Sample records for shape recovery process

  1. Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens.

    PubMed

    Safranski, David L; Boothby, Jennifer M; Kelly, Cambre N; Beatty, Kyle; Lakhera, Nishant; Frick, Carl P; Lin, Angela; Guldberg, Robert E; Griffis, Jack C

    2016-09-01

    New processing methods for shape-memory polymers allow for tailoring material properties for numerous applications. Shape-memory nonwovens have been previously electrospun, but melt blow processing has yet to be evaluated. In order to determine the process parameters affecting shape-memory behavior, this study examined the effect of air pressure and collector speed on the mechanical behavior and shape-recovery of shape-memory polyurethane nonwovens. Mechanical behavior was measured by dynamic mechanical analysis and tensile testing, and shape-recovery was measured by unconstrained and constrained recovery. Microstructure changes throughout the shape-memory cycle were also investigated by micro-computed tomography. It was found that increasing collector speed increases elastic modulus, ultimate strength and recovery stress of the nonwoven, but collector speed does not affect the failure strain or unconstrained recovery. Increasing air pressure decreases the failure strain and increases rubbery modulus and unconstrained recovery, but air pressure does not influence recovery stress. It was also found that during the shape-memory cycle, the connectivity density of the fibers upon recovery does not fully return to the initial values, accounting for the incomplete shape-recovery seen in shape-memory nonwovens. With these parameter to property relationships identified, shape-memory nonwovens can be more easily manufactured and tailored for specific applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Influence of Layer Thickness, Raster Angle, Deformation Temperature and Recovery Temperature on the Shape-Memory Effect of 3D-Printed Polylactic Acid Samples

    PubMed Central

    Wu, Wenzheng; Ye, Wenli; Wu, Zichao; Geng, Peng; Wang, Yulei; Zhao, Ji

    2017-01-01

    The success of the 3D-printing process depends upon the proper selection of process parameters. However, the majority of current related studies focus on the influence of process parameters on the mechanical properties of the parts. The influence of process parameters on the shape-memory effect has been little studied. This study used the orthogonal experimental design method to evaluate the influence of the layer thickness H, raster angle θ, deformation temperature Td and recovery temperature Tr on the shape-recovery ratio Rr and maximum shape-recovery rate Vm of 3D-printed polylactic acid (PLA). The order and contribution of every experimental factor on the target index were determined by range analysis and ANOVA, respectively. The experimental results indicated that the recovery temperature exerted the greatest effect with a variance ratio of 416.10, whereas the layer thickness exerted the smallest effect on the shape-recovery ratio with a variance ratio of 4.902. The recovery temperature exerted the most significant effect on the maximum shape-recovery rate with the highest variance ratio of 1049.50, whereas the raster angle exerted the minimum effect with a variance ratio of 27.163. The results showed that the shape-memory effect of 3D-printed PLA parts depended strongly on recovery temperature, and depended more weakly on the deformation temperature and 3D-printing parameters. PMID:28825617

  3. Reconfigurable Photonic Crystals Enabled by Multistimuli-Responsive Shape Memory Polymers Possessing Room Temperature Shape Processability.

    PubMed

    Fang, Yin; Leo, Sin-Yen; Ni, Yongliang; Wang, Junyu; Wang, Bingchen; Yu, Long; Dong, Zhe; Dai, Yuqiong; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2017-02-15

    Traditional shape memory polymers (SMPs) are mostly thermoresponsive, and their applications in nano-optics are hindered by heat-demanding programming and recovery processes. By integrating a polyurethane-based shape memory copolymer with templating nanofabrication, reconfigurable/rewritable macroporous photonic crystals have been demonstrated. This SMP coupled with the unique macroporous structure enables unusual all-room-temperature shape memory cycles. "Cold" programming involving microscopic order-disorder transitions of the templated macropores is achieved by mechanically deforming the macroporous SMP membranes. The rapid recovery of the permanent, highly ordered photonic crystal structure from the temporary, disordered configuration can be triggered by multiple stimuli including a large variety of vapors and solvents, heat, and microwave radiation. Importantly, the striking chromogenic effects associated with these athermal and thermal processes render a sensitive and noninvasive optical methodology for quantitatively characterizing the intriguing nanoscopic shape memory effects. Some critical parameters/mechanisms that could significantly affect the final performance of SMP-based reconfigurable photonic crystals including strain recovery ratio, dynamics and reversibility of shape recovery, as well as capillary condensation of vapors in macropores, which play a crucial role in vapor-triggered recovery, can be evaluated using this new optical technology.

  4. Study on shape recovery speed of SMP, SMP composite, and SMP foam

    NASA Astrophysics Data System (ADS)

    Wu, Xuelian; Liu, Yanju; Leng, Jinsong

    2008-03-01

    Shape memory polymer (SMP) receives increasing attention along with its derivants - SMP composite and SMP foam in recent years. In this paper, after fabricating thermoset styrene-based SMP, SMP/carbon black (CB) composite and SMP foam, we studied their shape recovery speed in bending. Different from those reported in the literature, we propose a new approach, i.e., using infrared light, for actuating SMP materials for shape recovery. The results show that SMP, SMP/CB composite and SMP foam can recover to their original shape perfectly in a wide temperature range. Shape recovery speed of SMP composite is not uniform during the overall recovery process, and it is the same trend with SMP but not prominent with SMP foam. Repeatability of shape recovery speed for styrene-based SMP and SMP/CB composite are similarly stable and the former is the better, but it is so worse for SMP foam. Temperature-dependent of shape recovery speed test for styrene-based SMP and SMP/CB composite reveal that higher temperature increases their shape recovery speed.

  5. Information Processing Research

    DTIC Science & Technology

    1979-06-01

    quantitative shape recovery. For the qualitative shape recovery we use a model of the Origami world (Kanade, 1978), together with edge profiles of...Workshop. Carnegie-Mellon University, Computer Science Department, Pittsburgh, PA, November, 1978. Kanade, T. A theory of origami world. Technical

  6. Experimental study of thermo-mechanical behavior of a thermosetting shape-memory polymer

    NASA Astrophysics Data System (ADS)

    Liu, Ruoxuan; Li, Yunxin; Liu, Zishun

    2018-01-01

    The thermo-mechanical behavior of shape-memory polymers (SMPs) serves for the engineering applications of SMPs. Therefore the understanding of thermo-mechanical behavior of SMPs is of great importance. This paper investigates the influence of loading rate and loading level on the thermo-mechanical behavior of a thermosetting shape-memory polymer through experimental study. A series of cyclic tension tests and shape recovery tests at different loading conditions are performed to study the strain level and strain rate effect. The results of tension tests show that the thermosetting shape-memory polymer will behave as rubber material at temperature lower than the glass transition temperature (Tg) and it can obtain a large shape fix ratio at cyclic loading condition. The shape recovery tests exhibit that loading rate and loading level have little effect on the beginning and ending of shape recovery process of the thermosetting shape-memory polymer. Compared with the material which is deformed at temperature higher than Tg, the material deformed at temperature lower than Tg behaves a bigger recovery speed.

  7. Synthesis and characterization of shape memory poly (epsilon-caprolactone) polyurethane-ureas

    NASA Astrophysics Data System (ADS)

    Ren, Hongfeng

    Shape memory polymers (SMPs) have attracted significant interest in recent times because of their potential applications in a number of areas, such as medical devices and textiles. However, there are some major drawbacks of SMPs, such as their relatively low moduli resulting in small recovery stresses, and their long response times compared with shape memory alloys (SMAs). A suitable recovery stress which comes from the elastic recovery stress generated in the deformation process is critical in some medical devices. To address some of these shortcomings, the work in this dissertation mainly focuses on the design and synthesis of linear shape memory polymers with higher recovery stress. A series of segmented poly (epsilon-caprolactone) polyurethane-ureas (PCLUUs) were prepared from poly (epsilon-caprolactone) (PCL) diol, different dissociates and chain extenders. NMR and FT-IR were used to identify the structure of the synthesized shape memory polyurethane-ureas. Parameters such as soft segment content (molecular weight and content), chain extender and the rigidity of the main chain were investigated to understand the structure-property relationships of the shape memory polymer systems through DSC, DMA, physical property test, etc. Cyclic thermal mechanic tests were applied to measure the shape memory properties which showed that the recovery stress can be improved above 200% simply by modifying the chain extender. Meanwhile, the synthesis process was optimized to be similar to that of Spandex /LYCRA®. Continuous fibers form shape memory polyurethane-ureas were made from a wet spinning process, which indicated excellent spinnability of the polymer solution. Small angle neutron scattering (SANS) was used to study the morphology of the hard segment at different temperatures and stretch rates and found that the monodisperse rigid cylinder model fit the SANS data quite well. From the cylinder model, the radius of the cylinder increased with increasing hard segment content. The SANS results revealed phase separation of hard and soft segments into nano scale domains. The overall objectives of this dissertation were: ■ To improve the recovery stress of linear shape memory polymers. ■ To study the morphology and structure property relationships of shape memory polymers. Chapter 1 reviews the literature on SMAs and SMPs, especially on linear SMPs. Chapter 2 is devoted to SMPUUs with the aliphatic amine 1, 4-Butanediamine (BDA) as chain extender. Chapter 3 reports the effects of different aliphatic diamines as the chain extenders. Chapter 4 covers the results for shape memory polyurethane-ureas with aromatic diamine 4, 4’-Methylenedianiline (MDA) as the chain extender. The effect of different diisocyanates is covered in Chapter 5. Chapter 6-7 show some synthesized polymer systems with unimproved recovery stress or even no shape memory properties. The overall conclusions of this work are reported in Chapter 8.

  8. High-Temperature Shape Memory Behavior of Semicrystalline Polyamide Thermosets.

    PubMed

    Li, Ming; Guan, Qingbao; Dingemans, Theo J

    2018-05-21

    We have explored semicrystalline poly(decamethylene terephthalamide) (PA 10T) based thermosets as single-component high-temperature (>200 °C) shape memory polymers (SMPs). The PA 10T thermosets were prepared from reactive thermoplastic precursors. Reactive phenylethynyl (PE) functionalities were either attached at the chain termini or placed as side groups along the polymer main chain. The shape fixation and recovery performance of the thermoset films were investigated using a rheometer in torsion mode. By controlling the M n of the reactive oligomers, or the PE concentration of the PE side-group functionalized copolyamides, we were able to design dual-shape memory PA 10T thermosets with a broad recovery temperature range of 227-285 °C. The thermosets based on the 1000 g mol -1 reactive PE precursor and the copolyamide with 15 mol % PE side groups show the highest fixation rate (99%) and recovery rate (≥90%). High temperature triple-shape memory behavior can be achieved as well when we use the melt transition ( T m ≥ 200 °C) and the glass transition ( T g = ∼125 °C) as the two switches. The recovery rate of the two recovery steps are highly dependent on the crystallinity of the thermosets and vary within a wide range of 74%-139% and 40-82% for the two steps, respectively. Reversible shape memory events could also be demonstrated when we perform a forward and backward deformation in a triple shape memory cycle. We also studied the angular recovery velocity as a function of temperature, which provides a thermokinematic picture of the shape recovery process and helps to program for desired shape memory behavior.

  9. High-Temperature Shape Memory Behavior of Semicrystalline Polyamide Thermosets

    PubMed Central

    2018-01-01

    We have explored semicrystalline poly(decamethylene terephthalamide) (PA 10T) based thermosets as single-component high-temperature (>200 °C) shape memory polymers (SMPs). The PA 10T thermosets were prepared from reactive thermoplastic precursors. Reactive phenylethynyl (PE) functionalities were either attached at the chain termini or placed as side groups along the polymer main chain. The shape fixation and recovery performance of the thermoset films were investigated using a rheometer in torsion mode. By controlling the Mn of the reactive oligomers, or the PE concentration of the PE side-group functionalized copolyamides, we were able to design dual-shape memory PA 10T thermosets with a broad recovery temperature range of 227–285 °C. The thermosets based on the 1000 g mol–1 reactive PE precursor and the copolyamide with 15 mol % PE side groups show the highest fixation rate (99%) and recovery rate (≥90%). High temperature triple-shape memory behavior can be achieved as well when we use the melt transition (Tm ≥ 200 °C) and the glass transition (Tg = ∼125 °C) as the two switches. The recovery rate of the two recovery steps are highly dependent on the crystallinity of the thermosets and vary within a wide range of 74%–139% and 40–82% for the two steps, respectively. Reversible shape memory events could also be demonstrated when we perform a forward and backward deformation in a triple shape memory cycle. We also studied the angular recovery velocity as a function of temperature, which provides a thermokinematic picture of the shape recovery process and helps to program for desired shape memory behavior. PMID:29742899

  10. Shape-morphing composites with designed micro-architectures

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; Wilson, Thomas S.; Spadaccini, Christopher M.; Lewicki, James P.

    2016-06-01

    Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designed for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. The ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.

  11. Modeling the glass transition of amorphous networks for shape-memory behavior

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Choi, Jinwoo; Lakhera, Nishant; Yakacki, Christopher M.; Frick, Carl P.; Nguyen, Thao D.

    2013-07-01

    In this paper, a thermomechanical constitutive model was developed for the time-dependent behaviors of the glass transition of amorphous networks. The model used multiple discrete relaxation processes to describe the distribution of relaxation times for stress relaxation, structural relaxation, and stress-activated viscous flow. A non-equilibrium thermodynamic framework based on the fictive temperature was introduced to demonstrate the thermodynamic consistency of the constitutive theory. Experimental and theoretical methods were developed to determine the parameters describing the distribution of stress and structural relaxation times and the dependence of the relaxation times on temperature, structure, and driving stress. The model was applied to study the effects of deformation temperatures and physical aging on the shape-memory behavior of amorphous networks. The model was able to reproduce important features of the partially constrained recovery response observed in experiments. Specifically, the model demonstrated a strain-recovery overshoot for cases programmed below Tg and subjected to a constant mechanical load. This phenomenon was not observed for materials programmed above Tg. Physical aging, in which the material was annealed for an extended period of time below Tg, shifted the activation of strain recovery to higher temperatures and increased significantly the initial recovery rate. For fixed-strain recovery, the model showed a larger overshoot in the stress response for cases programmed below Tg, which was consistent with previous experimental observations. Altogether, this work demonstrates how an understanding of the time-dependent behaviors of the glass transition can be used to tailor the temperature and deformation history of the shape-memory programming process to achieve more complex shape recovery pathways, faster recovery responses, and larger activation stresses.

  12. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers

    PubMed Central

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng

    2015-01-01

    Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349

  13. Shape-morphing composites with designed micro-architectures

    DOE PAGES

    Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; ...

    2016-06-15

    Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designedmore » for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. As a result, the ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.« less

  14. Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers.

    PubMed

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Wang, Bingchen; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2015-10-28

    Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.

  15. Crystallinity as a tunable switch of poly(L-lactide) shape memory effects.

    PubMed

    Sobota, Michał; Jurczyk, Sebastian; Kwiecień, Michał; Smola-Dmochowska, Anna; Musioł, Marta; Domański, Marian; Janeczek, Henryk; Kawalec, Michał; Kurcok, Piotr

    2017-02-01

    Materials with shape memory effect (SME) have already been widely used in the medical field. The interesting part of this group is represented by double function materials. The bioresorption and SME ability are common in polyesters implants. The first information about vascular stent made of bioresorbable polyester with SME was published in 2000. However, there are not many investigations about SME control of elements in the aspect of material processing. In the present work, the ability to control the shape memory (SM) of bioresorbable and semicrystalline poly(L-lactide) (PLLA) is investigated. The studies are based on the unexpected effect of material orientation which was demonstrated even at low percentage deformation in crystallized mould injected material. The presented studies revealed that the different degrees of crystallinity obtained during processing might be a useful switch to create a tailored SME for a specific application. The prepared samples of variable morphology revealed a possibility to control the value of material stress during permanent shape recovery. The degree of shape recovery of the prepared samples was also controlable. The highest stress value observed during permanent shape recovery reached 10MPa for the sample annealed 60min at 115°C even when the sample was only deformed in 8%. The other significant aspect of this work is to present the problem of slow crystallization of the material during and after processing (cooling rate) as well as the possibility of negative SME change during the shelf life of the fabric. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Fostering Recovery from Life-Transforming Mental Health Disorders: A Synthesis and Model

    PubMed Central

    Green, Carla A.

    2012-01-01

    In the past, “recovery” from serious mental health problems has been variously defined and generally considered rare. Current evidence suggests that some form of recovery is both possible and common, yet we know little about the processes that differentiate those who recover from those who do not. This paper discusses approaches to defining recovery, proposes a model for fostering, understanding, and studying recovery, and suggests questions for clinicians, researchers, and policy makers. The proposed model is a synthesis of work from the field of mental health as well as from other disciplines. Environment, resources, and strains, provide the backdrop for recovery; core recovery processes include development, learning, healing, and their primary behavioral manifestation, adaptation. Components facilitating recovery include sources of motivation (hope, optimism, and meaning), prerequisites for action (agency, control, and autonomy), and capacity (competence and dysfunction). Attending to these aspects of the recovery process could help shape clinical practice, and systems that provide and finance mental health care, in ways that promote recovery. PMID:23264751

  17. High Cycle-life Shape Memory Polymer at High Temperature

    PubMed Central

    Kong, Deyan; Xiao, Xinli

    2016-01-01

    High cycle-life is important for shape memory materials exposed to numerous cycles, and here we report shape memory polyimide that maintained both high shape fixity (Rf) and shape recovery (Rr) during the more than 1000 bending cycles tested. Its critical stress is 2.78 MPa at 250 °C, and the shape recovery process can produce stored energy of 0.218 J g−1 at the efficiency of 31.3%. Its high Rf is determined by the large difference in storage modulus at rubbery and glassy states, while the high Rr mainly originates from its permanent phase composed of strong π-π interactions and massive chain entanglements. Both difference in storage modulus and overall permanent phase were preserved during the bending deformation cycles, and thus high Rf and Rr were observed in every cycle and the high cycle-life will expand application areas of SMPs enormously. PMID:27641148

  18. Mechanism study of biopolymer hair as a coupled thermo-water responsive smart material

    NASA Astrophysics Data System (ADS)

    Xiao, Xueliang; Zhou, Hongtao; Qian, Kun

    2017-03-01

    Animal hairs existing broadly in nature are found to be effectively responsive to stimuli of heat and water in sequence for shape deformation and recovery, namely, coupled shape memory function (CSMF). In the paper, the ability of thermo-water sensitive CSMF was first time investigated for animal hairs, the structural and molecular networks for net-points and switches were therefrom identified. Experimentally, animal hair manifested a high ability of shape fixation in thermal processing and good shape recovery by water stimulus. Characterizations of two stimuli (heating and hydration) were performed systematically on hair’s deformation, recovery, viscoelasticity and chemical components (crystalline phase, key bonds inamorphous area). The variations of related chemical components in molecular networks were also explored. A hybrid structural network model was thereafter proposed to interpret the thermo-water sensitive CSMF of hair. This study of two-sequential-stimuli CSMF is original and inspired to explore more complex functions of other smart natural materials and expected to make much smarter synthetic polymers.

  19. Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature

    NASA Technical Reports Server (NTRS)

    Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques

    2016-01-01

    CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.

  20. Microscopic stress characterisation of functional iron-based alloys by white X-ray microbeam diffraction

    NASA Astrophysics Data System (ADS)

    Kwon, E. P.; Sato, S.; Fujieda, S.; Shinoda, K.; Kajiwara, K.; Sato, M.; Suzuki, S.

    2018-01-01

    Microscopic residual stress evolution in an austenite (γ) grain during a shape-memory process in an Fe-Mn-Si-Cr alloy was investigated using the white X-ray microbeam diffraction technique. The stresses were measured on a coarse grain, which had an orientation near <144>, parallel to the tensile loading direction with a high Schmid factor for a martensitic transformation. The magnitude of the residual stresses in a grain of the sample, which was subjected to a 23 % tensile strain and subsequent shape-recovery heating, was found to be very small and comparable to that prior to tensile deformation. Measurements of the recovery strain and microstructural analyses using electron backscatter diffraction suggested that the low residual stresses could be attributed to the significant shape recovery caused by a highly reversible martensitic transformation in the grain with a particular orientation.

  1. Two-year performance study of porous, thermoset, shape memory polyurethanes intended for vascular medical devices

    NASA Astrophysics Data System (ADS)

    Weems, Andrew C.; Boyle, Anthony J.; Maitland, Duncan J.

    2017-03-01

    The long-term shape-recovery behavior of shape memory polymers has often been shown to be dependent on the length of time the material has been stored in the secondary shape. Typically, recovery performance and shape fixity will decrease with increased time in the secondary shape. In medical materials, a shelf-life is crucial to establish as it sets the upper threshold for device performance in a clinical setting, and a reduction in shape recovery would limit the development of SMP medical devices. Here, we present a two-year study of strain recovery, strain fixity, and shape recovery kinetics for passively and actively actuated SMPs intended for vascular devices. While kinetic experiments using immersion DMA indicate slight material relaxation and a decrease in the time to recovery, these changes are not found for bulk recovery experiments. The results indicate that a two-year shelf-life for these SMPs is very reasonable, as there is no change in the recovery kinetics, strain recovery, or strain fixity associated with this aging time. Further, a thermal accelerated aging test is presented for more rapid testing of the shape memory behavior of these SMPs and is compared with the real time aging results, indicating that this test is a reasonable indicator of the two-year behavior.

  2. A preliminary study on shape recovery speed of a styrene-based shape memory polymer composite actuated by different heating methods

    NASA Astrophysics Data System (ADS)

    Wu, Xuelian; Zhang, Wuyi; Liu, Yanju; Leng, Jinsong

    2007-07-01

    Thermally activated shape memory polymers (SMPs) receive increasing attention in recent years. Different from those reported in the literature, in this paper we propose a new approach, i.e., using infrared light, for heating SMPs for shape recovery. We compare this approach with the traditional water bath method in terms of shape recovery speed in bending at both vacuum and no vacuum conditions. The results reveal that the shape recovery speed in infrared heating at vacuum condition is about eight times slower than that by hot water. However, the recovery time is more than doubled if without vacuum.

  3. Using sieving and pretreatment to separate plastics during end-of-life vehicle recycling.

    PubMed

    Stagner, Jacqueline A; Sagan, Barsha; Tam, Edwin Kl

    2013-09-01

    Plastics continue to be a challenge for recovering materials at the end-of-life for vehicles. However, it may be possible to improve the recovery of plastics by exploiting material characteristics, such as shape, or by altering their behavior, such as through temperature changes, in relation to recovery processes and handling. Samples of a 2009 Dodge Challenger front fascia were shredded in a laboratory-scale hammer mill shredder. A 2 × 2 factorial design study was performed to determine the effect of sample shape (flat versus curved) and sample temperature (room temperature versus cryogenic temperature) on the size of the particles exiting from the shredder. It was determined that sample shape does not affect the particle size; however, sample temperature does affect the particle size. At cryogenic temperatures, the distribution of particle sizes is much narrower than at room temperature. Having a more uniform particle size could make recovery of plastic particles, such as these more efficient during the recycling of end-of-life vehicles. Samples of Chrysler minivan headlights were also shredded at room temperature and at cryogenic temperatures. The size of the particles of the two different plastics in the headlights is statistically different both at room temperature and at cryogenic temperature, and the particles are distributed narrowly. The research suggests that incremental changes in end-of-life vehicle processing could be effective in aiding materials recovery.

  4. Properties of Graphene/Shape Memory Thermoplastic Polyurethane Composites Actuating by Various Methods

    PubMed Central

    Park, Jin Ho; Dao, Trung Dung; Lee, Hyung-il; Jeong, Han Mo; Kim, Byung Kyu

    2014-01-01

    Shape memory behavior of crystalline shape memory polyurethane (SPU) reinforced with graphene, which utilizes melting temperature as a shape recovery temperature, was examined with various external actuating stimuli such as direct heating, resistive heating, and infrared (IR) heating. Compatibility of graphene with crystalline SPU was adjusted by altering the structure of the hard segment of the SPU, by changing the structure of the graphene, and by changing the preparation method of the graphene/SPU composite. The SPU made of aromatic 4,4′-diphenylmethane diisocyanate (MSPU) exhibited better compatibility with graphene, having an aromatic structure, compared to that made of the aliphatic hexamethylene diisocyanate. The finely dispersed graphene effectively reinforced MSPU, improved shape recovery of MSPU, and served effectively as a filler, triggering shape recovery by resistive or IR heating. Compatibility was enhanced when the graphene was modified with methanol. This improved shape recovery by direct heating, but worsened the conductivity of the composite, and consequently the efficiency of resistive heating for shape recovery also declined. Graphene modified with methanol was more effective than pristine graphene in terms of shape recovery by IR heating. PMID:28788529

  5. How the intentions of the draftsman shape perception of a drawing.

    PubMed

    Pignocchi, Alessandro

    2010-12-01

    The interaction between the recovery of the artist's intentions and the perception of an artwork is a classic topic for philosophy and history of art. It also frequently, albeit sometimes implicitly, comes up in everyday thought and conversation about art and artworks. Since recent work in cognitive science can help us understand how we perceive and understand the intentions of others, this discipline could fruitfully participate in a multidisciplinary investigation of the role of intention recovery in art perception. The method I propose is to look for cases where recovery of the artist's intentions interacts with perception of a work of art, and this cannot be explain by a simple top-down influence of conscious propositional knowledge on perception. I will focus on drawing and show that recovery of the draftsman's intentional actions is handled by a psychological process shaped by the motor system of the observer. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Thermally Activated Composite with Two-Way and Multi-Shape Memory Effects

    PubMed Central

    Basit, Abdul; L’Hostis, Gildas; Pac, Marie José; Durand, Bernard

    2013-01-01

    The use of shape memory polymer composites is growing rapidly in smart structure applications. In this work, an active asymmetric composite called “controlled behavior composite material (CBCM)” is used as shape memory polymer composite. The programming and the corresponding initial fixity of the composite structure is obtained during a bending test, by heating CBCM above thermal glass transition temperature of the used Epoxy polymer. The shape memory properties of these composites are investigated by a bending test. Three types of recoveries are conducted, two classical recovery tests: unconstrained recovery and constrained recovery, and a new test of partial recovery under load. During recovery, high recovery displacement and force are produced that enables the composite to perform strong two-way actuations along with multi-shape memory effect. The recovery force confirms full recovery with two-way actuation even under a high load. This unique property of CBCM is characterized by the recovered mechanical work. PMID:28788316

  7. Path Network Recovery Using Remote Sensing Data and Geospatial-Temporal Semantic Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William C. McLendon III; Brost, Randy C.

    Remote sensing systems produce large volumes of high-resolution images that are difficult to search. The GeoGraphy (pronounced Geo-Graph-y) framework [2, 20] encodes remote sensing imagery into a geospatial-temporal semantic graph representation to enable high level semantic searches to be performed. Typically scene objects such as buildings and trees tend to be shaped like blocks with few holes, but other shapes generated from path networks tend to have a large number of holes and can span a large geographic region due to their connectedness. For example, we have a dataset covering the city of Philadelphia in which there is a singlemore » road network node spanning a 6 mile x 8 mile region. Even a simple question such as "find two houses near the same street" might give unexpected results. More generally, nodes arising from networks of paths (roads, sidewalks, trails, etc.) require additional processing to make them useful for searches in GeoGraphy. We have assigned the term Path Network Recovery to this process. Path Network Recovery is a three-step process involving (1) partitioning the network node into segments, (2) repairing broken path segments interrupted by occlusions or sensor noise, and (3) adding path-aware search semantics into GeoQuestions. This report covers the path network recovery process, how it is used, and some example use cases of the current capabilities.« less

  8. Thermomechanical Analysis of Shape-Memory Composite Tape Spring

    NASA Astrophysics Data System (ADS)

    Yang, H.; Wang, L. Y.

