processing, concrete construction is a major contributor to greenhouse gas production, of which the major contributor is cement binding loading. Any optimization in concrete rheology and packing that can reduce cement loading and improve strength loading can also reduce currently required construction safety factors. The characterization approach here is also demonstrated for the impact of rock aggregate shape on concrete slump rheology and dry compressive strength.
Lendlein, Andreas; Kelch, Steffen
2002-06-17
Material scientists predict a prominent role in the future for self-repairing and intelligent materials. Throughout the last few years, this concept has found growing interest as a result of the rise of a new class of polymers. These so-called shape-memory polymers by far surpass well-known metallic shape-memory alloys in their shape-memory properties. As a consequence of the relatively easy manufacture and programming of shape-memory polymers, these materials represent a cheap and efficient alternative to well-established shape-memory alloys. In shape-memory polymers, the consequences of an intended or accidental deformation caused by an external force can be ironed out by heating the material above a defined transition temperature. This effect can be achieved because of the given flexibility of the polymer chains. When the importance of polymeric materials in our daily life is taken into consideration, we find a very broad, additional spectrum of possible applications for intelligent polymers that covers an area from minimally invasive surgery, through high-performance textiles, up to self-repairing plastic components in every kind of transportation vehicles.
Universality of fragment shapes.
Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea
2015-01-01
The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism. PMID:25772300
String and Sticky Tape Experiments: Refractive Index of Liquids.
ERIC Educational Resources Information Center
Edge, R. D., Ed.
1979-01-01
Describes a simple method of measuring the refractive index of a liquid using a paper cup, a liquid, a pencil, and a ruler. Uses the ratio between the actual depth and the apparent depth of the cup to calculate the refractive index. (GA)
NASA Astrophysics Data System (ADS)
Davies, C. S.; Kruglyak, V. V.
2015-10-01
The wave solutions of the Landau-Lifshitz equation (spin waves) are characterized by some of the most complex and peculiar dispersion relations among all waves. For example, the spin-wave ("magnonic") dispersion can range from the parabolic law (typical for a quantum-mechanical electron) at short wavelengths to the nonanalytical linear type (typical for light and acoustic phonons) at long wavelengths. Moreover, the long-wavelength magnonic dispersion has a gap and is inherently anisotropic, being naturally negative for a range of relative orientations between the effective field and the spin-wave wave vector. Nonuniformities in the effective field and magnetization configurations enable the guiding and steering of spin waves in a deliberate manner and therefore represent landscapes of graded refractive index (graded magnonic index). By analogy to the fields of graded-index photonics and transformation optics, the studies of spin waves in graded magnonic landscapes can be united under the umbrella of the graded-index magnonics theme and are reviewed here with focus on the challenges and opportunities ahead of this exciting research direction.
NASA Astrophysics Data System (ADS)
Gonzàlez-Aranguena, Enrique; Khmelnitskaya, Anna; Manuel, Conrado; del Pozo, Mónica
2011-09-01
We define an index of social capital using game-theoretical concepts. We assume that interests of individuals are presented by means of a cooperative game which take into account possible different players abilities whereas the network of relations is modeled by a graph. The social capital of each actor is then measured as the difference between his Myerson value and his Shapley value.
NASA Technical Reports Server (NTRS)
1976-01-01
An index is provided to representative photographs and transparencies available from NASA. Subjects include spacecraft, astronauts, lunar surface, planets and outer space phenomena, earth observations, and aviation. High altitude aircraft infrared photographs are included along with artists' conceptions of space shuttle and space colonies.
ERIC Educational Resources Information Center
Moore, Kristin Anderson; Vandivere, Sharon; Redd, Zakia
2006-01-01
In this paper, we conceptualize and develop an index of sociodemographic risk that we hypothesize will be an improvement over the standard poverty measure as a measure of risk for children's development. The poverty line is widely used in government statistics and in research but is also widely acknowledged to have multiple shortcomings. Using…
Gradient Refractive Index Lenses.
ERIC Educational Resources Information Center
Morton, N.
1984-01-01
Describes the nature of gradient refractive index (GRIN) lenses, focusing on refraction in these materials, focal length of a thin Wood lens, and on manufacturing of such lenses. Indicates that GRIN lenses of small cross section are in limited production with applications suggested for optical communication and photocopying fields. (JN)
ERIC Educational Resources Information Center
Bracey, Gerald W.
2000-01-01
U.S. taxpayers score lower on the "Forbes" Misery Index than taxpayers of other industrialized nations. A recent report concludes that public-school students challenge their schools more than private-school counterparts. Low birth weight and demographic factors (gender, poverty, and race) affect Florida's burgeoning special-education placements.…
ERIC Educational Resources Information Center
Smith, Allister
2005-01-01
Index for Inclusion is a programme to assist in developing learning and participation in schools. It was written by Tony Booth and Mel Ainscow from the Centre for Studies on Inclusive Education, UK. Central Normal School was pleased to have the opportunity to trial this programme.
Shapes of Interacting RNA Complexes
Fu, Benjamin M.M.
2014-01-01
Abstract Shapes of interacting RNA complexes are studied using a filtration via their topological genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and eliminating hairpin loops. This shape projection preserves the topological core of the RNA complex, and for fixed topological genus there are only finitely many such shapes. Our main result is a new bijection that relates the shapes of RNA complexes with shapes of RNA structures. This allows for computing the shape polynomial of RNA complexes via the shape polynomial of RNA structures. We furthermore present a linear time uniform sampling algorithm for shapes of RNA complexes of fixed topological genus. PMID:25075750
Review of methods to derive a Polar Cap (PC) index.
NASA Astrophysics Data System (ADS)
Stauning, Peter
2016-07-01
Since a Polar Cap (PC) index was introduced in 1985, several different methods have been used to derive index values. Basically, the northern (PCN) and southern (PCS) are based on geomagnetic recordings at Qaanaaq (Thule) and Vostok, respectively. However, different derivation methods can give index values differing by more than a factor 2. The PC indices are used, among other, in scientific analyses to link solar wind conditions to relevant geophysical effects and in forecast efforts to establish numerical criteria for imminent risk of geomagnetic storms and substorms. Thus, it is unfortunate that several different versions of the PC index have been in use, often without specifically mentioning the index version being used or without ensuring that proper documention and specification of the derivation method is available. The presentation shall briefly describe the basic calculation of a Polar Cap index and point specifically to the differences between the different derivation methods and to the consequences for the index values
High-Index Facets in Gold Nanocrystals Elucidated by Coherent Electron Diffraction
Shah, Amish B.; Sivapalan, Sean T.; DeVetter, Brent M.; Yang, Timothy K.; Wen, Jianguo; Bhargava, Rohit; Murphy, Catherine J.; Zuo, Jian-Min
2013-01-01
Characterization of high index facets in noble metal nanocrystals for plasmonics and catalysis has been a challenge due to their small sizes and complex shapes. Here, we present an approach to determine the high index facets of nanocrystals using streaked Bragg reflections in coherent electron diffraction patterns, and provide a comparison of high index facets on unusual nanostructures such as trisoctahedra. We report new high index facets in trisoctahedra and previous unappreciated diversity in facet sharpness. PMID:23484620
Indexing Theory and Retrieval Effectiveness.
ERIC Educational Resources Information Center
Robertson, Stephen E.
1978-01-01
Describes recent attempts to make explicit connections between the indexing process and the use of the index or information retrieval system, particularly the utility-theoretic and automatic indexing models of William Cooper and Stephen Harter. Theory and performance, information storage and retrieval, search stage feedback, and indexing are also…
Automatic Indexing of Full Texts.
ERIC Educational Resources Information Center
Jonak, Zdenek
1984-01-01
Demonstrates efficiency of preparation of query description using semantic analyser method based on analysis of semantic structure of documents in field of automatic indexing. Results obtained are compared with automatic indexing results performed by traditional methods and results of indexing done by human indexers. Sample terms and codes are…
Fiber optic refractive index monitor
Weiss, Jonathan David
2002-01-01
A sensor for measuring the change in refractive index of a liquid uses the lowest critical angle of a normal fiber optic to achieve sensitivity when the index of the liquid is significantly less than the index of the fiber core. Another embodiment uses a liquid filled core to ensure that its index is approximately the same as the liquid being measured.
Technical Seminar "Shape Memory Alloys"
Shape memory alloys are a unique group of materials that remember their original shape and return to that shape after being strained. How could the aerospace, automotive, and energy exploration ind...
Determination of average refractive index of spin coated DCG films for HOE fabrication
NASA Technical Reports Server (NTRS)
Kim, T. J.; Campbell, Eugene W.; Kostuk, Raymond K.
1993-01-01
The refractive index of holographic emulsions is an important parameter needed for designing holographic optical elements (HOE's). Theoretical calculations of the accuracy required for the refractive index and thickness of emulsions needed to meet predetermined Bragg angle conditions are presented. A modified interferometric method is used to find average refractive index of the unexposed and the developed dichromated gelatin holographic films. Slanted transmission HOE's are designed considering the index and thickness variations, and used to verify the index measurement results. The Brewster angle method is used to measure surface index of the unexposed and the developed films. The differences between average index and surface index are discussed. Theoretical calculation of the effects of index variation on diffraction efficiency, and experimental results for index modulation variation caused by process changes are also presented.
Shape memory polymer medical device
Maitland, Duncan; Benett, William J.; Bearinger, Jane P.; Wilson, Thomas S.; Small, IV, Ward; Schumann, Daniel L.; Jensen, Wayne A.; Ortega, Jason M.; Marion, III, John E.; Loge, Jeffrey M.
2010-06-29
A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.
Abstracting and indexing guide
U.S. Department of the Interior; Office of Water Resources Research
1974-01-01
These instructions have been prepared for those who abstract and index scientific and technical documents for the Water Resources Scientific Information Center (WRSIC). With the recent publication growth in all fields, information centers have undertaken the task of keeping the various scientific communities aware of current and past developments. An abstract with carefully selected index terms offers the user of WRSIC services a more rapid means for deciding whether a document is pertinent to his needs and professional interests, thus saving him the time necessary to scan the complete work. These means also provide WRSIC with a document representation or surrogate which is more easily stored and manipulated to produce various services. Authors are asked to accept the responsibility for preparing abstracts of their own papers to facilitate quick evaluation, announcement, and dissemination to the scientific community.
Polarizability calculations on water, hydrogen, oxygen, and carbon dioxide
NASA Technical Reports Server (NTRS)
Nir, S.; Adams, S.; Rein, R.
1973-01-01
A semiclassical model of damped oscillators is used as a basis for the calculation of the dispersion of the refractive index, polarizability, and dielectric permeability in water, hydrogen, and oxygen in liquid and gaseous states, and in gaseous carbon dioxide. The absorption coefficient and the imaginary part of the refractive index are also calculated at corresponding wavelengths. A good agreement is obtained between the observed and calculated values of refractive indices, and between those of absorption coefficients in the region of absorption bands. The calculated values of oscillator strengths and damping factors are also discussed. The value of the polarizability of liquid water was about 2.8 times that of previous calculations.
Body Shape Preferences: Associations with Rater Body Shape and Sociosexuality
Price, Michael E.; Pound, Nicholas; Dunn, James; Hopkins, Sian; Kang, Jinsheng
2013-01-01
There is accumulating evidence of condition-dependent mate choice in many species, that is, individual preferences varying in strength according to the condition of the chooser. In humans, for example, people with more attractive faces/bodies, and who are higher in sociosexuality, exhibit stronger preferences for attractive traits in opposite-sex faces/bodies. However, previous studies have tended to use only relatively simple, isolated measures of rater attractiveness. Here we use 3D body scanning technology to examine associations between strength of rater preferences for attractive traits in opposite-sex bodies, and raters’ body shape, self-perceived attractiveness, and sociosexuality. For 118 raters and 80 stimuli models, we used a 3D scanner to extract body measurements associated with attractiveness (male waist-chest ratio [WCR], female waist-hip ratio [WHR], and volume-height index [VHI] in both sexes) and also measured rater self-perceived attractiveness and sociosexuality. As expected, WHR and VHI were important predictors of female body attractiveness, while WCR and VHI were important predictors of male body attractiveness. Results indicated that male rater sociosexuality scores were positively associated with strength of preference for attractive (low) VHI and attractive (low) WHR in female bodies. Moreover, male rater self-perceived attractiveness was positively associated with strength of preference for low VHI in female bodies. The only evidence of condition-dependent preferences in females was a positive association between attractive VHI in female raters and preferences for attractive (low) WCR in male bodies. No other significant associations were observed in either sex between aspects of rater body shape and strength of preferences for attractive opposite-sex body traits. These results suggest that among male raters, rater self-perceived attractiveness and sociosexuality are important predictors of preference strength for attractive opposite
Indexing Similar DNA Sequences
NASA Astrophysics Data System (ADS)
Huang, Songbo; Lam, T. W.; Sung, W. K.; Tam, S. L.; Yiu, S. M.
To study the genetic variations of a species, one basic operation is to search for occurrences of patterns in a large number of very similar genomic sequences. To build an indexing data structure on the concatenation of all sequences may require a lot of memory. In this paper, we propose a new scheme to index highly similar sequences by taking advantage of the similarity among the sequences. To store r sequences with k common segments, our index requires only O(n + NlogN) bits of memory, where n is the total length of the common segments and N is the total length of the distinct regions in all texts. The total length of all sequences is rn + N, and any scheme to store these sequences requires Ω(n + N) bits. Searching for a pattern P of length m takes O(m + m logN + m log(rk)psc(P) + occlogn), where psc(P) is the number of prefixes of P that appear as a suffix of some common segments and occ is the number of occurrences of P in all sequences. In practice, rk ≤ N, and psc(P) is usually a small constant. We have implemented our solution and evaluated our solution using real DNA sequences. The experiments show that the memory requirement of our solution is much less than that required by BWT built on the concatenation of all sequences. When compared to the other existing solution (RLCSA), we use less memory with faster searching time.
NASA Astrophysics Data System (ADS)
Anderson, Gustave
2014-05-01
Unfortunately, there is no metric, nor set of metrics, that are both general enough to encompass all possible types of applications yet specific enough to capture the application and attack specific details. As a result we are left with ad-hoc methods for generating evaluations of the security of our systems. Current state of the art methods for evaluating the security of systems include penetration testing and cyber evaluation tests. For these evaluations, security professionals simulate an attack from malicious outsiders and malicious insiders. These evaluations are very productive and are able to discover potential vulnerabilities resulting from improper system configuration, hardware and software flaws, or operational weaknesses. We therefore propose the index of cyber integrity (ICI), which is modeled after the index of biological integrity (IBI) to provide a holistic measure of the health of a system under test in a cyber-environment. The ICI provides a broad base measure through a collection of application and system specific metrics. In this paper, following the example of the IBI, we demonstrate how a multi-metric index may be used as a holistic measure of the health of a system under test in a cyber-environment.
NASA Technical Reports Server (NTRS)
Ostro, S. J.; Rosema, K. D.; Jurgens, R. F.
1990-01-01
Monte Carlo simulations are presently used to optimize estimation, ascertain associated errors, and guide bias-correction procedures, for the Eros polar silhouette convex hull that has been estimated from radar echo spectra. This hull is trapezoidal; this nonaxisymmetric shape may account for odd harmonics in Eros' echo spectral signature as a function of rotation phase. Additional constraints have been obtained for the figure of Eros through the inversion of the optical lightcurve to estimate the asteroid's two-dimensional average of the three-dimensional shape. This 'mean cross-section' and the polar silhouette exhibit similar elongations.
Distillation Calculations with a Programmable Calculator.
ERIC Educational Resources Information Center
Walker, Charles A.; Halpern, Bret L.
