Strain-Detecting Composite Materials
NASA Technical Reports Server (NTRS)
Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)
2016-01-01
A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.
Wilson, Thomas S.; Bearinger, Jane P.
2017-08-29
New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.
Wilson, Thomas S.; Bearinger, Jane P.
2015-06-09
New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.
Methods of Making and Using Shape Memory Polymer Composite Patches
NASA Technical Reports Server (NTRS)
Hood, Patrick J.
2011-01-01
A method of repairing a composite component having a damaged area including: laying a composite patch over the damaged area: activating the shape memory polymer resin to easily and quickly mold said patch to said damaged area; deactivating said shape memory polymer so that said composite patch retains the molded shape; and bonding said composite patch to said damaged part.
Finite element analysis of Al 2024/Cu-Al-Ni shape memory alloy composites with defects/cracks
NASA Astrophysics Data System (ADS)
Kotresh, M.; Benal, M. M., Dr; Siddalinga Swamy, N. H., Dr
2018-02-01
In this work, a numerical approach to predict the stress field behaviour of defect/crack in shape memory alloy (SMA) particles reinforced composite known as the adaptive composite is presented. Simulation is based on the finite element method. The critical stress field approach was used to determine the stresses around defect/crack. Thereby stress amplification issue is being resolved. In this paper, the effect volume % of shape memory alloy and shape memory effect of reinforcement for as-cast and SME trained composites are examined and discussed. Shape memory effect known as training is achieved by pre-straining of reinforcement particles by equivalent changes in their expansion coefficients.
Functionally Graded Metal-Metal Composite Structures
NASA Technical Reports Server (NTRS)
Brice, Craig A. (Inventor)
2017-01-01
Methods and devices are disclosed for creating a multiple alloy composite structure by forming a three-dimensional arrangement of a first alloy composition in which the three-dimensional arrangement has a substantially open and continuous porosity. The three-dimensional arrangement of the first alloy composition is infused with at least a second alloy composition, where the second alloy composition comprises a shape memory alloy. The three-dimensional arrangement is consolidated into a fully dense solid structure, and the original shape of the second alloy composition is set for reversible transformation. Strain is applied to the fully dense solid structure, which is treated with heat so that the shape memory alloy composition becomes memory activated to recover the original shape. An interwoven composite of the first alloy composition and the memory-activated second alloy composition is thereby formed in the multiple alloy composite structure.
Thermally Activated Composite with Two-Way and Multi-Shape Memory Effects
Basit, Abdul; L’Hostis, Gildas; Pac, Marie José; Durand, Bernard
2013-01-01
The use of shape memory polymer composites is growing rapidly in smart structure applications. In this work, an active asymmetric composite called “controlled behavior composite material (CBCM)” is used as shape memory polymer composite. The programming and the corresponding initial fixity of the composite structure is obtained during a bending test, by heating CBCM above thermal glass transition temperature of the used Epoxy polymer. The shape memory properties of these composites are investigated by a bending test. Three types of recoveries are conducted, two classical recovery tests: unconstrained recovery and constrained recovery, and a new test of partial recovery under load. During recovery, high recovery displacement and force are produced that enables the composite to perform strong two-way actuations along with multi-shape memory effect. The recovery force confirms full recovery with two-way actuation even under a high load. This unique property of CBCM is characterized by the recovered mechanical work. PMID:28788316
Ternary Polymeric Composites Exhibiting Bulk and Surface Quadruple-Shape Memory Properties.
Buffington, Shelby Lois; Posnick, Benjamin M; Paul, Justine Elizabeth; Mather, Patrick T
2018-06-19
We report the design and characterization of a multiphase quadruple shape memory composite capable of switching between 4 programmed shapes, three temporary and one permanent. Our approach combined two previously reported fabrication methods by embedding an electrospun mat of PCL in a miscible blend of epoxy monomers and PMMA as a composite matrix. As epoxy polymerization occurred the matrix underwent phase separation between the epoxy and PMMA materials. This created a multiphase composite with PCL fibers and a two-phase matrix composed of phase-separated epoxy and PMMA. The resulting composite demonstrated three separate thermal transitions and amenability to mechanical programming of three separate temporary shapes in addition to one final, equilibrium shape. In addition, quadruple surface shape memory abilities are successfully demonstrated. The versatility of this approach offers a large degree of design flexibility for multi-shape memory materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermomechanical behavior of a two-way shape memory composite actuator
NASA Astrophysics Data System (ADS)
Ge, Qi; Westbrook, Kristofer K.; Mather, Patrick T.; Dunn, Martin L.; Qi, H. Jerry
2013-05-01
Shape memory polymers (SMPs) are a class of smart materials that can fix a temporary shape and recover to their permanent (original) shape in response to an environmental stimulus such as heat, electricity, or irradiation, among others. Most SMPs developed in the past can only demonstrate the so-called one-way shape memory effect; i.e., one programming step can only yield one shape memory cycle. Recently, one of the authors (Mather) developed a SMP that exhibits both one-way shape memory (1W-SM) and two-way shape memory (2W-SM) effects (with the assistance of an external load). This SMP was further used to develop a free-standing composite actuator with a nonlinear reversible actuation under thermal cycling. In this paper, a theoretical model for the PCO SMP based composite actuator was developed to investigate its thermomechanical behavior and the mechanisms for the observed phenomena during the actuation cycles, and to provide insight into how to improve the design.
Self-folding with shape memory composites at the millimeter scale
NASA Astrophysics Data System (ADS)
Felton, S. M.; Becker, K. P.; Aukes, D. M.; Wood, R. J.
2015-08-01
Self-folding is an effective method for creating 3D shapes from flat sheets. In particular, shape memory composites—laminates containing shape memory polymers—have been used to self-fold complex structures and machines. To date, however, these composites have been limited to feature sizes larger than one centimeter. We present a new shape memory composite capable of folding millimeter-scale features. This technique can be activated by a global heat source for simultaneous folding, or by resistive heaters for sequential folding. It is capable of feature sizes ranging from 0.5 to 40 mm, and is compatible with multiple laminate compositions. We demonstrate the ability to produce complex structures and mechanisms by building two self-folding pieces: a model ship and a model bumblebee.
Shape memory alloy-actuated bistable composites for morphing structures
NASA Astrophysics Data System (ADS)
Chillara, Venkata Siva C.; Dapino, Marcelo J.
2018-03-01
Laminated composites with orthogonally-applied mechanical prestress have been shown to exhibit two stable shapes where each shape is influenced by only one prestrained lamina. The application of mechanical prestress is associated with an irreversible non-zero stress state; when combined with smart materials with controllable stress-states, this results in multifunctionality in morphing composites. This study presents an experimental characterization of the shape transition or snap-through in mechanically-prestressed bistable laminates. Measurements, conducted using tensile testing and 3D motion capture, show that snap-through in these laminates is a multi-stage phenomenon. An active bistable morphing composite is demonstrated using NiTi shape memory wire actuators in push-pull configuration; activation of one wire resets the second wire as the composite morphs. The set of shape memory actuators not only actuate the composite in both directions, but also act as dampers that enable vibration-free shape transition.
Effective thermo-mechanical properties and shape memory effect of CNT/SMP composites
NASA Astrophysics Data System (ADS)
Yang, Qingsheng; Liu, Xia; Leng, Fangfang
2009-07-01
Shape memory polymer (SMP) has been applied in many fields as intelligent sensors and actuators. In order to improve the mechanical properties and recovery force of SMP, the addition of minor amounts of carbon nanotubes (CNT) into SMP has attracted wide attention. A micromechanical model and thermo-mechanical properties of CNT/SMP composites were studied in this paper. The thermo-mechanical constitutive relation of intellectual composites with isotropic and transversely isotropic CNT was obtained. Moreover, the shape memory effect of CNT/SMP composites and the effect of temperature and the volume fraction of CNT were discussed. The work shows that CNT/SMP composites exhibit excellent macroscopic thermo-mechanical properties and shape memory effect, while both of them can be affected remarkably by temperature and the microstructure parameters.
NASA Astrophysics Data System (ADS)
Liang, C.; Rogers, C. A.; Fuller, C. R.
1991-02-01
A theoretical analysis of sound transmission/radiation of shape-memory alloy (SMA) hybrid composite panels is presented. Unlike other composite materials, SMA hybrid composite is dynamically tunable by electrical activation of the SMA fibers and has numerous active control capabilities. Two of the concepts that will be briefly described and utilized in this paper are referred to as active property tuning (APT) and active strain energy tuning (ASET). Tuning or activating the embedded shape-memory alloy fibers in conventional composite materials changes the overall stiffness of the SMA hybrid composite structure and consequently changes natural frequency and mode shapes. The sound transmission and radiation from a composite panel is related to its frequency and mode shapes. Because of the capability to change both the natural frequency and mode shapes, the acoustic characteristics of SMA hybrid composite plates can be changed as well. The directivity pattern, radiation efficiency, and transmission loss of laminated composite materials are investigated based on 'composite' mode shapes in order to derive a basic understanding of the nature and authority of acoustic control by use of SMA hybrid composites.
NASA Technical Reports Server (NTRS)
Wright, M. Clara; Manuel, Michele; Wallace, Terryl
2013-01-01
A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.
Active shape control of composite blades using shape memory actuation
NASA Astrophysics Data System (ADS)
Chandra, Ramesh
2001-10-01
This paper presents active shape control of composite beams using shape memory actuation. Shape memory alloy (SMA) bender elements trained to memorize bending shape were used to induce bending and twisting deformations in composite beams. Bending-torsion coupled graphite-epoxy and kevlar-epoxy composite beams with Teflon inserts were manufactured using an autoclave-molding technique. Teflon inserts were replaced by trained SMA bender elements. Composite beams with SMA bender elements were activated by heating these using electrical resistive heating and the bending and twisting deformations of the beams were measured using a mirror and laser system. The structural response of the composite beams activated by SMA elements was predicted using the Vlasov theory, where these beams were modeled as open sections with many branches. The bending moment induced by a SMA bender element was calculated from its experimentally determined memorized shape. The bending, torsion, and bending-torsion coupling stiffness coefficients of these beams were obtained using analytical formulation of an open-section composite beam with many branches (Vlasov theory).
Yang, Li; Tong, Rui; Wang, Zhanhua; Xia, Hesheng
2018-03-25
A new kind of fast near-infrared (NIR) light-responsive shape-memory polymer composites was prepared by introducing polydopamine particles (PDAPs) into commercial shape-memory polyurethane (SMPU). The toughness and strength of the polydopamine-particle-filled polyurethane composites (SMPU-PDAPs) were significantly enhanced with the addition of PDAPs due to the strong interface interaction between PDAPs and polyurethane segments. Owing to the outstanding photothermal effect of PDAPs, the composites exhibit a rapid light-responsive shape-memory process in 60 s with a PDAPs content of 0.01 wt%. Due to the excellent dispersion and convenient preparation method, PDAPs have great potential to be used as high-efficiency and environmentally friendly fillers to obtain novel photoactive functional polymer composites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zheng, Xiaotong; Zhou, Shaobing; Yu, Xiongjun; Li, Xiaohong; Feng, Bo; Qu, Shuxin; Weng, Jie
2008-07-01
The in vitro degradation characteristic and shape-memory properties of poly(D,L-lactide) (PDLLA)/beta-tricalcium phosphate (beta-TCP) composites were investigated because of their wide application in biomedical fields. In this article, PDLLA and crystalline beta-TCP were compounded and interesting shape-memory behaviors of the composite were first investigated. Then, in vitro degradation of the PDLLA/beta-TCP composites with weight ratios of 1:1, 2:1, and 3:1 was performed in phosphate buffer saline solution (PBS) (154 mM, pH 7.4) at 37 degrees C. The effect of in vitro degradation time for PDLLA/beta-TCP composites on shape-memory properties was studied by scanning electron microscopy, differential scanning calorimetry, gel permeation chromatography, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The changes of structural morphology, glass transition temperature (T(g)), molecular weight, and weight loss of composites matrix and pH change of degradation medium indicated that shape-memory effects at different degradation time were nonlinearly influenced because of the breaking down of polymer chain and the formation of degradation products. Furthermore, the results from XRD and FTIR implied that the degradation products, for example, hydroxyapatite (HA), calcium hydrogen phosphate (CaHPO(4)), and calcium pyrophosphate (Ca(2)P(2)O(7)) phases also had some effects on shape-memory properties during the degradation. 2007 Wiley Periodicals, Inc.
Li, Nan; Chen, Wei; Chen, Guangxue; Tian, Junfei
2017-09-01
TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin shape memory hydrogels were successfully fabricated through a facile in-situ free-radical polymerization method, and double network was formed by chemically cross-linked polyacrylamide (PAM) network and physically cross-linked gelatin network. TEMPO-oxidized cellulose nanofibers (TOCNs) were introduced to improve the mechanical properties of the hydrogel. The structure, shape memory behaviors and mechanical properties of the resulting composite gels with varied gel compositions were investigated. The results obtained from those different studies revealed that TOCNs, gelatin, and PAM could mix with each other homogeneously. Due to the thermoreversible nature of the gelatin network, the composite hydrogels exhibited attractive thermo-induced shape memory properties. In addition, good mechanical properties (strength >200kPa, strain >650%) were achieved. Such composite hydrogels with good shape memory behavior and enhanced mechanical strength would be an attractive candidate for a wide variety of applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets.
Urban, Magdalena; Strankowski, Michał
2017-09-14
Intelligent materials, such as memory shape polymers, have attracted considerable attention due to wide range of possible applications. Currently, intensive research is underway, in matters of obtaining memory shape materials that can be actuated via inductive methods, for example with help of magnetic field. In this work, an attempt was made to develop a new polymer composite-polyurethane modified with graphene nanoplates and ferromagnetic iron oxides-with improved mechanical properties and introduced magnetic and memory shape properties. Based on the conducted literature review, gathered data were compared to the results of similar materials. Obtained materials were tested for their thermal, rheological, mechanical and shape memory properties. Structure of both fillers and composites were also analyzed using various spectroscopic methods. The addition of fillers to the polyurethane matrix improved the mechanical and shape memory properties, without having a noticeable impact on thermal properties. As it was expected, the high content of fillers caused a significant change in viscosity of filled prepolymers (during the synthesis stage). Each of the studied composites showed better mechanical properties than the unmodified polyurethanes. The addition of magnetic particles introduced additional properties to the composite, which could significantly expand the functionality of the materials developed in this work.
Electric Field Activated Shape Memory Polymer Composite
NASA Technical Reports Server (NTRS)
Kang, Jin Ho (Inventor); Turner, Travis L. (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor)
2017-01-01
Provided is an electrically activated shape memory polymer composite capable of thermal shape reformation using electric power to heat the composite through its matrix glass transition temperature. The composite includes an adaptable polymer matrix component using a diglycidyl ether resin, at least one substantially well-dispersed conductive or magnetic nano-filler component, and at least one elastic, laminated layer. Also provided are methods of preparing the composite and methods of activating the composite. A shape reformation of the composite is triggered by applying an electric field at DC and/or at a frequency above about 1.mu.Hz for a sufficient time.
NASA Astrophysics Data System (ADS)
Cantrell, Jason T.
This document outlines in detail the research performed by applying shape memory polymers in a generic unimorph actuator configuration. A set of experiments designed to investigate the influence of transverse curvature, the relative widths of shape memory polymer and composite substrates, and shape memory polymer thickness on actuator recoverability after multiple thermo-mechanical cycles is presented in detail. A theoretical model of the moment required to maintain shape fixity with minimal shape retention loss was developed and experimentally validated for unimorph composite actuators of varying cross-sectional areas. Theoretical models were also developed and evaluated to determine the relationship between the materials neutral axes and thermal stability during a thermo-mechanical cycle. Research was conducted on the incorporation of shape memory polymers on micro air vehicle wings to maximize shape fixity and shape recoverability while minimizing the volume of shape memory polymer on the wing surface. Applications based research also included experimentally evaluating the feasibility of shape memory polymers on deployable satellite antenna ribs both with and without resistance heaters which could be utilized to assist in antenna deployment.
NASA Astrophysics Data System (ADS)
Hong, Seok Bin; Ahn, Yong San; Jang, Joon Hyeok; Kim, Jin-Gyun; Goo, Nam Seo; Yu, Woong-Ryeol
2016-04-01
Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Reinforcements as carbon fiber had been used for making shape memory polymer composite (CF-SMPC). This study investigated a possibility of designing self-deployable structures in harsh space condition using CF-SMPCs and analyzed their shape memory behaviors with constitutive equation model.CF-SMPCs were prepared using woven carbon fabrics and a thermoset epoxy based SMP to obtain their basic mechanical properties including actuation in harsh environment. The mechanical and shape memory properties of SMP and CF-SMPCs were characterized using dynamic mechanical analysis (DMA) and universal tensile machine (UTM) with an environmental chamber. The mechanical properties such as flexural strength and tensile strength of SMP and CF-SMPC were measured with simple tensile/bending test and time dependent shape memory behavior was characterized with designed shape memory bending test. For mechanical analysis of CF-SMPCs, a 3D constitutive equation of SMP, which had been developed using multiplicative decomposition of the deformation gradient and shape memory strains, was used with material parameters determined from CF-SMPCs. Carbon fibers in composites reinforced tensile and flexural strength of SMP and acted as strong elastic springs in rheology based equation models. The actuation behavior of SMP matrix and CF-SMPCs was then simulated as 3D shape memory bending cases. Fiber bundle property was imbued with shell model for more precise analysis and it would be used for prediction of deploying behavior in self-deployable hinge structure.
Effect of Graphene Addition on Shape Memory Behavior of Epoxy Resins
NASA Technical Reports Server (NTRS)
Williams, Tiffany; Meador, Michael; Miller, Sandi; Scheiman, Daniel
2011-01-01
Shape memory polymers (SMPs) and composites are a special class of smart materials known for their ability to change size and shape upon exposure to an external stimulus (e.g. light, heat, pH, or magnetic field). These materials are commonly used for biomedical applications; however, recent attempts have been made towards developing SMPs and composites for use in aircraft and space applications. Implementing SMPs and composites to create a shape change effect in some aircraft structures could potentially reduce drag, decrease fuel consumption, and improve engine performance. This paper discusses the development of suitable materials to use in morphing aircraft structures. Thermally responsive epoxy SMPs and nanocomposites were developed and the shape memory behavior and thermo-mechanical properties were studied. Overall, preliminary results from dynamic mechanical analysis (DMA) showed that thermally actuated shape memory epoxies and nanocomposites possessed Tgs near approximately 168 C. When graphene nanofiller was added, the storage modulus and crosslinking density decreased. On the other hand, the addition of graphene enhanced the recovery behavior of the shape memory nanocomposites. It was assumed that the addition of graphene improved shape memory recovery by reducing the crosslinking density and increasing the elasticity of the nanocomposites.
AC Electric Field Activated Shape Memory Polymer Composite
NASA Technical Reports Server (NTRS)
Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.
2011-01-01
Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.
Xie, Hanhan; Shao, Jundong; Ma, Yufei; Wang, Jiahong; Huang, Hao; Yang, Na; Wang, Huaiyu; Ruan, Changshun; Luo, Yanfeng; Wang, Qu-Quan; Chu, Paul K; Yu, Xue-Feng
2018-05-01
In this paper, we propose a new shape memory polymer (SMP) composite with excellent near-infrared (NIR)-photoresponsive shape memory performance and biodegradability. The composite is fabricated by using piperazine-based polyurethane (PU) as thermo-responsive SMP incorporated with black-phosphorus (BP) sheets as NIR photothermal nanofillers. Under 808 nm light irradiation, the incorporated BP sheets with concentration of only 0.08 wt% enable rapid temperature increase over the glass temperature of PU and trigger the shape change of the composite with shape recovery rate of ∼100%. The in vitro and in vivo toxicity examinations demonstrate the good biocompatibility of the PU/BP composite, and it degrades naturally into non-toxic carbon dioxide and water from PU and non-toxic phosphate from BP. By implanting PU/BP columns into back subcutis and vagina of mice, they exhibit excellent shape memory activity to change their shape quickly under moderate 808 nm light irradiaiton. Such SMP composite enable the development of intelligent implantable devices, which can be easily controlled by the remote NIR light and degrade gradually after performing the designed functions in the body. Copyright © 2018 Elsevier Ltd. All rights reserved.
Thermomechanical Analysis of Shape-Memory Composite Tape Spring
NASA Astrophysics Data System (ADS)
Yang, H.; Wang, L. Y.
2013-06-01
Intelligent materials and structures have been extensively applied for satellite designs in order to minimize the mass and reduce the cost in the launch of the spacecraft. Elastic memory composites (EMCs) have the ability of high-strain packaging and shape-memory effect, but increase the parts and total weight due to the additional heating system. Shape-memory sandwich structures Li and Wang (J. Intell. Mater. Syst. Struct. 22(14), 1605-1612, 2011) can overcome such disadvantage by using the metal skin acting as the heating element. However, the high strain in the micro-buckled metal skin decreases the deployment efficiency. This paper aims to present an insight into the folding and deployment behaviors of shape-memory composite (SMC) tape springs. A thermomechanical process was analyzed, including the packaging deformation at an elevated temperature, shape frozen at the low temperature and shape recovery after reheating. The result shows that SMC tape springs can significantly decrease the strain concentration in the metal skin, as well as exhibiting excellent shape frozen and recovery behaviors. Additionally, possible failure modes of SMC tape springs were also analyzed.
NASA Astrophysics Data System (ADS)
Zhang, Xudong; Ren, Junqiang; Wang, Xiaofei; Zong, Hongxiang; Cui, Lishan; Ding, Xiangdong
2017-12-01
A continuous martensite transformation is indispensable for achieving large linear superelasticity and low modulus in phase transforming metal-based composites. However, determining how to accurately condition the residual martensite in a shape memory alloy matrix though the reinforcement shape to achieve continuous martensite transformation has been a challenge. Here, we take the finite element method to perform a comparative study of the effects of nanoinclusion shape on the interaction and martensite phase transformation in this new composite. Two typical samples are compared: one reinforced by metallic nanowires and the other by nanoparticles. We find that the residual martensite within the shape memory alloy matrix after a pretreatment can be tailored by the reinforcement shape. In particular, our results show that the shape memory alloy matrix can retain enough residual martensite phases to achieve continuous martensite transformation in the subsequent loading when the aspect ratio of nanoreinforcement is larger than 20. In contrast, the composites reinforced with spherical or low aspect ratio reinforcement show a typical nonlinear superelasticity as a result of a low stress transfer-induced discontinuous martensite transformation within the shape memory alloy matrix.
Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA
NASA Astrophysics Data System (ADS)
Lin, Liulan; Zhang, Lingfeng; Guo, Yanwei
2018-01-01
In this study, the effect of content of glutaraldehyde (GA) on the shape memory behavior of a shape memory polymer based on polyvinyl alcohol chemically cross-linked with GA was investigated. Thermal-responsive shape memory composites with three different GA levels, GA-PVA (3 wt%, 5 wt%, 7 wt%), were prepared by particle melting, mold forming and freeze-drying technique. The mechanical properties, thermal properties and shape memory behavior were measured by differential scanning calorimeter, physical bending test and cyclic thermo-mechanical test. The addition of GA to PVA led to a steady shape memory transition temperature and an improved mechanical compressive strength. The composite with 5 wt% of GA exhibited the best shape recoverability. Further increase in the crosslinking agent content of GA would reduce the recovery force and prolong the recovery time due to restriction in the movement of the soft PVA chain segments. These results provide important information for the study on materials in 4D printing.
Strategic design and fabrication of acrylic shape memory polymers
NASA Astrophysics Data System (ADS)
Park, Ju Hyuk; Kim, Hansu; Ryoun Youn, Jae; Song, Young Seok
2017-08-01
Modulation of thermomechanics nature is a critical issue for an optimized use of shape memory polymers (SMPs). In this study, a strategic approach was proposed to control the transition temperature of SMPs. Free radical vinyl polymerization was employed for tailoring and preparing acrylic SMPs. Transition temperatures of the shape memory tri-copolymers were tuned by changing the composition of monomers. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses were carried out to evaluate the chemical structures and compositions of the synthesized SMPs. The thermomechanical properties and shape memory performance of the SMPs were also examined by performing dynamic mechanical thermal analysis. Numerical simulation based on a finite element method provided consistent results with experimental cyclic shape memory tests of the specimens. Transient shape recovery tests were conducted and optical transparence of the samples was identified. We envision that the materials proposed in this study can help develop a new type of shape-memory devices in biomedical and aerospace engineering applications.
NASA Astrophysics Data System (ADS)
Yao, Yongtao; Wang, Jingjie; Lu, Haibao; Xu, Ben; Fu, Yongqing; Liu, Yanju; Leng, Jinsong
2016-01-01
A novel and facile strategy was proposed to construct a thermosetting/thermoplastic system with both shape memory and self-healing properties based on commercial epoxy resin and poly(ɛ-caprolactone)-PCL. Thermoplastic material is capable of re-structuring and changing the stiffness/modulus when the temperature is above melting temperature. PCL microfiber was used as a plasticizer in epoxy resin-based blends, and served as a ‘hard segment’ to fix a temporary shape of the composites during shape memory cycles. In this study, the electrospun PCL membrane with a porous network structure enabled a homogenous PCL fibrous distribution and optimized interaction between fiber and epoxy resin. The self-healing capability is achieved by phase transition during curing of the composites. The mechanism of the shape memory effect of the thermosetting (rubber)/thermoplastic composite is attributed to the structural design of the thermoplastic network inside the thermosetting resin/rubber matrix.
Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets
Urban, Magdalena
2017-01-01
Intelligent materials, such as memory shape polymers, have attracted considerable attention due to wide range of possible applications. Currently, intensive research is underway, in matters of obtaining memory shape materials that can be actuated via inductive methods, for example with help of magnetic field. In this work, an attempt was made to develop a new polymer composite—polyurethane modified with graphene nanoplates and ferromagnetic iron oxides—with improved mechanical properties and introduced magnetic and memory shape properties. Based on the conducted literature review, gathered data were compared to the results of similar materials. Obtained materials were tested for their thermal, rheological, mechanical and shape memory properties. Structure of both fillers and composites were also analyzed using various spectroscopic methods. The addition of fillers to the polyurethane matrix improved the mechanical and shape memory properties, without having a noticeable impact on thermal properties. As it was expected, the high content of fillers caused a significant change in viscosity of filled prepolymers (during the synthesis stage). Each of the studied composites showed better mechanical properties than the unmodified polyurethanes. The addition of magnetic particles introduced additional properties to the composite, which could significantly expand the functionality of the materials developed in this work. PMID:28906445
Thermomechanical behavior of shape memory elastomeric composites
NASA Astrophysics Data System (ADS)
Ge, Qi; Luo, Xiaofan; Rodriguez, Erika D.; Zhang, Xiao; Mather, Patrick T.; Dunn, Martin L.; Qi, H. Jerry
2012-01-01
Shape memory polymers (SMPs) can fix a temporary shape and recover their permanent shape in response to environmental stimuli such as heat, electricity, or irradiation. Most thermally activated SMPs use the macromolecular chain mobility change around the glass transition temperature ( Tg) to achieve the shape memory (SM) effects. During this process, the stiffness of the material typically changes by three orders of magnitude. Recently, a composite materials approach was developed to achieve thermally activated shape memory effect where the material exhibits elastomeric response in both the temporary and the recovered configurations. These shape memory elastomeric composites (SMECs) consist of an elastomeric matrix reinforced by a semicrystalline polymer fiber network. The matrix provides background rubber elasticity while the fiber network can transform between solid crystals and melt phases over the operative temperature range. As such it serves as a reversible "switching phase" that enables shape fixing and recovery. Shape memory elastomeric composites provide a new paradigm for the development of a wide array of active polymer composites that utilize the melt-crystal transition to achieve the shape memory effect. This potentially allows for material systems with much simpler chemistries than most shape memory polymers and thus can facilitate more rapid material development and insertion. It is therefore important to understand the thermomechanical behavior and to develop corresponding material models. In this paper, a 3D finite-deformation constitutive modeling framework was developed to describe the thermomechanical behavior of SMEC. The model is phenomenological, although inspired by micromechanical considerations of load transfer between the matrix and fiber phases of a composite system. It treats the matrix as an elastomer and the fibers as a complex solid that itself is an aggregate of melt and crystal phases that evolve from one to the other during a temperature change. As such, the composite consists of an elastomer reinforced by a soft liquid at high temperature and a stiff solid at low temperature. The model includes a kinetic description of the non-isothermal crystallization and melting of the fibers during a temperature change. As the fibers transform from melt to crystal during cooling it is assumed that new crystals are formed in an undeformed state, which requires careful tracking of the kinematics of the evolving phases which comes at a significant computational cost. In order to improve the computational efficiency, an effective phase model (EPM) is adopted to treat the evolving crystal phases as an effective medium. A suite of careful thermomechanical experiments with a SMEC was carried out to calibrate various model parameters, and then to demonstrate the ability of the model to accurately capture the shape memory behavior of the SMEC system during complex thermomechanical loading scenarios. The model also identifies the effects of microstructural design parameters such as the fiber volume fraction.
Durability of carbon fiber reinforced shape memory polymer composites in space
NASA Astrophysics Data System (ADS)
Jang, Joon Hyeok; Hong, Seok Bin; Ahn, Yong San; Kim, Jin-Gyun; Nam, Yong-Youn; Lee, Geun Ho; Yu, Woong-Ryeol
2016-04-01
Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Recently, shape memory polymer composites (SMPCs) have been considered for space structure instead of shape memory alloys due to their deformability, lightweight and large recovery ratio, requiring characterization of their mechanical properties against harsh space environment and further prediction of the durability of SMPCs in space. As such, the durability of carbon fiber reinforced shape memory polymer composites (CF-SMPCs) was investigated using accelerated testing method based on short-term testing of CF-SMPCs in harsh condition. CF-SMPCs were prepared using woven carbon fabrics and a thermoset SMP via vacuum assisted resin transfer molding process. Bending tests with constant strain rate of CF-SMPCs were conducted using universal tensile machine (UTM) and Storage modulus test were conducted using dynamic mechanical thermal analysis (DMTA). Using the results, a master curve based on time-temperature superposition principle was then constructed, through which the mechanical properties of CF-SMPCs at harsh temperature were predicted. CF-SMPCs would be exposed to simulated space environments under ultra-violet radiations at various temperatures. The mechanical properties including flexural and tensile strength and shape memory properties of SMPCs would be measured using UTM before and after such exposures for comparison. Finally, the durability of SMPCs in space would be assessed by developing a degradation model of SMPC.
A New Strategy to Prepare Polymer-based Shape Memory Elastomers.
Song, Shijie; Feng, Jiachun; Wu, Peiyi
2011-10-04
A new strategy that utilizes the microphase separation of block copolymer and phase transition of small molecules for preparing polymer-based shape memory elastomer has been proposed. According to this strategy, a novel kind of shape memory elastomer comprising styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) and paraffin has been prepared. Because paraffins are midblock-selective molecules for SEBS, they will preferentially enter and swell EB blocks supporting paraffins as an excellent switch phase for shape memory effect. Microstructures of SEBS/paraffin composites have been characterized by transmission electron microscopy, polarized light microscopy, and differential scanning calorimetry. The composites demonstrate various phase morphologies with regard to different paraffin loading. It has been found that under low paraffin loading, all the paraffins precisely embed in and swell EB-rich domains. While under higher loading, part of the paraffins become free and a larger-scaled phase separation has been observed. However, within wide paraffin loadings, all composites show good shape fixing, shape recovery performances, and improved tensile properties. Compared to the reported methods for shape memory elastomers preparation, this method not only simplifies the fabrication procedure from raw materials to processing but also offers a controllable approach for the optimization of shape memory properties as well as balancing the rigidity and softness of the material. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shape-morphing composites with designed micro-architectures
NASA Astrophysics Data System (ADS)
Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; Wilson, Thomas S.; Spadaccini, Christopher M.; Lewicki, James P.
2016-06-01
Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designed for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. The ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.
Design of diaphragm actuator based on ferromagnetic shape memory alloy composite
NASA Astrophysics Data System (ADS)
Liang, Yuanchang; Taya, Minoru; Kuga, Yasuo
2003-08-01
A new diaphragm actuator based on the ferromagnetic shape memory alloy (FSMA) composite is designed where the FSMA composite is composed of ferromagnetic soft iron and superelastic grade of NiTi shape memory alloy (SMA). The actuation mechanism for the FSMA composite plate of the actuator is the hybrid mechanism that we proposed previously. This diaphragm actuator is the first design toward designing a new synthetic jet actuator that will be used for active flow control technology on airplane wings. The design of the FSMA composite diaphragm actuator was established first by using both mechanical and ferromagnetic finite element analyses with an aim of optimization of the actuator components. Based on the FEM results, the first generation diaphragm actuator system was assembled and its static and dynamic performance was experimentally evaluated.
Fabrication de couches minces a memoire de forme et effets de l'irradiation ionique
NASA Astrophysics Data System (ADS)
Goldberg, Florent
1998-09-01
Nickel and titanium when combined in the right stoichiometric proportion (1:1) can form alloys showing the shape memory effect. Within the scope of this thesis, thin films of such alloys have been successfully produced by sputtering. Precise control of composition is crucial in order to obtain the shape memory effect. A combination of analytical tools which can accurately determine the behavior of such materials is also required (calorimetric analysis, crystallography, composition analysis, etc.). Rutherford backscattering spectrometry has been used for quantitative composition analysis. Thereafter irradiation of films with light ions (He+) of few MeV was shown to allow lowering of the characteristic premartensitic transformation temperatures while preserving the shape memory effect. Those results open the door to a new field of research, particularly for ion irradiation and its potential use as a tool to modify the thermomechanical behavior of shape memory thin film actuators.
Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites
NASA Technical Reports Server (NTRS)
Gao, Xiujie; Burton, Deborah; Turner, Travis L.; Brinson, Catherine
2005-01-01
Shape memory alloy hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites. Keywords: shape memory alloys, Nitinol, ABAQUS, finite element analysis, post-buckling control, shape control, deflection control, adaptive stiffening, morphing, constitutive modeling, user element
Fatigue design curve of a TiNi/Al shape memory alloy composite for aircraft stringer design
NASA Astrophysics Data System (ADS)
Park, Young-Chul; Jo, Young-Jik; Baek, Seok-Heum; Furuya, Yasubumi
2009-05-01
In this study, a TiNi/Al6061 shape memory alloy (SMA) composite was fabricated by the hot press method, and pressed by a roller for its strength improvement using the shape memory fiber shrinkage phenomenon. These two kinds of specimens were fabricated with 0% and 5% volume ratio and 0%, 10 % and 20% reduction ratio of TiNi alloy fiber, respectively. A fatigue test has been performed to evaluate the fatigue life for the fabricated TiNi/Al SMA composite as an S-N curve. The results from the Goodman diagram is able to illustrate the failure criterion and fatigue limit between tensile and bending fatigue strength in the fatigue characterization of TiNi/Al SMA composites.
Ban, Jianfeng; Zhu, Linjiang; Chen, Shaojun; Wang, Yiping
2016-01-01
To better understand shape memory materials and self-healing materials, a new series of liquid-crystalline shape memory polyurethane (LC-SMPU) composites, named SMPU-OOBAm, were successfully prepared by incorporating 4-octyldecyloxybenzoic acid (OOBA) into the PEG-based SMPU. The effect of OOBA on the structure, morphology, and properties of the material has been carefully investigated. The results demonstrate that SMPU-OOBAm has liquid crystalline properties, triple-shape memory properties, and self-healing properties. The incorporated OOBA promotes the crystallizability of both soft and hard segments of SMPU, and the crystallization rate of the hard segment of SMPU decreases when the OOBA-content increases. Additionally, the SMPU-OOBAm forms a two-phase separated structure (SMPU phase and OOBA phase), and it shows two-step modulus changes upon heating. Therefore, the SMPU-OOBAm exhibits triple-shape memory behavior, and the shape recovery ratio decreases with an increase in the OOBA content. Finally, SMPU-OOBAm exhibits self-healing properties. The new mechanism can be ascribed to the heating-induced “bleeding” of OOBA in the liquid crystalline state and the subsequent re-crystallization upon cooling. This successful combination of liquid crystalline properties, triple-shape memory properties, and self-healing properties make the SMPU-OOBAm composites ideal for many promising applications in smart optical devices, smart electronic devices, and smart sensors. PMID:28773914
Shape-morphing composites with designed micro-architectures
Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; ...
2016-06-15
Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designedmore » for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. As a result, the ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.« less
Reversible Shape Memory Polymers and Composites: Synthesis, Modeling and Design
2013-03-01
Polymer; and (iii) Development of a Shape Memory Assisted Self - Healing Polymer. Page 3 of 19 Mather/FA9550-09-1-0195 IV(i) Modeling and Model...0195 IV(iii) Development of a Shape Memory Assisted Self - Healing Polymer Erika D. Rodriguez, X. Luo, and P.T. Mather, “Linear and Crosslinked...Poly (ε- Caprolactone) Polymers for Shape Memory Assisted Self - Healing (SMASH),” ACS Applied Materials and Interfaces 3 152-161 (2011). Self
NASA Technical Reports Server (NTRS)
Wright, M. Clara; Manuel, Michele; Wallace, Terryl; Newman, Andy; Brinson, Kate
2015-01-01
This DAA is for the Phase II webinar presentation of the ARMD-funded SMASH technology. A self-repairing aluminum-based composite system has been developed using liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal matrix composite was thermodynamically designed to have a matrix with a relatively even dispersion of low-melting phase, allowing for repair of cracks at a pre-determined temperature. Shape memory alloy wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to optimize and computer model the SMASH technology for aeronautical applications.
Post polymerization cure shape memory polymers
Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.
2017-01-10
This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.
Post polymerization cure shape memory polymers
Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P
2014-11-11
This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.
Park, Jin Ho; Dao, Trung Dung; Lee, Hyung-il; Jeong, Han Mo; Kim, Byung Kyu
2014-01-01
Shape memory behavior of crystalline shape memory polyurethane (SPU) reinforced with graphene, which utilizes melting temperature as a shape recovery temperature, was examined with various external actuating stimuli such as direct heating, resistive heating, and infrared (IR) heating. Compatibility of graphene with crystalline SPU was adjusted by altering the structure of the hard segment of the SPU, by changing the structure of the graphene, and by changing the preparation method of the graphene/SPU composite. The SPU made of aromatic 4,4′-diphenylmethane diisocyanate (MSPU) exhibited better compatibility with graphene, having an aromatic structure, compared to that made of the aliphatic hexamethylene diisocyanate. The finely dispersed graphene effectively reinforced MSPU, improved shape recovery of MSPU, and served effectively as a filler, triggering shape recovery by resistive or IR heating. Compatibility was enhanced when the graphene was modified with methanol. This improved shape recovery by direct heating, but worsened the conductivity of the composite, and consequently the efficiency of resistive heating for shape recovery also declined. Graphene modified with methanol was more effective than pristine graphene in terms of shape recovery by IR heating. PMID:28788529
Shape memory polymeric composites sensing by optic fibre Bragg gratings: A very first approach
NASA Astrophysics Data System (ADS)
Quadrini, Fabrizio; Santo, Loredana; Ciminello, Monica; Concilio, Antonio; Volponi, Ruggero; Spena, Paola
2016-05-01
Shape memory polymer composites (SMPCs) have the potential for many applications in aerospace, spanning from self-repairing of structures to self-deploying of antennas, solar sails, or functional devices (e.g. for grabbing small space debris). In all these cases, it may be essential to have information about their configuration at different stages of shape recovery. In this study, the strain history of a prepreg carbon fibre system, cured with a shape memory polymer (SMP) interlayer, is monitored through a Fibre Bragg Grating (FBG), a fibre optic sensor device. SMPC has been manufactured by using traditional technologies for aerospace. After manufacturing cylindrical shape samples, an external fibre optic system is added to the composite structure; this system is especially suited for high temperatures which are necessary for SMP recovery and composite softening. Sensor functionality is checked before and after each strain history path. Optic fibre arrangement is optimized to avoid unwanted breakings whereas strains are limited by fibre collapsing, i.e. within nominal 2% of deformation. Dynamic information about shape recovery gives fundamental insights about strain evolution during time as well as its spatial distribution.
An Evaluation on the Smart Composite Damaged by Thermal Shock
NASA Astrophysics Data System (ADS)
Lee, Jin Kyung; Lee, Sang Pill; Park, Young Chul; Lee, Joon Hyun
A shape memory alloy (SMA) as part of some products and system has been used to keep their shape at any specified temperature. By using this characteristic of the shape memory alloy it can be solved the problem of the residual stress by difference of coefficients of thermal expansion between reinforcement and matrix within composite. In this study, TiNi/Al6061 shape memory alloy composite was fabricated through hot press method, and the optimal fabrication condition was created. The bonding effect of the matrix and the reinforcement within the SMA composite was strengthened by cold rolling. The SMA composite can be applied as the part of airplane and vessel, and used under tough condition of repetitive thermal shock cycles of high and low temperatures. Therefore, the thermal shock test was performed for the SMA composite, and mechanical properties were evaluated. The tensile strength of the SMA composite showed a slight decline with the thermal shock cycles. In addition, acoustic emission (AE) technique was used to quantify the microscopic damage behavior of cold rolled TiNi/Al6061 shape memory alloy composite that underwent thermal shock cycles. The damage degree on the specimen that underwent thermal shock cycles was discussed. Actually AE parameters such as AE event, count and energy was analyzed, and these parameters was useful to evaluate the damage behavior and degree of the SMA composite. The waveform of the signal caused by debonding was pulse type, and showed the frequency range of 160 kHz, however, the signal by the fiber fracture showed the pulse type of high magnitude and frequency range of 220 kH.
Micromechanics of composites with shape memory alloy fibers in uniform thermal fields
NASA Technical Reports Server (NTRS)
Birman, Victor; Saravanos, Dimitris A.; Hopkins, Dale A.
1995-01-01
Analytical procedures are developed for a composite system consisting of shape memory alloy fibers within an elastic matrix subject to uniform temperature fluctuations. Micromechanics for the calculation of the equivalent properties of the composite are presented by extending the multi-cell model to incorporate shape memory alloy fibers. A three phase concentric cylinder model is developed for the analysis of local stresses which includes the fiber, the matrix, and the surrounding homogenized composite. The solution addresses the complexities induced by the nonlinear dependence of the in-situ martensite fraction of the fibers to the local stresses and temperature, and the local stresses developed from interactions between the fibers and matrix during the martensitic and reverse phase transformations. Results are presented for a nitinol/epoxy composite. The applications illustrate the response of the composite in isothermal longitudinal loading and unloading, and in temperature induced actuation. The local stresses developed in the composite under various stages of the martensitic and reverse phase transformation are also shown.
NASA Astrophysics Data System (ADS)
Gong, Xiaobo; Liu, Liwu; Liu, Yanju; Leng, Jinsong
2016-03-01
Shape memory polymers (SMPs) have the ability to adjust their stiffness, lock a temporary shape, and recover the permanent shape upon imposing an appropriate stimulus. They have found their way into the field of morphing structures. The electrically Joule resistive heating of the conductive composite can be a desirable stimulus to activate the shape memory effect of SMPs without external heating equipment. Electro-induced SMP composites incorporated with carbon fiber felt (CFF) were explored in this work. The CFF is an excellent conductive filler which can easily spread throughout the composite. It has a huge advantage in terms of low cost, simple manufacturing process, and uniform and tunable temperature distribution while heating. A continuous and compact conductive network made of carbon fibers and the overlap joints among them was observed from the microscopy images, and this network contributes to the high conductive properties of the CFF/SMP composites. The CFF/SMP composites can be electrical-heated rapidly and uniformly, and its’ shape recovery effect can be actuated by the electrical resistance Joule heating of the CFF without an external heater. The CFF/SMP composite get higher modulus and higher strength than the pure SMP without losing any strain recovery property. The high dependence of temperature and strain on the electrical resistance also make the composite a good self-sensing material. In general, the CFF/SMP composite shows great prospects as a potential material for the future morphing structures.
Shirole, Anuja; Sapkota, Janak; Foster, E Johan; Weder, Christoph
2016-03-01
The present study aimed at developing new thermally responsive shape-memory composites, that were fabricated by compacting mats of electrospun poly(vinyl alcohol) (PVA) fibers and sheets of a thermoplastic polyether block amide elastomer (PEBA). This design was based on the expectation that the combination of the rubber elasticity of the PEBA matrix and the mechanical switching exploitable through the reversible glass transition temperature (Tg) of the PVA filler could be combined to create materials that display shape memory characteristics as an emergent effect. Dynamic mechanical analyses (DMA) show that, upon introduction of 10-20% w/w PVA fibers, the room-temperature storage modulus (E') increased by a factor of 4-5 in comparison to the neat PEBA, and they reveal a stepwise reduction of E' around the Tg of PVA (85 °C). This transition could indeed be utilized to fix a temporary shape and recover the permanent shape. At low strain, the fixity was 66 ± 14% and the recovery was 98 ± 2%. Overall, the data validate a simple and practical strategy for the fabrication of shape memory composites that involves a melt compaction process and employs two commercially available polymers.
NASA Astrophysics Data System (ADS)
Luo, Xiaofan
Responsive polymers are "smart" materials that are capable of performing prescribed, dynamic functions under an applied stimulus. In this dissertation, we explore several novel design strategies to develop thermally responsive polymers and polymer composites for self-healing, reversible adhesion and shape memory applications. In the first case described in Chapters 2 and 3, a thermally triggered self-healing material was prepared by blending a high-temperature epoxy resin with a thermoplastic polymer, poly(epsilon-caprolactone) (PCL). The initially miscible system undergoes polymerization induced phase separation (PIPS) during the curing of epoxy and yields a variety of compositionally dependent morphologies. At a particular PCL loading, the cured blend displays a "bricks-and-mortar" morphology in which epoxy exists as interconnected spheres ("bricks") within a continuous PCL matrix ("mortar"). A heat induced "bleeding" phenomenon was observed in the form of spontaneous wetting of all free surfaces by the molten PCL, and is attributed to the volumetric thermal expansion of PCL above its melting point in excess of epoxy brick expansion, which we term differential expansive bleeding (DEB). This DEB is capable of healing damage such as cracks. In controlled self-healing experiments, heating of a cracked specimen led to PCL bleeding from the bulk that yields a liquid layer bridging the crack gap. Upon cooling, a "scar" composed of PCL crystals was formed at the site of the crack, restoring a significant portion of mechanical strength. We further utilized DEB to enable strong and thermally-reversible adhesion of the material to itself and to metallic substrates, without any requirement for macroscopic softening or flow. After that, Chapters 4--6 present a novel composite strategy for the design and fabrication of shape memory polymer composites. The basic approach involves physically combining two or more functional components into an interpenetrating fiber/matrix structure, allowing them to function in a synergistic fashion yet remain physically separated. This latter aspect is critical since it enables the control of overall composite properties and functions by separately tuning each component. Utilizing the intrinsic versatility of this approach, composites with novel properties and functions (in addition to "regular" shape memory) have been developed, including (1) shape memory elastomeric composites (SMECs; Chapter 4), (2) triple-shape polymeric composites (TSPCs; Chapter 5), and (3) electrically conductive nanocomposites (Chapter 6). Then in Chapter 7, by combining the success in both thermoplastic based self-healing and shape memory polymer composites, we demonstrate a thermally triggered self-healing coating. This coating features a unique "shape memory assisted self-healing" mechanism in which crack closure (via shape memory) and crack re-bonding (via melting and diffusion of the thermoplastic healing agent) are achieved simultaneously upon a single heating step, leading to both structural and functional (corrosion resistance) recovery. Finally, Chapter 8 presents for the first time the preparation of functionally graded shape memory polymers (SMPs) that, unlike conventional SMPs, have a range of glass transition temperatures that are spatially graded. This was achieved using a temperature gradient curing method that imposes different vitrification limits at different positions along the gradient. The resulting material is capable of responding to a wide range of thermal triggers and a good candidate for low-cost, material based temperature sensors. All the aforementioned materials and methods show great potential for practical applications due to their high performance, low cost and broad applicability. Some recommendations for future research and development are given in Chapter 9.
Shape control of NITINOL-reinforced composite beams
NASA Astrophysics Data System (ADS)
Baz, Amr M.; Chen, Tung-Huei; Ro, Jeng-Jong
1994-05-01
The shape of composite beams is controlled by sets of flat strips of a shape memory nickel-titanium alloy (NITINOL). A mathematical model is developed to describe the behavior of this class of SMART composites. The model describes the interaction between the elastic characteristics of the composite beams and the thermally- induced shape memory effect of the NITINOL strips. The effect of various activation strategies of the NITINOL strips on the shape of the composite beams is determined. The theoretical predictions of the model are validated experimentally using a fiberglass composite beam made of 8 plies of unidirectional BASF 5216 prepregs which are 9.75-cm wide and 21.20 cm long. The beams are provided with four NITINOL-55 strips which are 1.2 mm thick and 1.25 cm wide. The time response characteristics of the beam are monitored and compared with the corresponding theoretical characteristics. Close agreement is obtained between the theoretical predictions and the experimental results. The obtained results suggest the potential of the NITINOL strips in controlling the shape of composite beams without compromising their structural stiffness.
Multi-shape active composites by 3D printing of digital shape memory polymers
NASA Astrophysics Data System (ADS)
Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry
2016-04-01
Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.
Multi-shape active composites by 3D printing of digital shape memory polymers.
Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry
2016-04-13
Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.
Multi-shape active composites by 3D printing of digital shape memory polymers
Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry
2016-01-01
Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications. PMID:27071543
NASA Astrophysics Data System (ADS)
Taya, Minoru; Liang, Yuanchang; Namli, Onur C.; Tamagawa, Hirohisa; Howie, Tucker
2013-10-01
The design of a reversible bending actuator based on a SMA/SMP composite is presented. The SMA/SMP composite is made of SMA NiTi wires with a bent ‘U’-shape in the austenite phase embedded in an epoxy SMP matrix which has a memorized flat shape. The bending motion is caused by heating the composite above TAf to activate the NiTi recovery. Upon cooling, the softening from the austenite to R-phase transformation results in a relaxation of the composite towards its original flat shape. In the three-point bending measurement the composite was able to exhibit a reversible deflection of 1.3 mm on a support with a 10 mm span. In addition, a material model for predicting the composite’s deflection is presented and predicts the experimental results reasonably well. The model also estimates the in-plane internal force and the degree of the SMA phase transformation.
NASA Astrophysics Data System (ADS)
Nji, Jones; Li, Guoqiang
2012-02-01
The purpose of this study is to investigate the potential of a shape-memory-polymer (SMP)-based particulate composite to heal structural-length scale damage with small thermoplastic additive contents through a close-then-heal (CTH) self-healing scheme that was introduced in a previous study (Li and Uppu 2010 Comput. Sci. Technol. 70 1419-27). The idea is to achieve reasonable healing efficiencies with minimal sacrifice in structural load capacity. By first closing cracks, the gap between two crack surfaces is narrowed and a lesser amount of thermoplastic particles is required to achieve healing. The particulate composite was fabricated by dispersing copolyester thermoplastic particles in a shape memory polymer matrix. It is found that, for small thermoplastic contents of less than 10%, the CTH scheme followed in this study heals structural-length scale damage in the SMP particulate composite to a meaningful extent and with less sacrifice of structural capacity.
NASA Astrophysics Data System (ADS)
Liang, Yuanchang; Taya, Minoru; Kuga, Yasuo
2004-07-01
A new membrane actuator based on our previous diaphragm actuator was designed and constructed to improve the dynamic performance. The finite element analysis was used to estimate the frequency response of the composite membrane which will be driven close to its resonance to obtain a large stroke. The membrane is made of ferromagnetic shape memory alloy (FSMA) composite including a ferromagnetic soft iron pad and a superelastic grade of NiTi shape memory alloy (SMA). The actuation mechanism for the FSMA composite membrane of the actuator is the hybrid mechanism that we proposed previously. This membrane actuator is designed for a new synthetic jet actuator package that will be used for active flow control technology on airplane wings. Based on the FEM results, the new membrane actuator system was assembled and its static and dynamic performance was experimentally evaluated including the dynamic magnetic response of the hybrid magnet.
Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites
NASA Technical Reports Server (NTRS)
Gao, Xiu-Jie; Turner, Travis L.; Burton, Deborah; Brinson, L. Catherine
2005-01-01
The usage of shape memory materials has extended rapidly to many fields, including medical devices, actuators, composites, structures and MEMS devices. For these various applications, shape memory alloys (SMAs) are available in various forms: bulk, wire, ribbon, thin film, and porous. In this work, the focus is on SMA hybrid composites with adaptive-stiffening or morphing functions. These composites are created by using SMA ribbons or wires embedded in a polymeric based composite panel/beam. Adaptive stiffening or morphing is activated via selective resistance heating or uniform thermal loads. To simulate the thermomechanical behavior of these composites, a SMA model was implemented using ABAQUS user element interface and finite element simulations of the systems were studied. Several examples are presented which show that the implemented model can be a very useful design and simulation tool for SMA hybrid composites.
Hybrid Shape Memory Alloy Composites for Extreme Environments
2011-10-01
Shape Memory Alloys in Oil Well Applications,” Sintef Petroleum Research, 1999, Trondheim, Norway. 5. Hartl , D. J., Lagoudas, D., Mabe , J., Calkins...Materials and Structures, Vol. 19, No. 1., 2009. 6. Hartl , D. J., Lagoudas, D., Mabe , J., Calkins, F., and Mooney, J., “Use of Ni60Ti Shape Memory...hydraulic actuators) and can thus be located in environments not previously accessible. SMA actuators can also be found in the aerospace ( Hartl and
Preparation and characterization of triple shape memory composite foams.
Nejad, Hossein Birjandi; Baker, Richard M; Mather, Patrick T
2014-10-28
Foams prepared from shape memory polymers (SMPs) offer the potential for low density materials that can be triggered to deploy with a large volume change, unlike their solid counterparts that do so at near-constant volume. While examples of shape memory foams have been reported in the past, they have been limited to dual SMPs: those polymers featuring one switching transition between an arbitrarily programmed shape and a single permanent shape established by constituent crosslinks. Meanwhile, advances by SMP researchers have led to several approaches toward triple- or multi-shape polymers that feature more than one switching phase and thus a multitude of temporary shapes allowing for a complex sequence of shape deployments. Here, we report the design, preparation, and characterization of a triple shape memory polymeric foam that is open cell in nature and features a two phase, crosslinked SMP with a glass transition temperature of one phase at a temperature lower than a melting transition of the second phase. The soft materials were observed to feature high fidelity, repeatable triple shape behavior, characterized in compression and demonstrated for complex deployment by fixing a combination of foam compression and bending. We further explored the wettability of the foams, revealing composition-dependent behavior favorable for future work in biomedical investigations.
NASA Astrophysics Data System (ADS)
Poormir, Mohammad Amin; Khalili, Seyed Mohammad Reza; Eslami-Farsani, Reza
2018-03-01
Utilizing intelligent materials such as shape memory alloys as reinforcement in metal matrix composites is a novel method to mimic self-healing behavior. In this study, the bending behavior of a self-healing metal matrix composite made from Sn-13 wt.% Bi alloy as matrix and NiTi shape memory alloy (SMA) strips as reinforcement is investigated. Specimens were fabricated in different reinforcement vol.% (0.78, 1.55, 2.33) and in various pre-strains (0, 2, 6%) and were healed at three healing temperatures (170°C, 180°C, 190°C). Results showed that shape recovery was accomplished in all the specimens, but not all of them were able to withstand second loading after healing. Only specimens with 2.33 vol.% of SMA strips, 1.55 vol.% of SMA, and 6% pre-strain could endure bending force after healing, and they gained 35.31-51.83% of bending force self-healing efficiency.
NASA Astrophysics Data System (ADS)
Poormir, Mohammad Amin; Khalili, Seyed Mohammad Reza; Eslami-Farsani, Reza
2018-06-01
Utilizing intelligent materials such as shape memory alloys as reinforcement in metal matrix composites is a novel method to mimic self-healing behavior. In this study, the bending behavior of a self-healing metal matrix composite made from Sn-13 wt.% Bi alloy as matrix and NiTi shape memory alloy (SMA) strips as reinforcement is investigated. Specimens were fabricated in different reinforcement vol.% (0.78, 1.55, 2.33) and in various pre-strains (0, 2, 6%) and were healed at three healing temperatures (170°C, 180°C, 190°C). Results showed that shape recovery was accomplished in all the specimens, but not all of them were able to withstand second loading after healing. Only specimens with 2.33 vol.% of SMA strips, 1.55 vol.% of SMA, and 6% pre-strain could endure bending force after healing, and they gained 35.31-51.83% of bending force self-healing efficiency.
High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods
NASA Technical Reports Server (NTRS)
Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)
2009-01-01
According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.
NASA Astrophysics Data System (ADS)
Lan, Xin; Liu, Liwu; Li, Fengfeng; Pan, Chengtong; Liu, Yanju; Leng, Jinsong
2017-04-01
Shape memory polymers (SMPs) are a new type of smart material, they perform large reversible deformation with a certain external stimulus (e.g., heat and electricity). The properties (e.g., stiffness, strength and other mechanically static or quasi-static load-bearing capacity) are primarily considered for conventional resin-based composite materials which are mainly used for structural materials. By contrast, the mechanical actuating performance with finite deformation is considered for the shape memory polymers and their composites which can be used for both structural materials and functional materials. For shape memory polymers and their composites, the performance of active deformation is expected to further promote the development in smart active deformation structures, such as deployable space structures and morphing wing aircraft. The shape memory polymer composites (SMPCs) are also one type of High Strain Composite (HSC). The space deployable structures based on carbon fiber reinforced shape memory polymer composites (SMPCs) show great prospects. Considering the problems that SMPCs are difficult to meet the practical applications in space deployable structures in the recent ten years, this paper aims to research the mechanics of deformation, actuation and failure of SMPCs. In the overall view of the shape memory polymer material's nonlinearity (nonlinearity and stress softening in the process of pre-deformation and recovery, relaxation in storage process, irreversible deformation), by the multiple verifications among theory, finite element and experiments, one obtains the deformation and actuation mechanism for the process of "pre-deformation, energy storage and actuation" and its non-fracture constraint domain. Then, the parameters of SMPCs will be optimized. Theoretical analysis is realized by the strain energy function, additionally considering the interaction strain energy between the fiber and the matrix. For the common resin-based or soft-material-based composites under pure bending deformation, we expect to uniformly explain the whole process of buckling occurrence, evolution and finally failure, especially for the early evolution characteristics of fiber microbuckling inside the microstructures. The research results are meaningful for the practical applications for SMPC deployable structures in space. Considering the deformation mechanisms of SMPCs, the local post-microbuckling is required for the unidirectional fiber reinforced composite materials, at the conditions of its large geometrical deflection. The cross section of SMPC is divided into three areas: non-buckling stretching area, non-buckling compressive area, and buckling compressive area. Three variables are considered: critical buckling position, and neutral plane, the fiber buckling half-wavelength. Considering the condition of the small strain and large displacement, the strain energy expression of the SMP/fiber system was derived, which contains two types, e.g., strain energy of SMP and fiber. According to the minimum energy principle, the expression for all key parameters were derived, including the critical buckling curvature, neutral plane position, the buckling half-wavelength, fiber buckling amplitude, and strain.