    2013-06-01

    Intelligent materials and structures have been extensively applied for satellite designs in order to minimize the mass and reduce the cost in the launch of the spacecraft. Elastic memory composites (EMCs) have the ability of high-strain packaging and shape-memory effect, but increase the parts and total weight due to the additional heating system. Shape-memory sandwich structures Li and Wang (J. Intell. Mater. Syst. Struct. 22(14), 1605-1612, 2011) can overcome such disadvantage by using the metal skin acting as the heating element. However, the high strain in the micro-buckled metal skin decreases the deployment efficiency. This paper aims to present an insight into the folding and deployment behaviors of shape-memory composite (SMC) tape springs. A thermomechanical process was analyzed, including the packaging deformation at an elevated temperature, shape frozen at the low temperature and shape recovery after reheating. The result shows that SMC tape springs can significantly decrease the strain concentration in the metal skin, as well as exhibiting excellent shape frozen and recovery behaviors. Additionally, possible failure modes of SMC tape springs were also analyzed.

  9. Recovery behaviour of shape memory polyurethane based laminates after thermoforming

    NASA Astrophysics Data System (ADS)

    Wu, Shuiliang; Xu, Wensen; Prasath Balamurugan, G.; Thompson, Michael R.; Nielsen, Kent E.; Brandys, Frank A.

    2017-11-01

    Shape memory polymers (SMPs) can be used to produce a new class of decorative films capable of improved formability and shape recovery in polymer laminates, which are increasingly being used for automotive, aerospace, construction and commercial applications. As a relatively new field there is little knowledge on the shape recovery behaviour of laminates with a SMP film and few methods of quantify that behaviour. The influences of different variables that affect the recovery behaviour of thermoplastic shape memory polyurethanes based laminates including ambient temperature (45 °C and 65 °C), material modulus, and adhesive strength were investigated after thermoforming, through both experimental and modelling methods. The empirical model assisted in identifying the contributions of the adhesive to transfer stresses, which dampened the recovery of the laminate with lower shear strength adhesives. Increasing ambient temperature and the film modulus increased both the final angle recovery ratios and recovery rates.

  10. Intense pumping and time- and frequency-resolved CARS for driving and tracking structural deformation and recovery of liquid nitromethane molecules

    NASA Astrophysics Data System (ADS)

    Wang, Chang; Wu, Hong-lin; Song, Yun-fei; He, Xing; Yang, Yan-qiang; Tan, Duo-wang

    2015-11-01

    A modified CARS technique with an intense nonresonant femtosecond laser is presented to drive the structural deformation of liquid nitromethane molecules and track their structural relaxation process. The CARS spectra reveal that the internal rotation of the molecule can couple with the CN symmetric stretching vibration and the molecules undergo ultrafast structural deformation of the CH3 groups from 'opened umbrella' to 'closed umbrella' shape, and then experience a structural recovery process within 720 fs.

  11. Multi-stage responsive 4D printed smart structure through varying geometric thickness of shape memory polymer

    NASA Astrophysics Data System (ADS)

    Teoh, Joanne Ee Mei; Zhao, Yue; An, Jia; Chua, Chee Kai; Liu, Yong

    2017-12-01

    Shape memory polymers (SMPs) have gained a presence in additive manufacturing due to their role in 4D printing. They can be printed either in multi-materials for multi-stage shape recovery or in a single material for single-stage shape recovery. When printed in multi-materials, material or material-based design is used as a controlling factor for multi-stage shape recovery. However, when printed in a single material, it is difficult to design multi-stage shape recovery due to the lack of a controlling factor. In this research, we explore the use of geometric thickness as a controlling factor to design smart structures possessing multi-stage shape recovery using a single SMP. L-shaped hinges with a thickness ranging from 0.3-2 mm were designed and printed in four different SMPs. The effect of thickness on SMP’s response time was examined via both experiment and finite element analysis using Ansys transient thermal simulation. A method was developed to accurately measure the response time in millisecond resolution. Temperature distribution and heat transfer in specimens during thermal activation were also simulated and discussed. Finally, a spiral square and an artificial flower consisting of a single SMP were designed and printed with appropriate thickness variation for the demonstration of a controlled multi-stage shape recovery. Experimental results indicated that smart structures printed using single material with controlled thickness parameters are able to achieve controlled shape recovery characteristics similar to those printed with multiple materials and uniform geometric thickness. Hence, the geometric parameter can be used to increase the degree of freedom in designing future smart structures possessing complex shape recovery characteristics.

  12. Stress recovery and cyclic behaviour of an Fe-Mn-Si shape memory alloy after multiple thermal activation

    NASA Astrophysics Data System (ADS)

    Hosseini, E.; Ghafoori, E.; Leinenbach, C.; Motavalli, M.; Holdsworth, S. R.

    2018-02-01

    The stress recovery and cyclic deformation behaviour of Fe-17Mn-5Si-10Cr-4Ni-1(V,C) shape memory alloy (Fe-SMA) strips, which are often used for pre-stressed strengthening of structural members, were studied. The evolution of recovery stress under different constraint conditions was studied. The results showed that the magnitude of the tensile stress in the Fe-SMA member during thermal activation can have a signification effect on the final recovery stress. The higher the tensile load in the Fe-SMA (e.g., caused by dead load or thermal expansion of parent structure during heating phase), the lower the final recovery stress. Furthermore, this study investigated the cyclic behaviour of the activated SMA followed by a second thermal activation. Although the magnitude of the recovery stress decreased during the cyclic loading, the second thermal activation could retrieve a significant part of the relaxed recovery stress. This observation suggests that the relaxation of recovery stress during cyclic loading is due to a reversible phase transformation-induced deformation (i.e., forward austenite-to-martensite transformation) rather than an irreversible dislocation-induced plasticity. Retrieval of the relaxed recovery stress by the reactivation process has important practical implications as the prestressing loss in pre-stressed civil structures can be simply recovered by reheating of the Fe-SMA elements.

  13. Simple Recovery of Intracellular Gold Nanoparticles from Peanut Seedling Roots.

    PubMed

    Raju, D; Mehta, Urmil J; Ahmad, Absar

    2015-02-01

    Fabrication of inorganic nanomaterials via a biological route witnesses the formation either extracellularly, intracellulary or both. Whereas extracellular formation of these nanomaterials is cherished owing to their easy and economical extraction and purification processes; the intracellular formation of nanomaterials, due to the lack of a proper recovery protocol has always been dreaded, as the extraction processes used so far were tedious, costly, time consuming and often resulting in very low recovery. The aim of the present study was to overcome the problems related with the extraction and recovery of intracellularly synthesized inorganic nanoparticles, and to devise a method to increasing the output, the shape, size, composition and dispersal of nanoparticles is not altered. Water proved to be much better system as it provided well dispersed, stable gold nanoparticles and higher recovery. This is the first report, where intracellular nanoparticles have been recovered using a very cost-effective and eco-friendly approach.

  14. Thermal analysis and evolution of shape loss phenomena during polymer burnout in powder metal processing

    NASA Astrophysics Data System (ADS)

    Enneti, Ravi Kumar

    2005-07-01

    Powder metallurgy technology involves manufacturing of net shape or near net shape components starting from metal powders. Polymers are used to provide lubrication during shaping and handling strength to the shaped component. After shaping, the polymers are removed from the shaped components by providing thermal energy to burnout the polymers. Polymer burnout is one of the most critical step in powder metal processing. Improper design of the polymer burnout cycle will result in formation of defects, shape loss, or carbon contamination of the components. The effect of metal particles on polymer burnout and shape loss were addressed in the present research. The study addressing the effect of metal powders on polymer burnout was based on the hypothesis that metal powders act to catalyze polymer burnout. Thermogravimetric analysis (TGA) on pure polymer, ethylene vinyl acetate (EVA), and on admixed powders of 316L stainless steel and 1 wt. % EVA were carried out to verify the hypothesis. The effect of metal powders additions was studied by monitoring the onset temperature for polymer degradation and the temperature at which maximum rate of weight loss occurred from the TGA data. The catalytic behavior of the powders was verified by varying the particle size and shape of the 316L stainless powder. The addition of metal particles lowered the polymer burnout temperatures. The onset temperature for burnout was found to be sensitive to the surface area of the metal particle as well as the polymer distribution. Powders with low surface area and uniform distribution of polymer showed a lower burnout temperature. The evolution of shape loss during polymer burnout was based on the hypothesis that shape loss occurs during the softening of the polymer and depends on the sequence of chemical bonding in the polymer during burnout. In situ observation of shape loss was carried out on thin beams compacted from admixed powders of 316L stainless steel and 1 wt. % ethylene vinyl acetate (EVA). The results showed that shape loss primarily occurs by viscous creep during the softening of the polymer. At the onset of burnout of EVA, a recovery in shape loss was observed. The recovery occurred primarily during the first stage burnout of EVA and was attributed to the formation of polyethylene co-polyacetylene which forms with a carbon double bond. The in situ strength was also found to increase during the formation of polyethylene co-polyacetylene. No recovery of shape loss was observed during burnout of polymers (polyethylene and polypropylene) which convert to yield hydrocarbons without forming carbon double bonds. (Abstract shortened by UMI.)

  15. An SEU immune logic family

    NASA Technical Reports Server (NTRS)

    Canaris, J.

    1991-01-01

    A new logic family, which is immune to single event upsets, is described. Members of the logic family are capable of recovery, regardless of the shape of the upsetting event. Glitch propagation from an upset node is also blocked. Logic diagrams for an Inverter, Nor, Nand, and Complex Gates are provided. The logic family can be implemented in a standard, commercial CMOS process with no additional masks. DC, transient, static power, upset recovery and layout characteristics of the new family, based on a commercial 1 micron CMOS N-Well process, are described.

  16. The manufacture of recovery.

    PubMed

    Braslow, Joel Tupper

    2013-01-01

    Recovery (also known as the "recovery orientation," "recovery vision," or "recovery philosophy") has been the dominant paradigm shaping current mental health policy for the past decade. It is claimed to be a revolutionary departure from the past and a guide to policy that will transform outcomes of severe mental illness. This review looks critically at the history of recovery and examines the ways in which this history has shaped the values, beliefs, and practices of current recovery-based policies. Recovery is a treatment philosophy that emerged from the ruins of deinstitutionalization and the psychopharmaceutical revolution. Yet paradoxically, recovery reflects many of the same ideas that made deinstitutionalization and the era of psychopharmacology possible. Further, history reveals how the recovery movement is deeply indebted to and embedded within the sociocultural values of neoliberalism that have shaped public policy since the presidential election of Ronald Reagan in 1980.

  17. Novel deployable morphing wing based on SMP composite

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Sun, Shouhua; Liu, Liwu; Zhang, Zhen; Liu, Yanju; Leng, Jinsong

    2009-07-01

    In this paper, a novel kind of deployable morphing wing base on shape memory polymer (SMP) composite is designed and tested. While the deployment of the morphing wing still relies on the mechanisms to ensure the recovery force and the stability performance, the deploying process tends to be more steady and accurate by the application of SMP composite, which overcomes the inherent drawbacks of the traditional one, such as harmful impact to the flight balance, less accuracy during the deployment and complex mechanical masses. On the other hand, SMP composite is also designed as the wing's filler. During its shape recovery process, SMP composite stuffed in the wing helps to form an aerofoil for the wing and withstand the aerodynamic loads, leading to the compressed aerofoil recovering its original shape. To demonstrate the feasibility and the controllability of the designed deployable morphing wing, primary tests are also conducted, including the deploying speed of the morphing wing and SMP filler as the main testing aspects. Finally, Wing's deformation under the air loads is also analyzed by using the finite element method to validate the flight stability.

  18. Enhanced multimaterial 4D printing with active hinges

    NASA Astrophysics Data System (ADS)

    Akbari, Saeed; Hosein Sakhaei, Amir; Kowsari, Kavin; Yang, Bill; Serjouei, Ahmad; Yuanfang, Zhang; Ge, Qi

    2018-06-01

    Despite great progress in four-dimensional (4D) printing, i.e. three-dimensional (3D) printing of active (stimuli-responsive) materials, the relatively low actuation force of the 4D printed structures often impedes their engineering applications. In this study, we use multimaterial inkjet 3D printing technology to fabricate shape memory structures, including a morphing wing flap and a deployable structure, which consist of active and flexible hinges joining rigid (non-active) parts. The active hinges, printed from a shape memory polymer (SMP), lock the structure into a second temporary shape during a thermomechanical programming process, while the flexible hinges, printed from an elastomer, effectively increase the actuation force and the load-bearing capacity of the printed structure as reflected in the recovery ratio. A broad range of mechanical properties such as modulus and failure strain can be achieved for both active and flexible hinges by varying the composition of the two base materials, i.e. the SMP and the elastomer, to accommodate large deformation induced during programming step, and enhance the recovery in the actuating step. To find the important design parameters, including local deformation, shape fixity and recovery ratio, we conduct high fidelity finite element simulations, which are able to accurately predict the nonlinear deformation of the printed structures. In addition, a coupled thermal-electrical finite element analysis was performed to model the heat transfer within the active hinges during the localized Joule heating process. The model predictions showed good agreement with the measured temperature data and were used to find the major parameters affecting temperature distribution including the applied voltage and the convection rate.

  19. Analytical study on different blade-shape design of HAWT for wasted kinetic energy recovery system (WKERS)

    NASA Astrophysics Data System (ADS)

    Goh, J. B.; Jamaludin, Z.; Jafar, F. A.; Mat Ali, M.; Mokhtar, M. N. Ali; Tan, C. H.

    2017-06-01

    Wasted kinetic energy recovery system (WKERS) is a wind renewable gadget installed above a cooling tower outlet to harvest the discharged wind for electrical regeneration purpose. The previous WKERS is operated by a horizontal axis wind turbine (HAWT) with delta blade design but the performance is still not at the optimum level. Perhaps, a better blade-shape design should be determined to obtain the optimal performance, as it is believed that the blade-shape design plays a critical role in HAWT. Hence, to determine a better blade-shape design for a new generation of WKERS, elliptical blade, swept blade and NREL Phase IV blade are selected for this benchmarking process. NREL Phase IV blade is a modern HAWT’s blade design by National Renewable Energy Laboratory (NREL) research lab. During the process of benchmarking, Computational Fluid Dynamics (CFD) analysis was ran by using SolidWorks design software, where all the designs are simulated with linear flow simulation. The wind speed in the simulation is set at 10.0 m/s, which is compatible with the average wind speed produced by a standard size cooling tower. The result is obtained by flow trajectories of air motion, surface plot and cut plot of the applied blade-shape. Besides, the aspect ratio of each blade is calculated and included as one of the reference in the comparison. Hence, the final selection of the best blade-shape design will bring to the new generation of WKERS.

  20. Reshaping an enduring sense of self: the process of recovery from a first episode of schizophrenia.

    PubMed

    Romano, Donna M; McCay, Elizabeth; Goering, Paula; Boydell, Katherine; Zipursky, Robert

    2010-08-01

    Although advances in the treatment of schizophrenia have been made, little is known about the process of recovery from first episode of schizophrenia (FES). To date, the study of recovery in the field of mental health has focused on long-term mental illness. This qualitative study addresses ways in which individuals with FES describe their process of recovery and how identified individuals (e.g. family members) describe their perceptions of and roles in the participant's process of recovery. Charmaz's constructivist grounded theory methodology was used to interview 10 young adults twice who self-identified as recovering from FES. In addition, 10 individuals were identified who had influenced their recovery and were interviewed once, for a total of 30 interviews. Data collection sources included in-depth semi-structured interviews. Data analysis methods were consistent with Charmaz's methodology and included coding, and constant comparison of data. The results provide a substantive theory of the process of recovery from FES that is comprised of the following phases: 'Who they were prior to the illness', 'Lives interrupted: Encountering the illness', 'Engaging in services and supports', 'Re-engaging in life', 'Envisioning the future'; and the core category, 'Re-shaping an enduring sense of self', that occurred throughout all phases. A prominent feature of this model is that participants' enduring sense of self were reshaped rather than reconstructed throughout their recovery. This model of recovery from FES is unique, and as such, provides implications for clinical care, research and policy development for these young adults and their families.

  1. Coarse-grained simulation of molecular mechanisms of recovery in thermally activated shape-memory polymers

    NASA Astrophysics Data System (ADS)

    Abberton, Brendan C.; Liu, Wing Kam; Keten, Sinan

    2013-12-01

    Thermally actuated shape-memory polymers (SMPs) are capable of being programmed into a temporary shape and then recovering their permanent reference shape upon exposure to heat, which facilitates a phase transition that allows dramatic increase in molecular mobility. Experimental, analytical, and computational studies have established empirical relations of the thermomechanical behavior of SMPs that have been instrumental in device design. However, the underlying mechanisms of the recovery behavior and dependence on polymer microstructure remain to be fully understood for copolymer systems. This presents an opportunity for bottom-up studies through molecular modeling; however, the limited time-scales of atomistic simulations prohibit the study of key performance metrics pertaining to recovery. In order to elucidate the effects of phase fraction, recovery temperature, and deformation temperature on shape recovery, here we investigate the shape-memory behavior in a copolymer model with coarse-grained potentials using a two-phase molecular model that reproduces physical crosslinking. Our simulation protocol allows observation of upwards of 90% strain recovery in some cases, at time-scales that are on the order of the timescale of the relevant relaxation mechanism (stress relaxation in the unentangled soft-phase). Partial disintegration of the glassy phase during mechanical deformation is found to contribute to irrecoverable strain. Temperature dependence of the recovery indicates nearly full elastic recovery above the trigger temperature, which is near the glass-transition temperature of the rubbery switching matrix. We find that the trigger temperature is also directly correlated with the deformation temperature, indicating that deformation temperature influences the recovery temperatures required to obtain a given amount of shape recovery, until the plateau regions overlap above the transition region. Increasing the fraction of glassy phase results in higher strain recovery at low to intermediate temperatures, a widening of the transition region, and an eventual crossover at high temperatures. Our results corroborate experimental findings on shape-memory behavior and provide new insight into factors governing deformation recovery that can be leveraged in biomaterials design. The established computational methodology can be extended in straightforward ways to investigate the effects of monomer chemistry, low-molecular-weight solvents, physical and chemical crosslinking, different phase-separation morphologies, and more complicated mechanical deformation toward predictive modeling capabilities for stimuli-responsive polymers.

  2. Prediction of hemoglobin in blood donors using a latent class mixed-effects transition model.

    PubMed

    Nasserinejad, Kazem; van Rosmalen, Joost; de Kort, Wim; Rizopoulos, Dimitris; Lesaffre, Emmanuel

    2016-02-20

    Blood donors experience a temporary reduction in their hemoglobin (Hb) value after donation. At each visit, the Hb value is measured, and a too low Hb value leads to a deferral for donation. Because of the recovery process after each donation as well as state dependence and unobserved heterogeneity, longitudinal data of Hb values of blood donors provide unique statistical challenges. To estimate the shape and duration of the recovery process and to predict future Hb values, we employed three models for the Hb value: (i) a mixed-effects models; (ii) a latent-class mixed-effects model; and (iii) a latent-class mixed-effects transition model. In each model, a flexible function was used to model the recovery process after donation. The latent classes identify groups of donors with fast or slow recovery times and donors whose recovery time increases with the number of donations. The transition effect accounts for possible state dependence in the observed data. All models were estimated in a Bayesian way, using data of new entrant donors from the Donor InSight study. Informative priors were used for parameters of the recovery process that were not identified using the observed data, based on results from the clinical literature. The results show that the latent-class mixed-effects transition model fits the data best, which illustrates the importance of modeling state dependence, unobserved heterogeneity, and the recovery process after donation. The estimated recovery time is much longer than the current minimum interval between donations, suggesting that an increase of this interval may be warranted. Copyright © 2015 John Wiley & Sons, Ltd.

  3. High-strain slide-ring shape-memory polycaprolactone-based polyurethane.

    PubMed

    Wu, Ruiqing; Lai, Jingjuan; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin

    2018-06-06

    To enable shape-memory polymer networks to achieve recoverable high deformability with a simultaneous high shape-fixity ratio and shape-recovery ratio, novel semi-crystalline slide-ring shape-memory polycaprolactone-based polyurethane (SR-SMPCLU) with movable net-points constructed by a topologically interlocked slide-ring structure was designed and fabricated. The SR-SMPCLU not only exhibited good shape fixity, almost complete shape recovery, and a fast shape-recovery speed, it also showed an outstanding recoverable high-strain capacity with 95.83% Rr under a deformation strain of 1410% due to the pulley effect of the topological slide-ring structure. Furthermore, the SR-SMPCLU system maintained excellent shape-memory performance with increasing the training cycle numbers at 45% and even 280% deformation strain. The effects of the slide-ring cross-linker content, deformation strain, and successive shape-memory cycles on the shape-memory performance were investigated. A possible mechanism for the shape-memory effect of the SR-SMPCLU system is proposed.

  4. Shape-memory properties in Ni-Ti sputter-deposited film

    NASA Technical Reports Server (NTRS)

    Busch, J. D.; Johnson, A. D.; Lee, C. H.; Stevenson, D. A.

    1990-01-01

    A Ni-Ti alloy, generically called nitinol, was prepared from sputtering targets of two different compositions on glass substrates using a dc magnetron source. The as-deposited films were amorphous in structure and did not exhibit a shape memory. The amorphous films were crystallized with a suitable annealing process, and the transformation properties were measured using differential scanning calorimetry. The annealed films demonstrated a strong shape-memory effect. Stress/strain measurements and physical manipulation were used to evaluate the shape recovery. These tests demonstrated sustained tensile stresses of up to 480 MPa in the high-temperature phase, and a characteristic plastic deformation in the low-temperature phase.

  5. Characteristics and interrelation of recovery stress and recovery strain of an ultrafine-grained Ni-50.2Ti alloy processed by high-ratio differential speed rolling

    NASA Astrophysics Data System (ADS)

    Lim, Y. G.; Kim, W. J.

    2017-03-01

    The characteristics of the recovery stress and strain of an ultrafine-grained Ni-50.2 at% Ti alloy prepared by high-ratio differential speed rolling (HRDSR) were examined, and the factors that influence the recovery stress and strain and the relation between the two were studied. After HRDSR, both the recovery stress and strain were enhanced compared to the initial condition. The subsequent annealing treatment at 673 K, however, reduced the shape recovery properties. The constitutive equation showing that the maximum recovery stress is a sole function of the recovery strain was developed. The recovery strain increased as the yield stress increased. Thus, the maximum recovery stress increased with an increase in yield stress. The recovery stress measured at room temperature (i.e., residual recovery stress) was, on the other hand, affected by the yield stress as well as the austenite-to-martensite transformation temperature. As the yield stress increased and as the martensitic transformation temperature decreased, the residual recovery stress increased.

  6. Community, Public Policy, and Recovery from Mental Illness: Emerging Research and Initiatives.

    PubMed

    Castillo, Enrico G; Chung, Bowen; Bromley, Elizabeth; Kataoka, Sheryl H; Braslow, Joel T; Essock, Susan M; Young, Alexander S; Greenberg, Jared M; Miranda, Jeanne; Dixon, Lisa B; Wells, Kenneth B

    This commentary examines the roles that communities and public policies play in the definition and processes of recovery for adults with mental illness. Policy, clinical, and consumer definitions of recovery are reviewed, which highlight the importance of communities and policies for recovery. This commentary then presents a framework for the relationships between community-level factors, policies, and downstream mental health outcomes, focusing on macroeconomic, housing, and health care policies; adverse exposures such as crime victimization; and neighborhood characteristics such as social capital. Initiatives that address community contexts to improve mental health outcomes are currently under way. Common characteristics of such initiatives and select examples are discussed. This commentary concludes with a discussion of providers', consumers', and other stakeholders' roles in shaping policy reform and community change to facilitate recovery.

  7. Characterization of origami shape memory metamaterials (SMMM) made of bio-polymer blends

    NASA Astrophysics Data System (ADS)

    Kshad, Mohamed Ali E.; Naguib, Hani E.

    2016-04-01

    Shape memory materials (SMMs) are materials that can return to their virgin state and release mechanically induced strains by external stimuli. Shape memory polymers (SMPs) are a class of SMMs that show a high shape recoverability and which have attractive potential for structural applications. In this paper, we experimentally study the shape memory effect of origami based metamaterials. The main focus is on the Muira origami metamaterials. The fabrication technique used to produce origami structure is direct molding where all the geometrical features are molded from thermally virgin polymers without post folding of flat sheets. The study shows experimental investigations of shape memory metamaterials (SMMMs) made of SMPs that can be used in different applications such as medicine, robotics, and lightweight structures. The origami structure made from SMP blends, activated with uniform heating. The effect of blend composition on the shape memory behavior was studied. Also the influence of the thermomechanical and the viscoelastic properties of origami unit cell on the activation process have been discussed, and stress relaxation and shape recovery were investigated. Activation process of the unit cell has been demonstrated.

  8. Thermal Annealing to Modulate the Shape Memory Behavior of a Biobased and Biocompatible Triblock Copolymer Scaffold in the Human Body Temperature Range.

    PubMed

    Merlettini, Andrea; Gigli, Matteo; Ramella, Martina; Gualandi, Chiara; Soccio, Michelina; Boccafoschi, Francesca; Munari, Andrea; Lotti, Nadia; Focarete, Maria Letizia

    2017-08-14

    A biodegradable and biocompatible electrospun scaffold with shape memory behavior in the physiological temperature range is here presented. It was obtained starting from a specifically designed, biobased PLLA-based triblock copolymer, where the central block is poly(propylene azelate-co-propylene sebacate) (P(PAz60PSeb40)) random copolymer. Shape memory properties are determined by the contemporary presence of the low melting crystals of the P(PAz60PSeb40) block, acting as switching segment, and of the high melting crystal phase of PLLA blocks, acting as physical network. It is demonstrated that a straightforward annealing process applied to the crystal phase of the switching element gives the possibility to tune the shape recovery temperature from about 25 to 50 °C, without the need of varying the copolymer's chemical structure. The thermal annealing approach here presented can be thus considered a powerful strategy for "ad hoc" programming the same material for applications requiring different recovery temperatures. Fibroblast culture experiments demonstrated scaffold biocompatibility.

  9. Novel waste printed circuit board recycling process with molten salt.

    PubMed

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl-KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. •The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept.•This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L.•The treated PCBs can be removed via leg B while the process is on-going.