1983-01-01
Describes a three-step approach for teaching multicomponent distillation to undergraduates, emphasizing patterns of distribution as an aid to understanding the separation processes. Indicates that the second step can be carried out by programmable calculators. (A more complete set of programs for additional calculations is available from the…
Reconstructing liver shape and position from MR image slices using an active shape model
NASA Astrophysics Data System (ADS)
Fenchel, Matthias; Thesen, Stefan; Schilling, Andreas
2008-03-01
We present an algorithm for fully automatic reconstruction of 3D position, orientation and shape of the human liver from a sparsely covering set of n 2D MR slice images. Reconstructing the shape of an organ from slice images can be used for scan planning, for surgical planning or other purposes where 3D anatomical knowledge has to be inferred from sparse slices. The algorithm is based on adapting an active shape model of the liver surface to a given set of slice images. The active shape model is created from a training set of liver segmentations from a group of volunteers. The training set is set up with semi-manual segmentations of T1-weighted volumetric MR images. Searching for the optimal shape model that best fits to the image data is done by maximizing a similarity measure based on local appearance at the surface. Two different algorithms for the active shape model search are proposed and compared: both algorithms seek to maximize the a-posteriori probability of the grey level appearance around the surface while constraining the surface to the space of valid shapes. The first algorithm works by using grey value profile statistics in normal direction. The second algorithm uses average and variance images to calculate the local surface appearance on the fly. Both algorithms are validated by fitting the active shape model to abdominal 2D slice images and comparing the shapes, which have been reconstructed, to the manual segmentations and to the results of active shape model searches from 3D image data. The results turn out to be promising and competitive to active shape model segmentations from 3D data.
Statistical Shape Modeling of Cam Femoroacetabular Impingement
Harris, Michael D.; Dater, Manasi; Whitaker, Ross; Jurrus, Elizabeth R.; Peters, Christopher L.; Anderson, Andrew E.
2013-10-01
In this study, statistical shape modeling (SSM) was used to quantify three-dimensional (3D) variation and morphologic differences between femurs with and without cam femoroacetabular impingement (FAI). 3D surfaces were generated from CT scans of femurs from 41 controls and 30 cam FAI patients. SSM correspondence particles were optimally positioned on each surface using a gradient descent energy function. Mean shapes for control and patient groups were defined from the resulting particle configurations. Morphological differences between group mean shapes and between the control mean and individual patients were calculated. Principal component analysis was used to describe anatomical variation present in both groups. The first 6 modes (or principal components) captured statistically significant shape variations, which comprised 84% of cumulative variation among the femurs. Shape variation was greatest in femoral offset, greater trochanter height, and the head-neck junction. The mean cam femur shape protruded above the control mean by a maximum of 3.3 mm with sustained protrusions of 2.5-3.0 mm along the anterolateral head-neck junction and distally along the anterior neck, corresponding well with reported cam lesion locations and soft-tissue damage. This study provides initial evidence that SSM can describe variations in femoral morphology in both controls and cam FAI patients and may be useful for developing new measurements of pathological anatomy. SSM may also be applied to characterize cam FAI severity and provide templates to guide patient-specific surgical resection of bone.
Ko Displacement Theory for Structural Shape Predictions
NASA Technical Reports Server (NTRS)
Ko, William L.
2010-01-01
The development of the Ko displacement theory for predictions of structure deformed shapes was motivated in 2003 by the Helios flying wing, which had a 247-ft (75-m) wing span with wingtip deflections reaching 40 ft (12 m). The Helios flying wing failed in midair in June 2003, creating the need to develop new technology to predict in-flight deformed shapes of unmanned aircraft wings for visual display before the ground-based pilots. Any types of strain sensors installed on a structure can only sense the surface strains, but are incapable to sense the overall deformed shapes of structures. After the invention of the Ko displacement theory, predictions of structure deformed shapes could be achieved by feeding the measured surface strains into the Ko displacement transfer functions for the calculations of out-of-plane deflections and cross sectional rotations at multiple locations for mapping out overall deformed shapes of the structures. The new Ko displacement theory combined with a strain-sensing system thus created a revolutionary new structure- shape-sensing technology.
Shape-controlled nanostructures in heterogeneous catalysis.
Zaera, Francisco
2013-10-01
Nanotechnologies have provided new methods for the preparation of nanomaterials with well-defined sizes and shapes, and many of those procedures have been recently implemented for applications in heterogeneous catalysis. The control of nanoparticle shape in particular offers the promise of a better definition of catalytic activity and selectivity through the optimization of the structure of the catalytic active site. This extension of new nanoparticle synthetic procedures to catalysis is in its early stages, but has shown some promising leads already. Here, we survey the major issues associated with this nanotechnology-catalysis synergy. First, we discuss new possibilities associated with distinguishing between the effects originating from nanoparticle size versus those originating from nanoparticle shape. Next, we survey the information available to date on the use of well-shaped metal and non-metal nanoparticles as active phases to control the surface atom ensembles that define the catalytic site in different catalytic applications. We follow with a brief review of the use of well-defined porous materials for the control of the shape of the space around that catalytic site. A specific example is provided to illustrate how new selective catalysts based on shape-defined nanoparticles can be designed from first principles by using fundamental mechanistic information on the reaction of interest obtained from surface-science experiments and quantum-mechanics calculations. Finally, we conclude with some thoughts on the state of the field in terms of the advances already made, the future potentials, and the possible limitations to be overcome.
NASA Astrophysics Data System (ADS)
Alyami, H. M.; Becerra, V. M.; Hadjiloucas, S.
2013-11-01
The current study discusses new opportunities for secure ground to satellite communications using shaped femtosecond pulses that induce spatial hole burning in the atmosphere for efficient communications with data encoded within super-continua generated by femtosecond pulses. Refractive index variation across the different layers in the atmosphere may be modelled using assumptions that the upper strata of the atmosphere and troposphere behaving as layered composite amorphous dielectric networks composed of resistors and capacitors with different time constants across each layer. Input-output expressions of the dynamics of the networks in the frequency domain provide the transmission characteristics of the propagation medium. Femtosecond pulse shaping may be used to optimize the pulse phase-front and spectral composition across the different layers in the atmosphere. A generic procedure based on evolutionary algorithms to perform the pulse shaping is proposed. In contrast to alternative procedures that would require ab initio modelling and calculations of the propagation constant for the pulse through the atmosphere, the proposed approach is adaptive, compensating for refractive index variations along the column of air between the transmitter and receiver.
ILK Index and Regrowth in Alopecia Areata.
Stallings, Alicia M; Velez, Mara Weinstein; Fiessinger, Lori A; Piliang, Melissa P; Mesinkovska, Natasha A; Kyei, Angela; Bergfeld, Wilma F
2015-11-01
There is insufficient data in the literature concerning optimal intralesional kenalog (ILK) dosing for the treatment of alopecia areata (AA). The purpose of this pilot study was to evaluate the utility of using the ratio of ILK received to initial Severity of Alopecia Tool (SALT) score to guide ILK dosing in patients with AA. Using photographic data from patients at baseline and 4-months follow-up, hair loss in 15 patients treated with AA was retrospectively graded using the SALT scores. The ILK received/initial SALT score (ILK index) was calculated for each patient, and the mean ILK index for patients who experienced significant (≥50%) and suboptimal (<50%) hair regrowth at 4 months follow-up were compared. Patients who experienced suboptimal hair regrowth had a lower ILK index on average than patients who experienced significant improvement. Although the difference did not meet significance (<0.1), the trend suggests that the ILK index, a novel calculation, may be a useful tool for guiding ILK dosing in the treatment of AA.
The shape of beauty: determinants of female physical attractiveness.
Fisher, Maryanne L; Voracek, Martin
2006-06-01
Rarely has one research area gained as much attention as that which is observed for female physical attractiveness. The past decade has resulted in numerous, exciting developments, particularly with respect to three proposed determinants of beauty: waist to hip ratio (WHR), body mass index (BMI), and curvaceousness. The goal of our paper is to provide a highly necessary review of contemporary research on the female attractiveness, including an in-depth examination of these factors. In our review, we first discuss WHR, an index of fat deposition, which is calculated by measuring the circumference of the waist compared to the circumference of the hips. WHR is controlled by the sex hormones, and increases as women age, and hence, may influence perceptions of attractiveness. This factor has been hotly contested, as some researchers have claimed that a WHR of approximately 0.7 is universally most attractive, whereas others have found inconsistent findings, or suggest the importance of other factors, such as BMI. Body mass index (BMI), calculated by dividing the body weight (in kilograms) by height (in meters) squared, serves as a measure of body fat. Although WHR and BMI are correlated, they lead to different conclusions, and the importance of BMI as a measure of female attractiveness is debated in the literature. Similar to WHR research, BMI and its role in attractiveness is not cross-culturally consistent and is affected by the availability of resources within a given environment. It may be the case that both WHR and BMI influence female attractiveness. However, there has been little investigation of this possibility. We have explored this issue in our research, which revealed that both influence attractiveness, but in addition, we noticed that curvaceousness was also a factor. Curvaceousness is the degree of "hourglass" shape as determined, for example, by the size of the bust, relative to the circumference of the hips and waist, and the size of the buttocks. However
Deduction of paternity index from DNA mixture.
Liao, Xiang Hai; Lau, Tai Shang; Ngan, Karenda Fai Ngor; Wang, Jun
2002-08-28
Determination of individual genotypes in DNA mixture remains a challenge in forensic science. Using an approach of mixture of distributions, this article provides formula for calculation of paternity index (PI) in cases where only tissue mixture of the mother and alleged father, the genotypes of the mother and child, but not that of the alleged father are available. The formula has been used to solve a real case using mother's vaginal tissue contaminated with semen from alleged father.
Shape Aftereffects Reflect Shape Constancy Operations: Appearance Matters
ERIC Educational Resources Information Center
Storrs, Katherine R.; Arnold, Derek H.
2013-01-01
One of the oldest known visual aftereffects is the shape aftereffect, wherein looking at a particular shape can make subsequent shapes seem distorted in the opposite direction. After viewing a narrow ellipse, for example, a perfect circle can look like a broad ellipse. It is thought that shape aftereffects are determined by the dimensions of…
Validation of plasma shape reconstruction by Cauchy condition surface method in KSTAR
Miyata, Y.; Suzuki, T.; Ide, S.; Hahn, S. H.; Chung, J.; Bak, J. G.; Ko, W. H.
2014-03-15
Cauchy Condition Surface (CCS) method is a numerical approach to reconstruct the plasma boundary and calculate the quantities related to plasma shape using the magnetic diagnostics in real time. It has been applied to the KSTAR plasma in order to establish the plasma shape reconstruction with the high elongation of plasma shape and the large effect of eddy currents flowing in the tokamak structures for the first time. For applying the CCS calculation to the KSTAR plasma, the effects by the eddy currents and the ferromagnetic materials on the plasma shape reconstruction are studied. The CCS calculation includes the effect of eddy currents and excludes the magnetic diagnostics, which is expected to be influenced largely by ferromagnetic materials. Calculations have been performed to validate the plasma shape reconstruction in 2012 KSTAR experimental campaign. Comparison between the CCS calculation and non-magnetic measurements revealed that the CCS calculation can reconstruct the accurate plasma shape even with a small I{sub P}.
Interactive shape metamorphosis
NASA Technical Reports Server (NTRS)
Chen, David T.; State, Andrei; Banks, David
1994-01-01
A technique for controlled metamorphosis between surfaces in 3-space is described. Well-understood techniques to produce shape metamorphosis between models in a 2D parametric space is applied. The user selects morphable features interactively, and the morphing process executes in real time on a high-performance graphics multicomputer.
NASA Technical Reports Server (NTRS)
Baumbick, Robert J. (Inventor)
2000-01-01
The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.
Pesyna, Colin; Pundi, Krishna; Flanders, Martha
2011-03-01
The neural control of hand movement involves coordination of the sensory, motor, and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In the first experiment, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, and pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support, or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus, somatosensory and motor information appear to be coordinated in an object-based, spatial-coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness. PMID:21389230
ERIC Educational Resources Information Center
OECD Publishing (NJ3), 2010
2010-01-01
"Trends Shaping Education 2010" brings together evidence showing the effects on education of globalisation, social challenges, changes in the workplace, the transformation of childhood, and ICT. To make the content accessible, each trend is presented on a double page, containing an introduction, two charts with brief descriptive text and a set of…
Pesyna, Colin; Pundi, Krishna; Flanders, Martha
2011-01-01
The neural control of hand movement involves coordination of the sensory, motor and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In Experiment 1, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus somatosensory and motor information appear to be coordinated in an object-based, spatial coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness. PMID:21389230
Gross, Michael
2015-10-01
Earth is much more complex than all the other solar system objects that we know. Thanks to its rich and diverse geology, our planet can offer habitats to a wide range of living species. Emerging insights suggest that this is not just a happy coincidence, but that life itself has in many ways helped to shape the planet.
ERIC Educational Resources Information Center
Greenslade, Thomas B., Jr.
2013-01-01
I have used many ploys to start a course in introductory physics, but one of the more interesting ones was to spend 20 minutes describing some of the curves and shapes that we would encounter in our year together. The students saw parabolas, catenaries, hyperbolas, cycloids, circles, ellipses, and helices, and were shown examples, either live or…
Gross, Michael
2015-10-01
Earth is much more complex than all the other solar system objects that we know. Thanks to its rich and diverse geology, our planet can offer habitats to a wide range of living species. Emerging insights suggest that this is not just a happy coincidence, but that life itself has in many ways helped to shape the planet. PMID:26726334
Shaping Adolescent Gambling Behavior.
ERIC Educational Resources Information Center
Arcuri, Alan F.; And Others
1985-01-01
Surveyed the incidence of casino gambling by adolescents. Results indicated that 64 percent of the students at one Atlantic City high school had gambled at the casinos. The dangers of shaping compulsive gambling behavior through societal acceptance of legalized gambling are discussed. (Author/BL)
Sounds Exaggerate Visual Shape
ERIC Educational Resources Information Center
Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru
2012-01-01
While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…
Orbital Shape Representations.
ERIC Educational Resources Information Center
Kikuchi, Osamu; Suzuki, Keizo
1985-01-01
Discusses the use of orbital shapes for instructional purposes, emphasizing that differences between polar, contour, and three-dimensional plots must be made clear to students or misconceptions will occur. Also presents three-dimensional contour surfaces for the seven 4f atomic orbitals of hydrogen and discusses their computer generation. (JN)
New method for calculating shell correction
Salamon, P.; Kruppa, A. T.; Vertse, T.
2010-06-15
A new method is presented for the calculation of the shell correction with the inclusion of the continuum part of the spectrum. The smoothing function used has a finite energy range in contrast to the Gaussian shape of the Strutinski method. The new method is especially useful for light nuclei where the generalized Strutinski procedure cannot be applied.
Autistic Savant Calendar Calculators.
ERIC Educational Resources Information Center
Patti, Paul J.
This study identified 10 savants with developmental disabilities and an exceptional ability to calculate calendar dates. These "calendar calculators" were asked to demonstrate their abilities, and their strategies were analyzed. The study found that the ability to calculate dates into the past or future varied widely among these calculators. Three…
Glycemic index of common Malaysian fruits.