Investigation of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams
NASA Technical Reports Server (NTRS)
Davis, Brian A.
2005-01-01
Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical model. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. Excellent agreement is achieved between the predicted and measured results, thereby quantitatively validating the numerical tool.
A Spectral Analysis Approach for Acoustic Radiation from Composite Panels
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Singh, Mahendra P.; Mei, Chuh
2004-01-01
A method is developed to predict the vibration response of a composite panel and the resulting far-field acoustic radiation due to acoustic excitation. The acoustic excitation is assumed to consist of obliquely incident plane waves. The panel is modeled by a finite element analysis and the radiated field is predicted using Rayleigh's integral. The approach can easily include other effects such as shape memory alloy (SMA) ber reinforcement, large detection thermal postbuckling, and non-symmetric SMA distribution or lamination. Transmission loss predictions for the case of an aluminum panel excited by a harmonic acoustic pressure are shown to compare very well with a classical analysis. Results for a composite panel with and without shape memory alloy reinforcement are also presented. The preliminary results demonstrate that the transmission loss can be significantly increased with shape memory alloy reinforcement. The mechanisms for further transmission loss improvement are identified and discussed.
NASA Astrophysics Data System (ADS)
Azzawi, Wessam Al; Epaarachchi, J. A.; Islam, Mainul; Leng, Jinsong
2017-12-01
Shape memory polymers (SMPs) offer a unique ability to undergo a substantial shape deformation and subsequently recover the original shape when exposed to a particular external stimulus. Comparatively low mechanical properties being the major drawback for extended use of SMPs in engineering applications. However the inclusion of reinforcing fibres in to SMPs improves mechanical properties significantly while retaining intrinsic shape memory effects. The implementation of shape memory polymer composites (SMPCs) in any engineering application is a unique task which requires profound materials and design optimization. However currently available analytical tools have critical limitations to undertake accurate analysis/simulations of SMPC structures and slower derestrict transformation of breakthrough research outcomes to real-life applications. Many finite element (FE) models have been presented. But majority of them require a complicated user-subroutines to integrate with standard FE software packages. Furthermore, those subroutines are problem specific and difficult to use for a wider range of SMPC materials and related structures. This paper presents a FE simulation technique to model the thermomechanical behaviour of the SMPCs using commercial FE software ABAQUS. Proposed technique incorporates material time-dependent viscoelastic behaviour. The ability of the proposed technique to predict the shape fixity and shape recovery was evaluated by experimental data acquired by a bending of a SMPC cantilever beam. The excellent correlation between the experimental and FE simulation results has confirmed the robustness of the proposed technique.
Residual stresses in shape memory alloy fiber reinforced aluminium matrix composite
NASA Astrophysics Data System (ADS)
Tsz Loong, Tang; Jamian, Saifulnizan; Ismail, Al Emran; Nur, Nik Hisyammudin Muhd; Watanabe, Yoshimi
2017-01-01
Process-induced residual stress in shape memory alloy (SMA) fiber reinforced aluminum (Al) matrix composite was simulated by ANSYS APDL. The manufacturing process of the composite named as NiTi/Al is start with loading and unloading process of nickel titanium (NiTi) wire as SMA to generate a residual plastic strain. Then, this plastic deformed NiTi wire would be embedded into Al to become a composite. Lastly, the composite is heated form 289 K to 363 K and then cooled back to 300 K. Residual stress is generated in composite because of shape memory effect of NiTi and mismatch of thermal coefficient between NiTi wire and Al matrix of composite. ANSYS APDL has been used to simulate the distribution of residual stress and strain in this process. A sensitivity test has been done to determine the optimum number of nodes and elements used. Hence, the number of nodes and elements used are 15680 and 13680, respectively. Furthermore, the distribution of residual stress and strain of nickel fiber reinforced aluminium matrix composite (Ni/Al) and titanium fiber reinforced aluminium matrix composite (Ti/Al) under same simulation process also has been simulated by ANSYS APDL as comparison to NiTi/Al. The simulation results show that compressive residual stress is generated on Al matrix of Ni/Al, Ti/Al and NiTi/Al during heating and cooling process. Besides that, they also have similar trend of residual stress distribution but difference in term of value. For Ni/Al and Ti/Al, they are 0.4% difference on their maximum compressive residual stress at 363K. At same circumstance, NiTi/Al has higher residual stress value which is about 425% higher than Ni/Al and Ti/Al composite. This implies that shape memory effect of NiTi fiber reinforced in composite able to generated higher compressive residual stress in Al matrix, hence able to enhance tensile property of the composite.
Active materials by four-dimension printing
NASA Astrophysics Data System (ADS)
Ge, Qi; Qi, H. Jerry; Dunn, Martin L.
2013-09-01
We advance a paradigm of printed active composite materials realized by directly printing glassy shape memory polymer fibers in an elastomeric matrix. We imbue the active composites with intelligence via a programmed lamina and laminate architecture and a subsequent thermomechanical training process. The initial configuration is created by three-dimension (3D) printing, and then the programmed action of the shape memory fibers creates time dependence of the configuration—the four-dimension (4D) aspect. We design and print laminates in thin plate form that can be thermomechanically programmed to assume complex three-dimensional configurations including bent, coiled, and twisted strips, folded shapes, and complex contoured shapes with nonuniform, spatially varying curvature. The original flat plate shape can be recovered by heating the material again. We also show how the printed active composites can be directly integrated with other printed functionalities to create devices; here we demonstrate this by creating a structure that can assemble itself.
Shape memory effect in nanosized Ti2NiCu alloy-based composites
NASA Astrophysics Data System (ADS)
Irzhak, A. V.; Lega, P. V.; Zhikharev, A. M.; Koledov, V. V.; Orlov, A. P.; Kuchin, D. S.; Tabachkova, N. Yu.; Dikan, V. A.; Shelyakov, A. V.; Beresin, M. Yu.; Pushin, V. G.; von Gratowski, S. V.; Pokrovskiy, V. Ya.; Zybtsev, S. G.; Shavrov, V. G.
2017-01-01
The shape memory effect (SME) in alloys with a thermoelastic martensite transition opens unique opportunities for the creation of miniature mechanical devices. The SME has been studied in layered composite microstructures consisting of a Ti2NiCu alloy and platinum. It occurs upon a decrease in the active layer thickness at least to 80 nm. Some physical and technological restrictions on the minimum size of a material with SME are discussed.
Potential High-Temperature Shape-Memory Alloys Identified in the Ti(Ni,Pt) System
NASA Technical Reports Server (NTRS)
Noebe, Ronald D.; Biles, Tiffany A.; Garg, Anita; Nathal, Michael V.
2004-01-01
"Shape memory" is a unique property of certain alloys that, when deformed (within certain strain limits) at low temperatures, will remember and recover to their original predeformed shape upon heating. It occurs when an alloy is deformed in the low-temperature martensitic phase and is then heated above its transformation temperature back to an austenitic state. As the material passes through this solid-state phase transformation on heating, it also recovers its original shape. This behavior is widely exploited, near room temperature, in commercially available NiTi alloys for connectors, couplings, valves, actuators, stents, and other medical and dental devices. In addition, there are limitless applications in the aerospace, automotive, chemical processing, and many other industries for materials that exhibit this type of shape-memory behavior at higher temperatures. But for high temperatures, there are currently no commercial shape-memory alloys. Although there are significant challenges to the development of high-temperature shape-memory alloys, at the NASA Glenn Research Center we have identified a series of alloy compositions in the Ti-Ni-Pt system that show great promise as potential high-temperature shape-memory materials.
Characterization of origami shape memory metamaterials (SMMM) made of bio-polymer blends
NASA Astrophysics Data System (ADS)
Kshad, Mohamed Ali E.; Naguib, Hani E.
2016-04-01
Shape memory materials (SMMs) are materials that can return to their virgin state and release mechanically induced strains by external stimuli. Shape memory polymers (SMPs) are a class of SMMs that show a high shape recoverability and which have attractive potential for structural applications. In this paper, we experimentally study the shape memory effect of origami based metamaterials. The main focus is on the Muira origami metamaterials. The fabrication technique used to produce origami structure is direct molding where all the geometrical features are molded from thermally virgin polymers without post folding of flat sheets. The study shows experimental investigations of shape memory metamaterials (SMMMs) made of SMPs that can be used in different applications such as medicine, robotics, and lightweight structures. The origami structure made from SMP blends, activated with uniform heating. The effect of blend composition on the shape memory behavior was studied. Also the influence of the thermomechanical and the viscoelastic properties of origami unit cell on the activation process have been discussed, and stress relaxation and shape recovery were investigated. Activation process of the unit cell has been demonstrated.
Investigation of residual stresses in shape memory alloy (SMA) composites
NASA Astrophysics Data System (ADS)
Berman, Justin Bradley
Shape memory alloy (SMA) composites are a class of smart materials in which SMA actuators are embedded in a host matrix. The shape memory effect allows for stress induced phase transformations and large recoverable strains that make SMA composites promising candidates for structural shape/vibration control, impact absorption, aircraft deicing or in-flight airfoil shape control systems. However, the difference in thermal expansion between the SMA and the host material leads to residual stresses during processing. In addition, the SMA transformation from martensite to austenite, or the reverse, also generate stresses. These stresses acting in combination can lead to SMA/polymer interfacial debonding or microcracking of the host matrix. The present work was undertaken to study the behavior of nitinol shape memory alloys embedded in epoxy and glass/epoxy matrices and to investigate the development of residual stresses during their manufacture and actuation. A three-phase concentric cylinder micromechanics model and an SMA composite thermoelastic beam theory were developed to analyze the micromechanical and structural-level thermal and transformational stresses for nitinol composites induced by nitinol wires embedded in a host matrix. A series of warpage experiments were conducted on nitinol composite beams during heating cycles to provide experimental validation of model predictions and to assess their thermoelastic structural behavior under non-mechanical loading. Micromechanical model results indicate that excessive residual hoop stresses in nitino/graphite/epoxy composites leads to radial cracking around the embedded nitinol wires. Based on modeling results, the most important factor in reducing residual stresses (and thereby preventing radial cracking) is increasing the level of recovery strain for the nitinol wire. The SMA composite beam model agrees well with experimental data captured for the nitinol/epoxy beam series. Warpage experiments on nitinol/glass/epoxy beams showed a large increase in the effective austenitic start temperature (As) of 9.3°C. The elevation of the effective As together with other observations of warpage development indicates that plastic flow may have occurred in nitinol wires when embedded in glass/epoxy. These observations reinforce the need to train nitinol wires at modest recovery levels when embedding in relatively stiff materials.
Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.; Maitland, Duncan J.
2014-01-01
Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane (PU) SMPs were loaded with either 5 wt% carbon black (CB) or 5 wt% carbon nanotubes (CNT) and subsequently coated with either an Al2O3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37 °C) and subsequent Tg depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37 °C. PMID:25663711
Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A; Maitland, Duncan J
2015-01-05
Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature ( T g ) resulting in shape recovery in vivo . While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo . In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane (PU) SMPs were loaded with either 5 wt% carbon black (CB) or 5 wt% carbon nanotubes (CNT) and subsequently coated with either an Al 2 O 3 - or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37 °C) and subsequent T g depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.
Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (T g) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this paper, a silicone membrane was used to inhibit water uptake into a thermoset SMPmore » composite containing conductive filler. Thermoset polyurethane SMPs were loaded with either 5 wt % carbon black or 5 wt % carbon nanotubes, and subsequently coated with either an Al 2O 3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37°C) and subsequent T g depression versus uncoated composites. Finally, in turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37°C.« less
Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.; ...
2014-07-24
Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (T g) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this paper, a silicone membrane was used to inhibit water uptake into a thermoset SMPmore » composite containing conductive filler. Thermoset polyurethane SMPs were loaded with either 5 wt % carbon black or 5 wt % carbon nanotubes, and subsequently coated with either an Al 2O 3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37°C) and subsequent T g depression versus uncoated composites. Finally, in turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37°C.« less
Landsman, T L; Touchet, T; Hasan, S M; Smith, C; Russell, B; Rivera, J; Maitland, D J; Cosgriff-Hernandez, E
2017-01-01
Uncontrolled hemorrhage accounts for more than 30% of trauma deaths worldwide. Current hemostatic devices focus primarily on time to hemostasis, but prevention of bacterial infection is also critical for improving survival rates. In this study, we sought to improve on current devices used for hemorrhage control by combining the large volume-filling capabilities and rapid clotting of shape memory polymer (SMP) foams with the swelling capacity of hydrogels. In addition, a hydrogel composition was selected that readily complexes with elemental iodine to impart bactericidal properties to the device. The focus of this work was to verify that the advantages of each respective material (SMP foam and hydrogel) are retained when combined in a composite device. The iodine-doped hydrogel demonstrated an 80% reduction in bacteria viability when cultured with a high bioburden of Staphylococcus aureus. Hydrogel coating of the SMP foam increased fluid uptake by 19× over the uncoated SMP foam. The composite device retained the shape memory behavior of the foam with more than 15× volume expansion after being submerged in 37°C water for 15 min. Finally, the expansion force of the composite was tested to assess potential tissue damage within the wound during device expansion. Expansion forces did not exceed 0.6N, making tissue damage during device expansion unlikely, even when the expanded device diameter is substantially larger than the target wound site. Overall, the enhanced fluid uptake and bactericidal properties of the shape memory foam composite indicate its strong potential as a hemostatic agent to treat non-compressible wounds. No hemostatic device currently used in civilian and combat trauma situations satisfies all the desired criteria for an optimal hemostatic wound dressing. The research presented here sought to improve on current devices by combining the large volume-filling capabilities and rapid clotting of shape memory polymer (SMP) foams with the swelling capacity of hydrogels. In addition, a hydrogel composition was selected that readily complexes with elemental iodine to impart bactericidal properties to the device. The focus of this work was to verify that the advantages of each respective material are retained when combined into a composite device. This research opens the door to generating novel composites with a focus on both hemostasis, as well as wound healing and microbial prevention. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Direct 4D printing via active composite materials.
Ding, Zhen; Yuan, Chao; Peng, Xirui; Wang, Tiejun; Qi, H Jerry; Dunn, Martin L
2017-04-01
We describe an approach to print composite polymers in high-resolution three-dimensional (3D) architectures that can be rapidly transformed to a new permanent configuration directly by heating. The permanent shape of a component results from the programmed time evolution of the printed shape upon heating via the design of the architecture and process parameters of a composite consisting of a glassy shape memory polymer and an elastomer that is programmed with a built-in compressive strain during photopolymerization. Upon heating, the shape memory polymer softens, releases the constraint on the strained elastomer, and allows the object to transform into a new permanent shape, which can then be reprogrammed into multiple subsequent shapes. Our key advance, the markedly simplified creation of high-resolution complex 3D reprogrammable structures, promises to enable myriad applications across domains, including medical technology, aerospace, and consumer products, and even suggests a new paradigm in product design, where components are simultaneously designed to inhabit multiple configurations during service.
Direct 4D printing via active composite materials
Ding, Zhen; Yuan, Chao; Peng, Xirui; Wang, Tiejun; Qi, H. Jerry; Dunn, Martin L.
2017-01-01
We describe an approach to print composite polymers in high-resolution three-dimensional (3D) architectures that can be rapidly transformed to a new permanent configuration directly by heating. The permanent shape of a component results from the programmed time evolution of the printed shape upon heating via the design of the architecture and process parameters of a composite consisting of a glassy shape memory polymer and an elastomer that is programmed with a built-in compressive strain during photopolymerization. Upon heating, the shape memory polymer softens, releases the constraint on the strained elastomer, and allows the object to transform into a new permanent shape, which can then be reprogrammed into multiple subsequent shapes. Our key advance, the markedly simplified creation of high-resolution complex 3D reprogrammable structures, promises to enable myriad applications across domains, including medical technology, aerospace, and consumer products, and even suggests a new paradigm in product design, where components are simultaneously designed to inhabit multiple configurations during service. PMID:28439560
NASA Astrophysics Data System (ADS)
Perez-Zúñiga, M. G.; Sánchez-Arévalo, F. M.; Hernández-Cordero, J.
2017-10-01
A simple way to enhance the activation of shape memory effects with light in a Ni-Ti alloy is demonstrated. Using polydimethylsiloxane-carbon nanopowder (PDMS+CNP) composites as coatings, the one-way shape memory effect (OWSME) of the alloy can be triggered using low power IR light from a laser diode. The PDMS+CNP coatings serve as photothermal materials capable to absorb light, and subsequently generate and dissipate heat in a highly efficient manner, thereby reducing the optical powers required for triggering the OWSME in the Ni-Ti alloy. Experimental results with a cantilever flexural test using both, bare Ni-Ti and coated samples, show that the PDMS+CNP coatings perform as thermal boosters, and therefore the temperatures required for phase transformation in the alloy can be readily obtained with low laser powers. It is also shown that the two-way shape memory effect (TWSME) can be set in the Ni-Ti alloy through cycling the TWSME by simply modulating the laser diode signal. This provides a simple means for training the material, yielding a light driven actuator capable to provide forces in the mN range. Hence, the use of photothermal coatings on Ni-Ti shape memory alloys may offer new possibilities for developing light-controlled smart actuators.
Fabrication of a smart air intake structure using shape memory alloy wire embedded composite
NASA Astrophysics Data System (ADS)
Jung, Beom-Seok; Kim, Min-Saeng; Kim, Ji-Soo; Kim, Yun-Mi; Lee, Woo-Yong; Ahn, Sung-Hoon
2010-05-01
Shape memory alloys (SMAs) have been actively studied in many fields utilizing their high energy density. Applying SMA wire-embedded composite to aerospace structures, such as air intake of jet engines and guided missiles, is attracting significant attention because it could generate a comparatively large actuating force. In this research, a scaled structure of SMA wire-embedded composite was fabricated for the air intake of aircraft. The structure was composed of several prestrained Nitinol (Ni-Ti) SMA wires embedded in ∩-shape glass fabric reinforced plastic (GFRP), and it was cured at room temperature for 72 h. The SMA wire-embedded GFRP could be actuated by applying electric current through the embedded SMA wires. The activation angle generated from the composite structure was large enough to make a smart air intake structure.
Study on stimulus-responsive cellulose-based polymeric materials
NASA Astrophysics Data System (ADS)
Luo, Hongsheng
Stimulus-responsive cellulose-based polymeric materials were developed by physical and chemical approaches. The thermal, structural, mechanical and morphological properties of the samples were comprehensively investigated by multiple tools. Shape memory effect (SME), programming-structure-property relationship and underling mechanisms were emphasized in this study. Some new concepts, such as heterogeneous-twin-switch, path-dependent multi-shape, rapidly switchable water-sensitive SME were established. The samples were divided into two categories. For the first category, cellulose nano-whiskers (CNWs) were incorporated into crystalline shape memory polyurethane (SMPU) and thermal plastic polyurethane (TPU). The CNW-SMPU nano-composites had heterogeneous switches. Triple- and multi-shape effects were achieved for the CNW-SMPU nano-composites by applying into appropriate thermal-aqueous-mechanical programming. Furthermore, the thermally triggered shape recovery of the composites was found to be tuneable, depending on the PCN content. Theoretical prediction along with numerical analysis was conducted, providing evidence on the possible microstructure of the CNW-SMPU nano-composites. Rapidly switchable water-sensitive SME of the CNW-TPU nano-composites was unprecedentedly studied, which originated from the reversible regulation of hydrogen bonding by water. The samples in the second category consisted of cellulose-polyurethane (PU) blends, cellulose-poly(acrylic acid) (PAA) composites and modified cellulose with supramolecular switches, featuring the requirement of homogeneous cellulose solution in the synthesis process. The reversible behaviours of the cellulose-PU blends in wet-dry cycles as well as the underlying shape memory mechanism were characterized and disclosed. The micro-patterns of the blends were found to be self-similar in fractal dimensions. Cellulose-PAA semi-interpenetrating networks exhibited mechanical adaptability in wet-dry cycles. A type of thermally reversible quadruple hydrogen bonding units, ureidopyrimidinone (UPy), reacted with the cellulose as pendent side-groups, which may impart the modified cellulose with thermal sensitivity. It is the first attempt to explore the natural cellulose as smart polymeric materials systematically and comprehensively. The concepts originally created in the study provided new viewpoints and routes for the development of novel shape memory polymers. The findings significantly benefits extension of the potential application of the cellulose in smart polymeric materials field.
Surface Control of Cold Hibernated Elastic Memory Self-Deployable Structure
NASA Technical Reports Server (NTRS)
Sokolowski, Witold M.; Ghaffarian, Reza
2006-01-01
A new class of simple, reliable, lightweight, low packaging volume and cost, self-deployable structures has been developed for use in space and commercial applications. This technology called 'cold hibernated elastic memory' (CHEM) utilizes shape memory polymers (SMP)in open cellular (foam) structure or sandwich structures made of shape memory polymer foam cores and polymeric composite skins. Some of many potential CHEM space applications require a high precision deployment and surface accuracy during operation. However, a CHEM structure could be slightly distorted by the thermo-mechanical processing as well as by thermal space environment Therefore, the sensor system is desirable to monitor and correct the potential surface imperfection. During these studies, the surface control of CHEM smart structures was demonstrated using a Macro-Fiber Composite (MFC) actuator developed by the NASA LaRC and US Army ARL. The test results indicate that the MFC actuator performed well before and after processing cycles. It reduced some residue compressive strain that in turn corrected very small shape distortion after each processing cycle. The integrated precision strain gages were detecting only a small flat shape imperfection indicating a good recoverability of original shape of the CHEM test structure.
Thermal energy conversion by coupled shape memory and piezoelectric effects
NASA Astrophysics Data System (ADS)
Zakharov, Dmitry; Lebedev, Gor; Cugat, Orphee; Delamare, Jerome; Viala, Bernard; Lafont, Thomas; Gimeno, Leticia; Shelyakov, Alexander
2012-09-01
This work gives experimental evidence of a promising method of thermal-to-electric energy conversion by coupling shape memory effect (SME) and direct piezoelectric effect (DPE) for harvesting quasi-static ambient temperature variations. Two original prototypes of thermal energy harvesters have been fabricated and tested experimentally. The first is a hybrid laminated composite consisting of TiNiCu shape memory alloy (SMA) and macro fiber composite piezoelectric. This composite comprises 0.1 cm3 of active materials and harvests 75 µJ of energy for each temperature variation of 60 °C. The second prototype is a SME/DPE ‘machine’ which uses the thermally induced linear strains of the SMA to bend a bulk PZT ceramic plate through a specially designed mechanical structure. The SME/DPE ‘machine’ with 0.2 cm3 of active material harvests 90 µJ over a temperature increase of 35 °C (60 µJ when cooling). In contrast to pyroelectric materials, such harvesters are also compatible with both small and slow temperature variations.
NASA Technical Reports Server (NTRS)
Quade, Derek J.; Jana, Sadhan; McCorkle, Linda S.
2018-01-01
Strips of nickel-titanium (NiTi) shape memory alloy (SMA) and carbon fiber-reinforced polymer matrix composite (PMC) were bonded together using multiple thin film adhesives and their mechanical strengths were evaluated under pullout test configuration. Tensile and lap shear tests were conducted to confirm the deformation of SMAs at room temperature and to evaluate the adhesive strength between the NiTi strips and the PMC. Optical and scanning electron microscopy techniques were used to examine the interfacial bonding after failure. Simple equations on composite tensile elongation were used to fit the experimental data on tensile properties. ABAQUS models were generated to show the effects of enhanced bond strength and the distribution of stress in SMA and PMC. The results revealed that the addition of thin film adhesives increased the average adhesive strength between SMA and PMC while halting the room temperature shape memory effect within the pullout specimen.
Shape-memory properties in Ni-Ti sputter-deposited film
NASA Technical Reports Server (NTRS)
Busch, J. D.; Johnson, A. D.; Lee, C. H.; Stevenson, D. A.
1990-01-01
A Ni-Ti alloy, generically called nitinol, was prepared from sputtering targets of two different compositions on glass substrates using a dc magnetron source. The as-deposited films were amorphous in structure and did not exhibit a shape memory. The amorphous films were crystallized with a suitable annealing process, and the transformation properties were measured using differential scanning calorimetry. The annealed films demonstrated a strong shape-memory effect. Stress/strain measurements and physical manipulation were used to evaluate the shape recovery. These tests demonstrated sustained tensile stresses of up to 480 MPa in the high-temperature phase, and a characteristic plastic deformation in the low-temperature phase.
Elastic memory composites (EMC) for deployable industrial and commercial applications
NASA Astrophysics Data System (ADS)
Arzberger, Steven C.; Tupper, Michael L.; Lake, Mark S.; Barrett, Rory; Mallick, Kaushik; Hazelton, Craig; Francis, William; Keller, Phillip N.; Campbell, Douglas; Feucht, Sara; Codell, Dana; Wintergerst, Joe; Adams, Larry; Mallioux, Joe; Denis, Rob; White, Karen; Long, Mark; Munshi, Naseem A.; Gall, Ken
2005-05-01
The use of smart materials and multifunctional components has the potential to provide enhanced performance, improved economics, and reduced safety concerns for applications ranging from outer space to subterranean. Elastic Memory Composite (EMC) materials, based on shape memory polymers and used to produce multifunctional components and structures, are being developed and qualified for commercial use as deployable components and structures. EMC materials are similar to traditional fiber-reinforced composites except for the use of a thermoset shape memory resin that enables much higher packaging strains than traditional composites without damage to the fibers or the resin. This unique capability is being exploited in the development of very efficient EMC structural components for deployable spacecraft systems as well as capability enhancing components for use in other industries. The present paper is intended primarily to describe the transition of EMC materials as smart structure technologies into viable industrial and commercial products. Specifically, the paper discusses: 1) TEMBO EMC materials for deployable space/aerospace systems, 2) TEMBO EMC resins for terrestrial applications, 3) future generation EMC materials.
NASA Astrophysics Data System (ADS)
Mieloszyk, Magdalena; Krawczuk, Marek; Skarbek, Lukasz; Ostachowicz, Wieslaw
2011-07-01
This paper presents an application of neural networks to determinate the level of activation of shape memory alloy actuators of an adaptive wing. In this concept the shape of the wing can be controlled and altered thanks to the wing design and the use of integrated shape memory alloy actuators. The wing is assumed as assembled from a number of wing sections that relative positions can be controlled independently by thermal activation of shape memory actuators. The investigated wing is employed with an array of Fibre Bragg Grating sensors. The Fibre Bragg Grating sensors with combination of a neural network have been used to Structural Health Monitoring of the wing condition. The FBG sensors are a great tool to control the condition of composite structures due to their immunity to electromagnetic fields as well as their small size and weight. They can be mounted onto the surface or embedded into the wing composite material without any significant influence on the wing strength. The paper concentrates on analysis of the determination of the twisting moment produced by an activated shape memory alloy actuator. This has been analysed both numerically using the finite element method by a commercial code ABAQUS® and experimentally using Fibre Bragg Grating sensor measurements. The results of the analysis have been then used by a neural network to determine twisting moments produced by each shape memory alloy actuator.
Self-healing nanocomposite using shape memory polymer and carbon nanotubes
NASA Astrophysics Data System (ADS)
Liu, Yingtao; Rajadas, Abhishek; Chattopadhyay, Aditi
2013-04-01
Carbon fiber reinforced composites are used in a wide range of applications in aerospace, mechanical, and civil structures. Due to the nature of material, most damage in composites, such as delaminations, are always barely visible to the naked eye, which makes it difficult to detect and repair. The investigation of biological systems has inspired the development and characterization of self-healing composites. This paper presents the development of a new type of self-healing material in order to impede damage progression and conduct in-situ damage repair in composite structures. Carbon nanotubes, which are highly conductive materials, are mixed with shape memory polymer to develop self-healing capability. The developed polymeric material is applied to carbon fiber reinforced composites to automatically heal the delamination between different layers. The carbon fiber reinforced composite laminates are manufactured using high pressure molding techniques. Tensile loading is applied to double cantilever beam specimens using an MTS hydraulic test frame. A direct current power source is used to generate heat within the damaged area. The application of thermal energy leads to re-crosslinking in shape memory polymers. Experimental results showed that the developed composite materials are capable of healing the matrix cracks and delaminations in the bonded areas of the test specimens. The developed self-healing material has the potential to be used as a novel structural material in mechanical, civil, aerospace applications.
Light-Induced Temperature Transitions in Biodegradable Polymer and Nanorod Composites**
Hribar, Kolin C.; Metter, Robert B.; Ifkovits, Jamie L.; Troxler, Thomas
2010-01-01
Shape-memory materials (including polymers, metals, and ceramics) are those that are processed into a temporary shape and respond to some external stimuli (e.g., temperature) to undergo a transition back to a permanent shape.[1, 2] Shape memory polymers are finding use in a range of applications from aerospace to fabrics, to biomedical devices and microsystem components.[3–5] For many applications, it would be beneficial to initiate heating with an external trigger (e.g., transdermal light exposure). In this work, we formulated composites of gold nanorods (<1% by volume) and biodegradable networks, where exposure to infrared light induced heating and consequently, shape transitions. The heating is repeatable and tunable based on nanorod concentration and light intensity and the nanorods did not alter the cytotoxicity or in vivo tissue response to the networks. PMID:19408258
Multimaterial 4D Printing with Tailorable Shape Memory Polymers
Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K.; Fang, Nicholas X.; Dunn, Martin L.
2016-01-01
We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures. PMID:27499417
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Zhong, Z. W.; Mei, Chuh
1994-01-01
A feasibility study on the use of shape memory alloys (SMA) for suppression of the random response of composite panels due to acoustic loads at elevated temperatures is presented. The constitutive relations for a composite lamina with embedded SMA fibers are developed. The finite element governing equations and the solution procedures for a composite plate subjected to combined acoustic and thermal loads are presented. Solutions include: 1) Critical buckling temperature; 2) Flat panel random response; 3) Thermal postbuckling deflection; 4) Random response of a thermally buckled panel. The preliminary results demonstrate that the SMA fibers can completely eliminate the thermal postbuckling deflection and significantly reduce the random response at elevated temperatures.
Shape memory alloy/shape memory polymer tools
Seward, Kirk P.; Krulevitch, Peter A.
2005-03-29
Micro-electromechanical tools for minimally invasive techniques including microsurgery. These tools utilize composite shape memory alloy (SMA), shape memory polymer (SMP) and combinations of SMA and SMP to produce catheter distal tips, actuators, etc., which are bistable. Applications for these structures include: 1) a method for reversible fine positioning of a catheter tip, 2) a method for reversible fine positioning of tools or therapeutic catheters by a guide catheter, 3) a method for bending articulation through the body's vasculature, 4) methods for controlled stent delivery, deployment, and repositioning, and 5) catheters with variable modulus, with vibration mode, with inchworm capability, and with articulated tips. These actuators and catheter tips are bistable and are opportune for in vivo usage because the materials are biocompatible and convenient for intravascular use as well as other minimal by invasive techniques.
NASA Astrophysics Data System (ADS)
Murguia, Silvia Briseño; Clauser, Arielle; Dunn, Heather; Fisher, Wendy; Snir, Yoav; Brennan, Raymond E.; Young, Marcus L.
2018-04-01
Shape memory alloys (SMAs) are of high interest as active, adaptive "smart" materials for applications such as sensors and actuators due to their unique properties, including the shape memory effect and pseudoelasticity. Binary NiTi SMAs have shown the most desirable properties, and consequently have generated the most commercial success. A major challenge for SMAs, in particular, is their well-known compositional sensitivity. Therefore, it is critical to control the powder composition and morphology. In this study, a low-pressure, low-temperature hydriding-pulverization-dehydriding method for preparing well-controlled compositions, size, and size distributions of SMA powders from wires is presented. Starting with three different diameters of as-drawn martensitic NiTi SMA wires, pre-alloyed NiTi powders of various well-controlled sizes are produced by hydrogen charging the wires in a heated H3PO4 solution. After hydrogen charging for different charging times, the wires are pulverized and subsequently dehydrided. The wires and the resulting powders are characterized using scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. The relationship between the wire diameter and powder size is investigated as a function of hydrogen charging time. The rate of diameter reduction after hydrogen charging of wire is also examined. Finally, the recovery behavior due to the shape memory effect is investigated after dehydriding.
Super-active shape memory alloy composites
NASA Astrophysics Data System (ADS)
Barrett, Ronald M.; Gross, R. Steven
1995-05-01
A new type of very low stiffness super-active composite material is presented. This laminate uses shape-memory alloy (SMA) filaments which are embedded within a low Durometer silicone matrix. The purpose is to develop an active composite in which the local strains within the SMA actuator material will be approximately 1% while the laminate strains will be at least an order of magnitude larger. This type of laminate will be useful for biomimetic, biomedical, surgical and prosthetic applications in which the very high actuator strength of conventional SMA filaments is too great for biological tissues. A modified form of moment and force-balance analysis is used to model the performance of the super-active shape-memory alloy composite (SASMAC). The analytical models are used to predict the performance of a SASMAC pull-pull actuator which uses 10 mil diameter Tinel alloy K actuators embedded in a 0.10' thick, 25 Durometer silicon matrix. The results of testing demonstrate that the laminate is capable of straining up to 10% with theory and experiment in good agreement. Fatigue testing was conducted on the actuator for 1,000 cycles. Because the local strains within the SMA were kept to less than 1%, the element showed no degradation in performance.
Super-active shape-memory alloy composites
NASA Astrophysics Data System (ADS)
Barrett, Ron; Gross, R. Steven
1996-06-01
A new type of very-low-stiffness super-active composite material is presented. This laminate uses shape-memory alloy (SMA) filaments which are embedded within a low-hardness silicone matrix. The purpose is to develop an active composite in which the local strains within the SMA actuator material will be approximately 1%, while the laminate strains will be at least an order of magnitude larger. This type of laminate will be useful for biomimetic, biomedical, surgical and prosthetic applications in which the very high stiffness and actuation strength of conventional SMA filaments are too great for biological tissues. A modified form of moment and force-balance analysis is used to model the performance of the super-active shape-memory alloy composite (SASMAC). The analytical models are used to predict the performance of a SASMAC pull - pull actuator which uses 10 mil diameter Tinel alloy K actuators embedded in a 0.10" thick, 25 Durometer silicone matrix. The results of testing demonstrate that the laminate is capable of straining up to 10% with theory and experiment in good agreement. Fatigue testing was conducted on the actuator for 1 000 cycles. Because the local strains within the SMA were kept to less than 1%, the element showed no degradation in performance.
NASA Astrophysics Data System (ADS)
Ćakιr, Aslι; Righi, Lara; Albertini, Franca; Acet, Mehmet; Farle, Michael; Aktürk, Selçuk
2013-11-01
Martensitic transitions in shape memory Ni-Mn-Ga Heusler alloys take place between a high temperature austenite and a low temperature martensite phase. However, intermartensitic transformations have also been encountered that occur from one martensite phase to another. To examine intermartensitic transitions in magnetic shape memory alloys in detail, we carried out temperature dependent magnetization, resistivity, and x-ray diffraction measurements to investigate the intermartensitic transition in Ni50Mn50-xGax in the composition range 12≤x≤25 at. %. Rietveld refined x-ray diffraction results are found to be consistent with magnetization and resistivity data. Depending on composition, we observe that intermartensitic transitions occur in the sequences 7M→L10, 5M →7M, and 5M→7M→L10 with decreasing temperature. The L10 non-modulated structure is most stable at low temperature.
Cu-Al-Ni-SMA-Based High-Damping Composites
NASA Astrophysics Data System (ADS)
López, Gabriel A.; Barrado, Mariano; San Juan, Jose; Nó, María Luisa
2009-08-01
Recently, absorption of vibration energy by mechanical damping has attracted much attention in several fields such as vibration reduction in aircraft and automotive industries, nanoscale vibration isolations in high-precision electronics, building protection in civil engineering, etc. Typically, the most used high-damping materials are based on polymers due to their viscoelastic behavior. However, polymeric materials usually show a low elastic modulus and are not stable at relatively low temperatures (≈323 K). Therefore, alternative materials for damping applications are needed. In particular, shape memory alloys (SMAs), which intrinsically present high-damping capacity thanks to the dissipative hysteretic movement of interfaces under external stresses, are very good candidates for high-damping applications. A completely new approach was applied to produce high-damping composites with relatively high stiffness. Cu-Al-Ni shape memory alloy powders were embedded with metallic matrices of pure In, a In-10wt.%Sn alloy and In-Sn eutectic alloy. The production methodology is described. The composite microstructures and damping properties were characterized. A good particle distribution of the Cu-Al-Ni particles in the matrices was observed. The composites exhibit very high damping capacities in relatively wide temperature ranges. The methodology introduced provides versatility to control the temperature of maximum damping by adjusting the shape memory alloy composition.
Exarchos, Dimitrios A; Dalla, Panagiota T; Tragazikis, Ilias K; Dassios, Konstantinos G; Zafeiropoulos, Nikolaos E; Karabela, Maria M; De Crescenzo, Carmen; Karatza, Despina; Musmarra, Dino; Chianese, Simeone; Matikas, Theodore E
2018-05-18
This paper presents an innovative approach, which enables control of the mechanical properties of metallic components by external stimuli to improve the mechanical behavior of aluminum structures in aeronautical applications. The approach is based on the exploitation of the shape memory effect of novel Shape Memory Alloy (SMA) coatings deposited on metallic structural components, for the purpose of relaxing the stress of underlying structures by simple heating at field-feasible temperatures, therefore enhancing their structural integrity and increasing their stiffness and rigidity while allowing them to withstand expected loading conditions safely. Numerical analysis provided an insight in the expected response of the SMA coating and of the SMA-coated element, while the dependence of alloy composition and heat treatment on the experienced shape memory effect were investigated experimentally. A two-phase process is proposed for deposition of the SMA coating in an order that induces beneficial stress relaxation to the underlying structure through the shape memory effect.
Determining the Mechanical Properties of Lattice Block Structures
NASA Technical Reports Server (NTRS)
Wilmoth, Nathan
2013-01-01
Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.
Exarchos, Dimitrios A.; Dalla, Panagiota T.; Tragazikis, Ilias K.; Zafeiropoulos, Nikolaos E.; Karabela, Maria M.; De Crescenzo, Carmen; Karatza, Despina; Matikas, Theodore E.
2018-01-01
This paper presents an innovative approach, which enables control of the mechanical properties of metallic components by external stimuli to improve the mechanical behavior of aluminum structures in aeronautical applications. The approach is based on the exploitation of the shape memory effect of novel Shape Memory Alloy (SMA) coatings deposited on metallic structural components, for the purpose of relaxing the stress of underlying structures by simple heating at field-feasible temperatures, therefore enhancing their structural integrity and increasing their stiffness and rigidity while allowing them to withstand expected loading conditions safely. Numerical analysis provided an insight in the expected response of the SMA coating and of the SMA-coated element, while the dependence of alloy composition and heat treatment on the experienced shape memory effect were investigated experimentally. A two-phase process is proposed for deposition of the SMA coating in an order that induces beneficial stress relaxation to the underlying structure through the shape memory effect. PMID:29783626
NASA Astrophysics Data System (ADS)
Burlacu, L.; Cimpoeşu, N.; Bujoreanu, L. G.; Lohan, N. M.
2017-08-01
Ni-Ti shape memory alloys (SMAs) are intelligent alloys which demonstrate unique properties, such as shape memory effect, two-way shape memory effect, super-elasticity and vibration damping which, accompanied by good processability, excellent corrosion resistance and biocompatibility as well as fair wear resistance and cyclic stability, enabled the development of important industrial applications (such as sensors, actuators, fasteners, couplings and valves), medical applications (such as stents, bone implants, orthodontic archwires, minimal invasive surgical equipment) as well as environmental health and safety devices (anti-seismic dampers, fire safety devices). The phase transitions in Ni-Ti SMAs are strongly influenced by processing methods, chemical compositions and thermomechanical history. This paper presents a study of the effects of heat treatment on the mechanical and thermal properties of commercial Ni-Ti shape memory alloy (SMA). The experimental work involved subjecting a SMA rod to heat-treatment consisting in heating up to 500°C, 10 minutes-maintaining and water quenching. Mechanical properties were highlighted by microhardness tests while thermal characteristics were emphasized by differential scanning calorimetry (DSC). The presence of chemical composition fluctuations was checked by X-ray energy dispersive spectroscopy performed with an EDAX Bruker analyzer.
NASA Astrophysics Data System (ADS)
Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon
2016-04-01
Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.
Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon
2016-01-01
Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. PMID:27080134
Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon
2016-04-15
Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors' knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.
NASA Astrophysics Data System (ADS)
Zhang, Xudong; Ren, Junqiang; Ding, Xiangdong
2018-05-01
In this work, we use the finite element method to investigate the free volume evolution, as well as the martensite transformation effect and its connection with the pretreatment strain, in a shape memory alloy-metallic glass composite. Our simulation results show that the martensite phase transformation can enhance the blocking effect while relieving the free volume localization. The synergistic effect among the martensite transformation effect, blocking effect, and shear band interaction in the composite is responsible for the tensile plasticity and work-hardening capability. In addition, we design a Sierpinski carpet-like fractal microstructure so that the composite exhibits improved tensile performance as a result of the enhanced synergistic effect. However, the tensile performance of the composite deteriorates with increasing pretreatment strain since the martensite transformation effect is weakened.
Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads.
Takeuchi, I; Famodu, O O; Read, J C; Aronova, M A; Chang, K-S; Craciunescu, C; Lofland, S E; Wuttig, M; Wellstood, F C; Knauss, L; Orozco, A
2003-03-01
Exploration of new ferroic (ferroelectric, ferromagnetic or ferroelastic) materials continues to be a central theme in condensed matter physics and to drive advances in key areas of technology. Here, using thin-film composition spreads, we have mapped the functional phase diagram of the Ni-Mn-Ga system whose Heusler composition Ni(2)MnGa is a well known ferromagnetic shape-memory alloy. A characterization technique that allows detection of martensitic transitions by visual inspection was combined with quantitative magnetization mapping using scanning SQUID (superconducting quantum interference device) microscopy. We find that a large, previously unexplored region outside the Heusler composition contains reversible martensites that are also ferromagnetic. A clear relationship between magnetization and the martensitic transition temperature is observed, revealing a strong thermodynamical coupling between magnetism and martensitic instability across a large fraction of the phase diagram.
Self-shaping of bioinspired chiral composites
NASA Astrophysics Data System (ADS)
Rong, Qing-Qing; Cui, Yu-Hong; Shimada, Takahiro; Wang, Jian-Shan; Kitamura, Takayuki
2014-08-01
Self-shaping materials such as shape memory polymers have recently drawn considerable attention owing to their high shape-changing ability in response to changes in ambient conditions, and thereby have promising applications in the biomedical, biosensing, soft robotics and aerospace fields. Their design is a crucial issue of both theoretical and technological interest. Motivated by the shape-changing ability of Towel Gourd tendril helices during swelling/deswelling, we present a strategy for realizing self-shaping function through the deformation of micro/nanohelices. To guide the design and fabrication of self-shaping materials, the shape equations of bent configurations, twisted belts, and helices of slender chiral composite are developed using the variation method. Furthermore, it is numerically shown that the shape changes of a chiral composite can be tuned by the deformation of micro/nanohelices and the fabricated fiber directions. This work paves a new way to create self-shaping composites.
Thermal and damping behaviour of magnetic shape memory alloy composites
NASA Astrophysics Data System (ADS)
Glock, Susanne; Michaud, Véronique
2015-06-01
Single crystals of ferromagnetic shape memory alloys (MSMA) exhibit magnetic field and stress induced strains via energy dissipating twinning. Embedding single crystalline MSMA particles into a polymer matrix could thus produce composites with enhanced energy dissipation, suitable for damping applications. Composites of ferromagnetic, martensitic or austenitic Ni-Mn-Ga powders embedded in a standard epoxy matrix were produced by casting. The martensitic powder composites showed a crystal structure dependent damping behaviour that was more dissipative than that of austenitic powder or Cu-Ni reference powder composites and than that of the pure matrix. The loss ratio also increased with increasing strain amplitude and decreasing frequency, respectively. Furthermore, Ni-Mn-Ga powder composites exhibited an increased damping behaviour at the martensite/austenite transformation temperature of the Ni-Mn-Ga particles in addition to that at the glass transition temperature of the epoxy matrix, creating possible synergetic effects.
NASA Astrophysics Data System (ADS)
Wu, Xuelian; Zhang, Wuyi; Liu, Yanju; Leng, Jinsong
2007-07-01
Thermally activated shape memory polymers (SMPs) receive increasing attention in recent years. Different from those reported in the literature, in this paper we propose a new approach, i.e., using infrared light, for heating SMPs for shape recovery. We compare this approach with the traditional water bath method in terms of shape recovery speed in bending at both vacuum and no vacuum conditions. The results reveal that the shape recovery speed in infrared heating at vacuum condition is about eight times slower than that by hot water. However, the recovery time is more than doubled if without vacuum.
NASA Astrophysics Data System (ADS)
Balta, J. A.; Bosia, F.; Michaud, V.; Dunkel, G.; Botsis, J.; Månson, J.-A.
2005-08-01
This paper describes the production of an adaptive composite by embedding thin pre-strained shape memory alloy actuators into a Kevlar-epoxy host material. In order to combine the activation and sensing capabilities, fibre Bragg grating sensors are also embedded into the specimens, and the strain measured in situ during activation. The effect of manufacturing conditions, and hence of the initial stress state in the composite before activation, on the magnitude of the measured strains is discussed. The results of stress and strain simulations are compared with experimental data, and guidelines are provided for the optimization of the composite. Finally, a pilot experiment is carried out to provide an example of how a strain-stabilizing feedback mechanism can be implemented in the smart structure.
Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire
NASA Astrophysics Data System (ADS)
Ng, Ching Wei; Mahmud, Abdus Samad
2017-12-01
Nickel titanium (NiTi) alloy is a unique alloy that exhibits special behavior that recovers fully its shape after being deformed to beyond elastic region. However, this alloy is sensitive to any changes of its composition and introduction of inclusion in its matrix. Heat treatment of NiTi shape memory alloy to above 600 °C leads to the formation of the titanium oxide (TiO2) layer. Titanium oxide is a ceramic material that does not exhibit shape memory behaviors and possess different mechanical properties than that of NiTi alloy, thus disturbs the shape memory behavior of the alloy. In this work, the effect of formation of TiO2 surface oxide layer towards the thermal phase transformation and stress-induced deformation behaviors of the NiTi alloy were studied. The NiTi wire with composition of Ti-50.6 at% Ni was subjected to thermal oxidation at 600 °C to 900 °C for 30 and 60 minutes. The formation of the surface oxide layers was characterized by using the Scanning Electron Microscope (SEM). The effect of surface oxide layers with different thickness towards the thermal phase transformation behavior was studied by using the Differential Scanning Calorimeter (DSC). The effect of surface oxidation towards the stress-induced deformation behavior was studied through the tensile deformation test. The stress-induced deformation behavior and the shape memory recovery of the NiTi wire under tensile deformation were found to be affected marginally by the formation of thick TiO2 layer.
Self-shaping composites with programmable bioinspired microstructures.
Erb, Randall M; Sander, Jonathan S; Grisch, Roman; Studart, André R
2013-01-01
Shape change is a prevalent function apparent in a diverse set of natural structures, including seed dispersal units, climbing plants and carnivorous plants. Many of these natural materials change shape by using cellulose microfibrils at specific orientations to anisotropically restrict the swelling/shrinkage of their organic matrices upon external stimuli. This is in contrast to the material-specific mechanisms found in synthetic shape-memory systems. Here we propose a robust and universal method to replicate this unusual shape-changing mechanism of natural systems in artificial bioinspired composites. The technique is based upon the remote control of the orientation of reinforcing inorganic particles within the composite using a weak external magnetic field. Combining this reinforcement orientational control with swellable/shrinkable polymer matrices enables the creation of composites whose shape change can be programmed into the material's microstructure rather than externally imposed. Such bioinspired approach can generate composites with unusual reversibility, twisting effects and site-specific programmable shape changes.
Self-shaping composites with programmable bioinspired microstructures
NASA Astrophysics Data System (ADS)
Erb, Randall M.; Sander, Jonathan S.; Grisch, Roman; Studart, André R.
2013-04-01
Shape change is a prevalent function apparent in a diverse set of natural structures, including seed dispersal units, climbing plants and carnivorous plants. Many of these natural materials change shape by using cellulose microfibrils at specific orientations to anisotropically restrict the swelling/shrinkage of their organic matrices upon external stimuli. This is in contrast to the material-specific mechanisms found in synthetic shape-memory systems. Here we propose a robust and universal method to replicate this unusual shape-changing mechanism of natural systems in artificial bioinspired composites. The technique is based upon the remote control of the orientation of reinforcing inorganic particles within the composite using a weak external magnetic field. Combining this reinforcement orientational control with swellable/shrinkable polymer matrices enables the creation of composites whose shape change can be programmed into the material’s microstructure rather than externally imposed. Such bioinspired approach can generate composites with unusual reversibility, twisting effects and site-specific programmable shape changes.
Study on shape recovery speed of SMP, SMP composite, and SMP foam
NASA Astrophysics Data System (ADS)
Wu, Xuelian; Liu, Yanju; Leng, Jinsong
2008-03-01
Shape memory polymer (SMP) receives increasing attention along with its derivants - SMP composite and SMP foam in recent years. In this paper, after fabricating thermoset styrene-based SMP, SMP/carbon black (CB) composite and SMP foam, we studied their shape recovery speed in bending. Different from those reported in the literature, we propose a new approach, i.e., using infrared light, for actuating SMP materials for shape recovery. The results show that SMP, SMP/CB composite and SMP foam can recover to their original shape perfectly in a wide temperature range. Shape recovery speed of SMP composite is not uniform during the overall recovery process, and it is the same trend with SMP but not prominent with SMP foam. Repeatability of shape recovery speed for styrene-based SMP and SMP/CB composite are similarly stable and the former is the better, but it is so worse for SMP foam. Temperature-dependent of shape recovery speed test for styrene-based SMP and SMP/CB composite reveal that higher temperature increases their shape recovery speed.
Numerical model for an epoxy beam reinforced with superelastic shape memory alloy wires
NASA Astrophysics Data System (ADS)
Viet, N. V.; Zaki, W.; Umer, R.
2018-03-01
We present a numerical solution for a smart composite beam consisting of an epoxy matrix reinforced with unidirectional superelastic shape memory alloy (SMA) fibers with uniform circular cross section. The beam is loaded by a tip load, which is then removed resulting in shape recovery due to superelasticity of the SMA wires. The analysis is carried out considering a representative volume element (RVE) of the beam consisting of one SMA wire embedded in epoxy. The analytical model is developed for a superelastic SMA/epoxy composite beam subjected to a complete loading cycle in bending. Using the proposed model, the moment-curvature profile, martensite volume fraction variation, and axial stress are determined. The results are validated against three-dimensional finite element analysis (3D FEA) for the same conditions. The proposed work is a contribution toward better understanding of the bending behavior of superelastic SMA-reinforced composites.
Nonlinear Thermoelastic Model for SMAs and SMA Hybrid Composites
NASA Technical Reports Server (NTRS)
Turner, Travis L.
2004-01-01
A constitutive mathematical model has been developed that predicts the nonlinear thermomechanical behaviors of shape-memory-alloys (SMAs) and of shape-memory-alloy hybrid composite (SMAHC) structures, which are composite-material structures that contain embedded SMA actuators. SMAHC structures have been investigated for their potential utility in a variety of applications in which there are requirements for static or dynamic control of the shapes of structures, control of the thermoelastic responses of structures, or control of noise and vibrations. The present model overcomes deficiencies of prior, overly simplistic or qualitative models that have proven ineffective or intractable for engineering of SMAHC structures. The model is sophisticated enough to capture the essential features of the mechanics of SMAHC structures yet simple enough to accommodate input from fundamental engineering measurements and is in a form that is amenable to implementation in general-purpose structural analysis environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Pingping; Cui, Zhiwei; Kesler, Michael S.
In this paper, three-dimensional metal-matrix composites (MMCs) reinforced by shape memory alloy (SMA) wires are modeled and simulated, by adopting an SMA constitutive model accounting for elastic deformation, phase transformation and plastic behavior. A modeling method to create composites with pre-strained SMA wires is also proposed to improve the self-healing ability. Experimental validation is provided with a composite under three-point bending. This modeling method is applied in a series of finite element simulations to investigate the self-healing effects in pre-cracked composites, especially the role of the SMA reinforcement, the softening property of the matrix, and the effect of pre-strain inmore » the SMA. The results demonstrate that SMA reinforcements provide stronger shape recovery ability than other, non-transforming materials. The softening property of the metallic matrix and the pre-strain in SMA are also beneficial to help crack closure and healing. This modeling approach can serve as an efficient tool to design SMA-reinforced MMCs with optimal self-healing properties that have potential applications in components needing a high level of reliability.« less
Self-Healing Composite of Thermoset Polymer and Programmed Super Contraction Fibers
NASA Technical Reports Server (NTRS)
Li, Guoqiang (Inventor); Meng, Harper (Inventor)
2016-01-01
A composition comprising thermoset polymer, shape memory polymer to facilitate macro scale damage closure, and a thermoplastic polymer for molecular scale healing is disclosed; the composition has the ability to resolve structural defects by a bio-mimetic close-then heal process. In use, the shape memory polymer serves to bring surfaces of a structural defect into approximation, whereafter use of the thermoplastic polymer for molecular scale healing allowed for movement of the thermoplastic polymer into the defect and thus obtain molecular scale healing. The thermoplastic can be fibers, particles or spheres which are used by heating to a level at or above the thermoplastic's melting point, then cooling of the composition below the melting temperature of the thermoplastic. Compositions of the invention have the ability to not only close macroscopic defects, but also to do so repeatedly even if another wound/damage occurs in a previously healed/repaired area.
Magnetic and mechanical properties of Ni-Mn-Ga/Fe-Ga ferromagnetic shape memory composite
NASA Astrophysics Data System (ADS)
Tan, Chang-Long; Zhang, Kun; Tian, Xiao-Hua; Cai, Wei
2015-05-01
A ferromagnetic shape memory composite of Ni-Mn-Ga and Fe-Ga was fabricated by using spark plasma sintering method. The magnetic and mechanical properties of the composite were investigated. Compared to the Ni-Mn-Ga alloy, the threshold field for magnetic-field-induced strain in the composite is clearly reduced owing to the assistance of internal stress generated from Fe-Ga. Meanwhile, the ductility has been significantly improved in the composite. A fracture strain of 26% and a compressive strength of 1600 MPa were achieved. Projects supported by the National Natural Science Foundation of China (Grant Nos. 51271065 and 51301054), the Program for New Century Excellent Talents in Heilongjiang Provincial Education Department, China (Grant No. 1253-NCET-009), the Youth Academic Backbone in Heilongjiang Provincial Education Department, China (Grant No. 1251G022), the Projects of Heilongjiang, China, and China Postdoctoral Science Foundation.
Precipitation-Strengthened, High-Temperature, High-Force Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Noebe, Ronald D.; Draper, Susan L.; Nathal, Michael V.; Crombie, Edwin A.
2008-01-01
Shape memory alloys (SMAs) are an enabling component in the development of compact, lightweight, durable, high-force actuation systems particularly for use where hydraulics or electrical motors are not practical. However, commercial shape memory alloys based on NiTi are only suitable for applications near room temperature, due to their relatively low transformation temperatures, while many potential applications require higher temperature capability. Consequently, a family of (Ni,Pt)(sub 1-x)Ti(sub x) shape memory alloys with Ti concentrations ranging from about 15 to 25 at.% have been developed for applications in which there are requirements for SMA actuators to exert high forces at operating temperatures higher than those of conventional binary NiTi SMAs. These alloys can be heat treated in the range of 500 C to produce a series of fine precipitate phases that increase the strength of alloy while maintaining a high transformation temperature, even in Ti-lean compositions.
Behavior of Shape Memory Epoxy Foams in Microgravity: Experimental Results of STS-134 Mission
NASA Astrophysics Data System (ADS)
Santo, Loredana; Quadrini, Fabrizio; Squeo, Erica Anna; Dolce, Ferdinando; Mascetti, Gabriele; Bertolotto, Delfina; Villadei, Walter; Ganga, Pier Luigi; Zolesi, Valfredo
2012-09-01
Shape memory epoxy foams were used for an experiment on the International Space Station to evaluate the feasibility of their use for building multi-functional composite structures. A small equipment was designed and built to simulate the actuation of simple devices in micro-gravity conditions: three different configurations (compression, bending and torsion) were chosen during the memory step of the foams so as to produce their recovery on ISS. Two systems were used for the experimentation to avoid damages of the flight model during laboratory tests; however a single ground experiment was performed also on the flight model before the mission. Micro-gravity does not affect the ability of the foams to recover their shape but it poses strong limits for the heating system design because of the difference in heat transfer on earth and in orbit. A full recovery of the foam samples was not achieved due to some limitations in the maximum allowable temperature on ISS for safety reasons: anyway a 70% recovery was also measured at a temperature of 110°C. Ground laboratory experiments showed that 100% recovery could be reached by increasing the maximum temperature to 120°C. Experiment results have provided many useful information for the designing of a new structural composite actuator by using shape memory foams.