  10. Novel waste printed circuit board recycling process with molten salt

    PubMed Central

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450–470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl–KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. • The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept. • This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L. • The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977

  11. Geometry- and Length Scale-Dependent Deformation and Recovery on Micro- and Nanopatterned Shape Memory Polymer Surfaces

    PubMed Central

    Lee, Wei Li; Low, Hong Yee

    2016-01-01

    Micro- and nanoscale surface textures, when optimally designed, present a unique approach to improve surface functionalities. Coupling surface texture with shape memory polymers may generate reversibly tuneable surface properties. A shape memory polyetherurethane is used to prepare various surface textures including 2 μm- and 200 nm-gratings, 250 nm-pillars and 200 nm-holes. The mechanical deformation via stretching and recovery of the surface texture are investigated as a function of length scales and shapes. Results show the 200 nm-grating exhibiting more deformation than 2 μm-grating. Grating imparts anisotropic and surface area-to-volume effects, causing different degree of deformation between gratings and pillars under the same applied macroscopic strain. Full distribution of stress within the film causes the holes to deform more substantially than the pillars. In the recovery study, unlike a nearly complete recovery for the gratings after 10 transformation cycles, the high contribution of surface energy impedes the recovery of holes and pillars. The surface textures are shown to perform a switchable wetting function. This study provides insights into how geometric features of shape memory surface patterns can be designed to modulate the shape programming and recovery, and how the control of reversibly deformable surface textures can be applied to transfer microdroplets. PMID:27026290

  12. Optimizing biomass feedstock logistics for forest residue processing and transportation on a tree-shaped road network

    Treesearch

    Hee Han; Woodam Chung; Lucas Wells; Nathaniel Anderson

    2018-01-01

    An important task in forest residue recovery operations is to select the most cost-efficient feedstock logistics system for a given distribution of residue piles, road access, and available machinery. Notable considerations include inaccessibility of treatment units to large chip vans and frequent, long-distance mobilization of forestry equipment required to process...

  13. Infrared-actuated recovery of polyurethane filled by reduced graphene oxide/carbon nanotube hybrids with high energy density.

    PubMed

    Feng, Yiyu; Qin, Mengmeng; Guo, Haiqiang; Yoshino, Katsumi; Feng, Wei

    2013-11-13

    Optically actuated shape recovery materials receive much interest because of their great ability to control the creation of mechanical motion remotely and precisely. An infrared (IR) triggered actuator based on shape recovery was fabricated using polyurethane (TPU) incorporated by sulfonated reduced graphene oxide (SRGO)/sulfonated carbon nanotube (SCNT) hybrid nanofillers. Interconnected SRGO/SCNT hybrid nanofillers at a low weight loading of 1% dispersed in TPU showed good IR absorption and improved the crystallization of soft segments for a large shape deformation. The output force, energy density and recovery time of IR-triggered actuators were dependent on weight ratios of SRGO to SCNT (SRGO:SCNT). TPU nanocomposites filled by a hybrid nanofiller with SRGO:SCNT of 3:1 showed the maximum IR-actuated stress recovery of lifting a 107.6 g weight up 4.7 cm in 18 s. The stress recovery delivered a high energy density of 0.63 J/g and shape recovery force up to 1.2 MPa due to high thermal conductivity (1.473 W/mK) and Young's modulus of 23.4 MPa. Results indicate that a trade-off between the stiffness and efficient heat transfer controlled by synergistic effect between SRGO and SCNT is critical for high mechanical power output of IR-triggered actuators. IR-actuated shape recovery of SRGO/SCNT/TPU nanocomposites combining high energy density and output forces can be further developed for advanced optomechanical systems.

  14. Multiblock thermoplastic polyurethanes for biomedical and shape memory applications

    NASA Astrophysics Data System (ADS)

    Gu, Xinzhu

    Polyurethanes are a class of polymers that are capable of tailoring the overall polymer structure and thus final properties by many factors. The great potential in tailoring polymer structures imparts PUs unique mechanical properties and good cytocompatibility, which make them good candidates for many biomedical devices. In this dissertation, three families of multiblock thermoplastic polyurethanes are synthesized and characterized for biomedical and shape memory applications. In the first case described in Chapters 2, 3 and 4, a novel family of multiblock thermoplastic polyurethanes consisting of poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) are presented. These materials were discovered to be very durable, with strain-to-break higher than 1200%. Heat-triggered reversible plasticity shape memory (RPSM) was observed, where the highly deformed samples completely recovered their as-cast shape within one minute when heating above the transition temperature. Instead of conventional "hard" blocks, entanglements, which result from high molecular weight, served as the physical crosslinks in this system, engendering shape recovery and preventing flow. Moreover, water-triggered shape memory effect of PCL-PEG TPUs is explored, wherein water permeated into the initially oriented PEG domains, causing rapid shape recovery toward the equilibrium shape upon contact with liquid water. The recovery behavior is found to be dependent on PEG weight percentage in the copolymers. By changing the material from bulk film to electrospun fibrous mat, recovery speed was greatly accelerated. The rate of water recovery was manipulated through structural variables, including thickness of bulk film and diameter of e-spun webs. A new, yet simple shape memory cycle, "wet-fixing" is also reported, where both the fixing and recovery ratios can be greatly improved. A detailed microstructural study on one particular composition is presented, revealing the evolution of microphase morphology during the shape memory cycle. Then, in Chapter 5, the role of Polyhedral oligosilsesquioxane (POSS) in suppressing enzymatic degradation of PCL-PEG TPUs is investigated. In vitro enzymatic hydrolytic biodegradation revealed that POSS incorporation significantly suppressed degradation of PCL-PEG TPUs. All TPUs were surface-eroded by enzymatic attack in which the chemical composition and the bulk mechanical properties exhibited little changes. A surface passivation mechanism is proposed to explain the protection of POSS-containing TPUs from enzymatic degradation. Finally, Chapter 6 presents another POSS-based TPUs system with PLA-based polyol as the glassy soft block. Manipulation of the final thermal and mechanical properties is discussed in terms of different polyols and POSS used. The free recovery and the constrained recovery responses of the polymer films were demonstrated as a function of the prior "fixing" deformation temperature. In addition, this family of materials was capable of memorizing their T g., where optimal recovery breadth and recovery stress were achieved when pre-deformation occurred right at Tg.

  15. Speaking-related changes in cortical functional connectivity associated with assisted and spontaneous recovery from developmental stuttering.

    PubMed

    Kell, Christian A; Neumann, Katrin; Behrens, Marion; von Gudenberg, Alexander W; Giraud, Anne-Lise

    2018-03-01

    We previously reported speaking-related activity changes associated with assisted recovery induced by a fluency shaping therapy program and unassisted recovery from developmental stuttering (Kell et al., Brain 2009). While assisted recovery re-lateralized activity to the left hemisphere, unassisted recovery was specifically associated with the activation of the left BA 47/12 in the lateral orbitofrontal cortex. These findings suggested plastic changes in speaking-related functional connectivity between left hemispheric speech network nodes. We reanalyzed these data involving 13 stuttering men before and after fluency shaping, 13 men who recovered spontaneously from their stuttering, and 13 male control participants, and examined functional connectivity during overt vs. covert reading by means of psychophysiological interactions computed across left cortical regions involved in articulation control. Persistent stuttering was associated with reduced auditory-motor coupling and enhanced integration of somatosensory feedback between the supramarginal gyrus and the prefrontal cortex. Assisted recovery reduced this hyper-connectivity and increased functional connectivity between the articulatory motor cortex and the auditory feedback processing anterior superior temporal gyrus. In spontaneous recovery, both auditory-motor coupling and integration of somatosensory feedback were normalized. In addition, activity in the left orbitofrontal cortex and superior cerebellum appeared uncoupled from the rest of the speech production network. These data suggest that therapy and spontaneous recovery normalizes the left hemispheric speaking-related activity via an improvement of auditory-motor mapping. By contrast, long-lasting unassisted recovery from stuttering is additionally supported by a functional isolation of the superior cerebellum from the rest of the speech production network, through the pivotal left BA 47/12. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Detection and Recovery of Palladium, Gold and Cobalt Metals from the Urban Mine Using Novel Sensors/Adsorbents Designated with Nanoscale Wagon-wheel-shaped Pores.

    PubMed

    El-Safty, Sherif A; Shenashen, Mohamed A; Sakai, Masaru; Elshehy, Emad; Halada, Kohmei

    2015-12-06

    Developing low-cost, efficient processes for recovering and recycling palladium, gold and cobalt metals from urban mine remains a significant challenge in industrialized countries. Here, the development of optical mesosensors/adsorbents (MSAs) for efficient recognition and selective recovery of Pd(II), Au(III), and Co(II) from urban mine was achieved. A simple, general method for preparing MSAs based on using high-order mesoporous monolithic scaffolds was described. Hierarchical cubic Ia3d wagon-wheel-shaped MSAs were fabricated by anchoring chelating agents (colorants) into three-dimensional pores and micrometric particle surfaces of the mesoporous monolithic scaffolds. Findings show, for the first time, evidence of controlled optical recognition of Pd(II), Au(III), and Co(II) ions and a highly selective system for recovery of Pd(II) ions (up to ~95%) in ores and industrial wastes. Furthermore, the controlled assessment processes described herein involve evaluation of intrinsic properties (e.g., visual signal change, long-term stability, adsorption efficiency, extraordinary sensitivity, selectivity, and reusability); thus, expensive, sophisticated instruments are not required. Results show evidence that MSAs will attract worldwide attention as a promising technological means of recovering and recycling palladium, gold and cobalt metals.

  17. Detection and Recovery of Palladium, Gold and Cobalt Metals from the Urban Mine Using Novel Sensors/Adsorbents Designated with Nanoscale Wagon-wheel-shaped Pores

    PubMed Central

    El-Safty, Sherif A.; Shenashen, Mohamed A.; Sakai, Masaru; Elshehy, Emad; Halada, Kohmei

    2015-01-01

    Developing low-cost, efficient processes for recovering and recycling palladium, gold and cobalt metals from urban mine remains a significant challenge in industrialized countries. Here, the development of optical mesosensors/adsorbents (MSAs) for efficient recognition and selective recovery of Pd(II), Au(III), and Co(II) from urban mine was achieved. A simple, general method for preparing MSAs based on using high-order mesoporous monolithic scaffolds was described. Hierarchical cubic Ia3d wagon-wheel-shaped MSAs were fabricated by anchoring chelating agents (colorants) into three-dimensional pores and micrometric particle surfaces of the mesoporous monolithic scaffolds. Findings show, for the first time, evidence of controlled optical recognition of Pd(II), Au(III), and Co(II) ions and a highly selective system for recovery of Pd(II) ions (up to ~95%) in ores and industrial wastes. Furthermore, the controlled assessment processes described herein involve evaluation of intrinsic properties (e.g., visual signal change, long-term stability, adsorption efficiency, extraordinary sensitivity, selectivity, and reusability); thus, expensive, sophisticated instruments are not required. Results show evidence that MSAs will attract worldwide attention as a promising technological means of recovering and recycling palladium, gold and cobaltmetals. PMID:26709467

  18. Recovery of African wild dogs suppresses prey but does not trigger a trophic cascade

    USDA-ARS?s Scientific Manuscript database

    Large carnivores can powerfully shape ecosystems by directly suppressing herbivores, thereby indirectly benefitting plants in a process known as a trophic cascade. In 2002, after a 20-year absence, African wild dogs (Lycaon pictus) recolonized the Laikipia Plateau in central Kenya. We hypothesized t...

  19. Damage Recovery in Carrara Marble

    NASA Astrophysics Data System (ADS)

    Meyer, G.; Brantut, N.; Mitchell, T. M.; Meredith, P. G.

    2017-12-01

    We investigate the effect of confining pressure on the recovery of elastic wave velocities following deformation episodes in Carrara Marble. Dry Carrara Marble cores were deformed in the ductile regime (Pc = 40 MPa) up to 3% axial strain. After deformation, samples were held at constant stress conditions for extended periods of time (5-8 days) whilst continuously recording volumetric strain and seismic wave velocities. The velocity data were used to invert for microcrack densities using an effective medium approach. Finally, thin sections were produced to characterise the microstructures after recovery. During deformation, elastic wave speeds decreased with increasing strain by more than 30% of the value for the intact rock due to the formation of distributed microcracks. Under constant hydrostatic pressure, wave speeds progressively recovered 12-90% of the initial drop, depending on the applied confining pressure. In contrast, the strain recovery (deformation towards the initial shape of the sample) during holding time is negligible (of the order of 10-4). Tests performed under nonhydrostatic (triaxial) stress conditions during recovery showed some time-dependent creep deformation together with very significant recovery of wave velocities. The recovery is interpreted as a progressive reduction in crack density within the sample. The process is highly dependent on confining pressure, which favours it. We propose that the driving process for wave speed recovery is the time-dependent increase of contact area between crack surfaces due to the formation and growth of asperity contacts. We develop a micromechanical model for crack closure driven by asperity creep, which shows a good fit to the experimental data. Most of the recovery is achieved in the initial few hours, implying it is the fastest recovery or healing process, and thus occurs prior to any chemical healing or mineral precipitation. Our data corroborate field observations of post-seismic fault behavior.

  20. Modelling of loading, stress relaxation and stress recovery in a shape memory polymer.

    PubMed

    Sweeney, J; Bonner, M; Ward, I M

    2014-09-01

    A multi-element constitutive model for a lactide-based shape memory polymer has been developed that represents loading to large tensile deformations, stress relaxation and stress recovery at 60, 65 and 70°C. The model consists of parallel Maxwell arms each comprising neo-Hookean and Eyring elements. Guiu-Pratt analysis of the stress relaxation curves yields Eyring parameters. When these parameters are used to define the Eyring process in a single Maxwell arm, the resulting model yields at too low a stress, but gives good predictions for longer times. Stress dip tests show a very stiff response on unloading by a small strain decrement. This would create an unrealistically high stress on loading to large strain if it were modelled by an elastic element. Instead it is modelled by an Eyring process operating via a flow rule that introduces strain hardening after yield. When this process is incorporated into a second parallel Maxwell arm, there results a model that fully represents both stress relaxation and stress dip tests at 60°C. At higher temperatures a third arm is required for valid predictions. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  1. Shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Bearinger, Jane P.

    2017-08-29

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  2. Shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  3. Shape-memory effect by specific biodegradable polymer blending for biomedical applications.

    PubMed

    Cha, Kook Jin; Lih, Eugene; Choi, Jiyeon; Joung, Yoon Ki; Ahn, Dong Jun; Han, Dong Keun

    2014-05-01

    Specific biodegradable polymers having shape-memory properties through "polymer-blend" method are investigated and their shape-switching in body temperature (37 °C) is characterized. Poly(L-lactide-co-caprolactone) (PLCL) and poly(L-lactide-co-glycolide) (PLGA) are dissolved in chloroform and the films of several blending ratios of PLCL/PLGA are prepared by solvent casting. The shape-memory properties of films are also examined using dynamic mechanical analysis (DMA). Among the blending ratios, the PLCL50/PLGA50 film shows good performance of shape-fixity and shape-recovery based on glass transition temperature. It displays that the degree of shape recovery is 100% at 37 °C and the shape recovery proceeds within only 15 s. In vitro biocompatibility studies are shown to have good blood compatibility and cytocompatibility for the PLCL50/PLGA50 films. It is expected that this blended biodegradable polymer can be potentially used as a material for blood-contacting medical devices such as a self-expended vascular polymer stents and vascular closure devices in biomedical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Deformation of HyFlex CM instruments and their shape recovery following heat sterilization.

    PubMed

    Alfoqom Alazemi, M; Bryant, S T; Dummer, P M H

    2015-06-01

    To assess the deformation of HyFlex CM instruments (Coltene Whaledent) when used in two instrumentation sequences and to assess their shape recovery after heat sterilization. Simulated root canals with four different shapes were prepared with HyFlex CM instruments using a single-length technique (n = 40) or a crown down technique (n = 40). Pre-preparation, post-preparation and post-sterilization standardized images of each instrument were recorded. Assessment of instrument deformation and their subsequent shape recovery was carried out visually and by comparing the digitised images. Data analysis was carried out using chi-square tests. None of the 400 instruments fractured. Visual assessment of instruments post-preparation revealed that 30.5% had unwound and 0.5% had reverse winding. Following sterilization 8.5% remained unwound and 0.5% remained with reverse winding. When assessing instrument shape using digital images, 35.25% were unwound post-preparation, which reduced to 11% post-sterilization. Nine size 25, 0.08 instruments deformed, but none fully regained their original shape after sterilization; however, other sizes of deformed instruments did regain their shape (P < 0.001). Approximately one third of instruments became deformed as a result of use. However, two thirds of these fully recovered their shape following sterilization. The number of deformed instruments was underestimated when no magnification was used for assessment. Instrument size was related to incidence of deformation and shape recovery. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Phase Transformation and Shape Memory Effect of Ti-Pd-Pt-Zr High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yamabe-Mitarai, Yoko; Takebe, Wataru; Shimojo, Masayuki

    2017-12-01

    To understand the potential of high-temperature shape memory alloys, we have investigated the phase transformation and shape memory effect of Ti-(50 - x)Pt- xPd-5Zr alloys ( x = 0, 5, and 15 at.%), which present the B2 structure in the austenite phase and B19 structure in the martensite phase. Their phase transformation temperatures are very high; A f and M f of Ti-50Pt are 1066 and 1012 °C, respectively. By adding Zr and Pd, the phase transition temperatures decrease, ranging between 804 and 994 °C for A f and 590 and 865 °C for M f. Even at the high phase transformation temperature, a maximum recovery ratio of 70% was obtained for one cycle in a thermal cyclic test. A work output of 1.2 J/cm3 was also obtained. The recovery ratio obtained by the thermal cyclic test was less than 70% because the recovery strain was < 1% and a large irrecoverable strain was obtained. The shape recovery was explained by the austenite strength. The training effect was also investigated.

  6. Recovery of Peripheral Refractive Errors and Ocular Shape in Rhesus Monkeys (Macaca mulatta) with Experimentally Induced Myopia

    PubMed Central

    Huang, Juan; Hung, Li-Fang; Smith, Earl L.

    2012-01-01

    This study aimed to investigate the changes in ocular shape and relative peripheral refraction during the recovery from myopia produced by form deprivation (FD) and hyperopic defocus. FD was imposed in 6 monkeys by securing a diffuser lens over one eye; hyperopic defocus was produced in another 6 monkeys by fitting one eye with -3D spectacle. When unrestricted vision was re-established, the treated eyes recovered from the vision-induced central and peripheral refractive errors. The recovery of peripheral refractive errors was associated with corresponding changes in the shape of the posterior globe. The results suggest that vision can actively regulate ocular shape and the development of central and peripheral refractions in infant primates. PMID:23026012

  7. Mechanical and functional behavior of high-temperature Ni-Ti-Pt shape memory alloys

    DOE PAGES

    Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; ...

    2016-01-22

    A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amountsmore » of Ti 2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. As a result, the unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.« less

  8. 3D shape recovery from image focus using gray level co-occurrence matrix

    NASA Astrophysics Data System (ADS)

    Mahmood, Fahad; Munir, Umair; Mehmood, Fahad; Iqbal, Javaid

    2018-04-01

    Recovering a precise and accurate 3-D shape of the target object utilizing robust 3-D shape recovery algorithm is an ultimate objective of computer vision community. Focus measure algorithm plays an important role in this architecture which convert the color values of each pixel of the acquired 2-D image dataset into corresponding focus values. After convolving the focus measure filter with the input 2-D image dataset, a 3-D shape recovery approach is applied which will recover the depth map. In this document, we are concerned with proposing Gray Level Co-occurrence Matrix along with its statistical features for computing the focus information of the image dataset. The Gray Level Co-occurrence Matrix quantifies the texture present in the image using statistical features and then applies joint probability distributive function of the gray level pairs of the input image. Finally, we quantify the focus value of the input image using Gaussian Mixture Model. Due to its little computational complexity, sharp focus measure curve, robust to random noise sources and accuracy, it is considered as superior alternative to most of recently proposed 3-D shape recovery approaches. This algorithm is deeply investigated on real image sequences and synthetic image dataset. The efficiency of the proposed scheme is also compared with the state of art 3-D shape recovery approaches. Finally, by means of two global statistical measures, root mean square error and correlation, we claim that this approach -in spite of simplicity generates accurate results.

  9. An electrical-heating and self-sensing shape memory polymer composite incorporated with carbon fiber felt

    NASA Astrophysics Data System (ADS)

    Gong, Xiaobo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2016-03-01

    Shape memory polymers (SMPs) have the ability to adjust their stiffness, lock a temporary shape, and recover the permanent shape upon imposing an appropriate stimulus. They have found their way into the field of morphing structures. The electrically Joule resistive heating of the conductive composite can be a desirable stimulus to activate the shape memory effect of SMPs without external heating equipment. Electro-induced SMP composites incorporated with carbon fiber felt (CFF) were explored in this work. The CFF is an excellent conductive filler which can easily spread throughout the composite. It has a huge advantage in terms of low cost, simple manufacturing process, and uniform and tunable temperature distribution while heating. A continuous and compact conductive network made of carbon fibers and the overlap joints among them was observed from the microscopy images, and this network contributes to the high conductive properties of the CFF/SMP composites. The CFF/SMP composites can be electrical-heated rapidly and uniformly, and its’ shape recovery effect can be actuated by the electrical resistance Joule heating of the CFF without an external heater. The CFF/SMP composite get higher modulus and higher strength than the pure SMP without losing any strain recovery property. The high dependence of temperature and strain on the electrical resistance also make the composite a good self-sensing material. In general, the CFF/SMP composite shows great prospects as a potential material for the future morphing structures.

  10. Preparation and characterization of shape memory polymer scaffolds via solvent casting/particulate leaching.

    PubMed

    De Nardo, Luigi; Bertoldi, Serena; Cigada, Alberto; Tanzi, Maria Cristina; Haugen, Håvard Jostein; Farè, Silvia

    2012-09-27

    Porous Shape Memory Polymers (SMPs) are ideal candidates for the fabrication of defect fillers, able to support tissue regeneration via minimally invasive approaches. In this regard, control of pore size, shape and interconnection is required to achieve adequate nutrient transport and cell ingrowth. Here, we assessed the feasibility of the preparation of SMP porous structures and characterized their chemico-physical properties and in vitro cell response. SMP scaffolds were obtained via solvent casting/particulate leaching of gelatin microspheres, prepared via oil/water emulsion. A solution of commercial polyether-urethane (MM-4520, Mitsubishi Heavy Industries) was cast on compacted microspheres and leached-off after polymer solvent evaporation. The obtained structures were characterized in terms of morphology (SEM and micro-CT), thermo-mechanical properties (DMTA), shape recovery behavior in compression mode, and in vitro cytocompatibility (MG63 Osteoblast-like cell line). The fabrication process enabled easy control of scaffold morphology, pore size, and pore shape by varying the gelatin microsphere morphology. Homogeneous spherical and interconnected pores have been achieved together with the preservation of shape memory ability, with recovery rate up to 90%. Regardless of pore dimensions, MG63 cells were observed adhering and spreading onto the inner surface of the scaffolds obtained for up to seven days of static in vitro tests. A new class of SMP porous structures has been obtained and tested in vitro: according to these preliminary results reported, SMP scaffolds can be further exploited in the design of a new class of implantable devices.

  11. GREEN CHEMISTRY. Shape-selective zeolite catalysis for bioplastics production.

    PubMed

    Dusselier, Michiel; Van Wouwe, Pieter; Dewaele, Annelies; Jacobs, Pierre A; Sels, Bert F

    2015-07-03

    Biodegradable and renewable polymers, such as polylactic acid, are benign alternatives for petrochemical-based plastics. Current production of polylactic acid via its key building block lactide, the cyclic dimer of lactic acid, is inefficient in terms of energy, time, and feedstock use. We present a direct zeolite-based catalytic process, which converts lactic acid into lactide. The shape-selective properties of zeolites are essential to attain record lactide yields, outperforming those of the current multistep process by avoiding both racemization and side-product formation. The highly productive process is strengthened by facile recovery and practical reactivation of the catalyst, which remains structurally fit during at least six consecutive reactions, and by the ease of solvent and side-product recycling. Copyright © 2015, American Association for the Advancement of Science.

  12. Characterization of silicon photomultipliers and validation of the electrical model

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Qiang, Yi; Ross, Steve; Burr, Kent

    2018-04-01

    This paper introduces a systematic way to measure most features of the silicon photomultipliers (SiPM). We implement an efficient two-laser procedure to measure the recovery time. Avalanche probability was found to play an important role in explaining the right behavior of the SiPM recovery process. Also, we demonstrate how equivalent circuit parameters measured by optical tests can be used in SPICE modeling to predict details of the time constants relevant to the pulse shape. The SiPM properties measured include breakdown voltage, gain, diode capacitor, quench resistor, quench capacitor, dark count rate, photodetection efficiency, cross-talk and after-pulsing probability, and recovery time. We apply these techniques on the SiPMs from two companies: Hamamatsu and SensL.

  13. Post-deformation shape-recovery behavior of vitamin E-diffused, radiation crosslinked polyethylene acetabular components.

    PubMed

    Takahashi, Yasuhito; Tateiwa, Toshiyuki; Shishido, Takaaki; Masaoka, Toshinori; Kubo, Kosuke; Yamamoto, Kengo

    2016-10-01

    The in-vivo progression of creep and wear in ultra-high molecular weight polyethylene (UHMWPE) acetabular liners has been clinically evaluated by measuring radiographic penetration of femoral heads. In such clinical assessments, however, viscoelastic strain relaxation has been rarely considered after a removal of hip joint loading, potentially leading to an underestimation of the penetrated thickness. The objective of this study was to investigate shape-recovery behavior of pre-compressed, radiation crosslinked and antioxidant vitamin E-diffused UHMWPE acetabular liners, and also to characterize the effects of varying their internal diameter (ID) and wall thickness (WT). We applied uniaxial compression to the UHMWPE specimens of various ID (28, 32, 36mm) and WT (4.8, 6.8, 8.9mm) for 4320min under the constant load of 3000N, and subsequently monitored the strain-relaxation behavior as a function of time after unloading. It was observed that there was a considerable shape recovery of the components after removal of the external static load. Reducing ID and WT significantly accelerated the rate of creep strain recovery, and varying WT was more sensitive to the recovery behavior than ID. Creep deformation of the tested liners recovered mostly within the first 300min after unloading. Note that approximately half of the total recovery amount proceeded just within 5min after unloading. These results suggest a remarkably high capability of shape recovery of vitamin E-diffused highly crosslinked UHMWPE. In conclusion, the time-dependent shape recovering and the diameter-thickness effect on its behavior should be carefully considered when the postoperative penetration is quantified in highly crosslinked UHMWPE acetabular liners (especially on the non-weight bearing radiographs). Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Understanding Recovery Barriers: Youth Perceptions About Substance Use Relapse

    PubMed Central

    Gonzales, Rachel; Anglin, M. Douglas; Beattie, Rebecca; Ong, Chris Angelo; Glik, Deborah C.

    2014-01-01

    Objective To qualitatively explore how treatment-involved youth retrospectively contextualize relapse from substance use. Methods Fourteen focus groups were conducted with 118 youth (78.3% male; 66.1% Latino) enrolled in participating substance abuse treatment programs (4 young adult and 10 adolescent) throughout Los Angeles County. Transcripts were analyzed for relapse perception themes. Results Dominant relapse themes include emotional reasons (90%), life stressors (85%), cognitive factors (75%), socialization processes (65%), and environmental issues (55%). Conclusions Youth perceptions about relapse during treatment should be used to better inform clinical approaches and shape early-intervention recovery agendas for substance-abusing youth. PMID:22584088

  15. A highly efficient nonchemical method for isolating live nematodes (Caenorhabditis elegans) from soil during toxicity assays.