Robert, S Daniel; Ismail, Aziz Al-Safi; Winn, Than; Wolever, Thomas M S
2008-01-01
The objective of the present study was to measure the glycemic index of durian, papaya, pineapple and water-melon grown in Malaysia. Ten (10) healthy volunteers (5 females, 5 males; body mass index 21.18+/-1.7 kg/m2) consumed 50 g of available carbohydrate portions of glucose (reference food) and four test foods (durian, papaya, pineapple and watermelon) in random order after an overnight fast. Glucose was tested on three separate occasions, and the test foods were each tested once. Postprandial plasma glucose was measured at intervals for two hours after intake of the test foods. Incremental areas under the curve were calculated, and the glycemic index was determined by expressing the area under the curve after the test foods as a percentage of the mean area under the curve after glucose. The results showed that the area under the curve after pineapple, 232+/-24 mmolxmin/L, was significantly greater than those after papaya, 147+/-14, watermelon, 139+/-8, and durian, 124+/-13 mmolxmin/L (p<0.05). Similarly, the glycemic index of pineapple, 82+/-4, was significantly greater than those of papaya, 58+/-6, watermelon, 55+/-3, and durian, 49+/-5 (p<0.05). The differences in area under the curve and glycemic index among papaya, watermelon and durian were not statistically significant. We conclude that pineapple has a high glycemic index, whereas papaya is intermediate and watermelon and durian are low glycemic index foods. The validity of these results depends on the accuracy of the data in the food tables upon which the portion sizes tested were based.
Performance reproducibility index for classification
Yousefi, Mohammadmahdi R.; Dougherty, Edward R.
2012-01-01
Motivation: A common practice in biomarker discovery is to decide whether a large laboratory experiment should be carried out based on the results of a preliminary study on a small set of specimens. Consideration of the efficacy of this approach motivates the introduction of a probabilistic measure, for whether a classifier showing promising results in a small-sample preliminary study will perform similarly on a large independent sample. Given the error estimate from the preliminary study, if the probability of reproducible error is low, then there is really no purpose in substantially allocating more resources to a large follow-on study. Indeed, if the probability of the preliminary study providing likely reproducible results is small, then why even perform the preliminary study? Results: This article introduces a reproducibility index for classification, measuring the probability that a sufficiently small error estimate on a small sample will motivate a large follow-on study. We provide a simulation study based on synthetic distribution models that possess known intrinsic classification difficulties and emulate real-world scenarios. We also set up similar simulations on four real datasets to show the consistency of results. The reproducibility indices for different distributional models, real datasets and classification schemes are empirically calculated. The effects of reporting and multiple-rule biases on the reproducibility index are also analyzed. Availability: We have implemented in C code the synthetic data distribution model, classification rules, feature selection routine and error estimation methods. The source code is available at http://gsp.tamu.edu/Publications/supplementary/yousefi12a/. Supplementary simulation results are also included. Contact: edward@ece.tamu.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:22954625
29. TRACK LAYOUT, INDEX TO DRAWINGS AND INDEX TO MATERIALS, ...
29. TRACK LAYOUT, INDEX TO DRAWINGS AND INDEX TO MATERIALS, REED & STEM ARCHITECTS, ST. PAUL, NEW YORK, 1909 (Burlington Northern Collection, Seattle, Washington) - Union Passenger Station Concourse, 1713 Pacific Avenue, Tacoma, Pierce County, WA
Verification of Internal Dose Calculations.
NASA Astrophysics Data System (ADS)
Aissi, Abdelmadjid
The MIRD internal dose calculations have been in use for more than 15 years, but their accuracy has always been questionable. There have been attempts to verify these calculations; however, these attempts had various shortcomings which kept the question of verification of the MIRD data still unanswered. The purpose of this research was to develop techniques and methods to verify the MIRD calculations in a more systematic and scientific manner. The research consisted of improving a volumetric dosimeter, developing molding techniques, and adapting the Monte Carlo computer code ALGAM to the experimental conditions and vice versa. The organic dosimetric system contained TLD-100 powder and could be shaped to represent human organs. The dosimeter possessed excellent characteristics for the measurement of internal absorbed doses, even in the case of the lungs. The molding techniques are inexpensive and were used in the fabrication of dosimetric and radioactive source organs. The adaptation of the computer program provided useful theoretical data with which the experimental measurements were compared. The experimental data and the theoretical calculations were compared for 6 source organ-7 target organ configurations. The results of the comparison indicated the existence of an agreement between measured and calculated absorbed doses, when taking into consideration the average uncertainty (16%) of the measurements, and the average coefficient of variation (10%) of the Monte Carlo calculations. However, analysis of the data gave also an indication that the Monte Carlo method might overestimate the internal absorbed doses. Even if the overestimate exists, at least it could be said that the use of the MIRD method in internal dosimetry was shown to lead to no unnecessary exposure to radiation that could be caused by underestimating the absorbed dose. The experimental and the theoretical data were also used to test the validity of the Reciprocity Theorem for heterogeneous
NASA Astrophysics Data System (ADS)
Daimon, Masahiko; Masumura, Akira
2007-06-01
By the minimum deviation method using a prism shaped cell, the absolute refractive indices of high-performance liquid chromatography distilled water were measured at the wavelengths from 1129 to 182 nm, at the temperature of 19 °C, 21.5 °C, and 24 °C, and then dn/dt at 21.5 °C was calculated. The coefficients of the four-term Sellmeier dispersion formula were determined by using the refractive indices at each temperature. As a result of the comparison of our refractive index data in the visible wavelength region with the formula by Tilton et al. at the National Bureau of Standards in 1938, both the refractive index data corresponded within 6×10-6. In the UV region, the absolute refractive index at 193.39 nm calculated by the data measured nearby the wavelengths from 200 to 190 nm was 1.436517 (21.5 °C). The value was lower by 9×10-5 or 10×10-5 than the data measured by Burnett et al. at the National Institute of Standards and Technology.
An exploration of adult body shape and limb proportions at Kellis 2, Dakhleh Oasis, Egypt.
Bleuze, Michele M; Wheeler, Sandra M; Dupras, Tosha L; Williams, Lana J; El Molto, J
2014-03-01
Several studies have shown that the human body generally conforms to the ecogeographical expectations of Bergmann's and Allen's rules; however, recent evidence suggests that these expectations may not hold completely for some populations. Egypt is located at the crossroads of Sub-Saharan Africa, Southern Europe, and the Near East, and gene flow among groups in these regions may confound ecogeographical patterning. In this study, we test the fit of the adult physique of a large sample (N = 163) of females and males from the Kellis 2 cemetery (Dakhleh Oasis, Egypt) against ecogeographical predictions. Body shape (i.e., body mass relative to stature) was assessed by the femur head diameter to bicondylar femur length index (FHD/BFL), and brachial and crural indices were calculated to examine intralimb proportions. Body shape in the Kellis 2 sample is not significantly different from high-latitude groups and a Lower Nubian sample, and intralimb proportions are not significantly different from mid-latitude and other low-latitude groups. This study demonstrates the potential uniqueness of body shape and intralimb proportions in an ancient Egyptian sample, and further highlights the complex relationship between ecogeographic patterning and adaptation.
Shape memory alloy thaw sensors
Shahinpoor, Mohsen; Martinez, David R.
1998-01-01
A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.
New magnet pole shape for isochronous cyclotrons
Thorn, C.E.; Chasman, C.; Baltz, A.J.
1981-01-01
A new design has been developed for shaping pole tips to produce the radially increasing fields required for isochronous cyclotrons. The conventional solid hill poles are replaced by poles mounted over a small secondary gap which tapers radially from maximum at the magnet edge to zero near the center. Field measurements with a model magnet and calculations with the code TRIM show an increase in field at the edge of the magnet without the usual corresponding large increase in fringing, and a radial field shape more nearly field independent than for conventional hills. The flying hills have several advantages for variable energy multiparticle cyclotrons: (1) a large reduction in the power dissipated by isochronizing trim coils; (2) a more constant shape and magnitude flutter factor, eliminating flutter coils and increasing the operating range; and (3) a sharper fall-off of the fringe field, simplifying beam extraction.
NASA Technical Reports Server (NTRS)
Rogge, Matthew D. (Inventor); Moore, Jason P. (Inventor)
2014-01-01
Shape of a multi-core optical fiber is determined by positioning the fiber in an arbitrary initial shape and measuring strain over the fiber's length using strain sensors. A three-coordinate p-vector is defined for each core as a function of the distance of the corresponding cores from a center point of the fiber and a bending angle of the cores. The method includes calculating, via a controller, an applied strain value of the fiber using the p-vector and the measured strain for each core, and calculating strain due to bending as a function of the measured and the applied strain values. Additionally, an apparent local curvature vector is defined for each core as a function of the calculated strain due to bending. Curvature and bend direction are calculated using the apparent local curvature vector, and fiber shape is determined via the controller using the calculated curvature and bend direction.
The WFIRST Galaxy Survey Exposure Time Calculator
NASA Technical Reports Server (NTRS)
Hirata, Christopher M.; Gehrels, Neil; Kneib, Jean-Paul; Kruk, Jeffrey; Rhodes, Jason; Wang, Yun; Zoubian, Julien
2013-01-01
This document describes the exposure time calculator for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey. The calculator works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and SN determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The source code is made available for public use.
Nuttall, Frank Q.
2015-01-01
The body mass index (BMI) is the metric currently in use for defining anthropometric height/weight characteristics in adults and for classifying (categorizing) them into groups. The common interpretation is that it represents an index of an individual’s fatness. It also is widely used as a risk factor for the development of or the prevalence of several health issues. In addition, it is widely used in determining public health policies.The BMI has been useful in population-based studies by virtue of its wide acceptance in defining specific categories of body mass as a health issue. However, it is increasingly clear that BMI is a rather poor indicator of percent of body fat. Importantly, the BMI also does not capture information on the mass of fat in different body sites. The latter is related not only to untoward health issues but to social issues as well. Lastly, current evidence indicates there is a wide range of BMIs over which mortality risk is modest, and this is age related. All of these issues are discussed in this brief review. PMID:27340299
Keasler, J A
2012-03-27
Vectorization is data parallelism (SIMD, SIMT, etc.) - extension of ISA enabling the same instruction to be performed on multiple data items simultaeously. Many/most CPUs support vectorization in some form. Vectorization is difficult to enable, but can yield large efficiency gains. Extra programmer effort is required because: (1) not all algorithms can be vectorized (regular algorithm structure and fine-grain parallelism must be used); (2) most CPUs have data alignment restrictions for load/store operations (obey or risk incorrect code); (3) special directives are often needed to enable vectorization; and (4) vector instructions are architecture-specific. Vectorization is the best way to optimize for power and performance due to reduced clock cycles. When data is organized properly, a vector load instruction (i.e. movaps) can replace 'normal' load instructions (i.e. movsd). Vector operations can potentially have a smaller footprint in the instruction cache when fewer instructions need to be executed. Hybrid index sets insulate users from architecture specific details. We have applied hybrid index sets to achieve optimal vectorization. We can extend this concept to handle other programming models.
Shape coexistence and triaxiality in nuclei near 80Zr
NASA Astrophysics Data System (ADS)
Zheng, S. J.; Xu, F. R.; Shen, S. F.; Liu, H. L.; Wyss, R.; Yan, Y. P.
2014-12-01
Total-Routhian-surface calculations have been performed to investigate the shape evolutions of A ˜80 nuclei: Zr-8480,Sr-8076 , and Mo,8684 . Shape coexistences of spherical, prolate, and oblate deformations have been found in these nuclei. Particularly for the nuclei 80Sr and 82Zr , the energy differences between two shape-coexisting states are less than 220 keV. At high spins, the g9 /2 shell plays an important role in shape evolutions. It has been found that the alignment of the g9 /2 quasiparticles drives nuclei to be triaxial.
Robust, optimal subsonic airfoil shapes
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor)
2008-01-01
Method system, and product from application of the method, for design of a subsonic airfoil shape, beginning with an arbitrary initial airfoil shape and incorporating one or more constraints on the airfoil geometric parameters and flow characteristics. The resulting design is robust against variations in airfoil dimensions and local airfoil shape introduced in the airfoil manufacturing process. A perturbation procedure provides a class of airfoil shapes, beginning with an initial airfoil shape.
The size and shape of Dante's Purgatorio
NASA Astrophysics Data System (ADS)
Magnaghi-Delfino, Paola; Norando, Tullia
2015-07-01
Where is Mount Purgatory? How high is it? How large is the island upon which it was situated? In the previous century Rodolfo Benini and Ideale Capasso developed a series of hypothesis and calculations to find answers to these questions. Each used data derived from mathematics, astronomy, history of science and cartography, but they completely disagreed on the location and on the overall size and shape of the island. In this paper we review the main points of these two scholars, then we rework the calculations and estimates, according with a new astronomical hypothesis presented by Giulio Magli and Claudio Facciolo.
Shape control of composite plates and shells with embedded actuators. 2: Desired shape specified
NASA Astrophysics Data System (ADS)
Koconis, David B.; Kollar, Laszlo P.; Springer, George S.
The changes in shapes of fiber-reinforced composite beams, plates and shells affected by embedded piezoelectric actuators were investigated. An analytical method was developed to determine the voltages needed to achieve a specified desired shape. The method is formulated on the basis of mathematical models using two-dimensional, linear, shallow shell theory including transverse shear effects which are important in the case of sandwich construction. The solution technique is a minimization of an error function which is a measure of the difference between the deformed shape caused by the application of voltages and the desired shape. A computationally efficient, user-friendly computer code was written which is suitable for performing the numerical calculations. The code, designated as SHAPE2, gives the voltages needed to achieve specified changes in shape. To validate the method and the computer code, results generated by the code were compared to existing analytical and experimental results. The predictions provided by the SHAPE2 code were in excellent agreement with the results of the other analyses and data.
Indexing and retrieval of color images using vector quantization
NASA Astrophysics Data System (ADS)
Panchanathan, Sethuraman; Huang, Changan
1999-10-01
Image and Video indexing is becoming popular with the increasing volumes of visual information that is being stored and transmitted in various multimedia applications. An important focus of the upcoming MPEG 7 standard is on indexing and retrieval of multimedia data. The visual information can be indexed using the spatial (color, texture, shape, sketch, etc.) and temporal (motion, camera operations, etc.) features. Since multimedia data is likely to be stored in compressed form, indexing the information in compressed domain entails savings in compute time and storage space. In this paper, we present a novel indexing and retrieval technique using vector quantization of color images. Color is an important feature for indexing the visual information. Several color based indexing schemes have been reported in the recent literature. Vector Quantization (VQ) is a popular compression technique for low-power applications. Indexing the visual information based on VQ features such as luminance codebook and labels have also been recently presented in the literature. Previous VQ-based indexing techniques describes the entire image content by modeling the histogram of the image without taking into account the location of colors, which may result in unsatisfactory retrieval. We propose to incorporate spatial information in the content representation in VQ-compressed domain. We employ the luminance and chrominance codebooks trained and generated from wavelet-vector-quantized (WVQ) images, in which the images are first decomposed using wavelet transform followed by vector quantization of the transform coefficients. The labels, and the usage maps corresponding to the utilization pattern of codebooks for the individual images serve as indices to the associated color information contained in the images. Hence, the VQ compression parameters serve the purpose of indexing resulting in joint compression and indexing of the color information. Our simulations indicate superior indexing and
Denholm, Barry
2013-01-01
The Malpighian tubule is the main organ for excretion and osmoregulation in most insects. During a short period of embryonic development the tubules of Drosophila are shaped, undergo differentiation and become precisely positioned in the body cavity, so they become fully functional at the time of larval hatching a few hours later. In this review I explore three developmental events on the path to physiological maturation. First, I examine the molecular and cellular mechanisms that generate organ shape, focusing on the process of cell intercalation that drives tubule elongation, the roles of the cytoskeleton, the extracellular matrix and how intercalation is coordinated at the tissue level. Second, I look at the genetic networks that control the physiological differentiation of tubule cells and consider how distinctive physiological domains in the tubule are patterned. Finally, I explore how the organ is positioned within the body cavity and consider the relationship between organ position and function. PMID:23445869
Jacobson, Alec
2015-01-01
Shape articulation transforms a lifeless geometric object into a vibrant character. Computers enrich artists' toolsets dramatically. They not only endow artists with the power to manipulate virtual 2D and 3D scenes, but they also eliminate tedium and expedite prototyping, freeing artists to focus on creative aspects. With such power comes a temptation to lean entirely on the computer. Computationally intensive animation systems sacrifice real-time feedback for physical accuracy. How can we leverage modern computational power to create the best possible shape deformations while maintaining real-time performance as a mandatory invariant? This article summarizes efforts to answer this, culminating in a deformation system with the quality of slow, nonlinear optimization, but at lightning speed. PMID:26416366
Jacobson, Alec
2015-01-01
Shape articulation transforms a lifeless geometric object into a vibrant character. Computers enrich artists' toolsets dramatically. They not only endow artists with the power to manipulate virtual 2D and 3D scenes, but they also eliminate tedium and expedite prototyping, freeing artists to focus on creative aspects. With such power comes a temptation to lean entirely on the computer. Computationally intensive animation systems sacrifice real-time feedback for physical accuracy. How can we leverage modern computational power to create the best possible shape deformations while maintaining real-time performance as a mandatory invariant? This article summarizes efforts to answer this, culminating in a deformation system with the quality of slow, nonlinear optimization, but at lightning speed.