The memory effect of magnetoelectric coupling in FeGaB/NiTi/PMN-PT multiferroic heterostructure
Zhou, Ziyao; Zhao, Shishun; Gao, Yuan; Wang, Xinjun; Nan, Tianxiang; Sun, Nian X.; Yang, Xi; Liu, Ming
2016-01-01
Magnetoelectric coupling effect has provided a power efficient approach in controlling the magnetic properties of ferromagnetic materials. However, one remaining issue of ferromagnetic/ferroelectric magnetoelectric bilayer composite is that the induced effective anisotropy disappears with the removal of the electric field. The introducing of the shape memory alloys may prevent such problem by taking the advantage of its shape memory effect. Additionally, the shape memory alloy can also “store” the magnetoelectric coupling before heat release, which introduces more functionality to the system. In this paper, we study a FeGaB/NiTi/PMN-PT multiferroic heterostructure, which can be operating in different states with electric field and temperature manipulation. Such phenomenon is promising for tunable multiferroic devices with multi-functionalities. PMID:26847469
Ultra low density biodegradable shape memory polymer foams with tunable physical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth
Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boilingmore » points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Çakir, Asli; Aktürk, Selçuk; Righi, Lara
2013-11-14
Martensitic transitions in shape memory Ni-Mn-Ga Heusler alloys take place between a high temperature austenite and a low temperature martensite phase. However, intermartensitic transformations have also been encountered that occur from one martensite phase to another. To examine intermartensitic transitions in magnetic shape memory alloys in detail, we carried out temperature dependent magnetization, resistivity, and x-ray diffraction measurements to investigate the intermartensitic transition in Ni{sub 50}Mn{sub 50–x}Ga{sub x} in the composition range 12≤x≤25 at. %. Rietveld refined x-ray diffraction results are found to be consistent with magnetization and resistivity data. Depending on composition, we observe that intermartensitic transitions occur inmore » the sequences 7M→L1{sub 0}, 5M→7M, and 5M→7M→L1{sub 0} with decreasing temperature. The L1{sub 0} non-modulated structure is most stable at low temperature.« less
NASA Astrophysics Data System (ADS)
Taheri-Behrooz, Fathollah; Kiani, Ali
2017-04-01
Shape memory alloys (SMAs) are a type of shape memory materials that recover large deformation and return to their primary shape by rising temperature. In the current research, the effect of embedding SMA wires on the macroscopic mechanical behavior of glass-epoxy composites is investigated through finite element simulations. A perfect interface between SMA wires and the host composite is assumed. Effects of various parameters such as SMA wires volume fraction, SMA wires pre-strain and temperature are investigated during loading-unloading and reloading steps by employing ANSYS software. In order to quantify the extent of induced compressive stress in the host composite and residual tensile stress in the SMA wires, a theoretical approach is presented. Finally, it was shown that smart structures fabricated using composite layers and pre-strained SMA wires exhibited overall stiffness reduction at both ambient and elevated temperatures which were increased by adding SMA volume fraction. Also, the induced compressive stress on the host composite was increased remarkably using 4% pre-strained SMA wires at elevated temperature. Results obtained by FE simulations were in good correlation with the rule of mixture predictions and available experimental data in the literature.
NASA Astrophysics Data System (ADS)
Witkowska, Justyna; Sowińska, Agnieszka; Czarnowska, Elżbieta; Płociński, Tomasz; Borowski, Tomasz; Wierzchoń, Tadeusz
2017-11-01
Surface layers currently produced on NiTi alloys do not meet all the requirements for materials intended for use in cardiology. Plasma surface treatments of titanium and its alloys under glow discharge conditions make it possible to produce surface layers, such as TiN or TiO2, which increases corrosion resistance and biocompatibility. The production of layers on NiTi alloys with the same properties, and maintaining their shape memory and superelasticity features, requires the use of low-temperature processes. At the same time, since it is known that the carbon-based layers could prevent excessive adhesion and aggregation of platelets, we examined the composite a-CNH + TiO2 type surface layer produced by means of a hybrid method combining oxidation in low-temperature plasma and Radio Frequency Chemical Vapor Deposition (RFCVD) processes. Investigations have shown that this composite layer increases the corrosion resistance of the material, and both the low degree of roughness and the chemical composition of the surface produced lead to decreased platelet adhesion and aggregation and proper endothelialization, which could extend the range of applications of NiTi shape memory alloys.
NASA Technical Reports Server (NTRS)
Turner, Travis L.
2001-01-01
This study examines the use of embedded shape memory alloy (SMA) actuators for adaptive control of the thermomechanical response of composite structures. A nonlinear thermomechanical model is presented for analyzing shape memory alloy hybrid composite (SMAHC) structures exposed to steady-state thermal and dynamic mechanical loads. Also presented are (1) fabrication procedures for SMAHC specimens, (2) characterization of the constituent materials for model quantification, (3) development of the test apparatus for conducting static and dynamic experiments on specimens with and without SMA, (4) discussion of the experimental results, and (5) validation of the analytical and numerical tools developed in the study. Excellent agreement is achieved between the predicted and measured SAMHC responses including thermal buckling, thermal post-buckling and dynamic response due to inertial loading. The validated model and thermomechanical analysis tools are used to demonstrate a variety of static and dynamic response behaviors including control of static (thermal buckling and post-buckling) and dynamic responses (vibration, sonic fatigue, and acoustic transmission). and SMAHC design considerations for these applications. SMAHCs are shown to have significant advantages over conventional response abatement approaches for vibration, sonic fatigue, and noise control.
Precipitation-hardening stainless steels with a shape-memory effect
NASA Astrophysics Data System (ADS)
Sagaradze, V. V.; Afanasiev, S. V.; Volkova, E. G.; Zavalishin, V. A.
2016-02-01
The possibility of obtaining the shape-memory effect as a result of the γ → ɛ → γ transformations in aging stainless steels strengthened by VC carbides has been investigated. Regimes are given for strengthening aging (at 650 and 720°C) for stainless steels that predominantly contain (in wt %) 0.06-0.45C, 1-2V, 2-5Si, 9 and 13-14Cr. The values of reversible deformation e (amount of shape-memory effect) determined after heating to 400°C in samples preliminarily deformed to 3.5-4% vary from 0.15 to 2.7%, depending on the composition of the steels and regimes of stabilizing and destabilizing aging.
Shape memory alloy wires turn composites into smart structures: I. Material requirements
NASA Astrophysics Data System (ADS)
Schrooten, Jan; Michaud, Veronique J.; Zheng, Yanjun; Balta-Neumann, J. Antonio; Manson, Jan-Anders E.
2002-07-01
Composites containing thin Shape Memory Alloy (SMA) wires show great potential as materials able to adapt their shape, thermal behavior or vibrational properties to external stimuli. The functional properties of SMA-composites are directly related to the constraining effect of the matrix on the reversible martensitic transformation of the embedded pre-strained SMA wires. The present work reports results of a concerted European effort towards a fundamental understanding of the manufacturing and design of SMA composites. This first part investigates the transformational behavior of constrained SMA wires and its translation into functional properties of SMA composites. Thermodynamic and thermomechanical experiments were performed on SMA wires. A model was developed to simulate the thermomechanical behavior of the wires. From the screening of potential wires it was concluded that NiTiCu, as well as R-phase NiTi appeared as best candidates. Requirements for the host composite materials were surveyed. A Kevlar-epoxy system was chosen. Finally, the quality of the SMA wire-resin interface was assessed by two different techniques. These indicated that a thin oxide layer seems to provide the best interfacial strength. A temperature window in which SMA composites can be safely used was also defined. The manufacturing and properties of the SMA composites will be discussed in Part II.
NASA Technical Reports Server (NTRS)
Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.
2007-01-01
High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.
Effects of fiber pre-strain on the healing efficiency of thermoset polymers
NASA Astrophysics Data System (ADS)
Ajisafe, Oludayo
One major challenge that has been facing material self healing is how to heal bigger macroscopic or structural scale damage autonomously, repeatedly, efficiently and at molecular length scale. Different approaches have been used to heal materials. However, none of them can heal macroscopic cracks. Our research group has proposed a novel shape-memory polymer (SMP) based, bio-inspired Close-Then-Heal (CTH) scheme to heal macroscopic cracks in SMP matrix. The most recent development in our group is to use SMP fibers to heal conventional thermosetting polymers according to the CTH scheme. The aim of this study is to further investigate the effect of pre-tension of SMP fibers during the cold-drawing programming on the self-healing efficiency of the conventional thermosetting polymer composites. This was done by fabricating a composite with thermoplastic particles (polycaprolactone) dispersed in a thermosetting polymer matrix (Epon 828). Shape memory fiber pre-tensioned into 3 different groups of 0%, 50% and 100% prestrain, was also embedded into the composite in the longitudinal direction. In this composite, the shape memory effect of the shape memory fibers is utilized for sealing (closing) the cracks and the thermoplastic particles are used for molecular-length scale healing. In this study, 7% by volume of thermoplastic particles was used. Beam specimens were prepared and controlled structural length scale damage was created prior to curing by inserting an aluminum foil of designed thickness in a perpendicular direction to the shape memory fibers before the matrix was allowed to cure. The aluminum sheet was removed post cure to leave a controlled damage. The specimen was healed by fixing the two ends of the beam and heating the sample above the Tg of the shape memory fiber. The recovery force of the sample was recorded and then the beam was tested again to fracture. This fracture healing cycle lasted 7 times. The healing efficiency was evaluated per the peak-tensile load. The Ultrasonic C-scan and SEM were used to examine the healed cracks. It was found that the beams with 100% pre-strained fiber were able to recover repeatedly about 50% of its peak tensile strength; the beams with 50% pre-strained fiber, 43%; and the beams with un-stretched fibers were able to recover about 21% of its original peak tensile strength. Also it was found that the higher the pre-tension the higher the recovery stress seen during the healing cycle.
NASA Astrophysics Data System (ADS)
Singh, Sanjay; D'Souza, S. W.; Nayak, J.; Caron, L.; Suard, E.; Chadov, S.; Felser, C.
2016-04-01
Ni2MnGa exhibits ideal ferromagnetic shape memory properties, however, brittleness and a low-temperature martensite transition hinder its technological applications motivating the search for novel materials showing better mechanical properties as well as higher transition temperatures. In this work, the crystal structure, phase transitions, and the magnetic properties of quaternary Ni2 -xPtxMnGa (0 ≤x ≤1 ) shape memory alloys were studied experimentally by x-ray diffraction, magnetization measurements, and neutron diffraction and compared to ab initio calculations. Compositions within 0 ≤x ≤0.25 exhibit the cubic austenite phase at room temperature. The x ≈0.3 composition exhibits a seven-layer modulated monoclinic martensite structure. Within 0.4 ≤x ≤1 , the system stabilizes in the nonmodulated tetragonal structure. The martensite transition has very narrow thermal hysteresis 0 ≤x ≤0.3 , which is a typical characteristic of a shape memory alloy. By increasing x , the temperature of the martensite transition increases, while that of the magnetic transition decreases. The x =1 composition (NiPtMnGa) in the martensite phase undergoes a para-to-ferrimagnetic transition. The saturation magnetization exhibits a nontrivial behavior with increasing up to x ≈0.25 , above which, it suddenly decreases. Powder neutron diffraction reveals the presence of antisite disorder, with about 17% of the original Ga sites being occupied by Mn. Computations suggest that the antisite disorder triggers an antiferromagnetic coupling between two Mn atoms in different crystallographic positions, resulting into a sudden drop of the saturation magnetization for higher x .
Reflexive aerostructures: increased vehicle survivability
NASA Astrophysics Data System (ADS)
Margraf, Thomas W.; Hemmelgarn, Christopher D.; Barnell, Thomas J.; Franklin, Mark A.
2007-04-01
Aerospace systems stand to benefit significantly from the advancement of reflexive aerostructure technologies for increased vehicle survivability. Cornerstone Research Group Inc. (CRG) is developing lightweight, healable composite systems for use as primary load-bearing aircraft components. The reflexive system is comprised of piezoelectric structural health monitoring systems, localized thermal activation systems, and lightweight, healable composite structures. The reflexive system is designed to mimic the involuntary human response to damage. Upon impact, the structural health monitoring system will identify the location and magnitude of the damage, sending a signal to a discrete thermal activation control system to resistively heat the shape memory polymer (SMP) matrix composite above activation temperature, resulting in localized shape recovery and healing of the damaged areas. CRG has demonstrated SMP composites that can recover 90 percent of flexural yield stress and modulus after postfailure healing. During the development, CRG has overcome issues of discrete activation, structural health monitoring integration, and healable resin systems. This paper will address the challenges associated with development of a reflexive aerostructure, including integration of structural health monitoring, discrete healing, and healable shape memory resin systems.
Design and performance of a shape memory alloy-reinforced composite aerodynamic profile
NASA Astrophysics Data System (ADS)
Simpson, J. C.; Boller, C.
2008-04-01
Based on a shape memory alloy (SMA)-reinforced composite developed separately, the applicability of the composite has been demonstrated through realization of a realistically scaled aerodynamic profile of around 0.5 m span by 0.5 m root chord whose skins had been made from this composite. The design, manufacturing and assembly of the profile are described. The curved skins were manufactured with two layers of SMA wires integrated into the layup of aramid fibre prepregs. All SMA wires were connected such that they can be operated as individual sets of wires and at low voltages, similar to the conditions for electrical energy generation in a real aircraft. The profile was then mounted on a vibration test rig and excited by a shaker at its tip which allowed the dynamic performance of the profile to be validated under internal actuation conditions generated through the SMA wires.
2009-03-30
SMA and piezoelectric ceramics(SMA-piezo composite) for fast-responsive actuator, (iii) SMA-piezo composite for thermal energy harvester , and (iv...Composite for Thermal Energy Harvesting Piezoelectric materials and shape memory alloys (SMAs) are very common materials for actuators and sensors; however...their composites as electrical generators is least explored, although use of piezoelectric as the mechanical energy harvester is increasingly popular
Bistable resistive memory behavior in gelatin-CdTe quantum dot composite film
NASA Astrophysics Data System (ADS)
Vallabhapurapu, Sreedevi; Rohom, Ashwini; Chaure, N. B.; Du, Shengzhi; Srinivasan, Ananthakrishnan
2018-05-01
Bistable memory behavior has been observed for the first time in gelatin type A thin film dispersed with functionalized CdTe quantum dots. The two terminal device with the polymer nanocomposite layer sandwiched between an indium tin oxide coated glass plate and an aluminium top electrode performs as a bistable resistive random access memory module. Butterfly shaped (O-shaped with a hysteresis in forward and reverse sweeps) current-voltage response is observed in this device. The conduction mechanism leading to the bistable electrical switching has been deduced to be a combination of ohmic and electron hopping.
Thermomechanical response of NiTi shape-memory nanoprecipitates in TiV alloys
NASA Astrophysics Data System (ADS)
Maisel, S. B.; Ko, W.-S.; Zhang, J.-L.; Grabowski, B.; Neugebauer, J.
2017-08-01
We study the properties of NiTi shape-memory nanoparticles coherently embedded in TiV matrices using three-dimensional atomistic simulations based on the modified embedded-atom method. To this end, we develop and present a suitable NiTiV potential for our simulations. Employing this potential, we identify the conditions under which the martensitic phase transformation of such a nanoparticle is triggered—specifically, how these conditions can be tuned by modifying the size of the particle, the composition of the surrounding matrix, or the temperature and strain state of the system. Using these insights, we establish how the transformation temperature of such particles can be influenced and discuss the practical implications in the context of shape-memory strengthened alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crăciunescu, Corneliu M., E-mail: corneliu.craciunescu@upt.ro; Mitelea, Ion, E-mail: corneliu.craciunescu@upt.ro; Budău, Victor, E-mail: corneliu.craciunescu@upt.ro
Shape memory alloy films belonging to the NiTi-based systems were deposited on heated and unheated substrates, by magnetron sputtering in a custom made system, and their structure and composition was analyzed using electron microscopy. Several substrates were used for the depositions: glass, Cu-Zn-Al, Cu-Al-Ni and Ti-NiCu shape memory alloy ribbons and kapton. The composition of the Ti-Ni-Cu films showed limited differences, compared to the one of the target and the microstructure for the DC magnetron sputtering revealed crystallized structure with features determined on peel off samples from a Si wafer. Both inter and transcrystalline fractures were observed and related tomore » the interfacial stress developed on cooling from deposition temperature.« less
Development of Deployable Elastic Composite Shape Memory Alloy Reinforced (DECSMAR) Structures
2006-05-01
battens nest. To mitigate the compromise of deployed performance due to the hinge cross-section, Nitinol SMA wires can be embedded in the composite...proportional limit by slip or conventional plastic deformation. As a logistics example, the particular Nitinol alloy used for proto-typing has...Memory Alloys,” Johnson Matthey, 2004. 10Cross, WB, Kariotis, AH, & Stimler, FJ, “ Nitinol Characterization Study,” NASA CR-1433, 1970. 11Proft, JL
Damping of High-temperature Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Duffy, Kirsten P.; Padula, Santo A., II; Scheiman, Daniel A.
2008-01-01
Researchers at NASA Glenn Research Center have been investigating high temperature shape memory alloys as potential damping materials for turbomachinery rotor blades. Analysis shows that a thin layer of SMA with a loss factor of 0.04 or more would be effective at reducing the resonant response of a titanium alloy beam. Two NiTiHf shape memory alloy compositions were tested to determine their loss factors at frequencies from 0.1 to 100 Hz, at temperatures from room temperature to 300 C, and at alternating strain levels of 34-35x10(exp -6). Elevated damping was demonstrated between the M(sub s) and M(sub f) phase transformation temperatures and between the A(sub s) and A(sub f) temperatures. The highest damping occurred at the lowest frequencies, with a loss factor of 0.2-0.26 at 0.1 Hz. However, the peak damping decreased with increasing frequency, and showed significant temperature hysteresis in heating and cooling. Keywords: High-temperature, shape memory alloy, damping, aircraft engine blades, NiTiHf
NASA Astrophysics Data System (ADS)
Angioni, S. L.; Meo, M.; Foreman, A.
2011-01-01
Composite materials are known to have a poor resistance to through-the-thickness impact loading. There are various methods for improving their impact damage tolerance, such as fiber toughening, matrix toughening, interface toughening, through-the-thickness reinforcements, and selective interlayers and hybrids. Hybrid composites with improved impact resistance are particularly useful in military and commercial civil applications. Hybridizing composites using shape memory alloys (SMA) is one solution since SMA materials can absorb the energy of the impact through superelastic deformation or recovery stress, reducing the effects of the impact on the composite structure. The SMA material may be embedded in the hybrid composites (SMAHC) in many different forms and also the characteristics of the fiber reinforcements may vary, such as SMA wires in woven laminates or SMA foils in unidirectional laminates, only to cite two examples. We will review the state of the art of SMAHC for the purpose of damage suppression. Both the active and passive damage suppression mechanisms will be considered.
Li, Hongze; Gao, Xiang; Luo, Yingwu
2016-04-07
Multi-shape memory polymers were prepared by the macroscale spatio-assembly of building blocks in this work. The building blocks were methyl acrylate-co-styrene (MA-co-St) copolymers, which have the St-block-(St-random-MA)-block-St tri-block chain sequence. This design ensures that their transition temperatures can be adjusted over a wide range by varying the composition of the middle block. The two St blocks at the chain ends can generate a crosslink network in the final device to achieve strong bonding force between building blocks and the shape memory capacity. Due to their thermoplastic properties, 3D printing was employed for the spatio-assembly to build devices. This method is capable of introducing many transition phases into one device and preparing complicated shapes via 3D printing. The device can perform a complex action via a series of shape changes. Besides, this method can avoid the difficult programing of a series of temporary shapes. The control of intermediate temporary shapes was realized via programing the shapes and locations of building blocks in the final device.
NASA Astrophysics Data System (ADS)
Nasakina, E. O.; Baikin, A. S.; Sergiyenko, K. V.; Kaplan, M. A.; Konushkin, S. V.; Yakubov, A. D.; Izvin, A. V.; Sudarchikova, M. A.; Sevost’yanov, M. A.; Kolmakov, A. G.
2018-04-01
The processes of formation of polymer polylactide or polyglycylidactide films for the subsequent creation of a layered composite with a biodegradable layer on the basis of a nickel-free shape memory alloy TiNbTaZr are studied. The structure of the samples was determined using an SEM. The correspondence of morphology of surfaces of and the substrate itself is noted. High adhesion of the polymer to the future basis of the developed composite material is supposed. The formed films is homogeneous and amorphous throughout the polymer volume. By varying the volume of solutions, it is possible to obtain films of a given thickness for any type of polymer, its molecular weight, and the solution concentration of the polymer in chloroform. Poly (glycolide-lactide) should be more plastic than polylactide.
Kim, Eui-Hyun; Lee, Hyunbae; Kim, Jae-Hwan; Bae, Seung-Muk; Hwang, Heesu; Yang, Heesun; Choi, Eunsoo; Hwang, Jin-Ha
2018-02-22
Self-healing is an essential property of smart concrete structures. In contrast to other structural metals, shape memory alloys (SMAs) offer two unique effects: shape memory effects, and superelastic effects. Composites composed of SMA wires and conventional cements can overcome the mechanical weaknesses associated with tensile fractures in conventional concretes. Under specialized environments, the material interface between the cementitious component and the SMA materials plays an important role in achieving the enhanced mechanical performance and robustness of the SMA/cement interface. This material interface is traditionally evaluated in terms of mechanical aspects, i.e., strain-stress characteristics. However, the current work attempts to simultaneously characterize the mechanical load-displacement relationships synchronized with impedance spectroscopy as a function of displacement. Frequency-dependent impedance spectroscopy is tested as an in situ monitoring tool for structural variations in smart composites composed of non-conducting cementitious materials and conducting metals. The artificial geometry change in the SMA wires is associated with an improved anchoring action that is compatible with the smallest variation in resistance compared with prismatic SMA wires embedded into a cement matrix. The significant increase in resistance is interpreted to be associated with the slip of the SMA fibers following the elastic deformation and the debonding of the SMA fiber/matrix.
Investigation on adaptive wing structure based on shape memory polymer composite hinge
NASA Astrophysics Data System (ADS)
Yu, Yuemin; Li, Xinbo; Zhang, Wei; Leng, Jinsong
2007-07-01
This paper describes the design and investigation of the SMP composite hinge and the morphing wing structure. The SMP composite hinge was based on SMP and carbon fiber fabric. The twisting recoverability of it was investigated by heating and then cooling repeatedly above and below the Tg. The twisting recoverability characterized by the twisting angle. Results show that the SMP composite hinge have good shape recoverability, Recovery time has a great influence on the twisting recoverability. The twisting recovery ratio became large with the increment of recovery time. The morphing wing can changes shape for different tasks. For the advantages of great recovery force and stable performances, we adopt SMP composite hinge as actuator to apply into the structure of the wing which can realize draw back wings to change sweep angle according to the speed and other requirements of military airplanes. Finally, a series of simulations and experiments are performed to investigate the deformations of morphing wings have been performed successfully. It can be seen that the sweep angle change became large with the increment of initial angle. The area reduction became large with the increment of initial angle, but after 75° the area reduction became smaller and smaller. The deformations of the triangle wing became large with the increment of temperature. The area and the sweep angle of wings can be controlled by adjusting the stimulate temperature and the initial twisting angle of shape memory polymer composite hinge.
Programmable and Shape-Memorizing Information Carriers.
Li, Wenbing; Liu, Yanju; Leng, Jinsong
2017-12-27
Shape memory polymers (SMPs) are expected to play more and more important roles in space-deployable structures, smart actuators, and other high-tech areas. Nevertheless, because of the difficulties in fabrication and the programmability of temporary shape recovery, SMPs have not yet been widely applied in real fields. It is ideal to incorporate the different independent functional building blocks into a material. Herein, we designed a simple method to incorporate four functional building blocks: a neat epoxy-based shape memory (neat SMEP) resin, an SMEP composited with Fe 3 O 4 (SMEP-Fe 3 O 4 ), an SMEP composited with multiwalled carbon nanotubes, and an SMEP composited with p-aminodiphenylimide into a multicomposite, in which the four region surfaces could be programmed with different language code patterns according to a preset command by imprint lithography. Then, we aimed to reprogram the initially raised code patterns into temporary flat patterns using programming mold that, when triggered by a preset stimulus process such as an alternating magnetic field, radiofrequency field, 365 nm UV, and direct heating, could transform these language codes into the information passed by the customer. The concept introduced here will be applied to other available SMPs and provide a practical method to realize the information delivery.
NASA Technical Reports Server (NTRS)
Trottier, C. Michael
1996-01-01
Recently, scientists and engineers have investigated the advantages of smart materials and structures by including actuators in material systems for controlling and altering the response of structural environments. Applications of these materials systems include vibration suppression/isolation, precision positioning, damage detection and tunable devices. Some of the embedded materials being investigated for accomplishing these tasks include piezoelectric ceramics, shape memory alloys, and fiber optics. These materials have some benefits and some shortcomings; each is being studied for use in active material design in the SPICES (Synthesis and Processing of Intelligent Cost Effective Structures) Consortium. The focus of this paper concerns the manufacturing aspects of smart structures by incorporating piezoelectric ceramics, shape memory alloys and fiber optics in a reinforced thermoset matrix via resin transfer molding (RTM).
The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernenko, V.A.; Kokorin, V.V.; Vitenko, I.N.
1995-10-15
The Ferromagnetic Heusler alloy Ni{sub 2}MnGa is known to undergo a structural phase transformation of martensitic type. Thermoelastic nature, shape memory effect (SME) and superelasticity were sound to be intrinsic to this transformation. In this work the authors present the results of the investigation of the following problems: how M{sub s}, the thermal hysteresis, Curie temperature, transformation heat are affected by the composition variation in the Ni-Mn-Ga alloy system in a concentration interval for each component of about 10 at. %. This work was performed to make sure that the new family of Ni-Mn-Ga based shape memory alloys (SMA) withmore » a wide variety of structural and magnetic properties is actually elaborated.« less
NASA Astrophysics Data System (ADS)
Heczko, O.; Drahokoupil, J.; Straka, L.
2015-05-01
Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni50.0Mn28.5Ga21.5 single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.
Magnetic Properties and Phase Diagram of Ni50Mn_{50-x}Ga_{x/2}In_{x/2} Magnetic Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Xu, Xiao; Yoshida, Yasuki; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke
2016-12-01
Ni50Mn50- x Ga x/2In x/2 magnetic shape memory alloys were systematically prepared, and the magnetic properties as well as the phase diagram, including atomic ordering, martensitic and magnetic transitions, were investigated. The B2- L21 order-disorder transformation showed a parabolic-like curve against the Ga+In composition. The martensitic transformation temperature was found to decrease with increasing Ga+In composition and to slightly bend downwards below the Curie temperature of the parent phase. Spontaneous magnetization was investigated for both parent and martensite alloys. The magnetism of martensite phase was found to show glassy magnetic behaviors by thermomagnetization and AC susceptibility measurements.
Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing.
Chen, Kaijuan; Kuang, Xiao; Li, Vincent; Kang, Guozheng; Qi, H Jerry
2018-03-07
3D printing of epoxy-based shape memory polymers with high mechanical strength, excellent thermal stability and chemical resistance is highly desirable for practical applications. However, thermally cured epoxy in general is difficult to print directly. There have been limited numbers of successes in printing epoxy but they suffer from relatively poor mechanical properties. Here, we present an ultraviolet (UV)-assisted 3D printing of thermally cured epoxy composites with high tensile toughness via a two-stage curing approach. The ink containing UV curable resin and epoxy oligomer is used for UV-assisted direct-ink write (DIW)-based 3D printing followed by thermal curing of the part containing the epoxy oligomer. The UV curable resin forms a network by photo polymerization after the 1st stage of UV curing, which can maintain the printed architecture at an elevated temperature. The 2nd stage thermal curing of the epoxy oligomer yields an interpenetrating polymer network (IPN) composite with highly enhanced mechanical properties. It is found that the printed IPN epoxy composites enabled by the two-stage curing show isotropic mechanical properties and high tensile toughness. We demonstrated that the 3D-printed high-toughness epoxy composites show good shape memory properties. This UV-assisted DIW 3D printing via a two-stage curing method can broaden the application of 3D printing to fabricate thermoset materials with enhanced tensile toughness and tunable properties for high-performance and functional applications.
NASA Astrophysics Data System (ADS)
Bachmann, F.; de Oliveira, R.; Sigg, A.; Schnyder, V.; Delpero, T.; Jaehne, R.; Bergamini, A.; Michaud, V.; Ermanni, P.
2012-07-01
Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty.
Virtual Parts Engineering Research Center
2010-05-20
engineering 10 materials. High strength alloys , composites (polymer composites and metallic composites), and the like cannot merely be replaced by...ceramics, smart materials, shape memory alloys , super plastic materials and nano- structured materials may be more appropriate substitutes in a reverse...molding process using thermosetting Bakelite. For remanufacturing the part in small quantities, machining has been identified as the most economical
Fabrication and Properties of Composite Artificial Muscles Based on Nylon and a Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Yin, Haibin; Zhou, Jia; Li, Junfeng; Joseph, Vincent S.
2018-05-01
This paper focuses on the design, fabrication and investigation of the mechanical properties of new artificial muscles formed by twisting and annealing. The artificial muscles designed by twisting nylon have become a popular topic in the field of smart materials due to their high mechanical performance with a large deformation and power density. However, the complexity of the heating and cooling system required to control the nylon muscle is a disadvantage, so we have proposed a composite artificial muscle for providing a direct electricity-driven actuation by integrating nylon and a shape memory alloy (SMA). In this paper, the design and fabrication process of these composite artificial muscles are introduced before their mechanical properties, which include the deformation, stiffness, load and response, are investigated. The results show that these composite artificial muscles that integrate nylon and a SMA provide better mechanical properties and yield up to a 44.1% deformation and 3.43 N driving forces. The good performance and direct electro-thermal actuation make these composite muscles ideal for driving robots in a method similar to human muscles.
Precipitation-induced of partial annealing of Ni-rich NiTi shape memory alloy
NASA Astrophysics Data System (ADS)
Nashrudin, Muhammad Naqib; Mahmud, Abdus Samad; Mohamad, Hishamiakim
2018-05-01
NiTi shape memory alloy behavior is very sensitive to alloy composition and heat treatment processes. Thermomechanical behavior of near-equiatomic alloy is normally enhanced by partial anneal of a cold-worked specimen. The shape memory behavior of Ni-rich alloy can be enhanced by ageing precipitation. This work studied the effect of simultaneous partial annealing and ageing precipitation of a Ni-rich cold drawn Ti-50.9at%Ni wire towards martensite phase transformation behavior. Ageing treatment of a non-cold worked specimen was also done for comparison. It was found that the increase of heat treatment temperature caused the forward transformation stress to decrease for the cold worked and non-cold worked specimens. Strain recovery on the reverse transformation of the cold worked wire improved compared to the non-cold worked wire as the temperature increased.
Effect of Heat-Treatment on the Phases of Ni-Mn-Ga Magnetic Shape Memory Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huq, Ashfia; Ari-Gur, Pnina; Kimmel, Giora
2009-01-01
The Heusler alloys Ni50Mn25+xGa25-x display magnetic shape memory effect (MSM) with very fast and large reversible strain under magnetic fields. This large strain and the speed of reaction make MSM alloys attractive as smart materials. Our crystallographic investigation of these alloys, focused on non-stoichiometric composition with excess of manganese. Using neutron diffraction, we revealed the necessary processing parameters to achieve and preserve the homogeneous metastable one-phase martensitic structure that is needed for an MSM effect at room temperature.
NASA Astrophysics Data System (ADS)
Santamarta, Ruben; Evirgen, Alper; Perez-Sierra, Aquilina M.; Pons, Jaume; Cesari, Eduard; Karaman, Ibrahim; Noebe, Ron D.
2015-11-01
Among all the promising high-temperature shape memory alloys (HTSMAs), the Ni-Mn-Ga and the Ni-Ti-Hf/Zr systems exhibit interesting shape memory and superelastic properties that may place them in a good position for potential applications. The present work shows that thermal treatments play a crucial role in controlling the martensitic phase transformation characteristics of both systems, but in different ways. On one hand, the equilibrium phase diagram of the Ni-Mn-Ga family allows selecting compositions with high transformation temperatures and outstanding thermal stability at relatively high temperatures in air, showing no significant changes in the transformation behavior for continuous aging up to ˜5 years at 500 °C. Moreover, the excellent thermal stability correlates with a good thermal cyclic stability and an exceptional oxidation resistance of the parent phase. On the other hand, precipitation processes controlled by thermal treatments are needed to manipulate the transformation temperatures, mechanical properties, and thermal stability of Ni-rich Ni-Ti-Hf/Zr alloys to become HTSMAs. These changes in the functional properties are a consequence of the competition between the mechanical and compositional effects of the precipitates on the martensitic transformation.
Characteristics of 5M modulated martensite in Ni-Mn-Ga magnetic shape memory alloys
NASA Astrophysics Data System (ADS)
Ćakır, A.; Acet, M.; Righi, L.; Albertini, F.; Farle, M.
2015-09-01
The applicability of the magnetic shape memory effect in Ni-Mn-based martensitic Heusler alloys is closely related to the nature of the crystallographically modulated martensite phase in these materials. We study the properties of modulated phases as a function of temperature and composition in three magnetic shape memory alloys Ni49.8Mn25.0Ga25.2, Ni49.8Mn27.1Ga23.1 and Ni49.5Mn28.6Ga21.9. The effect of substituting Ga for Mn leads to an anisotropic expansion of the lattice, where the b-parameter of the 5M modulated structure increases and the a and c-parameters decrease with increasing Ga concentration. The modulation vector is found to be both temperature and composition dependent. The size of the modulation vector corresponds to an incommensurate structure for Ni49.8Mn25.0Ga25.2 at all temperatures. For the other samples the modulation is incommensurate at low temperatures but reaches a commensurate value of q ≈ 0.400 close to room temperature. The results show that commensurateness of the 5M modulated structure is a special case of incommensurate 5M at a particular temperature.
NASA Astrophysics Data System (ADS)
Gong, Xiaobo; Liu, Liwu; Scarpa, Fabrizio; Leng, Jinsong; Liu, Yanju
2017-03-01
This work presents a variable stiffness corrugated structure based on a shape memory polymer (SMP) composite with corrugated laminates as reinforcement that shows smooth aerodynamic surface, extreme mechanical anisotropy and variable stiffness for potential morphing skin applications. The smart composite corrugated structure shows a low in-plane stiffness to minimize the actuation energy, but also possess high out-of-plane stiffness to transfer the aerodynamic pressure load. The skin provides an external smooth aerodynamic surface because of the one-sided filling with the SMP. Due to variable stiffness of the shape memory polymer the morphing skin exhibits a variable stiffness with a change of temperature, which can help the skin adjust its stiffness according different service environments and also lock the temporary shape without external force. Analytical models related to the transverse and bending stiffness are derived and validated using finite element techniques. The stiffness of the morphing skin is further investigated by performing a parametric analysis against the geometry of the corrugation and various sets of SMP fillers. The theoretical and numerical models show a good agreement and demonstrate the potential of this morphing skin concept for morphing aircraft applications. We also perform a feasibility study of the use of this morphing skin in a variable camber morphing wing baseline. The results show that the morphing skin concept exhibits sufficient bending stiffness to withstand the aerodynamic load at low speed (less than 0.3 Ma), while demonstrating a large transverse stiffness variation (up to 191 times) that helps to create a maximum mechanical efficiency of the structure under varying external conditions.
Investigation on low velocity impact resistance of SMA composite material
NASA Astrophysics Data System (ADS)
Hu, Dianyin; Zhang, Long; Wang, Rongqiao; Zhang, Xiaoyong
2016-04-01
A method to improve low velocity impact resistance of aeroengine composite casing using shape memory alloy's properties of shape memory(SM) and super-elasticity(SE) is proposed in this study. Firstly, a numerical modeling of SMA reinforced composite laminate under low velocity impact load with impact velocity of 10 m/s is established based on its constitutive model implemented by the VUMAT subroutine of commercial software ABAQUS. Secondly, the responses of SMA composite laminate including stress and deflection distributions were achieved through transient analysis under low velocity impact load. Numerical results show that both peak stress and deflection values of SMA composite laminate are less than that without SMA, which proves that embedding SMA into the composite structure can effectively improve the low velocity impact performance of composite structure. Finally, the influence of SM and SE on low velocity impact resistance is quantitatively investigated. The values of peak stress and deflection of SMA composite based on SM property decrease by 18.28% and 9.43% respectively, compared with those without SMA, instead of 12.87% and 5.19% based on SE. In conclusion, this proposed model described the impact damage of SMA composite structure and turned to be a more beneficial method to enhance the impact resistance by utilizing SM effect.
Fabrication of CuO-Pt core-shell nanohooks by in situ reconstructing the Pt-shells.
Cao, Fan; Zheng, He; Zhao, Ligong; Huang, Rui; Jia, Shuangfeng; Liu, Huihui; Li, Lei; Wang, Zhao; Hu, Yongming; Gu, Haoshuang; Wang, Jianbo
2018-05-25
The design of various nanostructures with specific compositions and shapes is highly demanded due to the widespread use of micro/nano electro-mechanical systems. In this work, one-dimensional CuO-Pt core-shell nanowires (NWs) are acquired by depositing Pt nanoparticles onto CuO NWs and then mechanically-shaped into nanohooks. Subsequently, the hook-like shape is maintained by the Pt-shell which is reconstructed via Joule heat and re-solidified after cooling down, during which the elastic strain energy is stored in the CuO-core. The results provide a simple strategy to design nanostructures with various compositions and shapes, implying the potential applications in mechanical energy storage and shape memory nanodevices.
Fabrication of CuO–Pt core–shell nanohooks by in situ reconstructing the Pt-shells
NASA Astrophysics Data System (ADS)
Cao, Fan; Zheng, He; Zhao, Ligong; Huang, Rui; Jia, Shuangfeng; Liu, Huihui; Li, Lei; Wang, Zhao; Hu, Yongming; Gu, Haoshuang; Wang, Jianbo
2018-05-01
The design of various nanostructures with specific compositions and shapes is highly demanded due to the widespread use of micro/nano electro-mechanical systems. In this work, one-dimensional CuO–Pt core–shell nanowires (NWs) are acquired by depositing Pt nanoparticles onto CuO NWs and then mechanically-shaped into nanohooks. Subsequently, the hook-like shape is maintained by the Pt-shell which is reconstructed via Joule heat and re-solidified after cooling down, during which the elastic strain energy is stored in the CuO-core. The results provide a simple strategy to design nanostructures with various compositions and shapes, implying the potential applications in mechanical energy storage and shape memory nanodevices.
Structural energy dissipation in extreme loading events using shape memory alloys
NASA Astrophysics Data System (ADS)
Angioni, Stefano L.
It is well known that composite materials have a poor resistance to the damage caused by the impact of foreign objects on their outer surface. There are various methods for improving the impact damage tolerance of composite materials, such as: fibre toughening, matrix toughening, interface toughening, through the thickness reinforcements and selective interlayers and hybrids. Hybrid composites with improved impact resistance would be particularly useful in military and commercial civil applications. Hybridizing composites using shape memory alloys (SMAs) is one solution since SMA materials can absorb the energy of impact through superelastic deformation or recovery stress reducing the effects of the impact on the composite structure. The SMA material may be embedded in the hybrid composites (SMAHC) in many different forms and also the characteristics of the fibre reinforcements may vary, such as SMA wires in unidirectional laminates or SMA foils in unidirectional laminates only to cite two examples. Recently SMA fibres have been embedded in 2-D woven composites. As part of this work, the existing theoretical models for woven composites have been extended to the case of woven SMAHC using a multiscale methodology in order to predict the mechanical properties and failure behaviour of SMAHC plates. Also several parts of the model have been coded in MATLAB and validated against results extracted from the literature, showing good correlation..
Shape Memory Alloy-Based Soft Gripper with Variable Stiffness for Compliant and Effective Grasping.
Wang, Wei; Ahn, Sung-Hoon
2017-12-01
Soft pneumatic actuators and motor-based mechanisms being concomitant with the cumbersome appendages have many challenges to making the independent robotic system with compact and lightweight configuration. Meanwhile, shape memory actuators have shown a promising alternative solution in many engineering applications ranging from artificial muscle to aerospace industry. However, one of the main limitations of such systems is their inherent softness resulting in a small actuation force, which prevents them from more effective applications. This issue can be solved by combining shape memory actuators and the mechanism of stiffness modulation. As a first, this study describes a shape memory alloy-based soft gripper composed of three identical fingers with variable stiffness for adaptive grasping in low stiffness state and effective holding in high stiffness state. Each finger with two hinges is fabricated through integrating soft composite actuator with stiffness changeable material where each hinge can approximately achieve a 55-fold changeable stiffness independently. Besides, each finger with two hinges can actively achieve multiple postures by both selectively changing the stiffness of hinges and actuating the relevant SMA wire. Based on these principles, the gripper is applicable for grasping objects with deformable shapes and varying shapes with a large range of weight where its maximum grasping force is increased to ∼10 times through integrating with the stiffness changeable mechanism. The final demonstration shows that the finger with desired shape-retained configurations enables the gripper to successfully pick up a frustum-shaped object.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heczko, O., E-mail: heczko@fzu.cz; Drahokoupil, J.; Straka, L.
2015-05-07
Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni{sub 50.0}Mn{sub 28.5}Ga{sub 21.5} single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolutionmore » of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.« less
PVDF-based semicrystalline-amorphous blends: Phase behavior and thermomechanical properties
NASA Astrophysics Data System (ADS)
Campo, Cheryl Josephine
Poly(vinylidene fluoride) [PVDF]-based semicrystalline-amorphous blends were studied to better understand the degree to which transition temperatures and mechanical properties could be varied as a function of composition. Changes in the amorphous component, processing parameters, MW, and filler content were used to manipulate blend properties. Compositional and MW series of PVDF:poly(vinyl acetate) [PVAc] blends were prepared and characterized. Varying PVDF content led to appreciable changes in crystallinity. In contrast, the effect of composition on blend glass transition temperature, Tg, was manifested only at low PVDF contents. The effect of MWPVA, on the 30:70 PVDF:PVAc composition was manifested primarily in the materials' viscoelastic response to deformation. Ternary blends of PVDF, PVAc, and poly(methyl methacrylate) [PMMA] showed limited miscibility with both a PVAc- and PMMA-rich amorphous phase apparent in all the compositions tested. PVDF:PMMA blends on the other hand exhibited good miscibility characterized by tunable Tg values which were further exploited by varying the processing conditions in order to obtain thermomechanical properties ideal for bio-related shape memory applications. PVDF:poly(ethyl methacrylate) [PEMA] blends, despite having very broad transitions, similarly exhibited desirable transition temperatures for in vivo actuation. The effect of boron nitride (BN), short carbon fibers (SCF), and clay on blend properties was also assessed. SCF filler in 50:50 PVDF:PMMA led mainly to the formation of PVDF crystals in the alpha form, clay was observed to promote growth of the beta crystal form, and BN led to a mixture of crystal forms. BN also exhibited interesting effects in the creep behavior of this system as well as the crystallization behavior of the 50:50 PVDF:PEMA blend, suppressed kinetic crystallization competing with enhanced nucleation effect under isothermal conditions observed in the latter. Depending on the processing conditions used, SCF was found to have similar nucleation effects in the 50:50 PVDF:PMMA blend but diminished degrees of crystallinity overall. Finally, shape memory behavior of PVDF:PVAc blends as well as SCF-filled 50:50 PVDF:PMMA was characterized using single and multiple shape memory cycles. Increasing PVDF content had a negative impact on PVDF:PVAc shape memory properties while increasing stress was found to have an enhancing effect as did low SCF filler content in 50:50 PVDF:PMMA.
Fabricating Composite-Material Structures Containing SMA Ribbons
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Cano, Roberto J.; Lach, Cynthia L.
2003-01-01
An improved method of designing and fabricating laminated composite-material (matrix/fiber) structures containing embedded shape-memory-alloy (SMA) actuators has been devised. Structures made by this method have repeatable, predictable properties, and fabrication processes can readily be automated. Such structures, denoted as shape-memory-alloy hybrid composite (SMAHC) structures, have been investigated for their potential to satisfy requirements to control the shapes or thermoelastic responses of themselves or of other structures into which they might be incorporated, or to control noise and vibrations. Much of the prior work on SMAHC structures has involved the use SMA wires embedded within matrices or within sleeves through parent structures. The disadvantages of using SMA wires as the embedded actuators include (1) complexity of fabrication procedures because of the relatively large numbers of actuators usually needed; (2) sensitivity to actuator/ matrix interface flaws because voids can be of significant size, relative to wires; (3) relatively high rates of breakage of actuators during curing of matrix materials because of sensitivity to stress concentrations at mechanical restraints; and (4) difficulty of achieving desirable overall volume fractions of SMA wires when trying to optimize the integration of the wires by placing them in selected layers only.
Multiblock thermoplastic polyurethanes for biomedical and shape memory applications
NASA Astrophysics Data System (ADS)
Gu, Xinzhu
Polyurethanes are a class of polymers that are capable of tailoring the overall polymer structure and thus final properties by many factors. The great potential in tailoring polymer structures imparts PUs unique mechanical properties and good cytocompatibility, which make them good candidates for many biomedical devices. In this dissertation, three families of multiblock thermoplastic polyurethanes are synthesized and characterized for biomedical and shape memory applications. In the first case described in Chapters 2, 3 and 4, a novel family of multiblock thermoplastic polyurethanes consisting of poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) are presented. These materials were discovered to be very durable, with strain-to-break higher than 1200%. Heat-triggered reversible plasticity shape memory (RPSM) was observed, where the highly deformed samples completely recovered their as-cast shape within one minute when heating above the transition temperature. Instead of conventional "hard" blocks, entanglements, which result from high molecular weight, served as the physical crosslinks in this system, engendering shape recovery and preventing flow. Moreover, water-triggered shape memory effect of PCL-PEG TPUs is explored, wherein water permeated into the initially oriented PEG domains, causing rapid shape recovery toward the equilibrium shape upon contact with liquid water. The recovery behavior is found to be dependent on PEG weight percentage in the copolymers. By changing the material from bulk film to electrospun fibrous mat, recovery speed was greatly accelerated. The rate of water recovery was manipulated through structural variables, including thickness of bulk film and diameter of e-spun webs. A new, yet simple shape memory cycle, "wet-fixing" is also reported, where both the fixing and recovery ratios can be greatly improved. A detailed microstructural study on one particular composition is presented, revealing the evolution of microphase morphology during the shape memory cycle. Then, in Chapter 5, the role of Polyhedral oligosilsesquioxane (POSS) in suppressing enzymatic degradation of PCL-PEG TPUs is investigated. In vitro enzymatic hydrolytic biodegradation revealed that POSS incorporation significantly suppressed degradation of PCL-PEG TPUs. All TPUs were surface-eroded by enzymatic attack in which the chemical composition and the bulk mechanical properties exhibited little changes. A surface passivation mechanism is proposed to explain the protection of POSS-containing TPUs from enzymatic degradation. Finally, Chapter 6 presents another POSS-based TPUs system with PLA-based polyol as the glassy soft block. Manipulation of the final thermal and mechanical properties is discussed in terms of different polyols and POSS used. The free recovery and the constrained recovery responses of the polymer films were demonstrated as a function of the prior "fixing" deformation temperature. In addition, this family of materials was capable of memorizing their T g., where optimal recovery breadth and recovery stress were achieved when pre-deformation occurred right at Tg.
A Review of Selective Laser Melted NiTi Shape Memory Alloy
Khoo, Zhong Xun; Shen, Yu Fang
2018-01-01
NiTi shape memory alloys (SMAs) have the best combination of properties among the different SMAs. However, the limitations of conventional manufacturing processes and the poor manufacturability of NiTi have critically limited its full potential applicability. Thus, additive manufacturing, commonly known as 3D printing, has the potential to be a solution in fabricating complex NiTi smart structures. Recently, a number of studies on Selective Laser Melting (SLM) of NiTi were conducted to explore the various aspects of SLM-produced NiTi. Compared to producing conventional metals through the SLM process, the fabrication of NiTi SMA is much more challenging. Not only do the produced parts require a high density that leads to good mechanical properties, strict composition control is needed as well for the SLM NiTi to possess suitable phase transformation characteristics. Additionally, obtaining a good shape memory effect from the SLM NiTi samples is another challenging task that requires further understanding. This paper presents the results of the effects of energy density and SLM process parameters on the properties of SLM NiTi. Its shape memory properties and potential applications were then reviewed and discussed. PMID:29596320
NASA Technical Reports Server (NTRS)
Davis, Brian; Turner, Travis L.; Seelecke, Stefan
2008-01-01
An experimental and numerical investigation into the static and dynamic responses of shape memory alloy hybrid composite (SMAHC) beams is performed to provide quantitative validation of a recently commercialized numerical analysis/design tool for SMAHC structures. The SMAHC beam specimens consist of a composite matrix with embedded pre-strained SMA actuators, which act against the mechanical boundaries of the structure when thermally activated to adaptively stiffen the structure. Numerical results are produced from the numerical model as implemented into the commercial finite element code ABAQUS. A rigorous experimental investigation is undertaken to acquire high fidelity measurements including infrared thermography and projection moire interferometry for full-field temperature and displacement measurements, respectively. High fidelity numerical results are also obtained from the numerical model and include measured parameters, such as geometric imperfection and thermal load. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.
Shape Memory Micro- and Nanowire Libraries for the High-Throughput Investigation of Scaling Effects.
Oellers, Tobias; König, Dennis; Kostka, Aleksander; Xie, Shenqie; Brugger, Jürgen; Ludwig, Alfred
2017-09-11
The scaling behavior of Ti-Ni-Cu shape memory thin-film micro- and nanowires of different geometry is investigated with respect to its influence on the martensitic transformation properties. Two processes for the high-throughput fabrication of Ti-Ni-Cu micro- to nanoscale thin film wire libraries and the subsequent investigation of the transformation properties are reported. The libraries are fabricated with compositional and geometrical (wire width) variations to investigate the influence of these parameters on the transformation properties. Interesting behaviors were observed: Phase transformation temperatures change in the range from 1 to 72 °C (austenite finish, (A f ), 13 to 66 °C (martensite start, M s ) and the thermal hysteresis from -3.5 to 20 K. It is shown that a vanishing hysteresis can be achieved for special combinations of sample geometry and composition.
NASA Astrophysics Data System (ADS)
Davis, Brian; Turner, Travis L.; Seelecke, Stefan
2005-05-01
Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.
Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites
NASA Astrophysics Data System (ADS)
Park, Jae-Sang; Kim, Seong-Hwan; Jung, Sung Nam; Lee, Myeong-Kyu
2011-01-01
The tiltrotor blade, or proprotor, acts as a rotor in the helicopter mode and as a propeller in the airplane mode. For a better performance, the proprotor should have different built-in twist distributions along the blade span, suitable for each operational mode. This paper proposes a new variable-twist proprotor concept that can adjust the built-in twist distribution for given flight modes. For a variable-twist control, the present proprotor adopts shape memory alloy hybrid composites (SMAHC) containing shape memory alloy (SMA) wires embedded in the composite matrix. The proprotor of the Korea Aerospace Research Institute (KARI) Smart Unmanned Aerial Vehicle (SUAV), which is based on the tiltrotor concept, is used as a baseline proprotor model. The cross-sectional properties of the variable-twist proprotor are designed to maintain the cross-sectional properties of the original proprotor as closely as possible. However, the torsion stiffness is significantly reduced to accommodate the variable-twist control. A nonlinear flexible multibody dynamic analysis is employed to investigate the dynamic characteristics of the proprotor such as natural frequency and damping in the whirl flutter mode, the blade structural loads in a transition flight and the rotor performance in hover. The numerical results show that the present proprotor is designed to have a strong similarity to the baseline proprotor in dynamic and load characteristics. It is demonstrated that the present proprotor concept could be used to improve the hover performance adaptively when the variable-twist control using the SMAHC is applied appropriately.
NASA Technical Reports Server (NTRS)
Davis, Brian; Turner, Travis L.; Seelecke, Stefan
2005-01-01
Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.
Precipitation Hardenable High Temperature Shape Memory Alloy
NASA Technical Reports Server (NTRS)
Noebe, Ronald Dean (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Crombie, Edwin A. (Inventor)
2010-01-01
A composition of the invention is a high temperature shape memory alloy having high work output, and is made from (Ni+Pt+Y),Ti(100-x) wherein x is present in a total amount of 49-55 atomic % Pt is present in a total amount of 10-30 atomic %, Y is one or more of Au, Pd. and Cu and is present in a total amount of 0 to 10 atomic %. The alloy has a matrix phase wherein the total concentration of Ni, Pt, and the one or more of Pd. Au, and Cu is greater than 50 atomic %.
Fabrication and characterization of compositionally-graded shape memory alloy films
NASA Astrophysics Data System (ADS)
Cole, Daniel Paul
2009-12-01
The miniaturization of engineering devices has created interest in new actuation methods capable of high power and high frequency responses. Shape memory alloy (SMA) thin films have exhibited one of the highest power densities of any material used in these actuation schemes. However, they currently require complex thermomechanical training in order to be actuated, which becomes more difficult as devices approach the microscale. Previous studies have indicated that SMA films with compositional gradients have the added feature of an intrinsic two-way shape memory effect (SME). In this work, a new method for processing and characterizing compositionally-graded transformable thin films is presented. Graded NiTi SMA films were processed using magnetron sputtering. Single and multilayer graded films were deposited onto bulk NiTi substrates and single crystal silicon substrates, respectively. Annealing the films naturally produced a compositional gradient across the film-substrate or film-film interface through diffusion modification. The films were directly characterized using a combination of atomic force microscopy (AFM), x-ray diffraction and Auger electron spectroscopy. The compositional gradient was indirectly characterized by measuring the variation in mechanical properties as a function of depth using nanoindentation. The similarity of the indentation response on graded films of varying thickness was used to estimate the width of the graded interface. The nanoindentation response was predicted using an analysis that accounted for the transformation effects occurring under the tip during loading and the variation of elastic modulus resulting from the compositional gradient. The recovery mechanisms of the graded films are compared with homogeneous films using a new nanoscale technique. An AFM integrated with a heating and cooling stage was used to observe the recovery of inelastic deformation caused through nanoindentation. The graded films exhibited a two-way SME with a reduced hysteresis, while the homogeneous films exhibited the classical one-way SME. The fabrication and characterization techniques developed in this work have the potential to be applied to general graded and multi-layer film systems.
Improved Damage Resistant Composite Materials Incorporating Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Paine, Jeffrey S. N.; Rogers, Craig A.
1996-01-01
Metallic shape memory alloys (SMA) such as nitinol have unique shape recovery behavior and mechanical properties associated with a material phase change that have been used in a variety of sensing and actuation applications. Recent studies have shown that integrating nitinol-SMA actuators into composite materials increases the composite material's functionality. Hybrid composites of conventional graphite/epoxy or glass/epoxy and nitinol-SMA elements can perform functions in applications where monolithic composites perform inadequately. One such application is the use of hybrid composites to function both in load bearing and armor capacities. While monolithic composites with high strength-to-weight ratios function efficiently as loadbearing structures, because of their brittle nature, impact loading can cause significant catastrophic damage. Initial composite failure modes such as delamination and matrix cracking dissipate some impact energy, but when stress exceeds the composite's ultimate strength, fiber fracture and material perforation become dominant. One of the few methods that has been developed to reduce material perforation is hybridizing polymer matrix composites with tough kevlar or high modulus polyethynylene plies. The tough fibers increase the impact resistance and the stiffer and stronger graphite fibers carry the majority of the load. Similarly, by adding nitinol-SMA elements that absorb impact energy through the stress-induced martensitic phase transformation, the composites' impact perforation resistance can be greatly enhanced. The results of drop-weight and high velocity gas-gun impact testing of various composite materials will be presented. The results demonstrate that hybridizing composites with nitinol-SMA elements significantly increases perforation resistance compared to other traditional toughening elements. Inspection of the composite specimens at various stages of perforation by optical microscope illustrates the mechanisms by which perforation is initiated. Results suggest that the out-of-plane transverse shear properties of the composite and nitinol elements have a significant effect on the perforation resistance. Applications that can utilize the hybrid composites effectively will also be presented with the experimental studies.
Next generation control system for reflexive aerostructures
NASA Astrophysics Data System (ADS)
Maddux, Michael R.; Meents, Elizabeth P.; Barnell, Thomas J.; Cable, Kristin M.; Hemmelgarn, Christopher; Margraf, Thomas W.; Havens, Ernie
2010-04-01
Cornerstone Research Group Inc. (CRG) has developed and demonstrated a composite structural solution called reflexive composites for aerospace applications featuring CRG's healable shape memory polymer (SMP) matrix. In reflexive composites, an integrated structural health monitoring (SHM) system autonomously monitors the structural health of composite aerospace structures, while integrated intelligent controls monitor data from the SHM system to characterize damage and initiate healing when damage is detected. Development of next generation intelligent controls for reflexive composites were initiated for the purpose of integrating prognostic health monitoring capabilities into the reflexive composite structural solution. Initial efforts involved data generation through physical inspections and mechanical testing. Compression after impact (CAI) testing was conducted on composite-reinforced shape memory polymer samples to induce damage and investigate the effectiveness of matrix healing on mechanical performance. Non-destructive evaluation (NDE) techniques were employed to observe and characterize material damage. Restoration of mechanical performance was demonstrated through healing, while NDE data showed location and size of damage and verified mitigation of damage post-healing. Data generated was used in the development of next generation reflexive controls software. Data output from the intelligent controls could serve as input to Integrated Vehicle Health Management (IVHM) systems and Integrated Resilient Aircraft Controls (IRAC). Reflexive composite technology has the ability to reduce maintenance required on composite structures through healing, offering potential to significantly extend service life of aerospace vehicles and reduce operating and lifecycle costs.
Xing, Juan; Ma, Yufei; Lin, Manping; Wang, Yuanliang; Pan, Haobo; Ruan, Changshun; Luo, Yanfeng
2016-10-01
Programming such as stretching, compression and bending is indispensible to endow polyurethanes with shape memory effects. Despite extensive investigations on the contributions of programming processes to the shape memory effects of polyurethane, less attention has been paid to the nanostructures of shape memory polyurethanes surface during the programming process. Here we found that stretching could induce the reassembly of hard domains and thereby change the nanostructures on the film surfaces with dependence on the stretching ratios (0%, 50%, 100%, and 200%). In as-cast polyurethane films, hard segments sequentially assembled into nano-scale hard domains, round or fibrillar islands, and fibrillar apophyses. Upon stretching, the islands packed along the stretching axis to form reoriented fibrillar apophyses along the stretching direction. Stretching only changed the chemical patterns on polyurethane films without significantly altering surface roughness, with the primary composition of fibrillar apophyses being hydrophilic hard domains. Further analysis of osteoblasts morphology revealed that the focal adhesion formation and osteoblasts orientation were in accordance with the chemical patterns of the underlying stretched films, which corroborates the vital roles of stretching-induced nanostructures in regulating osteoblasts morphology. These novel findings suggest that programming might hold great potential for patterning polyurethane surfaces so as to direct cellular behavior. In addition, this work lays groundwork for guiding the programming of shape memory polyurethanes to produce appropriate nanostructures for predetermined medical applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanical and shape memory properties of ferromagnetic Ni2MnGa sputter-deposited films
NASA Astrophysics Data System (ADS)
Ohtsuka, M.; Matsumoto, M.; Itagaki, K.
2003-10-01
The ternary intermetallic compound Ni2MnGa is an intelligent material, which has a shape memory effect and a ferromagnetic property. Use of shape memory alloy films for an actuator of micro machines is very attractive because of its large recovery force. The data of mechanical and shape memory properties of the films are required to use for the actuator. The purpose of this study is to investigate the effects of fabrication conditions and to clarify the relationships between these properties and fabrication conditions of the Ni{2}MnGa films. The Ni{2}MnGa films were deposited with a radio-frequency magnetron sputtering apparatus using a Ni{50}Mn{25}Ga{25} or Ni{52}Mn{24}Ga{24} target. After deposition, the films were annealed at 873sim 1173 K. The asdeposited films were crystalline and had columnar grains. After the heat treatment, the grains widened and the grain boundary became indistinct with increasing heat treatment temperature. MnO and Ni{3} (Mn, Ga) precipitations were observed in the heat-treated films. The mechanical properties of the films were measured by the nanoindentation method. Hardness and elastic modulus of as-deposited films were larger than those of arcmelted bulk alloys. The hardness of the films was affected by the composition, crystal structure, microstructure and precipitation, etc. The elastic modulus of the films was also changed with the heat treatment conditions. The heat-treated films showed a thermal two-way shape memory effect.