    PubMed

    Kim, Shin Woong; Moon, Jongmin; An, Youn-Joo

    2015-01-01

    The success of soil toxicity tests using Caenorhabditis elegans may depend in large part on recovering the organisms from the soil. However, it can be difficult to learn the International Organization for Standardization/ASTM International recovery process that uses the colloidal silica flotation method. The present study determined that a soil-agar isolation method provides a highly efficient and less technically demanding alternative to the colloidal silica flotation method. Test soil containing C. elegans was arranged on an agar plate in a donut shape, a linear shape, or a C curve; and microbial food was placed outside the soil to encourage the nematodes to leave the soil. The effects of ventilation and the presence of food on nematode recovery were tested to determine the optimal conditions for recovery. A linear arrangement of soil on an agar plate that was sprinkled with microbial food produced nearly 83% and 90% recovery of live nematodes over a 3-h and a 24-h period, respectively, without subjecting the nematodes to chemical stress. The method was tested using copper (II) chloride dihydrate, and the resulting recovery rate was comparable to that obtained using colloidal silica flotation. The soil-agar isolation method portrayed in the present study enables live nematodes to be isolated with minimal additional physicochemical stress, making it a valuable option for use in subsequent sublethal tests where live nematodes are required. © 2014 SETAC.

  16. Recovering Parameters of Johnson's SB Distribution

    Treesearch

    Bernard R. Parresol

    2003-01-01

    A new parameter recovery model for Johnson's SB distribution is developed. This latest alternative approach permits recovery of the range and both shape parameters. Previous models recovered only the two shape parameters. Also, a simple procedure for estimating the distribution minimum from sample values is presented. The new methodology...

  17. Effect of Pre-straining on the Shape Recovery of Fe-Mn-Si-Cr-Ni Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Maji, Bikas C.; Krishnan, Madangopal; Verma, Amit; Basu, R.; Samajdar, I.; Ray, Ranjit K.

    2015-02-01

    The effect of pre-straining on the shape recovery behavior of Fe-14Mn-6Si-9Cr-5Ni (wt pct) shape memory alloy (SMA) has been studied. The shape recovery associated with the reverse ɛ martensitic transformation, i.e., ɛ → γ, was characterized by dilatometry using specimens which were pre-strained to different extent (0 to 14 pct). Dilatometric studies revealed that in Fe-Mn-Si-Cr-Ni SMA, the shape recovery takes place in two stages: (i) in the first stage, the unpinned fraction of stress-induced ɛ martensite reverts back to parent phase γ in the temperature regime of 353 K to 653 K (80 °C to 380 °C) and (ii) in the second stage the remaining "pinned" ɛ martensite is unpinned by the decomposition of deformation-induced α' martensite in the temperature range of 743 K to 893 K (470 °C to 620 °C). The amount of recovery in the first stage decreases with pre-strain, whereas it increases in the second stage. The ɛ → γ transformation finish temperature, A f, increases with increase in pre-strain amount, though the reverse transformation start temperature, A S, remains unaffected. Microstructural characterization revealed that the amount of deformation-induced α' martensite depends on the mode of straining and the crystallographic texture of the starting material. The reversion of α' martensite is seen to occur by the precipitation of Fe5Ni3Si2-type intermetallic π-phase within these plates.

  18. Shape memory polymeric composites sensing by optic fibre Bragg gratings: A very first approach

    NASA Astrophysics Data System (ADS)

    Quadrini, Fabrizio; Santo, Loredana; Ciminello, Monica; Concilio, Antonio; Volponi, Ruggero; Spena, Paola

    2016-05-01

    Shape memory polymer composites (SMPCs) have the potential for many applications in aerospace, spanning from self-repairing of structures to self-deploying of antennas, solar sails, or functional devices (e.g. for grabbing small space debris). In all these cases, it may be essential to have information about their configuration at different stages of shape recovery. In this study, the strain history of a prepreg carbon fibre system, cured with a shape memory polymer (SMP) interlayer, is monitored through a Fibre Bragg Grating (FBG), a fibre optic sensor device. SMPC has been manufactured by using traditional technologies for aerospace. After manufacturing cylindrical shape samples, an external fibre optic system is added to the composite structure; this system is especially suited for high temperatures which are necessary for SMP recovery and composite softening. Sensor functionality is checked before and after each strain history path. Optic fibre arrangement is optimized to avoid unwanted breakings whereas strains are limited by fibre collapsing, i.e. within nominal 2% of deformation. Dynamic information about shape recovery gives fundamental insights about strain evolution during time as well as its spatial distribution.

  19. Characterizing and modeling the free recovery and constrained recovery behavior of a polyurethane shape memory polymer

    NASA Astrophysics Data System (ADS)

    Volk, Brent L.; Lagoudas, Dimitris C.; Maitland, Duncan J.

    2011-09-01

    In this work, tensile tests and one-dimensional constitutive modeling were performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigated the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles were performed during each test. The material was observed to recover 100% of the applied deformation when heated at zero load in the second thermomechanical cycle, and a stress recovery of 1.5-4.2 MPa was observed for the constrained displacement recovery experiments. After the experiments were performed, the Chen and Lagoudas model was used to simulate and predict the experimental results. The material properties used in the constitutive model—namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction—were calibrated from a single 10% extension free recovery experiment. The model was then used to predict the material response for the remaining free recovery and constrained displacement recovery experiments. The model predictions match well with the experimental data.

  20. Characteristic Fracture Spacing in Primary and Secondary Recovery from Naturally Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Gong, J.; Rossen, W.

    2015-12-01

    We showed previously (Gong and Rossen, 2014a,b) that, if the fracture aperture distribution is broad enough in a naturally fractured reservoir, even one where the fracture network is well-connected, most fractures can be eliminated without significantly affecting the flow through the fracture network. During a waterflood or enhanced-oil-recovery (EOR) process, the production of oil depends on the supply of injected water or EOR agent. This suggests that the characteristic fracture spacing for the dual-porosity/dual-permeability simulation of waterflood or EOR in a naturally fractured reservoir should account not for all fractures but only the relatively small portion of the fracture network carrying almost all the injected water or EOR agent. In contrast, in primary production even a relatively small fracture represents an effective path for oil to flow to a production well. Thus in primary production the effective fracture spacing should include all the fractures. This distinction means that the "shape factor" in dual-porosity/dual-permeability reservoir simulators and the repeating unit in homogenization should depend on the process involved: specifically, it should be different for primary and secondary or tertiary recovery. We test this hypothesis in a simple representation of a fractured reservoir with a non-uniform distribution of fracture flow conductivities. We compare oil production, flow patterns in matrix, and the pattern of oil recovery around fractures with and without the "unimportant" fractures present. In primary production, all fractures which are much more permeable than matrix play a significant role in production. The shape factor or repeating-unit size should reflect the entire fracture distribution. In secondary or tertiary production, the role of fractures that carry relatively little flow depends on injection rate, the ratio of flow carried by the different fractures, and the permeability of matrix. In some cases, the appropriate shape factor or repeating-unit size for waterflood or EOR should reflect only those fractures that carry most of the flow. References:Gong, and Rossen, 14th ECMOR Conf., Catania, Sicily, 2014(a). Gong, and Rossen, Intl. Discrete Fracture Network Eng. Conf., Vancouver, Canada, 2014(b).

  1. Performance of tablet disintegrants: impact of storage conditions and relative tablet density.

    PubMed

    Quodbach, Julian; Kleinebudde, Peter

    2015-01-01

    Tablet disintegration can be influenced by several parameters, such as storage conditions, type and amount of disintegrant, and relative tablet density. Even though these parameters have been mentioned in the literature, the understanding of the disintegration process is limited. In this study, water uptake and force development of disintegrating tablets are analyzed, as they reveal underlying processes and interactions. Measurements were performed on dibasic calcium phosphate tablets containing seven different disintegrants stored at different relative humidities (5-97%), and on tablets containing disintegrants with different mechanisms of action (swelling and shape recovery), compressed to different relative densities. Disintegration times of tablets containing sodium starch glycolate are affected most by storage conditions, which is displayed in decreased water uptake and force development kinetics. Disintegration times of tablets with a swelling disintegrant are only marginally affected by relative tablet density, whereas the shape recovery disintegrant requires high relative densities for quick disintegration. The influence of relative tablet density on the kinetics of water uptake and force development greatly depends on the mechanism of action. Acquired data allows a detailed analysis of the influence of storage conditions and mechanisms of action on disintegration behavior.

  2. Shape memory alloy wires turn composites into smart structures: II. Manufacturing and properties

    NASA Astrophysics Data System (ADS)

    Michaud, Veronique J.; Schrooten, Jan; Parlinska, Magdelena; Gotthardt, Rolf; Bidaux, Jacques-Eric

    2002-07-01

    The manufacturing route and resulting properties of adaptive composites are presented in the second part of this European project report. Manufacturing was performed using a specially designed frame to pre-strain the SMA wires, embed them into Kevlar-epoxy prepregs, and maintain them during the curing process in an autoclave. Composite compounds were then tested for strain response, recovery stress response in a clamped-clamped configuration, as well as vibrational response. Through the understanding of the transformational behavior of constrained SMA wires, interesting and unique functional properties of SMA composites could be measured, explained and modeled. Large recovery stresses and as a consequence, a change in vibrational response in a clamped- clamped condition, or a reversible shape change in a free standing condition, could be generated by the SMA composites in a controllable way. These properties were dependent on composite design aspects and exhibited a reproducible and stable behavior, provided that the properties of the matrix, of the wires and the processing route were carefully optimized. In conclusion, the achievements of this effort in areas such as thermomechanics, transformational and vibrational behavior and durability of SMA based composites provide a first step towards a reliable materials design, and potentially an industrial application.

  3. An Acrylonitrile–Butadiene–Lignin Renewable Skin with Programmable and Switchable Electrical Conductivity for Stress/Strain-Sensing Applications

    DOE PAGES

    Nguyen, Ngoc A.; Meek, Kelly M.; Bowland, Christopher C.; ...

    2017-12-28

    We report an approach for programming electrical conductivity of a bio-based leathery skin devised with a layer of 60 nm metallic nanoparticles. Lignin-based renewable shape-memory materials were made, for the first time, to program and restore the materials’ electrical conductivity after repeated deformation up to 100% strain amplitude, at a temperature 60–115 °C above the glass transition temperature (T g) of the rubbery matrix. We cross-linked lignin macromolecules with an acrylonitrile–butadiene rubbery melt in high quantities ranging from 40 to 60 wt % and processed the resulting thermoplastics into thin films. Chemical and physical networks within the polymeric materials significantlymore » enhanced key characteristics such as mechanical stiffness, strain fixity, and temperature-stimulated recovery of shape. The branched structures of the guaiacylpropane-dominant softwood lignin significantly improve the rubber’s T g and produced a film with stored and recoverable elastic work density that was an order of magnitude greater than those of the neat rubber and of samples made with syringylpropane-rich hardwood lignin. The devices could exhibit switching of conductivity before and after shape recovery.« less

  4. Characterization of shredded television scrap and implications for materials recovery.

    PubMed

    Cui, Jirang; Forssberg, Eric

    2007-01-01

    Characterization of TV scrap was carried out by using a variety of methods, such as chemical analysis, particle size and shape analysis, liberation degree analysis, thermogravimetric analysis, sink-float test, and IR spectrometry. A comparison of TV scrap, personal computer scrap, and printed circuit board scrap shows that the content of non-ferrous metals and precious metals in TV scrap is much lower than that in personal computer scrap or printed circuit board scrap. It is expected that recycling of TV scrap will not be cost-effective by utilizing conventional manual disassembly. The result of particle shape analysis indicates that the non-ferrous metal particles in TV scrap formed as a variety of shapes; it is much more heterogeneous than that of plastics and printed circuit boards. Furthermore, the separability of TV scrap using density-based techniques was evaluated by the sink-float test. The result demonstrates that a high recovery of copper could be obtained by using an effective gravity separation process. Identification of plastics shows that the major plastic in TV scrap is high impact polystyrene. Gravity separation of plastics may encounter some challenges in separation of plastics from TV scrap because of specific density variations.

  5. An Acrylonitrile–Butadiene–Lignin Renewable Skin with Programmable and Switchable Electrical Conductivity for Stress/Strain-Sensing Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ngoc A.; Meek, Kelly M.; Bowland, Christopher C.

    We report an approach for programming electrical conductivity of a bio-based leathery skin devised with a layer of 60 nm metallic nanoparticles. Lignin-based renewable shape-memory materials were made, for the first time, to program and restore the materials’ electrical conductivity after repeated deformation up to 100% strain amplitude, at a temperature 60–115 °C above the glass transition temperature (T g) of the rubbery matrix. We cross-linked lignin macromolecules with an acrylonitrile–butadiene rubbery melt in high quantities ranging from 40 to 60 wt % and processed the resulting thermoplastics into thin films. Chemical and physical networks within the polymeric materials significantlymore » enhanced key characteristics such as mechanical stiffness, strain fixity, and temperature-stimulated recovery of shape. The branched structures of the guaiacylpropane-dominant softwood lignin significantly improve the rubber’s T g and produced a film with stored and recoverable elastic work density that was an order of magnitude greater than those of the neat rubber and of samples made with syringylpropane-rich hardwood lignin. The devices could exhibit switching of conductivity before and after shape recovery.« less

  6. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure.

    PubMed

    Torres, Ashley M; Matheny, Jonathan B; Keaveny, Tony M; Taylor, David; Rimnac, Clare M; Hernandez, Christopher J

    2016-03-15

    Many natural structures use a foam core and solid outer shell to achieve high strength and stiffness with relatively small amounts of mass. Biological foams, however, must also resist crack growth. The process of crack propagation within the struts of a foam is not well understood and is complicated by the foam microstructure. We demonstrate that in cancellous bone, the foam-like component of whole bones, damage propagation during cyclic loading is dictated not by local tissue stresses but by heterogeneity of material properties associated with increased ductility of strut surfaces. The increase in surface ductility is unexpected because it is the opposite pattern generated by surface treatments to increase fatigue life in man-made materials, which often result in reduced surface ductility. We show that the more ductile surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end products compared with the strut interior. Damage is therefore likely to accumulate in strut centers making cancellous bone more tolerant of stress concentrations at strut surfaces. Hence, the structure is able to recover more deformation after failure and return to a closer approximation of its original shape. Increased recovery of deformation is a passive mechanism seen in biology for setting a broken bone that allows for a better approximation of initial shape during healing processes and is likely the most important mechanical function. Our findings suggest a previously unidentified biomimetic design strategy in which tissue level material heterogeneity in foams can be used to improve deformation recovery after failure.

  7. Mapping the maintenance stage of recovery: a qualitative study among treated and non-treated former alcohol dependents in Poland.

    PubMed

    Klingemann, Justyna Iwona

    2012-01-01

    The study provides an in-depth qualitative understanding of the maintenance stage when recovering from alcohol dependence with a focus on the broader social context of change of addictive behaviour. It explores the recovery as a subjective process within the abstinence-oriented Polish treatment system organized on the basis of the Minnesota model and is probes for group differences between treated and non-treated populations. The study is based on qualitative data from a media-recruited sample of 29 treated and non-treated former alcohol dependents (ICD-10) in Warsaw/Poland 2006/2007. They reported a recovery time of at least 2 years (M(recovery) = 11, SD = 9). In-depth, semi-structured interviews were analysed according to the problem-centred interview method using ATLAS.ti software. A wide range of maintenance strategies potentially contributing to the stabilization of recovery from alcohol dependence was identified. However, from the respondents' point of view, the change process is contingent upon the subjective weighing of specific maintenance factors and the importance attributed to their interplay. This includes time management as well as one's ability to invest available resources and strengths in shaping and pursuing personal goals. More commonalities than differences can be observed between groups during the maintenance stage, regardless of respondents' type of the pathway out of addiction. However, when confronting professional concepts of recovery with subjective accounts, only a subgroup conforms to the invasive, potentially normative definitions of recovery, while others do not link their recovery with identity transformation.

  8. Influence of mechanically-induced dilatation on the shape memory behavior of amorphous polymers at large deformation

    NASA Astrophysics Data System (ADS)

    Hanzon, Drew W.; Lu, Haibao; Yakacki, Christopher M.; Yu, Kai

    2018-01-01

    In this study, we explore the influence of mechanically-induced dilatation on the thermomechanical and shape memory behavior of amorphous shape memory polymers (SMPs) at large deformation. The uniaxial tension, glass transition, stress relaxation and free recovery behaviors are examined with different strain levels (up to 340% engineering strain). A multi-branched constitutive model that incorporates dilatational effects on the polymer relaxation time is established and applied to assist in discussions and understand the nonlinear viscoelastic behaviors of SMPs. It is shown that the volumetric dilatation results in an SMP network with lower viscosity, faster relaxation, and lower Tg. The influence of the dilatational effect on the thermomechanical behaviors is significant when the polymers are subject to large deformation or in a high viscosity state. The dilation also increases the free recovery rate of SMP at a given recovery temperature. Even though the tested SMPs are far beyond their linear viscoelastic region when a large programming strain is applied, the free recovery behavior still follows the time-temperature superposition (TTSP) if the dilatational effect is considered during the transformation of time scales; however, if the programming strain is different, TTSP fails in predicting the recovery behavior of SMPs because the network has different entropy state and driving force during shape recovery. Since most soft active polymers are subject to large deformation in practice, this study provides a theoretical basis to better understand their nonlinear viscoelastic behaviors, and optimize their performance in engineering applications.

  9. Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol degradation.

    PubMed

    Zhu, Nengwu; Cao, Yanlan; Shi, Chaohong; Wu, Pingxiao; Ma, Haiqin

    2016-04-01

    Recovery of gold from aqueous solution using simple and economical methodologies is highly desirable. In this work, recovery of gold as gold nanoparticles (AuNPs) by Shewanella haliotis with sodium lactate as electron donor was explored. The results showed that the process was affected by the concentration of biomass, sodium lactate, and initial gold ions as well as pH value. Specifically, the presence of sodium lactate determines the formation of nanoparticles, biomass, and AuCl4 (-) concentration mainly affected the size and dispersity of the products, reaction pH greatly affected the recovery efficiency, and morphology of the products in the recovery process. Under appropriate conditions (5.25 g/L biomass, 40 mM sodium lactate, 0.5 mM AuCl4 (-), and pH of 5), the recovery efficiency was almost 99 %, and the recovered AuNPs were mainly spherical with size range of 10-30 nm (~85 %). Meanwhile, Fourier transforms infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that carboxyl and amine groups might play an important role in the process. In addition, the catalytic activity of the AuNPs recovered under various conditions was testified by analyzing the reduction rate of p-nitrophenol by borohydride. The biorecovered AuNPs exhibited interesting size and shape-dependent catalytic activity, of which the spherical particle with smaller size showed the highest catalytic reduction activity with rate constant of 0.665 min(-1).

  10. Elastic poly(ε-caprolactone)-polydimethylsiloxane copolymer fibers with shape memory effect for bone tissue engineering.

    PubMed

    Kai, Dan; Prabhakaran, Molamma P; Chan, Benjamin Qi Yu; Liow, Sing Shy; Ramakrishna, Seeram; Xu, Fujian; Loh, Xian Jun

    2016-02-02

    A porous shape memory scaffold with biomimetic architecture is highly promising for bone tissue engineering applications. In this study, a series of new shape memory polyurethanes consisting of organic poly(ε-caprolactone) (PCL) segments and inorganic polydimethylsiloxane (PDMS) segments in different ratios (9 : 1, 8 : 2 and 7 : 3) was synthesised. These PCL-PDMS copolymers were further engineered into porous fibrous scaffolds by electrospinning. With different ratios of PCL: PDMS, the fibers showed various fiber diameters, thermal behaviour and mechanical properties. Even after being processed into fibrous structures, these PCL-PDMS copolymers maintained their shape memory properties, and all the fibers exhibited excellent shape recovery ratios of  >90% and shape fixity ratios of  >92% after 7 thermo-mechanical cycles. Biological assay results corroborated that the fibrous PCL-PDMS scaffolds were biocompatible by promoting osteoblast proliferation, functionally enhanced biomineralization-relevant alkaline phosphatase expression and mineral deposition. Our study demonstrated that the PCL-PDMS fibers with excellent shape memory properties are promising substrates as bioengineered grafts for bone regeneration.

  11. Water-Responsive Shape Recovery Induced Buckling in Biodegradable Photo-Cross-Linked Poly(ethylene glycol) (PEG) Hydrogel.

    PubMed

    Salvekar, Abhijit Vijay; Huang, Wei Min; Xiao, Rui; Wong, Yee Shan; Venkatraman, Subbu S; Tay, Kiang Hiong; Shen, Ze Xiang

    2017-02-21

    The phenomenon of recovering the permanent shape from a severely deformed temporary shape, but only in the presence of the right stimulus, is known as the shape memory effect (SME). Materials with such an interesting effect are known as shape memory materials (SMMs). Typical stimuli to trigger shape recovery include temperature (heating or cooling), chemical (including water/moisture and pH value), and light. As a SMM is able not only to maintain the temporary shape but also to respond to the right stimulus when it is applied, via shape-shifting, a seamless integration of sensing and actuation functions is achieved within one single piece of material. Hydrogels are defined by their ability to absorb a large amount of water (from 10-20% up to thousands of times their dry weight), which results in significant swelling. On the other hand, dry hydrogels indeed belong to polymers, so they exhibit heat- and chemoresponsive SMEs as most polymers do. While heat-responsive SMEs have been spotted in a handful of wet hydrogels, so far, most dry hydrogels evince the heat and water (moisture)-responsive SMEs. Since water is one of the major components in living biological systems, water-responsive SMMs hold great potential for various implantable applications, including wound healing, intravascular devices, soft tissue reconstruction, and controlled drug delivery. This provides motivation to combine water-activated SMEs and swelling in hydrogels together to enhance the performance. In many applications, such as vascular occlusion via minimally invasive surgery for liver cancer treatment, the operation time (for both start and finish) is required to be well controlled. Due to the gradual and slow manner of water absorption for water-activated SMEs and swelling in hydrogels, even a combination of both effects encounters many difficulties to meet the timerequirements in real procedures of vascular occlusion. Recently, we have reported a bioabsorbable radiopaque water-responsive shape memory embolization plug for temporary vascular occlusion. The plug consists of a composite with a poly(dl-lactide-co-glycolide) (PLGA) core (loaded with radiopaque filler) and cross-linked poly(ethylene glycol) (PEG) hydrogel outer layer. The device can be activated by body fluid (or water) after about 2 min of immersion in water. The whole occlusion process is completed within a few dozens of seconds. The underlying mechanism is water-responsive shape recovery induced buckling, which occurs in an expeditious manner within a short time period and does not require complete hydration of the whole hydrogel. In this paper, we experimentally and analytically investigate the water-activated shape recovery induced buckling in this biodegradable PEG hydrogel to understand the fundamentals in precisely controlling the buckling time. The molecular mechanism responsible for the water-induced SME in PEG hydrogel is also elucidated. The original diameter and amount of prestretching are identified as two influential parameters to tailor the buckling time between 1 and 4 min as confirmed by both experiments and simulation. The phenomenon reported here, chemically induced buckling via a combination of the SME and swelling, is generic, and the study reported here should be applicable to other water- and non-water-responsive gels.

  12. Effects of climate and fire on short-term vegetation recovery in the boreal larch forests of Northeastern China.

    PubMed

    Liu, Zhihua

    2016-11-18

    Understanding the influence of climate variability and fire characteristics in shaping postfire vegetation recovery will help to predict future ecosystem trajectories in boreal forests. In this study, I asked: (1) which remotely-sensed vegetation index (VI) is a good proxy for vegetation recovery? and (2) what are the relative influences of climate and fire in controlling postfire vegetation recovery in a Siberian larch forest, a globally important but poorly understood ecosystem type? Analysis showed that the shortwave infrared (SWIR) VI is a good indicator of postfire vegetation recovery in boreal larch forests. A boosted regression tree analysis showed that postfire recovery was collectively controlled by processes that controlled seed availability, as well as by site conditions and climate variability. Fire severity and its spatial variability played a dominant role in determining vegetation recovery, indicating seed availability as the primary mechanism affecting postfire forest resilience. Environmental and immediate postfire climatic conditions appear to be less important, but interact strongly with fire severity to influence postfire recovery. If future warming and fire regimes manifest as expected in this region, seed limitation and climate-induced regeneration failure will become more prevalent and severe, which may cause forests to shift to alternative stable states.

  13. Effects of climate and fire on short-term vegetation recovery in the boreal larch forests of Northeastern China

    PubMed Central

    Liu, Zhihua

    2016-01-01

    Understanding the influence of climate variability and fire characteristics in shaping postfire vegetation recovery will help to predict future ecosystem trajectories in boreal forests. In this study, I asked: (1) which remotely-sensed vegetation index (VI) is a good proxy for vegetation recovery? and (2) what are the relative influences of climate and fire in controlling postfire vegetation recovery in a Siberian larch forest, a globally important but poorly understood ecosystem type? Analysis showed that the shortwave infrared (SWIR) VI is a good indicator of postfire vegetation recovery in boreal larch forests. A boosted regression tree analysis showed that postfire recovery was collectively controlled by processes that controlled seed availability, as well as by site conditions and climate variability. Fire severity and its spatial variability played a dominant role in determining vegetation recovery, indicating seed availability as the primary mechanism affecting postfire forest resilience. Environmental and immediate postfire climatic conditions appear to be less important, but interact strongly with fire severity to influence postfire recovery. If future warming and fire regimes manifest as expected in this region, seed limitation and climate-induced regeneration failure will become more prevalent and severe, which may cause forests to shift to alternative stable states. PMID:27857204

  14. Accurately determining log and bark volumes of saw logs using high-resolution laser scan data

    Treesearch

    R. Edward Thomas; Neal D. Bennett

    2014-01-01

    Accurately determining the volume of logs and bark is crucial to estimating the total expected value recovery from a log. Knowing the correct size and volume of a log helps to determine which processing method, if any, should be used on a given log. However, applying volume estimation methods consistently can be difficult. Errors in log measurement and oddly shaped...

  15. Characterizing and modeling the free recovery and constrained recovery behavior of a polyurethane shape memory polymer

    PubMed Central

    Volk, Brent L; Lagoudas, Dimitris C; Maitland, Duncan J

    2011-01-01

    In this work, tensile tests and one-dimensional constitutive modeling are performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigate the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles are performed during each test. The material is observed to recover 100% of the applied deformation when heated at zero load in the second thermomechanical cycle, and a stress recovery of 1.5 MPa to 4.2 MPa is observed for the constrained displacement recovery experiments. After performing the experiments, the Chen and Lagoudas model is used to simulate and predict the experimental results. The material properties used in the constitutive model – namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction – are calibrated from a single 10% extension free recovery experiment. The model is then used to predict the material response for the remaining free recovery and constrained displacement recovery experiments. The model predictions match well with the experimental data. PMID:22003272

  16. Silicone Membranes to Inhibit Water Uptake into Thermoset Polyurethane Shape-Memory Polymer Conductive Composites

    PubMed Central

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.; Maitland, Duncan J.