NASA Technical Reports Server (NTRS)
Ott, Eric A.
2005-01-01
Scoping of shape changing airfoil concepts including both aerodynamic analysis and materials-related technology assessment effort was performed. Three general categories of potential components were considered-fan blades, booster and compressor blades, and stator airfoils. Based on perceived contributions to improving engine efficiency, the fan blade was chosen as the primary application for a more detailed assessment. A high-level aerodynamic assessment using a GE90-90B Block 4 engine cycle and fan blade geometry indicates that blade camber changes of approximately +/-4deg would be sufficient to result in fan efficiency improvements nearing 1 percent. Constraints related to flight safety and failed mode operation suggest that use of the baseline blade shape with actuation to the optimum cruise condition during a portion of the cycle would be likely required. Application of these conditions to the QAT fan blade and engine cycle was estimated to result in an overall fan efficiency gain of 0.4 percent.
Role of shape dependence of dissipation on nuclear fission
Sadhukhan, Jhilam; Pal, Santanu
2010-03-15
We examine the validity of extending Kramers' expression for fission width to systems with shape-dependent dissipations. For a system with a shape-dependent dissipation, Kramers' width obtained with the presaddle dissipation strength is found to be different from the stationary width obtained from the corresponding Langevin equations. It is demonstrated that the probability of a hot compound nucleus undergoing fission depends on both the presaddle and the postsaddle dynamics of collective nuclear motion. The predictions for prescission neutron multiplicity and evaporation residue cross section from statistical model calculations are also found to be different from those obtained from Langevin dynamical calculations when a shape-dependent dissipation is considered. For systems with shape-dependent dissipations, we conclude that the strength of 'presaddle dissipation' determined by fitting experimental data in statistical model calculations does not represent the true strength of presaddle dissipation.
Varma, Venugopal K.
2001-01-01
An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.
Analytical sensitivity and reflected power through a D-shape optical fibre sensor
NASA Astrophysics Data System (ADS)
Ubeid, M. F.; Shabat, M. M.
2014-09-01
In this paper, the reflection properties and sensitivity of a D-shape optical fibre sensor are investigated theoretically and numerically with the emphasis on the metal layer [gold (Au), silver (Ag), copper (Cu), and aluminum (Al)]. Maxwell's equations are used to determine the electric and magnetic fields of the incident waves at each layer. Snell's law is applied and the boundary conditions are imposed at each layer interface to calculate the reflected power and sensitivity of the sensor. In the numerical results, the mentioned power is computed and illustrated as a function of wavelength, angle of incidence, metal layer thickness and refractive index of the external medium when the metal layer changes. The variation of sensitivity with the wavelength of the incident radiations is also proposed for some of the given metals.
Numerical investigation of a D-shape optical fiber sensor containing graphene
NASA Astrophysics Data System (ADS)
Ubeid, Muin F.; Shabat, Mohammed M.
2015-03-01
In this paper, the reflection properties and sensitivity of a D-shape optical fiber sensor containing graphene are investigated theoretically and numerically. Maxwell's equations are used to determine the electric and magnetic fields of the incident waves at each layer. Snell's law is applied, and the boundary conditions are imposed at each layer interface to calculate the reflected power and sensitivity of the sensor. In the numerical results, the mentioned power is computed and illustrated as a function of wavelength, angle of incidence, metal layer kind, and refractive index of the external medium when the graphene layer thickness changes. In addition, the variation of sensitivity with the wavelength of the incident radiations is also proposed in the presence and in the absence of the graphene layer.
An Introduction to Voice Indexing.
ERIC Educational Resources Information Center
Chandler, James G.
1986-01-01
Uses and sources of voice indexing (a look-up feature for recorded materials) are discussed. Voice indexing enables a blind user of audiocassettes to find specific sections of recorded text independently. A procedure for sequential voice indexing on a two-track or four-track cassette recorder is described. (JW)
Oghli, Mostafa Ghelich; Dehlaghi, Vahab; Zadeh, Ali Mohammad; Fallahi, Alireza; Pooyan, Mohammad
2014-01-01
Assessment of cardiac right-ventricle functions plays an essential role in diagnosis of arrhythmogenic right ventricular dysplasia (ARVD). Among clinical tests, cardiac magnetic resonance imaging (MRI) is now becoming the most valid imaging technique to diagnose ARVD. Fatty infiltration of the right ventricular free wall can be visible on cardiac MRI. Finding right-ventricle functional parameters from cardiac MRI images contains segmentation of right-ventricle in each slice of end diastole and end systole phases of cardiac cycle and calculation of end diastolic and end systolic volume and furthermore other functional parameters. The main problem of this task is the segmentation part. We used a robust method based on deformable model that uses shape information for segmentation of right-ventricle in short axis MRI images. After segmentation of right-ventricle from base to apex in end diastole and end systole phases of cardiac cycle, volume of right-ventricle in these phases calculated and then, ejection fraction calculated. We performed a quantitative evaluation of clinical cardiac parameters derived from the automatic segmentation by comparison against a manual delineation of the ventricles. The manually and automatically determined quantitative clinical parameters were statistically compared by means of linear regression. This fits a line to the data such that the root-mean-square error (RMSE) of the residuals is minimized. The results show low RMSE for Right Ventricle Ejection Fraction and Volume (≤ 0.06 for RV EF, and ≤ 10 mL for RV volume). Evaluation of segmentation results is also done by means of four statistical measures including sensitivity, specificity, similarity index and Jaccard index. The average value of similarity index is 86.87%. The Jaccard index mean value is 83.85% which shows a good accuracy of segmentation. The average of sensitivity is 93.9% and mean value of the specificity is 89.45%. These results show the reliability of proposed
Han, Xiguang; Han, Xiao; Sun, Linqiang; Gao, Shengguang; Li, Liang; Kuang, Qin; Xie, Zhaoxiong; Wang, Chao
2015-06-14
Nanocrystals with high-index facets usually exhibit higher catalytic activities than those with only low-index facets. Trapezohedron-shaped (TS) In2O3 particles with exposed high-index {211} facets were successfully synthesized in an oleic acid (OA) and trioctylamine (TOA) system. It has been demonstrated that the gas sensing activity of TS In2O3 particles with exposed high-index {211} facets is higher than that of octahedron-shaped In2O3 particles with exposed low-index {111} facets. PMID:25930122
Han, Xiguang; Han, Xiao; Sun, Linqiang; Gao, Shengguang; Li, Liang; Kuang, Qin; Xie, Zhaoxiong; Wang, Chao
2015-06-14
Nanocrystals with high-index facets usually exhibit higher catalytic activities than those with only low-index facets. Trapezohedron-shaped (TS) In2O3 particles with exposed high-index {211} facets were successfully synthesized in an oleic acid (OA) and trioctylamine (TOA) system. It has been demonstrated that the gas sensing activity of TS In2O3 particles with exposed high-index {211} facets is higher than that of octahedron-shaped In2O3 particles with exposed low-index {111} facets.
Shape analysis of simulated breast anatomical structures
NASA Astrophysics Data System (ADS)
Contijoch, Francisco; Lynch, Jennifer M.; Pokrajac, David D.; Maidment, Andrew D. A.; Bakic, Predrag R.
2012-03-01
Recent advances in high-resolution 3D breast imaging, namely, digital breast tomosynthesis and dedicated breast CT, have enabled detailed analysis of the shape and distribution of anatomical structures in the breast. Such analysis is critically important, since the projections of breast anatomical structures make up the parenchymal pattern in clinical images which can mask the existing abnormalities or introduce false alarms; the parenchymal pattern is also correlated with the risk of cancer. As a first step towards the shape analysis of anatomical structures in the breast, we have analyzed an anthropomorphic software breast phantom. The phantom generation is based upon the recursive splitting of the phantom volume using octrees, which produces irregularly shaped tissue compartments, qualitatively mimicking the breast anatomy. The shape analysis was performed by fitting ellipsoids to the simulated tissue compartments. The ellipsoidal semi-axes were calculated by matching the moments of inertia of each individual compartment and of an ellipsoid. The distribution of Dice coefficients, measuring volumetric overlap between the compartment and the corresponding ellipsoid, as well as the distribution of aspect ratios, measuring relative orientations of the ellipsoids, were used to characterize various classes of phantoms with qualitatively distinctive appearance. A comparison between input parameters for phantom generation and the properties of fitted ellipsoids indicated the high level of user control in the design of software breast phantoms. The proposed shape analysis could be extended to clinical breast images, and used to inform the selection of simulation parameters for improved realism.
Braking Index of Isolated Pulsars
NASA Astrophysics Data System (ADS)
Hamil, Oliver; Stone, Jirina; Urbanec, Martin; Urbancova, Gabriela
2015-04-01
Isolated pulsars are rotating neutron stars with accurately measured angular velocities Ω, and their time derivatives which show unambiguously that the pulsars are slowing down. The exact mechanism of the spin-down is a question of debate in detail, but the commonly accepted view is that it arises through emission of magnetic dipole radiation (MDR). The energy loss by a rotating pulsar is proportional to a model dependent power of Ω. This relation leads to the power law Ω˙ = -K Ωn where n is called the braking index, equal to the ratio (ΩΩ̈)/ Ω˙2 . The simple MDR model predicts the value of n = 3, but observations of isolated pulsars provide rather precise values of n, individually accurate to a few percent or better, in the range 1 < n < 2.8, which is consistently less than the predictions of the MDR model. In this work, we study the dynamical limits of the MDR model as a function of angular velocity. The effects of variation in the rest mass, the moment of inertia, and the dependence on a realistic Equation of State of the rotating star are considered. Furthermore, we introduce a simulated superfluid effect by which the angular momentum of the core is eliminated from the calculation.
A Global Gait Asymmetry Index.
Cabral, Silvia; Resende, Renan A; Clansey, Adam C; Deluzio, Kevin J; Selbie, W Scott; Veloso, António P
2016-04-01
High levels of gait asymmetry are associated with many pathologies. Our long-term goal is to improve gait symmetry through real-time biofeedback of a symmetry index. Symmetry is often reported as a single metric or a collective signature of multiple discrete measures. While this is useful for assessment, incorporating multiple feedback metrics presents too much information for most subjects to use as visual feedback for gait retraining. The aim of this article was to develop a global gait asymmetry (GGA) score that could be used as a biofeedback metric for gait retraining and to test the effectiveness of the GGA for classifying artificially-induced asymmetry. Eighteen participants (11 males; age 26.9 y [SD = 7.7]; height 1.8 m [SD = 0.1]; body mass 72.7 kg [SD = 8.9]) walked on a treadmill in 3 symmetry conditions, induced by wearing custom-made sandals: a symmetric condition (identical sandals) and 2 asymmetric conditions (different sandals). The GGA score was calculated, based on several joint angles, and compared between conditions. Significant differences were found among all conditions (P < .001), meaning that the GGA score is sensitive to different levels of asymmetry, and may be useful for rehabilitation and assessment.
A Global Gait Asymmetry Index.
Cabral, Silvia; Resende, Renan A; Clansey, Adam C; Deluzio, Kevin J; Selbie, W Scott; Veloso, António P
2016-04-01
High levels of gait asymmetry are associated with many pathologies. Our long-term goal is to improve gait symmetry through real-time biofeedback of a symmetry index. Symmetry is often reported as a single metric or a collective signature of multiple discrete measures. While this is useful for assessment, incorporating multiple feedback metrics presents too much information for most subjects to use as visual feedback for gait retraining. The aim of this article was to develop a global gait asymmetry (GGA) score that could be used as a biofeedback metric for gait retraining and to test the effectiveness of the GGA for classifying artificially-induced asymmetry. Eighteen participants (11 males; age 26.9 y [SD = 7.7]; height 1.8 m [SD = 0.1]; body mass 72.7 kg [SD = 8.9]) walked on a treadmill in 3 symmetry conditions, induced by wearing custom-made sandals: a symmetric condition (identical sandals) and 2 asymmetric conditions (different sandals). The GGA score was calculated, based on several joint angles, and compared between conditions. Significant differences were found among all conditions (P < .001), meaning that the GGA score is sensitive to different levels of asymmetry, and may be useful for rehabilitation and assessment. PMID:26502455
Global Enhanced Vegetation Index
NASA Technical Reports Server (NTRS)
2002-01-01
By carefully measuring the wavelengths and intensity of visible and near-infrared light reflected by the land surface back up into space, the Moderate-resolution Imaging Spectroradiometer (MODIS) Team can quantify the concentrations of green leaf vegetation around the world. The above MODIS Enhanced Vegetation Index (EVI) map shows the density of plant growth over the entire globe. Very low values of EVI (white and brown areas) correspond to barren areas of rock, sand, or snow. Moderate values (light greens) represent shrub and grassland, while high values indicate temperate and tropical rainforests (dark greens). The MODIS EVI gives scientists a new tool for monitoring major fluctuations in vegetation and understanding how they affect, and are affected by, regional climate trends. For more information, read NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Land Group/Vegetation Indices, Alfredo Huete, Principal Investigator, and Kamel Didan, University of Arizona
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Hinton, David A.; Bowles, Roland L.
2000-01-01
An aircraft exposed to hazardous low-level windshear may suffer a critical loss of airspeed and altitude, thus endangering its ability to remain airborne. In order to characterize this hazard, a nondimensional index was developed based oil aerodynamic principals and understanding of windshear phenomena, 'This paper reviews the development and application of the Bowles F-tactor. which is now used by onboard sensors for the detection of hazardous windshear. It was developed and tested during NASA/I:AA's airborne windshear program and is now required for FAA certification of onboard radar windshear detection systems. Reviewed in this paper are: 1) definition of windshear and description of atmospheric phenomena that may cause hazardous windshear. 2) derivation and discussion of the F-factor. 3) development of the F-factor hazard threshold, 4) its testing during field deployments, and 5) its use in accident reconstructions,
Towards robust and effective shape modeling: sparse shape composition.