High performance shape memory polymer networks based on rigid nanoparticle cores
Song, Jie
2010-01-01
Smart materials that can respond to external stimuli are of widespread interest in biomedical science. Thermal-responsive shape memory polymers, a class of intelligent materials that can be fixed at a temporary shape below their transition temperature (Ttrans) and thermally triggered to resume their original shapes on demand, hold great potential as minimally invasive self-fitting tissue scaffolds or implants. The intrinsic mechanism for shape memory behavior of polymers is the freezing and activation of the long-range motion of polymer chain segments below and above Ttrans, respectively. Both Ttrans and the extent of polymer chain participation in effective elastic deformation and recovery are determined by the network composition and structure, which are also defining factors for their mechanical properties, degradability, and bioactivities. Such complexity has made it extremely challenging to achieve the ideal combination of a Ttrans slightly above physiological temperature, rapid and complete recovery, and suitable mechanical and biological properties for clinical applications. Here we report a shape memory polymer network constructed from a polyhedral oligomeric silsesquioxane nanoparticle core functionalized with eight polyester arms. The cross-linked networks comprising this macromer possessed a gigapascal-storage modulus at body temperature and a Ttrans between 42 and 48 °C. The materials could stably hold their temporary shapes for > 1 year at room temperature and achieve full shape recovery ≤ 51 °C in a matter of seconds. Their versatile structures allowed for tunable biodegradability and biofunctionalizability. These materials have tremendous promise for tissue engineering applications. PMID:20375285
Self-Deploying Trusses Containing Shape-Memory Polymers
NASA Technical Reports Server (NTRS)
Schueler, Robert M.
2008-01-01
Composite truss structures are being developed that can be compacted for stowage and later deploy themselves to full size and shape. In the target applications, these smart structures will precisely self-deploy and support a large, lightweight space-based antenna. Self-deploying trusses offer a simple, light, and affordable alternative to articulated mechanisms or inflatable structures. The trusses may also be useful in such terrestrial applications as variable-geometry aircraft components or shelters that can be compacted, transported, and deployed quickly in hostile environments. The truss technology uses high-performance shape-memory-polymer (SMP) thermoset resin reinforced with fibers to form a helical composite structure. At normal operating temperatures, the truss material has the structural properties of a conventional composite. This enables truss designs with required torsion, bending, and compression stiffness. However, when heated to its designed glass transition temperature (Tg), the SMP matrix acquires the flexibility of an elastomer. In this state, the truss can be compressed telescopically to a configuration encompassing a fraction of its original volume. When cooled below Tg, the SMP reverts to a rigid state and holds the truss in the stowed configuration without external constraint. Heating the materials above Tg activates truss deployment as the composite material releases strain energy, driving the truss to its original memorized configuration without the need for further actuation. Laboratory prototype trusses have demonstrated repeatable self-deployment cycles following linear compaction exceeding an 11:1 ratio (see figure).
Bi-Metallic Composite Structures With Designed Internal Residual Stress Field
NASA Technical Reports Server (NTRS)
Brice, Craig A.
2014-01-01
Shape memory alloys (SMA) have a unique ability to recover small amounts of plastic strain through a temperature induced phase change. For these materials, mechanical displacement can be accomplished by heating the structure to induce a phase change, through which some of the plastic strain previously introduced to the structure can be reversed. This paper introduces a concept whereby an SMA phase is incorporated into a conventional alloy matrix in a co-continuous reticulated arrangement forming a bi-metallic composite structure. Through memory activation of the mechanically constrained SMA phase, a controlled residual stress field is developed in the interior of the structure. The presented experimental data show that the memory activation of the SMA composite component significantly changes the residual stress distribution in the overall structure. Designing the structural arrangement of the two phases to produce a controlled residual stress field could be used to create structures that have much improved durability and damage tolerance properties.
Estimation of Transformation Temperatures in Ti-Ni-Pd Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Narayana, P. L.; Kim, Seong-Woong; Hong, Jae-Keun; Reddy, N. S.; Yeom, Jong-Taek
2018-03-01
The present study focused on estimating the complex nonlinear relationship between the composition and phase transformation temperatures of Ti-Ni-Pd shape memory alloys by artificial neural networks (ANN). The ANN models were developed by using the experimental data of Ti-Ni-Pd alloys. It was found that the predictions are in good agreement with the trained and unseen test data of existing alloys. The developed model was able to simulate new virtual alloys to quantitatively estimate the effect of Ti, Ni, and Pd on transformation temperatures. The transformation temperature behavior of these virtual alloys is validated by conducting new experiments on the Ti-rich thin film that was deposited using multi target sputtering equipment. The transformation behavior of the film was measured by varying the composition with the help of aging treatment. The predicted trend of transformational temperatures was explained with the help of experimental results.
Structural Acoustic Response of a Shape Memory Alloy Hybrid Composite Panel (Lessons Learned)
NASA Technical Reports Server (NTRS)
Turner, Travis L.
2002-01-01
This study presents results from an effort to fabricate a shape memory alloy hybrid composite (SMAHC) panel specimen and test the structure for dynamic response and noise transmission characteristics under the action of thermal and random acoustic loads. A method for fabricating a SMAHC laminate with bi-directional SMA reinforcement is described. Glass-epoxy unidirectional prepreg tape and Nitinol ribbon comprise the material system. Thermal activation of the Nitinol actuators was achieved through resistive heating. The experimental hardware required for mechanical support of the panel/actuators and for establishing convenient electrical connectivity to the actuators is presented. Other experimental apparatus necessary for controlling the panel temperature and acquiring structural acoustic data are also described. Deficiency in the thermal control system was discovered in the process of performing the elevated temperature tests. Discussion of the experimental results focuses on determining the causes for the deficiency and establishing means for rectifying the problem.
Structural acoustic response of a shape memory alloy hybrid composite panel (lessons learned)
NASA Astrophysics Data System (ADS)
Turner, Travis L.
2002-07-01
This study presents results from an effort to fabricate a shape memory alloy hybrid composite (SMAHC) panel specimen and test the structure for dynamic response and noise transmission characteristics under the action of thermal and random acoustic loads. A method for fabricating a SMAHC laminate with bi-directional SMA reinforcement is described. Glass-epoxy unidirectional prepreg tape and Nitinol ribbon comprise the material system. Thermal activation of the Nitinol actuators was achieved through resistive heating. The experimental hardware required for mechanical support of the panel/actuators and for establishing convenient electrical connectivity to the actuators is presented. Other experimental apparatus necessary for controlling the panel temperature and acquiring structural acoustic data are also described. Deficiency in the thermal control system was discovered in the process of performing the elevated temperature tests. Discussion of the experimental results focuses on determining the causes for the deficiency and establishing means for rectifying the problem.
NASA Astrophysics Data System (ADS)
Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.
2014-09-01
Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.
NASA Astrophysics Data System (ADS)
Paine, Jeffrey S.; Rogers, Craig A.
1995-05-01
Composite materials are widely used in the design of pressurized gas and fluid vessels for applications ranging from underground gasoline storage tanks to rocket motors for the space shuttle. In the design of a high pressure composite vessel (Pi > 12 Ksi), thick-wall (R/h < 15) vessels are required. For efficient material use in composite material vessels, the radial dilation (expansion or swelling) of the composite vessel can often approach values nearing 2 percent of the diameter. Over long periods of internal pressure loading over elevated temperatures, composite material cylinders may also experience substantial creep. The short term dilation and long term creep are not problematic for applications requiring only the containment of the pressurized fluid. In applications where metallic liners are required, however, substantial dilation and creep causes plastic yielding which leads to reduced fatigue life. To applications such as a hydraulic accumulator, where a piston is employed to fit and seal the fluid in the composite cylinder, the dilation and creep may allow leakage and pressure loss around the piston. A concept called the adaptive composite cylinder is experimentally presented. Shape memory alloy wire in epoxy resin is wrapped around or within polymer matrix composite cylinders to reduce radial dilation of the cylinder. Experimental results are presented that demonstrate the ability of the SMA wire layers to reduce radial dilation. Results from experimental testing of the recovery stress fatigue response of nitinol shape memory alloy wires is also presented.
NASA Astrophysics Data System (ADS)
Yougoubare, Y. Quentin; Pang, Su-Seng
2014-02-01
In previous work, a biomimetic close-then-heal (CTH) healing mechanism was proposed and validated to repeatedly heal wide-open cracks in load carrying engineering structures by using constrained expansion of compression programmed thermoset shape memory polymers (SMPs). In this study, the effects on healing efficiencies of variation of temperature during both thermomechanical programming and shape recovery (healing) under three-dimensional (3D) confinement are evaluated. The polymer considered is a polystyrene shape memory polymer with 6% by volume of thermoplastic particle additives (copolyester) dispersed in the matrix. In addition to the programming and healing temperatures, some of the parameters investigated include the flexural strength, crack width and elemental composition at the crack interface. It is observed that while increase of the programming temperature is slightly beneficial to strength recovery, most of the strength recovered and damage repair are strongly dependent on the healing temperature. The best healing efficiency (63%) is achieved by a combination of a programming temperature above the glass transition temperature of the polymer and a healing temperature above the bonding point of the copolyester.
Pendant Allyl Crosslinking as a Tunable Shape Memory Actuator for Vascular Applications
Zachman, Angela L.; Lee, Sue Hyun; Balikov, Daniel A.; Kim, Kwangho; Bellan, Leon M.; Sung, Hak-Joon
2015-01-01
Thermo-responsive shape memory polymers (SMPs) can be fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly( -caprolactone)-co-y%( -allyl carboxylate -caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit high elastic, switch-like shape recovery near 37 °C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. PMID:26072363
Mission STS-134: Results of Shape Memory Foam Experiment
NASA Astrophysics Data System (ADS)
Santo, Loredana; Quadrini, Fabrizio; Mascetti, Gabriele; Dolce, Ferdinando; Zolesi, Valfredo
2013-10-01
Shape memory epoxy foams were used for an experiment aboard the International Space Station (ISS) to evaluate the feasibility of their use for building light actuators and expandable/deployable structures. The experiment named I-FOAM was performed by an autonomous device contained in the BIOKON container (by Kayser Italia) which was in turn composed of control and heating system, battery pack and data acquisition system. To simulate the actuation of simple devices in micro-gravity conditions, three different configurations (compression, bending and torsion) were chosen during the memory step of the foams so as to produce their recovery on ISS. Micro-gravity does not affect the ability of the foams to recover their shape but it poses limits for the heating system design because of the difference in heat transfer on Earth and in orbit. A recovery about 70% was measured at a temperature of 110 °C for the bending and torsion configuration whereas poor recovery was observed for the compression case. Thanks to these results, a new experiment has been developed for a future mission by the same device: for the first time a shape memory composite will be recovered, and the actuation load during time will be measured during the recovery of an epoxy foam sample.
NiTi-Enabled Composite Design for Exceptional Performances
Shao, Yang; Guo, Fangmin; Ren, Yang; ...
2017-03-08
In an effort to further develop shape memory alloys (SMAs) for functional applications, much focus has been given in recent years to design and create innovative forms of SMAs, such as functionally graded SMAs, architecture SMAs, and SMA-based metallic composites. Here, we reports on the progress in creating NiTi-based composites of exceptional properties stimulated by the recent discovery of the principle of lattice strain matching between the SMA matrix and superelastic nanoinclusions embedded in the matrix. And based on this principle, different SMA–metal composites have been designed to achieve extraordinary shape memory performances, such as complete pseudoelastic behavior at asmore » low as 77 K and stress plateau as high as 1600 MPa, and exceptional mechanical properties, such as tensile strength as high as 2000 MPa and Young’s modulus as low as 28 GPa. Details are given for a NiTi–W micro-fiber composite prepared by melt infiltration, hot pressing, forging, and cold rolling. Furthermore, the composite contained 63% in volume of W micro-fibers of ~0.6 μm thickness. In situ synchrotron X-ray diffraction revealed that the NiTi matrix underwent martensite transformation during tensile deformation while the W micro-fiber deformed elastically with a maximum strain of 0.83% in the loading direction, implying a W fiber stress of 3280 MPa. The composite showed a maximum high tensile strength of 2300 MPa.« less
Functionally Graded Shape Memory Alloy Composites Optimized for Passive Vibration Control
2006-11-20
Nitinol , it is anticipated that the wire can only experience an incomplete hysteresis. 2.1. SMA wires in sleeves continuously bonded to the plate...Gilheany, J. 1995. Control of the natural frequencies of nitinol -reinforced composite beams, Journal of Sound and Vibrations, Vol. 185, 171-185. 3 Ro...J., and Baz, A., 1995. Nitinol -reinforced plates: Part III, Dynamic characteristics, Composites Engineering, Vol. 5, 91-106. 4 Epps, J and Chandra
Optimal design of damping layers in SMA/GFRP laminated hybrid composites
NASA Astrophysics Data System (ADS)
Haghdoust, P.; Cinquemani, S.; Lo Conte, A.; Lecis, N.
2017-10-01
This work describes the optimization of the shape profiles for shape memory alloys (SMA) sheets in hybrid layered composite structures, i.e. slender beams or thinner plates, designed for the passive attenuation of flexural vibrations. The paper starts with the description of the material and architecture of the investigated hybrid layered composite. An analytical method, for evaluating the energy dissipation inside a vibrating cantilever beam is developed. The analytical solution is then followed by a shape profile optimization of the inserts, using a genetic algorithm to minimize the SMA material layer usage, while maintaining target level of structural damping. Delamination problem at SMA/glass fiber reinforced polymer interface is discussed. At the end, the proposed methodology has been applied to study the hybridization of a wind turbine layered structure blade with SMA material, in order to increase its passive damping.
Design of a biomimetic self-healing superalloy composite
NASA Astrophysics Data System (ADS)
Files, Bradley Steven
1997-10-01
Use of systems engineering concepts to design technologically advanced materials has allowed ambitious goals of self-healing alloys to be realized. Shape memory alloy reinforcements are embedded in an alloy matrix to demonstrate concepts of stable crack growth and matrix crack closure. Computer methods are used to design thermodynamically compatible iron-based alloys using bio-inspired concepts of crack bridging and self-healing. Feasibility of crack closure and stable crack growth is shown in a prototype system with a Sn-Bi matrix and TiNi fibers. Design of Fe-Ni-Co-Ti-Al alloys using thermodynamic models to determine stabilities and phase equilibria allows for a methodical system designing compatible multicomponent alloys for composite systems. Final alloy computations for this project led to the alloy Fe-27.6Ni-18.2Co-4.1Ti-1.6Al as a compatible shape memory a with a 650sp°C 90 minute heat treatment leading to martensite and austenite start temperatures (Msbs and Asbs) near room temperature. Thin slices of this alloy were able to fully recover at least 5% strain upon unloading heating. Composites made from the designed shape memory alloy and a compatible Fe-based B2 matrix were used to test self-healing concepts in the superalloy system. Diffusion couple experiments verified thermodynamic compatibility between matrix and reinforcement alloys at the solution treatment temperature of 1100sp°C. Concepts of stable crack growth and crack bridging were demonstrated in the composite, leading to enhanced toughness of the brittle matrix. However, healing behavior in this system was limited by intergranular fracture of the reinforcement alloy. It is believed that use of rapidly solidified powders could eliminate intergranular fracture, leading to greatly enhanced properties of toughening and healing. Crack clamping and stable crack growth were achieved in a feasibility study using a Sn-Bi matrix reinforced with TiNi fibers. Tensile specimens with less than 1% fibers showed an ability upon heating to recover over 80% of the plastic deformation induced during a tensile test. Further straining proved that stable crack growth can be realized in this system due to crack bridging of the shape memory fibers. Macroscopic cracks were clamped shut after heating of the material above the TiNi reversion temperature.
NASA Astrophysics Data System (ADS)
Farajpour, M. R.; Shahidi, A. R.; Farajpour, A.
2018-03-01
In this study, the buckling behavior of a three-layered composite nanoplate reinforced with shape memory alloy (SMA) nanowires is examined. Whereas the upper and lower layers are reinforced with typical nanowires, SMA nanoscale wires are used to strengthen the middle layer of the system. The composite nanoplate is assumed to be under the action of biaxial compressive loading. A scale-dependent mathematical model is presented with the consideration of size effects within the context of the Eringen’s nonlocal continuum mechanics. Using the one-dimensional Brinson’s theory and the Kirchhoff theory of plates, the governing partial differential equations of SMA nanowire-reinforced hybrid nanoplates are derived. Both lateral and longitudinal deflections are taken into consideration in the theoretical formulation and method of solution. In order to reduce the governing differential equations to their corresponding algebraic equations, a discretization approach based on the differential quadrature method is employed. The critical buckling loads of the hybrid nanosystem with various boundary conditions are obtained with the use of a standard eigenvalue solver. It is found that the stability response of SMA composite nanoplates is strongly sensitive to the small scale effect.
Zeng, Min; Or, Siu Wing; Chan, Helen Lai Wa
2010-10-01
A sandwich composite consisting of one layer of ferromagnetic shape memory Ni-Mn-Ga crystal plate bonded between two layers of piezoelectric PVDF polymer film was fabricated, and its magnetic field-induced strain (MFIS) and magnetoelectric (ME) effects were investigated, together with a monolithic Ni-Mn-Ga crystal, as functions of magnetic fields and mechanical load. The load-free dc- and ac-MFISs were 0.35 and 0.05% in the composite, and 5.6 and 0.3% in the monolithic crystal, respectively. The relatively smaller load-free MFISs in the composite than the monolithic crystal resulted from the clamping of martensitic twin-boundary motion in the Ni-Mn-Ga plate by the PVDF films. The largest ME coefficient (α(E)) was 0.58 V/cm·Oe at a magnetic bias field (H(Bias)) of 8.35 kOe under load-free condition. The mechanism of the ME effect originated from the mechanically mediated MFIS effect in the Ni-Mn-Ga plate and piezoelectric effect in the PVDF films. The measured α(E)-H(Bias) responses under different loads showed good agreement with the model prediction.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA
2009-09-22
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA
2012-05-29
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R.; Maitland, Duncan J.
2014-04-01
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
NASA Astrophysics Data System (ADS)
Babaevskii, P. G.; Kozlov, N. A.; Agapov, I. G.; Reznichenko, G. M.; Churilo, N. V.; Churilo, I. V.
2016-09-01
The results of experiments that were performed to test the feasibility of creating sandwich structures (consisting of thin-layer sheaths of polymer composites and a cellular polymer core) with the shapememory effect as models of the transformable components of space structures have been given. The data obtained indicate that samples of sandwich structures under microgravity conditions on board the International Space Station have recovered their shape to almost the same degree as under terrestrial conditions, which makes it possible to recommend them for creating components of transformable space structures on their basis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yang; Guo, Fangmin; Ren, Yang
In an effort to further develop shape memory alloys (SMAs) for functional applications, much focus has been given in recent years to design and create innovative forms of SMAs, such as functionally graded SMAs, architecture SMAs, and SMA-based metallic composites. Here, we reports on the progress in creating NiTi-based composites of exceptional properties stimulated by the recent discovery of the principle of lattice strain matching between the SMA matrix and superelastic nanoinclusions embedded in the matrix. And based on this principle, different SMA–metal composites have been designed to achieve extraordinary shape memory performances, such as complete pseudoelastic behavior at asmore » low as 77 K and stress plateau as high as 1600 MPa, and exceptional mechanical properties, such as tensile strength as high as 2000 MPa and Young’s modulus as low as 28 GPa. Details are given for a NiTi–W micro-fiber composite prepared by melt infiltration, hot pressing, forging, and cold rolling. Furthermore, the composite contained 63% in volume of W micro-fibers of ~0.6 μm thickness. In situ synchrotron X-ray diffraction revealed that the NiTi matrix underwent martensite transformation during tensile deformation while the W micro-fiber deformed elastically with a maximum strain of 0.83% in the loading direction, implying a W fiber stress of 3280 MPa. The composite showed a maximum high tensile strength of 2300 MPa.« less
Local Displacements and Load Transfer of Shape Memory Alloys in Polymeric Matrices
1997-01-01
plane displacements of room temperature cured SMA ribbon composites were obtained using moiré interferometry. Displacements due to thermal expansion ...141 Figure 6.10 Displacement profiles along SMA ribbon or different values of the coefficient of thermal expansion ...greater importance in polymer composites, which can have large coefficients of thermal expansion . Further, there is also a lack of experimental data
NASA Astrophysics Data System (ADS)
Saghaian, Sayed M.
NiTiHf shape memory alloys have been receiving considerable attention for high temperature and high strength applications since they could have transformation temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and superelasticity at high temperatures. Moreover, their shape memory properties can be tailored by microstructural engineering. However, NiTiHf alloys have some drawbacks such as low ductility and high work hardening in stress induced martensite transformation region. In order to overcome these limitations, studies have been focused on microstructural engineering by aging, alloying and processing. Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti 29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at. %)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics. The effects of the heat treatments on the transformation characteristics and microstructure of the Ni-rich NiTiHf shape memory alloys have been investigated. Transformation temperatures are found to be highly annealing temperature dependent. Generation of nanosize precipitates (˜20 nm in size) after three hours aging at 450 °C and 550 °C improved the strength of the material, resulting in a near perfect dimensional stability under high stress levels (> 1500 MPa) with a work output of 20-30 J cm- 3. Superelastic behavior with 4% recoverable strain was demonstrated at low and high temperatures where stress could reach to a maximum value of more than 2 GPa after three hours aging at 450 and 550 °C for alloys with Ni great than 50.3 at. %. Shape memory properties of polycrystalline Ni50.3Ti29.7 Hf20 alloys were studied via thermal cycling under stress and isothermal stress cycling experiments in tension. Recoverable strain of ˜5% was observed for the as-extruded samples while it was decreased to ˜4% after aging due to the formation of precipitates. The aged alloys demonstrated near perfect shape memory effect under high tensile stress level of 700 MPa and perfect superelasticity at high temperatures up to 230 °C. Finally, the tension-compression asymmetry observed in NiTiHf where recoverable tensile strain was higher than compressive strain. The shape memory properties of solutionized and aged Ni-rich Ni50.3Ti29.7Hf20 single crystals were investigated along the [001], [011], and [111] orientations in compression. [001]-oriented single crystals showed high dimensional stability under stress levels as high as 1500 MPa in both the solutionized and aged conditions, but with transformation strains of less than 2%. Perfect superelasticity with recoverable strain of more than 4% was observed for solutionized and 550 °C-3h aged single crystals along the [011] and [111] orientations, and general superelastic behavior was observed over a wide temperature range. The calculated transformation strains were higher than the experimentally observed strains since the calculated strains could not capture the formation of martensite plates with (001) compound twins. KEYWORDS: NiTiHf, High Temperature Shape memory alloys, Mechanical Characterization, High Strength Shape Memory Alloy, Orientation Dependence of NiTiHf Sayed.
Electroactive polymer and shape memory alloy actuators in biomimetics and humanoids
NASA Astrophysics Data System (ADS)
Tadesse, Yonas
2013-04-01
There is a strong need to replicate natural muscles with artificial materials as the structure and function of natural muscle is optimum for articulation. Particularly, the cylindrical shape of natural muscle fiber and its interconnected structure promote the critical investigation of artificial muscles geometry and implementation in the design phase of certain platforms. Biomimetic robots and Humanoid Robot heads with Facial Expressions (HRwFE) are some of the typical platforms that can be used to study the geometrical effects of artificial muscles. It has been shown that electroactive polymer and shape memory alloy artificial muscles and their composites are some of the candidate materials that may replicate natural muscles and showed great promise for biomimetics and humanoid robots. The application of these materials to these systems reveals the challenges and associated technologies that need to be developed in parallel. This paper will focus on the computer aided design (CAD) models of conductive polymer and shape memory alloys in various biomimetic systems and Humanoid Robot with Facial Expressions (HRwFE). The design of these systems will be presented in a comparative manner primarily focusing on three critical parameters: the stress, the strain and the geometry of the artificial muscle.
Novel deployable morphing wing based on SMP composite
NASA Astrophysics Data System (ADS)
Yu, Kai; Sun, Shouhua; Liu, Liwu; Zhang, Zhen; Liu, Yanju; Leng, Jinsong
2009-07-01
In this paper, a novel kind of deployable morphing wing base on shape memory polymer (SMP) composite is designed and tested. While the deployment of the morphing wing still relies on the mechanisms to ensure the recovery force and the stability performance, the deploying process tends to be more steady and accurate by the application of SMP composite, which overcomes the inherent drawbacks of the traditional one, such as harmful impact to the flight balance, less accuracy during the deployment and complex mechanical masses. On the other hand, SMP composite is also designed as the wing's filler. During its shape recovery process, SMP composite stuffed in the wing helps to form an aerofoil for the wing and withstand the aerodynamic loads, leading to the compressed aerofoil recovering its original shape. To demonstrate the feasibility and the controllability of the designed deployable morphing wing, primary tests are also conducted, including the deploying speed of the morphing wing and SMP filler as the main testing aspects. Finally, Wing's deformation under the air loads is also analyzed by using the finite element method to validate the flight stability.
NASA Astrophysics Data System (ADS)
Lobo, A. O.; Otubo, J.; Matsushima, J. T.; Corat, E. J.
2011-07-01
Nano-hydroxyapatite (n-HA) crystalline films have been developed in this study by electrodeposition method on NiTi shape memory alloy (SMA). The electrodeposition of the n-HA films was carried out using 0.042 mol/L Ca(NO3)2 · 4H2O + 0.025 mol/L (NH4) · 2HPO4 electrolytes by applying a constant potential of -2.0 V for 120 min and keeping the solution temperature at 70 °C. The characterization of n-HA films is of special importance since bioactive properties related to n-HA have been directly identified with its specific composition and crystalline structure. AFM, XRD, EDX, FEG-SEM and Raman spectroscopy shows a homogeneous film, with high crystallinity, special composition, and bioactivity properties (Ca/P = 1.93) of n-HA on NiTi SMA surfaces. The n-HA coating with special structure would benefit the use of NiTi alloy in orthopedic applications.
Development and Testing of a Shape Memory Alloy-Driven Composite Morphing Radiator
NASA Astrophysics Data System (ADS)
Walgren, P.; Bertagne, C.; Wescott, M.; Benafan, O.; Erickson, L.; Whitcomb, J.; Hartl, D.
2018-03-01
Future crewed deep space missions will require thermal control systems that can accommodate larger fluctuations in temperature and heat rejection loads than current designs. To maintain the crew cabin at habitable temperatures throughout the entire mission profile, radiators will be required to exhibit turndown ratios (defined as the ratio between the maximum and minimum heat rejection rates) as high as 12:1. Potential solutions to increase radiator turndown ratios include designs that vary the heat rejection rate by changing shape, hence changing the rate of radiation to space. Shape memory alloys exhibit thermally driven phase transformations and thus can be used for both the control and actuation of such a morphing radiator with a single active structural component that transduces thermal energy into motion. This work focuses on designing a high-performance composite radiator panel and investigating the behavior of various SMA actuators in this application. Three designs were fabricated and subsequently tested in a relevant thermal vacuum environment; all three exhibited repeatable morphing behavior, and it is shown through validated computational analysis that the morphing radiator concept can achieve a turndown ratio of 27:1 with a number of simple configuration changes.
Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states
NASA Astrophysics Data System (ADS)
Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W.; Edmondson, Steve; Malmström, Eva
2016-08-01
We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors. Electronic supplementary information (ESI) available: Figures of LCST, polymerization kinetics, melt-processed films, DLS, TGA, precipitated fiber and powder, TEM (of isotropic GO), birefringence, OP-data, DMTA-data and DSC. See DOI: 10.1039/c6nr01502f
Nanostructured Shape Memory Alloys: Adaptive Composite Materials and Components
2007-12-01
placing the composites between two stainless steel sheets to minimize contamination. The process described was effective in breaking the nickel...pieced, the discs were heat-treated at 9000C for 1 hour and quenched in ice water. Each quarter piece was placed between two stainless steel sheets of 0.15... martensite interfaces. Additionally a surface preparation technique was developed to provide minimal surface deformation necessary for observation of
NASA Astrophysics Data System (ADS)
Dubinskiy, S.; Brailovski, Vladimir; Prokoshkin, S.; Pushin, V.; Inaekyan, K.; Sheremetyev, V.; Petrzhik, M.; Filonov, M.
2013-09-01
In this work, the ternary Ti-19.7Nb-5.8Ta (at.%) alloy for biomedical applications was studied. The ingot was manufactured by vacuum arc melting with a consumable electrode and then subjected to hot forging. Specimens were cut from the ingot and processed by cold rolling with e = 0.37 of logarithmic thickness reduction and post-deformation annealing (PDA) between 400 and 750 °C (1 h). Selected samples were subjected to aging at 300 °C (10 min to 3 h). The influence of the thermomechanical processing on the alloy's structure, phase composition, and mechanical and functional properties was studied. It was shown that thermomechanical processing leads to the formation of a nanosubgrained structure (polygonized with subgrains below 100 nm) in the 500-600 °C PDA range, which transforms to a recrystallized structure of β-phase when PDA temperature increases. Simultaneously, the phase composition and the β → α″ transformation kinetics vary. It was found that after conventional cold rolling and PDA, Ti-Nb-Ta alloy manifests superelastic and shape memory behaviors. During aging at 300 °C (1 h), an important quantity of randomly scattered equiaxed ω-precipitates forms, which results in improved superelastic cyclic properties. On the other hand, aging at 300 °C (3 h) changes the ω-precipitates' particle morphology from equiaxed to elongated and leads to their coarsening, which negatively affects the superelastic and shape memory functional properties of Ti-Nb-Ta alloy.
NASA Astrophysics Data System (ADS)
Denisov, O. V.; Buligin, Y. I.; Ponomarev, A. E.; Ponomareva, I. A.; Lebedeva, V. V.
2017-01-01
An important direction in the development of the shockproof devices for occupations associated with an increased risk of injury is reducing their overall size with the preservation the ability of energy absorption. The fixture protection of large joints, with the brace in the coils of an elastic-plastic material with shape memory effect, can effectively protect people from injury and can be used in the domain of occupational safety to reduce injuries by shocks or jolts. In innovative anti-shock device as elastic-plastic material applied equiatomic Titanium-Nickel alloy which has acceptable temperature phase transitions that is necessary to restore shape. As an experienced model first approximation was adopted shockproof device, having in its composition a bandage in coils of elastic-plastic material with shape memory effect and with electric contacts at the ends. This solution allows the punches to plastically deform with the absorption of the impact energy, and then recover the original shape, including at the expense of electric heating.
NASA Astrophysics Data System (ADS)
Kuang, K. S. C.; Cantwell, W. J.
2003-08-01
This paper reports the use of a plastic fibre sensor for detecting impact damage in carbon fibre epoxy cantilever beams by monitoring their damping response under free vibration loading conditions. The composite beams were impacted at impact energies up to 8 J. The residual strengths and stiffnesses of the damaged laminates were measured in order to relate reductions in their mechanical properties to changes in their damping characteristics. Here, optical fibre sensors were surface bonded to carbon fibre composite beams which were subjected to free vibration tests to monitor their dynamic response. In the second part of this study, Ni-Ti shape memory alloy (SMA) wires were employed to control and modify the damping response of a composite beam. The SMA wires were initially trained to obtain the desired shape when activated. Here, the trained SMA wires were heated locally using a nickel/chromium wire that was wrapped around the trained region of the SMA. By using this method to activate the SMA wire (as opposed to direct electrical heating), it is possible to obtain localized actuation without heating the entire length of the wire. This procedure minimizes any damage to the host material that may result from local heat transfer between the SMA wire and the composite structure. In addition, the reduction in power requirements to achieve SMA activation permits the use of small-size power packs which can in turn lead to a potential weight reduction in weight-critical applications. The findings of this study demonstrate that a trained SMA offers a superior damping capability to that exhibited by an 'as-supplied' flat-annealed wire.
Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite
NASA Astrophysics Data System (ADS)
Kumbhar, Samir B.; Chavan, S. P.; Gawade, S. S.
2018-02-01
Shape memory alloy (SMA) is an attractive smart material which could be used as stiffness tuning element in adaptive tuned vibration absorber (ATVA). The sharp modulus change in SMA material during phase transformation creates difficulties for smooth tuning to track forcing frequency to minimize vibrations of primary system. However, high hysteresis damping at low temperature martensitic phase degrades performance of vibration absorber. This paper deals with the study of dynamic response of system in which SMA and magnetorheological elastomer (MRE) are combined together to act as a smart spring- mass-damper system in a tuned vibration absorber. This composite is used as two way stiffness tuning element in ATVA for smooth and continuous tuning and to minimize the adverse effect at low temperature by increasing equivalent stiffness. The stiffnesses of SMA element and MRE are varied respectively by changing temperature and strength of external magnetic field. The two way stiffness tuning ability and adaptivity have been demonstrated analytically and experimentally. The experimental results show good agreement with analytical results. The proposed composite is able to shift the stiffness consequently the natural frequency of primary system as well as reduce the vibration level of primary system by substantial mount.
NASA Astrophysics Data System (ADS)
Furuya, Yasubumi; Okazaki, Teiko; Ueno, Takasi; Spearing, Mark; Wutting, Manfred
2005-05-01
Barkhausen noise (BHN) method seems a useful tecnique to non-destructive evaluation of martensite phase transformation of ferromagnetic shape memory alloy, which is used as the filler of our proposing "Smart Composite Board". The concept of design for "Smart Composite Board" which can combine the non-destructive magnetic inspection and shape recovery function in the material itself was formerly proposed. In the present study, we survey the possibility of Barkhausen noise (BHN) method to detect the transformation of microscopic martensite phase caused by stress-loading in Fe-30.2at%Pd thin foil, which has a stable austenite phase (fcc structure) at room temperature. The BHN voltage was measured at loading stress up to 100 MPa in temperature range of 300K to 373K. Stress-induced martensite twin was observed by laser microscope above loading stress of 25 MPa. A phase transformation caused by loading stress were analyzed also by X-ray diffraction. The signals of BHN are analyzed by the time of magnetization and the noise frequency. BHN caused by grain boundaries appears in the lower frequency range (1kHz-3kHz) and BHN by martensite twin in the higher frequency range (8kHz-10kHz). The envelope of the BHN voltage as a function of time of magnetization shows a peak due to austenite phase at weak magnetic field. The BHN envelope due to martensite twins creates additional two peaks at intermediate magnetic field. BHN method turns out to be a powerful technique for non-destructive evaluation of the phase transformation of ferromagnetic shape memory alloy.
Shape memory polymer medical device
Maitland, Duncan [Pleasant Hill, CA; Benett, William J [Livermore, CA; Bearinger, Jane P [Livermore, CA; Wilson, Thomas S [San Leandro, CA; Small, IV, Ward; Schumann, Daniel L [Concord, CA; Jensen, Wayne A [Livermore, CA; Ortega, Jason M [Pacifica, CA; Marion, III, John E.; Loge, Jeffrey M [Stockton, CA
2010-06-29
A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.
NASA Astrophysics Data System (ADS)
Yoon, Hyuk-Jin; Costantini, Daniele M.; Michaud, Veronique; Limberger, Hans G.; Manson, Jan-Anders; Salathe, Rene P.; Kim, Chun-Gon; Hong, Chang-Sun
2005-05-01
An optical fiber sensor to simultaneously measure strain and temperature was designed and embedded into an adaptive composite laminate which exhibits a shape change upon thermal activation. The sensor is formed by two fiber Bragg gratings, which are written in optical fibers with different core dopants. The two gratings were spliced close to each other and a sensing element resulted with Bragg gratings of similar strain sensitivity but different response to temperature. This is due to the dependence of the fiber thermo-optic coefficient on core dopants and relative concentrations. The sensor was tested on an adaptive composite laminate made of unidirectional Kevlar-epoxy pre-preg plies. Several 150μm diameter pre-strained NiTiCu shape memory alloy wires were embedded in the composite laminate together with one fiber sensor. Simultaneous monitoring of strain and temperature during the curing process and activation in an oven was demonstrated.
Zhang, Ben; DeBartolo, Janae E.; Song, Jie
2017-01-26
Maintaining adequate or enhancing mechanical properties of shape memory polymers (SMPs) after shape recovery in an aqueous environment are greatly desired for biomedical applications of SMPs as self-fitting tissue scaffolds or minimally invasive surgical implants. Here we report stable temporary shape fixing and facile shape recovery of biodegradable triblock amphiphilic SMPs containing a poly(ethylene glycol) (PEG) center block and flanking poly(lactic acid) or poly(lactic-co-glycolic acid) blocks in warm water, accompanied with concomitant enhanced mechanical strengths. Differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WXRD) and small-angle X-ray scattering (SAXS) analyses revealed that the unique stiffening of the amphiphilic SMPs upon hydrationmore » was due to hydration-driven microphase separation and PEG crystallization. We further demonstrated that the chemical composition of degradable blocks in these SMPs could be tailored to affect the persistence of hydration-induced stiffening upon subsequent dehydration. These properties combined open new horizons for these amphiphilic SMPs for smart weight-bearing in vivo applications (e.g. as self-fitting intervertebral discs). In conclusion, this study also provides a new material design strategy to strengthen polymers in aqueous environment in general.« less
Membrane wrinkling patterns and control with SMA and SMPC actuators
NASA Astrophysics Data System (ADS)
Lu, Mingyu; Li, Yunliang; Tan, Huifeng; Zhou, Limin
2009-07-01
Wrinkling is a main factor affecting the performance of the membrane structures and is always considered to be a failure as it can cause dramatic decrease of shape accuracy. The study of membrane wrinkling control has the analytical and experimental meanings. In this paper, a feasible membrane shape control method is presented. An expression of wrinkle wavelength using stress extremum principle is established based on the tension field theory and the Von Karman large deflection formula which verifies the generation and evolution reason of membrane wrinkles. The control mechanism for membrane wrinkles is developed using shape memory alloy (SMA) and shape memory polymer composite (SMPC) actuators which are attached to the boundaries of the membrane for producing contraction/expansion forces to adjust the shape of the membrane. The whole control process is monitored by photogrammetric technique. Numerical simulations are also conducted using ANSYS finite element software with the nonlinear post-buckling analytical method. Both the experimental and numerical results show that the amplitudes of wrinkles are effectively controlled by SMA and SMPC actuators. The method introduced in this paper provides the foundation for shape control of the membrane wrinkling and is important to the future work on vibration control of space membrane structures.
Modeling deformation behavior of Cu-Zr-Al bulk metallic glass matrix composites
NASA Astrophysics Data System (ADS)
Pauly, S.; Liu, G.; Wang, G.; Das, J.; Kim, K. B.; Kühn, U.; Kim, D. H.; Eckert, J.
2009-09-01
In the present work we prepared an in situ Cu47.5Zr47.5Al5 bulk metallic glass matrix composite derived from the shape memory alloy CuZr. We use a strength model, which considers percolation and a three-microstructural-element body approach, to understand the effect of the crystalline phase on the yield stress and the fracture strain under compressive loading, respectively. The intrinsic work-hardenability due to the martensitic transformation of the crystalline phase causes significant work hardening also of the composite material.
Large energy absorption in Ni-Mn-Ga/polymer composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feuchtwanger, Jorge; Richard, Marc L.; Tang, Yun J.
2005-05-15
Ferromagnetic shape memory alloys can respond to a magnetic field or applied stress by the motion of twin boundaries and hence they show large hysteresis or energy loss. Ni-Mn-Ga particles made by spark erosion have been dispersed and oriented in a polymer matrix to form pseudo 3:1 composites which are studied under applied stress. Loss ratios have been determined from the stress-strain data. The loss ratios of the composites range from 63% to 67% compared to only about 17% for the pure, unfilled polymer samples.
Shape Memory Behavior of Dense and Porous NiTi Alloys Fabricated by Selective Laser Melting
NASA Astrophysics Data System (ADS)
Saedi, Soheil
Selective Laser Melting (SLM) of Additive Manufacturing is an attractive fabrication method that employs CAD data to selectively melt the metal powder layer by layer via a laser beam and produce a 3D part. This method not only opens a new window in overcoming traditional NiTi fabrication problems but also for producing porous or complex shaped structures. The combination of SLM fabrication advantages with the unique properties of NiTi alloys, such as shape memory effect, superelasticity, high ductility, work output, corrosion, biocompatibility, etc. makes SLM NiTi alloys extremely promising for numerous applications. The SLM process parameters such as laser power, scanning speed, spacing, and strategy used during the fabrication are determinant factors in composition, microstructural features and functional properties of the SLM NiTi alloy. Therefore, a comprehensive and systematic study has been conducted over Ni 50.8 Ti49.2 (at%) alloy to understand the influence of each parameter individually. It was found that a sharp [001] texture is formed as a result of SLM fabrication which leads to improvements in the superelastic response of the alloy. It was perceived that transformation temperatures, microstructure, hardness, the intensity of formed texture and the correlated thermo-mechanical response are changed substantially with alteration of each parameter. The provided knowledge will allow choosing optimized parameters for tailoring the functional features of SLM fabricated NiTi alloys. Without going through any heat treatments, 5.77% superelasticity with more than 95% recovery ratio was obtained in as-fabricated condition only with the selection of right process parameters. Additionally, thermal treatments can be utilized to form precipitates in Ni-rich SLM NiTi alloys fabricated by low energy density. Precipitation could significantly alter the matrix composition, transformation temperatures and strain, critical stress for transformation, and shape memory response of the alloy. Therefore, a systematic aging study has been performed to reveal the effects of aging time and temperature. It was found that although SLM fabricated samples show lower strength than the initial ingot, heat treatments can be employed to make significant improvements in shape memory response of SLM NiTi. Up to 5.5% superelastic response and perfect shape memory effect at stress levels up to 500 MPa was observed in solutionized Ni-rich SLM NiTi after 18h aging at 350°C. For practical application, transformation temperatures were even adjusted without solution annealing and superelastic response of 5.5% was achieved at room temperature for 600C-1.5hr aged Ni-rich SLM NiTi. The effect of porosity on strength and cyclic response of porous SLM Ni50.1 Ti49.9 (at%) were investigated for potential bone implant applications. It is shown that mechanical properties of samples such as elastic modulus, yield strength, and ductility of samples are highly porosity level and pore structure dependent. It is shown that it is feasible to decrease Young's modulus of SLM NiTi up to 86% by adding porosity to reduce the mismatch with that of a bone and still retain the shape memory response of SLM fabricated NiTi. The shape memory effect, as well as superelastic response of porous SLM Ni50.8Ti49.2, were also investigated at body temperature. 32 and 45% porous samples with similar behaviors, recovered 3.5% of 4% deformation at first cycle. The stabilized superelastic response was obtained after clicking experiments.
Shape memory polymer foams for endovascular therapies
Wilson, Thomas S.; Maitland, Duncan J.
2017-03-21
A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.
Shape memory polymer foams for endovascular therapies
Wilson, Thomas S [Castro Valley, CA; Maitland, Duncan J [Pleasant Hill, CA
2012-03-13
A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.
Shape memory polymer foams for endovascular therapies
Wilson, Thomas S.; Maitland, Duncan J.
2015-05-26
A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.
Deformation rate-, hold time-, and cycle-dependent shape-memory performance of Veriflex-E resin
NASA Astrophysics Data System (ADS)
McClung, Amber J. W.; Tandon, Gyaneshwar P.; Baur, Jeffery W.
2013-02-01
Shape-memory polymers have attracted great interest in recent years for application in reconfigurable structures (for instance morphing aircraft, micro air vehicles, and deployable space structures). However, before such applications can be attempted, the mechanical behavior of the shape-memory polymers must be thoroughly understood. The present study represents an assessment of viscous effects during multiple shape-memory cycles of Veriflex-E, an epoxy-based, thermally triggered shape-memory polymer resin. The experimental program is designed to explore the influence of multiple thermomechanical cycles on the shape-memory performance of Veriflex-E. The effects of the deformation rate and hold times at elevated temperature on the shape-memory behavior are also investigated.
Modeling for stress-strain curve of a porous NiTi under compressive loading
NASA Astrophysics Data System (ADS)
Zhao, Ying; Taya, Minoru
2005-05-01
Two models for predicting the stress-strain curve of porous NiTi under compressive loading are presented in this paper. Porous NiTi shape memory alloy is investigated as a composite composed of solid NiTi as matrix and pores as inclusions. Eshelby"s equivalent inclusion method and Mori-Tanaka"s mean-field theory are employed in both models. In the first model, the geometry of the pores is assumed as sphere. The composite is with close-cells. While in the second model, two geometries of the pores, sphere and ellipsoid, are investigated. The pores are interconnected to each other forming an open-cell microstructure. The two adjacent pores connected along equator ring are investigated as a unit. Two pores interact with each other as they are connected. The average eigenstrain of each unit is obtained by taking the average of each pore"s eigenstrain. The stress-strain curves of porous shape memory alloy with spherical pores and ellipsoidal pores are compared, it is found that the shape of the pores has a nonignorable influence on the mechanical property of the porous NiTi. Comparison of the stress-strain curves of the two models shows that introducing of the average eigenstrains in the second model makes the predictions more agreeable to the experimental results.
Tribological properties of multifunctional coatings with Shape Memory Effect in abrasive wear
NASA Astrophysics Data System (ADS)
Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.
2018-01-01
The article gives research results of the abrasive wear process on samples made of Steel 1045, U10 and with applied composite surface layer "Nickel-Multicomponent material with Shape Memory Effect (SME) based on TiNi". For the tests we have chosen TiNiZr, which is in the martensite state and TiNiHfCu, which is in the austenitic state at the test temperature. The formation of the surface layer was carried out by high-speed oxygen-fuel deposition in a protective atmosphere of argon. In the wear test, Al2O3 corundum powder was used as an abrasive. It is shown that the wear rate of samples with a composite surface layer of multicomponent materials with SME is significantly reduced in comparison with the base, which is explained by reversible phase transformations of the surface layer with SME. After carrying out the additional surface plastic deformation (SPD), the resistance of the laminated composition to abrasion wear has greatly enhanced, due to the reinforcing effect of the SPD. It is recommended for products working in conditions of abrasive wear and high temperatures to use the complex formation technology of the surface composition "steel-nickel-material with high-temperature SME", including preparation of the substrate surface and the deposited material, high-speed spraying in the protective atmosphere of argon, followed by SPD.
NASA Astrophysics Data System (ADS)
Zafar, Adeel; Andrawes, Bassem
2012-02-01
Fiber reinforced polymer (FRP) reinforcing bars have been used in concrete structures as an alternative to conventional steel reinforcement, in order to overcome corrosion problems. However, due to the linear behavior of the commonly used reinforcing fibers, they are not considered in structures which require ductility and damping characteristics. The use of superelastic shape memory alloy (SMA) fibers with their nonlinear elastic behavior as reinforcement in the composite could potentially provide a solution for this problem. Small diameter SMA wires are coupled with polymer matrix to produce SMA-FRP composite, which is sought in this research as reinforcing bars. SMA-FRP bars are sought in this study to enhance the seismic performance of reinforced concrete (RC) moment resisting frames (MRFs) in terms of reducing their residual inter-story drifts while still maintaining the elastic characteristics associated with conventional FRP. Three story one bay and six story two bay RC MRF prototype structures are designed with steel, SMA-FRP and glass-FRP reinforcement. The incremental dynamic analysis technique is used to investigate the behaviors of the two frames with the three different reinforcement types under a suite of ground motion records. It is found that the frames with SMA-FRP composite reinforcement exhibit higher performance levels including lower residual inter-story drifts, high energy dissipation and thus lower damage, which are important for structures in highly seismic zones.
High-strain slide-ring shape-memory polycaprolactone-based polyurethane.
Wu, Ruiqing; Lai, Jingjuan; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin
2018-06-06
To enable shape-memory polymer networks to achieve recoverable high deformability with a simultaneous high shape-fixity ratio and shape-recovery ratio, novel semi-crystalline slide-ring shape-memory polycaprolactone-based polyurethane (SR-SMPCLU) with movable net-points constructed by a topologically interlocked slide-ring structure was designed and fabricated. The SR-SMPCLU not only exhibited good shape fixity, almost complete shape recovery, and a fast shape-recovery speed, it also showed an outstanding recoverable high-strain capacity with 95.83% Rr under a deformation strain of 1410% due to the pulley effect of the topological slide-ring structure. Furthermore, the SR-SMPCLU system maintained excellent shape-memory performance with increasing the training cycle numbers at 45% and even 280% deformation strain. The effects of the slide-ring cross-linker content, deformation strain, and successive shape-memory cycles on the shape-memory performance were investigated. A possible mechanism for the shape-memory effect of the SR-SMPCLU system is proposed.
Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch
NASA Astrophysics Data System (ADS)
El-Tahan, M.; Dawood, M.; Song, G.
2015-06-01
The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements.
A Facile and General Approach to Recoverable High-Strain Multishape Shape Memory Polymers.
Li, Xingjian; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin
2018-03-01
Fabricating a single polymer network with no need to design complex structures to achieve an ideal combination of tunable high-strain multiple-shape memory effects and highly recoverable shape memory property is a great challenge for the real applications of advanced shape memory devices. Here, a facile and general approach to recoverable high-strain multishape shape memory polymers is presented via a random copolymerization of acrylate monomers and a chain-extended multiblock copolymer crosslinker. As-prepared shape memory networks show a large width at the half-peak height of the glass transition, far wider than current classical multishape shape memory polymers. A combination of tunable high-strain multishape memory effect and as high as 1000% recoverable strain in a single chemical-crosslinking network can be obtained. To the best of our knowledge, this is the first thermosetting material with a combination of highly recoverable strain and tunable high-strain multiple-shape memory effects. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens.
Safranski, David L; Boothby, Jennifer M; Kelly, Cambre N; Beatty, Kyle; Lakhera, Nishant; Frick, Carl P; Lin, Angela; Guldberg, Robert E; Griffis, Jack C
2016-09-01
New processing methods for shape-memory polymers allow for tailoring material properties for numerous applications. Shape-memory nonwovens have been previously electrospun, but melt blow processing has yet to be evaluated. In order to determine the process parameters affecting shape-memory behavior, this study examined the effect of air pressure and collector speed on the mechanical behavior and shape-recovery of shape-memory polyurethane nonwovens. Mechanical behavior was measured by dynamic mechanical analysis and tensile testing, and shape-recovery was measured by unconstrained and constrained recovery. Microstructure changes throughout the shape-memory cycle were also investigated by micro-computed tomography. It was found that increasing collector speed increases elastic modulus, ultimate strength and recovery stress of the nonwoven, but collector speed does not affect the failure strain or unconstrained recovery. Increasing air pressure decreases the failure strain and increases rubbery modulus and unconstrained recovery, but air pressure does not influence recovery stress. It was also found that during the shape-memory cycle, the connectivity density of the fibers upon recovery does not fully return to the initial values, accounting for the incomplete shape-recovery seen in shape-memory nonwovens. With these parameter to property relationships identified, shape-memory nonwovens can be more easily manufactured and tailored for specific applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers
Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng
2015-01-01
Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Shijie; Liu, Yinong; Ren, Yang
2016-06-08
Inspired by the driving principle of traditional bias-type two-way actuators, we developed a novel two-way actuation nanocomposite wire in which a massive number of Nb nanoribbons with ultra-large elastic strains are loaded inside a shape memory alloy (SMA) matrix to form a continuous array of nano bias actuation pairs for two-way actuation. The composite exhibits a two-way actuation strain of 3.2% during a thermal cycle and an actuation stress of 934 MPa upon heating, which is about twice higher than that (~500 MPa) found in reported two-way SMAs. Upon cooling, the composite shows an actuation stress of 134 MPa andmore » a mechanical work output of 1.08*106 J/ m3, which are about three and five times higher than that of reported two-way SMAs, respectively. It is revealed that the massive number of Nb nanoribbons in compressive state provides the high actuation stress and high work output upon cooling and the SMA matrix with high yield strength offers the high actuation stress upon heating. Compared to traditional bias-type two-way actuators, the two-way actuation composite with small volume and simple construct is in favour of the miniaturization and simplification of actuators.« less
Precipitation Strengthenable NiTiPd High Temperature Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Bigelow, Glen; Garg, Anita; Benafan, Othmane; Noebe, Ronald; Gaydosh, Darrell; Padula, Santo, II
2017-01-01
In binary NiTi alloys, it has long been known that Ni-rich alloys can be heat treated to produce precipitates which both strengthen the matrix against dislocations and improve the behavior of the material under thermal and mechanical cycling. Within recent years, the same effect has been observed in Ni-rich NiTiHf high temperature shape memory alloys and heat treatment regimens have been defined which will reliably produce improved properties. In NiTiPd alloys, precipitation has also been observed, but studies are still underway to define reliable heat treatments and compositions which will provide a balance of strengthening and good thermomechanical properties. For this study, a series of NiTi-32 at.Pd alloys was produced to determine the effect of changing nickeltitanium content on the transformation behavior and heat treatability of the material. Samples were aged at temperatures between 350C and 450C for times up to 100 hours. Actuation type behavior was evaluated using uniaxial constant force thermal cycling (UCFTC) to determine the effect of composition and aging on the material behavior. TEMSEM was used to evaluate the microstructure and determine the types of precipitates formed. The correlation between composition, heat treat, microstructure, and thermomechanical behavior will be addressed and discussed.
Healing efficiency of shape memory polyurethane fiber reinforced syntactic foam under applied load
NASA Astrophysics Data System (ADS)
Ogunmekan, Babatunde
Shape memory composite materials have received a great deal of interest in recent structural developments, both in sandwich and in lightweight structures. Experimental procedures involving the free body healing of these materials have been carried out; however, it is important to investigate the healing behaviors of these SMP materials while under load. In this study, syntactic foams reinforced with strain-hardened short-shape memory polyurethane fibers (SMPUFs) were prepared to evaluate their ability to heal wide-opened cracks using the two-step biomimetic close-then-heal (CTH) self-healing scheme while under varying loads. The syntactic foam samples manufactured consisted of an epoxy matrix with dispersed thermoplastic particles, glass microballoons and short SMPUFs. The SMPUF strands were cold-drawn (stretched-then-released) for up to four cycles and then cut to 10 mm short fibers before casting the polymer matrix. Three types of syntactic foam specimens, consisting of 5%, 10%, and 15% thermoplastic particle volume fraction compositions, respectively, were manufactured, and notched beam samples were then prepared. Fracture-healing by uniaxial tension was conducted for five cycles on each sample. Material characterization techniques, such as scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), were utilized to highlight the crack healing characteristics and thermal properties. In addition, a high-resolution charge-coupled device (CCD) camera with a resolution of 3.7 x 3.7 μm/pixel was used to capture the crack tip opening displacement (CTOD). It is seen that the healing ability of the composite varies with changes in both the load carried and the volume fraction of thermoplastic particles. As the thermoplastic volume fraction increased from 5% to 10% to 15%, the tensile strength values recorded decreased, but there was also an increase in the healing efficiency. Moreover, SEM images revealed partial healing in samples with lower thermoplastic particle contents.
Polymer-dispersed liquid crystal elastomers
NASA Astrophysics Data System (ADS)
Rešetič, Andraž; Milavec, Jerneja; Zupančič, Blaž; Domenici, Valentina; Zalar, Boštjan
2016-10-01
The need for mechanical manipulation during the curing of conventional liquid crystal elastomers diminishes their applicability in the field of shape-programmable soft materials and future applications in additive manufacturing. Here we report on polymer-dispersed liquid crystal elastomers, novel composite materials that eliminate this difficulty. Their thermal shape memory anisotropy is imprinted by curing in external magnetic field, providing for conventional moulding of macroscopically sized soft, thermomechanically active elastic objects of general shapes. The binary soft-soft composition of isotropic elastomer matrix, filled with freeze-fracture-fabricated, oriented liquid crystal elastomer microparticles as colloidal inclusions, allows for fine-tuning of thermal morphing behaviour. This is accomplished by adjusting the concentration, spatial distribution and orientation of microparticles or using blends of microparticles with different thermomechanical characteristics. We demonstrate that any Gaussian thermomechanical deformation mode (bend, cup, saddle, left and right twist) of a planar sample, as well as beat-like actuation, is attainable with bilayer microparticle configurations.
Nonlinear analyses of composite aerospace structures in sonic fatigue
NASA Technical Reports Server (NTRS)
Mei, Chuh
1993-01-01
This report summarizes the semiannual research progress, accomplishments, and future plans performed under the NASA Langley Research Center Grant No. NAG-1-1358. The primary research effort of this project is the development of analytical methods for the prediction of nonlinear random response of composite aerospace structures subjected to combined acoustic and thermal loads. The progress, accomplishments, and future plates on four sonic fatigue research topics are described. The sonic fatigue design and passive control of random response of shape memory alloy hybrid composites presented in section 4, which is suited especially for HSCT, is a new initiative.
Nonlinear analyses of composite aerospace structures in sonic fatigue
NASA Astrophysics Data System (ADS)
Mei, Chuh
1993-06-01
This report summarizes the semiannual research progress, accomplishments, and future plans performed under the NASA Langley Research Center Grant No. NAG-1-1358. The primary research effort of this project is the development of analytical methods for the prediction of nonlinear random response of composite aerospace structures subjected to combined acoustic and thermal loads. The progress, accomplishments, and future plates on four sonic fatigue research topics are described. The sonic fatigue design and passive control of random response of shape memory alloy hybrid composites presented in section 4, which is suited especially for HSCT, is a new initiative.
Li, Huafang; Cong, Ying; Zheng, Yufeng; Cui, Lishan
2016-03-01
In the present study, a novel kind of NiTiW shape memory alloy with chemical composition of Ni43.5Ti45.5W11 (at.%) has been successfully developed with excellent X-ray radiopacity by the introduction of pure W precipitates into the NiTi matrix phase. Its microstructure, X-ray radiopacity, mechanical properties, corrosion resistance in simulated body fluid, hemocompatibility and in vitro cytocompatibility were systematically investigated. The typical microstructural feature of NiTiW alloy at room temperature was tiny pure W particles randomly distributing in the NiTi matrix phase. The presence of W precipitates was found to result in enhanced radiopacity and microhardness of NiTiW alloy in comparison to that of NiTi binary alloy. NiTiW alloy exhibits excellent shape memory effect, and a maximum shape recovery ratio of about 30% was obtained with a total prestrain of 8% for the NiTiW alloy sample. In the electrochemical test, NiTiW alloy presented an excellent corrosion resistance in simulated body fluid, comparable to that of NiTi alloy. Hemocompatibility tests indicated that the NiTiW alloy has quite low hemolysis (lower than 0.5%) and the adherent platelet showed round shape without pseudopod. Besides, in vitro cell viability tests demonstrated that the cell viability is all above 90%, and the cells spread well on the NiTiW alloy, having polygon or spindle healthy morphology. The hemocompatibility tests, in vitro cell viability tests and morphology observation indicated that the NiTiW shape memory alloys have excellent biocompatibility. The excellent X-ray radiopacity makes the NiTiW alloys show obvious advantages in orthopedic, stomatological, neurological and cardiovascular domains where radiopacity is quite important factor in order to guarantee successful implantation. Copyright © 2015 Elsevier B.V. All rights reserved.