    2014-01-01

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane (PU) SMPs were loaded with either 5 wt% carbon black (CB) or 5 wt% carbon nanotubes (CNT) and subsequently coated with either an Al2O3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37 °C) and subsequent Tg depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37 °C. PMID:25663711

  17. Silicone Membranes to Inhibit Water Uptake into Thermoset Polyurethane Shape-Memory Polymer Conductive Composites.

    PubMed

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A; Maitland, Duncan J

    2015-01-05

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature ( T g ) resulting in shape recovery in vivo . While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo . In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane (PU) SMPs were loaded with either 5 wt% carbon black (CB) or 5 wt% carbon nanotubes (CNT) and subsequently coated with either an Al 2 O 3 - or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37 °C) and subsequent T g depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37 °C.

  18. Shape Recovery with Concomitant Mechanical Strengthening of Amphiphilic Shape Memory Polymers in Warm Water

    DOE PAGES

    Zhang, Ben; DeBartolo, Janae E.; Song, Jie

    2017-01-26

    Maintaining adequate or enhancing mechanical properties of shape memory polymers (SMPs) after shape recovery in an aqueous environment are greatly desired for biomedical applications of SMPs as self-fitting tissue scaffolds or minimally invasive surgical implants. Here we report stable temporary shape fixing and facile shape recovery of biodegradable triblock amphiphilic SMPs containing a poly(ethylene glycol) (PEG) center block and flanking poly(lactic acid) or poly(lactic-co-glycolic acid) blocks in warm water, accompanied with concomitant enhanced mechanical strengths. Differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WXRD) and small-angle X-ray scattering (SAXS) analyses revealed that the unique stiffening of the amphiphilic SMPs upon hydrationmore » was due to hydration-driven microphase separation and PEG crystallization. We further demonstrated that the chemical composition of degradable blocks in these SMPs could be tailored to affect the persistence of hydration-induced stiffening upon subsequent dehydration. These properties combined open new horizons for these amphiphilic SMPs for smart weight-bearing in vivo applications (e.g. as self-fitting intervertebral discs). In conclusion, this study also provides a new material design strategy to strengthen polymers in aqueous environment in general.« less

  19. Silicone membranes to inhibit water uptake into thermoset polyurethane shape-memory polymer conductive composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (T g) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this paper, a silicone membrane was used to inhibit water uptake into a thermoset SMPmore » composite containing conductive filler. Thermoset polyurethane SMPs were loaded with either 5 wt % carbon black or 5 wt % carbon nanotubes, and subsequently coated with either an Al 2O 3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37°C) and subsequent T g depression versus uncoated composites. Finally, in turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37°C.« less

  20. Silicone membranes to inhibit water uptake into thermoset polyurethane shape-memory polymer conductive composites

    DOE PAGES

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.; ...

    2014-07-24

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (T g) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this paper, a silicone membrane was used to inhibit water uptake into a thermoset SMPmore » composite containing conductive filler. Thermoset polyurethane SMPs were loaded with either 5 wt % carbon black or 5 wt % carbon nanotubes, and subsequently coated with either an Al 2O 3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37°C) and subsequent T g depression versus uncoated composites. Finally, in turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37°C.« less

  1. AC Electric Field Activated Shape Memory Polymer Composite

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  2. Effect of Aging Treatment on the Compressibility and Recovery of NiTi Shape Memory Alloys as Static Seals

    NASA Astrophysics Data System (ADS)

    Lu, Xiaofeng; Li, Gang; Liu, Luwei; Zhu, Xiaolei; Tu, Shan-Tung

    2017-07-01

    The improvement of the compressibility and recovery of the gaskets can decrease the leakage occurrence in bolted flange connections. In this study, the effect of aging treatment on the compressibility and recovery of NiTi shape memory alloys is investigated as static seals together with thermal analysis. The experimental results indicate that different phase transformations of NiTi alloys are exhibited in the DSC curves during aging treatment. The recovery coefficient of NiTi alloys aged at 500 °C for 2 h is quite low accompanied with a large residual strain. With increasing aging time at the aging temperature of 400 °C, the residual strain and area of hysteresis loop of NiTi alloys are both increased, whereas the recovery coefficient is decreased. Since the deformation associates the phase transformation behavior, aging treatment could improve the compressibility and recovery of NiTi alloys as static seals.

  3. Smooth Upgrade of Existing Passive Optical Networks With Spectral-Shaping Line-Coding Service Overlay

    NASA Astrophysics Data System (ADS)

    Hsueh, Yu-Li; Rogge, Matthew S.; Shaw, Wei-Tao; Kim, Jaedon; Yamamoto, Shu; Kazovsky, Leonid G.

    2005-09-01

    A simple and cost-effective upgrade of existing passive optical networks (PONs) is proposed, which realizes service overlay by novel spectral-shaping line codes. A hierarchical coding procedure allows processing simplicity and achieves desired long-term spectral properties. Different code rates are supported, and the spectral shape can be properly tailored to adapt to different systems. The computation can be simplified by quantization of trigonometric functions. DC balance is achieved by passing the dc residual between processing windows. The proposed line codes tend to introduce bit transitions to avoid long consecutive identical bits and facilitate receiver clock recovery. Experiments demonstrate and compare several different optimized line codes. For a specific tolerable interference level, the optimal line code can easily be determined, which maximizes the data throughput. The service overlay using the line-coding technique leaves existing services and field-deployed fibers untouched but fully functional, providing a very flexible and economic way to upgrade existing PONs.

  4. Characterization of a Poly(styrene-block-methylacrylate-random-octadecylacrylate-block-styrene) Shape Memory ABA Triblock Copolymer

    NASA Astrophysics Data System (ADS)

    Fei, Pengzhan; Cavicchi, Kevin

    2011-03-01

    A new ABA triblock copolymer of poly(styrene-block- methylacrylate-random-octadecylacrylate-block-styrene) (PS-b- PMA-r-PODA-b-PS) was synthesized by reversible addition fragmentation chain transfer polymerization. The triblock copolymer can generate a three-dimensional, physically crosslinked network by self-assembly, where the glassy PS domains physically crosslink the midblock chains. The side chain crystallization of the polyoctadecylacrylare (PODA) side chain generates a second reversible network enabling shape memory properties. Shape memory tests by uniaxial deformation and recovery of molded dog-bone shape samples demonstrate that shape fixities above 96% and shape recoveries above 98% were obtained for extensional strains up to 300%. An outstanding advantage of this shape memory material is that it can be very easily shaped and remolded by elevating the temperature to 140circ; C, and after remolding the initial shape memory properties are totally recovered by eliminating the defects introduced by the previous deformation cycling.

  5. 3D shape recovery from image focus using Gabor features

    NASA Astrophysics Data System (ADS)

    Mahmood, Fahad; Mahmood, Jawad; Zeb, Ayesha; Iqbal, Javaid

    2018-04-01

    Recovering an accurate and precise depth map from a set of acquired 2-D image dataset of the target object each having different focus information is an ultimate goal of 3-D shape recovery. Focus measure algorithm plays an important role in this architecture as it converts the corresponding color value information into focus information which will be then utilized for recovering depth map. This article introduces Gabor features as focus measure approach for recovering depth map from a set of 2-D images. Frequency and orientation representation of Gabor filter features is similar to human visual system and normally applied for texture representation. Due to its little computational complexity, sharp focus measure curve, robust to random noise sources and accuracy, it is considered as superior alternative to most of recently proposed 3-D shape recovery approaches. This algorithm is deeply investigated on real image sequences and synthetic image dataset. The efficiency of the proposed scheme is also compared with the state of art 3-D shape recovery approaches. Finally, by means of two global statistical measures, root mean square error and correlation, we claim that this approach, in spite of simplicity, generates accurate results.

  6. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.

    PubMed

    Deng, Zexing; Guo, Yi; Zhao, Xin; Li, Longchao; Dong, Ruonan; Guo, Baolin; Ma, Peter X

    2016-12-01

    Development of flexible degradable electroactive shape memory polymers (ESMPs) with tunable switching temperature (around body temperature) for tissue engineering is still a challenge. Here we designed and synthesized a series of shape memory copolymers with electroactivity, super stretchability and tunable recovery temperature based on poly(ε-caprolactone) (PCL) with different molecular weight and conductive amino capped aniline trimer, and demonstrated their potential to enhance myogenic differentiation from C2C12 myoblast cells. We characterized the copolymers by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance ( 1 H NMR), cyclic voltammetry (CV), ultraviolet-visible spectroscopy (UV-vis), differential scanning calorimetry (DSC), shape memory test, tensile test and in vitro enzymatic degradation study. The electroactive biodegradable shape memory copolymers showed great elasticity, tunable recovery temperature around 37°C, and good shape memory properties. Furthermore, proliferation and differentiation of C2C12 myoblasts were investigated on electroactive copolymers films, and they greatly enhanced the proliferation, myotube formation and related myogenic differentiation genes expression of C2C12 myoblasts compared to the pure PCL with molecular weight of 80,000. Our study suggests that these electroactive, highly stretchable, biodegradable shape memory polymers with tunable recovery temperature near the body temperature have great potential in skeletal muscle tissue engineering application. Conducting polymers can regulate cell behavior such cell adhesion, proliferation, and differentiation with or without electrical stimulation. Therefore, they have great potential for electrical signal sensitive tissue regeneration. Although conducting biomaterials with degradability have been developed, highly stretchable and electroactive degradable copolymers for soft tissue engineering have been rarely reported. On the other hand, shape memory polymers (SMPs) have been widely used in biomedical fields. However, SMPs based on polyesters usually are biologically inert. This work reported the design of super stretchable electroactive degradable SMPs based on polycaprolactone and aniline trimer with tunable recovery temperature around body temperature. These flexible electroactive SMPs facilitated the proliferation and differentiation of C2C12 myoblast cells compared with polycaprolactone, indicating that they are excellent scaffolding biomaterials in tissue engineering to repair skeletal muscle and possibly other tissues. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Therapeutic-Ultrasound-Triggered Shape Memory of a Melamine-Enhanced Poly(vinyl alcohol) Physical Hydrogel.

    PubMed

    Li, Guo; Yan, Qiang; Xia, Hesheng; Zhao, Yue

    2015-06-10

    Therapeutic-ultrasound-triggered shape memory was demonstrated for the first time with a melamine-enhanced poly(vinyl alcohol) (PVA) physical hydrogel. The addition of a small amount of melamine (up to 1.5 wt %) in PVA results in a strong hydrogel due to the multiple H-bonding between the two constituents. A temporary shape of the hydrogel can be obtained by deformation of the hydrogel (∼65 wt % water) at room temperature, followed by fixation of the deformation by freezing/thawing the hydrogel under strain, which induces crystallization of PVA. We show that the ultrasound delivered by a commercially available device designed for the patient's pain relief could trigger the shape recovery process as a result of ultrasound-induced local heating in the hydrogel that melts the crystallized PVA cross-linking. This hydrogel is thus interesting for potential applications because it combines many desirable properties, being mechanically strong, biocompatible, and self-healable and displaying the shape memory capability triggered by a physiological stimulus.

  8. Bio-based hyperbranched thermosetting polyurethane/triethanolamine functionalized multi-walled carbon nanotube nanocomposites as shape memory materials.

    PubMed

    Kalita, Hemjyoti; Karak, Niranjan

    2014-07-01

    Here, bio-based shape memory polymers have generated immense interest in recent times. Here, Bio-based hyperbranched polyurethane/triethanolamine functionalized multi-walled carbon nanotube (TEA-f-MWCNT) nanocomposites were prepared by in-situ pre-polymerization technique. The Fourier transform infrared spectroscopy and the transmission electron microscopic studies showed the strong interfacial adhesion and the homogeneous distribution of TEA-f-MWCNT in the polyurethane matrix. The prepared epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.5-34.5 MPa), scratch hardness (3.0-7.5 kg) and thermal stability (241-288 degrees C). The nanocomposites showed excellent shape fixity and shape recovery. The shape recovery time decreases (24-10 s) with the increase of TEA-f-MWCNT content in the nanocomposites. Thus the studied nanocomposites have potential to be used as advanced shape memory materials.

  9. Facile fabrication of uniaxial nanopatterns on shape memory polymer substrates using a complete bottom-up approach

    NASA Astrophysics Data System (ADS)

    Chen, Zhongbi; Krishnaswamy, Sridhar

    2014-03-01

    In earlier work, we have demonstrated an assisted self-assembly fabrication method for unidirectional submicron patterns using pre-programmed shape memory polymers (SMP) as the substrate in an organic/inorganic bilayer structure. In this paper, we propose a complete bottom-up method for fabrication of uniaxial wrinkles whose wavelength is below 300 nm. The method starts with using the aforementioned self-assembled bi-layer wrinkled surface as the template to make a replica of surface wrinkles on a PDMS layer which is spin-coated on a pre-programmed SMP substrate. When the shape recovery of the substrate is triggered by heating it to its transition temperature, the substrate has been programmed in such a way that it shrinks uniaxially to return to its permanent shape. Consequently, the wrinkle wavelength on PDMS reduces accordingly. A subsequent contact molding process is carried out on the PDMS layer spin-coated on another pre-programmed SMP substrate, but using the wrinkled PDMS surface obtained in the previous step as the master. By activating the shape recovery of the substrate, the wrinkle wavelength is further reduced a second time in a similar fashion. Our experiments showed that the starting wavelength of 640 nm decreased to 290 nm after two cycles of recursive molding. We discuss the advantages and limitations of our recursive molding approach compared to the prevalent top-down fabrication methods represented by lithography. The present study is expected to o er a simple and cost-e ective fabrication method of nano-scale uniaxial wrinkle patterns with the potential for large-scale mass-production.

  10. What Is "No Recovery?"

    ERIC Educational Resources Information Center

    Kauffman, Jeffrey

    2008-01-01

    Thanatologists, as Balk recently commented (Balk, 2004), have been saying that there is no recovery from bereavement, or that we should not speak of bereavement as leading to a recovery. The term recovery has a high level of plasticity and can be shaped to fit diverse meanings, including contradictory meanings. We will sort our way through some of…

  11. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure

    PubMed Central

    Torres, Ashley M.; Matheny, Jonathan B.; Keaveny, Tony M.; Taylor, David; Rimnac, Clare M.; Hernandez, Christopher J.

    2016-01-01

    Many natural structures use a foam core and solid outer shell to achieve high strength and stiffness with relatively small amounts of mass. Biological foams, however, must also resist crack growth. The process of crack propagation within the struts of a foam is not well understood and is complicated by the foam microstructure. We demonstrate that in cancellous bone, the foam-like component of whole bones, damage propagation during cyclic loading is dictated not by local tissue stresses but by heterogeneity of material properties associated with increased ductility of strut surfaces. The increase in surface ductility is unexpected because it is the opposite pattern generated by surface treatments to increase fatigue life in man-made materials, which often result in reduced surface ductility. We show that the more ductile surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end products compared with the strut interior. Damage is therefore likely to accumulate in strut centers making cancellous bone more tolerant of stress concentrations at strut surfaces. Hence, the structure is able to recover more deformation after failure and return to a closer approximation of its original shape. Increased recovery of deformation is a passive mechanism seen in biology for setting a broken bone that allows for a better approximation of initial shape during healing processes and is likely the most important mechanical function. Our findings suggest a previously unidentified biomimetic design strategy in which tissue level material heterogeneity in foams can be used to improve deformation recovery after failure. PMID:26929343

  12. A theory of rotating stall of multistage axial compressors

    NASA Technical Reports Server (NTRS)

    Moore, F. K.

    1983-01-01

    A theoretical analysis was made of rotating stall in axial compressors of many stages, finding conditions for a permanent, straight-through traveling disturbance, with the steady compressor characteristic assumed known, and with simple lag processes ascribed to the flows in the inlet, blade passages, and exit regions. For weak disturbances, predicted stall propagation speeds agree well with experimental results. For a locally-parabolic compressor characteristic, an exact nonlinear solution is found and discussed. For deep stall, the stall-zone boundary is most abrupt at the trailing edge, as expected. When a complete characteristic having unstalling and reverse-flow features is adopted, limit cycles governed by a Lienard's equation are found. Analysis of these cycles yields predictions of recovery from rotating stall; a relaxation oscillation is found at some limiting flow coefficient, above which no solution exists. Recovery is apparently independent of lag processes in the blade passages, but instead depends on the lags originating in the inlet and exit flows, and also on the shape of the given characteristic diagram. Small external lags and tall diagrams favor early recovery. Implications for future research are discussed.

  13. Recoverable Wire-Shaped Supercapacitors with Ultrahigh Volumetric Energy Density for Multifunctional Portable and Wearable Electronics.

    PubMed

    Shi, Minjie; Yang, Cheng; Song, Xuefeng; Liu, Jing; Zhao, Liping; Zhang, Peng; Gao, Lian

    2017-05-24

    Wire-shaped supercapacitors (SCs) based on shape memory materials are of considerable interest for next-generation portable and wearable electronics. However, the bottleneck in this field is how to develop the devices with excellent electrochemical performance while well-maintaining recoverability and flexibility. Herein, a unique asymmetric electrode concept is put forward to fabricate smart wire-shaped SCs with ultrahigh energy density, which is realized by using porous carbon dodecahedra coated on NiTi alloy wire and flexible graphene fiber as yarn electrodes. Notably, the wire-shaped SCs not only exhibit high flexibility that can be readily woven into real clothing but also represent the available recoverable ability. When irreversible plastic deformations happen, the deformed shape of the devices can automatically resume the initial predesigned shape in a warm environment (about 35 °C). More importantly, the wire-shaped SCs act as efficient energy storage devices, which display high volumetric energy density (8.9 mWh/cm 3 ), volumetric power density (1080 mW/cm 3 ), strong durability in multiple mechanical states, and steady electrochemical behavior after repeated shape recovery processes. Considering their relative facile fabrication technology and excellent electrochemical performance, this asymmetric electrode strategy produced smart wire-shaped supercapacitors desirable for multifunctional portable and wearable electronics.

  14. Characterizing Effects of Nitric Oxide Sterilization on tert-Butyl Acrylate Shape Memory Polymers

    NASA Astrophysics Data System (ADS)

    Phillippi, Ben

    As research into the potential uses of shape memory polymers (SMPs) as implantable medical devices continues to grow and expand, so does the need for an accurate and reliable sterilization mechanism. The ability of an SMP to precisely undergo a programmed shape change will define its ability to accomplish a therapeutic task. To ensure proper execution of the in vivo shape change, the sterilization process must not negatively affect the shape memory behavior of the material. To address this need, this thesis investigates the effectiveness of a benchtop nitric oxide (NOx) sterilization process and the extent to which the process affects the shape memory behavior of a well-studied tert-Butyl Acrylate (tBA) SMP. Quantifying the effects on shape memory behavior was performed using a two-tiered analysis. A two-tiered study design was used to determine if the sterilization process induced any premature shape recovery and to identify any effects that NOx has on the overall shape memory behavior of the foams. Determining the effectiveness of the NOx system--specially, whether the treated samples are more sterile/less contaminated than untreated--was also performed with a two-tiered analysis. In this case, the two-tiered analysis was employed to have a secondary check for contamination. To elaborate, all of the samples that were deemed not contaminated from the initial test were put through a second sterility test to check for contamination a second time. The results of these tests indicated the NOx system is an effective sterilization mechanism and the current protocol does not negatively impact the shape memory behavior of the tBA SMP. The samples held their compressed shape throughout the entirety of the sterilization process. Additionally, there were no observable impacts on the shape memory behavior induced by NOx. Lastly, the treated samples demonstrated lower contamination than the untreated. This thesis demonstrates the effectiveness of NOx as a laboratory scale sterilization mechanism for heat triggered shape memory polymers. The shape memory analysis indicated that the magnitude of the length changes induced by NOx is small enough that it does not make a statistically significant impact on the shape memory behavior of the foams. Additionally, there were no observable effects on the shape memory behavior induced by NOx. The results further indicated the NOx system is effective at sterilizing porous scaffolds, as none of the sterilized samples showed contamination. Testing methods proved to be effective because the initial sterility test was able to identify all of the contaminated samples and preliminary results indicated that NOx sterilization improves the sterility of the foams.

  15. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.

    PubMed

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-09

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  16. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter

    PubMed Central

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-01-01

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics. PMID:28276500

  17. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter

    NASA Astrophysics Data System (ADS)

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-01

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  18. Ultra Low Density and Highly Crosslinked Biocompatible Shape Memory Polyurethane Foams

    PubMed Central

    Singhal, Pooja; Rodriguez, Jennifer N.; Small, Ward; Eagleston, Scott; Van de Water, Judy; Maitland, Duncan J.; Wilson, Thomas S.

    2012-01-01

    We report the development of highly chemically crosslinked, ultra low density (~0.015 g/cc) polyurethane shape memory foams synthesized from symmetrical, low molecular weight and branched hydroxyl monomers. Sharp single glass transitions (Tg) customizable in the functional range of 45–70 °C were achieved. Thermomechanical testing confirmed shape memory behavior with 97–98% shape recovery over repeated cycles, a glassy storage modulus of 200–300 kPa and recovery stresses of 5–15 kPa. Shape holding tests under constrained storage above the Tg showed stable shape memory. A high volume expansion of up to 70 times was seen on actuation of these foams from a fully compressed state. Low in-vitro cell activation induced by the foam compared to controls demonstrates low acute bio-reactivity. We believe these porous polymeric scaffolds constitute an important class of novel smart biomaterials with multiple potential applications. PMID:22570509

  19. Interactive Dose Shaping - efficient strategies for CPU-based real-time treatment planning

    NASA Astrophysics Data System (ADS)

    Ziegenhein, P.; Kamerling, C. P.; Oelfke, U.

    2014-03-01

    Conventional intensity modulated radiation therapy (IMRT) treatment planning is based on the traditional concept of iterative optimization using an objective function specified by dose volume histogram constraints for pre-segmented VOIs. This indirect approach suffers from unavoidable shortcomings: i) The control of local dose features is limited to segmented VOIs. ii) Any objective function is a mathematical measure of the plan quality, i.e., is not able to define the clinically optimal treatment plan. iii) Adapting an existing plan to changed patient anatomy as detected by IGRT procedures is difficult. To overcome these shortcomings, we introduce the method of Interactive Dose Shaping (IDS) as a new paradigm for IMRT treatment planning. IDS allows for a direct and interactive manipulation of local dose features in real-time. The key element driving the IDS process is a two-step Dose Modification and Recovery (DMR) strategy: A local dose modification is initiated by the user which translates into modified fluence patterns. This also affects existing desired dose features elsewhere which is compensated by a heuristic recovery process. The IDS paradigm was implemented together with a CPU-based ultra-fast dose calculation and a 3D GUI for dose manipulation and visualization. A local dose feature can be implemented via the DMR strategy within 1-2 seconds. By imposing a series of local dose features, equal plan qualities could be achieved compared to conventional planning for prostate and head and neck cases within 1-2 minutes. The idea of Interactive Dose Shaping for treatment planning has been introduced and first applications of this concept have been realized.

  20. Plasma immersion ion implantation of polyurethane shape memory polymer: Surface properties and protein immobilization

    NASA Astrophysics Data System (ADS)

    Cheng, Xinying; Kondyurin, Alexey; Bao, Shisan; Bilek, Marcela M. M.; Ye, Lin

    2017-09-01

    Polyurethane-type shape memory polymers (SMPU) are promising biomedical implant materials due to their ability to recover to a predetermined shape from a temporary shape induced by thermal activation close to human body temperature and their advantageous mechanical properties including large recovery strains and low recovery stresses. Plasma Immersion Ion Implantation (PIII) is a surface modification process using energetic ions that generates radicals in polymer surfaces leading to carbonisation and oxidation and the ability to covalently immobilise proteins without the need for wet chemistry. Here we show that PIII treatment of SMPU significantly enhances its bioactivity making SMPU suitable for applications in permanent implantable biomedical devices. Scanning Electron Microscopy (SEM), contact angle measurements, surface energy measurements, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterise the PIII modified surface, including its after treatment aging kinetics and its capability to covalently immobilise protein directly from solution. The results show a substantial improvement in wettability and dramatic changes of surface chemical composition dependent on treatment duration, due to the generation of radicals and subsequent oxidation. The SMPU surface, PIII treated for 200s, achieved a saturated level of covalently immobilized protein indicating that a full monolayer coverage was achieved. We conclude that PIII is a promising and efficient surface modification method to enhance the biocompatibility of SMPU for use in medical applications that demand bioactivity for tissue integration and stability in vivo.

  1. Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior

    NASA Astrophysics Data System (ADS)

    Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.

    2016-03-01

    It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.

  2. Concentration-driven models revisited: towards a unified framework to model settling tanks in water resource recovery facilities.

    PubMed

    Torfs, Elena; Martí, M Carmen; Locatelli, Florent; Balemans, Sophie; Bürger, Raimund; Diehl, Stefan; Laurent, Julien; Vanrolleghem, Peter A; François, Pierre; Nopens, Ingmar

    2017-02-01

    A new perspective on the modelling of settling behaviour in water resource recovery facilities is introduced. The ultimate goal is to describe in a unified way the processes taking place both in primary settling tanks (PSTs) and secondary settling tanks (SSTs) for a more detailed operation and control. First, experimental evidence is provided, pointing out distributed particle properties (such as size, shape, density, porosity, and flocculation state) as an important common source of distributed settling behaviour in different settling unit processes and throughout different settling regimes (discrete, hindered and compression settling). Subsequently, a unified model framework that considers several particle classes is proposed in order to describe distributions in settling behaviour as well as the effect of variations in particle properties on the settling process. The result is a set of partial differential equations (PDEs) that are valid from dilute concentrations, where they correspond to discrete settling, to concentrated suspensions, where they correspond to compression settling. Consequently, these PDEs model both PSTs and SSTs.

  3. Visual communications and image processing '92; Proceedings of the Meeting, Boston, MA, Nov. 18-20, 1992

    NASA Astrophysics Data System (ADS)

    Maragos, Petros

    The topics discussed at the conference include hierarchical image coding, motion analysis, feature extraction and image restoration, video coding, and morphological and related nonlinear filtering. Attention is also given to vector quantization, morphological image processing, fractals and wavelets, architectures for image and video processing, image segmentation, biomedical image processing, and model-based analysis. Papers are presented on affine models for motion and shape recovery, filters for directly detecting surface orientation in an image, tracking of unresolved targets in infrared imagery using a projection-based method, adaptive-neighborhood image processing, and regularized multichannel restoration of color images using cross-validation. (For individual items see A93-20945 to A93-20951)

  4. Mission STS-134: Results of Shape Memory Foam Experiment

    NASA Astrophysics Data System (ADS)

    Santo, Loredana; Quadrini, Fabrizio; Mascetti, Gabriele; Dolce, Ferdinando; Zolesi, Valfredo

    2013-10-01

    Shape memory epoxy foams were used for an experiment aboard the International Space Station (ISS) to evaluate the feasibility of their use for building light actuators and expandable/deployable structures. The experiment named I-FOAM was performed by an autonomous device contained in the BIOKON container (by Kayser Italia) which was in turn composed of control and heating system, battery pack and data acquisition system. To simulate the actuation of simple devices in micro-gravity conditions, three different configurations (compression, bending and torsion) were chosen during the memory step of the foams so as to produce their recovery on ISS. Micro-gravity does not affect the ability of the foams to recover their shape but it poses limits for the heating system design because of the difference in heat transfer on Earth and in orbit. A recovery about 70% was measured at a temperature of 110 °C for the bending and torsion configuration whereas poor recovery was observed for the compression case. Thanks to these results, a new experiment has been developed for a future mission by the same device: for the first time a shape memory composite will be recovered, and the actuation load during time will be measured during the recovery of an epoxy foam sample.