Zhang, Shaoting; Zhan, Yiqiang; Dewan, Maneesh; Huang, Junzhou; Metaxas, Dimitris N; Zhou, Xiang Sean
2012-01-01
Organ shape plays an important role in various clinical practices, e.g., diagnosis, surgical planning and treatment evaluation. It is usually derived from low level appearance cues in medical images. However, due to diseases and imaging artifacts, low level appearance cues might be weak or misleading. In this situation, shape priors become critical to infer and refine the shape derived by image appearances. Effective modeling of shape priors is challenging because: (1) shape variation is complex and cannot always be modeled by a parametric probability distribution; (2) a shape instance derived from image appearance cues (input shape) may have gross errors; and (3) local details of the input shape are difficult to preserve if they are not statistically significant in the training data. In this paper we propose a novel Sparse Shape Composition model (SSC) to deal with these three challenges in a unified framework. In our method, a sparse set of shapes in the shape repository is selected and composed together to infer/refine an input shape. The a priori information is thus implicitly incorporated on-the-fly. Our model leverages two sparsity observations of the input shape instance: (1) the input shape can be approximately represented by a sparse linear combination of shapes in the shape repository; (2) parts of the input shape may contain gross errors but such errors are sparse. Our model is formulated as a sparse learning problem. Using L1 norm relaxation, it can be solved by an efficient expectation-maximization (EM) type of framework. Our method is extensively validated on two medical applications, 2D lung localization in X-ray images and 3D liver segmentation in low-dose CT scans. Compared to state-of-the-art methods, our model exhibits better performance in both studies. PMID:21963296
2016-09-01
Numeracy and calculation are key skills for nurses. As nurses are directly accountable for ensuring medicines are prescribed, dispensed and administered safely, they must be able to understand and calculate drug doses. PMID:27615351
Abstract shape analysis of RNA.
Janssen, Stefan; Giegerich, Robert
2014-01-01
Abstract shape analysis abstract shape analysis is a method to learn more about the complete Boltzmann ensemble of the secondary structures of a single RNA molecule. Abstract shapes classify competing secondary structures into classes that are defined by their arrangement of helices. It allows us to compute, in addition to the structure of minimal free energy, a set of structures that represents relevant and interesting structural alternatives. Furthermore, it allows to compute probabilities of all structures within a shape class. This allows to ensure that our representative subset covers the complete Boltzmann ensemble, except for a portion of negligible probability. This chapter explains the main functions of abstract shape analysis, as implemented in the tool RNA shapes. RNA shapes It reports on some other types of analysis that are based on the abstract shapes idea and shows how you can solve novel problems by creating your own shape abstractions.
Indexing contamination surveys
Brown, R.L.
1998-02-06
The responsibility for safely managing the Tank Farms at Hanford belongs to Lockheed Martin Hanford Corporation which is part of the six company Project Hanford Management Team led by Fluor Daniel Hanford, Inc.. These Tank Farm Facilities contain numerous outdoor contamination areas which are surveyed at a periodicity consistent with the potential radiological conditions, occupancy, and risk of changes in radiological conditions. This document describes the survey documentation and data tracking method devised to track the results of contamination surveys this process is referred to as indexing. The indexing process takes a representative data set as an indicator for the contamination status of the facility. The data are further manipulated into a single value that can be tracked and trended using standard statistical methodology. To report meaningful data, the routine contamination surveys must be performed in a manner that allows the survey method and the data collection process to be recreated. Three key criteria are necessary to accomplish this goal: Accurate maps, consistent documentation, and consistent consolidation of data meeting these criteria provides data of sufficient quality to be tracked. Tracking of survey data is accomplished by converting the individual survey results into a weighted value, corrected for the actual number of survey points. This information can be compared over time using standard statistical analysis to identify trends. At the Tank Farms, the need to track and trend the facility`s radiological status presents unique challenges. Many of these Tank Farm facilities date back to the second world war. The Tank Farm Facilities are exposed to weather extremes, plant and animal intrusion, as well as all of the normal challenges associated with handling radiological waste streams. Routine radiological surveys did not provide a radiological status adequate for continuing comparisons.
ERIC Educational Resources Information Center
Crow, Tracy, Ed.; Harris, Julia, Ed.
1997-01-01
This journal contains brief descriptions of calculator-active materials that were found using Resource Finder, the searchable online catalog of curriculum resources from the Eisenhower National Clearinghouse (ENC). It features both the calculators themselves and the activity books that are used with them. Among the calculators included are those…
ERIC Educational Resources Information Center
Threlfall, John
2002-01-01
Suggests that strategy choice is a misleading characterization of efficient mental calculation and that teaching mental calculation methods as a whole is not conducive to flexibility. Proposes an alternative in which calculation is thought of as an interaction between noticing and knowledge. Presents an associated teaching approach to promote…
Majorana approach to the stochastic theory of line shapes
NASA Astrophysics Data System (ADS)
Komijani, Yashar; Coleman, Piers
2016-08-01
Motivated by recent Mössbauer experiments on strongly correlated mixed-valence systems, we revisit the Kubo-Anderson stochastic theory of spectral line shapes. Using a Majorana representation for the nuclear spin we demonstrate how to recast the classic line-shape theory in a field-theoretic and diagrammatic language. We show that the leading contribution to the self-energy can reproduce most of the observed line-shape features including splitting and line-shape narrowing, while the vertex and the self-consistency corrections can be systematically included in the calculation. This approach permits us to predict the line shape produced by an arbitrary bulk charge fluctuation spectrum providing a model-independent way to extract the local charge fluctuation spectrum of the surrounding medium. We also derive an inverse formula to extract the charge fluctuation from the measured line shape.
Indexing events in memory: evidence for index dominance.
Taylor, H A; Tversky, B
1997-07-01
Research on narrative comprehension and autobiographical memory converge on three hypotheses which make different predictions about event organisation. The availability of different event components as indexes may explain the convergence on three hypotheses rather than one. In this paper, three experiments assessed event indexing in narratives with different available indexes. In Experiment 1, participants read event descriptions organised by character or time. In Experiment 2, event descriptions were organised by character or location. In Experiment 3, participants read event descriptions where events were grouped by activity. In each experiment, memory could be organised by any of the available components alone, by both components, or by using the organisation imposed by the discourse. Participants indexed events by character in Experiment 1, re-indexing information when necessary. Results of Experiment 2 indicated equal use of character and location indexes. In this case, participants used the discourse organisation. In Experiment 3, participants indexed events using activity groupings, again re-indexing events when necessary. Results are interpreted as indicating reliance on a single organising index with flexibility in the selection of different event components as indexes. PMID:9282221
Solar index generation and delivery
Lantz, L.J.
1980-01-01
The Solar Index, or, more completely defined as the Service Hot Water Solar Index, was conceptualized during the spring of 1978. The purpose was to enhance public awareness to solar energy usability. Basically, the Solar Index represents the percentage of energy that solar would provide in order to heat an 80 gallon service hot water load for a given location and day. The Index is computed by utilizing SOLCOST, a computer program, which also has applications to space heating, cooling, and heat pump systems and which supplies economic analyses for such solar energy systems. The Index is generated for approximately 68 geographic locations in the country on a daily basis. The definition of the Index, how the project came to be, what it is at the present time and a plan for the future are described. Also presented are the models used for the generation of the Index, a discussion of the primary tool of implementation (the SOLCOST program) and future efforts.
31 CFR Appendix D to Part 356 - Description of the Indexes
Code of Federal Regulations, 2014 CFR
2014-07-01
...' services, and drugs. In calculating the index, price changes for the various items are averaged together... provide the base reference period for a particular inflation-protected security on the auction.... Floating Rate Note Index The floating rate note index is the 13-week Treasury bill auction High Rate...
Kotelchuck, M
1994-01-01
OBJECTIVES. The assessment of the adequacy of prenatal care utilization is heavily shaped by the way in which utilization is measured. Although it is widely used, the current major index of utilization, the Kessner/Institute of Medicine Index, has not been subjected to systematic examination. This paper provides such an examination. METHODS. Data from the 1980 National Natality Survey are used to disaggregate the components of the Kessner Index for detailed analysis. An alternative two-part index, the Adequacy of Prenatal Care Utilization Index, is proposed that combines independent assessments of the timing of prenatal care initiation and the frequency of visits received after initiation. RESULTS. The Kessner Index is seriously flawed. It is heavily weighted toward timing of prenatal care initiation does not distinguish timing of initiation from poor subsequent utilization, inaccurately measures utilization for full- or post-term pregnancies, and lacks sufficient documentation for consistent computer programming. CONCLUSIONS. The Adequacy of Prenatal Care Utilization Index offers a more accurate and comprehensive set of measures of prenatal care utilization than the Kessner Index. PMID:8092364
High-refractive index particles in counter-propagating optical tweezers - manipulation and forces
NASA Astrophysics Data System (ADS)
van der Horst, Astrid
2006-09-01
With a tightly focused single laser beam, also called optical tweezers, particles of a few nanometers up to several micrometers in size can be trapped and manipulated in 3D. The size, shape and refractive index of such colloidal particles are of influence on the optical forces exerted on them in the trap. A higher refractive-index difference between a particle and the surrounding medium will increase the forces. The destabilizing scattering force, however, pushing the particle in the direction of the beam, increases more than the gradient force, directed towards the focus. As a consequence, particles with a certain refractive index cannot be trapped in a single-beam gradient trap, and a limit is set to the force that can be exerted. We developed an experimental setup with two opposing high-numerical objectives. By splitting the laser beam, we created counter-propagating tweezers in which the scattering forces were canceled in the axial direction and high-refractive index and metallic particles could also be trapped. With the use of a separate laser beam combined with a quadrant photodiode, accurate position detection on a trapped particle in the counter-propagating tweezers is possible. We used this to determine trap stiffnesses, and show, with measurements and calculations, an enhancement in trap stiffness of at least 3 times for high-index 1.1-micrometer-diameter titania particles as compared to 1.4-micrometer-diameter silica particles under the same conditions. The ability to exert higher forces with lower laser power finds application in biophysical experiments, where laser damage and heating play a role. The manipulation of high-index and metallic particles also has applications in materials and colloid science, for example to incorporate high-index defects in colloidal photonic crystals. We demonstrate the patterning of high-index particles onto a glass substrate. The sample cell was mounted on a high-accuracy piezo stage combined with a long-range stage with
Femtosecond polarization pulse shaping.
Brixner, T; Gerber, G
2001-04-15
We report computer-controlled femtosecond polarization pulse shaping where intensity, momentary frequency, and light polarization are varied as functions of time. For the first time to our knowledge, a pulse shaper is used to modulate the degree of ellipticity as well as the orientation of the elliptical principal axes within a single laser pulse by use of a 256-pixel two-layer liquid-crystal display inside a zero-dispersion compressor. Interferometric stability of the setup is not required. Complete pulse characterization is achieved by dual-channel spectral interferometry. This technology has a large range of applications, especially in the field of quantum control.
Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.
2013-01-01
Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038
NASA Technical Reports Server (NTRS)
2006-01-01
23 February 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an unusally-shaped (not circular) impact crater in the Elysium region of Mars. A dark-toned lava flow surface is seen in the southern (lower) portion of the image.
Location near: 5.9oN, 220.0oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter
Liu, Jiamin; Udupa, Jayaram K
2009-04-01
Active shape models (ASM) are widely employed for recognizing anatomic structures and for delineating them in medical images. In this paper, a novel strategy called oriented active shape models (OASM) is presented in an attempt to overcome the following five limitations of ASM: 1) lower delineation accuracy, 2) the requirement of a large number of landmarks, 3) sensitivity to search range, 4) sensitivity to initialization, and 5) inability to fully exploit the specific information present in the given image to be segmented. OASM effectively combines the rich statistical shape information embodied in ASM with the boundary orientedness property and the globally optimal delineation capability of the live wire methodology of boundary segmentation. The latter characteristics allow live wire to effectively separate an object boundary from other nonobject boundaries with similar properties especially when they come very close in the image domain. The approach leads to a two-level dynamic programming method, wherein the first level corresponds to boundary recognition and the second level corresponds to boundary delineation, and to an effective automatic initialization method. The method outputs a globally optimal boundary that agrees with the shape model if the recognition step is successful in bringing the model close to the boundary in the image. Extensive evaluation experiments have been conducted by utilizing 40 image (magnetic resonance and computed tomography) data sets in each of five different application areas for segmenting breast, liver, bones of the foot, and cervical vertebrae of the spine. Comparisons are made between OASM and ASM based on precision, accuracy, and efficiency of segmentation. Accuracy is assessed using both region-based false positive and false negative measures and boundary-based distance measures. The results indicate the following: 1) The accuracy of segmentation via OASM is considerably better than that of ASM; 2) The number of landmarks
Femtosecond polarization pulse shaping.
Brixner, T; Gerber, G
2001-04-15
We report computer-controlled femtosecond polarization pulse shaping where intensity, momentary frequency, and light polarization are varied as functions of time. For the first time to our knowledge, a pulse shaper is used to modulate the degree of ellipticity as well as the orientation of the elliptical principal axes within a single laser pulse by use of a 256-pixel two-layer liquid-crystal display inside a zero-dispersion compressor. Interferometric stability of the setup is not required. Complete pulse characterization is achieved by dual-channel spectral interferometry. This technology has a large range of applications, especially in the field of quantum control. PMID:18040384
What Shapes Supernova Remnants?
NASA Astrophysics Data System (ADS)
Lopez, Laura A.
2014-01-01
Evidence has mounted that Type Ia and core-collapse (CC) supernovae (SNe) can have substantial deviations from spherical symmetry; one such piece of evidence is the complex morphologies of supernova remnants (SNRs). However, the relative role of the explosion geometry and the environment in shaping SNRs remains an outstanding question. Recently, we have developed techniques to quantify the morphologies of SNRs, and we have applied these methods to the extensive X-ray and infrared archival images available of Milky Way and Magellanic Cloud SNRs. In this proceeding, we highlight some results from these studies, with particular emphasis on SNR asymmetries and whether they arise from ``nature'' or ``nurture''.
Calculated fission properties of the heaviest elements
Moeller, P.; Nix, J.R.; Swiatecki, W.J.
1986-09-01
A quantitative calculation is presented that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. For the macroscopic part a Yukawa-plus-exponential model is used and for the microscopic part a folded-Yukawa single-particle potential is used. The three-quadratic-surface parameterization generates shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. The results of the calculations in terms of potential-energy surfaces and fission half-lives are presented for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. 53 refs., 15 figs., 1 tab.
NASA Technical Reports Server (NTRS)
Bingham, G. J. (Inventor)
1984-01-01
An airfoil which has particular application to the blade or blades of rotor aircraft and aircraft propellers is presented. The airfoil thickness distribution, camber and leading edge radius are shaped to locate the airfoil crest at a more aft position along the chord, and to increase the freestream Mach number at which sonic flow is attained at the airfoil crest. The reduced slope of the airfoil causes a reduction in velocity at the airfoil crest at lift coefficients from zero to the maximum lift coefficient. The leading edge radius is adjusted so that the maximum local Mach number at 1.25 percent chord and at the designed maximum lift coefficient is limited to about 0.48 when the Mach number normal to the leading edge is approximately 0.20. The lower surface leading edge radius is shaped so that the maximum local Mach number at the leading edge is limited to about 0.29 when the Mach number normal to the leading edge is approximately 0.20. The drag divergence Mach number associated with the airfoil is moved to a higher Mach number over a range of lift coefficients resulting in superior aircraft performance.
NASA Astrophysics Data System (ADS)
Flasar, F. Michael; Schinder, Paul J.; French, Richard F.; Marouf, Essam A.; Kliore, Arvydas J.