Analysis and optimization of the active rigidity joint
NASA Astrophysics Data System (ADS)
Manzo, Justin; Garcia, Ephrahim
2009-12-01
The active rigidity joint is a composite mechanism using shape memory alloy and shape memory polymer to create a passively rigid joint with thermally activated deflection. A new model for the active rigidity joint relaxes constraints of earlier methods and allows for more accurate deflection predictions compared to finite element results. Using an iterative process to determine the strain distribution and deflection, the method demonstrates accurate results for both surface bonded and embedded actuators with and without external loading. Deflection capabilities are explored through simulated annealing heuristic optimization using a variety of cost functions to explore actuator performance. A family of responses presents actuator characteristics in terms of load bearing and deflection capabilities given material and thermal constraints. Optimization greatly expands the available workspace of the active rigidity joint from the initial configuration, demonstrating specific work capabilities comparable to those of muscle tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reading, Matthew W.
Technologies for making self-erecting structures are described herein. An exemplary self-erecting structure comprises a plurality of shape-memory members that connect two or more hub components. When forces are applied to the self-erecting structure, the shape-memory members can deform, and when the forces are removed the shape-memory members can return to their original pre-deformation shape, allowing the self-erecting structure to return to its own original shape under its own power. A shape of the self-erecting structure depends on a spatial orientation of the hub components, and a relative orientation of the shape-memory members, which in turn depends on an orientation ofmore » joining of the shape-memory members with the hub components.« less
Residual stresses in injection molded shape memory polymer parts
NASA Astrophysics Data System (ADS)
Katmer, Sukran; Esen, Huseyin; Karatas, Cetin
2016-03-01
Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.
Memory color of natural familiar objects: effects of surface texture and 3-D shape.
Vurro, Milena; Ling, Yazhu; Hurlbert, Anya C
2013-06-28
Natural objects typically possess characteristic contours, chromatic surface textures, and three-dimensional shapes. These diagnostic features aid object recognition, as does memory color, the color most associated in memory with a particular object. Here we aim to determine whether polychromatic surface texture, 3-D shape, and contour diagnosticity improve memory color for familiar objects, separately and in combination. We use solid three-dimensional familiar objects rendered with their natural texture, which participants adjust in real time to match their memory color for the object. We analyze mean, accuracy, and precision of the memory color settings relative to the natural color of the objects under the same conditions. We find that in all conditions, memory colors deviate slightly but significantly in the same direction from the natural color. Surface polychromaticity, shape diagnosticity, and three dimensionality each improve memory color accuracy, relative to uniformly colored, generic, or two-dimensional shapes, respectively. Shape diagnosticity improves the precision of memory color also, and there is a trend for polychromaticity to do so as well. Differently from other studies, we find that the object contour alone also improves memory color. Thus, enhancing the naturalness of the stimulus, in terms of either surface or shape properties, enhances the accuracy and precision of memory color. The results support the hypothesis that memory color representations are polychromatic and are synergistically linked with diagnostic shape representations.
High-Temperature Shape Memory Polymers
NASA Technical Reports Server (NTRS)
Yoonessi, Mitra; Weiss, Robert A.
2012-01-01
physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing radiation ( radiation, neutrons), or by chemical crosslinking to form a covalent permanent network. With respect to other shape memory polymers, this invention is novel in that it describes the use of a thermoplastic composition that can be thermally molded or solution-cast into complex "permanent" shapes, and then reheated or redissolved and recast from solution to prepare another shape. It is also unique in that the shape memory behavior is provided by a non-polymer additive.
2015-08-10
representative of the main barrel of a tank or structural health monitoring, for example. We have been working on determining the proper shape of the sensor...needed to be addressed, namely cantilever beam vibrations that were representative of the main barrel of a tank or structural health monitoring, for...MWCNT was made using a frit compression technique; the morphological characterization of the PANI/MWCNT film; its electrical resistance as a
NASA Astrophysics Data System (ADS)
Sun, Tao; Xue, Ning; Liu, Chao; Wang, Chao; He, Jin
2015-11-01
In this investigation, (Si, O, N)/(Ti, O, N)/Ti composite coating was synthesized on a NiTi shape memory alloy (SMA) substrate (50.8 at.% Ni) via plasma immersion ion implantation and deposition (PIIID) followed by magnetron sputtering, with the aim of promoting bioactivity and biocompatibility of NiTi SMAs. Nano featured (Si, O, N)/(Ti, O, N)/Ti coating was approximate 0.84 ± 0.05 μm in thickness, and energy dispersive X-ray (EDX) spectroscopy showed that Ni element was depleted from the surface of coated samples. X-ray diffraction (XRD) did not identify the phase composition of the (Si, O, N)/(Ti, O, N)/Ti coating, probably due to its thin thickness and poor crystalline resulting from low-temperature coating processes (<200 °C). X-ray photoelectron spectroscopy (XPS) analyses confirmed that a Ni-free surface was formed and Si element was incorporated into the composite coating via the magnetron sputtering process. Additionally, phase transformation behaviors of uncoated and coated NiTi SMA samples were characterized using differential scanning calorimetry (DSC). Wear and corrosion resistance of uncoated and coated NiTi SMA samples were evaluated using ball-on-disc tests and potentio-dynamic polarization curves, respectively. The (Si, O, N)/(Ti, O, N)/Ti coated NiTi SMA samples showed enhanced wear and corrosion resistance. Furthermore, the (Si, O, N)/(Ti, O, N)/Ti composite coating facilitated apatite formation in simulated body fluid (SBF) and rendered NiTi SMA bioactivity.
Guide wire extension for shape memory polymer occlusion removal devices
Maitland, Duncan J [Pleasant Hill, CA; Small, IV, Ward; Hartman, Jonathan [Sacramento, CA
2009-11-03
A flexible extension for a shape memory polymer occlusion removal device. A shape memory polymer instrument is transported through a vessel via a catheter. A flexible elongated unit is operatively connected to the distal end of the shape memory polymer instrument to enhance maneuverability through tortuous paths en route to the occlusion.
Biodegradable Shape Memory Polymers in Medicine.
Peterson, Gregory I; Dobrynin, Andrey V; Becker, Matthew L
2017-11-01
Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multifunctional carbon nano-paper composite
NASA Astrophysics Data System (ADS)
Zhang, Zhichun; Chu, Hetao; Wang, Kuiwen; Liu, Yanjv; Leng, Jinsong
2013-08-01
Carbon Nanotube (CNT), for its excellent mechanical, electrical properties and nano size, large special surface physical property, become the most promising material. But carbon nanotube can still fabricated in micro dimension, and can't be made into macro size, so to the carbon nanotube filled composite can't explore the properties of the CNT. Carbon nano-paper is made of pure CNT, with micro pore, and it turn micro sized CNT into macro shaped membrane. Based on the piezo-resistivity and electrical conductivity of the carbon nano-paper, we used the carbon nano-paper as functional layers fabricate functional composite, and studies its strain sensing, composite material deicing and shape memory polymer (SMP) material electric actuation performance. The results shown that the resin can pregnant the nano paper, and there was good bond for nano paper and composite. The functional composite can monitoring the strain with high sensitivity comparing to foil strain gauge. The functional composite can be heated via the carbon nano paper with low power supply and high heating rate. The composite has good deicing and heat actuation performance to composite material. For the good strain sensing, electric conductivity and self-heating character of the carbon nano-paper composite, it can be used for self sensing, anti lightning strike and deicing of composite materials in aircrafts and wind turbine blades.
Mechanical and functional behavior of high-temperature Ni-Ti-Pt shape memory alloys
Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; ...
2016-01-22
A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amountsmore » of Ti 2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. As a result, the unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.« less
Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states.
Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W; Edmondson, Steve; Malmström, Eva
2016-08-21
We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.
Shape-Memory-Alloy Actuator For Flight Controls
NASA Technical Reports Server (NTRS)
Barret, Chris
1995-01-01
Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.
The response of macrophages to a Cu-Al-Ni shape memory alloy.
Colić, Miodrag; Tomić, Sergej; Rudolf, Rebeka; Anzel, Ivan; Lojen, Gorazd
2010-09-01
Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but little is known about their biocompatibility. The aim of this work was to study the response of rat peritoneal macrophages (PMØ) to a Cu-Al-Ni SMA in vitro, by measuring the functional activity of mitochondria, necrosis, apoptosis, and production of proinflammatory cytokines. Rapidly solidified (RS) thin ribbons were used for the tests. The control alloy was a permanent mold casting of the same composition, but without the shape memory effect. Our results showed that the control alloy was severely cytotoxic, whereas RS ribbons induced neither necrosis nor apoptosis of PMØ. These findings correlated with the data that RS ribbons are significantly more resistant to corrosion compared to the control alloy, as judged by the lesser release of Cu and Ni in the conditioning medium. However, the ribbons generated intracellular reactive oxygen species and upregulated the production of IL-6 by PMØ. These effects were almost completely abolished by conditioning the RS ribbons for 5 weeks. In conclusion, RS significantly improves the corrosion stability and biocompatibility of Cu-Al-Ni SMA. The biocompatibility of this functional material could be additionally enhanced by conditioning the ribbons in cell culture medium.
Characterisation of melt spun Ni-Ti shape memory Ribbons' microstructure
NASA Astrophysics Data System (ADS)
Mehrabi, Kambiz; Brunčko, Mihael; Kneissl, Albert C.; Čolič, Miodrag; Stamenković, Dragoslav; Ferčec, Janko; Anžel, Ivan; Rudolf, Rebeka
2012-06-01
NiTi alloys are the most technologically important medical Shape Memory Alloys in a wide range of applications used in Orthopaedics, Neurology, Cardiology and interventional Radiology as guide-wires, self-expandable stents, stent grafts, inferior vena cava filters and clinical instruments. This paper discusses the use of rapid solidification by the melt spinning method for the preparation of thin NiTi ribbons for medical uses. Generally, the application of rapid solidification via melt-spinning can change the microstructure drastically, which improves ductility and shape memory characteristics and leads to samples with small dimensions. As the increase in the wheel speed led to a reduced ribbon thickness, the cooling rate increased and, therefore, the martensitic substructure became finer. Furthermore, no transition from the crystalline phase to the amorphous phase was obtained by increasing the cooling rate, even at a wheel speed of 30 m/s. Specimens for our metallographic investigation were cut from the longitudinal cross sections of melt-spun ribbons. Conventional TEM studies were carried out with an acceleration voltage of 120 kV. Additionally, the chemical composition of the samples was examined with a TEM equipped with an EDX analyser. The crystallographic structure was determined using Bragg-Brentano x-ray diffraction with Cu-Kα radiation at room temperature.
Robust Vacuum-/Air-Dried Graphene Aerogels and Fast Recoverable Shape-Memory Hybrid Foams.
Li, Chenwei; Qiu, Ling; Zhang, Baoqing; Li, Dan; Liu, Chen-Yang
2016-02-17
New graphene aerogels can be fabricated by vacuum/air drying, and because of the mechanical robustness of the graphene aerogels, shape-memory polymer/graphene hybrid foams can be fabricated by a simple infiltration-air-drying-crosslinking method. Due to the superelasticity, high strength, and good electrical conductivity of the as-prepared graphene aerogels, the shape-memory hybrid foams exhibit excellent thermotropical and electrical shape-memory properties, outperforming previously reported shape-memory polymer foams. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On a novel self-regulating shape memory polymer composite
NASA Astrophysics Data System (ADS)
Gao, Fei; Son, Seyul; Park, Kyungmook; Biggs, David; Andrews, Courtney; Mockensturm, Eric M.; Goulbourne, Nakhiah C.
2011-04-01
Polyurethane shape memory polymers (PU-SMPs) are active materials that can be transformed into complex shapes with the ability to recover their original shape even after undergoing large deformations. Because of their light weight, large recoverability, low cost, and high compliance, SMPs can be potentially employed as actuators, MEMS devices, temperature sensors, and damping elements to name a few. One of the key challenges in implementing SMPs is the response time which is limited by the method of heating and cooling and the material. Unlike shape memory alloys, SMPs can be activated by multiple stimuli including lasers, resistive heating, electric fields, and magnetic fields. While these methods may provide an efficient way of heating the SMP, they rely on the slow process of passive conduction for cooling. In this paper, a self regulating SMP (SR-SMP) composite is introduced, whereby a novel heating and cooling system consisting of embedded silica capillary tubes in the SMP (DiAPLEX® MP4510: SMP Technologies, Inc.) has been developed. The tubes are used to pump hot/cold fluid through the SMP membrane and hence provide a local temperature source. In order to show the effectiveness and efficiency of the mechanism, the thermomechanical response of the SR-SMP is compared experimentally to a SMP with "conventional" i.e. global heating and cooling mechanisms. It is shown that the SR-SMP has a faster thermomechanical response. It has been demonstrated previously that soft SMPs can be controlled by an electric field while in the rubbery phase, thus taking advantage of the Maxwell stress or electrostatic stress effect. Thermomechanical characterization of PU-SMPs is described for different weight percentages of resin (Diphenylmethane-4, 4'-diisocyanate) and hardener (1,4-Butanediol). Varying the percent hardener reduced the effective cross-link density of the polymer and hence the thermomechanical properties. The electromechanical response of pure SMP and SR-SMP is predicted numerically. The numerical computation indicates that the softer SMPs (resin:hardener = 5:4, 8:7, and 9:8) could be used as electroactive polymers.
Shape memory alloy wires turn composites into smart structures: II. Manufacturing and properties
NASA Astrophysics Data System (ADS)
Michaud, Veronique J.; Schrooten, Jan; Parlinska, Magdelena; Gotthardt, Rolf; Bidaux, Jacques-Eric
2002-07-01
The manufacturing route and resulting properties of adaptive composites are presented in the second part of this European project report. Manufacturing was performed using a specially designed frame to pre-strain the SMA wires, embed them into Kevlar-epoxy prepregs, and maintain them during the curing process in an autoclave. Composite compounds were then tested for strain response, recovery stress response in a clamped-clamped configuration, as well as vibrational response. Through the understanding of the transformational behavior of constrained SMA wires, interesting and unique functional properties of SMA composites could be measured, explained and modeled. Large recovery stresses and as a consequence, a change in vibrational response in a clamped- clamped condition, or a reversible shape change in a free standing condition, could be generated by the SMA composites in a controllable way. These properties were dependent on composite design aspects and exhibited a reproducible and stable behavior, provided that the properties of the matrix, of the wires and the processing route were carefully optimized. In conclusion, the achievements of this effort in areas such as thermomechanics, transformational and vibrational behavior and durability of SMA based composites provide a first step towards a reliable materials design, and potentially an industrial application.
Design and application of shape memory actuators
NASA Astrophysics Data System (ADS)
Mertmann, M.; Vergani, G.
2008-05-01
The use of shape memory alloys in actuators allows the development of robust, simple and lightweight elements for application in a multitude of different industries. Over the years, the intermetallic compound Nickel-Titanium (NiTi or Nitinol) together with its ternary and quaternary derivates has gained general acceptance as a standard alloy. Even though as many as 99% of all shape memory actuator applications make use of Nitinol there are certain properties of this alloy system which require further research in order to find improvements and new markets: • Lack of higher transformation temperatures in the available alloys in order to open the field of automotive applications (Mf temperature > 80 °C) • Non-linearity in the electrical resistivity in order to improve the controllability of the actuator, • Wide hysteresis in the temperature-vs.-strain behaviour, which has a signi-ficant effect on both, the dynamics of the actuator and its controllability. Hence, there is a constant strive in the field towards an improvement of the related properties. However, these improvements are not always just alloy composition related. There is also a tremendous potential in the thermomechanical treatment of the material and in the design of the actuator. Significant improvement steps are already possible if the usage of the existent materials is optimized for the projected application and if the actuator system is designed in the most efficient way. This paper provides an overview about existent designs, applications and alloys for use in actuators, as well as examples of new shape memory actuator application with improved performance. It also gives an overview about general design rules and reflects about the strengths of the material and the related opportunities for its application.
NASA Astrophysics Data System (ADS)
Ju, Heng; Lin, Chengxin; Liu, Zhijie; Zhang, Jiaqi
2018-08-01
To reduce the residual stresses and improve the mechanical properties of laser weldments, produced with the restrained mixing uniform design method, a Fe-Mn-Si shape memory alloy (SMA) welding seam was formed inside the 304 stainless steel by laser welding with powder filling. The mass fraction, shape memory effect, and phase composition of the welding seam was measured by SEM-EDS (photometric analyser), bending recovery method, and XRD, respectively. An optical microscope was used to observe the microstructure of the Fe-Mn-Si SMA welding seam by solid solution and pre-deformation treatment. Meanwhile, the mechanical properties (residual stress distribution, tensile strength, microhardness and fatigue strength) of the laser welded specimen with an Fe-Mn-Si SMA welding seam (experimental material) and a 304 stainless steel welding seam (contrast material) were measured by a tensile testing machine hole drilling method and full cycle bending fatigue test. The results show that Fe15Mn5Si12Cr6Ni SMA welding seam was formed in situ with shape memory effect and stress-induced γ → ε martensite phase transformation characteristic. The residual stress of the experimental material is lower than that of the contrast material. The former has larger tensile strength, longer elongation and higher microhardness than the latter has. The experimental material and contrast material possess 249 and 136 bending fatigue cycles at the strain of 6%, respectively. The mechanisms by which mechanical properties of the experimental material are strengthened includes (1) release of the residual stress inside the Fe-Mn-Si SMA welding seam due to the stress-induced γ → ε martensite phase transformation and (2) energy absorption and plastic slip restraint due to the deformations in martensite and reverse phase transformation.
Almeida, Henrique V; Sathy, Binulal N; Dudurych, Ivan; Buckley, Conor T; O'Brien, Fergal J; Kelly, Daniel J
2017-01-01
Regenerating articular cartilage and fibrocartilaginous tissue such as the meniscus is still a challenge in orthopedic medicine. While a range of different scaffolds have been developed for joint repair, none have facilitated the development of a tissue that mimics the complexity of soft tissues such as articular cartilage. Furthermore, many of these scaffolds are not designed to function in mechanically challenging joint environments. The overall goal of this study was to develop a porous, biomimetic, shape-memory alginate scaffold for directing cartilage regeneration. To this end, a scaffold was designed with architectural cues to guide cellular and neo-tissue alignment, which was additionally functionalized with a range of extracellular matrix cues to direct stem cell differentiation toward the chondrogenic lineage. Shape-memory properties were introduced by covalent cross-linking alginate using carbodiimide chemistry, while the architecture of the scaffold was modified using a directional freezing technique. Introducing such an aligned pore structure was found to improve the mechanical properties of the scaffold, and promoted higher levels of sulfated glycosaminoglycans (sGAG) and collagen deposition compared to an isotropic (nonaligned) pore geometry when seeded with adult human stem cells. Functionalization with collagen improved stem cell recruitment into the scaffold and facilitated more homogenous cartilage tissue deposition throughout the construct. Incorporating type II collagen into the scaffolds led to greater cell proliferation, higher sGAG and collagen accumulation, and the development of a stiffer tissue compared to scaffolds functionalized with type I collagen. The results of this study demonstrate how both scaffold architecture and composition can be tailored in a shape-memory alginate scaffold to direct stem cell differentiation and support the development of complex cartilaginous tissues.
NASA Technical Reports Server (NTRS)
Quade, Derek J.; Jana, Sadhan C.; Morscher, Gregory N.; Kannan, Manigandan; McCorkle, Linda S.
2017-01-01
Nickel-titanium (NiTi) shape memory alloy (SMA) sections were embedded within carbon fiber reinforced polymer matrix composite (CFRPPMC) laminates and their tensile properties were evaluated with simultaneous monitoring of modal acoustic emissions. The test specimens were fabricated in three different layup configurations and two different thin film adhesives were applied to bond the SMA with the PMC. A trio of acoustic sensors were attached to the specimens during tensile testing to monitor the modal acoustic emission (AE) as the materials experienced mechanical failure. The values of ultimate tensile strengths, strains, and moduli were obtained. Cumulative AE energy of events and specimen failure location were determined. In conjunction, optical and scanning electron microscopy techniques were used to examine the break areas of the specimens. The analysis of AE data revealed failure locations within the specimens which were validated from the microscopic images. The placement of 90 deg plies in the outer ply gave the strongest acoustic signals during break as well as the cleanest break of the samples tested. Overlapping 0 deg ply layers surrounding the SMA was found to be the best scenario to prevent failure of the specimen itself.
High-Temperature Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Biffi, C. A.; Tuissi, A.
2014-10-01
In this paper, an experimental study of laser micro-processing on a Cu-Zr-based shape memory alloy (SMA), which is suitable for high-temperature (HT) applications, is discussed. A first evaluation of the interaction between a laser beam and Zr50Cu28Ni7Co15 HT SMA is highlighted. Single laser pulses at various levels of power and pulse duration were applied to evaluate their effect on the sample surfaces. Blind and through microholes were produced with sizes on the order of a few hundreds of microns; the results were characterized from the morphological viewpoint using a scanning electron microscope. The high beam quality allows the holes to be created with good circularity and little melted material around the hole periphery. An analysis of the chemical composition was performed using energy dispersive spectroscopy, revealing that compositional changes were limited, while important oxidation occurred on the hole surfaces. Additionally, laser micro-cutting tests were also proposed to evaluate the cut edge morphology and dimensions. The main result of this paper concerned the good behavior of the material upon interaction with the laser beam, which suggests that microfeatures can be successfully produced in this alloy.
NASA Astrophysics Data System (ADS)
Dulski, Mateusz; Dudek, Karolina; Grelowski, Michał; Kubacki, Jerzy; Hertlein, Justyna; Wojtyniak, Marcin; Goryczka, Tomasz
2018-04-01
A multifunctional composite structure consisting of resorbable tricalcium phosphate with non-resorbable hydroxyapatite and NiTi shape memory alloy (SMA) has been manufactured to develop a biocompatible system for long-term implant applications. The hybrid system has been vacuum sintered to consolidate and form chemical binding between phosphate biomaterials and NiTi SMA. In this context, the impact of sintering on biomaterial's features in relation to initial material has been analyzed using a combination of structural and surface sensitive approaches. Moreover, a partial decomposition of the NiTi parent phase to the equilibrium Ti2Ni with cubic structure, and non-equilibrium Ti3Ni4 with hexagonal structure has been detected. Moreover, a sintering has provided a reconstruction of the orthophosphate surface through the disintegration of calcium phosphate material and increase of hydroxyapatite with smaller particles in volume. The biomaterial surface has become more enriched in calcium in relation to the initial composition, with a simultaneous decline of the roughness parameters due to the gradual consolidation of orthophosphates. Finally, surface modification accompanied with heat treatment has led to an increase of surface Young's modulus as an effect of partial recrystallization of calcium phosphates.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Huang, Jen-Kuang
1996-01-01
The High Speed Civil Transport (HSCT) will have to be designed to withstand high aerodynamic load at supersonic speeds (panel flutter) and high acoustic load (acoustic or sonic fatigue) due to fluctuating boundary layer or jet engine acoustic pressure. The thermal deflection of the skin panels will also alter the vehicle's configuration, thus it may affect the aerodynamic characteristics of the vehicle and lead to poor performance. Shape memory alloys (SMA) have an unique ability to recover large strains completely when the alloy is heated above the characteristic transformation (austenite finish T(sub f)) temperature. The recovery stress and elastic modulus are both temperature dependent, and the recovery stress also depends on the initial strain. An innovative concept is to utilize the recovery stress by embedding the initially strained SMA wire in a graphite/epoxy composite laminated panel. The SMA wires are thus restrained and large inplane forces are induced in the panel at elevated temeperatures. By embedding SMA in composite panel, the panel becomes much stiffer at elevated temperatures. That is because the large tensile inplane forces induced in the panel from the SMA recovery stress. A stiffer panel would certainly yield smaller dynamic responses.
Biaxial Fatigue Behavior of Niti Shape Memory Alloy
2005-03-01
BIAXIAL FATIGUE BEHAVIOR OF NiTi SHAPE MEMORY ALLOY THESIS Daniel M. Jensen, 1st Lieutenant...BIAXIAL FATIGUE BEHAVIOR OF NiTi SHAPE MEMORY ALLOY THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of...FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/GA/ENY/05-M06 BIAXIAL FATIGUE BEHAVIOR OF NiTi SHAPE MEMORY ALLOY Daniel M. Jensen
My Experience with Ti-Ni-Based and Ti-Based Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Miyazaki, Shuichi
2017-12-01
The present author has been studying shape memory alloys including Cu-Al-Ni, Ti-Ni-based, and Ni-free Ti-based alloys since 1979. This paper reviews the present author's research results for the latter two materials since 1981. The topics on the Ti-Ni-based alloys include the achievement of superelasticity in Ti-Ni alloys through understanding of the role of microstructures consisting of dislocations and precipitates, followed by the contribution to the development of application market of shape memory effect and superelasticity, characterization of the R-phase and monoclinic martensitic transformations, clarification of the basic characteristics of fatigue properties, development of sputter-deposited shape memory thin films and fabrication of prototypes of microactuators utilizing thin films, development of high temperature shape memory alloys, and so on. The topics of Ni-free Ti-based shape memory alloys include the characterization of the orthorhombic phase martensitic transformation and related shape memory effect and superelasticity, the effects of texture, omega phase and adding elements on the martensitic transformation and shape memory properties, clarification of the unique effects of oxygen addition to induce non-linear large elasticity, Invar effect and heating-induced martensitic transformation, and so on.
NASA Astrophysics Data System (ADS)
Han, X. L.; Song, K. K.; Zhang, L. M.; Xing, H.; Sarac, B.; Spieckermann, F.; Maity, T.; Mühlbacher, M.; Wang, L.; Kaban, I.; Eckert, J.
2018-03-01
In this work, the microstructure and mechanical properties of rapidly solidified Ti50- x/2Ni50- x/2Hf x ( x = 0, 2, 4, 6, 8, 10, and 12 at.%) and Ti50- y/2Ni50- y/2Si y ( y = 1, 2, 3, 5, 7, and 10 at.%) shape memory alloys (SMAs) were investigated. The sequence of the phase formation and transformations in dependence on the chemical composition is established. Rapidly solidified Ti-Ni-Hf or Ti-Ni-Si SMAs are found to show relatively high yield strength and large ductility for specific Hf or Si concentrations, which is due to the gradual disappearance of the phase transformation from austenite to twinned martensite and the predominance of the phase transformation from twinned martensite to detwinned martensite during deformation as well as to the refinement of dendrites and the precipitation of brittle intermetallic compounds.
NASA Astrophysics Data System (ADS)
Saleeb, A. F.; Natsheh, S. H.; Owusu-Danquah, J. S.; Dhakal, B.
2017-05-01
In this work, we address two of the main challenges encountered in constitutive modeling of the thermomechanical behaviors of actuation-based shape memory alloys. Firstly, the complexity of behavior under cyclic thermomechanical loading is properly handled, particularly with regard to assessing the long-term dimensional stability. Secondly, we consider the marked differences in behavior distinguishing virgin-versus-trained SMA material. To this end, we utilize a set of experimental data comprehensive in scope to cover all the anticipated operational conditions for one and same SMA alloy, having a specific chemical composition with fixed heat treatment. More specifically, this includes twenty-four different tests from the recent SMA experimental literature for the Ni49.9Ti50.1 material having austenite finish temperature above 100 °C. Under all the different conditions investigated, the model results were found to be in very good agreement with the experimental measurements.
NASA Astrophysics Data System (ADS)
Biffi, Carlo Alberto; Previtali, Barbara; Tuissi, Ausonio
Cellular shape memory alloys (SMAs) are very promising smart materials able to combine functional properties of the material with lightness, stiffness, and damping capacity of the cellular structure. Their processing with low modification of the material properties remains an open question. In this work, the laser weldability of CuZnAl SMA in the form of open cell foams was studied. The cellular structure was proved to be successfully welded in lap joint configuration by using a thin plate of the same alloy. Softening was seen in the welded bead in all the investigated ranges of process speed as well as a double stage heat affected zone was identified due to different microstructures; the martensitic transformation was shifted to higher temperatures and the corresponding peaks were sharper with respect to the base material due to the rapid solidification of the material. Anyways, no compositional variations were detected in the joints.
Analytical model for a laminated shape memory alloy beam with piezoelectric layers
NASA Astrophysics Data System (ADS)
Viet, N. V.; Zaki, W.; Umer, R.
2018-03-01
We propose an analytical model for a laminated beam consisting of a superelastic shape memory alloy (SMA) core layer bonded to two piezoelectric layers on its top and bottom surfaces. The model accounts for forward and reverse phase transformation between austenite and martensite during a full isothermal loading-unloading cycle starting a full austenite in the SMA layer. In particular, the laminated composite beam has a rectangular cross section and is fixed at one end while the other end is subjected to a concentrated transverse force acting at the tip. The moment-curvature relation is analytically derived. The generated electric displacement output from the piezoelectric layers is then determined using the linear piezoelectric theory. The results are compared to 3D simulations using finite element analysis (FEA). The comparison shows good agreement in terms of electric displacement, in general, throughout the loading cycle.
NASA Astrophysics Data System (ADS)
Li, M. P.; Sun, Q. P.
2018-01-01
We investigate the roles of grain size (lg) and grain boundary thickness (lb) on the stress-induced phase transition (PT) behaviors of nanocrystalline shape memory alloys (SMAs) by using a Core-shell type "crystallite-amorphous composite" model. A non-dimensionalized length scale lbarg(=lg /lb) is identified as the governing parameter which is indicative of the energy competition between the crystallite and the grain boundary. Closed form analytical solutions of a reduced effective 1D model with embedded microstructure length scales of lg and lb are presented in this paper. It is shown that, with lbarg reduction, the energy of the elastic non-transformable grain boundary will gradually become dominant in the phase transition process, and eventually bring fundamental changes of the deformation behaviors: breakdown of two-phase coexistence and vanishing of superelastic hysteresis. The predictions are supported by experimental data of nanocrystalline NiTi SMAs.
Shape memory polymer actuator and catheter
Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.
2004-05-25
An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.
Shape memory polymer actuator and catheter
Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.
2007-11-06
An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.
NASA Astrophysics Data System (ADS)
Böttcher, J.; Jahn, M.; Tatzko, S.
2017-12-01
Pseudoelastic shape memory alloys exhibit a stress-induced phase transformation which leads to high strains during deformation of the material. The stress-strain characteristic during this thermomechanical process is hysteretic and results in the conversion of mechanical energy into thermal energy. This energy conversion allows for the use of shape memory alloys in vibration reduction. For the application of shape memory alloys as vibration damping devices a dynamic modeling of the material behavior is necessary. In this context experimentally determined material parameters which accurately represent the material behavior are essential for a reliable material model. Subject of this publication is the declaration of suitable material parameters for pseudoelastic shape memory alloys and the methodology of their identification from experimental investigations. The used test rig was specifically designed for the characterization of pseudoelastic shape memory alloys.
Hippocampal atrophy in people with memory deficits: results from the population-based IPREA study.
Ferrarini, Luca; van Lew, Baldur; Reiber, Johan H C; Gandin, Claudia; Galluzzo, Lucia; Scafato, Emanuele; Frisoni, Giovanni B; Milles, Julien; Pievani, Michela
2014-07-01
Clinical studies have shown that hippocampal atrophy is present before dementia in people with memory deficits and can predict dementia development. The question remains whether this association holds in the general population. This is of interest for the possible use of hippocampal atrophy to screen population for preventive interventions. The aim of this study was to assess hippocampal volume and shape abnormalities in elderly adults with memory deficits in a cross-sectional population-based study. We included individuals participating in the Italian Project on the Epidemiology of Alzheimer Disease (IPREA) study: 75 cognitively normal individuals (HC), 31 individuals with memory deficits (MEM), and 31 individuals with memory deficits not otherwise specified (MEMnos). Hippocampal volumes and shape were extracted through manual tracing and the growing and adaptive meshes (GAMEs) shape-modeling algorithm. We investigated between-group differences in hippocampal volume and shape, and correlations with memory deficits. In MEM participants, hippocampal volumes were significantly smaller than in HC and were mildly associated with worse memory scores. Memory-associated shape changes mapped to the anterior hippocampus. Shape-based analysis detected no significant difference between MEM and HC, while MEMnos showed shape changes in the posterior hippocampus compared with HC and MEM groups. These findings support the discriminant validity of hippocampal volumetry as a biomarker of memory impairment in the general population. The detection of shape changes in MEMnos but not in MEM participants suggests that shape-based biomarkers might lack sensitivity to detect Alzheimer's-like pathology in the general population.
Characterizing Effects of Nitric Oxide Sterilization on tert-Butyl Acrylate Shape Memory Polymers
NASA Astrophysics Data System (ADS)
Phillippi, Ben
As research into the potential uses of shape memory polymers (SMPs) as implantable medical devices continues to grow and expand, so does the need for an accurate and reliable sterilization mechanism. The ability of an SMP to precisely undergo a programmed shape change will define its ability to accomplish a therapeutic task. To ensure proper execution of the in vivo shape change, the sterilization process must not negatively affect the shape memory behavior of the material. To address this need, this thesis investigates the effectiveness of a benchtop nitric oxide (NOx) sterilization process and the extent to which the process affects the shape memory behavior of a well-studied tert-Butyl Acrylate (tBA) SMP. Quantifying the effects on shape memory behavior was performed using a two-tiered analysis. A two-tiered study design was used to determine if the sterilization process induced any premature shape recovery and to identify any effects that NOx has on the overall shape memory behavior of the foams. Determining the effectiveness of the NOx system--specially, whether the treated samples are more sterile/less contaminated than untreated--was also performed with a two-tiered analysis. In this case, the two-tiered analysis was employed to have a secondary check for contamination. To elaborate, all of the samples that were deemed not contaminated from the initial test were put through a second sterility test to check for contamination a second time. The results of these tests indicated the NOx system is an effective sterilization mechanism and the current protocol does not negatively impact the shape memory behavior of the tBA SMP. The samples held their compressed shape throughout the entirety of the sterilization process. Additionally, there were no observable impacts on the shape memory behavior induced by NOx. Lastly, the treated samples demonstrated lower contamination than the untreated. This thesis demonstrates the effectiveness of NOx as a laboratory scale sterilization mechanism for heat triggered shape memory polymers. The shape memory analysis indicated that the magnitude of the length changes induced by NOx is small enough that it does not make a statistically significant impact on the shape memory behavior of the foams. Additionally, there were no observable effects on the shape memory behavior induced by NOx. The results further indicated the NOx system is effective at sterilizing porous scaffolds, as none of the sterilized samples showed contamination. Testing methods proved to be effective because the initial sterility test was able to identify all of the contaminated samples and preliminary results indicated that NOx sterilization improves the sterility of the foams.
Scale up of NiTi shape memory alloy production by EBM
NASA Astrophysics Data System (ADS)
Otubo, J.; Rigo, O. D.; Moura Neto, C.; Kaufman, M. J.; Mei, P. R.
2003-10-01
The usual process to produce NiTi shape memory alloy is by vacuum induction melting (VIM) using a graphite crucible, which causes contamination of the melt with carbon. Contamination with oxygen originates from the residual oxygen inside the melting chamber. An alternative process to produce NiTi alloys is by electron beam melting (EBM) using a water-cooled copper crucible that eliminates carbon contamination, and the oxygen contamination would be minimal due to operation in a vacuum of better than 10^{-2} Pa. In a previous work, it was demonstrated that the technique is feasible for button shaped samples weighing around 30g. The present work presents the results on the scale up program that enables the production of larger samples/ingots. The results are very promising in terms of chemical composition homogeneity as well as in terms of carbon contamination, the latter being four to ten times lower than the commercially-produced VIM products, and in terms of final oxygen content which is shown to depend primarily on the starting raw materials.
Shape memory effect and super elasticity. Its dental applications.
Kotian, R
2001-01-01
The shape memory alloys are quite fascinating materials characterized by a shape memory effect and super elasticity which ordinary metals do not have. This unique behaviour was first found in a Au-47.5 at % Cd alloy in 1951, and was published in 1963 by the discovery of Ti-Ni alloy. Shape memory alloys now being practically used as new functional alloys for various dental and medical applications.
Characterization of Ternary NiTiPt High-Temperature Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Rios, Orlando; Noebe, Ronald; Biles, Tiffany; Garg, Anita; Palczer, Anna; Scheiman, Daniel; Seifert, Hans Jurgen; Kaufman, Michael
2005-01-01
Pt additions substituted for Ni in NiTi alloys are known to increase the transformation temperature of the alloy but only at fairly high Pt levels. However, until now only ternary compositions with a very specific stoichiometry, Ni50-xPtxTi50, have been investigated and then only to very limited extent. In order to learn about this potential high-temperature shape memory alloy system, a series of over twenty alloys along and on either side of a line of constant stoichiometry between NiTi and TiPt were arc melted, homogenized, and characterized in terms of their microstructure, transformation temperatures, and hardness. The resulting microstructures were examined by scanning electron microscopy and the phase compositions quantified by energy dispersive spectroscopy."Stoichiometric" compositions along a line of constant stoichiometry between NiTi to TiPt were essentially single phase but by any deviations from a stoichiometry of (Ni,Pt)50Ti50 resulted in the presence of at least two different intermetallic phases, depending on the overall composition of the alloy. Essentially all alloys, whether single or two-phase, still under went a martensitic transformation. It was found that the transformation temperatures were depressed with initial Pt additions but at levels greater than 10 at.% the transformation temperature increased linearly with Pt content. Also, the transformation temperatures were relatively insensitive to alloy stoichiometry within the range of alloys examined. Finally, the dependence of hardness on Pt content for a series of Ni50-xPtxTi50 alloys showed solution softening at low Pt levels, while hardening was observed in ternary alloys containing more than about 10 at.% Pt. On either side of these "stoichiometric" compositions, hardness was also found to increase significantly.
Wang, Yongwei; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin
2018-04-20
Degradable shape memory polymers (SMPs), especially for polyurethane-based SMPs, have shown great potential for biomedical applications. How to reasonably fabricate SMPs with the ideal combination of degradability, shape reconfigurability, and reprocessability is a critical issue and remains a challenge for medical disposable materials. Herein, a shape memory poly(urethane-urea) with synergetic triple dynamic covalent bonds is reported via embedding polycaprolactone unit into poly(urethane-urea) with the hindered urea dynamic bond. The single polymer network is biodegradable, thermadapt, and reprocessable, without sacrificing the outstanding shape memory performance. Such a shape memory network with plasticity and reprocessability is expected to have significant and positive impact on the medical device industry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shape memory alloy thaw sensors
Shahinpoor, M.; Martinez, D.R.
1998-04-07
A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states. 16 figs.
Shape memory alloy thaw sensors
Shahinpoor, Mohsen; Martinez, David R.
1998-01-01
A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.
Potential High-Temperature Shape-Memory-Alloy Actuator Material Identified
NASA Technical Reports Server (NTRS)
Noebe, Ronald D.; Gaydosh, Darrell J.; Biles, Tiffany A.; Garg, Anita
2005-01-01
Shape-memory alloys are unique "smart materials" that can be used in a wide variety of adaptive or "intelligent" components. Because of a martensitic solid-state phase transformation in these materials, they can display rather unusual mechanical properties including shape-memory behavior. This phenomenon occurs when the material is deformed at low temperatures (below the martensite finish temperature, Mf) and then heated through the martensite-to-austenite phase transformation. As the material is heated to the austenite finish temperature Af, it is able to recover its predeformed shape. If a bias is applied to the material as it tries to recover its original shape, work can be extracted from the shape-memory alloy as it transforms. Therefore, shape-memory alloys are being considered for compact solid-state actuation devices to replace hydraulic, pneumatic, or motor-driven systems.
NASA Astrophysics Data System (ADS)
Ghoneim, M. T.; Hussain, M. M.
2015-08-01
Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ˜260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygen and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.
Constitutive modeling of glassy shape memory polymers
NASA Astrophysics Data System (ADS)
Khanolkar, Mahesh
The aim of this research is to develop constitutive models for non-linear materials. Here, issues related for developing constitutive model for glassy shape memory polymers are addressed in detail. Shape memory polymers are novel material that can be easily formed into complex shapes, retaining memory of their original shape even after undergoing large deformations. The temporary shape is stable and return to the original shape is triggered by a suitable mechanism such heating the polymer above a transition temperature. Glassy shape memory polymers are called glassy because the temporary shape is fixed by the formation of a glassy solid, while return to the original shape is due to the melting of this glassy phase. The constitutive model has been developed to capture the thermo-mechanical behavior of glassy shape memory polymers using elements of nonlinear mechanics and polymer physics. The key feature of this framework is that a body can exist stress free in numerous natural configurations, the underlying natural configuration of the body changing during the process, with the response of the body being elastic from these evolving natural configurations. The aim of this research is to formulate a constitutive model for glassy shape memory polymers (GSMP) which takes in to account the fact that the stress-strain response depends on thermal expansion of polymers. The model developed is for the original amorphous phase, the temporary glassy phase and transition between these phases. The glass transition process has been modeled using a framework that was developed recently for studying crystallization in polymers and is based on the theory of multiple natural configurations. Using the same frame work, the melting of the glassy phase to capture the return of the polymer to its original shape is also modeled. The effect of nanoreinforcement on the response of shape memory polymers (GSMP) is studied and a model is developed. In addition to modeling and solving boundary value problems for GSMP's, problems of importance for CSMP, specifically a shape memory cycle (Torsion of a Cylinder) is solved using the developed crystallizable shape memory polymer model. To solve complex boundary value problems in realistic geometries a user material subroutine (UMAT) for GSMP model has been developed for use in conjunction with the commercial finite element software ABAQUS. The accuracy of the UMAT has been verified by testing it against problems for which the results are known.
NASA Astrophysics Data System (ADS)
Fei, Pengzhan; Cavicchi, Kevin
2011-03-01
A new ABA triblock copolymer of poly(styrene-block- methylacrylate-random-octadecylacrylate-block-styrene) (PS-b- PMA-r-PODA-b-PS) was synthesized by reversible addition fragmentation chain transfer polymerization. The triblock copolymer can generate a three-dimensional, physically crosslinked network by self-assembly, where the glassy PS domains physically crosslink the midblock chains. The side chain crystallization of the polyoctadecylacrylare (PODA) side chain generates a second reversible network enabling shape memory properties. Shape memory tests by uniaxial deformation and recovery of molded dog-bone shape samples demonstrate that shape fixities above 96% and shape recoveries above 98% were obtained for extensional strains up to 300%. An outstanding advantage of this shape memory material is that it can be very easily shaped and remolded by elevating the temperature to 140circ; C, and after remolding the initial shape memory properties are totally recovered by eliminating the defects introduced by the previous deformation cycling.
Carbon Nanotube Embedded Nanostructure for Biometrics.
Park, Juhyuk; Youn, Jae Ryoun; Song, Young Seok
2017-12-27
Low electric energy loss is a very important problem to minimize the decay of transferred energy intensity due to impedance mismatch. This issue has been dealt with by adding an impedance matching layer at the interface between two media. A strategy was proposed to improve the charge transfer from the human body to a biometric device by using an impedance matching nanostructure. Nanocomposite pattern arrays were fabricated with shape memory polymer and carbon nanotubes. The shape recovery ability of the nanopatterns enhanced durability and sustainability of the structure. It was found that the composite nanopatterns improved the current transfer by two times compared with the nonpatterned composite sample. The underlying mechanism of the enhanced charge transport was understood by carrying out a numerical simulation. We anticipate that this study can provide a new pathway for developing advanced biometric devices with high sensitivity to biological information.
Method for fabricating uranium alloy articles without shape memory effects
Banker, John G.
1985-01-01
Uranium-rich niobium and niobium-zirconium alloys possess a characteristic known as shape memory effect wherein shaped articles of these alloys recover their original shape when heated. The present invention circumvents this memory behavior by forming the alloys into the desired configuration at elevated temperatures with "cold" matched dies and maintaining the shaped articles between the dies until the articles cool to ambient temperature.
Method for fabricating uranium alloy articles without shape memory effects
Banker, J.G.
1980-05-21
Uranium-rich niobium and niobium-zirconium alloys possess a characteristic known as shape memory effect wherein shaped articles of these alloys recover their original shape when heated. The present invention circumvents this memory behavior by forming the alloys into the desired configuration at elevated temperatures with cold matched dies and maintaining the shaped articles between the dies until the articles cool to ambient temperature.
Properties of Cu-Based Shape-Memory Alloys Prepared by Selective Laser Melting
NASA Astrophysics Data System (ADS)
Gustmann, T.; dos Santos, J. M.; Gargarella, P.; Kühn, U.; Van Humbeeck, J.; Pauly, S.
2017-03-01
Two shape-memory alloys with the nominal compositions (in wt.%) Cu-11.85Al-3.2Ni-3Mn and Cu-11.35Al-3.2Ni-3Mn-0.5Zr were prepared by selective laser melting (SLM). The parameters were optimised to identify the process window, in which almost fully dense samples can be obtained. Their microstructures were analysed and correlated with the shape-memory behaviour as well as the mechanical properties. Suction-cast specimens were also produced for comparison. Mainly, β 1' martensite forms in all samples, but 0.5 wt.% of Zr stabilises the Y phase (Cu2AlZr), and its morphology depends on the thermal history and cooling rate. After annealing, the Y phase is primarily found at the grain boundaries hampering grain coarsening. Due to the relative high cooling rates applied here, Zr is mostly dissolved in the martensite in the as-prepared samples and it has a grain-refining effect only up to a critical cooling rate. The Zr-containing samples have increased transformation temperatures, and the Y phase seems to be responsible for the jerky martensite-to-austenite transformation. All the samples are relatively ductile because they mostly fracture in a transgranular manner, exhibiting the typical double yielding. Selective laser melting allows the adjustment of the transformation temperatures and the mechanical properties already during processing without the need of a subsequent heat treatment.
2016-11-01
Feasibility of using Shape Memory Alloys for Gas Turbine Blade Actuation by Kathryn Esham, Luis Bravo, Anindya Ghoshal, Muthuvel Murugan, and Michael...Computational Study on the Feasibility of using Shape Memory Alloys for Gas Turbine Blade Actuation by Luis Bravo, Anindya Ghoshal, Muthuvel...High Performance Computing (HPC)-Enabled Computational Study on the Feasibility of using Shape Memory Alloys for Gas Turbine Blade Actuation 5a
Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect
NASA Astrophysics Data System (ADS)
Shi, Guang-Hui; Yang, Qing-Sheng; He, X. Q.
2013-12-01
Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures.
The quintuple-shape memory effect in electrospun nanofiber membranes
NASA Astrophysics Data System (ADS)
Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Lu, Haibao; Leng, Jinsong
2013-08-01
Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future.
[Rapid analysis of biocompatibility with graded test samples exemplified by Ni-NiTi-Ti].
Bogdanski, D; Köller, M; Bram, M; Stöver, D; Buchkremer, H P; Choi, J; Epple, M; Muhr, G
2002-01-01
The biocompatibility of nickel-titanium alloys was investigated by single-culture experiments on functionally graded samples with a stepwise change in composition from nickel to titanium, including NiTi shape memory alloy of a 50:50 mixture. This approach permitted a considerable decrease of experimental resources by simultaneously studying a full variation of composition. The results indicate a good biocompatibility for a nickel content up to about 50%. The cells used in the biocompatibility studies comprised human osteoblast-like osteosarcoma cells (SAOS-2, MG-63), primary human osteoblasts (HOB), and murine fibroblasts (3T3).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varughese, Byji; Dayananda, G. N.; Rao, M. Subba
2008-07-29
The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validationmore » of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.« less
Incorporation of Fiber Bragg Sensors for Shape Memory Polyurethanes Characterization.
Alberto, Nélia; Fonseca, Maria A; Neto, Victor; Nogueira, Rogério; Oliveira, Mónica; Moreira, Rui
2017-11-11
Shape memory polyurethanes (SMPUs) are thermally activated shape memory materials, which can be used as actuators or sensors in applications including aerospace, aeronautics, automobiles or the biomedical industry. The accurate characterization of the memory effect of these materials is therefore mandatory for the technology's success. The shape memory characterization is normally accomplished using mechanical testing coupled with a heat source, where a detailed knowledge of the heat cycle and its influence on the material properties is paramount but difficult to monitor. In this work, fiber Bragg grating (FBG) sensors were embedded into SMPU samples aiming to study and characterize its shape memory effect. The samples were obtained by injection molding, and the entire processing cycle was successfully monitored, providing a process global quality signature. Moreover, the integrity and functionality of the FBG sensors were maintained during and after the embedding process, demonstrating the feasibility of the technology chosen for the purpose envisaged. The results of the shape memory effect characterization demonstrate a good correlation between the reflected FBG peak with the temperature and induced strain, proving that this technology is suitable for this particular application.
Incorporation of Fiber Bragg Sensors for Shape Memory Polyurethanes Characterization
Nogueira, Rogério; Moreira, Rui
2017-01-01
Shape memory polyurethanes (SMPUs) are thermally activated shape memory materials, which can be used as actuators or sensors in applications including aerospace, aeronautics, automobiles or the biomedical industry. The accurate characterization of the memory effect of these materials is therefore mandatory for the technology’s success. The shape memory characterization is normally accomplished using mechanical testing coupled with a heat source, where a detailed knowledge of the heat cycle and its influence on the material properties is paramount but difficult to monitor. In this work, fiber Bragg grating (FBG) sensors were embedded into SMPU samples aiming to study and characterize its shape memory effect. The samples were obtained by injection molding, and the entire processing cycle was successfully monitored, providing a process global quality signature. Moreover, the integrity and functionality of the FBG sensors were maintained during and after the embedding process, demonstrating the feasibility of the technology chosen for the purpose envisaged. The results of the shape memory effect characterization demonstrate a good correlation between the reflected FBG peak with the temperature and induced strain, proving that this technology is suitable for this particular application. PMID:29137136
Shape Memory Composite Hybrid Hinge
NASA Technical Reports Server (NTRS)
Fang, Houfei; Im, Eastwood; Lin, John; Scarborough, Stephen
2012-01-01
There are two conventional types of hinges for in-space deployment applications. The first type is mechanically deploying hinges. A typical mechanically deploying hinge is usually composed of several tens of components. It is complicated, heavy, and bulky. More components imply higher deployment failure probability. Due to the existence of relatively moving components among a mechanically deploying hinge, it unavoidably has microdynamic problems. The second type of conventional hinge relies on strain energy for deployment. A tape-spring hinge is a typical strain energy hinge. A fundamental problem of a strain energy hinge is that its deployment dynamic is uncontrollable. Usually, its deployment is associated with a large impact, which is unacceptable for many space applications. Some damping technologies have been experimented with to reduce the impact, but they increased the risks of an unsuccessful deployment. Coalescing strain energy components with shape memory composite (SMC) components to form a hybrid hinge is the solution. SMCs are well suited for deployable structures. A SMC is created from a high-performance fiber and a shape memory polymer resin. When the resin is heated to above its glass transition temperature, the composite becomes flexible and can be folded or packed. Once cooled to below the glass transition temperature, the composite remains in the packed state. When the structure is ready to be deployed, the SMC component is reheated to above the glass transition temperature, and it returns to its as-fabricated shape. A hybrid hinge is composed of two strain energy flanges (also called tape-springs) and one SMC tube. Two folding lines are placed on the SMC tube to avoid excessive strain on the SMC during folding. Two adapters are used to connect the hybrid hinge to its adjacent structural components. While the SMC tube is heated to above its glass transition temperature, a hybrid hinge can be folded and stays at folded status after the temperature is reduced to below its glass transition temperature. After the deployable structure is launched in space, the SMC tube is reheated and the hinge is unfolded to deploy the structure. Based on test results, the hybrid hinge can achieve higher than 99.999% shape recovery. The hybrid hinge inherits all of the good characteristics of a tape-spring hinge such as simplicity, light weight, high deployment reliability, and high deployment precision. Conversely, it eliminates the deployment impact that has significantly limited the applications of a tape-spring hinge. The deployment dynamics of a hybrid hinge are in a slow and controllable fashion. The SMC tube of a hybrid hinge is a multifunctional component. It serves as a deployment mechanism during the deployment process, and also serves as a structural component after the hinge is fully deployed, which makes a hybrid hinge much stronger and stiffer than a tape-spring hinge. Unlike a mechanically deploying hinge that uses relatively moving components, a hybrid hinge depends on material deformation for its packing and deployment. It naturally eliminates the microdynamic phenomenon.
Development of a Flapping Wing Design Incorporating Shape Memory Alloy Actuation
2010-03-01
blimp platform. The Methodology section describes the manner in which functional kinematics of Nitinol were determined, the design and fabrication...functional kinematics of Nitinol . The direction of this research aimed at quantifying the stroke length of selected diameter Nitinol wires as a function...of cycling rate. Several Nitinol wires, trademarked as FlexinolTM and advertised as 50:50 Nickel-Titanium in composition, were purchased online
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, J.B.
2016-08-15
Transmission electron microscopy was performed to investigate the microstructures of a secondary phase and its surrounding matrix in a Co{sub 38}Ni{sub 33}Al{sub 29} ferromagnetic shape memory alloy. The secondary phase shows a γ′ L1{sub 2} structure exhibiting a dendritic morphology with enclosed B2 austenite regions while the matrix shows the L1{sub 0} martensitic structure. A secondary phase-austenite-martensite sandwich structure with residual austenite ranging from several hundred nanometers to several micrometers wide is observed at the secondary phase-martensite interface due to the depletion of Co and enrichment of Al in the chemical gradient zone and the effect of the strong martensiticmore » start temperature dependency of the element concentrations. The crystallographic orientation relationship of the secondary phase and the B2 austenite fits the Kurdjumov-Sachs relationship. - Highlights: •The secondary phase has a γ′ L1{sub 2} structure exhibiting a dendritic morphology. •A secondary phase-austenite-martensite sandwich structure is observed. •The structural sandwich structure is due to elemental composition variation. •The secondary phase and the B2 austenite fit the Kurdjumov-Sachs relationship.« less
Reverse Shape Memory Effect Related to α → γ Transformation in a Fe-Mn-Al-Ni Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Peng, Huabei; Huang, Pan; Zhou, Tiannan; Wang, Shanling; Wen, Yuhua
2017-05-01
In this study, we investigated the shape memory behavior and phase transformations of solution-treated Fe43.61Mn34.74Al13.38Ni8.27 alloy between room temperature and 1173 K (900 °C). This alloy exhibits the reverse shape memory effect resulting from the phase transformation of α (bcc) → γ (fcc) between 673 K and 1073 K (400 °C and 800 °C) in addition to the shape memory effect resulting from the martensitic reverse transformation of γ' (fcc) → α (bcc) below 673 K (400 °C). There is a high density of hairpin-shaped dislocations in the α phase undergoing the martensitic reverse transformation of γ' → α. The lath γ phase, which preferentially nucleates and grows in the reversed α phase, has the same crystal orientation with the reverse-transformed γ' martensite. However, the vermiculate γ phase, which is precipitated in the α phase between lath γ phase, has different crystal orientations. The lath γ phase is beneficial to attaining better reverse shape memory effect than the vermiculate γ phase.
Shape memory alloys: metallurgy, biocompatibility, and biomechanics for neurosurgical applications.
Hoh, Daniel J; Hoh, Brian L; Amar, Arun P; Wang, Michael Y
2009-05-01
SHAPE MEMORY ALLOYS possess distinct dynamic properties with particular applications in neurosurgery. Because of their unique physical characteristics, these materials are finding increasing application where resiliency, conformation, and actuation are needed. Nitinol, the most frequently manufactured shape memory alloy, responds to thermal and mechanical stimuli with remarkable mechanical properties such as shape memory effect, super-elasticity, and high damping capacity. Nitinol has found particular use in the biomedical community because of its excellent fatigue resistance and biocompatibility, with special interest in neurosurgical applications. The properties of nitinol and its diffusionless phase transformations contribute to these unique mechanical capabilities. The features of nitinol, particularly its shape memory effect, super-elasticity, damping capacity, as well as its biocompatibility and biomechanics are discussed herein. Current and future applications of nitinol and other shape memory alloys in endovascular, spinal, and minimally invasive neurosurgery are introduced. An understanding of the metallurgic properties of nitinol provides a foundation for further exploration of its use in neurosurgical implant design.
Fejős, Márta; Molnár, Kolos; Karger-Kocsis, József
2013-01-01
Triple-shape memory epoxy (EP)/polycaprolactone (PCL) systems (PCL content: 23 wt %) with different structures (PCL nanoweb embedded in EP matrix and EP/PCL with co-continuous phase structure) were produced. To set the two temporary shapes, the glass transition temperature (Tg) of the EP and the melting temperature (Tm) of PCL served during the shape memory cycle. An attempt was made to reinforce the PCL nanoweb by graphene nanoplatelets prior to infiltrating the nanoweb with EP through vacuum assisted resin transfer molding. Morphology was analyzed by scanning electron microscopy and Raman spectrometry. Triple-shape memory characteristics were determined by dynamic mechanical analysis in tension mode. Graphene was supposed to act also as spacer between the nanofibers, improving the quality of impregnation with EP. The EP phase related shape memory properties were similar for all systems, while those belonging to PCL phase depended on the structure. Shape fixity of PCL was better without than with graphene reinforcement. The best shape memory performance was shown by the EP/PCL with co-continuous structure. Based on Raman spectrometry results, the characteristic dimension of the related co-continuous network was below 900 nm. PMID:28788342
Experimental study of thermo-mechanical behavior of a thermosetting shape-memory polymer
NASA Astrophysics Data System (ADS)
Liu, Ruoxuan; Li, Yunxin; Liu, Zishun
2018-01-01
The thermo-mechanical behavior of shape-memory polymers (SMPs) serves for the engineering applications of SMPs. Therefore the understanding of thermo-mechanical behavior of SMPs is of great importance. This paper investigates the influence of loading rate and loading level on the thermo-mechanical behavior of a thermosetting shape-memory polymer through experimental study. A series of cyclic tension tests and shape recovery tests at different loading conditions are performed to study the strain level and strain rate effect. The results of tension tests show that the thermosetting shape-memory polymer will behave as rubber material at temperature lower than the glass transition temperature (Tg) and it can obtain a large shape fix ratio at cyclic loading condition. The shape recovery tests exhibit that loading rate and loading level have little effect on the beginning and ending of shape recovery process of the thermosetting shape-memory polymer. Compared with the material which is deformed at temperature higher than Tg, the material deformed at temperature lower than Tg behaves a bigger recovery speed.