  5. Behavior of Shape Memory Epoxy Foams in Microgravity: Experimental Results of STS-134 Mission

    NASA Astrophysics Data System (ADS)

    Santo, Loredana; Quadrini, Fabrizio; Squeo, Erica Anna; Dolce, Ferdinando; Mascetti, Gabriele; Bertolotto, Delfina; Villadei, Walter; Ganga, Pier Luigi; Zolesi, Valfredo

    2012-09-01

    Shape memory epoxy foams were used for an experiment on the International Space Station to evaluate the feasibility of their use for building multi-functional composite structures. A small equipment was designed and built to simulate the actuation of simple devices in micro-gravity conditions: three different configurations (compression, bending and torsion) were chosen during the memory step of the foams so as to produce their recovery on ISS. Two systems were used for the experimentation to avoid damages of the flight model during laboratory tests; however a single ground experiment was performed also on the flight model before the mission. Micro-gravity does not affect the ability of the foams to recover their shape but it poses strong limits for the heating system design because of the difference in heat transfer on earth and in orbit. A full recovery of the foam samples was not achieved due to some limitations in the maximum allowable temperature on ISS for safety reasons: anyway a 70% recovery was also measured at a temperature of 110°C. Ground laboratory experiments showed that 100% recovery could be reached by increasing the maximum temperature to 120°C. Experiment results have provided many useful information for the designing of a new structural composite actuator by using shape memory foams.

  6. Precipitation-induced of partial annealing of Ni-rich NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Nashrudin, Muhammad Naqib; Mahmud, Abdus Samad; Mohamad, Hishamiakim

    2018-05-01

    NiTi shape memory alloy behavior is very sensitive to alloy composition and heat treatment processes. Thermomechanical behavior of near-equiatomic alloy is normally enhanced by partial anneal of a cold-worked specimen. The shape memory behavior of Ni-rich alloy can be enhanced by ageing precipitation. This work studied the effect of simultaneous partial annealing and ageing precipitation of a Ni-rich cold drawn Ti-50.9at%Ni wire towards martensite phase transformation behavior. Ageing treatment of a non-cold worked specimen was also done for comparison. It was found that the increase of heat treatment temperature caused the forward transformation stress to decrease for the cold worked and non-cold worked specimens. Strain recovery on the reverse transformation of the cold worked wire improved compared to the non-cold worked wire as the temperature increased.

  7. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    NASA Astrophysics Data System (ADS)

    Xiao, Xueliang; Hu, Jinlian

    2016-05-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials.

  8. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    PubMed Central

    Xiao, Xueliang; Hu, Jinlian

    2016-01-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials. PMID:27230823

  9. Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA

    NASA Astrophysics Data System (ADS)

    Lin, Liulan; Zhang, Lingfeng; Guo, Yanwei

    2018-01-01

    In this study, the effect of content of glutaraldehyde (GA) on the shape memory behavior of a shape memory polymer based on polyvinyl alcohol chemically cross-linked with GA was investigated. Thermal-responsive shape memory composites with three different GA levels, GA-PVA (3 wt%, 5 wt%, 7 wt%), were prepared by particle melting, mold forming and freeze-drying technique. The mechanical properties, thermal properties and shape memory behavior were measured by differential scanning calorimeter, physical bending test and cyclic thermo-mechanical test. The addition of GA to PVA led to a steady shape memory transition temperature and an improved mechanical compressive strength. The composite with 5 wt% of GA exhibited the best shape recoverability. Further increase in the crosslinking agent content of GA would reduce the recovery force and prolong the recovery time due to restriction in the movement of the soft PVA chain segments. These results provide important information for the study on materials in 4D printing.

  10. Removal of jitter noise in 3D shape recovery from image focus by using Kalman filter.

    PubMed

    Jang, Hoon-Seok; Muhammad, Mannan Saeed; Choi, Tae-Sun

    2018-02-01

    In regard to Shape from Focus, one critical factor impacting system application is mechanical vibration of the translational stage causing jitter noise along the optical axis. This noise is not detectable by simply observing the image. However, when focus measures are applied, inaccuracies in the depth occur. In this article, jitter noise and focus curves are modeled by Gaussian distribution and quadratic function, respectively. Then Kalman filter is designed and applied to eliminate this noise in the focus curves, as a post-processing step after the focus measure application. Experiments are implemented with simulated objects and real objects to show usefulness of proposed algorithm. © 2017 Wiley Periodicals, Inc.

  11. Macroscopic and microscopic variation in recovered magnesium phosphate materials: implications for phosphorus removal processes and product re-use.

    PubMed

    Massey, Michael S; Ippolito, James A; Davis, Jessica G; Sheffield, Ron E

    2010-02-01

    Phosphorus (P) recovery and re-use will become increasingly important for water quality protection and sustainable nutrient cycling as environmental regulations become stricter and global P reserves decline. The objective of this study was to examine and characterize several magnesium phosphates recovered from actual wastewater under field conditions. Three types of particles were examined including crystalline magnesium ammonium phosphate hexahydrate (struvite) recovered from dairy wastewater, crystalline magnesium ammonium phosphate hydrate (dittmarite) recovered from a food processing facility, and a heterogeneous product also recovered from dairy wastewater. The particles were analyzed using "wet" chemical techniques, powder X-ray diffraction (XRD), and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy (SEM-EDS). The struvite crystals had regular and consistent shape, size, and structure, and SEM-EDS analysis clearly showed the struvite crystals as a surface precipitate on calcium phosphate seed material. In contrast, the dittmarite crystals showed no evidence of seed material, and were not regular in size or shape. The XRD analysis identified no crystalline magnesium phosphates in the heterogeneous product and indicated the presence of sand particles. However, magnesium phosphate precipitates on calcium phosphate seed material were observed in this product under SEM-EDS examination. These substantial variations in the macroscopic and microscopic characteristics of magnesium phosphates recovered under field conditions could affect their potential for beneficial re-use and underscore the need to develop recovery processes that result in a uniform, consistent product.

  12. A simplified constitutive model for predicting shape memory polymers deformation behavior

    NASA Astrophysics Data System (ADS)

    Li, Yunxin; Guo, Siu-Siu; He, Yuhao; Liu, Zishun

    2015-12-01

    Shape memory polymers (SMPs) can keep a temporary shape after pre-deformation at a higher temperature and subsequent cooling. When they are reheated, their original shapes can be recovered. Such special characteristics of SMPs make them widely used in aerospace structures, biomedical devices, functional textiles and other devices. Increasing usefulness of SMPs motivates us to further understand their thermomechanical properties and deformation behavior, of which the development of appropriate constitutive models for SMPs is imperative. There is much work in literatures that address constitutive models of the thermo-mechanical coupling in SMPs. However, due to their complex forms, it is difficult to apply these constitutive models in the real world. In this paper, a three-element model with simple form is proposed to investigate the thermo-mechanical small strain (within 10%) behavior of polyurethane under uniaxial tension. Two different cases of heated recovery are considered: (1) unconstrained free strain recovery and (2) stress recovery under full constraint at a strain level fixed during low temperature unloading. To validate the model, simulated and predicted results are compared with Tobushi's experimental results and good agreement can be observed.

  13. High performance shape memory polymer networks based on rigid nanoparticle cores

    PubMed Central

    Song, Jie

    2010-01-01

    Smart materials that can respond to external stimuli are of widespread interest in biomedical science. Thermal-responsive shape memory polymers, a class of intelligent materials that can be fixed at a temporary shape below their transition temperature (Ttrans) and thermally triggered to resume their original shapes on demand, hold great potential as minimally invasive self-fitting tissue scaffolds or implants. The intrinsic mechanism for shape memory behavior of polymers is the freezing and activation of the long-range motion of polymer chain segments below and above Ttrans, respectively. Both Ttrans and the extent of polymer chain participation in effective elastic deformation and recovery are determined by the network composition and structure, which are also defining factors for their mechanical properties, degradability, and bioactivities. Such complexity has made it extremely challenging to achieve the ideal combination of a Ttrans slightly above physiological temperature, rapid and complete recovery, and suitable mechanical and biological properties for clinical applications. Here we report a shape memory polymer network constructed from a polyhedral oligomeric silsesquioxane nanoparticle core functionalized with eight polyester arms. The cross-linked networks comprising this macromer possessed a gigapascal-storage modulus at body temperature and a Ttrans between 42 and 48 °C. The materials could stably hold their temporary shapes for > 1 year at room temperature and achieve full shape recovery ≤ 51 °C in a matter of seconds. Their versatile structures allowed for tunable biodegradability and biofunctionalizability. These materials have tremendous promise for tissue engineering applications. PMID:20375285

  14. Study of the effect of gamma irradiation on a commercial polycyclooctene I. Thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    García-Huete, N.; Laza, J. M.; Cuevas, J. M.; Vilas, J. L.; Bilbao, E.; León, L. M.

    2014-09-01

    A gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical, chemical and mechanical properties. Gamma irradiation originates free radicals able to induce chain scission or recombination of radicals, which induces annihilation, branching or crosslinking processes. The aim of this work is to research the structural, thermal and mechanical changes induced on a commercial polycyclooctene (PCO) when it is irradiated with a gamma source of 60Co at different doses (25-200 kGy). After gamma irradiation, gel content was determined by Soxhlet extraction in cyclohexane. Furthermore, thermal properties were evaluated before and after Soxhlet extraction by means of Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC), as well as mechanical properties were measured by Dynamic Mechanical Thermal Analysis (DMTA). The results showed the variations of the properties depending on the irradiation dose. Finally, a first approach to evaluate qualitatively the shape memory behaviour of all irradiated PCO samples was performed by a visually monitoring shape recovery process.

  15. Plant communities, soil carbon, and soil nitrogen properties in a successional gradient of sub-alpine meadows on the eastern Tibetan plateau of China.

    PubMed

    Li, Wen-Jin; Li, Jin-Hua; Knops, Johannes M H; Wang, Gang; Jia, Ju-Jie; Qin, Yan-Yan

    2009-10-01

    To assess the recovery trajectory and self-maintenance of restored ecosystems, a successional gradient (1, 3, 5, 15, and 30 years after abandonment) was established in a sub-alpine meadow of the eastern Tibetan Plateau in China. Plant communities and soil carbon and nitrogen properties were investigated and analyzed. Regression analyses were used to assess the models (linear or quadratic) relating measures of species richness, soil carbon and nitrogen properties to fallow time. We found that species richness (S) increased over the first 20 years but decreased thereafter, and aboveground biomass showed a linear increase along the fallow time gradient. The richness of different functional groups (forb, grass and legume) changed little along the fallow time gradient, but their corresponding above ground biomass showed the U-shaped, humped or linear pattern. Soil microbial carbon (MBC) and nitrogen (MBN) in the upper 20 cm showed a U-shaped pattern along the fallow time gradient. However, soil organic carbon (C(org)) and total nitrogen (TN) in the soil at depth greater than 20 cm showed significant patterns of linear decline along the fallow time gradient. The threshold models of species richness reflected best the recovery over the 15 year fallow period. These results indicated that fallow time had a greater influence on development of the plant community than soil processes in abandoned fields in sub-alpine meadow ecosystem. These results also suggested that although the succession process did not significantly increase soil C, an increase in microbial biomass at the latter stage of succession could promote the decomposability of plant litter. Therefore, abandoned fields in sub-alpine meadow ecosystem may have a high resilience and strong rehabilitating capability under natural recovery condition.

  16. Identity in recovery for mothers with a mental illness: A literature review.

    PubMed

    Hine, Rochelle Helena; Maybery, Darryl John; Goodyear, Melinda Jane

    2018-03-01

    The development of a positive identity beyond the mental illness has been highlighted as an important component of personal recovery. However, the experience of parenting is often overlooked in recovery discourse. This review aims to explore what the literature reveals about the process of developing a positive identity as part of personal recovery and how this may be shaped by the mothering role. A systematic literature search of 5 databases resulted in 27 articles being reviewed, with findings extracted and analyzed using constant comparative analysis. Evidence on the construct and scope of identity in recovery for mothers with mental illness was critically analyzed in the context of a personal recovery conceptual framework. The findings highlight that identity was rarely overtly defined in this literature, although the importance of motherhood was emphasized. Common barriers to uninterrupted and rewarding motherhood included illness and treatment, self-criticism, unsupportive families, discriminatory attitudes, and challenging relationships with children marred by intense and difficult emotions. The important role that psychiatric services can play but rarely do was a common finding. Personal recovery from mental illness is more effectively facilitated through supporting mothers to build positive, realistic, and diverse identities that allow them to acknowledge and respond to their mental health needs without fearing the loss of their parenting role or conforming to restrictive gendered stereotypes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Low-cost high-quality Fe-based shape memory alloys suitable for pipe joints

    NASA Astrophysics Data System (ADS)

    Kajiwara, Setsuo; Baruj, Albert L.; Kikuchi, Takehiko; Shinya, Norio

    2003-08-01

    By addition of small amount of Nb and C to the conventional Fe-Mn-Si based shape memory alloys, shape memory properties are greatly improved in such an extent that the costly 'training' heat treatment is no more necessary. The key to this remarkable improvement of shape memory effect is to produce small NbC precipitates of about several nm in size in austenite. In order to generate such very small NbC particles, the sample is firstly rolled at 870 K and then aged at 1070 K. An example of Fe-28Mn-6Si-5Cr-0.53Nb-0.06C (mass %) alloy is shown; 95% shape recovery for initial strain of 4% is obtained and the shape recovery stress of about 300 MPa is attained for the sample pre-rolled 14%, which is well above the criterion for industry application of pipe jointing. A pipe jointing with this material is demonstrated.

  18. Shape Memory Composites Based on Electrospun Poly(vinyl alcohol) Fibers and a Thermoplastic Polyether Block Amide Elastomer.

    PubMed

    Shirole, Anuja; Sapkota, Janak; Foster, E Johan; Weder, Christoph

    2016-03-01

    The present study aimed at developing new thermally responsive shape-memory composites, that were fabricated by compacting mats of electrospun poly(vinyl alcohol) (PVA) fibers and sheets of a thermoplastic polyether block amide elastomer (PEBA). This design was based on the expectation that the combination of the rubber elasticity of the PEBA matrix and the mechanical switching exploitable through the reversible glass transition temperature (Tg) of the PVA filler could be combined to create materials that display shape memory characteristics as an emergent effect. Dynamic mechanical analyses (DMA) show that, upon introduction of 10-20% w/w PVA fibers, the room-temperature storage modulus (E') increased by a factor of 4-5 in comparison to the neat PEBA, and they reveal a stepwise reduction of E' around the Tg of PVA (85 °C). This transition could indeed be utilized to fix a temporary shape and recover the permanent shape. At low strain, the fixity was 66 ± 14% and the recovery was 98 ± 2%. Overall, the data validate a simple and practical strategy for the fabrication of shape memory composites that involves a melt compaction process and employs two commercially available polymers.

  19. Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness

    NASA Astrophysics Data System (ADS)

    Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian

    2016-05-01

    Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe3O4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe3O4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe3O4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent.

  20. Permeability and permeability anisotropy in Crab Orchard sandstone: Experimental insights into spatio-temporal effects

    NASA Astrophysics Data System (ADS)

    Gehne, Stephan; Benson, Philip M.

    2017-08-01

    Permeability in tight crustal rocks is primarily controlled by the connected porosity, shape and orientation of microcracks, the preferred orientation of cross-bedding, and sedimentary features such as layering. This leads to a significant permeability anisotropy. Less well studied, however, are the effects of time and stress recovery on the evolution of the permeability hysteresis which is becoming increasingly important in areas ranging from fluid migration in ore-forming processes to enhanced resource extraction. Here, we report new data simulating spatio-temporal permeability changes induced using effective pressure, simulating burial depth, on a tight sandstone (Crab Orchard). We find an initially (measured at 5 MPa) anisotropy of 2.5% in P-wave velocity and 180% in permeability anisotropy is significantly affected by the direction of the effective pressure change and cyclicity; anisotropy values decrease to 1% and 10% respectively after 3 cycles to 90 MPa and back. Furthermore, we measure a steadily increasing recovery time (10-20 min) for flow parallel to cross-bedding, and a far slower recovery time (20-50 min) for flow normal to cross-bedding. These data are interpreted via strain anisotropy and accommodation models, similar to the "seasoning" process often used in dynamic reservoir extraction.

  1. Fast-Response-Time Shape-Memory-Effect Foam Actuators

    NASA Technical Reports Server (NTRS)

    Jardine, Peter

    2010-01-01

    Bulk shape memory alloys, such as Nitinol or CuAlZn, display strong recovery forces undergoing a phase transformation after being strained in their martensitic state. These recovery forces are used for actuation. As the phase transformation is thermally driven, the response time of the actuation can be slow, as the heat must be passively inserted or removed from the alloy. Shape memory alloy TiNi torque tubes have been investigated for at least 20 years and have demonstrated high actuation forces [3,000 in.-lb (approximately equal to 340 N-m) torques] and are very lightweight. However, they are not easy to attach to existing structures. Adhesives will fail in shear at low-torque loads and the TiNi is not weldable, so that mechanical crimp fits have been generally used. These are not reliable, especially in vibratory environments. The TiNi is also slow to heat up, as it can only be heated indirectly using heater and cooling must be done passively. This has restricted their use to on-off actuators where cycle times of approximately one minute is acceptable. Self-propagating high-temperature synthesis (SHS) has been used in the past to make porous TiNi metal foams. Shape Change Technologies has been able to train SHS derived TiNi to exhibit the shape memory effect. As it is an open-celled material, fast response times were observed when the material was heated using hot and cold fluids. A methodology was developed to make the open-celled porous TiNi foams as a tube with integrated hexagonal ends, which then becomes a torsional actuator with fast response times. Under processing developed independently, researchers were able to verify torques of 84 in.-lb (approximately equal to 9.5 Nm) using an actuator weighing 1.3 oz (approximately equal to 37 g) with very fast (less than 1/16th of a second) initial response times when hot and cold fluids were used to facilitate heat transfer. Integrated structural connections were added as part of the net shape process, eliminating the need for welding, adhesives, or mechanical crimping. Inexpensive net-shape processing was used, which reduces the cost of the actuator by over a factor of 10 over nonporous TiNi made by hot drawing of tube or electrical discharge machining. By forming the alloy as an open-celled foam, the surface area for heat transfer is dramatically increased, allowing for much faster response times. The technology also allows for netshape fabrication of the actuator, which allows for structural connections to be integrated into the actuator material, making these actuators significantly less expensive. Commercial applications include actuators for concepts such as the variable area chevron and nozzle in jet aircraft. Lightweight tube or rod components can be supplied to interested parties.

  2. Optimization of wet shaking table process using response surface methodology applied to the separation of copper and aluminum from the fine fraction of shredder ELVs.

    PubMed

    Jordão, Helga; Sousa, António Jorge; Carvalho, M Teresa

    2016-02-01

    With the purpose of reducing the waste generated by end-of-life vehicles (ELVs) by enhancing the recovery and recycling of nonferrous metals, an experimental study was conducted with the finest size fraction of nonferrous stream produced at an ELV shredder plant. The aim of this work was to characterize the nonferrous stream and to evaluate the efficiency of a gravity concentration process in separating light and heavy nonferrous metal particles that could be easily integrated in a ELV shredder plant (in this case study the separation explicitly addressed copper and aluminum separation). The characterization of a sample of the 0-10mm particle size fraction showed a mixture of nonferrous metals with a certain degree of impurity due to the present of contaminants such as plastics. The majority of the particles exhibited a wire shape, preventing an efficient separation of materials without prior fragmentation. The gravity concentration process selected for this study was the wet shaking table and three operating parameters of the equipment were manipulated. A full factorial design in combination with a central composite design was employed to model metals recovery. Two second order polynomial equations were successfully fitted to describe the process and predict the recovery of copper and aluminum in Cu concentrate under the conditions of the present study. The optimum conditions were determined to be 11.1° of inclination, 2.8L/min of feed water flow and 4.9L/min of wash water flow. All three final products of the wet shaking table had a content higher than 90% in relation to one of the metals, wherein a Cu concentrate product was obtained with a Cu content of 96%, and 78% of Cu recovery and 2% of Al recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of Graphene Addition on Shape Memory Behavior of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Williams, Tiffany; Meador, Michael; Miller, Sandi; Scheiman, Daniel

    2011-01-01

    Shape memory polymers (SMPs) and composites are a special class of smart materials known for their ability to change size and shape upon exposure to an external stimulus (e.g. light, heat, pH, or magnetic field). These materials are commonly used for biomedical applications; however, recent attempts have been made towards developing SMPs and composites for use in aircraft and space applications. Implementing SMPs and composites to create a shape change effect in some aircraft structures could potentially reduce drag, decrease fuel consumption, and improve engine performance. This paper discusses the development of suitable materials to use in morphing aircraft structures. Thermally responsive epoxy SMPs and nanocomposites were developed and the shape memory behavior and thermo-mechanical properties were studied. Overall, preliminary results from dynamic mechanical analysis (DMA) showed that thermally actuated shape memory epoxies and nanocomposites possessed Tgs near approximately 168 C. When graphene nanofiller was added, the storage modulus and crosslinking density decreased. On the other hand, the addition of graphene enhanced the recovery behavior of the shape memory nanocomposites. It was assumed that the addition of graphene improved shape memory recovery by reducing the crosslinking density and increasing the elasticity of the nanocomposites.

  4. 3D shape recovery of a newborn skull using thin-plate splines.

    PubMed

    Lapeer, R J; Prager, R W

    2000-01-01

    The objective of this paper is to construct a mesh-model of a newborn skull for finite element analysis to study its deformation when subjected to the forces present during labour. The current state of medical imaging technology has reached a level which allows accurate visualisation and shape recovery of biological organs and body-parts. However, a sufficiently large set of medical images cannot always be obtained, often because of practical or ethical reasons, and the requirement to recover the shape of the biological object of interest has to be met by other means. Such is the case for a newborn skull. A method to recover the three-dimensional (3D) shape from (minimum) two orthogonal atlas images of the object of interest and a homologous object is described. This method is based on matching landmarks and curves on the orthogonal images of the object of interest with corresponding landmarks and curves on the homologous or 'master'-object which is fully defined in 3D space. On the basis of this set of corresponding landmarks, a thin-plate spline function can be derived to warp from the 'master'-object space to the 'slave'-object space. This method is applied to recover the 3D shape of a newborn skull. Images from orthogonal view-planes are obtained from an atlas. The homologous object is an adult skull, obtained from CT-images made available by the Visible Human Project. After shape recovery, a mesh-model of the newborn skull is generated.

  5. Autogenic succession and deterministic recovery following disturbance in soil bacterial communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurburg, Stephanie D.; Nunes, Inês; Stegen, James C.

    The response of bacterial communities to environmental change may affect local to global nutrient cycles; however the dynamics of these communities following disturbance are poorly understood, and are generally attributed to abiotic factors. Here, we subjected soil microcosms to a heat disturbance and followed the community composition of active bacteria over 50 days of recovery. Phylogenetic turnover patterns indicated that biotic interactions shaped the community during recovery, and that the disturbance imposed a strong selective pressure that persisted for up to 10 days, after which the importance of stochastic processes increased. Three successional stages were detected: a primary response (1-4more » days after disturbance) in which surviving taxa increased in abundance; a secondary response phase (10-29 days), during which community dynamics slowed down, and a stability phase (after 29 days), during which the community tended towards its original composition. Soil bacterial communities, despite their extreme diversity and functional redundancy, respond to disturbances like many macroecological systems and exhibit path-dependent, autogenic dynamics during secondary succession.« less

  6. An Interactive Preliminary Design System of High Speed Forebody and Inlet Flows

    NASA Technical Reports Server (NTRS)

    Liou, May-Fun; Benson, Thomas J.; Trefny, Charles J.

    2010-01-01

    This paper demonstrates a simulation-based aerodynamic design process of high speed inlet. A genetic algorithm is integrated into the design process to facilitate the single objective optimization. The objective function is the total pressure recovery and is obtained by using a PNS solver for its computing efficiency. The system developed uses existing software of geometry definition, mesh generation and CFD analysis. The process which produces increasingly desirable design in each genetic evolution over many generations is automatically carried out. A generic two-dimensional inlet is created as a showcase to demonstrate the capabilities of this tool. A parameterized study of geometric shape and size of the showcase is also presented.

  7. Investigation on adaptive wing structure based on shape memory polymer composite hinge

    NASA Astrophysics Data System (ADS)

    Yu, Yuemin; Li, Xinbo; Zhang, Wei; Leng, Jinsong

    2007-07-01

    This paper describes the design and investigation of the SMP composite hinge and the morphing wing structure. The SMP composite hinge was based on SMP and carbon fiber fabric. The twisting recoverability of it was investigated by heating and then cooling repeatedly above and below the Tg. The twisting recoverability characterized by the twisting angle. Results show that the SMP composite hinge have good shape recoverability, Recovery time has a great influence on the twisting recoverability. The twisting recovery ratio became large with the increment of recovery time. The morphing wing can changes shape for different tasks. For the advantages of great recovery force and stable performances, we adopt SMP composite hinge as actuator to apply into the structure of the wing which can realize draw back wings to change sweep angle according to the speed and other requirements of military airplanes. Finally, a series of simulations and experiments are performed to investigate the deformations of morphing wings have been performed successfully. It can be seen that the sweep angle change became large with the increment of initial angle. The area reduction became large with the increment of initial angle, but after 75° the area reduction became smaller and smaller. The deformations of the triangle wing became large with the increment of temperature. The area and the sweep angle of wings can be controlled by adjusting the stimulate temperature and the initial twisting angle of shape memory polymer composite hinge.

  8. Coastal foredune displacement and recovery, Barrett Beach-Talisman, Fire Island, New York, USA

    USGS Publications Warehouse

    Psuty, N.P.; Pace, J.P.; Allen, J.R.

    2005-01-01

    Coastal foredune mobility has been tracked at Fire Island National Seashore since 1976 with annual field surveys and analysis of frequent aerial photography. Sequential mapping of the foredune crestline depicts nearly islandwide displacement during major storm events, such as in 1992, and localized displacement during alongshore passage of inshore circulation cells during other years. An instance of localized landward erosion and curvilinear displacement along approximately 400 m of foredune occurred in 1994, followed by recovery over the next nine years. Data from annual surveys and partially supported by four LIDAR flights establish that volume recovery rates in the foredune ranged from about 1.0 m3/m/yr to nearly 12.0 m 3/m/yr. Analysis of the foredune morphology and location shows nearly complete recovery of foredune shape and dimension during this interval and it also demonstrates that there has been inland displacement of the foredune crestline of up to 40 m. Total volume recovery within the localized foredune erosion site was greatest, between 34 m3/m to 47 m3/m, in areas of greatest displacement and eventually contributed to creation of a foredune of similar dimension along the entire eroded zone. This process of erosion and recovery describes a mechanism for foredune dimension retention during episodic erosion and displacement and may be a model for foredune persistence accompanying barrier island migration. ?? 2005 Gebru??der Borntraeger.