2014-05-01
We report on the shape of isobaric surfaces in Saturn's atmosphere, derived from thirty-five Cassini radio-occultation soundings that probe from 0.1 mbar to ~1 bar between 70 S and 60 N. The retrieval of pressure vs. planetary radius requires knowledge of the shape of the atmosphere. To determine this, we use the gravitational coefficients given by Jacobson et al. (2006) and the angular velocities at the cloud-top level from the Voyager winds reported by Sanchez-Lavega et al. (2000). To keep the ray-tracing inversion tractable, we assume that the atmosphere is locally axisymmetric and that its angular velocities are functions of the cylindrical radius from the planetary rotation axis; except for near the equator, this is equivalent to assuming that the winds are barotropic. This permits the use of a geopotential incorporating both gravity and differential rotation and ensures that surfaces of constant gopotential, density, and pressure coincide. Note that the "barotropic" assumption need only apply in the atmospheric shell probed by the occultations. The retrieved isobaric surfaces show evidence of moderate baroclinicity. For example, the deviations of the 1-bar and 100-mbar surfaces from the geopotential surface assumed are of order 10-20 km, less than a pressure scale height. References [1] Jacobson, R. A., et al., Astron. J., 132, 2520-2526, 2006. [2] Sanchez-Lavega, A., et al., Icarus, 147, 405-420, 2000.
[ENDOMETRIOSIS FERTILITY INDEX].
Ibrjam, I; Veleva, G; Karagjozova, G; Ivanov, S
2016-01-01
In women suffering from endometriosis and infertility, the decision as to when and how to perform surgical excision and/or fertility treatment is mainly based on clinical guidelines and expert opinions. However, so far data from randomized controlled trials or meta-analyses to answer the question whether surgical treatment of moderate to severe endometriosis can indeed enhance pregnancy rates compared with expectant management are lacking, as not all studies report fertility outcome or supply sufficiently detailed information. The most frequently used staging system for endometriosis is the revised American Fertility Society (rAFS) score (ASRM, 1997). Unfortunately, this classification system has some serious limitations, including not effectively predicting clinical outcomes of treatment, especially pregnancy rates in infertile patients. For this reason, Adamson and Pasta (2010) developed the endometriosis fertility index (EFI). EFI is a scoring system which includes assessment of historical factors at the time of surgery (age, duration of infertility and pregnancy history), of adnexal function at conclusion of surgery (functional score of Fallopian tubes, fimbriae and ovaries bilaterally), and of the extensiveness of endometriosis (rAFS endometriosis lesion score and total rAFS score). The EFI is intended as a clinical tool to counsel patients on the approach towards fertility after surgery. PMID:27509661
Applied Parallel Metadata Indexing
Jacobi, Michael R
2012-08-01
The GPFS Archive is parallel archive is a parallel archive used by hundreds of users in the Turquoise collaboration network. It houses 4+ petabytes of data in more than 170 million files. Currently, users must navigate the file system to retrieve their data, requiring them to remember file paths and names. A better solution might allow users to tag data with meaningful labels and searach the archive using standard and user-defined metadata, while maintaining security. last summer, I developed the backend to a tool that adheres to these design goals. The backend works by importing GPFS metadata into a MongoDB cluster, which is then indexed on each attribute. This summer, the author implemented security and developed the user interfae for the search tool. To meet security requirements, each database table is associated with a single user, which only stores records that the user may read, and requires a set of credentials to access. The interface to the search tool is implemented using FUSE (Filesystem in USErspace). FUSE is an intermediate layer that intercepts file system calls and allows the developer to redefine how those calls behave. In the case of this tool, FUSE interfaces with MongoDB to issue queries and populate output. A FUSE implementation is desirable because it allows users to interact with the search tool using commands they are already familiar with. These security and interface additions are essential for a usable product.
Infrared refractive index of atmospheric aerosol substances.
Volz, F E
1972-04-01
The optical constants in the ir from lambda2.5 microm to 40 microm (4000-250 cm(-1)) of dry natural aerosol substances and of sea salt are presented. The aerosol substances were obtained from rain and snow water: dust and soot by sedimentation, and water soluble salts by evaporation. The spectra of the absorption index n' were derived from our published transmittance measurements of potassium bromide disks. The real part n of the refractive index was calculated from the specular reflectance at near normal incidence of disks of pure aerosol substance. The observed spectral features are being related to chemical constituents, notably sulfates and alcohol soluble organics. Optical constants of composite and wet aerosol are discussed. A simple model confirms the measured transmission of a coarse dry powder of water solubles and shows that the extinction by natural aerosol should have a minimum near 8 microm and a strong maximum near 9 microm.
Superconformal index of { N }=3 orientifold theories
NASA Astrophysics Data System (ADS)
Imamura, Yosuke; Yokoyama, Shuichi
2016-10-01
We analyze the superconformal index of the { N }=3 supersymmetric generalized orientifold theories recently proposed. In the large N limit we derive the index from the Kaluza–Klein modes in {{\\boldsymbol{AdS}}}5× {{\\boldsymbol{S}}}5/{{{Z}}}k, which are obtained from ones in {{\\boldsymbol{AdS}}}5× {{\\boldsymbol{S}}}5 by a simple {{{Z}}}k projection. For the ordinary {{{Z}}}2 orientifold case the agreement with the gauge theory calculation is explicitly confirmed, and for {{{Z}}}k≥slant 3 we perform a few consistency checks with known results for { N }=3 theories. We also study finite N corrections by analyzing wrapped D3-branes and discrete torsions in the dual geometry.
Shape memory alloy thaw sensors
Shahinpoor, M.; Martinez, D.R.
1998-04-07
A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states. 16 figs.
Numerical study of a quasi-zero-index photonic metamaterial
NASA Astrophysics Data System (ADS)
Jia, Xiuli; Meng, Qingxin; Wang, Xiaoou; Zhou, Zhongxiang
2016-04-01
Nanostructures made of metallic cube are arranged in Kagome lattice. Transmitted and reflected electromagnetic fields of normally incident circular polarized plane waves are computed using a tri-dimensional (3D) finite-difference time domain (FDTD) algorithm. Equivalent refractive index, equivalent permittivity, equivalent permeability and normalized impedance are calculated using the modified S-parameter retrieval method. Around the 7.912×1014 Hz and 9.376×1014 Hz, the structure performance for quasi-zero-index frequency bands.
ERIC Educational Resources Information Center
Foley, Gregory D.
2011-01-01
Ellipses vary in shape from circular to nearly parabolic. An ellipse's eccentricity indicates the location of its foci, but its aspect ratio is a direct measure of its shape. This article takes a careful look at the shape of an ellipse and offers practical suggestions and specific activities to deepen students' understanding of the geometry of an…
Developmental Differences in Shape Processing
ERIC Educational Resources Information Center
Sera, Maria D.; Gordon Millett, Katherine
2011-01-01
Considerable evidence indicates that shape similarity plays a major role in object recognition, identification and categorization. However, little is known about shape processing and its development. Across four experiments, we addressed two related questions. First, what makes objects similar in shape? Second, how does the processing of shape…
Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.
2010-01-01
Based on the generalized Lorenz-Mie theory (GLMT), this paper reveals, for the first time in the literature, the principal characteristics of the optical forces and radiation pressure cross-sections exerted on homogeneous, linear, isotropic and spherical hypothetical negative refractive index (NRI) particles under the influence of focused Gaussian beams in the Mie regime. Starting with ray optics considerations, the analysis is then extended through calculating the Mie coefficients and the beam-shape coefficients for incident focused Gaussian beams. Results reveal new and interesting trapping properties which are not observed for commonly positive refractive index particles and, in this way, new potential applications in biomedical optics can be devised. PMID:21258549
Input Shaping to Reduce Solar Array Structural Vibrations
NASA Technical Reports Server (NTRS)
Doherty, Michael J.; Tolson, Robert J.
1998-01-01
Structural vibrations induced by actuators can be minimized using input shaping. Input shaping is a feedforward method in which actuator commands are convolved with shaping functions to yield a shaped set of commands. These commands are designed to perform the maneuver while minimizing the residual structural vibration. In this report, input shaping is extended to stepper motor actuators. As a demonstration, an input-shaping technique based on pole-zero cancellation was used to modify the Solar Array Drive Assembly (SADA) actuator commands for the Lewis satellite. A series of impulses were calculated as the ideal SADA output for vibration control. These impulses were then discretized for use by the SADA stepper motor actuator and simulated actuator outputs were used to calculate the structural response. The effectiveness of input shaping is limited by the accuracy of the knowledge of the modal frequencies. Assuming perfect knowledge resulted in significant vibration reduction. Errors of 10% in the modal frequencies caused notably higher levels of vibration. Controller robustness was improved by incorporating additional zeros in the shaping function. The additional zeros did not require increased performance from the actuator. Despite the identification errors, the resulting feedforward controller reduced residual vibrations to the level of the exactly modeled input shaper and well below the baseline cases. These results could be easily applied to many other vibration-sensitive applications involving stepper motor actuators.
Human activity recognition based on human shape dynamics
NASA Astrophysics Data System (ADS)
Cheng, Zhiqing; Mosher, Stephen; Cheng, Huaining; Webb, Timothy
2013-05-01
Human activity recognition based on human shape dynamics was investigated in this paper. The shape dynamics describe the spatial-temporal shape deformation of a human body during its movement and thus provide important information about the identity of a human subject and the motions performed by the subject. The dynamic shapes of four subjects in five activities (digging, jogging, limping, throwing, and walking) were created via 3-D motion replication. The Paquet Shape Descriptor (PSD) was used to describe subject shapes in each frame. The principal component analysis was performed on the calculated PSDs and principal components (PCs) were used to characterize PSDs. The PSD calculation was then reasonably approximated by its significant projections in the eigen-space formed by PCs and represented by the corresponding projection coefficients. As such, the dynamic human shapes for each activity were described by these projection coefficients, which in turn, along with their derivatives were used to form the feature vectors (attribute sets) for activity classification. Data mining technology was employed with six classification methods used. Seven attribute sets were evaluated with high classification accuracy attained for most of them. The results from this investigation illustrate the great potential of human shape dynamics for activity recognition.
Urban aerosol refractive index prediction by partial molar refraction approach
Stelson, A.W. )
1990-11-01
The ambient aerosol of the polluted troposphere is a complex mixture of water, electrolytes, ionic solids, metal oxides and glasses, and carbonaceous material. Prediction of the refractive indexes of these inhomogeneous mixtures can be a formidable task. Contained within this paper is the necessary parameterization to estimate the mean real aerosol refractive index based on aerosol chemical composition and the partial molar refraction approach. This approach assumes all chemical constituents are homogeneously distributed throughout the aerosol phase. Consistency of the data is discussed, and this approach is verified by prediction of refractive indexes of NaOH-Si-O{sub 2}-H{sub 2}O mixtures. Finally, aerosol chemical composition data from the Los Angeles Basin are used to predict mean real aerosol refractive indexes. These values are compared to urban aerosol refractive indexes calculated via other techniques (light scattering).
Aeronautical Engineering: 1983 cumulative index
NASA Technical Reports Server (NTRS)
1984-01-01
This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (158) through NASA SP-7037 (169) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, report number, and accession number indexes.
Multiphase flow calculation software
Fincke, James R.
2003-04-15
Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.
Waste Package Lifting Calculation
H. Marr
2000-05-11
The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.
Shape memory alloys. (Latest citations from the INSPEC database). Published Search
Not Available
1994-03-01
The bibliography contains citations concerning theories and experiments on shape memory effects of various alloys. Alloys studied include nickel, tin, indium, lead, copper, and titanium. Citations discuss shape memory crystallography, properties, processing, alloying, and mechanisms. (Contains 250 citations and includes a subject term index and title list.)
Idealized Voyager Jovian magnetosphere shape and field
Engle, I.M. )
1991-05-01
A magnetic field arising from the Jovian equatorial sheet current deduced from Voyager 1 and 2 observations has been added to a planetary dipole field to provide a model of magnetic field inside the magnetopause. This internal field was used to calculate the magnetopause surface in a cyclic process. During each cycle, the surface was calculated, and the resulting field due to currents on the magnetopause was calculated for inclusion in the total field used to calculate the next-order surface. The resulting magnetopause is, as anticipated, flatter in shape than one resulting primarily from a dipole internal field source, but not dissimilar in overall height-to-width configuration to that of the magnetopause calculated for the larger inflated magnetopause observed by Pioneer 10. An array of magnetic field values for locations internal and external to the magnetopause due to currents on the surface has been computed by integrating over the entire magnetopause. A model for the total magnetospheric field of this semi-inflated magnetosphere has been constructed by adding this latter contribution to the internal source fields to obtain a global model of a semi-inflated Jovianlike magnetospheric field. The magnitude of the contribution of the surface currents to the total magnetic field in the region of the orbits of the Galilean satellites is calculated to be considerably larger for this Voyager model than for the Pioneer model.
NASA Technical Reports Server (NTRS)
Pontius, James T. (Inventor)
2010-01-01
The present invention is directed to a method of bonding at least two surfaces together. The methods step of the present invention include applying a strip of adhesive to a first surface along a predefined outer boundary of a bond area and thereby defining a remaining open area there within. A second surface, or gusset plate, is affixed onto the adhesive before the adhesive cures. The strip of adhesive is allowed to cure and then a second amount of adhesive is applied to cover the remaining open area and substantially fill a void between said first and second surfaces about said bond area. A stencil may be used to precisely apply the strip of adhesive. When the strip cures, it acts as a dam to prevent overflow of the subsequent application of adhesive to undesired areas. The method results in a precise bond area free of undesired shapes and of a preferred profile which eliminate the drawbacks of the prior art bonds.
Smith, Jennifer J.; Aitchison, John D.
2014-01-01
Peroxisomes carry out various oxidative reactions that are tightly regulated to adapt to the changing needs of the cell and varying external environments. Accordingly, they are remarkably fluid and can change dramatically in abundance, size, shape and content in response to numerous cues. These dynamics are controlled by multiple aspects of peroxisome biogenesis that are coordinately regulated with each other and with other cellular processes. Ongoing studies are deciphering the diverse molecular mechanisms that underlie biogenesis and how they cooperate to dynamically control peroxisome utility. These important challenges should lead to an understanding of peroxisome dynamics that can be capitalized upon for bioengineering and the development of therapies to improve human health. PMID:24263361
NASA Technical Reports Server (NTRS)
Wang, T. G.; Elleman, D. D. (Inventor)
1977-01-01
A suspended mass is shaped by melting all or a selected portion of the mass and applying acoustic energy in varying amounts to different portions of the mass. In one technique for forming an optical waveguide slug, a mass of oval section is suspended and only a portion along the middle of the cross-section is heated to a largely fluid consistency. Acoustic energy is applied to opposite edges of the oval mass to press the unheated opposite edge portions together so as to form bulges at the middle of the mass. In another technique for forming a ribbon of silicon for constructing solar cells, a cylindrical thread of silicon is drawn from a molten mass of silicon, and acoustic energy is applied to opposite sides of the molten thread to flatten it into a ribbon.
Papari, Giuseppe
2014-01-01
The concept of tension is introduced in the framework of active contours with prior shape information, and it is used to improve image segmentation. In particular, two properties of this new quantity are shown: 1) high values of the tension correspond to undesired equilibrium points of the cost function under minimization and 2) tension decreases if a curve is split into two or more parts. Based on these ideas, a tree is generated whose nodes are different local minima of the cost function. Deeper nodes in the tree are expected to correspond to lower values of the cost function. In this way, the search for the global optimum is reduced to visiting and pruning a binary tree. The proposed method has been applied to the problem of fish segmentation from low quality underwater images. Qualitative and quantitative comparison with existing algorithms based on the Euler–Lagrange diffusion equations shows the superiority of the proposed approach in avoiding undesired local minima.
Doss, James D.; Hutson, Richard L.