Development and Verification of Sputtered Thin-Film Nickel-Titanium (NiTi) Shape Memory Alloy (SMA)
2015-08-01
Shape Memory Alloy (SMA) by Cory R Knick and Christopher J Morris Approved for public release; distribution unlimited...Laboratory Development and Verification of Sputtered Thin-Film Nickel-Titanium (NiTi) Shape Memory Alloy (SMA) by Cory R Knick and Christopher
Reflexive composites: self-healing composite structures
NASA Astrophysics Data System (ADS)
Margraf, Thomas W., Jr.; Barnell, Thomas J.; Havens, Ernie; Hemmelgarn, Christopher D.
2008-03-01
Cornerstone Research Group Inc. has developed reflexive composites achieving increased vehicle survivability through integrated structural awareness and responsiveness to damage. Reflexive composites can sense damage through integrated piezoelectric sensing networks and respond to damage by heating discrete locations to activate the healable polymer matrix in areas of damage. The polymer matrix is a modified thermoset shape memory polymer that heals based on phenomena known as reptation. In theory, the reptation healing phenomena should occur in microseconds; however, during experimentation, it has been observed that to maximize healing and restore up to 85 % of mechanical properties a healing cycle of at least three minutes is required. This paper will focus on work conducted to determine the healing mechanisms at work in CRG's reflexive composites, the optimal healing cycles, and an explanation of the difference between the reptation model and actual healing times.
NASA Astrophysics Data System (ADS)
Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.
2018-01-01
The object of the study is a multilayered surface composition "Steel - a Multicomponent material with Shape Memory Effect - a wear-resistant layer" under conditions of cavitation effects in sea water. Multicomponent TiNi-based coatings with addition of alloying elements such as Zr in an amount up to 10% mass, allow to create a composite material with a gradient of properties at the interface of layers, which gives new properties to coatings and improves their performance significantly. The use of materials with shape memory effect (SME) as surface layers or in the composition of surface layered compositions allows to provide an effective reaction of materials to the influence of external factors and adaptation to external influences. The surface composite layer cBN-10%Co has high hardness and strength, which ensures its resistance to shock cyclic influences of collapsing caverns. The increased roughness of the surface of a solid surface composite in the form of strong columnar structures ensures the crushing of vacuum voids, redistributing their effect on the entire surface, and not concentrating them in certain zones. In addition, the gradient structure of the multilayer composite coating TiNi-Ti33Ni49Zr18-cBN-10%Co Co makes it possible to create conditions for the relaxation of stresses created by the variable impact load of cavitation caverns and the manifestation of compensating internal forces due to thermo-elastic martensitic transformations of SME materials. The cavitation resistance of the coating TiNi-Ti33Ni49Zr18-cBN-10%Co according to the criterion of mass wear is 15-20 times higher than that of the base material without coating and 10-12 times higher than that of the TiNi-TiNiZr coating. The proposed architecture of the multifunctional gradient composition, "steel-Ni-TiNi- Ti33Ni49Zr18-cBN-10%Co", each layer of which has its functional purpose, allows to increase the service life of parts operating under conditions of cavitation-fatigue loading in corrosive environments.
Unoccupied electronic structure of Ni 2MnGa ferromagnetic shape memory alloy
Maniraj, M.; D׳Souza, S. W.; Rai, Abhishek; ...
2015-08-20
Momentum resolved inverse photoemission spectroscopy measurements show that the dispersion of the unoccupied bands of Ni 2MnGa is significant in the austenite phase. Furthermore, in the martensite phase, it is markedly reduced, which is possibly related to the structural transition to an incommensurate modulated state in the martensite phase. Finally, based on the first principle calculations of the electronic structure of Ni–Mn–Ga, we show that the modification of the spectral shape with surface composition is related to change in the hybridization between the Mn 3d and Ni 3d-like states that dominate the unoccupied conduction band.
Unoccupied electronic structure of Ni2MnGa ferromagnetic shape memory alloy
NASA Astrophysics Data System (ADS)
Maniraj, M.; D`Souza, S. W.; Rai, Abhishek; Schlagel, D. L.; Lograsso, T. A.; Chakrabarti, Aparna; Barman, S. R.
2015-11-01
Momentum resolved inverse photoemission spectroscopy measurements show that the dispersion of the unoccupied bands of Ni2MnGa is significant in the austenite phase. In the martensite phase, it is markedly reduced, which is possibly related to the structural transition to an incommensurate modulated state in the martensite phase. Based on the first principle calculations of the electronic structure of Ni-Mn-Ga, we show that the modification of the spectral shape with surface composition is related to change in the hybridization between the Mn 3d and Ni 3d-like states that dominate the unoccupied conduction band.
Taheri Andani, Mohsen; Saedi, Soheil; Turabi, Ali Sadi; Karamooz, M R; Haberland, Christoph; Karaca, Haluk Ersin; Elahinia, Mohammad
2017-04-01
Near equiatomic NiTi shape memory alloys were fabricated in dense and designed porous forms by Selective Laser Melting (SLM) and their mechanical and shape memory properties were systematically characterized. Particularly, the effects of pore morphology on their mechanical responses were investigated. Dense and porous NiTi alloys exhibited good shape memory effect with a recoverable strain of about 5% and functional stability after eight cycles of compression. The stiffness and residual plastic strain of porous NiTi were found to depend highly on the pore shape and the level of porosity. Since porous NiTi structures have lower elastic modulus and density than dense NiTi with still good shape memory properties, they are promising materials for lightweight structures, energy absorbers, and biomedical implants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Rong; Zhang, Fanjun; Lin, Weiwei; Liu, Wenkai; Li, Jiehua; Luo, Feng; Wang, Yaning; Tan, Hong
2018-06-01
Biodegradable shape memory polymers are promising biomaterials for minimally invasive surgical procedures. Herein, a series of linear biodegradable shape memory poly(ε-caprolactone) (PCL)-based polyurethane ureas (PUUs) containing a novel phenylalanine-derived chain extender is synthesized. The phenylalanine-derived chain extender, phenylalanine-hexamethylenediamine-phenylalanine (PHP), contains two chymotrypsin cleaving sites to enhance the enzymatic degradation of PUUs. The degradation rate, the crystallinity, and mechanical properties of PUUs are tailored by the content of PHP. Meanwhile, semicrystalline PCL is not only hydrolytically degradable but also vital for shape memory. Good shape memory ability under body temperature is achieved for PUUs due to the strong interactions in hard segments for permanent crosslinking and the crystallization-melt transition of PCL to switch temporary shape. The PUUs would have a great potential in application as implanting stent. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Medical applications of shape memory polymers
NASA Technical Reports Server (NTRS)
Sokolowski, Witold M.
2005-01-01
Shape memory polymers are described here and major advantages in some applications are identified over other medical materials such as shape memory alloys (SMA). A number of medical applications are anticipated for shape memory polymers. Some simple applications are already utilized in medical world, others are in examination process. Lately, several important applications are being considered for CHEM foams for self-deployable vascular and coronary devices. One of these potential applications, the endovascular treatment of aneurysm was experimentally investigated with encouraging results and is described in this paper as well.
Shape memory behavior of single and polycrystalline nickel rich nickel titanium alloys
NASA Astrophysics Data System (ADS)
Kaya, Irfan
NiTi is the most commonly used shape memory alloy (SMA) and has been widely used for bio-medical, electrical and mechanical applications. Nickel rich NiTi shape memory alloys are coming into prominence due to their distinct superelasticity and shape memory properties as compared to near equi-atomic NiTi shape memory alloys. Besides, their lower density and higher work output than steels makes these alloys an excellent candidate for aerospace and automotive industry. Shape memory properties and phase transformation behavior of high Ni-rich Ni54Ti46 (at.%) polycrystals and Ni-rich Ni 51Ti49 (at.%) single-crystals are determined. Their properties are sensitive to heat treatments that affect the phase transformation behavior of these alloys. Phase transformation properties and microstructure were investigated in aged Ni54Ti46 alloys with differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) to reveal the precipitation characteristics and R-phase formation. It was found that Ni54Ti46 has the ability to exhibit perfect superelasticity under high stress levels (~2 GPa) with 4% total strain after 550°C-3h aging. Stress independent R-phase transformation was found to be responsible for the change in shape memory behavior with stress. The shape memory responses of [001], [011] and [111] oriented Ni 51Ti49 single-crystals alloy were reported under compression to reveal the orientation dependence of their shape memory behavior. It has been found that transformation strain, temperatures and hysteresis, Classius-Clapeyron slopes, critical stress for plastic deformation are highly orientation dependent. The effects of precipitation formation and compressive loading at selected temperatures on the two-way shape memory effect (TWSME) properties of a [111]- oriented Ni51Ti49 shape memory alloy were revealed. Additionally, aligned Ni4Ti3 precipitates were formed in a single crystal of Ni51Ti49 alloy by aging under applied compression stress along the [111] direction. Formation of a single family of Ni4Ti3 precipitates were exhibited significant TWSME without any training or deformation. When the homogenized and aged specimens were loaded in martensite, positive TWSME was observed. After loading at high temperature in austenite, the homogenized specimen did not show TWSME while the aged specimen revealed negative TWSME.
Input Files and Procedures for Analysis of SMA Hybrid Composite Beams in MSC.Nastran and ABAQUS
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Patel, Hemant D.
2005-01-01
A thermoelastic constitutive model for shape memory alloys (SMAs) and SMA hybrid composites (SMAHCs) was recently implemented in the commercial codes MSC.Nastran and ABAQUS. The model is implemented and supported within the core of the commercial codes, so no user subroutines or external calculations are necessary. The model and resulting structural analysis has been previously demonstrated and experimentally verified for thermoelastic, vibration and acoustic, and structural shape control applications. The commercial implementations are described in related documents cited in the references, where various results are also shown that validate the commercial implementations relative to a research code. This paper is a companion to those documents in that it provides additional detail on the actual input files and solution procedures and serves as a repository for ASCII text versions of the input files necessary for duplication of the available results.
Biomedical applications of thermally activated shape memory polymers†
Small, Ward; Singhal, Pooja; Wilson, Thomas S.
2011-01-01
Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs. PMID:21258605
Biomedical Applications of Thermally Activated Shape Memory Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small IV, W; Singhal, P; Wilson, T S
2009-04-10
Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs.
Bistable Microvalve For Use With Microcatheter System
Seward, Kirk Patrick
2003-12-16
A bistable microvalve of shape memory material is operatively connected to a microcatheter. The bistable microvalve includes a tip that can be closed off until it is in the desired position. Once it is in position it can be opened and closed. The system uses heat and pressure to open and close the microvalve. The shape memory material will change stiffness and shape when heated above a transition temperature. The shape memory material is adapted to move from a first shape to a second shape, either open or closed, where it can perform a desired function.
Bistable microvalve and microcatheter system
Seward, Kirk Patrick
2003-05-20
A bistable microvalve of shape memory material is operatively connected to a microcatheter. The bistable microvalve includes a tip that can be closed off until it is in the desired position. Once it is in position it can opened and closed. The system uses heat and pressure to open and close the microvalve. The shape memory material will change stiffness and shape when heated above a transition temperature. The shape memory material is adapted to move from a first shape to a second shape, either open or closed, where it can perform a desired function.
Periodic Cellular Structure Technology for Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Chen, Edward Y.
2015-01-01
Shape memory alloys are being considered for a wide variety of adaptive components for engine and airframe applications because they can undergo large amounts of strain and then revert to their original shape upon heating or unloading. Transition45 Technologies, Inc., has developed an innovative periodic cellular structure (PCS) technology for shape memory alloys that enables fabrication of complex bulk configurations, such as lattice block structures. These innovative structures are manufactured using an advanced reactive metal casting technology that offers a relatively low cost and established approach for constructing near-net shape aerospace components. Transition45 is continuing to characterize these structures to determine how best to design a PCS to better exploit the use of shape memory alloys in aerospace applications.
Effect of ageing temperatures on pseudoelasticity of Ni-rich NiTi shape memory alloy
NASA Astrophysics Data System (ADS)
Mohamad, Hishamiakim; Mahmud, Abdus Samad; Nashrudin, Muhammad Naqib; Razali, Muhammad Fauzinizam
2018-05-01
The shape memory behavior of NiTi alloy is very sensitive to alloy composition and heat treatments, particularly annealing and ageing. This paper analysed the effect of ageing towards the thermomechanical behaviour of Ti-51at%Ni wire. The analysis focused on the effect of ageing at the different temperature on thermal transformation sequence and tensile deformation behaviour with respect to the recoverability of the alloy. It was found that B2-R transformation peak appeared in the differential scanning calorimetry (DSC) measurement when the alloys were aged at the temperature between 400°C to 475°C for 30 minutes. Further ageing at 500°C to 550°C yielded two stage transformation, B2-R-B19' in cooling. All aged wires exhibited good pseudoelastic behaviour when deformed at room temperature and yielded below 1% residual strain upon unloading. Ageing at 450°C resulted the smallest unrecovered strain of about 0.4%.
Formation of microporous NiTi by transient liquid phase sintering of elemental powders.
Ismail, Muhammad Hussain; Goodall, Russell; Davies, Hywel A; Todd, Iain
2012-08-01
Porous metallic structures are attractive for biomedical implant applications as their open porosity simultaneously improves the degree of fixation and decreases the mismatch in stiffness between bone and implant, improving bonding and reducing stress-shielding effects respectively. NiTi alloys exhibit both the shape memory effect and pseudoelasticity, and are of particular interest, though they pose substantial problems in their processing. This is because the shape memory and pseudoelastic behaviours are exceptionally sensitive to the presence of oxygen, and other minor changes in alloy chemistry. Thus in processing careful control of composition and contamination is vital. In this communication, we investigate these issues in a novel technique for producing porous NiTi parts via transient liquid phase sintering following metal injection moulding (MIM) of elemental Ni and Ti powders, and report a new mechanism for pore formation in the powder processing of metallic materials from elemental powders. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ou, Shih-Fu; Wang, Kuang-Kuo; Hsu, Yen-Chi
2017-12-01
This paper describes the fabrication of superhydrophobic NiTi shape memory alloy (SMA) surfaces using an environmentally friendly method based on an economical anodizing process. Perfluorooctyltriethoxysilane was used to reduce the surface energy of the anodized surfaces. The wettability, morphology, composition, and microstructure of the surfaces were investigated by scanning electron microscopy, transmission electron microscopy, and x-ray photoelectron spectroscopy. The surface of the treated NiTi SMA exhibited superhydrophobicity, with a water contact angle of 150.6° and sliding angle of 8°. The anodic film on the NiTi SMA comprised of TiO2 and NiO, as well as traces of TiCl3. In addition, before the NiTi SMA was anodized, it underwent a surface mechanical attrition treatment to grain-refine its surface. This method efficiently enhanced the growth rate of the anodic oxide film, and improved the hydrophobic uniformity of the anodized NiTi-SMA-surface.
Gul, Jahan Zeb; Yang, Young Jin; Su, Kim Young; Choi, Kyung Hyun
2017-09-01
Soft actuators with complex range of motion lead to strong interest in applying devices like biomedical catheters and steerable soft pipe inspectors. To facilitate the use of soft actuators in devices where controlled, complex, precise, and fast motion is required, a structurally controlled Omni directional soft cylindrical actuator is fabricated in a modular way using multilayer composite of polylactic acid based conductive Graphene, shape memory polymer, shape memory alloy, and polyurethane. Multiple fabrication techniques are discussed step by step that mainly include fused deposition modeling based 3D printing, dip coating, and UV curing. A mathematical control model is used to generate patterned electrical signals for the Omni directional deformations. Characterizations like structural control, bending, recovery, path, and thermal effect are carried out with and without load (10 g) to verify the new cylindrical design concept. Finally, the application of Omni directional actuator as a steerable catheter is explored by fabricating a scaled version of carotid artery through 3D printing using a semitransparent material.
Oxygen vacancy effects in HfO2-based resistive switching memory: First principle study
NASA Astrophysics Data System (ADS)
Dai, Yuehua; Pan, Zhiyong; Wang, Feifei; Li, Xiaofeng
2016-08-01
The work investigated the shape and orientation of oxygen vacancy clusters in HfO2-base resistive random access memory (ReRAM) by using the first-principle method based on the density functional theory. Firstly, the formation energy of different local Vo clusters was calculated in four established orientation systems. Then, the optimized orientation and charger conductor shape were identified by comparing the isosurface plots of partial charge density, formation energy, and the highest isosurface value of oxygen vacancy. The calculated results revealed that the [010] orientation was the optimal migration path of Vo, and the shape of system D4 was the best charge conductor in HfO2, which effectively influenced the SET voltage, formation voltage and the ON/OFF ratio of the device. Afterwards, the PDOS of Hf near Vo and total density of states of the system D4_010 were obtained, revealing the composition of charge conductor was oxygen vacancy instead of metal Hf. Furthermore, the migration barriers of the Vo hopping between neighboring unit cells were calculated along four different orientations. The motion was proved along [010] orientation. The optimal circulation path for Vo migration in the HfO2 super-cell was obtained.
Improving of Mechanical and Shape-Memory Properties in Hyperbranched Epoxy Shape-Memory Polymers
NASA Astrophysics Data System (ADS)
Santiago, David; Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia
2016-09-01
A series of shape-memory epoxy polymers were synthesized using an aliphatic amine and two different commercial hyperbranched poly(ethyleneimine)s with different molecular weights as crosslinking agents. Thermal, mechanical, and shape-memory properties in materials modified with different hyperbranched polymers were analyzed and compared in order to establish the effect of the structure and the molecular weight of the hyperbranched polymers used. The presence of hyperbranched polymers led to more heterogeneous networks, and the crosslinking densities of which increase as the hyperbranched polymer content increases. The transition temperatures can be tailored from 56 to 117 °C depending on the molecular weight and content of the hyperbranched polymer. The mechanical properties showed excellent values in all formulations at room temperature and, specially, at T_{{g}}^{{E^' with stress at break as high as 15 MPa and strain at break as high as 60 %. The shape-memory performances revealed recovery ratios around 95 %, fixity ratios around 97 %, and shape-recovery velocities as high as 22 %/min. The results obtained in this study reveal that hyperbranched polymers with different molecular weights can be used to enhance the thermal and mechanical properties of epoxy-based SMPs while keeping excellent shape-memory properties.
Enhanced associative memory for colour (but not shape or location) in synaesthesia.
Pritchard, Jamie; Rothen, Nicolas; Coolbear, Daniel; Ward, Jamie
2013-05-01
People with grapheme-colour synaesthesia have been shown to have enhanced memory on a range of tasks using both stimuli that induce synaesthesia (e.g. words) and, more surprisingly, stimuli that do not (e.g. certain abstract visual stimuli). This study examines the latter by using multi-featured stimuli consisting of shape, colour and location conjunctions (e.g. shape A+colour A+location A; shape B+colour B+location B) presented in a recognition memory paradigm. This enables distractor items to be created in which one of these features is 'unbound' with respect to the others (e.g. shape A+colour B+location A; shape A+colour A+location C). Synaesthetes had higher recognition rates suggesting an enhanced ability to bind certain visual features together into memory. Importantly, synaesthetes' false alarm rates were lower only when colour was the unbound feature, not shape or location. We suggest that synaesthetes are "colour experts" and that enhanced perception can lead to enhanced memory in very specific ways; but, not for instance, an enhanced ability to form associations per se. The results support contemporary models that propose a continuum between perception and memory. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Brudnicki, Myron (Inventor)
1995-01-01
Rotary actuators and other mechanical devices incorporating shape memory alloys are provided herein. Shape memory alloys are a group of metals which when deformed at temperatures below their martensite temperatures, resume the shapes which they had prior to the deformation if they are heated to temperatures above their austensite temperatures. Actuators in which shape memory alloys are employed include bias spring types, in which springs deform the shape memory alloy (SMA), and differential actuators, which use two SMA members mechanically connected in series. Another type uses concentric cylindrical members. One member is in the form of a sleeve surrounding a cylinder, both being constructed of shape memory alloys. Herein two capstans are mounted on a shaft which is supported in a framework. Each capstan is capable of rotating the shaft. Shape memory wire, as two separate lengths of wire, is wrapped around each capstan to form a winding around that capstan. The winding on one capstan is so wrapped that the wire is in a prestretched state. The winding on the other capstan is so wrapped that the wire is in a taut, but not a prestretched, state. Heating one performs work in one direction, thus deforming the other one. When the other SMA is heated the action is reversed.
Humidity-activated shape memory effect on plasticized starch-based biomaterials.
Sessini, Valentina; Arrieta, Marina P; Fernández-Torres, Alberto; Peponi, Laura
2018-01-01
Humidity-activated shape memory behavior of plasticized starch-based films reinforced with the innovative combination of starch nanocrystals (SNCs) and catechin as antioxidant were studied. In a previous work, we reported the processing of gelatinized starch-based films filled with SNCs and catechin as antioxidant agent, and we observed that this novel combination leads to starch-based film with enhanced thermal and mechanical performance. In this work, the humidity-activated shape memory behavior of the previous developed starch-based films was characterized. The moisture loss as well as the moisture absorption were studied since they are essential parameters in humidity-activated shape memory polymers to fix the temporary shape and to recover the original shape, respectively. Therefore, the effect of the incorporation of SNCs and catechin on the humidity-activated shape memory properties of plasticized starch was also studied. Moreover, the effectiveness of catechin to increase the polymer stability under oxidative atmosphere and the thermo-mechanical relaxation of all the starch-based materials were studied. The combination of plasticized starch matrix loaded with both, SNCs and catechin, leads to a multifunctional starch-based films with increased hydrophilicity and with excellent humidity-activated shape memory behavior with interest for potential biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modeling the Coupled Chemo-Thermo-Mechanical Behavior of Amorphous Polymer Networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, Jonathan A.; Nguyen, Thao D.; Xiao, Rui
2015-02-01
Amorphous polymers exhibit a rich landscape of time-dependent behavior including viscoelasticity, structural relaxation, and viscoplasticity. These time-dependent mechanisms can be exploited to achieve shape-memory behavior, which allows the material to store a programmed deformed shape indefinitely and to recover entirely the undeformed shape in response to specific environmental stimulus. The shape-memory performance of amorphous polymers depends on the coordination of multiple physical mechanisms, and considerable opportunities exist to tailor the polymer structure and shape-memory programming procedure to achieve the desired performance. The goal of this project was to use a combination of theoretical, numerical and experimental methods to investigate themore » effect of shape memory programming, thermo-mechanical properties, and physical and environmental aging on the shape memory performance. Physical and environmental aging occurs during storage and through exposure to solvents, such as water, and can significantly alter the viscoelastic behavior and shape memory behavior of amorphous polymers. This project – executed primarily by Professor Thao Nguyen and Graduate Student Rui Xiao at Johns Hopkins University in support of a DOE/NNSA Presidential Early Career Award in Science and Engineering (PECASE) – developed a theoretical framework for chemothermo- mechanical behavior of amorphous polymers to model the effects of physical aging and solvent-induced environmental factors on their thermoviscoelastic behavior.« less
Fabrication of silicon-based shape memory alloy micro-actuators
NASA Technical Reports Server (NTRS)
Johnson, A. David; Busch, John D.; Ray, Curtis A.; Sloan, Charles L.
1992-01-01
Thin film shape memory alloy has been integrated with silicon in a new actuation mechanism for microelectromechanical systems. This paper compares nickel-titanium film with other actuators, describes recent results of chemical milling processes developed to fabricate shape memory alloy microactuators in silicon, and describes simple actuation mechanisms which have been fabricated and tested.
Transformation temperatures of martensite in beta phase nickel aluminide
NASA Technical Reports Server (NTRS)
Smialek, J. L.; Hehemann, R. F.
1972-01-01
Resistivity and thermal arrest measurements determined that the compositional dependence of Ms (martensite state) temperatures for NiAl martensite was linear between 60 and 69 atomic percent nickel, with Ms = 124 Ni - 7410 K. Resistivity and surface relief experiments indicated the presence of thermoelastic martensite for selected alloys. Some aspects of the transformation were studied by hot stage microscopy and related to the behavior observed for alloys exhibiting the shape-memory effect.
Fluorogel elastomers with tunable transparency, elasticity, shape-memory, and antifouling properties
Yao, Xi; Dunn, Stuart S.; Kim, Philseok; ...
2014-03-18
In this study, omniphobic fluorogel elastomers were prepared by photocuring perfluorinated acrylates and a perfluoropolyether crosslinker. By tuning either the chemical composition or the temperature that control the crystallinity of the resulting polymer chains, a broad range of optical and mechanical properties of the fluorogel can be achieved. After infusing with fluorinated lubricants, the fluorogels showed excellent resistance to wetting by various liquids and anti-biofouling behavior, while maintaining cytocompatiblity.
Transformation temperatures of martensite in beta-phase nickel aluminide.
NASA Technical Reports Server (NTRS)
Smialek, J. L.; Hehemann, R. F.
1973-01-01
Resistivity and thermal arrest measurements determined that the compositional dependence of M sub s temperatures for NiAl martensite was linear between 60 and 69 at. % Ni, with M sub s = (124 Ni - 7410)K. Resistivity and surface relief experiments for selected alloys indicated the presence of thermoelastic martensite. Some aspects of the transformation were studied by hot-stage microscopy and related to the behavior observed for alloys exhibiting the shape-memory effect.
Multi-range force sensors utilizing shape memory alloys
Varma, Venugopal K.
2003-04-15
The present invention provides a multi-range force sensor comprising a load cell made of a shape memory alloy, a strain sensing system, a temperature modulating system, and a temperature monitoring system. The ability of the force sensor to measure contact forces in multiple ranges is effected by the change in temperature of the shape memory alloy. The heating and cooling system functions to place the shape memory alloy of the load cell in either a low temperature, low strength phase for measuring small contact forces, or a high temperature, high strength phase for measuring large contact forces. Once the load cell is in the desired phase, the strain sensing system is utilized to obtain the applied contact force. The temperature monitoring system is utilized to ensure that the shape memory alloy is in one phase or the other.
Understanding the shape-memory alloys used in orthodontics.
Fernandes, Daniel J; Peres, Rafael V; Mendes, Alvaro M; Elias, Carlos N
2011-01-01
Nickel-titanium (NiTi) shape-memory alloys (SMAs) have been used in the manufacture of orthodontic wires due to their shape memory properties, super-elasticity, high ductility, and resistance to corrosion. SMAs have greater strength and lower modulus of elasticity when compared with stainless steel alloys. The pseudoelastic behavior of NiTi wires means that on unloading they return to their original shape by delivering light continuous forces over a wider range of deformation which is claimed to allow dental displacements. The aim of this paper is to discuss the physical, metallurgical, and mechanical properties of NiTi used in Orthodontics in order to analyze the shape memory properties, super-elasticity, and thermomechanical characteristics of SMA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoneim, M. T.; Hussain, M. M., E-mail: muhammadmustafa.hussain@kaust.edu.sa
Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ∼260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygenmore » and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.« less
NASA Technical Reports Server (NTRS)
Padula, Santo, II; Bigelow, Glen; Noebe, Ronald; Gaydosh, Darrell; Garg, Anita
2006-01-01
Interest in high-temperature shape memory alloys (HTSMA) has been growing in the aerospace, automotive, process control, and energy industries. However, actual materials development has seriously lagged component design, with current commercial NiTi alloys severely limited in their temperature capability. Additions of Pd, Pt, Au, Hf, and Zr at levels greater than 10 at.% have been shown to increase the transformation temperature of NiTi alloys, but with few exceptions, the shape memory behavior (strain recovery) of these NiTiX systems has been determined only under stress free conditions. Given the limited amount of basic mechanical test data and general lack of information regarding the work attributes of these materials, a program to investigate the mechanical behavior of potential HTSMAs, with transformation temperatures between 100 and 500 C, was initiated. This paper summarizes the results of studies, focusing on both the practical temperature limitations for ternary TiNiPd and TiNiPt systems based on the work output of these alloys and the ability of these alloys to undergo repeated thermal cycling under load without significant permanent deformation or "walking". These issues are ultimately controlled by the detwinning stress of the martensite and resistance to dislocation slip of the individual martensite and austenite phases. Finally, general rules that govern the development of useful, high work output, next-generation HTSMA materials, based on the lessons learned in this work, will be provided
Shape memory alloys: Properties and biomedical applications
NASA Astrophysics Data System (ADS)
Mantovani, Diego
2000-10-01
Shape memory alloys provide new insights for the design of biomaterials in bioengineering for the design of artificial organs and advanced surgical instruments, since they have specific characteristics and unusual properties. This article will examine (a) the four properties of shape memory alloys, (b) medical applications with high potential for improving the present and future quality of life, and (c) concerns regarding the biocom-patibility properties of nickel-titanium alloys. In particular, the long-term challenges of using shape memory alloys will be discussed, regarding corrosion and potential leakage of elements and ions that could be toxic to cells, tissues and organs.
Resistively heated shape memory polymer device
Marion, III, John E.; Bearinger, Jane P.; Wilson, Thomas S.; Maitland, Duncan J.
2017-09-05
A resistively heated shape memory polymer device is made by providing a rod, sheet or substrate that includes a resistive medium. The rod, sheet or substrate is coated with a first shape memory polymer providing a coated intermediate unit. The coated intermediate unit is in turn coated with a conductive material providing a second intermediate unit. The second coated intermediate unit is in turn coated with an outer shape memory polymer. The rod, sheet or substrate is exposed and an electrical lead is attached to the rod, sheet or substrate. The conductive material is exposed and an electrical lead is attached to the conductive material.
Resistively heated shape memory polymer device
Marion, III, John E.; Bearinger, Jane P.; Wilson, Thomas S.; Maitland, Duncan J.
2016-10-25
A resistively heated shape memory polymer device is made by providing a rod, sheet or substrate that includes a resistive medium. The rod, sheet or substrate is coated with a first shape memory polymer providing a coated intermediate unit. The coated intermediate unit is in turn coated with a conductive material providing a second intermediate unit. The second coated intermediate unit is in turn coated with an outer shape memory polymer. The rod, sheet or substrate is exposed and an electrical lead is attached to the rod, sheet or substrate. The conductive material is exposed and an electrical lead is attached to the conductive material.
Synthesis and characterization of shape memory poly (epsilon-caprolactone) polyurethane-ureas
NASA Astrophysics Data System (ADS)
Ren, Hongfeng
Shape memory polymers (SMPs) have attracted significant interest in recent times because of their potential applications in a number of areas, such as medical devices and textiles. However, there are some major drawbacks of SMPs, such as their relatively low moduli resulting in small recovery stresses, and their long response times compared with shape memory alloys (SMAs). A suitable recovery stress which comes from the elastic recovery stress generated in the deformation process is critical in some medical devices. To address some of these shortcomings, the work in this dissertation mainly focuses on the design and synthesis of linear shape memory polymers with higher recovery stress. A series of segmented poly (epsilon-caprolactone) polyurethane-ureas (PCLUUs) were prepared from poly (epsilon-caprolactone) (PCL) diol, different dissociates and chain extenders. NMR and FT-IR were used to identify the structure of the synthesized shape memory polyurethane-ureas. Parameters such as soft segment content (molecular weight and content), chain extender and the rigidity of the main chain were investigated to understand the structure-property relationships of the shape memory polymer systems through DSC, DMA, physical property test, etc. Cyclic thermal mechanic tests were applied to measure the shape memory properties which showed that the recovery stress can be improved above 200% simply by modifying the chain extender. Meanwhile, the synthesis process was optimized to be similar to that of Spandex /LYCRA®. Continuous fibers form shape memory polyurethane-ureas were made from a wet spinning process, which indicated excellent spinnability of the polymer solution. Small angle neutron scattering (SANS) was used to study the morphology of the hard segment at different temperatures and stretch rates and found that the monodisperse rigid cylinder model fit the SANS data quite well. From the cylinder model, the radius of the cylinder increased with increasing hard segment content. The SANS results revealed phase separation of hard and soft segments into nano scale domains. The overall objectives of this dissertation were: ■ To improve the recovery stress of linear shape memory polymers. ■ To study the morphology and structure property relationships of shape memory polymers. Chapter 1 reviews the literature on SMAs and SMPs, especially on linear SMPs. Chapter 2 is devoted to SMPUUs with the aliphatic amine 1, 4-Butanediamine (BDA) as chain extender. Chapter 3 reports the effects of different aliphatic diamines as the chain extenders. Chapter 4 covers the results for shape memory polyurethane-ureas with aromatic diamine 4, 4’-Methylenedianiline (MDA) as the chain extender. The effect of different diisocyanates is covered in Chapter 5. Chapter 6-7 show some synthesized polymer systems with unimproved recovery stress or even no shape memory properties. The overall conclusions of this work are reported in Chapter 8.
How we categorize objects is related to how we remember them: The shape bias as a memory bias
Vlach, Haley A.
2016-01-01
The “shape bias” describes the phenomenon that, after a certain point in development, children and adults generalize object categories based upon shape to a greater degree than other perceptual features. The focus of research on the shape bias has been to examine the types of information that learners attend to in one moment in time. The current work takes a different approach by examining whether learners' categorical biases are related to their retention of information across time. In three experiments, children's (N = 72) and adults' (N = 240) memory performance for features of objects was examined in relation to their categorical biases. The results of these experiments demonstrated that the number of shape matches chosen during the shape bias task significantly predicted shape memory. Moreover, children and adults with a shape bias were more likely to remember the shape of objects than they were the color and size of objects. Taken together, this work suggests the development of a shape bias may engender better memory for shape information. PMID:27454236
How we categorize objects is related to how we remember them: The shape bias as a memory bias.
Vlach, Haley A
2016-12-01
The "shape bias" describes the phenomenon that, after a certain point in development, children and adults generalize object categories based on shape to a greater degree than other perceptual features. The focus of research on the shape bias has been to examine the types of information that learners attend to in one moment in time. The current work takes a different approach by examining whether learners' categorical biases are related to their retention of information across time. In three experiments, children's (N=72) and adults' (N=240) memory performance for features of objects was examined in relation to their categorical biases. The results of these experiments demonstrated that the number of shape matches chosen during the shape bias task significantly predicted shape memory. Moreover, children and adults with a shape bias were more likely to remember the shape of objects than the color and size of objects. Taken together, this work suggests that the development of a shape bias may engender better memory for shape information. Copyright © 2016 Elsevier Inc. All rights reserved.
Fabrication and testing of SMA composite beam with shape control
NASA Astrophysics Data System (ADS)
Noolvi, Basavaraj; S, Raja; Nagaraj, Shanmukha; Mudradi, Varada Raj
2017-07-01
Smart materials are the advanced materials that have characteristics of sensing and actuation in response to the external stimuli like pressure, heat or electric charge etc. These materials can be integrated in to any structure to make it smart. From the different types of smart materials available, Shape Memory Alloy (SMA) is found to be more useful in designing new applications, which can offer more actuating speed, reduce the overall weight of the structure. The unique property of SMA is the ability to remember and recover from large strains of upto 8% without permanent deformation. Embedding the SMA wire/sheet in fiber-epoxy/flexible resin systems has many potential applications in Aerospace, Automobile, Medical, Robotics and various other fields. In this work the design, fabrication, and testing of smart SMA composite beam has been carried out. Two types of epoxy based resin systems namely LY 5210 resin system and EPOLAM 2063 resin system are used in fabricating the SMA composite specimens. An appropriate mould is designed and fabricated to retain the pre-strain of SMA wire during high temperature post curing of composite specimens. The specimens are fabricated using vacuum bag technique.
NASA Astrophysics Data System (ADS)
Manjavidze, A. G.; Barnov, V. A.; Jorjishvili, L. I.; Sobolevskaya, S. V.
2008-03-01
The properties of a cylindrical spiral spring of nitinol (shape-memory alloy) are studied. When this spring is used as a working element in a rotary martensitic engine, the appearance of the two-way shape-memory effect in it is shown to decrease the engine operation efficiency.
Static analysis of C-shape SMA middle ear prosthesis
NASA Astrophysics Data System (ADS)
Latalski, Jarosław; Rusinek, Rafał
2017-08-01
Shape memory alloys are a family of metals with the ability to change specimen shape depending on their temperature. This unique property is useful in many areas of mechanical and biomechanical engineering. A new half-ring middle ear prosthesis design made of a shape memory alloy, that is undergoing initial clinical tests, is investigated in this research paper. The analytical model of the studied structure made of nonlinear constitutive material is solved to identify the temperature-dependent stiffness characteristics of the proposed design on the basis of the Crotti-Engesser theorem. The final integral expression for the element deflection is highly complex, thus the solution has to be computed numerically. The final results show the proposed shape memory C-shape element to behave linearly in the analysed range of loadings and temperatures. This is an important observation that significantly simplifies the analysis of the prototype structure and opens wide perspectives for further possible applications of shape memory alloys.
Superelasticity and cryogenic linear shape memory effects of CaFe 2As 2
Sypek, John T.; Yu, Hang; Dusoe, Keith J.; ...
2017-10-20
Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less
Two-way shape memory behavior of semi-crystalline elastomer under stress-free condition
NASA Astrophysics Data System (ADS)
Qian, Chen; Dong, Yubing; Zhu, Yaofeng; Fu, Yaqin
2016-08-01
Semi-crystalline shape memory polymers exhibit two-way shape memory effect (2W-SME) under constant stresses through crystallization-induced elongation upon cooling and melting-induced constriction upon heating. The applied constant stress influenced the prediction and usability of 2W-SME in practical applications without any external force. Here the reversible shape transition in EVA-shaped memory polymer was quantitative analyzed under a suitable temperature range and external stress-free condition. The fraction of reversible strain increased with increasing upper temperature (T high) within the temperature range and reached the maximum value of 13.62% at 70 °C. However, reversible strain transition was almost lost when T high exceeded 80 °C because of complete melting of crystalline scaffold, known as the latent recrystallization template. The non-isothermal annealing of EVA 2W-SMP under changing circulating temperatures was confirmed. Moreover, the orientation of crystallization was retained at high temperatures. These findings may contribute to design an appropriate shape memory protocol based on application-specific requirements.
Kai, Dan; Prabhakaran, Molamma P; Chan, Benjamin Qi Yu; Liow, Sing Shy; Ramakrishna, Seeram; Xu, Fujian; Loh, Xian Jun
2016-02-02
A porous shape memory scaffold with biomimetic architecture is highly promising for bone tissue engineering applications. In this study, a series of new shape memory polyurethanes consisting of organic poly(ε-caprolactone) (PCL) segments and inorganic polydimethylsiloxane (PDMS) segments in different ratios (9 : 1, 8 : 2 and 7 : 3) was synthesised. These PCL-PDMS copolymers were further engineered into porous fibrous scaffolds by electrospinning. With different ratios of PCL: PDMS, the fibers showed various fiber diameters, thermal behaviour and mechanical properties. Even after being processed into fibrous structures, these PCL-PDMS copolymers maintained their shape memory properties, and all the fibers exhibited excellent shape recovery ratios of >90% and shape fixity ratios of >92% after 7 thermo-mechanical cycles. Biological assay results corroborated that the fibrous PCL-PDMS scaffolds were biocompatible by promoting osteoblast proliferation, functionally enhanced biomineralization-relevant alkaline phosphatase expression and mineral deposition. Our study demonstrated that the PCL-PDMS fibers with excellent shape memory properties are promising substrates as bioengineered grafts for bone regeneration.
Fabrication and characterization of shape memory polymers at small-scales
NASA Astrophysics Data System (ADS)
Wornyo, Edem
The objective of this research is to thoroughly investigate the shape memory effect in polymers, characterize, and optimize these polymers for applications in information storage systems. Previous research effort in this field concentrated on shape memory metals for biomedical applications such as stents. Minimal work has been done on shape memory polymers; and the available work on shape memory polymers has not characterized the behaviors of this category of polymers fully. Copolymer shape memory materials based on diethylene glycol dimethacrylate (DEGDMA) crosslinker, and tert butyl acrylate (tBA) monomer are designed. The design encompasses a careful control of the backbone chemistry of the materials. Characterization methods such as dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC); and novel nanoscale techniques such as atomic force microscopy (AFM), and nanoindentation are applied to this system of materials. Designed experiments are conducted on the materials to optimize spin coating conditions for thin films. Furthermore, the recovery, a key for the use of these polymeric materials for information storage, is examined in detail with respect to temperature. In sum, the overarching objectives of the proposed research are to: (i) Design shape memory polymers based on polyethylene glycol dimethacrylate (PEGDMA) and diethylene glycol dimethacrylate (DEGDMA) crosslinkers, 2-hydroxyethyl methacrylate (HEMA) and tert-butyl acrylate monomer (tBA). (ii) Utilize dynamic mechanical analysis (DMA) to comprehend the thermomechanical properties of shape memory polymers based on DEGDMA and tBA. (iii) Utilize nanoindentation and atomic force microscopy (AFM) to understand the nanoscale behavior of these SMPs, and explore the strain storage and recovery of the polymers from a deformed state. (iv) Study spin coating conditions on thin film quality with designed experiments. (iv) Apply neural networks and genetic algorithms to optimize these systems.
Analysis of SMA Hybrid Composite Structures in MSC.Nastran and ABAQUS
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Patel, Hemant D.
2005-01-01
A thermoelastic constitutive model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures was recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilever beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilever beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.
Analysis of SMA Hybrid Composite Structures using Commercial Codes
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Patel, Hemant D.
2004-01-01
A thermomechanical model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures has been recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilevered beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilevered beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.
NASA Astrophysics Data System (ADS)
Kuki, Ákos; Czifrák, Katalin; Karger-Kocsis, József; Zsuga, Miklós; Kéki, Sándor
2015-02-01
The prediction of shape-memory behavior is essential regarding the design of a smart material for different applications. This paper proposes a simple and quick method for the prediction of shape-memory behavior of amorphous shape memory polymers (SMPs) on the basis of a single dynamic mechanical analysis (DMA) temperature sweep at constant frequency. All the parameters of the constitutive equations for linear viscoelasticity are obtained by fitting the DMA curves. The change with the temperature of the time-temperature superposition shift factor ( a T ) is expressed by the Williams-Landel-Ferry (WLF) model near and above the glass transition temperature ( T g ), and by the Arrhenius law below T g . The constants of the WLF and Arrhenius equations can also be determined. The results of our calculations agree satisfactorily with the experimental free recovery curves from shape-memory tests.
NASA Astrophysics Data System (ADS)
Casati, R.; Saghafi, F.; Biffi, C. A.; Vedani, M.; Tuissi, A.
2017-10-01
Martensitic Ti-rich NiTi intermetallics are broadly used in various cyclic applications as actuators, which exploit the shape memory effect (SME). Recently, a new approach for exploiting austenitic Ni-rich NiTi shape memory alloys as actuators was proposed and named high-performance shape memory effect (HP-SME). HP-SME is based on thermal recovery of de-twinned martensite produced by mechanical loading of the parent phase. The aim of the manuscript consists in evaluating and comparing the fatigue and actuation properties of austenitic HP-SME wires and conventional martensitic SME wires. The effect of the thermomechanical cycling on the actuation response and the changes in the electrical resistivity of both shape memory materials were studied by performing the actuation tests at different stages of the fatigue life. Finally, the changes in the transition temperatures before and after cycling were also investigated by differential calorimetric tests.
NASA Technical Reports Server (NTRS)
Atli, K. C.; Karaman, I; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.
2010-01-01
A Ti(50.5)Ni(24.5)Pd25 high-temperature shape memory alloy (HTSMA) is microalloyed with 0.5 at. pct scandium (Sc) to enhance its shape-memory characteristics, in particular, dimensional stability under repeated thermomechanical cycles. For both Ti(50.5)Ni(24.5)Pd25 and the Sc-alloyed material, differential scanning calorimetry is conducted for multiple cycles to characterize cyclic stability of the transformation temperatures. The microstructure is evaluated using electron microscopy, X-ray diffractometry, and wavelength dispersive spectroscopy. Isobaric thermal cycling experiments are used to determine transformation temperatures, dimensional stability, and work output as a function of stress. The Sc-doped alloy displays more stable shape memory response with smaller irrecoverable strain and narrower thermal hysteresis than the baseline ternary alloy. This improvement in performance is attributed to the solid solution hardening effect of Sc.
NASA Technical Reports Server (NTRS)
Atli, K. C.; Karaman, I.; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.
2011-01-01
A Ti(49.5)Ni25Pd25Sc(0.5) high-temperature shape memory alloy is thermomechanically processed to obtain enhanced shape-memory characteristics: in particular, dimensional stability upon repeated thermal cycles under constant loads. This is accomplished using severe plastic deformation via equal channel angular extrusion (ECAE) and post-processing annealing heat treatments. The results of the thermomechanical experiments reveal that the processed materials display enhanced shape memory response, exhibiting higher recoverable transformation and reduced irrecoverable strain levels upon thermal cycling compared with the unprocessed material. This improvement is attributed to the increased strength and resistance of the material against defect generation upon phase transformation as a result of the microstructural refinement due to the ECAE process, as supported by the electron microscopy observations.
A water-responsive shape memory ionomer with permanent shape reconfiguration ability
NASA Astrophysics Data System (ADS)
Bai, Yongkang; Zhang, Jiwen; Tian, Ran; Chen, Xin
2018-04-01
In this work, a water-responsive shape memory ionomer with high toughness was fabricated by cross-linking hyaluronic acid sodium (HAS) and polyvinyl alcohol (PVA) through coordination interactions. The strong Fe3+-carboxyl (from HAS) coordination interactions served as main physical cross-linking points for the performance of water-responsive shape memory, which associated with the flexibility of PVA chain producing excellent mechanical properties of this ionomer. The optimized ionomer was not only able to recover to its original shape within just 22 s by exposing to water, but exhibited high tensile strength up to 35.4 MPa and 4 times higher tractility than the ionomer without PVA. Moreover, the ionomers can be repeatedly programed to various new permanent shapes on demand due to the reversible physical interactions, which still performed complete and fast geometric recovery under stimuli even after 4 cycles of reprograming with 3 different shapes. The excellent shape memory and strong mechanical behaviors make our ionomers significant and promising smart materials for variety of applications.
High-Temperature Shape Memory Behavior of Semicrystalline Polyamide Thermosets.
Li, Ming; Guan, Qingbao; Dingemans, Theo J
2018-05-21
We have explored semicrystalline poly(decamethylene terephthalamide) (PA 10T) based thermosets as single-component high-temperature (>200 °C) shape memory polymers (SMPs). The PA 10T thermosets were prepared from reactive thermoplastic precursors. Reactive phenylethynyl (PE) functionalities were either attached at the chain termini or placed as side groups along the polymer main chain. The shape fixation and recovery performance of the thermoset films were investigated using a rheometer in torsion mode. By controlling the M n of the reactive oligomers, or the PE concentration of the PE side-group functionalized copolyamides, we were able to design dual-shape memory PA 10T thermosets with a broad recovery temperature range of 227-285 °C. The thermosets based on the 1000 g mol -1 reactive PE precursor and the copolyamide with 15 mol % PE side groups show the highest fixation rate (99%) and recovery rate (≥90%). High temperature triple-shape memory behavior can be achieved as well when we use the melt transition ( T m ≥ 200 °C) and the glass transition ( T g = ∼125 °C) as the two switches. The recovery rate of the two recovery steps are highly dependent on the crystallinity of the thermosets and vary within a wide range of 74%-139% and 40-82% for the two steps, respectively. Reversible shape memory events could also be demonstrated when we perform a forward and backward deformation in a triple shape memory cycle. We also studied the angular recovery velocity as a function of temperature, which provides a thermokinematic picture of the shape recovery process and helps to program for desired shape memory behavior.
High-Temperature Shape Memory Behavior of Semicrystalline Polyamide Thermosets
2018-01-01
We have explored semicrystalline poly(decamethylene terephthalamide) (PA 10T) based thermosets as single-component high-temperature (>200 °C) shape memory polymers (SMPs). The PA 10T thermosets were prepared from reactive thermoplastic precursors. Reactive phenylethynyl (PE) functionalities were either attached at the chain termini or placed as side groups along the polymer main chain. The shape fixation and recovery performance of the thermoset films were investigated using a rheometer in torsion mode. By controlling the Mn of the reactive oligomers, or the PE concentration of the PE side-group functionalized copolyamides, we were able to design dual-shape memory PA 10T thermosets with a broad recovery temperature range of 227–285 °C. The thermosets based on the 1000 g mol–1 reactive PE precursor and the copolyamide with 15 mol % PE side groups show the highest fixation rate (99%) and recovery rate (≥90%). High temperature triple-shape memory behavior can be achieved as well when we use the melt transition (Tm ≥ 200 °C) and the glass transition (Tg = ∼125 °C) as the two switches. The recovery rate of the two recovery steps are highly dependent on the crystallinity of the thermosets and vary within a wide range of 74%–139% and 40–82% for the two steps, respectively. Reversible shape memory events could also be demonstrated when we perform a forward and backward deformation in a triple shape memory cycle. We also studied the angular recovery velocity as a function of temperature, which provides a thermokinematic picture of the shape recovery process and helps to program for desired shape memory behavior. PMID:29742899
3D Printing of Shape Memory Polymers for Flexible Electronic Devices.
Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo
2016-06-01
The formation of 3D objects composed of shape memory polymers for flexible electronics is described. Layer-by-layer photopolymerization of methacrylated semicrystalline molten macromonomers by a 3D digital light processing printer enables rapid fabrication of complex objects and imparts shape memory functionality for electrical circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent Progress on Modeling Slip Deformation in Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Sehitoglu, H.; Alkan, S.
2018-03-01
This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non- Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.
Ni-Mn-Ga shape memory nanoactuation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohl, M., E-mail: manfred.kohl@kit.edu; Schmitt, M.; Krevet, B.
2014-01-27
To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.
Ni-Mn-Ga shape memory nanoactuation
NASA Astrophysics Data System (ADS)
Kohl, M.; Schmitt, M.; Backen, A.; Schultz, L.; Krevet, B.; Fähler, S.
2014-01-01
To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.
Preparation and evaluation of ageing effect of Cu-Al-Be-Mn shape memory alloys
NASA Astrophysics Data System (ADS)
Shivasiddaramaiah, A. G.; Mallik, U. S.; Mahato, Ranjit; Shashishekar, C.
2018-04-01
10-14 wt. % of aluminum, 0.3-0.6 wt. % of beryllium and 0.1-0.4 wt. % of manganese and remaining copper melted in the induction furnace through ingot metallurgy. The prepared SMAs are subjected to homogenization. It was observed that the samples exhibits β-phase at high temperature and shape memory effect after going through step quenching to a low temperature. Scanning Electron Microscope, DSC, bending test were performed on the samples to determine the microstructure, transformation temperatures and shape memory effect respectively. The alloy exhibit good shape memory effect, up to around 96% strain recovery by shape memory effect. The ageing is performed on the specimen prepared according to ASTM standard for testing micro-hardness and tensile test. Precipitation hardening method was employed to age the samples and they were aged at different temperature and at different times followed by quenching. Various forms of precipitates were formed. It was found that the formation rate and transformation temperature increased with ageing time, while the amount of precipitate had an inverse impact on strain recovery by shape memory effect. The result expected is to increase in mechanical properties of the material such as hardness.
Effect of nitrogen on iron-manganese-based shape memory alloys
NASA Astrophysics Data System (ADS)
Ariapour, Azita
Shape memory effect is due to a reversible martensitic transformation. The major drawback in case of Fe-Mn-based shape memory alloys is their inferior shape memory effect compared to Ni-Ti and Cu-based shape memory alloys and their low strength and corrosion resistance compared to steel alloys. It is known that by increasing the alloy strength the shape memory effect can be improved. Nitrogen in solid solution can increase the strength of steels to a greater extent than other major alloying elements. However, its effect on shape memory effect of Fe-Mn-based alloys is ambiguous. In this work first we investigated the effect of nitrogen addition in solid solution on both shape memory effect (SME) and strength of a Fe-Mn-Cr-Ni-Si shape memory alloy (SMA). It was found that interstitial nitrogen suppressed the shape memory effect in these alloys. As an example addition of 0.24 wt % nitrogen in solid solution to the alloy system suppressed the SME by ˜80% and increased the strength by 20%. A reduction of martensitic phase formation was found to be the dominant factor in suppression of the SME. This was related, experimentally and theoretically to stacking fault energy of the alloy as well as the driving force and friction force during the transformation. The second approach was doping the alloy with both 0.36 wt% of nitrogen and 0.36 wt% of niobium. Niobium has great affinity for nitrogen and thus NbN dispersed particles can be produced in the alloy following hot rolling. Then particles prevent growth of the alloy and increase the strength of the alloy due to reduced grain size, and precipitation hardening. The improvement of SME in this alloy compared to the interstitial containing alloys was due to the large removal of the nitrogen from solid solution. In case of all the alloys studied in this work, the presence of nitrogen in solid solution improved the corrosion resistance of the alloy. This suggests that nitrogen can replace nickel in the alloy. One of the proposed applications for high strength Fe-Mn-based alloys is as tendon rods in prestressed concrete. The advantage of M alloys in this application is the possibility of producing curved structural prestressed concrete.
Shape Memory Characteristics of Rapidly Solidified Ti-37.8Cu-18.7Ni Alloy Ribbons
NASA Astrophysics Data System (ADS)
Ramos, Alana Pereira; de Castro, Walman Benicio
Amorphization and martensitic transformation (Ms) characteristics of Ti-Ni-Cu alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray diffraction. In these experiments particular attention has been paid to change the wheel linear velocity from 21 to 63 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate and alloy composition on martensitic transformation behavior is discussed.
Fiber laser drilling of Ni46Mn27Ga27 ferromagnetic shape memory alloy
NASA Astrophysics Data System (ADS)
Biffi, C. A.; Tuissi, A.
2014-11-01
The interest in ferromagnetic shape memory alloys (SMAs), such as NiMnGa, is increasing, thanks to the functional properties of these smart and functional materials. One of the most evident properties of these systems is their brittleness, which makes attractive the study of unconventional manufacturing processes, such as laser machining. In this work the interaction of laser beam, once focalized on the surface of Ni46Mn27Ga27 [at%] alloy, has been studied. The experiments were performed with a single laser pulse, using a 1 kW continuous wave fiber laser. The morphology of the laser machined surfaces was evaluated using scanning electron microscopy, coupled with energetic dispersion spectroscopy for the measurement of the chemical composition. The results showed that the high quality of the laser beam, coupled with great irradiances available, allow for blind or through holes to be machined on 1.8 mm plates with a single pulse in the order of a few ms. Holes were produced with size in the range of 200-300 μm; despite the long pulse duration, low amount of melted material is produced around the hole periphery. No significant variation of the chemical composition has been detected on the entrance surfaces while the exit ones have been characterized by the loss of Ga content, due to its melting point being significantly lower with respect to the other alloying elements.
Numerical tool for SMA material simulation: application to composite structure design
NASA Astrophysics Data System (ADS)
Chemisky, Yves; Duval, Arnaud; Piotrowski, Boris; Ben Zineb, Tarak; Tahiri, Vanessa; Patoor, Etienne
2009-10-01
Composite materials based on shape memory alloys (SMA) have received growing attention over these last few years. In this paper, two particular morphologies of composites are studied. The first one is an SMA/elastomer composite in which a snake-like wire NiTi SMA is embedded into an elastomer ribbon. The second one is a commercial Ni47Ti44Nb9 which presents elastic-plastic inclusions in an NiTi SMA matrix. In both cases, the design of such composites required the development of an SMA design tool, based on a macroscopic 3D constitutive law for NiTi alloys. Two different strategies are then applied to compute these composite behaviors. For the SMA/elastomer composite, the macroscopic behavior law is implemented in commercial FEM software, and for the Ni47Ti44Nb9 a scale transition approach based on the Mori-Tanaka scheme is developed. In both cases, simulations are compared to experimental data.
Torsion and bending properties of shape memory and superelastic nickel-titanium rotary instruments.
Ninan, Elizabeth; Berzins, David W
2013-01-01
Recently introduced into the market are shape memory nickel-titanium (NiTi) rotary files. The objective of this study was to investigate the torsion and bending properties of shape memory files (CM Wire, HyFlex CM, and Phoenix Flex) and compare them with conventional (ProFile ISO and K3) and M-Wire (GT Series X and ProFile Vortex) NiTi files. Sizes 20, 30, and 40 (n = 12/size/taper) of 0.02 taper CM Wire, Phoenix Flex, K3, and ProFile ISO and 0.04 taper HyFlex CM, ProFile ISO, GT Series X, and Vortex were tested in torsion and bending per ISO 3630-1 guidelines by using a torsiometer. All data were statistically analyzed by analysis of variance and the Tukey-Kramer test (P = .05) to determine any significant differences between the files. Significant interactions were present among factors of size and file. Variability in maximum torque values was noted among the shape memory files brands, sometimes exhibiting the greatest or least torque depending on brand, size, and taper. In general, the shape memory files showed a high angle of rotation before fracture but were not statistically different from some of the other files. However, the shape memory files were more flexible, as evidenced by significantly lower bending moments (P < .008). Shape memory files show greater flexibility compared with several other NiTi rotary file brands. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan
2014-01-01
As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system. PMID:24828010
Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan
2014-01-01
As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.
Optimization of SMA layers in composite structures to enhance damping
NASA Astrophysics Data System (ADS)
Haghdoust, P.; Cinquemani, S.; Lecis, N.; Bassani, P.
2016-04-01
The performance of lightweight structures can be severely affected by vibration. New design concepts leading to lightweight, slender structural components can increase the vulnerability of the components to failure due to excessive vibration. The intelligent approach to address the problem would be the use of materials which are more capable in dissipating the energy due to their high value of loss factor. Among the different materials available to achieve damping, much attention has been attached to the use of shape memory alloys (SMAs) because of their unique microstructure, leading to good damping capacity. This work describes the design and optimization of a hybrid layered composite structure for the passive suppression of flexural vibrations in slender and light structures. Embedding the SMA layers in composite structure allows to combine different properties: the lightness of the base composite (e.g. fiber glass), the mechanical strength of the insert of metallic material and the relevant damping properties of SMA, in the martensitic phase. In particular, we put our attention on embedding the CuZnAl in the form of thin sheet in a layered composite made by glass fiber reinforced epoxy. By appropriately positioning of the SMA sheets so that they are subjected to the maximum curvature, the damping of the hybrid system can be considerably enhanced. Accordingly analytical method for evaluating the energy dissipation of the thin sheets with different shapes and patterns is developed and is followed by a shape optimization based on genetic algorithm. Eventually different configurations of the hybrid beam structure with different patterns of SMA layer are proposed and compared in the term of damping capacity.
Shape Memory Alloy Isolation Valves: Public Quad Chart
2017-05-12
NUMBER (Include area code) 12 May 2017 Briefing Charts 12 April 2017 - 12 May 2017 Shape Memory Alloy Isolation Valves: Public Quad Chart William...Unclassified Unclassified Unclassified SAR 2 William Hargus N/A PAYOFF/TRANSITIONTECHNICAL APPROACH MOTIVATION APPLYING AFRL TO SUSTAINMENT • Evaluate...spacecraft (15+ yrs) • Shaped memory alloy isolation valves provide an intrinsically safe isolation system that increases lifetime >5x over SOTA and
Ultra Low Density and Highly Crosslinked Biocompatible Shape Memory Polyurethane Foams
Singhal, Pooja; Rodriguez, Jennifer N.; Small, Ward; Eagleston, Scott; Van de Water, Judy; Maitland, Duncan J.; Wilson, Thomas S.