  9. Coastal foredune displacement and recovery, Barrett Beach-Talisman, Fire Island, New York, USA

    USGS Publications Warehouse

    Psuty, N.P.; Pace, J.P.; Allen, J.R.; Psuty, Norbert P.; Sherman, Douglas J.; Meyer-Arendt, Klaus

    2005-01-01

    Coastal foredune mobility has been tracked at Fire Island National Seashore since 1976 with annual field surveys and analysis of frequent aerial photography. Sequential mapping of the foredune crestline depicts nearly islandwide displacement during major storm events, such as in 1992, and localized displacement during alongshore passage of inshore circulation cells during other years. An instance of localized landward erosion and curvilinear displacement along approximately 400 m of foredune occurred in 1994, followed by recovery over the next nine years. Data from annual surveys and partially supported by four LIDAR flights establish that volume recovery rates in the foredune ranged from about 1.0 m3/m/yr to nearly 12.0 m3/m/yr. Analysis of the foredune morphology and location shows nearly complete recovery of foredune shape and dimension during this interval and it also demonstrates that there has been inland displacement of the foredune crestline of up to 40 m. Total volume recovery within the localized foredune erosion site was greatest, between 34 m3/m to 47 m3/m, in areas of greatest displacement and eventually contributed to creation of a foredune of similar dimension along the entire eroded zone. This process of erosion and recovery describes a mechanism for foredune dimension retention during episodic erosion and displacement and may be a model for foredune persistence accompanying barrier island migration.

  10. The use of inflatable structures for re-entry of orbiting vehicles

    NASA Astrophysics Data System (ADS)

    Kendall, Robert T.; Maddox, Arthur R.

    1990-10-01

    Inflatable recovery systems offer the unique advantage that a large high-drag shape can be stored initially in a relatively small package. The resulting shapes decelerate rapidly with lower heating inputs than other types of re-entry vehicles. Recent developments have led to some light-weight materials, with little thermal protection, can withstand the heating inputs to such vehicles. As a result, inflatable recovery vehicles offer a simple, reliable and economical way to return various vehicles from orbit. This paper examines the application of this concept to a large and a small vehicle with the accompanying dynamics that might be expected. More complex systems could extend the concept to emergency personnel escape systems, payload abort and satellite recovery systems.

  11. Effect of Co Addition on the Microstructure, Martensitic Transformation and Shape Memory Behavior of Fe-Mn-Si Alloys

    NASA Astrophysics Data System (ADS)

    Maji, Bikas C.; Krishnan, Madangopal; Sujata, M.; Gouthama; Ray, Ranjit K.

    2013-01-01

    The effect of Co addition has been studied in Fe-30Mn-6Si- xCo ( x = 0 to 9 wt pct) shape memory alloys in terms of their microstructure, martensitic transformation and shape recovery. Microstructural investigations reveal that in Fe-Mn-Si-Co alloys, the microstructure remains single-phase austenite (γ) up to 5 pct Co and beyond that becomes two-phase comprising γ and off-stoichiometric (Fe,Co)5Mn3Si2 intermetallic π-phases. The forward γ-ɛ martensite transformation start temperature ( M S) decreases with the addition of Co up to 5 pct, and alloys containing more than 5 pct Co, show slightly higher M S possibly on account of two-phase microstructure. Unlike M S, the ɛ-γ reverse transformation start temperature ( A S) has been found to remain almost unaltered by Co addition. In general, addition of Co to Fe-Mn-Si alloys deteriorates shape recovery due to decreasing resistance to plastic yielding concomitant with the formation of stress induced ɛ martensite. However, there is an improvement in shape recovery beyond 5 pct Co addition, possibly due to the strengthening effect arising from the presence of (Fe,Co)5Mn3Si2 precipitates within the two-phase microstructure and due to higher amount of stress induced ɛ martensite.

  12. Effect of Ta Additions on the Microstructure, Damping, and Shape Memory Behaviour of Prealloyed Cu-Al-Ni Shape Memory Alloys.

    PubMed

    Saud, Safaa N; Hamzah, E; Bakhsheshi-Rad, H R; Abubakar, T

    2017-01-01

    The influence of Ta additions on the microstructure and properties of Cu-Al-Ni shape memory alloys was investigated in this paper. The addition of Ta significantly affects the green and porosity densities; the minimum percentage of porosity was observed with the modified prealloyed Cu-Al-Ni-2.0 wt.% Ta. The phase transformation temperatures were shifted towards the highest values after Ta was added. Based on the damping capacity results, the alloy of Cu-Al-Ni-3.0 wt.% Ta has very high internal friction with the maximum equivalent internal friction value twice as high as that of the prealloyed Cu-Al-Ni SMA. Moreover, the prealloyed Cu-Al-Ni SMAs with the addition of 2.0 wt.% Ta exhibited the highest shape recovery ratio in the first cycle (i.e., 100% recovery), and when the number of cycles is increased, this ratio tends to decrease. On the other hand, the modified alloys with 1.0 and 3.0 wt.% Ta implied a linear increment in the shape recovery ratio with increasing number of cycles. Polarization tests in NaCl solution showed that the corrosion resistance of Cu-Al-Ni-Ta SMA improved with escalating Ta concentration as shown by lower corrosion current densities, higher corrosion potential, and formation of stable passive film.

  13. A New Strategy to Prepare Polymer-based Shape Memory Elastomers.

    PubMed

    Song, Shijie; Feng, Jiachun; Wu, Peiyi

    2011-10-04

    A new strategy that utilizes the microphase separation of block copolymer and phase transition of small molecules for preparing polymer-based shape memory elastomer has been proposed. According to this strategy, a novel kind of shape memory elastomer comprising styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) and paraffin has been prepared. Because paraffins are midblock-selective molecules for SEBS, they will preferentially enter and swell EB blocks supporting paraffins as an excellent switch phase for shape memory effect. Microstructures of SEBS/paraffin composites have been characterized by transmission electron microscopy, polarized light microscopy, and differential scanning calorimetry. The composites demonstrate various phase morphologies with regard to different paraffin loading. It has been found that under low paraffin loading, all the paraffins precisely embed in and swell EB-rich domains. While under higher loading, part of the paraffins become free and a larger-scaled phase separation has been observed. However, within wide paraffin loadings, all composites show good shape fixing, shape recovery performances, and improved tensile properties. Compared to the reported methods for shape memory elastomers preparation, this method not only simplifies the fabrication procedure from raw materials to processing but also offers a controllable approach for the optimization of shape memory properties as well as balancing the rigidity and softness of the material. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The Effects of Different Electrode Types for Obtaining Surface Machining Shape on Shape Memory Alloy Using Electrochemical Machining

    NASA Astrophysics Data System (ADS)

    Choi, S. G.; Kim, S. H.; Choi, W. K.; Moon, G. C.; Lee, E. S.

    2017-06-01

    Shape memory alloy (SMA) is important material used for the medicine and aerospace industry due to its characteristics called the shape memory effect, which involves the recovery of deformed alloy to its original state through the application of temperature or stress. Consumers in modern society demand stability in parts. Electrochemical machining is one of the methods for obtained these stabilities in parts requirements. These parts of shape memory alloy require fine patterns in some applications. In order to machine a fine pattern, the electrochemical machining method is suitable. For precision electrochemical machining using different shape electrodes, the current density should be controlled precisely. And electrode shape is required for precise electrochemical machining. It is possible to obtain precise square holes on the SMA if the insulation layer controlled the unnecessary current between electrode and workpiece. If it is adjusting the unnecessary current to obtain the desired shape, it will be a great contribution to the medical industry and the aerospace industry. It is possible to process a desired shape to the shape memory alloy by micro controlling the unnecessary current. In case of the square electrode without insulation layer, it derives inexact square holes due to the unnecessary current. The results using the insulated electrode in only side show precise square holes. The removal rate improved in case of insulated electrode than others because insulation layer concentrate the applied current to the machining zone.

  15. Unconstrained Recovery Characterization of Shape-Memory Polymer Networks for Cardiovascular Applications

    PubMed Central

    Yakacki, Christopher M.; Shandas, Robin; Lanning, Craig; Rech, Bryan; Eckstein, Alex; Gall, Ken

    2009-01-01

    Shape-memory materials have been proposed in biomedical device design due to their ability to facilitate minimally invasive surgery and recover to a predetermined shape in-vivo. Use of the shape-memory effect in polymers is proposed for cardiovascular stent interventions to reduce the catheter size for delivery and offer highly controlled and tailored deployment at body temperature. Shape-memory polymer networks were synthesized via photopolymerization of tert-butyl acrylate and poly (ethylene glycol) dimethacrylate to provide precise control over the thermomechanical response of the system. The free recovery response of the polymer stents at body temperature was studied as a function of glass transition temperature (Tg), crosslink density, geometrical perforation, and deformation temperature, all of which can be independently controlled. Room temperature storage of the stents was shown to be highly dependent on Tg and crosslink density. The pressurized response of the stents is also demonstrated to depend on crosslink density. This polymer system exhibits a wide range of shape-memory and thermomechanical responses to adapt and meet specific needs of minimally invasive cardiovascular devices. PMID:17296222

  16. Microstructural change in electroformed copper liners of shaped charges upon plastic deformation at ultra-high strain rate

    NASA Astrophysics Data System (ADS)

    Tian, W. H.; Hu, S. L.; Fan, A. L.; Wang, Z.

    2002-01-01

    Transmission electron microscopy (TEM) observations were carried out for examining the as-formed and post-deformed microstructures in a variety of electroformed copper liners of shaped charges. The deformation was carried out at an ultra-high strain rate. Specifically, the electron backscattering Kikuchi pattern (EBSP) technique was utilized to examine the micro-texture of these materials. TEM observations revealed that these electroformed copper liners of shaped charges have a grain size of about 1-3 mum, EBSP analysis demonstrated that the as-grown copper liners of shaped charges exhibit a l 10) fiber micro-texture which is parallel to the normal direction of the surface of the liners of shaped charges. Having undergone plastic deformation at ultra-high strain rate (10(7) s(-1)), the specimens which were recovered from the copper slugs were found to have grain size of the same order as that before deformation. EBSP analysis revealed that the (110) fiber texture existed in the as-formed copper liners disappears in the course of deformation. TEM examination results indicate that dynamic recovery and recrystallization play a significant role in this deformation process.

  17. Improving of Mechanical and Shape-Memory Properties in Hyperbranched Epoxy Shape-Memory Polymers

    NASA Astrophysics Data System (ADS)

    Santiago, David; Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia

    2016-09-01

    A series of shape-memory epoxy polymers were synthesized using an aliphatic amine and two different commercial hyperbranched poly(ethyleneimine)s with different molecular weights as crosslinking agents. Thermal, mechanical, and shape-memory properties in materials modified with different hyperbranched polymers were analyzed and compared in order to establish the effect of the structure and the molecular weight of the hyperbranched polymers used. The presence of hyperbranched polymers led to more heterogeneous networks, and the crosslinking densities of which increase as the hyperbranched polymer content increases. The transition temperatures can be tailored from 56 to 117 °C depending on the molecular weight and content of the hyperbranched polymer. The mechanical properties showed excellent values in all formulations at room temperature and, specially, at T_{{g}}^{{E^' with stress at break as high as 15 MPa and strain at break as high as 60 %. The shape-memory performances revealed recovery ratios around 95 %, fixity ratios around 97 %, and shape-recovery velocities as high as 22 %/min. The results obtained in this study reveal that hyperbranched polymers with different molecular weights can be used to enhance the thermal and mechanical properties of epoxy-based SMPs while keeping excellent shape-memory properties.

  18. The Information Available to a Moving Observer on Shape with Unknown, Isotropic BRDFs.

    PubMed

    Chandraker, Manmohan

    2016-07-01

    Psychophysical studies show motion cues inform about shape even with unknown reflectance. Recent works in computer vision have considered shape recovery for an object of unknown BRDF using light source or object motions. This paper proposes a theory that addresses the remaining problem of determining shape from the (small or differential) motion of the camera, for unknown isotropic BRDFs. Our theory derives a differential stereo relation that relates camera motion to surface depth, which generalizes traditional Lambertian assumptions. Under orthographic projection, we show differential stereo may not determine shape for general BRDFs, but suffices to yield an invariant for several restricted (still unknown) BRDFs exhibited by common materials. For the perspective case, we show that differential stereo yields the surface depth for unknown isotropic BRDF and unknown directional lighting, while additional constraints are obtained with restrictions on the BRDF or lighting. The limits imposed by our theory are intrinsic to the shape recovery problem and independent of choice of reconstruction method. We also illustrate trends shared by theories on shape from differential motion of light source, object or camera, to relate the hardness of surface reconstruction to the complexity of imaging setup.

  19. [A novel method based on Y-shaped cotton-polyester thread microfluidic channel].

    PubMed

    Wang, Lu; Shi, Yan-ru; Yan, Hong-tao

    2014-08-01

    A novel method based on Y-shaped microfluidic channel was firstly proposed in this study. The microfluidic channel was made of two cotton-polyester threads based on the capillary effect of cotton-polyester threads for the determination solutions. A special device was developed to fix the Y-shaped microfluidic channel by ourselves, through which the length and the tilt angle of the channel can be adjusted as requested. The spectrophotometry was compared with Scan-Adobe Photoshop software processing method. The former had a lower detection limit while the latter showed advantages in both convenience and fast operations and lower amount of samples. The proposed method was applied to the determination of nitrite. The linear ranges and detection limits are 1.0-70 micromol x L(-1), 0.66 micromol x L(-1) (spectrophotometry) and 50-450 micromol x L(-1), 45.10 micromol x L(-1) (Scan-Adobe Photoshop software processing method) respectively. This method has been successfully used to the determination of nitrite in soil samples and moat water with recoveries between 96.7% and 104%. It was proved that the proposed method was a low-cost, rapid and convenient analytical method with extensive application prospect.

  20. 3D shape recovery of smooth surfaces: dropping the fixed-viewpoint assumption.

    PubMed

    Moses, Yael; Shimshoni, Ilan

    2009-07-01

    We present a new method for recovering the 3D shape of a featureless smooth surface from three or more calibrated images illuminated by different light sources (three of them are independent). This method is unique in its ability to handle images taken from unconstrained perspective viewpoints and unconstrained illumination directions. The correspondence between such images is hard to compute and no other known method can handle this problem locally from a small number of images. Our method combines geometric and photometric information in order to recover dense correspondence between the images and accurately computes the 3D shape. Only a single pass starting at one point and local computation are used. This is in contrast to methods that use the occluding contours recovered from many images to initialize and constrain an optimization process. The output of our method can be used to initialize such processes. In the special case of fixed viewpoint, the proposed method becomes a new perspective photometric stereo algorithm. Nevertheless, the introduction of the multiview setup, self-occlusions, and regions close to the occluding boundaries are better handled, and the method is more robust to noise than photometric stereo. Experimental results are presented for simulated and real images.

  1. Analysis of the formation mechanism of the slug and jet center hole of axisymmetric shaped charges

    NASA Astrophysics Data System (ADS)

    Baoxiang, Ren; Gang, Tao; Peng, Wen; Changxing, Du; Chunqiao, Pang; Hongbo, Meng

    2018-06-01

    In the jet formation process of axisymmetric shaped charges, the slug is also formed. There is always a central hole in the symmetry axis of the jet and slug. The phenomenon was rarely mentioned and analyzed by the classical theory of shaped charges. For this problem, this paper attempts to explain the existence of the central hole in the jet and slug. Based on the analysis of recovery slug, we know that the jet and slug are in solid state in the process of formation. Through the analysis of X-flash radiographs of the stretching jet and particulation fracture, it is confirmed that the center holes in the jet are also present. Meanwhile, through the analysis of the microstructure of the recovered slug, it is found that there is a wave disturbance near the surface of the central hole. It can be speculated that the wave disturbance also exist in the jet. This effect may be one of the reasons for jet breakup. Due to the presence of the central hole in the jet, the density deficit of the jet obtained by other tests is very reasonable.

  2. Maximum volume cuboids for arbitrarily shaped in-situ rock blocks as determined by discontinuity analysis—A genetic algorithm approach

    NASA Astrophysics Data System (ADS)

    Ülker, Erkan; Turanboy, Alparslan

    2009-07-01

    The block stone industry is one of the main commercial use of rock. The economic potential of any block quarry depends on the recovery rate, which is defined as the total volume of useful rough blocks extractable from a fixed rock volume in relation to the total volume of moved material. The natural fracture system, the rock type(s) and the extraction method used directly influence the recovery rate. The major aims of this study are to establish a theoretical framework for optimising the extraction process in marble quarries for a given fracture system, and for predicting the recovery rate of the excavated blocks. We have developed a new approach by taking into consideration only the fracture structure for maximum block recovery in block quarries. The complete model uses a linear approach based on basic geometric features of discontinuities for 3D models, a tree structure (TS) for individual investigation and finally a genetic algorithm (GA) for the obtained cuboid volume(s). We tested our new model in a selected marble quarry in the town of İscehisar (AFYONKARAHİSAR—TURKEY).

  3. On the shape memory of red blood cells

    NASA Astrophysics Data System (ADS)

    Cordasco, Daniel; Bagchi, Prosenjit

    2017-04-01

    Red blood cells (RBCs) undergo remarkably large deformations when subjected to external forces but return to their biconcave discoid resting shape as the forces are withdrawn. In many experiments, such as when RBCs are subjected to a shear flow and undergo the tank-treading motion, the membrane elements are also displaced from their original (resting) locations along the cell surface with respect to the cell axis, in addition to the cell being deformed. A shape memory is said to exist if after the flow is stopped the RBC regains its biconcave shape and the membrane elements also return to their original locations. The shape memory of RBCs was demonstrated by Fischer ["Shape memory of human red blood cells," Biophys. J. 86, 3304-3313 (2004)] using shear flow go-and-stop experiments. Optical tweezer and micropipette based stretch-relaxation experiments do not reveal the complete shape memory because while the RBC may be deformed, the membrane elements are not significantly displaced from their original locations with respect to the cell axis. Here we present the first three-dimensional computational study predicting the complete shape memory of RBCs using shear flow go-and-stop simulations. The influence of different parameters, namely, membrane shear elasticity and bending rigidity, membrane viscosity, cytoplasmic and suspending fluid viscosity, as well as different stress-free states of the RBC is studied. For all cases, the RBCs always exhibit shape memory. The complete recovery of the RBC in shear flow go-and-stop simulations occurs over a time that is orders of magnitude longer than that for optical tweezer and micropipette based relaxations. The response is also observed to be more complex and composed of widely disparate time scales as opposed to only one time scale that characterizes the optical tweezer and micropipette based relaxations. We observe that the recovery occurs in three phases: a rapid compression of the RBC immediately after the flow is stopped, followed by a slow recovery to the biconcave shape combined with membrane rotation, and a final rotational return of the membrane elements back to their original locations. A fast time scale on the order of a few hundred milliseconds characterizes the initial compression phase while a slow time scale on the order of tens of seconds is associated with the rotational phase. We observe that the response is strongly dependent on the stress-free state of the cells, that is, the relaxation time decreases significantly and the mode of recovery changes from rotation-driven to deformation-driven as the stress-free state becomes more non-spherical. We show that while membrane shear elasticity and non-spherical stress-free shape are necessary and sufficient for the membrane elements to return to their original locations, bending rigidity is needed for the "global" recovery of the biconcave shape. We also perform a novel relaxation simulation in which the cell axis of revolution is not aligned with the shear plane and show that the shape memory is exhibited even when the membrane elements are displaced normal to the imposed flow direction. The results presented here could motivate new experiments to determine the exact stress-free state of the RBC and also to clearly identify different tank-treading modes.

  4. Size effects of single-walled carbon nanotubes on in vivo and in vitro pulmonary toxicity

    PubMed Central

    Fujita, Katsuhide; Fukuda, Makiko; Endoh, Shigehisa; Maru, Junko; Kato, Haruhisa; Nakamura, Ayako; Shinohara, Naohide; Uchino, Kanako; Honda, Kazumasa

    2015-01-01

    Abstract To elucidate the effect of size on the pulmonary toxicity of single-wall carbon nanotubes (SWCNTs), we prepared two types of dispersed SWCNTs, namely relatively thin bundles with short linear shapes (CNT-1) and thick bundles with long linear shapes (CNT-2), and conducted rat intratracheal instillation tests and in vitro cell-based assays using NR8383 rat alveolar macrophages. Total protein levels, MIP-1α expression, cell counts in BALF, and histopathological examinations revealed that CNT-1 caused pulmonary inflammation and slower recovery and that CNT-2 elicited acute lung inflammation shortly after their instillation. Comprehensive gene expression analysis confirmed that CNT-1-induced genes were strongly associated with inflammatory responses, cell proliferation, and immune system processes at 7 or 30 d post-instillation. Numerous genes were significantly upregulated or downregulated by CNT-2 at 1 d post-instillation. In vitro assays demonstrated that CNT-1 and CNT-2 SWCNTs were phagocytized by NR8383 cells. CNT-2 treatment induced cell growth inhibition, reactive oxygen species production, MIP-1α expression, and several genes involved in response to stimulus, whereas CNT-1 treatment did not exert a significant impact in these regards. These results suggest that SWCNTs formed as relatively thin bundles with short linear shapes elicited delayed pulmonary inflammation with slower recovery. In contrast, SWCNTs with a relatively thick bundle and long linear shapes sensitively induced cellular responses in alveolar macrophages and elicited acute lung inflammation shortly after inhalation. We conclude that the pulmonary toxicity of SWCNTs is closely associated with the size of the bundles. These physical parameters are useful for risk assessment and management of SWCNTs. PMID:25865113

  5. Fundamental Study on Self-healing Insulation Performance of Silicone Rubber Affected by Local Breakdown

    NASA Astrophysics Data System (ADS)

    Hozumi, Naohiro; Nishioka, Koji; Suematsu, Takeshi; Murakami, Yoshinobu; Nagao, Masayuki; Sakata, Hiroshi

    Feasibility of self-healing insulation system was studied. A silicone rubber without filler was mounted on a glass substrate with a needle electrode. An ac voltage with 4 kV in rms was applied. The voltage was cut off when the tree had propagated into 150 micrometers in length. After the cut-off, the partial discharge inception voltage was periodically observed. The partial discharge inception voltage had once reduced into as low as 2 kV. However, it gradually increased with time, and finally exceeded the tree inception voltage (4 kV) when 30 - 60 hours had passed. It was also observed by optical microscope that the tree gradually disappeared in parallel with the recovery of the partial discharge inception voltage. The same phenomenon was observed even if 1 kV ac voltage had been continuously applied during the process of the recovery. A simulation using a needle-shaped void was performed in order to clarify the mechanism of the self-healing effect. It was observed that the tip of the needle-shaped void gradually got wet with a liquid material. It would be the result of "bleed-out" of the low molecular component included in the rubber. The tip of the void was finally filled with the liquid, however, the rest of the needle-shaped void stayed without being filled. In this type of tree, it was suggested that the self-healing effect is expected if the diameter of the tree did not exceed ca. 5 micrometers.

  6. Characterization of Nonlinear Rate Dependent Response of Shape Memory Polymers

    NASA Technical Reports Server (NTRS)

    Volk, Brent; Lagoudas, Dimitris C.; Chen, Yi-Chao; Whitley, Karen S.

    2007-01-01

    Shape Memory Polymers (SMPs) are a class of polymers, which can undergo deformation in a flexible state at elevated temperatures, and when cooled below the glass transition temperature, while retaining their deformed shape, will enter and remain in a rigid state. Upon heating above the glass transition temperature, the shape memory polymer will return to its original, unaltered shape. SMPs have been reported to recover strains of over 400%. It is important to understand the stress and strain recovery behavior of SMPs to better develop constitutive models which predict material behavior. Initial modeling efforts did not account for large deformations beyond 25% strain. However, a model under current development is capable of describing large deformations of the material. This model considers the coexisting active (rubber) and frozen (glass) phases of the polymer, as well as the transitions between the material phases. The constitutive equations at the continuum level are established with internal state variables to describe the microstructural changes associated with the phase transitions. For small deformations, the model reduces to a linear model that agrees with those reported in the literature. Thermomechanical characterization is necessary for the development, calibration, and validation of a constitutive model. The experimental data reported in this paper will assist in model development by providing a better understanding of the stress and strain recovery behavior of the material. This paper presents the testing techniques used to characterize the thermomechanical material properties of a shape memory polymer (SMP) and also presents the resulting data. An innovative visual-photographic apparatus, known as a Vision Image Correlation (VIC) system was used to measure the strain. The details of this technique will also be presented in this paper. A series of tensile tests were performed on specimens such that strain levels of 10, 25, 50, and 100% were applied to the material while it was above its glass transition temperature. After deforming the material to a specified applied strain, the material was then cooled to below the glass transition temperature (Tg) while retaining the deformed shape. Finally, the specimen was heated again to above the transition temperature, and the resulting shape recovery profile was measured. Results show that strain recovery occurs at a nonlinear rate with respect to time. Results also indicate that the ratio of recoverable strain/applied strain increases as the applied strain increases.

  7. Shape Memory Silk Protein Sponges for Minimally Invasive Tissue Regeneration.

    PubMed

    Brown, Joseph E; Moreau, Jodie E; Berman, Alison M; McSherry, Heather J; Coburn, Jeannine M; Schmidt, Daniel F; Kaplan, David L

    2017-01-01

    Porous silk protein scaffolds are designed to display shape memory characteristics and volumetric recovery following compression. Two strategies are utilized to realize shape recovery: addition of hygroscopic plasticizers like glycerol, and tyrosine modifications with hydrophilic sulfonic acid chemistries. Silk sponges are evaluated for recovery following 80% compressive strain, total porosity, pore size distribution, secondary structure development, in vivo volume retention, cell infiltration, and inflammatory responses. Glycerol-modified sponges recover up to 98.3% of their original dimensions following compression, while sulfonic acid/glycerol modified sponges swell in water up to 71 times their compressed volume, well in excess of their original size. Longer silk extraction times (lower silk molecular weights) and higher glycerol concentrations yielded greater flexibility and shape fidelity, with no loss in modulus following compression. Sponges are over 95% porous, with secondary structure analysis indicating glycerol-induced β-sheet physical crosslinking. Tyrosine modifications with sulfonic acid interfere with β-sheet formation. Glycerol-modified sponges exhibit improved rates of cellular infiltration at subcutaneous implant sites with minimal immune response in mice. They also degrade more rapidly than unmodified sponges, a result posited to be cell-mediated. Overall, this work suggests that silk sponges may be useful for minimally invasive deployment in soft tissue augmentation procedures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Interactions of forest disturbance-recovery dynamics with a changing climate

    NASA Astrophysics Data System (ADS)

    Anderson-Teixeira, K. J.; Miller, A. D.; Tepley, A. J.; Bennett, A. C.; Wang, M.