1982-01-01
The disclosure relates to a circulating saline electrode for changing corneal shape in eyes. The electrode comprises a tubular nonconductive electrode housing having an annular expanded base which has a surface substantially matched to a subject corneal surface. A tubular conductive electrode connected to a radiofrequency generating source is disposed within the electrode housing and longitudinally aligned therewith. The electrode has a generally hemispherical head having at least one orifice. Saline solution is circulated through the apparatus and over the cornea to cool the corneal surface while radiofrequency electric current emitted from the electrode flows therefrom through the cornea to a second electrode, on the rear of the head. This current heats the deep corneal stroma and thereby effects corneal reshaping as a biological response to the heat.
Trajectory shaping rendezvous guidance
NASA Astrophysics Data System (ADS)
Klumpp, A. R.
The Space Station will bring a great increase in rendezvous traffic. Formerly, rendezvous has been expensive in terms of time and crew involvement. Multiple trajectory adjustments on separate orbits have been required to meet safety, lighting, and geometry requirements. This paper describes a new guidance technique in which the approach trajectory is shaped by a sequence of velocity increments in order to satisfy multiple constraints within a single orbit. The approach phase is planned before the mission, leaving a group of free parameters that are optimized by onboard guidance. Fuel penalties are typically a few percent, compared to unshaped Hohmann transfers, and total fuel costs can be less than those of more time-consuming ways of meeting the same requirements.
Esteve, A R; Marín, M J; Martínez-Lozano, J A; Tena, F; Utrillas, M P; Cañada, J
2006-01-01
Solar ultraviolet erythemal irradiance (UVER) has been studied on inclined planes with different orientations in Valencia, Spain. To do this a platform was designed that could turn through 90 degrees on its own axis. The radiometers were inclined at an angle close to the latitude of Valencia (39.5 degrees N). Using two timers the platform could be turned through 90 degrees every 5 min. On clear or partially cloudy days, including those with different turbidity values, it was observed that the UVER showed a maximum at 1200 h GMT, very close to solar noon, in the north and south positions, while the maximum for east and west orientations was found at approximately one hour before and one hour after midday respectively. It was also observed how the irradiance for the south orientation was greater and for the north was less than for the horizontal plane, as well as the opposite performances of the east and west orientations, for four days close to the summer and winter solstices and each equinox. Some experimental results were also compared with the results from the SMARTS2.9 model for the same conditions. It was found that the model frequently overestimated the experimental data. With respect to the maximum calculated UV Index in the different planes this was always higher for the south orientation than for the north, while it was similar for east and west orientations throughout the year. Finally the accumulated erythemal dosage for the considered period was obtained as a function of phototype and orientation, confirming that the accumulated erythemal dosage decreased by around 37% in the north orientation compared to the horizontal value, while in the south position it was only 6% less and some 20% and 15% less in the east and west positions, respectively. PMID:17205628
Malaysian Education Index (MEI): An Online Indexing and Repository System
ERIC Educational Resources Information Center
Kabilan, Muhammad Kamarul; Ismail, Hairul Nizam; Yaakub, Rohizani; Yusof, Najeemah Mohd; Idros, Sharifah Noraidah Syed; Umar, Irfan Naufal; Arshad, Muhammad Rafie Mohd.; Idrus, Rosnah; Rahman, Habsah Abdul
2010-01-01
This "Project Sheet" describes an on-going project that is being carried out by a group of educational researchers, computer science researchers and librarians from Universiti Sains Malaysia, Penang. The Malaysian Education Index (MEI) has two main functions--(1) Online Indexing System, and (2) Online Repository System. In this brief…
SHAPE Selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data.
Poulsen, Line Dahl; Kielpinski, Lukasz Jan; Salama, Sofie R; Krogh, Anders; Vinther, Jeppe
2015-05-01
Selective 2' Hydroxyl Acylation analyzed by Primer Extension (SHAPE) is an accurate method for probing of RNA secondary structure. In existing SHAPE methods, the SHAPE probing signal is normalized to a no-reagent control to correct for the background caused by premature termination of the reverse transcriptase. Here, we introduce a SHAPE Selection (SHAPES) reagent, N-propanone isatoic anhydride (NPIA), which retains the ability of SHAPE reagents to accurately probe RNA structure, but also allows covalent coupling between the SHAPES reagent and a biotin molecule. We demonstrate that SHAPES-based selection of cDNA-RNA hybrids on streptavidin beads effectively removes the large majority of background signal present in SHAPE probing data and that sequencing-based SHAPES data contain the same amount of RNA structure data as regular sequencing-based SHAPE data obtained through normalization to a no-reagent control. Moreover, the selection efficiently enriches for probed RNAs, suggesting that the SHAPES strategy will be useful for applications with high-background and low-probing signal such as in vivo RNA structure probing.
Conically shaped drops in electric fields
NASA Astrophysics Data System (ADS)
Stone, Howard A.; Brenner, Michael P.; Lister, John R.
1996-11-01
When an electric field is applied to a dielectric liquid containing a suspended immiscible fluid drop, the drop deforms into a prolate ellipsoidal shape. Above a critical field strength the drop develops conical ends, as first observed by Zeleny [Phys. Rev. 10, 1 (1917)] and Wilson & Taylor [Proc. Camb. Phil. Soc. 22, 728 (1925)] for, respectively, the case of conducting drops and soap films in air. The case of two dielectric liquids was studied recently using a slender drop approximation by Li, Halsey & Lobkovsky [Europhys. Lett 27, 575 (1994)]. In this presentation we further develop the slender body approximation to obtain coupled ordinary differential equations for the electric field and the drop shape. Analytical formulae are derived which approximately give the cone angle as a function of the dielectric constant ratio between the two fluids, and the minimum applied electric field at which conical tips first form as a function of the dielectric constant ratio. Finally, drops shapes are calculated numerically and compared with the common prolate shape assumption.
Shape Optimization for Trailing Edge Noise Control
NASA Astrophysics Data System (ADS)
Marsden, Alison; Wang, Meng; Mohammadi, Bijan; Moin, Parviz
2001-11-01
Noise generated by turbulent boundary layers near the trailing edge of lifting surfaces continues to pose a challenge for many applications. In this study, we explore noise reduction strategies through shape optimization. A gradient based shape design method is formulated and implemented for use with large eddy simulation of the flow over an airfoil. The cost function gradient is calculated using the method of incomplete sensitivities (Mohammadi and Pironneau 2001 ph Applied shape Optimization for Fluids, Oxford Univ. Press). This method has the advantage that effects of geometry changes on the flow field can be neglected when computing the gradient of the cost function, making it far more cost effective than solving the full adjoint problem. Validation studies are presented for a model problem of the unsteady laminar flow over an acoustically compact airfoil. A section of the surface is allowed to deform and the cost function is derived based on aeroacoustic theroy. Rapid convergence of the trailing-edge shape and significant reduction of the noise due to vortex shedding and wake instability have been achieved. The addition of constraints and issues of extension to fully turbulent flows past an acoustically noncompact airfoil are also discussed.
The HLD (CalMod) index and the index question.
Parker, W S
1998-08-01
The malocclusion index problem arises because of the need to identify which patient's treatments will be paid for with tax dollars. Both the civilian (Medicaid) and military (Champus) programs in the United States require that "need" be demonstrated. Need is defined as "medically necessary handicapping malocclusion" in Medicaid parlance. It is defined by Champus as "seriously handicapping malocclusion." The responsible specialty organization (the AAO) first approved the Salzmann Index in 1969 for this purpose and then reversed course in 1985 and took a formal position against the use of any index. Dentistry has historically chosen a state of occlusal perfection as ideal and normal and declared that variation was not normal hence abnormal and thus malocclusion. This "ideal" composes from 1% to 2% of the population and fails all statistical standards. Many indexes have been proposed based on variations from this "ideal" and fail for that reason. They are not logical. The HLD (CalMod) Index is a lawsuit-driven modification of some 1960 suggestions by Dr. Harry L. Draker. It proposes to identify the worst looking malocclusions as handicapping and offers a cut-off point to identify them. In addition, the modification includes two situations known to be destructive to tissue and structures. As of Jan. 1, 1998, the California program has had 135,655 patients screened by qualified orthodontists using this index. Of that number, 49,537 patients have had study models made and screened by qualified orthodontists using the index. Two separate studies have been performed to examine results and to identify problems. Necessary changes have been made and guidelines produced. The index problem has proven to be very dynamic in application. The HLD (CalMod) Index has been successfully applied and tested in very large numbers. This article is published as a factual review of the situation regarding the index question and one solution in the United States. PMID:9714277
Calculation of the optical properties of PbGa2S4 crystal
NASA Astrophysics Data System (ADS)
Kamenshchikov, V. N.; Suslikov, L. M.
2014-04-01
The high-frequency refractive index of PbGa2S4 crystal has been calculated using the Harrison bonding-orbital method. Satisfactory agreement between the calculation results and experimental data is obtained.
Aberration analysis calculations for synchrotron radiation beamline design
McKinney, W.R.; Howells, M.; Padmore, H.A.
1997-09-01
The application of ray deviation calculations based on aberration coefficients for a single optical surface for the design of beamline optical systems is reviewed. A systematic development is presented which allows insight into which aberration may be causing the rays to deviate from perfect focus. A new development allowing analytical calculation of line shape is presented.
Paiva, Bianca Sakamoto Ribeiro; de Camargos, Mayara Goulart; Demarzo, Marcelo Marcos Piva; Hervás, Gonzalo; Vázquez, Carmelo; Paiva, Carlos Eduardo
2016-01-01
Abstract The Pemberton Happiness Index (PHI) is a recently developed integrative measure of well-being that includes components of hedonic, eudaimonic, social, and experienced well-being. The PHI has been validated in several languages, but not in Portuguese. Our aim was to cross-culturally adapt the Universal Portuguese version of the PHI and to assess its psychometric properties in a sample of the Brazilian population using online surveys. An expert committee evaluated 2 versions of the PHI previously translated into Portuguese by the original authors using a standardized form for assessment of semantic/idiomatic, cultural, and conceptual equivalence. A pretesting was conducted employing cognitive debriefing methods. In sequence, the expert committee evaluated all the documents and reached a final Universal Portuguese PHI version. For the evaluation of the psychometric properties, the data were collected using online surveys in a cross-sectional study. The study population included healthcare professionals and users of the social network site Facebook from several Brazilian geographic areas. In addition to the PHI, participants completed the Satisfaction with Life Scale (SWLS), Diener and Emmons’ Positive and Negative Experience Scale (PNES), Psychological Well-being Scale (PWS), and the Subjective Happiness Scale (SHS). Internal consistency, convergent validity, known-group validity, and test–retest reliability were evaluated. Satisfaction with the previous day was correlated with the 10 items assessing experienced well-being using the Cramer V test. Additionally, a cut-off value of PHI to identify a “happy individual” was defined using receiver-operating characteristic (ROC) curve methodology. Data from 1035 Brazilian participants were analyzed (health professionals = 180; Facebook users = 855). Regarding reliability results, the internal consistency (Cronbach alpha = 0.890 and 0.914) and test–retest (intraclass correlation coefficient = 0.814) were
Calculators and Polynomial Evaluation.
ERIC Educational Resources Information Center
Weaver, J. F.
The intent of this paper is to suggest and illustrate how electronic hand-held calculators, especially non-programmable ones with limited data-storage capacity, can be used to advantage by students in one particular aspect of work with polynomial functions. The basic mathematical background upon which calculator application is built is summarized.…
ERIC Educational Resources Information Center
Phillips-Bey, Carol K.
2004-01-01
This article describes TI-73 calculator activities appropriate for middle school students. It was found that the use of the calculator allowed for higher-level thinking and a richer exploration of mathematical ideas by students. [Included with this article are "Dice Roll Worksheet" and "Transforming Tree Worksheet".] (Contains 9 figures.)
Relativistic shell model calculations
NASA Astrophysics Data System (ADS)
Furnstahl, R. J.
1986-06-01
Shell model calculations are discussed in the context of a relativistic model of nuclear structure based on renormalizable quantum field theories of mesons and baryons (quantum hadrodynamics). The relativistic Hartree approximation to the full field theory, with parameters determined from bulk properties of nuclear matter, predicts a shell structure in finite nuclei. Particle-hole excitations in finite nuclei are described in an RPA calculation based on this QHD ground state. The particle-hole interaction is prescribed by the Hartree ground state, with no additional parameters. Meson retardation is neglected in deriving the RPA equations, but it is found to have negligible effects on low-lying states. The full Dirac matrix structure is maintained throughout the calculation; no nonrelativistic reductions are made. Despite sensitive cancellations in the ground state calculation, reasonable excitation spectra are obtained for light nuclei. The effects of including charged mesons, problems with heavy nuclei, and prospects for improved and extended calculations are discussed.
ERIC Educational Resources Information Center
Wilson, Bradley
2003-01-01
Contends that the index at the back of a book is an important reader service. Discusses how and why to index, and how to make indexes interesting. Outlines programs, such as Filemaker and Adobe, which help the indexing process. (PM)
The dependence of rockfall runout on shape
NASA Astrophysics Data System (ADS)
Glover, J.; Bartelt, P.; Rosser, N.
2013-12-01
Rock-shape is fundamental to rockfall motion dynamics, having strong bearing on the velocities and jump heights of rock trajectories, determining runout distances and lateral deviation. While intuitive that particular rock shapes can have characteristic modes of motion, little is understood of rock-ground impact configurations that lead to such behaviour. This contribution presents results of small scale and numerical rockfall experiments which have explicitly focused on capturing the motion dynamics and runout characteristics of different rock-shapes. Small scale experiments were performed releasing three end-member rock shapes (equant, elongate, platy) onto a planar slope with adjustable slope angle. Accelerations and angular velocity about all three principal inertial axes were captured using a sensor module set in the test body. Accelerations up to 250 g, and maximum rotations of 40 rad/s were logged at 600 Hz. In addition, translational velocities, jump heights, impact orientation and apparent restitution coefficients were measured from video. Supplementary to this, experiments were back calculated using a numerical 3D rigid-body rockfall model which explicitly accounts for rock shape. Results indicate clear differences in runout behaviour according to rock shape. Typically equant forms runout furthest, while non-equant forms showed greater lateral spreading relative to runout distance. Runout paths were related to motion dynamics, in particular rotational behaviour. There was a tendency for rocks to rotate about their principal axis of greatest inertia, and transitions between dominant rotational axes and stability of rotations show a correlation to lateral deviation. Non-equant forms produced the maximum jump heights, which correlated to impact configuration of single impacts, where both impact dynamics and orientation are instrumental. Our data suggest that it is unrealistic to model rock-ground impacts without explicitly including rock-shape, and for
Deformation and shape changes in 167W
NASA Astrophysics Data System (ADS)
Li, C. B.; Ma, H. L.; Wu, X. G.; Chen, Q. M.; He, C. Y.; Zheng, Y.; Li, G. S.; Wu, Y. H.; Hu, S. P.; Li, H. W.; Luo, L. P.; Zhong, J.; Zhu, B. J.
2016-10-01
Lifetime measurements of yrast levels in 167W were measured using the recoil-distance Doppler-shift method. The differential decay-curve method was applied for a lifetime determination. Excited states of the nucleus 167W were populated by the reaction 142Nd (28Si, 3 n ) at a beam energy of 144 MeV. The energy spectra and measured transition quadrupole moments inferred from the lifetimes of 167W are compared with the predictions of the cranked Nilsson-Strutinsky-Bogoliubov calculations. The changes of deformations and shapes with increasing spin due to the γ -polarization effect of aligned particles are discussed. The signature inversion visible in the negative parity yrast band is explained to be related to the triaxial shapes.
Crystal Shape Evolution in Detached Bridgman Growth
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.