2012-01-01
We report the development of highly chemically crosslinked, ultra low density (~0.015 g/cc) polyurethane shape memory foams synthesized from symmetrical, low molecular weight and branched hydroxyl monomers. Sharp single glass transitions (Tg) customizable in the functional range of 45–70 °C were achieved. Thermomechanical testing confirmed shape memory behavior with 97–98% shape recovery over repeated cycles, a glassy storage modulus of 200–300 kPa and recovery stresses of 5–15 kPa. Shape holding tests under constrained storage above the Tg showed stable shape memory. A high volume expansion of up to 70 times was seen on actuation of these foams from a fully compressed state. Low in-vitro cell activation induced by the foam compared to controls demonstrates low acute bio-reactivity. We believe these porous polymeric scaffolds constitute an important class of novel smart biomaterials with multiple potential applications. PMID:22570509
Fast Response, Open-Celled Porous, Shape Memory Effect Actuators with Integrated Attachments
NASA Technical Reports Server (NTRS)
Jardine, Andrew Peter (Inventor)
2015-01-01
This invention relates to the exploitation of porous foam articles exhibiting the Shape Memory Effect as actuators. Each foam article is composed of a plurality of geometric shapes, such that some geometric shapes can fit snugly into or around rigid mating connectors that attach the Shape Memory foam article intimately into the load path between a static structure and a moveable structure. The foam is open-celled, composed of a plurality of interconnected struts whose mean diameter can vary from approximately 50 to 500 microns. Gases and fluids flowing through the foam transfer heat rapidly with the struts, providing rapid Shape Memory Effect transformations. Embodiments of porous foam articles as torsional actuators and approximately planar structures are disposed. Simple, integral connection systems exploiting the ability to supply large loads to a structure, and that can also supply hot and cold gases and fluids to effect rapid actuation are also disposed.
NASA Astrophysics Data System (ADS)
Jeong, Soon-Jong
2000-08-01
Shape memory alloys (SMAs) have excellent mechanical properties showing large stroke and high power density when used as actuators. In terms of response speed, however, conventional SMAs have a drawback due to the isothermal nature of the associated phase transformation. A new type of SMA, called ferromagnetic SMA, is considered to replace conventional SMAs and is hoped to overcome such a slow response drawback by changing driving mode of shape memory behaviors from thermal to magnetic. The new type of ferromagnetic SMAs is expected to exhibit not only a large displacement but also rapid response when magnetic field is applied and removed. There are three kinds of ferromagnetic SMAs and among them, Ni2MnGa-based compounds exhibit prominent shape memory effects and superelasticity. In this study, Ni2MnGa-based alloys were chosen and studied to characterize shape memory behavior upon the application and removal of magnetic field. The relevance of the magnetic field-induced shape memory behavior to the magnetization process was investigated by using transformation and/or the movement of martensite variant interfaces. Two mechanisms have been proposed for controlling magnetic field-induced shape memory behaviors. One mechanism is related to shape memory behavior associated with magnetic field-induced martensitic transformation. The other is related to the rearrangement of martensite variants by magnetic field application. Magnetic field-induced martensitic transformation and shape memory effects for single- and poly-crystalline Ni2MnGa alloys were investigated under various conditions. In single crystalline specimens, it was observed that considerable strain changes are a function of magnetic field at temperatures below Mf (martensite finish temperature). Such strain changes, by application and subsequent removal of magnetic field, may be attributed to the martensite variant motion at lower temperatures than Mf. Magnetic field application made a significant contribution to the martensite transformation and related strain changes (0.3%--0.82%) at temperatures above Af (austenite finish temperature) in some polycrystalline Ni2MnGa alloys, where austenite and martensite phases possess paramagnetic and ferromagnetic properties, respectively.
Shape-memory surfaces for cell mechanobiology
Ebara, Mitsuhiro
2015-01-01
Shape-memory polymers (SMPs) are a new class of smart materials, which have the capability to change from a temporary shape ‘A’ to a memorized permanent shape ‘B’ upon application of an external stimulus. In recent years, SMPs have attracted much attention from basic and fundamental research to industrial and practical applications due to the cheap and efficient alternative to well-known metallic shape-memory alloys. Since the shape-memory effect in SMPs is not related to a specific material property of single polymers, the control of nanoarchitecture of polymer networks is particularly important for the smart functions of SMPs. Such nanoarchitectonic approaches have enabled us to further create shape-memory surfaces (SMSs) with tunable surface topography at nano scale. The present review aims to bring together the exciting design of SMSs and the ever-expanding range of their uses as tools to control cell functions. The goal for these endeavors is to mimic the surrounding mechanical cues of extracellular environments which have been considered as critical parameters in cell fate determination. The untapped potential of SMSs makes them one of the most exciting interfaces of materials science and cell mechanobiology. PMID:27877747
Fang, Yin; Leo, Sin-Yen; Ni, Yongliang; Wang, Junyu; Wang, Bingchen; Yu, Long; Dong, Zhe; Dai, Yuqiong; Basile, Vito; Taylor, Curtis; Jiang, Peng
2017-02-15
Traditional shape memory polymers (SMPs) are mostly thermoresponsive, and their applications in nano-optics are hindered by heat-demanding programming and recovery processes. By integrating a polyurethane-based shape memory copolymer with templating nanofabrication, reconfigurable/rewritable macroporous photonic crystals have been demonstrated. This SMP coupled with the unique macroporous structure enables unusual all-room-temperature shape memory cycles. "Cold" programming involving microscopic order-disorder transitions of the templated macropores is achieved by mechanically deforming the macroporous SMP membranes. The rapid recovery of the permanent, highly ordered photonic crystal structure from the temporary, disordered configuration can be triggered by multiple stimuli including a large variety of vapors and solvents, heat, and microwave radiation. Importantly, the striking chromogenic effects associated with these athermal and thermal processes render a sensitive and noninvasive optical methodology for quantitatively characterizing the intriguing nanoscopic shape memory effects. Some critical parameters/mechanisms that could significantly affect the final performance of SMP-based reconfigurable photonic crystals including strain recovery ratio, dynamics and reversibility of shape recovery, as well as capillary condensation of vapors in macropores, which play a crucial role in vapor-triggered recovery, can be evaluated using this new optical technology.
Yakacki, Christopher M.; Shandas, Robin; Lanning, Craig; Rech, Bryan; Eckstein, Alex; Gall, Ken
2009-01-01
Shape-memory materials have been proposed in biomedical device design due to their ability to facilitate minimally invasive surgery and recover to a predetermined shape in-vivo. Use of the shape-memory effect in polymers is proposed for cardiovascular stent interventions to reduce the catheter size for delivery and offer highly controlled and tailored deployment at body temperature. Shape-memory polymer networks were synthesized via photopolymerization of tert-butyl acrylate and poly (ethylene glycol) dimethacrylate to provide precise control over the thermomechanical response of the system. The free recovery response of the polymer stents at body temperature was studied as a function of glass transition temperature (Tg), crosslink density, geometrical perforation, and deformation temperature, all of which can be independently controlled. Room temperature storage of the stents was shown to be highly dependent on Tg and crosslink density. The pressurized response of the stents is also demonstrated to depend on crosslink density. This polymer system exhibits a wide range of shape-memory and thermomechanical responses to adapt and meet specific needs of minimally invasive cardiovascular devices. PMID:17296222
A review on shape memory alloys with applications to morphing aircraft
NASA Astrophysics Data System (ADS)
Barbarino, S.; Saavedra Flores, E. I.; Ajaj, R. M.; Dayyani, I.; Friswell, M. I.
2014-06-01
Shape memory alloys (SMAs) are a unique class of metallic materials with the ability to recover their original shape at certain characteristic temperatures (shape memory effect), even under high applied loads and large inelastic deformations, or to undergo large strains without plastic deformation or failure (super-elasticity). In this review, we describe the main features of SMAs, their constitutive models and their properties. We also review the fatigue behavior of SMAs and some methods adopted to remove or reduce its undesirable effects. SMAs have been used in a wide variety of applications in different fields. In this review, we focus on the use of shape memory alloys in the context of morphing aircraft, with particular emphasis on variable twist and camber, and also on actuation bandwidth and reduction of power consumption. These applications prove particularly challenging because novel configurations are adopted to maximize integration and effectiveness of SMAs, which play the role of an actuator (using the shape memory effect), often combined with structural, load-carrying capabilities. Iterative and multi-disciplinary modeling is therefore necessary due to the fluid-structure interaction combined with the nonlinear behavior of SMAs.
SMA Hybrid Composites for Dynamic Response Abatement Applications
NASA Technical Reports Server (NTRS)
Turner, Travis L.
2000-01-01
A recently developed constitutive model and a finite element formulation for predicting the thermomechanical response of Shape Memory Alloy (SMA) hybrid composite (SMAHC) structures is briefly described. Attention is focused on constrained recovery behavior in this study, but the constitutive formulation is also capable of modeling restrained or free recovery. Numerical results are shown for glass/epoxy panel specimens with embedded Nitinol actuators subjected to thermal and acoustic loads. Control of thermal buckling, random response, sonic fatigue, and transmission loss are demonstrated and compared to conventional approaches including addition of conventional composite layers and a constrained layer damping treatment. Embedded SMA actuators are shown to be significantly more effective in dynamic response abatement applications than the conventional approaches and are attractive for combination with other passive and/or active approaches.
Early, Involuntary Top-Down Guidance of Attention From Working Memory
ERIC Educational Resources Information Center
Soto, David; Heinke, Dietmar; Humphreys, Glyn W.; Blanco, Manuel J.
2005-01-01
Four experiments explored the interrelations between working memory, attention, and eye movements. Observers had to identify a tilted line amongst vertical distractors. Each line was surrounded by a colored shape that could be precued by a matching item held in memory. Relative to a neutral baseline, in which no shapes matched the memory item,…
Shape memory alloys: a state of art review
NASA Astrophysics Data System (ADS)
Naresh, C.; Bose, P. S. C.; Rao, C. S. P.
2016-09-01
Shape memory alloys (SMAs) are the special materials that have the ability to return to a predetermined shape when heated. When this alloy is in below transformation temperature it undergoes low yield strength and will deform easily into any new shape which it will retain, if this alloy is heated above its transformation temperature it changes its crystal lattice structure which returns to its real shape. SMAs are remarkably different from other materials are primarily due to shape memory effect (SME) and pseudoelasticity which are related with the specific way the phase transformation occurs, biocompatibility, high specific strength, high corrosion resistance, high wear resistance and high anti-fatigue property. SMA are used in many applications such as aerospace, medical, automobile, tubes, controllers for hot water valves in showers, petroleum industry, vibration dampers, ball bearings, sensors, actuators, miniature grippers, micro valves, pumps, landing gears, eye glass frames, Material for helicopter blades, sprinklers in fine alarm systems packaging devices for electronic materials, dental materials, etc. This paper focuses on introducing shape memory alloy and their applications in past, present and in future, also revealed the concept and mechanism of shape memory materials for a particular requirement. Properties of SMAs, behaviour and characteristics of SMA, summary of recent advances and new application opportunities are also discussed.
Parametric analysis and temperature effect of deployable hinged shells using shape memory polymers
NASA Astrophysics Data System (ADS)
Tao, Ran; Yang, Qing-Sheng; He, Xiao-Qiao; Liew, Kim-Meow
2016-11-01
Shape memory polymers (SMPs) are a class of intelligent materials, which are defined by their capacity to store a temporary shape and recover an original shape. In this work, the shape memory effect of SMP deployable hinged shell is simulated by using compiled user defined material subroutine (UMAT) subroutine of ABAQUS. Variations of bending moment and strain energy of the hinged shells with different temperatures and structural parameters in the loading process are given. The effects of the parameters and temperature on the nonlinear deformation process are emphasized. The entire thermodynamic cycle of SMP deployable hinged shell includes loading at high temperature, load carrying with cooling, unloading at low temperature and recovering the original shape with heating. The results show that the complicated thermo-mechanical deformation and shape memory effect of SMP deployable hinge are influenced by the structural parameters and temperature. The design ability of SMP smart hinged structures in practical application is prospected.
Method of preparing a two-way shape memory alloy
Johnson, Alfred D.
1984-01-01
A two-way shape memory alloy, a method of training a shape memory alloy, and a heat engine employing the two-way shape memory alloy to do external work during both heating and cooling phases. The alloy is heated under a first training stress to a temperature which is above the upper operating temperature of the alloy, then cooled to a cold temperature below the zero-force transition temperature of the alloy, then deformed while applying a second training stress which is greater in magnitude than the stress at which the alloy is to be operated, then heated back to the hot temperature, changing from the second training stress back to the first training stress.
Microstructure and Shape Memory Behavior of Ti-Nb Shape Memory Alloy Thin Film
NASA Astrophysics Data System (ADS)
Meng, X. L.; Sun, B.; Sun, J. Y.; Gao, Z. Y.; Cai, W.; Zhao, L. C.
2017-09-01
Ti-Nb shape memory alloy (SMA) thin film is a promising candidate applied as microactuator in biomedical field. In this study, the microstructure and shape memory behavior of Ti-Nb SMA thin films in different heat treatment conditions have been investigated. Fine ω phases embedded in the β phase matrix suppress the martensitic transformation of the films. As a result, the as-deposited and most of the annealed films consist of the β and α″ dual phases. The annealed Ti-Nb thin film shows excellent superelasticity effect when deformed above the reverse martensitic transformation temperature, that is 3.5% total recovery strain can be obtained when 4% pre-strain is loaded.
Johnson, Jeffrey S.; Sutterer, David W.; Acheson, Daniel J.; Lewis-Peacock, Jarrod A.; Postle, Bradley R.
2011-01-01
Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band (~8–14 Hz) power during the delay period of delayed-recognition short-term memory tasks. These increases have been proposed to reflect the inhibition, for example, of cortical areas representing task-irrelevant information, or of potentially interfering representations from previous trials. Another possibility, however, is that elevated delay-period alpha-band power (DPABP) reflects the selection and maintenance of information, rather than, or in addition to, the inhibition of task-irrelevant information. In the present study, we explored these possibilities using a delayed-recognition paradigm in which the presence and task relevance of shape information was systematically manipulated across trial blocks and electroencephalographic was used to measure alpha-band power. In the first trial block, participants remembered locations marked by identical black circles. The second block featured the same instructions, but locations were marked by unique shapes. The third block featured the same stimulus presentation as the second, but with pretrial instructions indicating, on a trial-by-trial basis, whether memory for shape or location was required, the other dimension being irrelevant. In the final block, participants remembered the unique pairing of shape and location for each stimulus. Results revealed minimal DPABP in each of the location-memory conditions, whether locations were marked with identical circles or with unique task-irrelevant shapes. In contrast, alpha-band power increases were observed in both the shape-memory condition, in which location was task irrelevant, and in the critical final condition, in which both shape and location were task relevant. These results provide support for the proposal that alpha-band oscillations reflect the retention of shape information and/or shape–location associations in short-term memory. PMID:21713012
Active Flow Effectors for Noise and Separation Control
NASA Technical Reports Server (NTRS)
Turner, Travis L.
2011-01-01
New flow effector technology for separation control and enhanced mixing is based upon shape memory alloy hybrid composite (SMAHC) technology. The technology allows for variable shape control of aircraft structures through actively deformable surfaces. The flow effectors are made by embedding shape memory alloy actuator material in a composite structure. When thermally actuated, the flow effector def1ects into or out of the flow in a prescribed manner to enhance mixing or induce separation for a variety of applications, including aeroacoustic noise reduction, drag reduction, and f1ight control. The active flow effectors were developed for noise reduction as an alternative to fixed-configuration effectors, such as static chevrons, that cannot be optimized for airframe installation effects or variable operating conditions and cannot be retracted for off-design or fail-safe conditions. Benefits include: Increased vehicle control, overall efficiency, and reduced noise throughout all f1ight regimes, Reduced flow noise, Reduced drag, Simplicity of design and fabrication, Simplicity of control through direct current stimulation, autonomous re sponse to environmental heating, fast re sponse, and a high degree of geometric stability. The concept involves embedding prestrained SMA actuators on one side of the chevron neutral axis in order to generate a thermal moment and def1ect the structure out of plane when heated. The force developed in the host structure during def1ection and the aerodynamic load is used for returning the structure to the retracted position. The chevron design is highly scalable and versatile, and easily affords active and/or autonomous (environmental) control. The technology offers wide-ranging market applications, including aerospace, automotive, and any application that requires flow separation or noise control.
NASA Astrophysics Data System (ADS)
He, Q.; Huang, W. M.; Hong, M. H.; Wu, M. J.; Fu, Y. Q.; Chong, T. C.; Chellet, F.; Du, H. J.
2004-10-01
NiTi shape memory thin films are potentially desirable for micro-electro-mechanical system (MEMS) actuators, because they have a much higher work output per volume and also a significantly improved response speed due to a larger surface-to-volume ratio. A new technique using a temperature controllable atomic force microscope (AFM) is presented in order to find the transformation temperatures of NiTi shape memory thin films of micrometer size, since traditional techniques, such as differential scanning calorimetry (DSC) and the curvature method, have difficulty in dealing with samples of such a scale as this. This technique is based on the surface relief phenomenon in shape memory alloys upon thermal cycling. The reliability of this technique is investigated and compared with the DSC result in terms of the transformation fraction (xgr). It appears that the new technique is nondestructive, in situ and capable of characterizing sputtering deposited very small NiTi shape memory thin films.
An Implicit Algorithm for the Numerical Simulation of Shape-Memory Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, R; Stolken, J; Jannetti, C
Shape-memory alloys (SMA) have the potential to be used in a variety of interesting applications due to their unique properties of pseudoelasticity and the shape-memory effect. However, in order to design SMA devices efficiently, a physics-based constitutive model is required to accurately simulate the behavior of shape-memory alloys. The scope of this work is to extend the numerical capabilities of the SMA constitutive model developed by Jannetti et. al. (2003), to handle large-scale polycrystalline simulations. The constitutive model is implemented within the finite-element software ABAQUS/Standard using a user defined material subroutine, or UMAT. To improve the efficiency of the numericalmore » simulations, so that polycrystalline specimens of shape-memory alloys can be modeled, a fully implicit algorithm has been implemented to integrate the constitutive equations. Using an implicit integration scheme increases the efficiency of the UMAT over the previously implemented explicit integration method by a factor of more than 100 for single crystal simulations.« less
Memory Metals (Marchon Eyewear)
NASA Technical Reports Server (NTRS)
1991-01-01
Another commercial application of memory metal technology is found in a "smart" eyeglass frame that remembers its shape and its wearer's fit. A patented "memory encoding process" makes this possible. Heat is not required to return the glasses to shape. A large commercial market is anticipated.
Li, H F; Qiu, K J; Zhou, F Y; Li, L; Zheng, Y F
2016-11-29
In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.
NASA Astrophysics Data System (ADS)
Li, H. F.; Qiu, K. J.; Zhou, F. Y.; Li, L.; Zheng, Y. F.
2016-11-01
In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.
3D Printing of a Thermoplastic Shape Memory Polymer using FDM
NASA Astrophysics Data System (ADS)
Zhao, Zhiyang; Weiss, R. A.; Vogt, Bryan
Shape memory polymers (SMPs) change from a temporary shape to its permanent shape when exposed to an external stimulus. The shape memory relies on the presence of two independent networks. 3D printing provides a facile method to fabricate complex shapes with high degrees of customizability. The most common consumer 3D printing technology is fused deposition modeling (FDM), which relies on the extrusion of a thermoplastic filament to build-up the part in a layer by layer fashion. The material choices for FDM are limited, but growing. The generation of an SMP that is printable by FDM could open SMPs to many new potential applications. In this work, we demonstrate printing of thermally activated SMP using FDM. Partially neutralized poly(ethylene-co-r-methacrylic acid) ionomers (Surlyn by Dupont) was extruded into filaments and used as a model thermoplastic shape memory material. The properties of the SMP part can be readily tuned by print parameters, such as infill density or infill direction without changing the base material. We discuss the performance and characteristics of 3D printed shapes compared to their compression molded analogs.
Mechanisms of change of shape in deforming and heating titanium alloys with the shape memory effect
NASA Astrophysics Data System (ADS)
Il'in, A. A.; Kollerov, M. Yu.; Golovin, I. S.; Shinaev, A. A.
1998-04-01
Alloys with the shape memory effect based on titanium nickelide are well known and used quite widely in medicine, aircraft and spacecraft engineering, and other fields of mschine building. These alloys are used in creating thermomechanical parts of structures, temperature-sensitive gauges, and thermoregulators. Titanium alloys with the shape memory effect that posses high damping properties are used when vibrations and noise have to be limited in order to provide effective operation of machine parts and engineering systems as a whole. Commercial titanium-base alloys have lower characteristics of shape regeneration than alloys based on titanium nickelide. However, commercial alloys are much less expensive and are used to produce a wide range of semifinished products. In these materials the characteristics of shape regeneration and damping are often determined by the mechanism of change of shape in deformation, which has not yet been studied appropriately. The present work is devoted to the mechanisms of inelasticity in titanium alloys in various stages of the action of the shape memory effect.
Colić, Miodrag; Rudolf, Rebeka; Stamenković, Dragoslav; Anzel, Ivan; Vucević, Dragana; Jenko, Monika; Lazić, Vojkan; Lojen, Gorazd
2010-01-01
Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but their biomedical application is still limited. The aim of this work was to compare the microstructure, corrosion and cytotoxicity in vitro of a Cu-Al-Ni SMA. Rapidly solidified (RS) thin ribbons, manufactured via melt spinning, were used for the tests. The control alloy was a permanent mould casting of the same composition, but without shape memory effect. The results show that RS ribbons are significantly more resistant to corrosion compared with the control alloy, as judged by the lesser release of Cu and Ni into the conditioning medium. These results correlate with the finding that RS ribbons were not cytotoxic to L929 mouse fibroblasts and rat thymocytes. In addition, the RS ribbon conditioning medium inhibited cellular proliferation and IL-2 production by activated rat splenocytes to a much lesser extent. The inhibitory effects were almost completely abolished by conditioning the RS ribbons in culture medium for 4 weeks. Microstructural analysis showed that RS ribbons are martensitic, with boron particles as a minor phase. In contrast, the control Cu-Al-Ni alloy had a complex multiphase microstructure. Examination of the alloy surfaces after conditioning by energy dispersive X-ray and Auger electron spectroscopy showed the formation of Cu and Al oxide layers and confirmed that the metals in RS ribbons are less susceptible to oxidation and corrosion compared with the control alloy. In conclusion, these results suggest that rapid solidification significantly improves the corrosion stability and biocompatibility in vitro of Cu-Al-Ni SMA ribbons.
NASA Astrophysics Data System (ADS)
Choi, S. G.; Kim, S. H.; Choi, W. K.; Moon, G. C.; Lee, E. S.
2017-06-01
Shape memory alloy (SMA) is important material used for the medicine and aerospace industry due to its characteristics called the shape memory effect, which involves the recovery of deformed alloy to its original state through the application of temperature or stress. Consumers in modern society demand stability in parts. Electrochemical machining is one of the methods for obtained these stabilities in parts requirements. These parts of shape memory alloy require fine patterns in some applications. In order to machine a fine pattern, the electrochemical machining method is suitable. For precision electrochemical machining using different shape electrodes, the current density should be controlled precisely. And electrode shape is required for precise electrochemical machining. It is possible to obtain precise square holes on the SMA if the insulation layer controlled the unnecessary current between electrode and workpiece. If it is adjusting the unnecessary current to obtain the desired shape, it will be a great contribution to the medical industry and the aerospace industry. It is possible to process a desired shape to the shape memory alloy by micro controlling the unnecessary current. In case of the square electrode without insulation layer, it derives inexact square holes due to the unnecessary current. The results using the insulated electrode in only side show precise square holes. The removal rate improved in case of insulated electrode than others because insulation layer concentrate the applied current to the machining zone.
Ab initio study of the composite phase diagram of Ni-Mn-Ga shape memory alloys
NASA Astrophysics Data System (ADS)
Sokolovskaya, Yu. A.; Sokolovskiy, V. V.; Zagrebin, M. A.; Buchelnikov, V. D.; Zayak, A. T.
2017-07-01
The magnetic and structural properties of a series of nonstoichiometric Ni-Mn-Ga Heusler alloys are theoretically investigated in terms of the density functional theory. Nonstoichiometry is formed in the coherent potential approximation. Concentration dependences of the equilibrium lattice parameter, the bulk modulus, and the total magnetic moment are obtained and projected onto the ternary phase diagram of the alloys. The stable crystalline structures and the magnetic configurations of the austenitic phase are determined.
1989-01-01
prestrained Nitinol (an alloy of nickel and titanium) wires are embedded in an off-axis position in the graphite fiber reinforced epoxy composite beam... Nitinol ) alloy. Shape memory alloys have been applied to a number of items including connectors and heat engines, but have usually found application in... nitinol wire; the design includes prevention from ancillary jams. Miwa (1985) discusses the use of SMA actuator to sequential robotic control of multiple
Adaptive composites with embedded NiTiCu wires
NASA Astrophysics Data System (ADS)
Balta-Neumann, J. Antonio; Michaud, Veronique J.; Parlinska, Magdelena; Gotthardt, Rolf; Manson, Jan-Anders E.
2001-07-01
Adaptive composites have been produced by embedding prestrained shape memory alloy (SMA) wires into an epoxy matrix, reinforced with aramid fibers. These materials demonstrate attractive effects such as shape change or a shift in the vibration frequency upon activation. When heated above their transformation temperature, the wires' strain recovery is confined, and recovery stresses are generated. As a result, if the wires are placed along the neutral axis of a composite beam, a shift in resonance vibration frequency can be observed. To optimize the design of such composites, the matrix - SMA wire interfacial shear strength has been analyzed with the pull out testing technique. It is shown that the nature of the wire surface influences the interfacial shear strength, and that satisfactory results are obtained for SMA wires with a thin oxide layer. Composite samples consisting of two different types of pre- strained NiTiCu wires embedded in either pure epoxy matrix or Kevlar-epoxy matrix were produced. The recovery force and vibration response of composites were measured in a clamped-clamped configuration, to assess the effect of wire type and volume fraction. The results are highly reproducible in all cases with a narrow hysteresis loop, which makes NiTiCu wires good candidates for adaptive composites. The recovery forces increase with the volume fraction of the embedded wires, are higher when the wires are embedded in a low CTE matrix and, at a given temperature, are higher when the wire transformation temperature is lower.
Application of shape memory alloy (SMA) spars for aircraft maneuver enhancement
NASA Astrophysics Data System (ADS)
Nam, Changho; Chattopadhyay, Aditi; Kim, Youdan
2002-07-01
Modern combat aircraft are required to achieve aggressive maneuverability and high agility performance, while maintaining handling qualities over a wide range of flight conditions. Recently, a new adaptive-structural concept called variable stiffness spar is proposed in order to increase the maneuverability of the flexible aircraft. The variable stiffness spar controls wing torsional stiffness to enhance roll performance in the complete flight envelope. However, variable stiffness spar requires the mechanical actuation system in order to rotate the Variable stiffness spar during flight. The mechanical actuation system to rotate variable stiffness spar may cause an additional weight increase. In this paper, we will apply Shape Memory Alloy (SMA) spars for aeroelastic performance enhancement. In order to explore the potential of SMA spar design, roll performance of the composite smart wings will be investigated using ASTROS. Parametric study will be conducted to investigate the SMA spar effects by changing the spar locations and geometry. The results show that with activation of the SMA spar, the roll effectiveness can be increased up to 61% compared with the baseline model.
NASA Astrophysics Data System (ADS)
Hu, Kai; Yang, Xianjin; Cai, Yanli; Cui, Zhenduo; Wei, Qiang
2007-07-01
A hydroxyapatite (HA)/collagen (COL) composite coating on NiTi shape memory alloy (SMA) was prepared by eletrochemical deposition (ELD) in modified simulated body fluid (MSBF). To draw comparisons of physical characteristics and bioactivity of the composite coating, the HA/COL composite coating was also prepared by chemically biomimetic growth (BG) and the ELD coating was re-soaked in MSBF again for further biomimetic growth (called EBG method in this paper). It was indicated that the c-axis of HA crystals was oriented parallel to the longitudinal direction of the COL fibril in BG and EBG coating, which could not found in ELD coating. The EBG method could induce a denser, thicker and better crystallized HA/COL coating. The cell culture test indicated that the BG coating presented better cell biocompatibility.
The Effect of Gravity on the Combustion Synthesis of Porous Biomaterials
NASA Technical Reports Server (NTRS)
Castillo, M.; Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.
2003-01-01
Production of highly porous composite materials by traditional materials processing is limited by difficult processing techniques. This work investigates the use of self propagating high temperature (combustion) synthesis (SHS) to create porous tricalcium phosphate (Ca3(PO4)2), TiB-Ti, and NiTi in low and microgravity. Combustion synthesis provides the ability to use set processing parameters to engineer the required porous structure suitable for bone repair or replacement. The processing parameters include green density, particle size, gasifying agents, composition, and gravity. The advantage of the TiB-Ti system is the high level of porosity achieved together with a modulus that can be controlled by both composition (TiB-Ti) and porosity. At the same time, NiTi exhibits shape memory properties. SHS of biomaterials allows the engineering of required porosity coupled with resorbtion properties and specific mechanical properties into the composite materials to allow for a better biomaterial.
Bogdanski, Denise; Köller, Manfred; Müller, Dietmar; Muhr, Gert; Bram, Martin; Buchkremer, Hans Peter; Stöver, Detlev; Choi, Jongsik; Epple, Matthias
2002-12-01
The biocompatibility of nickel-titanium alloys was investigated by single-culture experiments on functionally graded samples with a stepwise change in composition from pure nickel to pure titanium, including an Ni-Ti shape memory alloy for a 50:50 mixture. This approach permitted a considerable decrease of experimental resources by simultaneously studying a full variation of composition. The results indicate a good biocompatibility for a nickel content up to about 50%. The cells used in the biocompatibility studies comprised osteoblast-like osteosarcoma cells (SAOS-2, MG-63), primary human osteoblasts (HOB), and murine fibroblasts (3T3).
Application of SMP composite in designing a morphing wing
NASA Astrophysics Data System (ADS)
Yu, Kai; Yin, Weilong; Liu, Yanju; Leng, Jinsong
2008-11-01
A new concept of a morphing wing based on shape memory polymer (SMP) and its reinforced composite is proposed in this paper. SMP used in this study is a thermoset styrene-based resin in contrast to normal thermoplastic SMP. In our design, the wing winded on the airframe can be deployed during heating, which provides main lift for a morphing aircraft to realize stable flight. Aerodynamic characteristics of the deployed morphing wing are calculated by using CFD software. The static deformation of the wing under the air loads is also analyzed by using the finite element method. The results show that the used SMP material can provide enough strength and stiffness for the application.
NASA Technical Reports Server (NTRS)
Bertagne, Christopher L.; Chong, Jorge B.; Whitcomb, John D.; Hartl, Darren J.; Erickson, Lisa R.
2017-01-01
For future long duration space missions, crewed vehicles will require advanced thermal control systems to maintain a desired internal environment temperature in spite of a large range of internal and external heat loads. Current radiators are only able to achieve turndown ratios (i.e. the ratio between the radiator's maximum and minimum heat rejection rates) of approximately 3:1. Upcoming missions will require radiators capable of 12:1 turndown ratios. A radiator with the ability to alter shape could significantly increase turndown capacity. Shape memory alloys (SMAs) offer promising qualities for this endeavor, namely their temperature-dependent phase change and capacity for work. In 2015, the first ever morphing radiator prototype was constructed in which SMA actuators passively altered the radiator shape in response to a thermal load. This work describes a follow-on endeavor to demonstrate a similar concept using highly thermally conductive composite materials. Numerous versions of this new concept were tested in a thermal vacuum environment and successfully demonstrated morphing behavior and variable heat rejection, achieving a turndown ratio of 4.84:1. A summary of these thermal experiments and their results are provided herein.
FOREWORD: Shape Memory and Related Technologies
NASA Astrophysics Data System (ADS)
Liu, Yong
2005-10-01
The International Symposium on Shape Memory and Related Technologies (SMART2004) successfully took place in Singapore from November 24 to 26, 2004. SMART2004 aimed to provide a forum for presenting and discussing recent developments in the processing, characterization, application and performance prediction of shape memory materials, particularly shape memory alloys and magnetic shape memory materials. In recent years, we have seen a surge in the research and application of shape memory materials. This is due on the one hand to the successful applications of shape memory alloys (SMAs), particularly NiTi (nitinol), in medical practices and, on the other hand, to the discovery of magnetic shape memory (MSM) materials (or, ferromagnetic shape memory alloys, FSMAs). In recent years, applications of SMAs in various engineering practices have flourished owing to the unique combination of novel properties including high power density related to shape recovery, superelasticity with tunable hysteresis, high damping capacity combined with good fatigue resistance, excellent wear resistance due to unconventional deformation mechanisms (stress-induced phase transformation and martensite reorientation), and excellent biocompatibility and anticorrosion resistance, etc. In~the case of MSMs (or FSMAs), their giant shape change in a relatively low magnetic field has great potential to supplement the traditional actuation mechanisms and to have a great impact on the world of modern technology. Common mechanisms existing in both types of materials, namely thermoelastic phase transformation, martensite domain switching and their controlling factors, are of particular interest to the scientific community. Despite some successful applications, some fundamental issues remain unsatisfactorily understood. This conference hoped to link the fundamental research to engineering practices, and to further identify remaining problems in order to further promote the applications of shape memory materials in various demanding fields. Some top researchers from Asia, Australia, Europe and USA attended the meeting and gave oral presentations on both the fundamentals and applied aspects of SMAs and MSMs. Several prominent experts have delivered invited talks on the damping capacity of SMAs (J Van Humbeeck), SMA thin films (S Miyazaki), MSMs (V Lindross and O Söderberg) and SMA microtubes (Q P Sun). At the end of the Symposium, a panel discussion on various aspects of shape memory materials was held in the Nanyang Technological University. Comments, suggestions, opinions, discussions etc from all participants are greatly appreciated and acknowledged. I would like to thank all the participants for their valuable contributions toward the success of SMART2004, and thank all the session chairpersons for making this Symposium an event full of beneficial discussions. This special issue includes some of the manuscripts submitted to SMART2004. I want to express my deep gratitude to the editorial office of the journal of Smart Materials and Structures and all the referees for their great help in producing this special issue. This symposium has received support from the Institute of Materials (East Asia) and the School of Mechanical and Aerospace Engineering of the Nanyang Technological University. The following sponsors are gratefully acknowledged: Lee Foundation (Singapore) Accelrys Instron (Singapore Pte Ltd).
Active Control of Flexible Space Structures Using the Nitinol Shape Memory Actuators
1987-10-01
number) FIELD !GROUP SUBGROUP I Active Control, Nitinol Actuators, Space Structures 9. ABSTRACT (Continue on reverse if necessary and identify by block...number) Summarizes research progress in the feasibility demonstration of active vibration control using Nitinol shape memory actuators. Tests on...FLEXIBLE SPACE STRUCTURES USING NITINOL SHAPE MEMORY ACTUATORS FINAL REPORT FOR PHASE I SDIO CONTRACT #F49620-87-C-0035 0 BY DR. AMR M. BAZ KARIM R
Shape-Memory Wires Switch Rotary Actuator
NASA Technical Reports Server (NTRS)
Brudnicki, Myron J.
1992-01-01
Thermomechanical rotary actuator based on shape-memory property of alloy composed of equal parts of titanium and nickel. If alloy stretched while below transition temperature, it reverts to original length when heated above transition temperature. Two capstans on same shaft wrapped with shape-memory wires. As one wire heated, it contracts and stretches opposite wire. Wires heated in alternation so they switch shaft between two extreme angular positions; "on" and "off" positions of rotary valve.
Modeling the behaviour of shape memory materials under large deformations
NASA Astrophysics Data System (ADS)
Rogovoy, A. A.; Stolbova, O. S.
2017-06-01
In this study, the models describing the behavior of shape memory alloys, ferromagnetic materials and polymers have been constructed, using a formalized approach to develop the constitutive equations for complex media under large deformations. The kinematic and constitutive equations, satisfying the principles of thermodynamics and objectivity, have been derived. The application of the Galerkin procedure to the systems of equations of solid mechanics allowed us to obtain the Lagrange variational equation and variational formulation of the magnetostatics problems. These relations have been tested in the context of the problems of finite deformation in shape memory alloys and ferromagnetic materials during forward and reverse martensitic transformations and in shape memory polymers during forward and reverse relaxation transitions from a highly elastic to a glassy state.
Method of preparing a two-way shape memory alloy
Johnson, A.D.
1984-03-06
A two-way shape memory alloy, a method of training a shape memory alloy, and a heat engine employing the two-way shape memory alloy to do external work during both heating and cooling phases are disclosed. The alloy is heated under a first training stress to a temperature which is above the upper operating temperature of the alloy, then cooled to a cold temperature below the zero-force transition temperature of the alloy, then deformed while applying a second training stress which is greater in magnitude than the stress at which the alloy is to be operated, then heated back to the hot temperature, changing from the second training stress back to the first training stress. 8 figs.
Distinct regions of the hippocampus are associated with memory for different spatial locations.
Jeye, Brittany M; MacEvoy, Sean P; Karanian, Jessica M; Slotnick, Scott D
2018-05-15
In the present functional magnetic resonance imaging (fMRI) study, we aimed to evaluate whether distinct regions of the hippocampus were associated with spatial memory for items presented in different locations of the visual field. In Experiment 1, during the study phase, participants viewed abstract shapes in the left or right visual field while maintaining central fixation. At test, old shapes were presented at fixation and participants classified each shape as previously in the "left" or "right" visual field followed by an "unsure"-"sure"-"very sure" confidence rating. Accurate spatial memory for shapes in the left visual field was isolated by contrasting accurate versus inaccurate spatial location responses. This contrast produced one hippocampal activation in which the interaction between item type and accuracy was significant. The analogous contrast for right visual field shapes did not produce activity in the hippocampus; however, the contrast of high confidence versus low confidence right-hits produced one hippocampal activation in which the interaction between item type and confidence was significant. In Experiment 2, the same paradigm was used but shapes were presented in each quadrant of the visual field during the study phase. Accurate memory for shapes in each quadrant, exclusively masked by accurate memory for shapes in the other quadrants, produced a distinct activation in the hippocampus. A multi-voxel pattern analysis (MVPA) of hippocampal activity revealed a significant correlation between behavioral spatial location accuracy and hippocampal MVPA accuracy across participants. The findings of both experiments indicate that distinct hippocampal regions are associated with memory for different visual field locations. Copyright © 2018 Elsevier B.V. All rights reserved.
The alloy with a memory, 55-Nitinol: Its physical metallurgy, properties, and applications
NASA Technical Reports Server (NTRS)
Jackson, C. M.; Wagner, H. J.; Wasilewski, R. J.
1972-01-01
A series of nickel titanium alloys (55-Nitinol), which are unique in that they possess a shape memory, are described. Components made of these materials that are altered in their shapes by deformation under proper conditions return to predetermined shapes when they are heated to the proper temperature range. The shape memory, together with the force exerted and the ability of the material to do mechanical work as it returns to its predetermined shape, suggest a wide variety of industrial applications for the alloy. Also included are discussions of the physical metallurgy and the mechanical, physical, and chemical properties of 55-Nitinol; procedures for melting and processing the material into useful shapes; and a summary of applications.
McMahon, Rebecca E; Ma, Ji; Verkhoturov, Stanislav V; Munoz-Pinto, Dany; Karaman, Ibrahim; Rubitschek, Felix; Maier, Hans J; Hahn, Mariah S
2012-07-01
Nickel-titanium (NiTi) shape memory alloys (SMAs) are commonly used in a range of biomedical applications. However, concerns exist regarding their use in certain biomedical scenarios due to the known toxicity of Ni and conflicting reports of NiTi corrosion resistance, particularly under dynamic loading. Titanium-niobium (TiNb) SMAs have recently been proposed as an alternative to NiTi SMAs due to the biocompatibility of both constituents, the ability of both Ti and Nb to form protective surface oxides, and their superior workability. However, several properties critical to the use of TiNb SMAs in biomedical applications have not been systematically explored in comparison with NiTi SMAs. These properties include cytocompatibility, corrosion resistance, and alterations in alloy surface composition in response to prolonged exposure to physiological solutions. Therefore, the goal of the present work was to comparatively investigate these aspects of NiTi (49.2 at.% Ti) and TiNb (26 at.% Nb) SMAs. The results from the current studies indicate that TiNb SMAs are less cytotoxic than NiTi SMAs, at least under static culture conditions. This increased TiNb cytocompatibility was correlated with reduced ion release as well as with increased corrosion resistance according to potentio-dynamic tests. Measurements of the surface composition of samples exposed to cell culture medium further supported the reduced ion release observed from TiNb relative to NiTi SMAs. Alloy composition depth profiles also suggested the formation of calcium phosphate deposits within the surface oxide layers of medium-exposed NiTi but not of TiNb. Collectively, the present results indicate that TiNb SMAs may be promising alternatives to NiTi for certain biomedical applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Micro-processing of NiMnGa shape memory alloy by using a nanosecond fiber laser
NASA Astrophysics Data System (ADS)
Biffi, C. A.; Tuissi, A.
2016-04-01
The interest on Ferromagnetic Shape Memory Alloys (FSMAs), such as NiMnGa, is growing up, thanks to their functional properties to be employed in a new class of micro-devices. The most evident critical issue, limiting the use of these systems in the production of industrial devices, is the brittleness of the bulk material; its workability by using convectional processing methods is very limited. Thus, alternative processing methods, including laser processing, are encouraged for the manufacture of FSMAs based new devices. In this work, the effect of the nanosecond laser microprocessing on Ni45Mn33Ga22 [at%] has been studied. Linear grooves were realized by a nanosecond 30 W fiber laser; the machined surfaces were analyzed with scanning electron microscopy, coupled with energetic dispersion spectroscopy for the composition analysis. The morphology of the grooves was affected by the laser scanning velocity and the number of laser pulses while the measured material removal rate appeared to be influenced mainly by the number of laser pulses. Compositional modification, associated to the loss of Ga content, was detected only for the lower scanning velocity, because of the high fluence. On the contrary, by increasing the velocity up to 1000 mm/s no Ga loss can be seen, making possible the laser processing of this functional alloy without its chemical modification. The use of short pulses allowed also to reduce the amount of recast material and the compositional change with respect to long pulses. Finally, the calorimetric analysis indicated that laser nanosecond microprocessing could affect the functional properties of this alloy: a larger decrease of the characteristic temperatures of the martensitic transformation was observed in correspondence of the low scanning velocity.
NASA Astrophysics Data System (ADS)
Uba, S.; Bonda, A.; Uba, L.; Bekenov, L. V.; Antonov, V. N.; Ernst, A.
2016-08-01
In this joint experimental and ab initio study, we focused on the influence of the chemical composition and martensite phase transition on the electronic, magnetic, optical, and magneto-optical properties of the ferromagnetic shape-memory Ni-Mn-Ga alloys. The polar magneto-optical Kerr effect (MOKE) spectra for the polycrystalline sample of the Ni-Mn-Ga alloy of Ni60Mn13Ga27 composition were measured by means of the polarization modulation method over the photon energy range 0.8 ≤h ν ≤5.8 eV in magnetic field up to 1.5 T. The optical properties (refractive index n and extinction coefficient k ) were measured directly by spectroscopic ellipsometry using the rotating analyzer method. To complement experiments, extensive first-principles calculations were made with two different first-principles approaches combining the advantages of a multiple scattering Green function method and a spin-polarized fully relativistic linear-muffin-tin-orbital method. The electronic, magnetic, and MO properties of Ni-Mn-Ga Heusler alloys were investigated for the cubic austenitic and modulated 7M-like incommensurate martensitic phases in the stoichiometric and off-stoichiometric compositions. The optical and MOKE properties of Ni-Mn-Ga systems are very sensitive to the deviation from the stoichiometry. It was shown that the ab initio calculations reproduce well experimental spectra and allow us to explain the microscopic origin of the Ni2MnGa optical and magneto-optical response in terms of interband transitions. The band-by-band decomposition of the Ni2MnGa MOKE spectra is presented and the interband transitions responsible for the prominent structures in the spectra are identified.
Fabrication of a helical coil shape memory alloy actuator
NASA Astrophysics Data System (ADS)
Odonnell, R. E.
1992-02-01
A fabrication process was developed to form, heat treat, and join NiTi shape memory alloy helical coils for use as mechanical actuators. Tooling and procedures were developed to wind both extension and compression-type coils on a manual lathe. Heat treating fixtures and techniques were used to set the 'memory' of the NiTi alloy to the desired configuration. A swaging process was devised to fasten shape memory alloy extension coils to end fittings for use in actuator testing and for potential attachment to mechanical devices. The strength of this mechanical joint was evaluated.
Ancelet, Lindsay; Kirman, Joanna
2012-02-01
Abstract Effective vaccination against intracellular pathogens, such as tuberculosis (TB), relies on the generation and maintenance of CD4 memory T cells. An incomplete understanding of the memory immune response has hindered the rational design of a new, more effective TB vaccine. This review discusses how the persistence of antigen, the location of memory cells, and their multifunctional ability shape the CD4 memory T cell response against TB.
Design and Fabrication of a Composite Morphing Radiator Panel Using High Conductivity Fibers
NASA Technical Reports Server (NTRS)
Wescott, Matthew T.; McQuien, J. Scott; Bertagne, Christopher L.; Whitcomb, John D.; Hart, Darren J.; Erickson, Lisa R.
2017-01-01
Upcoming crewed space missions will involve large internal and external heat loads and require advanced thermal control systems to maintain a desired internal environment temperature. Radiators with at least 12:1 turndown ratios (the ratio between the maximum and minimum heat rejection rates) will be needed. However, current technologies are only able to achieve turndown ratios of approximately 3:1. A morphing radiator capable of altering shape could significantly increase turndown capabilities. Shape memory alloys offer qualities that may be well suited for this endeavor; their temperature-dependent phase changes could offer radiators the ability to passively control heat rejection. In 2015, a morphing radiator prototype was constructed and tested in a thermal vacuum environment, where it successfully demonstrated the morphing behavior and variable heat rejection. Newer composite prototypes have since been designed and manufactured using two distinct types of SMA materials. These models underwent temperature cycling tests in a thermal vacuum chamber and a series of fatigue tests to characterize the lifespan of these designs. The focus of this paper is to present the design approach and testing of the morphing composite facesheet. The discussion includes: an overall description of the project background, definition of performance requirements, composite materials selection, use of analytic and numerical design tools, facesheet fabrication, and finally fatigue testing with accompanying results.
A model for ferromagnetic shape memory thin film actuators
NASA Astrophysics Data System (ADS)
Lee, Kwok-Lun; Seelecke, Stefan
2005-05-01
The last decade has witnessed the discovery of materials combining shape memory behavior with ferromagnetic properties (FSMAs), see James & Wuttig1, James et al.2, Ullakko et al.3. These materials feature the so-called giant magnetostrain effect, which, in contrast to conventional magnetostriction is due motion of martensite twins. This effect has motivated the development of a new class of active materials transducers, which combine intrinsic sensing capabilities with superior actuation speed and improved efficiency when compared to conventional shape memory alloys. Currently, thin film technology is being developed intensively in order to pave the way for applications in micro- and nanotechnology. As an example, Kohl et al., recently proposed a novel actuation mechanism based on NiMnGa thin film technology, which makes use of both the ferromagnetic transition and the martensitic transformation allowing the realization of an almost perfect antagonism in a single component part. The implementation of the mechanism led to the award-winning development of an optical microscanner. Possible applications in nanotechnology arise, e.g., by combination of smart NiMnGa actuators with scanning probe technologies. The key aspect of Kohl's device is the fact that it employs electric heating for actuation, which requires a thermo-magneto-mechanical model for analysis. The research presented in this paper aims at the development of a model that simulates this particular material behavior. It is based on ideas originally developed for conventional shape memory alloy behavior, (Mueller & Achenbach, Achenbach, Seelecke, Seelecke & Mueller) and couples it with a simple expression for the nonlinear temperature- and position-dependent effective magnetic force. This early and strongly simplified version does not account for a full coupling between SMA behavior and ferromagnetism yet, and does not incorporate the hysteretic character of the magnetization phenomena either. It can however be used to explain the basic actuation mechanism and highlight the role of coupled magnetic and martensitic transformation with respect to the actuator performance. In particular will we be able to develop guidelines for desirable alloy compositions, such that the resulting transition temperatures guarantee optimized actuator performance.
Working memory for braille is shaped by experience.
Cohen, Henri; Scherzer, Peter; Viau, Robert; Voss, Patrice; Lepore, Franco
2011-03-01
Tactile working memory was found to be more developed in completely blind (congenital and acquired) than in semi-sighted subjects, indicating that experience plays a crucial role in shaping working memory. A model of working memory, adapted from the classical model proposed by Baddeley and Hitch1 and Baddeley2 is presented where the connection strengths of a highly cross-modal network are altered through experience.
4D Printing of Shape Memory-Based Personalized Endoluminal Medical Devices.
Zarek, Matt; Mansour, Nicola; Shapira, Shir; Cohn, Daniel
2017-01-01
The convergence of additive manufacturing and shape-morphing materials is promising for the advancement of personalized medical devices. The capability to transform 3D objects from one shape to another, right off the print bed, is known as 4D printing. Shape memory thermosets can be tailored to have a range of thermomechanical properties favorable to medical devices, but processing them is a challenge because they are insoluble and do not flow at any temperature. This study presents here a strategy to capitalize on a series of medical imaging modalities to construct a printable shape memory endoluminal device, exemplified by a tracheal stent. A methacrylated polycaprolactone precursor with a molecular weight of 10 000 g mol -1 is printed with a UV-LED stereolithography printer based on anatomical data. This approach converges with the zeitgeist of personalized medicine and it is anticipated that it will broadly expand the application of shape memory-exhibiting biomedical devices to myriad clinical indications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The shape-memory effect in ionic elastomers: fixation through ionic interactions.
González-Jiménez, Antonio; Malmierca, Marta A; Bernal-Ortega, Pilar; Posadas, Pilar; Pérez-Aparicio, Roberto; Marcos-Fernández, Ángel; Mather, Patrick T; Valentín, Juan L
2017-04-19
Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named ionic transition is used as the unique thermal transition responsible for the shape-memory effect (SME) in these elastomers. These ionic interactions fix the temporary shape due to their behavior as dynamic cross-links with temperature changes. Covalent cross-links were incorporated with the addition of different proportions of dicumyl peroxide (DCP) to the ionic elastomer to establish and recover the permanent shape. In this article, the SME was modulated by modifying the degree of covalent cross-linking, while keeping the ionic contribution constant. In addition, different programming parameters, such as deformation temperature, heating/cooling rate, loading/unloading rate and percentage of tensile strain, were evaluated for their effects on shape-memory behavior.
Low-cost high-quality Fe-based shape memory alloys suitable for pipe joints
NASA Astrophysics Data System (ADS)
Kajiwara, Setsuo; Baruj, Albert L.; Kikuchi, Takehiko; Shinya, Norio
2003-08-01
By addition of small amount of Nb and C to the conventional Fe-Mn-Si based shape memory alloys, shape memory properties are greatly improved in such an extent that the costly 'training' heat treatment is no more necessary. The key to this remarkable improvement of shape memory effect is to produce small NbC precipitates of about several nm in size in austenite. In order to generate such very small NbC particles, the sample is firstly rolled at 870 K and then aged at 1070 K. An example of Fe-28Mn-6Si-5Cr-0.53Nb-0.06C (mass %) alloy is shown; 95% shape recovery for initial strain of 4% is obtained and the shape recovery stress of about 300 MPa is attained for the sample pre-rolled 14%, which is well above the criterion for industry application of pipe jointing. A pipe jointing with this material is demonstrated.
Memory effects in soap film arrangements
NASA Astrophysics Data System (ADS)
Vandewalle, Nicolas; Dorbolo, Stephane; Lumay, Geoffroy; Schockmel, Julien; Noirhomme, Martial
2012-02-01
We report experiments on soap film configurations in a triangular prism for which the shape factor can be changed continuously. Two stable configurations can be observed for a range of the shape factor h. A hysteretic behaviour is found, due to the occurence of another local minima in the free energy. Experiments demonstrate that soap films can be trapped in a particular configuration being different from a global surface minimization. This metastability can be evidenced from a geometrical model based on idealized structures. Depending on the configuration, providing clues on the structural relaxations taking place into 3D foams, such as T1 rearrangements. The composition of the liquid is also investigated leading to dynamical picture of the transition. (Phys. Rev. E 83, 021403 (2011))
Shape-memory alloy micro-actuator
NASA Technical Reports Server (NTRS)
Busch, John D. (Inventor); Johnson, Alfred D. (Inventor)
1991-01-01
A method of producing an integral piece of thermo-sensitive material, which is responsive to a shift in temperature from below to above a phase transformation temperature range to alter the material's condition to a shape-memory condition and move from one position to another. The method is characterized by depositing a thin film of shape-memory material, such as Nickel titanium (Ni-Ti) onto a substrate by vacuum deposition process such that the alloy exhibits an amorphous non-crystalline structure. The coated substrate is then annealed in a vacuum or in the presence of an inert atmosphere at a selected temperature, time and cool down rate to produce an ordered, partially disordered or fully disordered BCC structure such that the alloy undergoes thermoelastic, martinsetic phase transformation in response to alteration in temperature to pass from a martinsetic phase when at a temperature below a phase transformation range and capable of a high level of recoverable strain to a parent austenitic phase in a memory shape when at a temperature above the phase transformation range. Also disclosed are actuator devices employing shape-memory material actuators that deform from a set shape toward an original shape when subjected to a critical temperature level after having been initially deformed from the original shape into the set shape while at a lower temperature. The actuators are mechanically coupled to one or more movable elements such that the temperature-induce deformation of the actuators exerts a force or generates a motion of the mechanical element(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sypek, John T.; Yu, Hang; Dusoe, Keith J.
Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less
NASA Astrophysics Data System (ADS)
Cheng, Xinying; Kondyurin, Alexey; Bao, Shisan; Bilek, Marcela M. M.; Ye, Lin
2017-09-01
Polyurethane-type shape memory polymers (SMPU) are promising biomedical implant materials due to their ability to recover to a predetermined shape from a temporary shape induced by thermal activation close to human body temperature and their advantageous mechanical properties including large recovery strains and low recovery stresses. Plasma Immersion Ion Implantation (PIII) is a surface modification process using energetic ions that generates radicals in polymer surfaces leading to carbonisation and oxidation and the ability to covalently immobilise proteins without the need for wet chemistry. Here we show that PIII treatment of SMPU significantly enhances its bioactivity making SMPU suitable for applications in permanent implantable biomedical devices. Scanning Electron Microscopy (SEM), contact angle measurements, surface energy measurements, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterise the PIII modified surface, including its after treatment aging kinetics and its capability to covalently immobilise protein directly from solution. The results show a substantial improvement in wettability and dramatic changes of surface chemical composition dependent on treatment duration, due to the generation of radicals and subsequent oxidation. The SMPU surface, PIII treated for 200s, achieved a saturated level of covalently immobilized protein indicating that a full monolayer coverage was achieved. We conclude that PIII is a promising and efficient surface modification method to enhance the biocompatibility of SMPU for use in medical applications that demand bioactivity for tissue integration and stability in vivo.
1983-03-01
BUREAU OF STANDARDS-1963-A ,,...:-. .-. -.’" :.- --. . 4 Iq " USAAVRADCOM-TR-82-D-37 COMBAT MAINTENANCE CONCEPTS AND REPAIR TECHNIQUES USING SHAPE MEMORY...O APPLIED TECHNOLOGY LABORATORY POSITION STATEMENT The results of this effort determined the feasibility of using the full-ring shape memory alloy...specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United
Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Wang, Bingchen; Basile, Vito; Taylor, Curtis; Jiang, Peng
2015-10-28
Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.
Studies and applications of NiTi shape memory alloys in the medical field in China.
Dai, K; Chu, Y
1996-01-01
The biomedical study of NiTi shape memory alloys has been undertaken in China since 1978. A series of stimulating corrosion tests, histological observations, toxicity tests, carcinogenicity tests, trace nickel elements analysis and a number of clinical trials have been conducted. The results showed that the NiTi shape memory alloy is a good biomaterial with good biocompatibility and no obvious local tissue reaction, carcinogenesis or erosion of implants were found experimentally or clinically. In 1981, on the basis of fundamental studies, a shape memory staple was used for the first time inside the human body. Subsequently, various shape memory devices were designed and applied clinically for internal fixation of fractures, spine surgery, endoprostheses, gynaecological and craniofacial surgery. Since 1990, a series of internal stents have been developed for the management of biliary, tracheal and esophageal strictures and urethrostenosis as well as vascular obturator for tumour management. Several thousand cases have been treated and had a 1-10 year follow-up and good clinical results with a rather low complication rate were obtained.
Temperature and electrical memory of polymer fibers
NASA Astrophysics Data System (ADS)
Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe
2014-05-01
We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.
NASA Astrophysics Data System (ADS)
Biffi, Carlo Alberto; Bassani, P.; Tuissi, A.; Carnevale, M.; Lecis, N.; LoConte, A.; Previtali, B.
2012-12-01
Shape memory alloys (SMAs) are very interesting smart materials not only for their shape memory and superelastic effects but also because of their significant intrinsic damping capacity. The latter is exhibited upon martensitic transformations and especially in martensitic state. The combination of these SMA properties with the mechanical and the lightweight of fiberglass-reinforced polymer (FGRP) is a promising solution for manufacturing of innovative composites for vibration suppression in structural applications. CuZnAl sheets, after laser patterning, were embedded in a laminated composite between a thick FGRP core and two thin outer layers with the aim of maximizing the damping capacity of the beam for passive vibration suppression. The selected SMA Cu66Zn24Al10 at.% was prepared by vacuum induction melting; the ingot was subsequently hot-and-cold rolled down to 0.2 mm thickness tape. The choice of a copper alloy is related to some advantages in comparison with NiTiCu SMA alloys, which was tested for the similar presented application in a previous study: lower cost, higher storage modulus and consequently higher damping properties in martensitic state. The patterning of the SMA sheets was performed by means of a pulsed fiber laser. After the laser processing, the SMA sheets were heat treated to obtain the desired martensitic state at room temperature. The transformation temperatures were measured by differential scanning calorimetry (DSC). The damping properties were determined, at room temperature, on full-scale sheet, using a universal testing machine (MTS), with cyclic tensile tests at different deformation amplitudes. Damping properties were also determined as a function of the temperature on miniature samples with a dynamical mechanical analyzer (DMA). Numerical modeling of the laminated composite, done with finite element method analysis and modal strain energy approaches, was performed to estimate the corresponding total damping capacity and then compared to experimental results.