2013-01-01
Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. Existence of the gap provides several advantages, including no sticking of the crystal to the crucible wall, reduced thermal and mechanical stresses, reduced dislocations, and no heterogeneous nucleation by the crucible. Numerical calculations are used to determine the conditions in which a gap can exist. According to crystal shape stability theory, only some of these gap widths will be dynamically stable. Beginning with a crystal diameter that differs from stable conditions, the transient crystal growth process is analyzed. In microgravity, dynamic stability depends only on capillary effects and is decoupled from heat transfer. Depending on the initial conditions and growth parameters, the crystal shape will evolve towards the crucible wall, towards a stable gap width, or towards the center of the crucible, collapsing the meniscus. The effect of a tapered crucible on dynamic stability is also described.
Reverse engineering approach to focus shaping.
Chen, Zhaozhong; Zeng, Tingting; Ding, Jianping
2016-05-01
We propose and experimentally demonstrate an inverse design for the complete shaping of the optical focal field with the prescribed distribution of intensity, phase, and polarization. The input field that yields the desired focal field is obtained through a fast noniterative calculation procedure, in which the focal field is configured at will and then back-propagates to the input plane. The experiments have verified that all parameters of the focal field can be controlled simultaneously and independently. Furthermore, using this inverse design, we generate in focal region a kind of "perfect polarization vortex" field that has a shape independent of the topological charge of vortex. This target-oriented scheme holds the potential for applications requiring a complex focal field.
Crystal Shape Evolution in Detached Bridgman Growth
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.
2013-01-01
Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. Existence of the gap provides several advantages, including no sticking of the crystal to the crucible wall, reduced thermal and mechanical stresses, reduced dislocations, and no heterogeneous nucleation by the crucible. Numerical calculations are used to determine the conditions in which a gap can exist. According to crystal shape stability theory, only some of these gap widths will be dynamically stable. Beginning with a crystal diameter that differs from stable conditions, the transient crystal growth process is analyzed. In microgravity, dynamic stability depends only on capillary effects and is decoupled from heat transfer. Depending on the initial conditions and growth parameters, the crystal shape will evolve towards the crucible wall, towards a stable gap width, or towards the center of the crucible, collapsing the meniscus. The effect of a tapered crucible on dynamic stability is also described
Vortex structures in exponentially shaped Josephson junctions
NASA Astrophysics Data System (ADS)
Shukrinov, Yu. M.; Semerdjieva, E. G.; Boyadjiev, T. L.
2005-04-01
We report the numerical calculations of the static vortex structure and critical curves in exponentially shaped long Josephson junctions for in-line and overlap geometries. Stability of the static solutions is investigated by checking the sign of the smallest eigenvalue of the associated Sturm-Liouville problem. The change in the junction width leads to the renormalization of the magnetic flux in comparison with the case of a linear one-dimensional model. We study the influence of the model's parameters, and particularly, the shape parameter on the stability of the states of the magnetic flux. We compare the vortex structure and critical curves for the in-line and overlap geometries. Our numerically constructed critical curve of the Josephson junction matches well with the experimental one.
Scaling crossover for the average avalanche shape
NASA Astrophysics Data System (ADS)
Papanikolaou, Stefanos; Bohn, Felipe; Sommer, Rubem L.; Durin, Gianfranco; Zapperi, Stefano; Sethna, James P.
2010-03-01
Universality and the renormalization group claim to predict all behavior on long length and time scales asymptotically close to critical points. In practice, large simulations and heroic experiments have been needed to unambiguously test and measure the critical exponents and scaling functions. We announce here the measurement and prediction of universal corrections to scaling, applied to the temporal average shape of Barkhausen noise avalanches. We bypass the confounding factors of time-retarded interactions (eddy currents) by measuring thin permalloy films, and bypass thresholding effects and amplifier distortions by applying Wiener deconvolution. We show experimental shapes that are approximately symmetric, and measure the leading corrections to scaling. We solve a mean-field theory for the magnetization dynamics and calculate the relevant demagnetizing-field correction to scaling, showing qualitative agreement with the experiment. In this way, we move toward a quantitative theory useful at smaller time and length scales and farther from the critical point.
Index of Refraction without Geometry
ERIC Educational Resources Information Center
Farkas, N.; Henriksen, P. N.; Ramsier, R. D.
2006-01-01
This article presents several activities that permit students to determine the index of refraction of transparent solids and liquids using simple equipment without the need for geometrical relationships, special lighting or optical instruments. Graphical analysis of the measured data is shown to be a useful method for determining the index of…
Indexing by Latent Semantic Analysis.
ERIC Educational Resources Information Center
Deerwester, Scott; And Others
1990-01-01
Describes a new method for automatic indexing and retrieval called latent semantic indexing (LSI). Problems with matching query words with document words in term-based information retrieval systems are discussed, semantic structure is examined, singular value decomposition (SVD) is explained, and the mathematics underlying the SVD model is…
Simplifying the Water Poverty Index
ERIC Educational Resources Information Center
Cho, Danny I.; Ogwang, Tomson; Opio, Christopher
2010-01-01
In this paper, principal components methodology is used to derive simplified and cost effective indexes of water poverty. Using a well known data set for 147 countries from which an earlier five-component water poverty index comprising of "Resources," "Access," "Capacity," "Use" and "Environment" was constructed, we find that a simplified…
Index to Computer Assisted Instruction.
ERIC Educational Resources Information Center
Lekan, Helen A., Ed.
The computer assisted instruction (CAI) programs and projects described in this index are listed by subject matter. The index gives the program name, author, source, description, prerequisites, level of instruction, type of student, average completion time, logic and program, purpose for which program was designed, supplementary…
The Development of Indexing Technology.
ERIC Educational Resources Information Center
Chang, Roy
1993-01-01
Provides an overview of indexing in database management systems to provide librarians with more understanding of the possibilities and limitations of current information systems. Sequential, direct, indexed sequential, and virtual sequential file accessing methods are explained, and various binary tree structures are described. (EAM)
Developments in Indexing Picture Collections.
ERIC Educational Resources Information Center
Cawkell, A. E.
1993-01-01
Discussion of electronic image processing focuses on the need for indexing to ensure adequate retrieval. Highlights include icons, i.e., reduced pictorial surrogates; file staging; indexing languages, including examples of thesauri; and pictorial languages, including a HyperCard system. (Contains eight references.) (LRW)
Linguistic Indexicality in Algebra Discussions
ERIC Educational Resources Information Center
Staats, Susan; Batteen, Chris
2010-01-01
In discussion-oriented classrooms, students create mathematical ideas through conversations that reflect growing collective knowledge. Linguistic forms known as indexicals assist in the analysis of this collective, negotiated understanding. Indexical words and phrases create meaning through reference to the physical, verbal and ideational context.…
The Earliest Hebrew Citation Indexes.
ERIC Educational Resources Information Center
Weinberg, Bella Hass
1997-01-01
Describes early Hebrew citation indexes, both embedded and book-length, and discusses terminological variation, format, precision of locators, the order of index entries and assumption of user knowledge, knowledge of the compilers, and recommendations for further research. (59 references) (LRW)
Effects of surface reflectance on local second order shape estimation in dynamic scenes.
Dövencioğlu, Dicle N; Wijntjes, Maarten W A; Ben-Shahar, Ohad; Doerschner, Katja
2015-10-01
In dynamic scenes, relative motion between the object, the observer, and/or the environment projects as dynamic visual information onto the retina (optic flow) that facilitates 3D shape perception. When the object is diffusely reflective, e.g. a matte painted surface, this optic flow is directly linked to object shape, a property found at the foundations of most traditional shape-from-motion (SfM) schemes. When the object is specular, the corresponding specular flow is related to shape curvature, a regime change that challenges the visual system to determine concurrently both the shape and the distortions of the (sometimes unknown) environment reflected from its surface. While human observers are able to judge the global 3D shape of most specular objects, shape-from-specular-flow (SFSF) is not veridical. In fact, recent studies have also shown systematic biases in the perceived motion of such objects. Here we focus on the perception of local shape from specular flow and compare it to that of matte-textured rotating objects. Observers judged local surface shape by adjusting a rotation and scale invariant shape index probe. Compared to shape judgments of static objects we find that object motion decreases intra-observer variability in local shape estimation. Moreover, object motion introduces systematic changes in perceived shape between matte-textured and specular conditions. Taken together, this study provides a new insight toward the contribution of motion and surface material to local shape perception.
Pulse shaping for Ge-spectrometers optimized for ballistic deficit and electronic noise
NASA Astrophysics Data System (ADS)
Kalinin, A. I.; Bednyakov, V. A.
2005-02-01
For large-volume high-purity Ge detectors, working at low counting rates, a new two-level shaping is proposed which is based on a cusp-like form of the bottom part of the shaping and a parabolic-like form of the top shaping part. Due to the side wings of the cusp the good noise characteristics of the shaping are conserved. At the same time, the parabolic part of the pulse shape allows rather satisfactory compensation of the ballistic deficit. Calculation shows that the noise factor can be improved within 10-12% as compared to standard quasi-Gaussian shaping.
Generalized flexibility-rigidity index
NASA Astrophysics Data System (ADS)
Nguyen, Duc Duy; Xia, Kelin; Wei, Guo-Wei
2016-06-01
Flexibility-rigidity index (FRI) has been developed as a robust, accurate, and efficient method for macromolecular thermal fluctuation analysis and B-factor prediction. The performance of FRI depends on its formulations of rigidity index and flexibility index. In this work, we introduce alternative rigidity and flexibility formulations. The structure of the classic Gaussian surface is utilized to construct a new type of rigidity index, which leads to a new class of rigidity densities with the classic Gaussian surface as a special case. Additionally, we introduce a new type of flexibility index based on the domain indicator property of normalized rigidity density. These generalized FRI (gFRI) methods have been extensively validated by the B-factor predictions of 364 proteins. Significantly outperforming the classic Gaussian network model, gFRI is a new generation of methodologies for accurate, robust, and efficient analysis of protein flexibility and fluctuation. Finally, gFRI based molecular surface generation and flexibility visualization are demonstrated.
Nonparametric joint shape learning for customized shape modeling
Unal, Gozde
2010-01-01
We present a shape optimization approach to compute patient-specific models in customized prototyping applications. We design a coupled shape prior to model the transformation between a related pair of surfaces, using a nonparametric joint probability density estimation. The coupled shape prior forces with the help of application-specific data forces and smoothness forces drive a surface deformation towards a desired output surface. We demonstrate the usefulness of the method for generating customized shape models in applications of hearing aid design and pre-operative to intra-operative anatomic surface estimation. PMID:20044237
Estimation of the initial shape of meteoroids based on statistical distributions of fragment masses
NASA Astrophysics Data System (ADS)
Vinnikov, V. V.; Gritsevich, M. I.; Kuznetsova, D. V.; Turchak, L. I.
2016-06-01
An approach to the estimation of the initial shape of a meteoroid based on the statistical distributions of masses of its recovered fragments is presented. The fragment distribution function is used to determine the corresponding scaling index of the power law with exponential cutoff. The scaling index is related empirically to the shape parameter of a fragmenting body by a quadratic equation, and the shape parameter is expressed through the proportions of the initial object. This technique is used to study a representative set of fragments of the Bassikounou meteorite and compare the obtained data with the results of statistical analysis of other meteorites.
Subwavelength plasmonics for graded-index optics on a chip.
Grajower, Meir; Lerman, Gilad M; Goykhman, Ilya; Desiatov, Boris; Yanai, Avner; Smith, David R; Levy, Uriel
2013-09-15
Planar plasmonic devices are becoming attractive for myriad applications, owing to their potential compatibility with standard microelectronics technology and the capability for densely integrating a large variety of plasmonic devices on a chip. Mitigating the challenges of using plasmonics in on-chip configurations requires precise control over the properties of plasmonic modes, in particular their shape and size. Here we achieve this goal by demonstrating a planar plasmonic graded-index lens focusing surface plasmons propagating along the device. The plasmonic mode is manipulated by carving subwavelength features into a dielectric layer positioned on top of a uniform metal film, allowing the local effective index of the plasmonic mode to be controlled using a single binary lithographic step. Focusing and divergence of surface plasmons is demonstrated experimentally. The demonstrated approach can be used for manipulating the propagation of surface plasmons, e.g., for beam steering, splitting, cloaking, mode matching, and beam shaping applications.
[The glycemic index of some foods common in Mexico].
Frati-Munari, A C; Roca-Vides, R A; López-Pérez, R J; de Vivero, I; Ruiz-Velazco, M
1991-01-01
To investigate the increase of glycemia due to the ingestion of usual food in Mexico, portions with 50 g of carbohydrate form white corn tortilla, yellow corn tortilla, spaghetti, rice, potatoes, beans brown and black, nopal (prickle pear cactus) and peanuts, compared with white bread, were given to 21 healthy and 27 non-insulin-dependent diabetic subjects. Serum glucose and insulin were measured every 30 min for 180 min long. Glycemic index was obtained as: (area under curve of glucose with test food/area under curve of glucose with white bread) X 100. A corrected index was calculated subtracting the area corresponding to initial values. Insulin index was obtained similarly. Each sample was studied 14-18 times. Glycemic and insulin indexes of white and yellow corn tortilla, spaghetti, rice and potatoes were not different from bread (P greater than 0.05). Corrected glycemic indexes of brown beans (54 +/- 15, +/- SE) and black beans (43 +/- 17) were low (p less than 0.05), as well as corrected insulin indexes (69 +/- 11 and 64 +/- 10 respectively, (P less than 0.02). Peanuts had low glycemic (33 +/- 17, P less than 0.01), but normal insulin index. Nopal had very low glycemic and insulin indexes (10 +/- 17 and 10 +/- 16, P less than 0.0001). These data might be useful in prescribing diets for diabetic subjects. PMID:1959761
An improved choice of oscillator basis for banana shaped nuclides
Chasman, R.R.
1994-03-01
The question of the appropriate choice of oscillator basis functions for studying exotic nuclear shapes is raised. Difficulties with the conventional choice of oscillator basis states are noted for shapes having a large banana component. A prescription for an improved oscillator basis to study these shapes is given. It can be applied in a more general context. New calculations with this improved basis are presented for the banana deformation mode. The change of basis gives results that improve the prospects of finding states in the banana minimum for many isotopes of Tl, Pb and Bi.
Skeleton-based shape analysis of protein models.
Li, Zhong; Qin, Shengwei; Yu, Zeyun; Jin, Yao
2014-09-01
In order to compare the similarity between two protein models, a shape analysis algorithm based on skeleton extraction is presented in this paper. It firstly extracts the skeleton of a given protein surface by an improved Multi-resolution Reeb Graph (MRG) method. A number of points on the model surface are then collected to compute the local diameter (LD) according to the skeleton. Finally the LD frequency is calculated to build up the line chart, which is employed to analyze the shape similarity between protein models. Experimental results show that the similarity comparison using the proposed shape descriptor is more accurate especially for protein models with large deformations.
An iterative multidisciplinary analysis for rotor blade shape determination
NASA Technical Reports Server (NTRS)
Mahajan, Aparajit J.; Stefko, George L.
1993-01-01
A CFD solver called ADPAC-APES is coupled with a NASTRAN structural analysis and a MARC thermal/heat transfer analysis to determine rotor blade shape. Nonlinear blade displacements due to centrifugal loads, aerodynamic pressures, and nonuniform temperature distribution are determined simultaneously. The effect of blade displacements on aerodynamic pressures and temperatures is then analyzed. These calculations are iterated till a steady state is reached across all the disciplines. This iterative procedure is applied to a ducted fan rotor blade and the manufactured shape is determined from a given operating shape. Effect of a part-span shroud on blade deflections is also analyzed.