Multifunctional shape-memory polymers.
Behl, Marc; Razzaq, Muhammad Yasar; Lendlein, Andreas
2010-08-17
The thermally-induced shape-memory effect (SME) is the capability of a material to change its shape in a predefined way in response to heat. In shape-memory polymers (SMP) this shape change is the entropy-driven recovery of a mechanical deformation, which was obtained before by application of external stress and was temporarily fixed by formation of physical crosslinks. The high technological significance of SMP becomes apparent in many established products (e.g., packaging materials, assembling devices, textiles, and membranes) and the broad SMP development activities in the field of biomedical as well as aerospace applications (e.g., medical devices or morphing structures for aerospace vehicles). Inspired by the complex and diverse requirements of these applications fundamental research is aiming at multifunctional SMP, in which SME is combined with additional functions and is proceeding rapidly. In this review different concepts for the creation of multifunctionality are derived from the various polymer network architectures of thermally-induced SMP. Multimaterial systems, such as nanocomposites, are described as well as one-component polymer systems, in which independent functions are integrated. Future challenges will be to transfer the concept of multifunctionality to other emerging shape-memory technologies like light-sensitive SMP, reversible shape changing effects or triple-shape polymers.
Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites
NASA Technical Reports Server (NTRS)
Turner, Travis L.
2001-01-01
This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.
Pramanick, Abhijit; Shapiro, Steve M.; Glavic, Artur; ...
2015-10-14
In this study, ferromagnetic shape memory alloys (FSMAs) have shown great potential as active components in next generation smart devices due to their exceptionally large magnetic-field-induced strains and fast response times. During application of magnetic fields in FSMAs, as is common in several magnetoelastic smart materials, there occurs simultaneous rotation of magnetic moments and reorientation of twin variants, resolving which, although critical for design of new materials and devices, has been difficult to achieve quantitatively with current characterization methods. At the same time, theoretical modeling of these phenomena also faced limitations due to uncertainties in values of physical properties suchmore » as magnetocrystalline anisotropy energy (MCA), especially for off-stoichiometric FSMA compositions. Here, in situ polarized neutron diffraction is used to measure directly the extents of both magnetic moments rotation and crystallographic twin-reorientation in an FSMA single crystal during the application of magnetic fields. Additionally, high-resolution neutron scattering measurements and first-principles calculations based on fully relativistic density functional theory are used to determine accurately the MCA for the compositionally disordered alloy of Ni 2Mn 1.14Ga 0.86. The results from these state-of-the-art experiments and calculations are self-consistently described within a phenomenological framework, which provides quantitative insights into the energetics of magnetostructural coupling in FSMAs. Based on the current model, the energy for magnetoelastic twin boundaries propagation for the studied alloy is estimated to be ~150kJ/m 3.« less
Formability of Annealed Ni-Ti Shape Memory Alloy Sheet
NASA Astrophysics Data System (ADS)
Fann, K. J.; Su, J. Y.; Chang, C. H.
2018-03-01
Ni-Ti shape memory alloy has two specific properties, superelasiticity and shape memory effect, and thus is widely applied in diverse industries. To extend its application, this study attempts to investigate the strength and cold formability of its sheet blank, which is annealed at various temperatures, by hardness test and by Erichsen-like cupping test. As a result, the higher the annealing temperature, the lower the hardness, the lower the maximum punch load as the sheet blank fractured, and the lower the Erichsen-like index or the lower the formability. In general, the Ni-Ti sheet after annealing has an Erichsen-like index between 8 mm and 9 mm. This study has also confirmed via DSC that the Ni-Ti shape memory alloy possesses the austenitic phase and shows the superelasticity at room temperature.
Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response
NASA Technical Reports Server (NTRS)
Padula, II, Santo A (Inventor)
2013-01-01
Methods and apparatuses for stabilizing the strain-temperature response for a shape memory alloy are provided. To perform stabilization of a second sample of the shape memory alloy, a first sample of the shape memory alloy is selected for isobaric treatment and the second sample is selected for isothermal treatment. When applying the isobaric treatment to the first sample, a constant stress is applied to the first sample. Temperature is also cycled from a minimum temperature to a maximum temperature until a strain on the first sample stabilizes. Once the strain on the first sample stabilizes, the isothermal treatment is performed on the second sample. During isothermal treatment, different levels of stress on the second sample are applied until a strain on the second sample matches the stabilized strain on the first sample.
Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response
NASA Technical Reports Server (NTRS)
Padula, Santo A., II (Inventor)
2016-01-01
Methods and apparatuses for stabilizing the strain-temperature response for a shape memory alloy are provided. To perform stabilization of a second sample of the shape memory alloy, a first sample of the shape memory alloy is selected for isobaric treatment and the second sample is selected for isothermal treatment. When applying the isobaric treatment to the first sample, a constant stress is applied to the first sample. Temperature is also cycled from a minimum temperature to a maximum temperature until a strain on the first sample stabilizes. Once the strain on the first sample stabilizes, the isothermal treatment is performed on the second sample. During isothermal treatment, different levels of stress on the second sample are applied until a strain on the second sample matches the stabilized strain on the first sample.
Creation of smart composites using an embroidery machine
NASA Astrophysics Data System (ADS)
Torii, Nobuhiro; Oka, Kosuke; Ikeda, Tadashige
2016-04-01
A smart composite with functional fibers and reinforcement fibers optimally placed with an embroidery machine was created. Fiber orientation affects mechanical properties of composite laminates significantly. Accordingly, if the fibers can be placed along a desired curved path, fiber reinforced plastic (FRP) structures can be designed more lightly and more sophisticatedly. To this end a tailored fiber placement method using the embroidery machine have been studied. To add functions to the FRP structures, shape memory alloy (SMA) wires were placed as functional fibers. First, for a certain purpose the paths of the reinforcement fibers and the SMA wires were simultaneously optimized in analysis. Next, the reinforcement fibers and tubes with the SMA wires were placed on fabrics by using the embroidery machine and this fabric was impregnated with resin by using the vacuum assisted resin transfer molding method. This smart composite was activated by applying voltage to the SMA wires. Fundamental properties of the smart composite were examined and the feasibility of the proposed creation method was shown.
NASA Technical Reports Server (NTRS)
1997-01-01
Memory Corporation's investigation of shape memory effect, stemming from Marshall Space Flight Center contracts to study materials for the space station, has aided in the development of Zeemet, a proprietary, high-damping shape memory alloy for the golf industry. The Nicklaus Golf Company has created a new line of golf clubs using Zeemet inserts. Its superelastic and high damping attributes translate into more spin on the ball, greater control, and a solid feel.
Working memory for braille is shaped by experience
Scherzer, Peter; Viau, Robert; Voss, Patrice; Lepore, Franco
2011-01-01
Tactile working memory was found to be more developed in completely blind (congenital and acquired) than in semi-sighted subjects, indicating that experience plays a crucial role in shaping working memory. A model of working memory, adapted from the classical model proposed by Baddeley and Hitch1 and Baddeley2 is presented where the connection strengths of a highly cross-modal network are altered through experience. PMID:21655448
Lloyd-Jones, Toby J; Roberts, Mark V; Leek, E Charles; Fouquet, Nathalie C; Truchanowicz, Ewa G
2012-01-01
Little is known about the timing of activating memory for objects and their associated perceptual properties, such as colour, and yet this is important for theories of human cognition. We investigated the time course associated with early cognitive processes related to the activation of object shape and object shape+colour representations respectively, during memory retrieval as assessed by repetition priming in an event-related potential (ERP) study. The main findings were as follows: (1) we identified a unique early modulation of mean ERP amplitude during the N1 that was associated with the activation of object shape independently of colour; (2) we also found a subsequent early P2 modulation of mean amplitude over the same electrode clusters associated with the activation of object shape+colour representations; (3) these findings were apparent across both familiar (i.e., correctly coloured - yellow banana) and novel (i.e., incorrectly coloured - blue strawberry) objects; and (4) neither of the modulations of mean ERP amplitude were evident during the P3. Together the findings delineate the timing of object shape and colour memory systems and support the notion that perceptual representations of object shape mediate the retrieval of temporary shape+colour representations for familiar and novel objects.
Lloyd-Jones, Toby J.; Roberts, Mark V.; Leek, E. Charles; Fouquet, Nathalie C.; Truchanowicz, Ewa G.
2012-01-01
Little is known about the timing of activating memory for objects and their associated perceptual properties, such as colour, and yet this is important for theories of human cognition. We investigated the time course associated with early cognitive processes related to the activation of object shape and object shape+colour representations respectively, during memory retrieval as assessed by repetition priming in an event-related potential (ERP) study. The main findings were as follows: (1) we identified a unique early modulation of mean ERP amplitude during the N1 that was associated with the activation of object shape independently of colour; (2) we also found a subsequent early P2 modulation of mean amplitude over the same electrode clusters associated with the activation of object shape+colour representations; (3) these findings were apparent across both familiar (i.e., correctly coloured – yellow banana) and novel (i.e., incorrectly coloured - blue strawberry) objects; and (4) neither of the modulations of mean ERP amplitude were evident during the P3. Together the findings delineate the timing of object shape and colour memory systems and support the notion that perceptual representations of object shape mediate the retrieval of temporary shape+colour representations for familiar and novel objects. PMID:23155393
Modeling and Bayesian Parameter Estimation for Shape Memory Alloy Bending Actuators
2012-02-01
prosthetic hand,” Technology and Health Care 10, 91–106 (2002). 4. Hartl , D., Lagoudas, D., Calkins, F., and Mabe , J., “Use of a ni60ti shape memory...alloy for active jet engine chevron application: I. thermomechanical characterization,” Smart Materials and Structures 19, 1–14 (2010). 5. Hartl , D...Lagoudas, D., Calkins, F., and Mabe , J., “Use of a ni60ti shape memory alloy for active jet engine chevron application: II. experimentally validated
Deng, Zexing; Guo, Yi; Zhao, Xin; Li, Longchao; Dong, Ruonan; Guo, Baolin; Ma, Peter X
2016-12-01
Development of flexible degradable electroactive shape memory polymers (ESMPs) with tunable switching temperature (around body temperature) for tissue engineering is still a challenge. Here we designed and synthesized a series of shape memory copolymers with electroactivity, super stretchability and tunable recovery temperature based on poly(ε-caprolactone) (PCL) with different molecular weight and conductive amino capped aniline trimer, and demonstrated their potential to enhance myogenic differentiation from C2C12 myoblast cells. We characterized the copolymers by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance ( 1 H NMR), cyclic voltammetry (CV), ultraviolet-visible spectroscopy (UV-vis), differential scanning calorimetry (DSC), shape memory test, tensile test and in vitro enzymatic degradation study. The electroactive biodegradable shape memory copolymers showed great elasticity, tunable recovery temperature around 37°C, and good shape memory properties. Furthermore, proliferation and differentiation of C2C12 myoblasts were investigated on electroactive copolymers films, and they greatly enhanced the proliferation, myotube formation and related myogenic differentiation genes expression of C2C12 myoblasts compared to the pure PCL with molecular weight of 80,000. Our study suggests that these electroactive, highly stretchable, biodegradable shape memory polymers with tunable recovery temperature near the body temperature have great potential in skeletal muscle tissue engineering application. Conducting polymers can regulate cell behavior such cell adhesion, proliferation, and differentiation with or without electrical stimulation. Therefore, they have great potential for electrical signal sensitive tissue regeneration. Although conducting biomaterials with degradability have been developed, highly stretchable and electroactive degradable copolymers for soft tissue engineering have been rarely reported. On the other hand, shape memory polymers (SMPs) have been widely used in biomedical fields. However, SMPs based on polyesters usually are biologically inert. This work reported the design of super stretchable electroactive degradable SMPs based on polycaprolactone and aniline trimer with tunable recovery temperature around body temperature. These flexible electroactive SMPs facilitated the proliferation and differentiation of C2C12 myoblast cells compared with polycaprolactone, indicating that they are excellent scaffolding biomaterials in tissue engineering to repair skeletal muscle and possibly other tissues. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Overview of the ARPA/WL Smart Structures and Materials Development-Smart Wing contract
NASA Astrophysics Data System (ADS)
Kudva, Jayanth N.; Jardine, A. Peter; Martin, Christopher A.; Appa, Kari
1996-05-01
While the concept of an adaptive aircraft wing, i.e., a wing whose shape parameters such as camber, wing twist, and thickness can be varied to optimize the wing shape for various flight conditions, has been extensively studied, the complexity and weight penalty of the actuation mechanisms have precluded their practical implementation. Recent development of sensors and actuators using smart materials could potentially alleviate the shortcomings of prior designs, paving the way for a practical, `smart' adaptive wing which responds to changes in flight and environmental conditions by modifying its shape to provide optimal performance. This paper presents a summary of recent work done on adaptive wing designs under an on-going ARPA/WL contract entitled `Smart Structures and Materials Development--Smart Wing.' Specifically, the design, development and planned wind tunnel testing of a 16% model representative of a fighter aircraft wing and incorporating the following features, are discussed: (1) a composite wing torque box whose span-wise twist can be varied by activating built-in shape memory alloy (SMA) torque tubes to provide increased lift and enhanced maneuverability at multiple flight conditions, (2) trailing edge control surfaces deployed using composite SMA actuators to provide smooth, hingeless aerodynamic surfaces, and (3) a suite of fiber optic sensors integrated into the wing skin which provide real-time strain and pressure data to a feedback control system.
Poly(Capro-Lactone) Networks as Actively Moving Polymers
NASA Astrophysics Data System (ADS)
Meng, Yuan
Shape-memory polymers (SMPs), as a subset of actively moving polymers, form an exciting class of materials that can store and recover elastic deformation energy upon application of an external stimulus. Although engineering of SMPs nowadays has lead to robust materials that can memorize multiple temporary shapes, and can be triggered by various stimuli such as heat, light, moisture, or applied magnetic fields, further commercialization of SMPs is still constrained by the material's incapability to store large elastic energy, as well as its inherent one-way shape-change nature. This thesis develops a series of model semi-crystalline shape-memory networks that exhibit ultra-high energy storage capacity, with accurately tunable triggering temperature; by introducing a second competing network, or reconfiguring the existing network under strained state, configurational chain bias can be effectively locked-in, and give rise to two-way shape-actuators that, in the absence of an external load, elongates upon cooling and reversibly contracts upon heating. We found that well-defined network architecture plays essential role on strain-induced crystallization and on the performance of cold-drawn shape-memory polymers. Model networks with uniform molecular weight between crosslinks, and specified functionality of each net-point, results in tougher, more elastic materials with a high degree of crystallinity and outstanding shape-memory properties. The thermal behavior of the model networks can be finely modified by introducing non-crystalline small molecule linkers that effectively frustrates the crystallization of the network strands. This resulted in shape-memory networks that are ultra-sensitive to heat, as deformed materials can be efficiently triggered to revert to its permanent state upon only exposure to body temperature. We also coupled the same reaction adopted to create the model network with conventional free-radical polymerization to prepare a dual-cure "double network" that behaves as a real thermal "actuator". This approach places sub-chains under different degrees of configurational bias within the network to utilize the material's propensity to undergo stress-induced crystallization. Reconfiguration of model shape-memory networks containing photo-sensitive linkages can also be employed to program two-way actuator. Chain reshuffling of a partially reconfigurable network is initiated upon exposure to light under specific strains. Interesting photo-induced creep and stress relaxation behaviors were demonstrated and understood based on a novel transient network model we derived. In summary, delicate manipulation of shape-memory network architectures addressed critical issues constraining the application of this type of functional polymer material. Strategies developed in this thesis may provide new opportunity to the field of shape-memory polymers.
Working memory can enhance unconscious visual perception.
Pan, Yi; Cheng, Qiu-Ping; Luo, Qian-Ying
2012-06-01
We demonstrate that unconscious processing of a stimulus property can be enhanced when there is a match between the contents of working memory and the stimulus presented in the visual field. Participants first held a cue (a colored circle) in working memory and then searched for a brief masked target shape presented simultaneously with a distractor shape. When participants reported having no awareness of the target shape at all, search performance was more accurate in the valid condition, where the target matched the cue in color, than in the neutral condition, where the target mismatched the cue. This effect cannot be attributed to bottom-up perceptual priming from the presentation of a memory cue, because unconscious perception was not enhanced when the cue was merely perceptually identified but not actively held in working memory. These findings suggest that reentrant feedback from the contents of working memory modulates unconscious visual perception.
Does the hippocampus mediate objective binding or subjective remembering?
Slotnick, Scott D
2010-01-15
Human functional magnetic resonance imaging (fMRI) evidence suggests the hippocampus is associated with context memory to a greater degree than item memory (where only context memory requires item-in-context binding). A separate line of fMRI research suggests the hippocampus is associated with "remember" responses to a greater degree than "know" or familiarity based responses (where only remembering reflects the subjective experience of specific detail). Previous studies, however, have confounded context memory with remembering and item memory with knowing. The present fMRI study independently tested the binding hypothesis and remembering hypothesis of hippocampal function by evaluating activity within hippocampal regions-of-interest (ROIs). At encoding, participants were presented with colored and gray abstract shapes and instructed to remember each shape and whether it was colored or gray. At retrieval, old and new shapes were presented in gray and participants classified each shape as "old and previously colored", "old and previously gray", or "new", followed by a "remember" or "know" response. In 3 of 11 hippocampal ROIs, activity was significantly greater for context memory than item memory, the context memory-item memory by remember-know interaction was significant, and activity was significantly greater for context memory-knowing than item memory-remembering. This pattern of activity only supports the binding hypothesis. The analogous pattern of activity that would have supported the remembering hypothesis was never observed in the hippocampus. However, a targeted analysis revealed remembering specific activity in the left inferior parietal cortex. The present results suggest parietal cortex may be associated with subjective remembering while the hippocampus mediates binding.
Incidental biasing of attention from visual long-term memory.
Fan, Judith E; Turk-Browne, Nicholas B
2016-06-01
Holding recently experienced information in mind can help us achieve our current goals. However, such immediate and direct forms of guidance from working memory are less helpful over extended delays or when other related information in long-term memory is useful for reaching these goals. Here we show that information that was encoded in the past but is no longer present or relevant to the task also guides attention. We examined this by associating multiple unique features with novel shapes in visual long-term memory (VLTM), and subsequently testing how memories for these objects biased the deployment of attention. In Experiment 1, VLTM for associated features guided visual search for the shapes, even when these features had never been task-relevant. In Experiment 2, associated features captured attention when presented in isolation during a secondary task that was completely unrelated to the shapes. These findings suggest that long-term memory enables a durable and automatic type of memory-based attentional control. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Noebe, Ronald; Padula, Santo, II; Bigelow, Glen; Rios, Orlando; Garg, Anita; Lerch, Brad
2006-01-01
Potential applications involving high-temperature shape memory alloys have been growing in recent years. Even in those cases where promising new alloys have been identified, the knowledge base for such materials contains gaps crucial to their maturation and implementation in actuator and other applications. We begin to address this issue by characterizing the mechanical behavior of a Ni19.5Pd30Ti50.5 high-temperature shape memory alloy in both uniaxial tension and compression at various temperatures. Differences in the isothermal uniaxial deformation behavior were most notable at test temperatures below the martensite finish temperature. The elastic modulus of the material was very dependent on strain level; therefore, dynamic Young#s Modulus was determined as a function of temperature by an impulse excitation technique. More importantly, the performance of a thermally activated actuator material is dependent on the work output of the alloy. Consequently, the strain-temperature response of the Ni19.5Pd30Ti50.5 alloy under various loads was determined in both tension and compression and the specific work output calculated and compared in both loading conditions. It was found that the transformation strain and thus, the specific work output were similar regardless of the loading condition. Also, in both tension and compression, the strain-temperature loops determined under constant load conditions did not close due to the fact that the transformation strain during cooling was always larger than the transformation strain during heating. This was apparently the result of permanent plastic deformation of the martensite phase with each cycle. Consequently, before this alloy can be used under cyclic actuation conditions, modification of the microstructure or composition would be required to increase the resistance of the alloy to plastic deformation by slip.
Ti Ni shape memory alloy film-actuated microstructures for a MEMS probe card
NASA Astrophysics Data System (ADS)
Namazu, Takahiro; Tashiro, Youichi; Inoue, Shozo
2007-01-01
This paper describes the development of a novel silicon (Si) cantilever beam device actuated by titanium-nickel (Ti-Ni) shape memory alloy (SMA) films. A Ti-Ni SMA film can yield high work output per unit volume, so a Ti-Ni film-actuated Si cantilever beam device is a prospective tool for use as a microelectromechanical system (MEMS) probe card that provides a relatively large contact force between the probe and electrode pad in spite of its minute size. Before fabrication of the device, the thermomechanical deformation behavior of Ti-Ni SMA films with various compositions was investigated in order to determine a sufficient constituent film for a MEMS actuator. As a result, Ti-Ni films having a Ti content of 50.2 to 52.6 atomic% (at%) were found to be usable for operation as a room temperature actuator. We have developed a Ti-Ni film-actuated Si cantilever beam device, which can produce a contact force by the cantilever bending when in contact, and also by the shape memory effect (SME) of the Ti-Ni film arising from Joule heating. The SME of the Ti-Ni film can generate an additional average contact force of 200 µN with application of 500 mW to the film. In addition to physical contact, a dependable electric contact between the Au film-coated probe tip and the Al film electrode was achieved. However, the contact resistance exhibited an average value of 25 Ω, which would have to be reduced for practical use. Reliability tests confirmed the durability of the Ti-Ni film-actuated Si cantilever-beam, in that the contact resistance was constant throughout a large number of physical contacts (>104 times).
NASA Astrophysics Data System (ADS)
Pushin, A. V.; Pushin, V. G.; Kuntsevich, T. E.; Kuranova, N. N.; Makarov, V. V.; Uksusnikov, A. N.; Kourov, N. I.
2017-12-01
A comparative study of the structure and the chemical and phase composition of Ni45Ti32Hf18Cu5 and Ni25Ti32Hf18Cu25 amorphous alloys obtained by fast-quenching of melt stream by spinning has been carried out by transmission and scanning electron microscopy and X-ray diffraction. The critical temperatures of their devitrification were determined by the data of temperatures measurements of electrical resistance. The features of the formation of ultrafine structure and the phase transformation at the vitrification depending on the regimes of heat treatment and chemical composition of alloy have been established.
Development of an engineering model for ferromagnetic shape memory alloys
NASA Astrophysics Data System (ADS)
Tani, Yoshiaki; Todaka, Takashi; Enokizono, Masato
This paper presents a relationship among stress, temperature and magnetic properties of a ferromagnetic shape memory alloy. In order to derive an engineering model of ferromagnetic shape memory alloys, we have developed a measuring system of the relationship among stress, temperature and magnetic properties. The samples used in this measurement are Fe68-Ni10-Cr9-Mn7-Si6 wt% ferromagnetic shape memory alloy. They are thin ribbons made by rapid cooling in air. In the measurement, the ribbon sample is inserted into a sample holder winding consisting of the B-coil and compensation coils, and magnetized in an open solenoid coil. The ribbon is stressed with attachment weights and heated with a heating wire. The specific susceptibility was increased by applying tension, and slightly increased by heating below the Curie temperature.
Development of B2 Shape Memory Intermetallics Beyond NiAl, CoNiAl and CoNiGa
NASA Astrophysics Data System (ADS)
Gerstein, G.; Firstov, G. S.; Kosorukova, T. A.; Koval, Yu. N.; Maier, H. J.
2018-06-01
The present study describes the development of shape memory alloys based on NiAl. Initially, this system was considered a promising but unsuccessful neighbour of NiTi. Later, however, shape memory alloys like CoNiAl or CoNiGa were developed that can be considered as NiAl derivatives and already demonstrated good mechanical properties. Yet, these alloys were still inferior to NiTi in most respects. Lately, using a multi-component approach, a CoNiCuAlGaIn high entropy intermetallic compound was developed from the NiAl prototype. This new alloy featured a B2 phase and a martensitic transformation along with a remarkable strength in the as-cast state. In the long-term, this new approach might led to a breakthrough for shape memory alloys in general.
Binding of intrinsic and extrinsic features in working memory.
Ecker, Ullrich K H; Maybery, Murray; Zimmer, Hubert D
2013-02-01
There is ongoing debate concerning the mechanisms of feature binding in working memory. In particular, there is controversy regarding the extent to which these binding processes are automatic. The present article demonstrates that binding mechanisms differ depending on whether the to-be-integrated features are perceived as forming a coherent object. We presented a series of experiments that investigated the binding of color and shape, whereby color was either an intrinsic feature of the shape or an extrinsic feature of the shape's background. Results show that intrinsic color affected shape recognition, even when it was incidentally studied and irrelevant for the recognition task. In contrast, extrinsic color did not affect shape recognition, even when the association of color and shape was encoded and retrievable on demand. This strongly suggests that binding of intrinsic intra-item information but not extrinsic contextual information is obligatory in visual working memory. We highlight links to perception as well as implicit and explicit long-term memory, which suggest that the intrinsic-extrinsic dimension is a principle relevant to multiple domains of human cognition. 2013 APA, all rights reserved
NASA Astrophysics Data System (ADS)
Berestennikov, A. S.; Aleshin, A. N.
2017-11-01
We have investigated the effect of the resistive switching in the composite films based on polyfunctional polymers - PVK, PFD and PVC mixed with particles of Gr and GO with the concentration of ˜ 1 - 3 wt.%. We have developed the solution processed hybrid memory structures based on PVK and GO particles composite films. The effect of the resistive switching in Al/PVK(PFD; PVC):Gr(GO)/ITO/PET structures manifests itself as a sharp change of the electrical resistance from a low-conducting state to a relatively high-conducting state when applying a bias to Al-ITO electrodes of ˜ 0.2-0.4 V. It has been established that a sharp conductivity jump characterized by S-shaped current-voltage curves and the presence of their hysteresis occurs upon applying a voltage pulse to the Au/PVK(PFD; PVC):Gr(GO)/ITO/PET structures, with the switching time in the range from 1 to 30 μs. The mechanism of resistive switching associated with the processes of capture and accumulation of charge carriers by Gr(GO) particles introduced into the matrixes of the PVK polymer due to the reduction/oxidation processes. The possible mechanisms of energy transfer between organic and inorganic components in PVK(PFD; PVC):GO(Gr) films causes increase mobility are discussed. Incorporating of Gr (GO) particles into the polymer matrix is a promising route to enhance the performance of hybrid memory structures, as well as it is an effective medium for memory cells.
Kalita, Hemjyoti; Karak, Niranjan
2014-07-01
Here, bio-based shape memory polymers have generated immense interest in recent times. Here, Bio-based hyperbranched polyurethane/triethanolamine functionalized multi-walled carbon nanotube (TEA-f-MWCNT) nanocomposites were prepared by in-situ pre-polymerization technique. The Fourier transform infrared spectroscopy and the transmission electron microscopic studies showed the strong interfacial adhesion and the homogeneous distribution of TEA-f-MWCNT in the polyurethane matrix. The prepared epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.5-34.5 MPa), scratch hardness (3.0-7.5 kg) and thermal stability (241-288 degrees C). The nanocomposites showed excellent shape fixity and shape recovery. The shape recovery time decreases (24-10 s) with the increase of TEA-f-MWCNT content in the nanocomposites. Thus the studied nanocomposites have potential to be used as advanced shape memory materials.
Dynamic and structural control utilizing smart materials and structures
NASA Technical Reports Server (NTRS)
Rogers, C. A.; Robertshaw, H. H.
1989-01-01
An account is given of several novel 'smart material' structural control concepts that are currently under development. The thrust of these investigations is the evolution of intelligent materials and structures superceding the recently defined variable-geometry trusses and shape memory alloy-reinforced composites; the substances envisioned will be able to autonomously evaluate emergent environmental conditions and adapt to them, and even change their operational objectives. While until now the primary objective of the developmental efforts presently discussed has been materials that mimic biological functions, entirely novel concepts may be formulated in due course.
NASA Astrophysics Data System (ADS)
Lázpita, P.; Gutiérrez, J.; Barandiarán, J. M.; Chernenko, V. A.; Mondelli, C.; Chapon, L.
2014-11-01
Neutron polarized diffraction technique has been used to elucidate the magnetic moment distribution density in non stoichiometric Ni—Mn—Ga single crystals. These experiments allow us to determine a localized magnetic moment in the Mn position in the austenitic phase, and to validity qualitatively previous models of magnetic distributions where there are antiferromagnetic and ferromagnetic coupling for Mn atoms that are sited out of their properly positions. This measurements show the deep dependence of the magnetic moment with the composition and the atomic order.
Estimation of aneurysm wall stresses created by treatment with a shape memory polymer foam device
Hwang, Wonjun; Volk, Brent L.; Akberali, Farida; Singhal, Pooja; Criscione, John C.
2012-01-01
In this study, compliant latex thin-walled aneurysm models are fabricated to investigate the effects of expansion of shape memory polymer foam. A simplified cylindrical model is selected for the in-vitro aneurysm, which is a simplification of a real, saccular aneurysm. The studies are performed by crimping shape memory polymer foams, originally 6 and 8 mm in diameter, and monitoring the resulting deformation when deployed into 4-mm-diameter thin-walled latex tubes. The deformations of the latex tubes are used as inputs to physical, analytical, and computational models to estimate the circumferential stresses. Using the results of the stress analysis in the latex aneurysm model, a computational model of the human aneurysm is developed by changing the geometry and material properties. The model is then used to predict the stresses that would develop in a human aneurysm. The experimental, simulation, and analytical results suggest that shape memory polymer foams have potential of being a safe treatment for intracranial saccular aneurysms. In particular, this work suggests oversized shape memory foams may be used to better fill the entire aneurysm cavity while generating stresses below the aneurysm wall breaking stresses. PMID:21901546
Man, Yi; Zheng, Yue-huan; Cao, Peng; Chen, Bo; Zheng, Tao; Sun, Chang-hui; Lu, Jiong
2011-06-07
To test the nickel-titanium (Ni-Ti) shape memory alloys of vertebral body reduction fixator with assisted distraction bar for the treatment of traumatic and osteoporotic vertebral body fracture. A Ni-Ti shape memory alloys of vertebral body reduction fixator with assisted distraction bar was implanted into the compressed fracture specimens through vertebral pedicle with the radiographic monitoring to reduce the collapsed endplate as well as distract the compressed vertebral fracture. Radiographic film and computed tomographic reconstruction technique were employed to evaluate the effects of reduction and distraction. A biomechanic test machine was used to measure the fatigue and the stability of deformation of fixation segments. Relying on the effect of temperature shape memory, such an assembly could basically reduce the collapsed endplate as well as distract the compressed vertebral fracture. And when unsatisfied results of reduction and distraction occurred, its super flexibility could provide additional distraction strength. A Ni-Ti shape memory alloys of vertebral body reduction fixator with assisted distraction bar may provide effective endplate reduction, restore the vertebral height and the immediate biomechanic spinal stability. So the above assembly is indicated for the treatment of traumatic and osteoporotic vertebral body fracture.
Tensile and fatigue behavior of polymer composites reinforced with superelastic SMA strands
NASA Astrophysics Data System (ADS)
Daghash, Sherif M.; Ozbulut, Osman E.
2018-06-01
This study explores the use of superelastic shape memory alloy (SMA) strands, which consist of seven individual small-diameter wires, in an epoxy matrix and characterizes the tensile and fatigue responses of the developed SMA/epoxy composites. Using a vacuum assisted hand lay-up technique, twelve SMA fiber reinforced polymer (FRP) specimens were fabricated. The developed SMA-FRP composites had a fiber volume ratio of 50%. Tensile response of SMA-FRP specimens were characterized under both monotonic loading and increasing amplitude loading and unloading cycles. The degradation in superelastic properties of the developed SMA-FRP composites during fatigue loading at different strain amplitudes was investigated. The effect of loading rate on the fatigue response of SMA-FRP composites was also explored. In addition, fractured specimens were examined using the scanning electron microscopy (SEM) technique to study the failure mechanisms of the tested specimens. A good interfacial bonding between the SMA strands and epoxy matrix was observed. The developed SMA-FRP composites exhibited good superelastic behavior at different strain amplitudes up to at least 800 cycle after which significant degradation occurred.
2011-11-01
sensor. volume 79781K. Proceedings of the SPIE 7978, 2011. [9] D.J. Hartl , D.C. Lagoudas, F.T. Calkins, and J.H. Mabe . Use of a ni60ti shape memory...alloy for active jet engine chevron application: I. thermomechanical characterization. Smart Materials and Structures, 19:1–14, 2010. [10] D.J. Hartl ...D.C. Lagoudas, F.T. Calkins, and J.H. Mabe . Use of a ni60ti shape memory alloy for active jet engine chevron application: II. experimentally validated
The ferromagnetic shape-memory effect in Ni Mn Ga
NASA Astrophysics Data System (ADS)
Marioni, M. A.; O'Handley, R. C.; Allen, S. M.; Hall, S. R.; Paul, D. I.; Richard, M. L.; Feuchtwanger, J.; Peterson, B. W.; Chambers, J. M.; Techapiesancharoenkij, R.
2005-04-01
Active materials have long been used in the construction of sensors and devices. Examples are piezo-electric ceramics and shape memory alloys. The more recently developed ferromagnetic shape-memory alloys (FSMAs) have received considerable attention due to their large magnetic field-induced, reversible strains (up to 10%). In this article, we review the basic physical characteristics of the FSMA Ni-Mn-Ga (crystallography, thermal, mechanical and magnetic behavior). Also, we present some of the works currently under way in the areas of pulse-field and acoustic-assisted actuation, and vibration energy absorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Z. H.; Lin Peng, R.; Johansson, S.
2008-01-01
In situ time-of-flight neutron diffraction and high-energy x-ray diffraction techniques were used to reveal the preferred reselection of martensite variants through a detwinning process in polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloys under uniaxial compressive stress. The variant reorientation via detwinning during loading can be explained by considering the influence of external stress on the grain/variant orientation-dependent distortion energy. These direct observations of detwinning provide a good understanding of the deformation mechanisms in shape memory alloys.
Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding
Ware, Taylor; Hearon, Keith; Lonnecker, Alexander; Wooley, Karen L.; Maitland, Duncan J.; Voit, Walter
2012-01-01
Triple shape memory polymers (TSMPs) are a growing subset of a class of smart materials known as shape memory polymers, which are capable of changing shape and stiffness in response to a stimulus. A TSMP can change shapes twice and can fix two metastable shapes in addition to its permanent shape. In this work, a novel TSMP system comprised of both permanent covalent cross-links and supramolecular hydrogen bonding cross-links has been synthesized via a one-pot method. Triple shape properties arise from the combination of the glass transition of (meth)acrylate copolymers and the dissociation of self-complementary hydrogen bonding moieties, enabling broad and independent control of both glass transition temperature (Tg) and cross-link density. Specifically, ureidopyrimidone methacrylate and a novel monomer, ureidopyrimidone acrylate, were copolymerized with various alkyl acrylates and bisphenol A ethoxylate diacrylate. Control of Tg from 0 to 60 °C is demonstrated: concentration of hydrogen bonding moieties is varied from 0 to 40 wt %; concentration of the diacrylate is varied from 0 to 30 wt %. Toughness ranges from 0.06 to 0.14 MPa and is found to peak near 20 wt % of the supramolecular cross-linker. A widely tunable class of amorphous triple-shape memory polymers has been developed and characterized through dynamic and quasi-static thermomechanical testing to gain insights into the dynamics of supramolecular networks. PMID:22287811
Thermal response of novel shape memory polymer-shape memory alloy hybrids
NASA Astrophysics Data System (ADS)
Rossiter, Jonathan; Takashima, Kazuto; Mukai, Toshiharu
2014-03-01
Shape memory polymers (SMP) and shape memory alloys (SMA) have both been proven important smart materials in their own fields. Shape memory polymers can be formed into complex three-dimensional structures and can undergo shape programming and large strain recovery. These are especially important for deployable structures including those for space applications and micro-structures such as stents. Shape memory alloys on the other hand are readily exploitable in a range of applications where simple, silent, light-weight and low-cost repeatable actuation is required. These include servos, valves and mobile robotic artificial muscles. Despite their differences, one important commonality between SMPs and SMAs is that they are both typically activated by thermal energy. Given this common characteristic it is important to consider how these two will behave when in close environmental proximity, and hence exposed to the same thermal stimulus, and when they are incorporated into a hybrid SMA-SMP structure. In this paper we propose and examine the operation of SMA-SMP hybrids. The relationship between the two temperatures Tg, the glass transition temperature of the polymer, and Ta, the nominal austenite to martensite transition temperature of the alloy is considered. We examine how the choice of these two temperatures affects the thermal response of the hybrid. Electrical stimulation of the SMA is also considered as a method not only of actuating the SMA but also of inducing heating in the surrounding polymer, with consequent effects on actuator behaviour. Likewise by varying the rate and degree of thermal stimulation of the SMA significantly different actuation and structural stiffness can be achieved. Novel SMP-SMA hybrid actuators and structures have many ready applications in deployable structures, robotics and tuneable engineering systems.
Design and analysis of morphing wing based on SMP composite
NASA Astrophysics Data System (ADS)
Yu, Kai; Yin, Weilong; Sun, Shouhua; Liu, Yanju; Leng, Jinsong
2009-03-01
A new concept of a morphing wing based on shape memory polymer (SMP) and its reinforced composites is proposed in this paper. SMP used in this study is a thermoset styrene-based resin in contrast to normal thermoplastic SMP. During heating, the wing curled on the aircraft can be deployed, providing main lift for a morphing aircraft to realize the stable flight. Aerodynamic characteristics of the deployed morphing wing are calculated by using CFD software. The static deformation of the wing under the air loads is also analyzed by using the finite element method. The results show that the used SMP material can provide enough strength and stiffness for the application. Finally, preliminary testing is conducted to investigate the recovery performances of SMP and its reinforced composites. During the test, the deployment and the wind-resistant ability of the morphing wing are dramatically improved by adding reinforced phase to the SMP.
Shape Memory Alloy Rock Splitters (SMARS)
NASA Technical Reports Server (NTRS)
Benafan, Othmane (Inventor); Noebe, Ronald D. (Inventor)
2017-01-01
Shape memory alloys (SMAs) may be used for static rock splitting. The SMAs may be used as high-energy multifunctional materials, which have a unique ability to recover large deformations and generate high stresses in response to thermal loads.
Modeling and optimization of shape memory-superelastic antagonistic beam assembly
NASA Astrophysics Data System (ADS)
Tabesh, Majid; Elahinia, Mohammad H.
2010-04-01
Superelasticity (SE), shape memory effect (SM), high damping capacity, corrosion resistance, and biocompatibility are the properties of NiTi that makes the alloy ideal for biomedical devices. In this work, the 1D model developed by Brinson was modified to capture the shape memory effect, superelasticity and hysteresis behavior, as well as partial transformation in both positive and negative directions. This model was combined with the Euler beam equation which, by approximation, considers 1D compression and tension stress-strain relationships in different layers of a 3D beam assembly cross-section. A shape memory-superelastic NiTi antagonistic beam assembly was simulated with this model. This wire-tube assembly is designed to enhance the performance of the pedicle screws in osteoporotic bones. For the purpose of this study, an objective design is pursued aiming at optimizing the dimensions and initial configurations of the SMA wire-tube assembly.
Lv, Tong; Cheng, Zhongjun; Zhang, Dongjie; Zhang, Enshuang; Zhao, Qianlong; Liu, Yuyan; Jiang, Lei
2016-09-21
Recently, superhydrophobic surfaces with tunable wettability have aroused much attention. Noticeably, almost all present smart performances rely on the variation of surface chemistry on static micro/nanostructure, to obtain a surface with dynamically tunable micro/nanostructure, especially that can memorize and keep different micro/nanostructures and related wettabilities, is still a challenge. Herein, by creating micro/nanostructured arrays on shape memory polymer, a superhydrophobic surface that has shape memory ability in changing and recovering its hierarchical structures and related wettabilities was reported. Meanwhile, the surface was successfully used in the rewritable functional chip for droplet storage by designing microstructure-dependent patterns, which breaks through current research that structure patterns cannot be reprogrammed. This article advances a superhydrophobic surface with shape memory hierarchical structure and the application in rewritable functional chip, which could start some fresh ideas for the development of smart superhydrophobic surface.
Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer
Li, Yuzhan; Pruitt, Cole; Rios, Orlando; ...
2015-04-10
Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less
Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuzhan; Pruitt, Cole; Rios, Orlando
Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less
Shape-memory effect of nanocomposites based on liquid-crystalline elastomers
NASA Astrophysics Data System (ADS)
Marotta, A.; Lama, G. C.; Gentile, G.; Cerruti, P.; Carfagna, C.; Ambrogi, V.
2016-05-01
In this work, nanocomposites based on liquid crystalline (LC) elastomers were prepared and characterized in their shape memory properties. For the synthesis of materials, p-bis(2,3-epoxypropoxy)-α-methylstilbene (DOMS) was used as mesogenic epoxy monomer, sebacic acid (SA) as curing agent and multi-walled carbon nanotubes (MWCNT) and graphene oxide (GO) as fillers. First, an effective compatibilization methodology was set up to improve the interfacial adhesion between the matrix and the carbonaceous nanofillers, thus obtaining homogeneous distribution and dispersion of the nanofillers within the polymer phase. Then, the obtained nanocomposite films were characterized in their morphological and thermal properties. In particular, the effect of the addition of the nanofillers on liquid crystalline behavior, as well as on shape-memory properties of the realized materials was investigated. It was found that both fillers were able to enhance the thermomechanical response of the LC elastomers, making them good candidates as shape memory materials.
Improving the Performance of Electrically Activated NiTi Shape Memory Actuators by Pre-Aging
NASA Astrophysics Data System (ADS)
Rathmann1, Christian; Fleczok1, Benjamin; Otibar1, Dennis; Kuhlenkötter, Bernd
2017-06-01
Shape memory alloys possess an array of unique functional properties which are influenced by a complex interaction of different factors. Due to thermal sensitivity, slight changes in temperature may cause the properties to change significantly. This poses a huge challenge especially for the use of shape memory alloys as actuators. The displacement is the key performance indicator, which has to be of equal or better quality compared to conventional actuators. One problem of shape memory alloys is the change in functional fatigue in the first cycles, which makes it rather difficult to design the actuator. Therefore, the reduction of this shakedown effect is crucial. For this reason, this paper investigates the effect of electrical heat treatment as a method for pre-aging. This topic has so far been little investigated so that the investigations focus on identifying important factors and effects by using the design of experiments.
Preisach modeling of piezoceramic and shape memory alloy hysteresis
NASA Astrophysics Data System (ADS)
Hughes, Declan; Wen, John T.
1997-06-01
Smart materials such as piezoceramics, magnetostrictive materials, and shape memory alloys exhibit hysteresis, and the larger the input signal the larger the effect. Hysteresis can lead to unwanted harmonics, inaccuracy in open loop control, and instability in closed loop control. The Preisach independent domain hysteresis model has been shown to capture the major features of hysteresis arising in ferromagnetic materials. Noting the similarity between the microscopic domain kinematics that generate static hysteresis effects in ferromagnetics, piezoceramics, and shape memory alloys (SMAs), we apply the Preisach model for the hysteresis in piezoceramic and shape memory alloy materials. This paper reviews the basic properties of the Preisach model, discusses control-theoretic issues such as identification, simulation, and inversion, and presents experimental results for piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of a beam.
Preisach modeling of piezoceramic and shape memory alloy hysteresis
NASA Astrophysics Data System (ADS)
Hughes, Declan C.; Wen, John T.
1996-05-01
Smart materials such as piezoceramics, magnetostrictive materials, and shape memory alloys exhibit significant hysteresis, especially when driven with large input signals. Hysteresis can lead to unwanted harmonics, inaccuracy in open loop control, and instability in closed loop control. The Preisach independent domain hysteresis model has been shown to capture the major features of hysteresis arising in ferromagnetic materials. Noting the similarity between the microscopic domain kinematics that generate static hysteresis effects in ferromagnetics, piezoceramics, and shape memory alloys, we apply the Preisach model for the hysteresis in piezoceramic and shape memory alloy materials. This paper reviews the basic properties of the Preisach model, discusses control-theoretic issues such as identification, simulation, and inversion, and presents experimental results for piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of a beam.
Microstructure, crystallization and shape memory behavior of titania and yttria co-doped zirconia
Zeng, Xiao Mei; Du, Zehui; Schuh, Christopher A.; ...
2015-12-17
Small volume zirconia ceramics with few or no grain boundaries have been demonstrated recently to exhibit the shape memory effect. To explore the shape memory properties of yttria doped zirconia (YDZ), it is desirable to develop large, microscale grains, instead of submicron grains that result from typical processing of YDZ. In this paper, we have successfully produced single crystal micro-pillars from microscale grains encouraged by the addition of titania during processing. Titania has been doped into YDZ ceramics and its effect on the grain growth, crystallization and microscale elemental distribution of the ceramics have been systematically studied. With 5 mol%more » titania doping, the grain size can be increased up to ~4 μm, while retaining a large quantity of the desired tetragonal phase of zirconia. Finally, micro-pillars machined from tetragonal grains exhibit the expected shape memory effects where pillars made from titania-free YDZ would not.« less
Chemical cross-linking of polypropylenes towards new shape memory polymers.
Raidt, Thomas; Hoeher, Robin; Katzenberg, Frank; Tiller, Joerg C
2015-04-01
In this work, syndiotactic polypropylene (sPP) as well as isotactic polypropylene (iPP) are cross-linked to gain a shape memory effect. Both prepared PP networks exhibit maximum strains of 700%, stored strains of up to 680%, and recoveries of nearly 100%. While x-iPP is stable for many cycles, x-sPP ruptures after the first shape-memory cycle. It is shown by wide-angle X-ray scattering (WAXS) experiments that cross-linked iPP exhibits homoepitaxy in the temporary, stretched shape but in contrast to previous reports it contains a higher amount of daughter than mother crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fermi Surface as a Driver for the Shape-Memory Effect in AuZn
NASA Astrophysics Data System (ADS)
Lashley, Jason
2005-03-01
Martensites are materials that undergo diffusionless, solid-state transitions. The martensitic transition yields properties that depend on the history of the material and if reversible can allow it to recover its previous shape after plastic deformation. This is known as the shape-memory effect (SME). We have succeeded in identifying the operative electronic mechanism responsible for the martensitic transition in the shape-memory alloy AuZn by using Fermi-surface measurements (de Haas-van Alphen oscillations) and band-structure calculations. Our findings suggest that electronic band structure gives rise to special features on the Fermi surface that is important to consider in the design of SME alloys.
Zhao, Jingxin; Yang, Qiucheng; Wang, Tao; Wang, Lian; You, Jichun; Li, Yongjin
2017-12-20
An effective strategy to tailor the microporous structures has been developed based on the shape memory effect in porous poly(l-lactic acid) membranes in which tiny crystals and amorphous matrix play the roles of shape-fixed phase and reversible-phase, respectively. Our results indicate that not only PLLA membranes but micropores exhibit shape memory properties. The proportional deformations on two scales have been achieved by uniaxial or biaxial tension, providing a facile way to manipulate continuously the size and the orientation degree of pores on microscale. The enhanced separation performance has been validated by taking polystyrene colloids with varying diameters as an example.
Spray forming of NiTi and NiTiPd shape-memory alloys
NASA Astrophysics Data System (ADS)
Smith, Ronald; Mabe, James; Ruggeri, Robert; Noebe, Ronald
2008-03-01
In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.
Spray Forming of NiTi and NiTiPd Shape-Memory Alloys
NASA Technical Reports Server (NTRS)
Mabe, James; Ruggeri, Robert; Noebe, Ronald
2008-01-01
In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.
NASA Astrophysics Data System (ADS)
Liu, X. M.; Wu, S. L.; Chu, Paul K.; Chung, C. Y.; Chu, C. L.; Yeung, K. W. K.; Lu, W. W.; Cheung, K. M. C.; Luk, K. D. K.
2007-01-01
Water plasma immersion ion implantation (PIII) was conducted on orthopedic NiTi shape memory alloy to enhance the surface electrochemical characteristics. The surface composition of the NiTi alloy before and after H 2O-PIII was determined by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was utilized to determine the roughness and morphology of the NiTi samples. Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were carried out to investigate the surface electrochemical behavior of the control and H 2O-PIII NiTi samples in simulated body fluids (SBF) at 37 °C as well as the mechanism. The H 2O-PIII NiTi sample showed a higher breakdown potential ( Eb) than the control sample. Based on the AFM results, two different physical models with related equivalent electrical circuits were obtained to fit the EIS data and explain the surface electrochemical behavior of NiTi in SBF. The simulation results demonstrate that the higher resistance of the oxide layer produced by H 2O-PIII is primarily responsible for the improvement in the surface corrosion resistance.
Smart Material Demonstrators Based on Shape Memory Alloys and Electroceramics
NASA Technical Reports Server (NTRS)
Cooke, Arther V.
1996-01-01
This paper describes the development and characterization of two technology demonstrators that were produced under the auspices of an ARPA sponsored smart materials synthesis and processing effort. The ARPA Smart Materials and Synthesis (SMS) Program was a 2 year, $10M partnership led by Martin Marietta Laboratories - Baltimore and included Lockheed Missiles & Space Co., NRL, AVX Corp., Martin Marietta Astronautics Groups, BDM Federal, Inc., Virginia Tech, Clemson, University of Maryland, Denver University, and The Johns Hopkins University. In order to demonstrate the usefulness of magnetron sputtered shape memory foil and the manufacturability of reliable, reproducible electrostrictive actuators, the team designed a broadband active vibration cancellation device for suppressing the vibration load on delicate instruments and precision pointing devices mounted on orbiting satellites and spacecraft. The results of extensive device characterization and bench testing are discussed. Initial simulation results show excellent control authority and amplitude attenuation over the range of anticipated disturbance frequencies. The SMS Team has also developed an active 1-3 composite comprising micro-electrostrictive actuators embedded in a polymeric matrix suitable for underwater applications such as sonar quieting and listening arrays, and for medical imaging. Follow-on programs employing these technologies are also described.
Ben Bouallègue, Fayçal; Vauchot, Fabien; Mariano-Goulart, Denis; Payoux, Pierre
2018-02-09
We evaluated the performance of amyloid PET textural and shape features in discriminating normal and Alzheimer's disease (AD) subjects, and in predicting conversion to AD in subjects with mild cognitive impairment (MCI) or significant memory concern (SMC). Subjects from the Alzheimer's Disease Neuroimaging Initiative with available baseline 18 F-florbetapir and T1-MRI scans were included. The cross-sectional cohort consisted of 181 controls and 148 AD subjects. The longitudinal cohort consisted of 431 SMC/MCI subjects, 85 of whom converted to AD during follow-up. PET images were normalized to MNI space and post-processed using in-house software. Relative retention indices (SUVr) were computed with respect to pontine, cerebellar, and composite reference regions. Several textural and shape features were extracted then combined using a support vector machine (SVM) to build a predictive model of AD conversion. Diagnostic and prognostic performance was evaluated using ROC analysis and survival analysis with the Cox proportional hazard model. The three SUVr and all the tested features effectively discriminated AD subjects in cross-sectional analysis (all p < 0.001). In longitudinal analysis, the variables with the highest prognostic value were composite SUVr (AUC 0.86; accuracy 81%), skewness (0.87; 83%), local minima (0.85; 79%), Geary's index (0.86; 81%), gradient norm maximal argument (0.83; 82%), and the SVM model (0.91; 86%). The adjusted hazard ratio for AD conversion was 5.5 for the SVM model, compared with 4.0, 2.6, and 3.8 for cerebellar, pontine and composite SUVr (all p < 0.001), indicating that appropriate amyloid textural and shape features predict conversion to AD with at least as good accuracy as classical SUVr.
Self-sculpting of a dissolvable body due to gravitational convection
NASA Astrophysics Data System (ADS)
Davies Wykes, Megan S.; Huang, Jinzi Mac; Hajjar, George A.; Ristroph, Leif
2018-04-01
Natural sculpting processes such as erosion or dissolution often yield universal shapes that bear no imprint or memory of the initial conditions. Here we conduct laboratory experiments aimed at assessing the shape dynamics and role of memory for the simple case of a dissolvable boundary immersed in a fluid. Though no external flow is imposed, dissolution and consequent density differences lead to gravitational convective flows that in turn strongly affect local dissolving rates and shape changes, and we identify two distinct behaviors. A flat boundary dissolving from its lower surface tends to retain its overall shape (an example of near perfect memory) while bearing small-scale pits that reflect complex near-body flows. A boundary dissolving from its upper surface tends to erase its initial shape and form an upward spike structure that sharpens indefinitely. We propose an explanation for these different outcomes based on observations of the coupled shape dynamics, concentration fields, and flows.
High Cycle-life Shape Memory Polymer at High Temperature
Kong, Deyan; Xiao, Xinli
2016-01-01
High cycle-life is important for shape memory materials exposed to numerous cycles, and here we report shape memory polyimide that maintained both high shape fixity (Rf) and shape recovery (Rr) during the more than 1000 bending cycles tested. Its critical stress is 2.78 MPa at 250 °C, and the shape recovery process can produce stored energy of 0.218 J g−1 at the efficiency of 31.3%. Its high Rf is determined by the large difference in storage modulus at rubbery and glassy states, while the high Rr mainly originates from its permanent phase composed of strong π-π interactions and massive chain entanglements. Both difference in storage modulus and overall permanent phase were preserved during the bending deformation cycles, and thus high Rf and Rr were observed in every cycle and the high cycle-life will expand application areas of SMPs enormously. PMID:27641148
NASA Astrophysics Data System (ADS)
Wei, Hongqiu; Zhang, Qiwei; Yao, Yongtao; Liu, Liwu; Liu, Yanju; Leng, Jinsong
2017-04-01
Shape memory polymers (SMPs), a typical class of smart materials, have been witnessed significant advances in the past decades. Based on the unique performance to recover the initial shape after going through a shape deformation, the applications of SMPs have aroused growing interests. However, most of the researches are hindered by traditional processing technologies which limit the design space of SMPs-based structures. Three-dimension (3D) printing as an emerging technology endows design freedom to manufacture materials with complex structures. In present article, we show that by employing direct-write printing method; one can realize the printing of SMPs to achieve 4D active shape-changing structures. We first fabricated a kind of 3D printable polylactide (PLA)-based SMPs and characterized the overall properties of such materials. Results demonstrated the prepared PLA-based SMPs presenting excellent shape memory effect. In what follows, the rheological properties of such PLA-based SMP ink during printing process were discussed in detail. Finally, we designed and printed several 3D configurations for investigation. By combining 3D printing with shape memory behavior, these printed structures achieve 4D active shape-changing performance under heat stimuli. This research presents a high flexible method to realize the fabrication of SMP-based 4D active shape-changing structures, which opens the way for further developments and improvements of high-tech fields like 4D printing, soft robotics, micro-systems and biomedical devices.
Enhanced multimaterial 4D printing with active hinges
NASA Astrophysics Data System (ADS)
Akbari, Saeed; Hosein Sakhaei, Amir; Kowsari, Kavin; Yang, Bill; Serjouei, Ahmad; Yuanfang, Zhang; Ge, Qi
2018-06-01
Despite great progress in four-dimensional (4D) printing, i.e. three-dimensional (3D) printing of active (stimuli-responsive) materials, the relatively low actuation force of the 4D printed structures often impedes their engineering applications. In this study, we use multimaterial inkjet 3D printing technology to fabricate shape memory structures, including a morphing wing flap and a deployable structure, which consist of active and flexible hinges joining rigid (non-active) parts. The active hinges, printed from a shape memory polymer (SMP), lock the structure into a second temporary shape during a thermomechanical programming process, while the flexible hinges, printed from an elastomer, effectively increase the actuation force and the load-bearing capacity of the printed structure as reflected in the recovery ratio. A broad range of mechanical properties such as modulus and failure strain can be achieved for both active and flexible hinges by varying the composition of the two base materials, i.e. the SMP and the elastomer, to accommodate large deformation induced during programming step, and enhance the recovery in the actuating step. To find the important design parameters, including local deformation, shape fixity and recovery ratio, we conduct high fidelity finite element simulations, which are able to accurately predict the nonlinear deformation of the printed structures. In addition, a coupled thermal-electrical finite element analysis was performed to model the heat transfer within the active hinges during the localized Joule heating process. The model predictions showed good agreement with the measured temperature data and were used to find the major parameters affecting temperature distribution including the applied voltage and the convection rate.
A preliminary investigation of shape memory alloys in the surgical correction of scoliosis.
Sanders, J O; Sanders, A E; More, R; Ashman, R B
1993-09-15
Nitinol, a shape memory alloy, is flexible at low temperatures but retains its original shape when heated. This offers interesting possibilities for scoliosis correction. Of the shape memory alloys, nitinol is the most promising medically because of biocompatibility and the ability to control transition temperature. In vivo: Six goats with experimental scoliosis were instrumented with 6-mm nitinol rods. The rods were transformed, and the scoliosis corrected, in the awakened goats by 450-kHz radio frequency induction heating. The curves averaged 41 degrees before instrumentation, 33 degrees after instrumentation, and 11 degrees after rod transformation. The animals tolerated the heating without discomfort, neurologic injury, or evidence of thermal injury to the tissues or the spinal cord. In vitro: Nitinol rods were tested under both constant deflection and constant loading conditions and plotted temperature versus either force or displacement. The 6-mm rod generated forces of 200 N. The 9-mm rod generated up to 500 N. We safely coupled shape memory alloy transformation to the spine and corrected an experimental spinal deformity in awake animals. The forces generated can be estimated by the rod's curvature and temperature. The use of shape memory alloys allows continuous neurologic monitoring during awake correction, true rotational correction by rod torsion, and the potential option of periodic correction to take advantage of spinal viscoelasticity and the potential of true rotational correction by rod torsion.
Fabrication of wrist-like SMA-based actuator by double smart soft composite casting
NASA Astrophysics Data System (ADS)
Rodrigue, Hugo; Wei, Wang; Bhandari, Binayak; Ahn, Sung-Hoon
2015-12-01
A new manufacturing method for smart soft composite (SSC) actuators that consists of double casting a SSC actuator to produce an actuator with non-linear shape memory alloy (SMA) wire positioning is proposed. This method is used to manufacture a tube-shaped SSC actuator in which the SMA wires follow the curvature of the tube and is capable of pure-twisting deformations while sustaining a cantilever load. The concept is tested by measuring the maximum twisting angle and a simple control method is proposed to control the twisting angle of the actuator. Then, a soft robotic wrist with a length of 18 cm is built, its load-carrying capability is tested by measuring the cantilever force required for deforming the actuator, and its load-carrying capability during actuation is tested by loading one end with different objects and actuating the actuator. This wrist actuator shows good repeatability, is capable of twisting deformations up to 25° while holding objects weighing 100 g, and can sustain loads above 2 N without undergoing buckling.