    2015-12-01

    As the climate changes, altered disturbance-recovery dynamics in forests worldwide are likely to result in significant biogeochemical and biophysical feedbacks to the climate system. Climate shapes forest disturbance events including tree mortality and fire, with consequent climate feedbacks. For instance, in forests globally, drought increases tree mortality rates, having a stronger impact on larger trees and resulting in greater feedbacks to climate change than would occur if drought sensitivities were equal across tree size classes. Forest regeneration and associated biogeochemical and biophysical feedbacks are also shaped by climate: across the tropics the rate of biomass accumulation is faster in everwet than in seasonally dry climates, and in the Klamath region (N California / S Oregon), post-fire vegetation dynamics and microclimate are shaped by aridity. Forest recovery dynamics will be affected by elevated CO2 and climate change; for instance, models predict that forest regeneration rate, successional dynamics, and climate feedbacks will all be altered under elevated CO2. In combination, climatic impacts on disturbance and recovery can result in dramatic shifts in forest cover on the landscape level. For instance, in fire-prone forested landscapes, forest cover decreases with increasing frequency of high-severity fire and decreasing forest recovery rate, both of which could be altered by climate change, producing rapid loss of forest on the landscape level. Such effects may be amplified by the existence of alternative stable states, which can cause systems to experience non-reversible changes in cover type. Critical transitions in landscape-level forest cover would have significant biogeochemical and biophysical feedbacks. Thus, altered disturbance-recovery dynamics under a changing climate may have sudden and dramatic impacts on forest-climate interactions.

  9. Durability of carbon fiber reinforced shape memory polymer composites in space

    NASA Astrophysics Data System (ADS)

    Jang, Joon Hyeok; Hong, Seok Bin; Ahn, Yong San; Kim, Jin-Gyun; Nam, Yong-Youn; Lee, Geun Ho; Yu, Woong-Ryeol

    2016-04-01

    Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Recently, shape memory polymer composites (SMPCs) have been considered for space structure instead of shape memory alloys due to their deformability, lightweight and large recovery ratio, requiring characterization of their mechanical properties against harsh space environment and further prediction of the durability of SMPCs in space. As such, the durability of carbon fiber reinforced shape memory polymer composites (CF-SMPCs) was investigated using accelerated testing method based on short-term testing of CF-SMPCs in harsh condition. CF-SMPCs were prepared using woven carbon fabrics and a thermoset SMP via vacuum assisted resin transfer molding process. Bending tests with constant strain rate of CF-SMPCs were conducted using universal tensile machine (UTM) and Storage modulus test were conducted using dynamic mechanical thermal analysis (DMTA). Using the results, a master curve based on time-temperature superposition principle was then constructed, through which the mechanical properties of CF-SMPCs at harsh temperature were predicted. CF-SMPCs would be exposed to simulated space environments under ultra-violet radiations at various temperatures. The mechanical properties including flexural and tensile strength and shape memory properties of SMPCs would be measured using UTM before and after such exposures for comparison. Finally, the durability of SMPCs in space would be assessed by developing a degradation model of SMPC.

  10. Novel Spectral Representations and Sparsity-Driven Algorithms for Shape Modeling and Analysis

    NASA Astrophysics Data System (ADS)

    Zhong, Ming

    In this dissertation, we focus on extending classical spectral shape analysis by incorporating spectral graph wavelets and sparsity-seeking algorithms. Defined with the graph Laplacian eigenbasis, the spectral graph wavelets are localized both in the vertex domain and graph spectral domain, and thus are very effective in describing local geometry. With a rich dictionary of elementary vectors and forcing certain sparsity constraints, a real life signal can often be well approximated by a very sparse coefficient representation. The many successful applications of sparse signal representation in computer vision and image processing inspire us to explore the idea of employing sparse modeling techniques with dictionary of spectral basis to solve various shape modeling problems. Conventional spectral mesh compression uses the eigenfunctions of mesh Laplacian as shape bases, which are highly inefficient in representing local geometry. To ameliorate, we advocate an innovative approach to 3D mesh compression using spectral graph wavelets as dictionary to encode mesh geometry. The spectral graph wavelets are locally defined at individual vertices and can better capture local shape information than Laplacian eigenbasis. The multi-scale SGWs form a redundant dictionary as shape basis, so we formulate the compression of 3D shape as a sparse approximation problem that can be readily handled by greedy pursuit algorithms. Surface inpainting refers to the completion or recovery of missing shape geometry based on the shape information that is currently available. We devise a new surface inpainting algorithm founded upon the theory and techniques of sparse signal recovery. Instead of estimating the missing geometry directly, our novel method is to find this low-dimensional representation which describes the entire original shape. More specifically, we find that, for many shapes, the vertex coordinate function can be well approximated by a very sparse coefficient representation with respect to the dictionary comprising its Laplacian eigenbasis, and it is then possible to recover this sparse representation from partial measurements of the original shape. Taking advantage of the sparsity cue, we advocate a novel variational approach for surface inpainting, integrating data fidelity constraints on the shape domain with coefficient sparsity constraints on the transformed domain. Because of the powerful properties of Laplacian eigenbasis, the inpainting results of our method tend to be globally coherent with the remaining shape. Informative and discriminative feature descriptors are vital in qualitative and quantitative shape analysis for a large variety of graphics applications. We advocate novel strategies to define generalized, user-specified features on shapes. Our new region descriptors are primarily built upon the coefficients of spectral graph wavelets that are both multi-scale and multi-level in nature, consisting of both local and global information. Based on our novel spectral feature descriptor, we developed a user-specified feature detection framework and a tensor-based shape matching algorithm. Through various experiments, we demonstrate the competitive performance of our proposed methods and the great potential of spectral basis and sparsity-driven methods for shape modeling.

  11. Preparation and Characterization of Nitinol Bone Staples for Cranio-Maxillofacial Surgery

    NASA Astrophysics Data System (ADS)

    Lekston, Z.; Stróż, D.; Jędrusik-Pawłowska, M.

    2012-12-01

    The aim of this work was to form NiTi and TiNiCo body temperature activated and superelastic staples for clinical joining of mandible and face bone fractures. The alloys were obtained by VIM technique. Hot and cold processing was applied to obtain wires of required diameters. The martensitic transformation was studied by DSC, XRD, and TEM. The shape memory effects were measured by a bend and free recovery ASTM F2082-06 test. The superelasticity was recorded in the tension stress-strain and by the three-point bending cycles in an instrument equipped with a Hottinger force transducer and LVDT. Excellent superelastic behavior of TiNiCo wires was obtained after cold working and annealing at 400-500 °C. The body temperature activated shape memory staples were applied for fixation of mandibular condyle fractures. In experiments on the skull models, fixation of the facial fractures by using shape memory and superelastic staples were compared. The superelastic staples were used in osteosynthesis of zygomatico-maxillo-orbital fractures.

  12. Shear Recovery Accuracy in Weak-Lensing Analysis with the Elliptical Gauss-Laguerre Method

    NASA Astrophysics Data System (ADS)

    Nakajima, Reiko; Bernstein, Gary

    2007-04-01

    We implement the elliptical Gauss-Laguerre (EGL) galaxy-shape measurement method proposed by Bernstein & Jarvis and quantify the shear recovery accuracy in weak-lensing analysis. This method uses a deconvolution fitting scheme to remove the effects of the point-spread function (PSF). The test simulates >107 noisy galaxy images convolved with anisotropic PSFs and attempts to recover an input shear. The tests are designed to be immune to statistical (random) distributions of shapes, selection biases, and crowding, in order to test more rigorously the effects of detection significance (signal-to-noise ratio [S/N]), PSF, and galaxy resolution. The systematic error in shear recovery is divided into two classes, calibration (multiplicative) and additive, with the latter arising from PSF anisotropy. At S/N > 50, the deconvolution method measures the galaxy shape and input shear to ~1% multiplicative accuracy and suppresses >99% of the PSF anisotropy. These systematic errors increase to ~4% for the worst conditions, with poorly resolved galaxies at S/N simeq 20. The EGL weak-lensing analysis has the best demonstrated accuracy to date, sufficient for the next generation of weak-lensing surveys.

  13. Transitions from biomedical to recovery-oriented practices in mental health: a scoping review to explore the role of Internet-based interventions.

    PubMed

    Strand, Monica; Gammon, Deede; Ruland, Cornelia M

    2017-04-07

    The Internet is transforming mental health care services by increasing access to, and potentially improving the quality of, care. Internet-based interventions in mental health can potentially play a role in transitions from biomedical to recovery-oriented research and practices, but an overview of what this may entail, current work, and issues that need addressing, is lacking. The objective of this study is to describe Internet-based recovery-oriented interventions (referred to as e-recovery) and current research, and to identify gaps and issues relevant to advancing recovery research and practices through opportunities provided by the Internet. Five iterative stages of a scoping review framework were followed in searching and analyzing the literature. A recovery framework with four domains and 16 themes was used to deductively code intervention characteristics according to their support for recovery-oriented practices. Only Internet-based interventions used in conjunction with ongoing care were included. Twenty studies describing six e-recovery interventions were identified and originated in Australia, Finland, the Netherlands, Norway and USA. The domain supporting personal recovery was most clearly reflected in interventions, whereas the last three domains, i.e., promoting citizenship, organizational commitment and working relationship were less evident. Support for the formulation and follow-up of personal goals and preferences, and in accessing peer-support, were the characteristics shared by most interventions. Three of the six studies that employed a comparison group used randomization, and none presented definitive findings. None used recovery-oriented frameworks or specific recovery outcome measures. Four of the interventions were specific to a diagnosis. Research about how technologies might aid in illuminating and shaping recovery processes is in its formative stages. We recommend that future e-recovery research and innovation attend to four dimensions: evidence-supported interventions, new knowledge about personal recovery, values-based approaches and Internet as a facilitator for organizational transformation. The incremental changes facilitated by e-recovery may help propel a shift in mental health care toward recovery-oriented practices.

  14. 3D Printed Silicones with Shape Memory

    DOE PAGES

    Wu, Amanda S.; Small IV, Ward; Bryson, Taylor M.; ...

    2017-07-05

    Direct ink writing enables the layer-by-layer manufacture of ordered, porous structures whose mechanical behavior is driven by architecture and material properties. Here, we incorporate two different gas filled microsphere pore formers to evaluate the effect of shell stiffness and T g on compressive behavior and compression set in siloxane matrix printed structures. The lower T g microsphere structures exhibit substantial compression set when heated near and above T g, with full structural recovery upon reheating without constraint. By contrast, the higher T g microsphere structures exhibit reduced compression set with no recovery upon reheating. Aside from their role in tuningmore » the mechanical behavior of direct ink write structures, polymer microspheres are good candidates for shape memory elastomers requiring structural complexity, with potential applications toward tandem shape memory polymers.« less

  15. 3D Printed Silicones with Shape Memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Amanda S.; Small IV, Ward; Bryson, Taylor M.

    Direct ink writing enables the layer-by-layer manufacture of ordered, porous structures whose mechanical behavior is driven by architecture and material properties. Here, we incorporate two different gas filled microsphere pore formers to evaluate the effect of shell stiffness and T g on compressive behavior and compression set in siloxane matrix printed structures. The lower T g microsphere structures exhibit substantial compression set when heated near and above T g, with full structural recovery upon reheating without constraint. By contrast, the higher T g microsphere structures exhibit reduced compression set with no recovery upon reheating. Aside from their role in tuningmore » the mechanical behavior of direct ink write structures, polymer microspheres are good candidates for shape memory elastomers requiring structural complexity, with potential applications toward tandem shape memory polymers.« less

  16. An observational study investigating the association of ultrasonographically assessed machine milking-induced changes in teat condition and teat-end shape in dairy cows.

    PubMed

    Wieland, M; Virkler, P D; Borkowski, A H; Älveby, N; Wood, P; Nydam, D V

    2018-06-21

    Mechanical forces during machine milking induce changes in teat condition which can be differentiated into short-term and long-term changes. Machine milking-induced short-term changes in teat condition (STC) are defined as tissue responses to a single milking and have been associated with the risk of new intramammary infection. Albeit, their association with teat characteristics, such as teat-end shape, has not been investigated by rigorous methods. The primary objective was to determine the association of STC, as measured by ultrasonography, with teat-end shape. The second objective was to describe possible differences in the recovery time of teat tissue after machine milking among teats with different teat-end shapes. Holstein cows (n=128) were enrolled in an observational study, housed in free-stall pens with sand bedding and milked three times a day. Ultrasonography of the left front and right hind teat was performed after teat preparation before milking (t-1), immediately after milking (t 0) and 1, 3, 5 and 7 h after milking (t 1, t 3, t 5, t 7). The teat tissue parameters measured from ultrasound scans were teat canal length, teat-end diameter, teat-end diameter at the midpoint between the distal and proximal end of the teat canal, teat wall thickness, and teat cistern width. Teat-end shape was assessed visually and classified into three categories: pointed, flat and round. Multivariable linear regression analyses showed differences in the relative change of teat tissue parameters (compared with t-1) at t 0 among teats with different teat-end shapes, with most parameters showing the largest change for round teats. The premilking values were reached (recovery time) after 7 h in teats with a pointed teat-end shape, whereas recovery time was greater than 7 h in teats with flat and round teat-end shapes. Under the same liner and milking machine conditions, teats with a round teat-end shape had the most severe short-term changes. The results of this observational study indicated that teat-end shape may be one of the factors that contribute to the severity of STC.

  17. On the Recovery Stress of a Ni50.3Ti29.7Hf20 High Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Benafan, O.; Noebe, R. D.; Padula, S. A., II; Bigelow, G. S.; Gaydosh, D. J.; Garg, A.; Halsmer, T. J.

    2015-01-01

    Recovery stress in shape memory alloys (SMAs), also known as blocking stress, is an important property generally obtained during heating under a dimensional constraint as the material undergoes the martensitic phase transformation. This property has been instinctively utilized in most SMA shape-setting procedures, and has been used in numerous applications such as fastening and joining, rock splitting, safety release mechanisms, reinforced composites, medical devices, and many other applications. The stress generation is also relevant to actuator applications where jamming loads (e.g., in case the actuator gets stuck and is impeded from moving) need to be determined for proper hardware sizing. Recovery stresses in many SMA systems have been shown to reach stresses in the order of 800 MPa, achieved via thermo-mechanical training such as pre-straining, heat treatments or other factors. With the advent of high strength, high temperature SMAs, recovery stress data has been rarely probed, and there is no information pertinent to the magnitudes of these stresses. Thus, the purpose of this work is to investigate the recovery stress capability of a precipitation strengthened, Ni50.3Ti29.7Hf20 (at.) high temperature SMA in uniaxial tension and compression. This material has been shown to exhibit outstanding strength and stability during constant-stress, thermal cycling, but no data exists on constant-strain thermal cycling. Several training routines were implemented as part of this work including isothermal pre-straining, isobaric thermal cycling, and isothermal cyclic training routines. Regardless of the training method used, the recovery stress was characterized using constant-strain (strain-controlled condition) thermal cycling between the upper and lower cycle temperatures. Preliminary results indicate recovery stresses in excess of 1.5 GPa were obtained after a specific training routine. This stress magnitude is significantly higher than conventional NiTi stress generation capability.

  18. Preparation and evaluation of ageing effect of Cu-Al-Be-Mn shape memory alloys

    NASA Astrophysics Data System (ADS)

    Shivasiddaramaiah, A. G.; Mallik, U. S.; Mahato, Ranjit; Shashishekar, C.

    2018-04-01

    10-14 wt. % of aluminum, 0.3-0.6 wt. % of beryllium and 0.1-0.4 wt. % of manganese and remaining copper melted in the induction furnace through ingot metallurgy. The prepared SMAs are subjected to homogenization. It was observed that the samples exhibits β-phase at high temperature and shape memory effect after going through step quenching to a low temperature. Scanning Electron Microscope, DSC, bending test were performed on the samples to determine the microstructure, transformation temperatures and shape memory effect respectively. The alloy exhibit good shape memory effect, up to around 96% strain recovery by shape memory effect. The ageing is performed on the specimen prepared according to ASTM standard for testing micro-hardness and tensile test. Precipitation hardening method was employed to age the samples and they were aged at different temperature and at different times followed by quenching. Various forms of precipitates were formed. It was found that the formation rate and transformation temperature increased with ageing time, while the amount of precipitate had an inverse impact on strain recovery by shape memory effect. The result expected is to increase in mechanical properties of the material such as hardness.

  19. Dark recovery of uv-irradiated phage TI. I. A minor recovery effect whose exclusion permits the study of survival kinetics under presumably repairless conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harm, W.

    1973-12-01

    The survival of uv-irradiated phage Tl is much lower in excision repair- deficient than in excision repair-proficient E.coli cells, due to lack of host ceH reactivation (HCR). sn additional decrease in phage survival occurs when repair-deficient (HCR-) host cells have been exposed to uv doses from 3000 to 10,000 erg mm/-sup 2/ of 254 nm uv radiation prior to infection. The observed effect is attributed to loss of a minor phage recovery process, which requires neither the bacterial excision repair nor the bacterial REC repair system. This type of recovery is little affected by caffeine or acriflavine at concentrations thatmore » preclude HCR completely. Its full inhibition by uv-irradiation of the cells requires on approximately 8 times larger dose than complete inhibition of HCR. In heavily preirradiated cells, the TI burst size is extremely small and multiplicity reactivation is considerably less extensive than in unirradiated cells. Presumably the survival of singly infecting Tl in these cells reflects absence of any type of repair. The observed phage sensitivity and shape of the curve are compatible with the expectation for completely repairless conditions. The mechanism underlying the minor recovery is not known; theoretical considerations make a phage REC repair mechanism seem likely. (auth)« less

  20. Investigation of residual stresses in shape memory alloy (SMA) composites

    NASA Astrophysics Data System (ADS)

    Berman, Justin Bradley

    Shape memory alloy (SMA) composites are a class of smart materials in which SMA actuators are embedded in a host matrix. The shape memory effect allows for stress induced phase transformations and large recoverable strains that make SMA composites promising candidates for structural shape/vibration control, impact absorption, aircraft deicing or in-flight airfoil shape control systems. However, the difference in thermal expansion between the SMA and the host material leads to residual stresses during processing. In addition, the SMA transformation from martensite to austenite, or the reverse, also generate stresses. These stresses acting in combination can lead to SMA/polymer interfacial debonding or microcracking of the host matrix. The present work was undertaken to study the behavior of nitinol shape memory alloys embedded in epoxy and glass/epoxy matrices and to investigate the development of residual stresses during their manufacture and actuation. A three-phase concentric cylinder micromechanics model and an SMA composite thermoelastic beam theory were developed to analyze the micromechanical and structural-level thermal and transformational stresses for nitinol composites induced by nitinol wires embedded in a host matrix. A series of warpage experiments were conducted on nitinol composite beams during heating cycles to provide experimental validation of model predictions and to assess their thermoelastic structural behavior under non-mechanical loading. Micromechanical model results indicate that excessive residual hoop stresses in nitino/graphite/epoxy composites leads to radial cracking around the embedded nitinol wires. Based on modeling results, the most important factor in reducing residual stresses (and thereby preventing radial cracking) is increasing the level of recovery strain for the nitinol wire. The SMA composite beam model agrees well with experimental data captured for the nitinol/epoxy beam series. Warpage experiments on nitinol/glass/epoxy beams showed a large increase in the effective austenitic start temperature (As) of 9.3°C. The elevation of the effective As together with other observations of warpage development indicates that plastic flow may have occurred in nitinol wires when embedded in glass/epoxy. These observations reinforce the need to train nitinol wires at modest recovery levels when embedding in relatively stiff materials.

  1. Introduction to the special section on communication and wartime deployment.

    PubMed

    Maguire, Katheryn C; Wilson, Steven R

    2013-01-01

    Over the past decade, the wars in Iraq and Afghanistan have taken a heavy toll on the physical, psychological, and relational health of military service members and their families. The articles included in this special section of Health Communication add to the robust, interdisciplinary body of research on the health consequences of wartime deployment by examining how communication enables the recovery process of service members and their families. Because communication processes can signal health problems, construct and promote family resiliency, and shape the content and delivery of health interventions, our discipline's theory and research can help inform ongoing efforts to support military families as the wars in Iraq and Afghanistan wind down.

  2. Effects of inflammation on social processes and implications for health.

    PubMed

    Moieni, Mona; Eisenberger, Naomi I

    2018-05-28

    Although at first glance inflammation and social behavior may appear unrelated, research points to an important role for inflammation in shaping social processes. This review summarizes findings in this field, specifically highlighting work that provides support for the idea that inflammation can lead to (1) increases in sensitivity to negative, threatening social experiences and (2) increases in sensitivity to positive, socially rewarding experiences. These diverging sensitivities in response to inflammation may depend on context and be adaptive for recuperation and recovery from illness. This review also discusses the implications of these findings for health and future research, including implications for depression, loneliness, and inflammatory disorders. © 2018 New York Academy of Sciences.

  3. Correlation between Mechanical Behavior and Actuator-type Performance of Ni-Ti-Pd High-temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Padula, Santo A., II; Garg, Anita; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests.

  4. The confining effectiveness of NiTiNb and NiTi SMA wire jackets for concrete

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Chung, Young-Soo; Choi, Jun-Hyeok; Kim, Hong-Taek; Lee, Hacksoo

    2010-03-01

    The purpose of this study is to assess the confining effectiveness of shape memory alloy (SMA) wire jackets for concrete. The performance of SMA wire jackets was compared to that of steel jackets. A prestrained martensitic SMA wire was wrapped around a concrete cylinder and then heated by a heating jacket. In the process, a confining stress around the cylinder was developed in the SMA wire due to the shape memory effect; this jacketing method can increase the strength and ductility of the cylinder under an axial compressive load. In this study, NiTi and NiTiNb SMA wires of 1.0 mm in diameter were used for the confinement. Recovery tests were conducted on the wires to assess their recovery and residual stress. The confinement by SMA wire jackets increased the strength slightly and greatly increased the ductility compared to the strength and ductility of plain concrete cylinders. The NiTiNb SMA wire jacket showed better performance than that of the NiTi SMA wire jacket. The confining effectiveness of the SMA wire jackets of this study was estimated to be similar to that of the steel jackets. This study showed the potential of the SMA wire jacketing method to retrofit reinforced concrete columns and protect them from seismic risks.

  5. Correlation between mechanical behavior and actuator-type performance of Ni-Ti-Pd high-temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Bigelow, Glen S.; Padula, Santo A., II; Garg, Anita; Noebe, Ronald D.

    2007-04-01

    High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests.

  6. A 3D-engineered porous conduit for peripheral nerve repair

    PubMed Central

    Tao, Jie; Hu, Yu; Wang, Shujuan; Zhang, Jiumeng; Liu, Xuan; Gou, Zhiyuan; Cheng, Hao; Liu, Qianqi; Zhang, Qianqian; You, Shenglan; Gou, Maling

    2017-01-01

    End-to-end neurorrhaphy is the most commonly used method for treating peripheral nerve injury. However, only 50% of patients can regain useful function after treating with neurorrhaphy. Here, we constructed a 3D-engineered porous conduit to promote the function recovery of the transected peripheral nerve after neurorrhaphy. The conduit that consisted of a gelatin cryogel was prepared by molding with 3D-printed moulds. Due to its porous structure and excellent mechanical properties, this conduit could be collapsed by the mechanical force and resumed its original shape after absorption of normal saline. This shape-memory property allowed a simply surgery process for installing the conduits. Moreover, the biodegradable conduit could prevent the infiltration of fibroblasts and reduce the risk of scar tissue, which could provide an advantageous environment for nerve regeneration. The efficiency of the conduits in assisting peripheral nerve regeneration after neurorrhaphy was evaluated in a rat sciatic nerve transected model. Results indicated that conduits significantly benefitted the recovery of the transected peripheral nerve after end-to-end neurorrhaphy on the static sciatic index (SSI), electrophysiological results and the re-innervation of the gastrocnemius muscle. This work demonstrates a biodegradable nerve conduit that has potentially clinical application in promoting the neurorrhaphy. PMID:28401914

  7. Fabrication and characterization of compositionally-graded shape memory alloy films

    NASA Astrophysics Data System (ADS)

    Cole, Daniel Paul

    2009-12-01

    The miniaturization of engineering devices has created interest in new actuation methods capable of high power and high frequency responses. Shape memory alloy (SMA) thin films have exhibited one of the highest power densities of any material used in these actuation schemes. However, they currently require complex thermomechanical training in order to be actuated, which becomes more difficult as devices approach the microscale. Previous studies have indicated that SMA films with compositional gradients have the added feature of an intrinsic two-way shape memory effect (SME). In this work, a new method for processing and characterizing compositionally-graded transformable thin films is presented. Graded NiTi SMA films were processed using magnetron sputtering. Single and multilayer graded films were deposited onto bulk NiTi substrates and single crystal silicon substrates, respectively. Annealing the films naturally produced a compositional gradient across the film-substrate or film-film interface through diffusion modification. The films were directly characterized using a combination of atomic force microscopy (AFM), x-ray diffraction and Auger electron spectroscopy. The compositional gradient was indirectly characterized by measuring the variation in mechanical properties as a function of depth using nanoindentation. The similarity of the indentation response on graded films of varying thickness was used to estimate the width of the graded interface. The nanoindentation response was predicted using an analysis that accounted for the transformation effects occurring under the tip during loading and the variation of elastic modulus resulting from the compositional gradient. The recovery mechanisms of the graded films are compared with homogeneous films using a new nanoscale technique. An AFM integrated with a heating and cooling stage was used to observe the recovery of inelastic deformation caused through nanoindentation. The graded films exhibited a two-way SME with a reduced hysteresis, while the homogeneous films exhibited the classical one-way SME. The fabrication and characterization techniques developed in this work have the potential to be applied to general graded and multi-layer film systems.

  8. A novel method for the photographic recovery of fingermark impressions from ammunition cases using digital imaging.

    PubMed

    Porter, Glenn; Ebeyan, Robert; Crumlish, Charles; Renshaw, Adrian

    2015-03-01

    The photographic preservation of fingermark impression evidence found on ammunition cases remains problematic due to the cylindrical shape of the deposition substrate preventing complete capture of the impression in a single image. A novel method was developed for the photographic recovery of fingermarks from curved surfaces using digital imaging. The process involves the digital construction of a complete impression image made from several different images captured from multiple camera perspectives. Fingermark impressions deposited onto 9-mm and 0.22-caliber brass cartridge cases and a plastic 12-gauge shotgun shell were tested using various image parameters, including digital stitching method, number of images per 360° rotation of shell, image cropping, and overlap. The results suggest that this method may be successfully used to recover fingermark impression evidence from the surfaces of ammunition cases or other similar cylindrical surfaces. © 2014 American Academy of Forensic Sciences.

  9. Multimaterial 4D Printing with Tailorable Shape Memory Polymers

    PubMed Central

    Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K.; Fang, Nicholas X.; Dunn, Martin L.

    2016-01-01

    We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures. PMID:27499417

  10. Programmable and Shape-Memorizing Information Carriers.

    PubMed

    Li, Wenbing; Liu, Yanju; Leng, Jinsong

    2017-12-27

    Shape memory polymers (SMPs) are expected to play more and more important roles in space-deployable structures, smart actuators, and other high-tech areas. Nevertheless, because of the difficulties in fabrication and the programmability of temporary shape recovery, SMPs have not yet been widely applied in real fields. It is ideal to incorporate the different independent functional building blocks into a material. Herein, we designed a simple method to incorporate four functional building blocks: a neat epoxy-based shape memory (neat SMEP) resin, an SMEP composited with Fe 3 O 4 (SMEP-Fe 3 O 4 ), an SMEP composited with multiwalled carbon nanotubes, and an SMEP composited with p-aminodiphenylimide into a multicomposite, in which the four region surfaces could be programmed with different language code patterns according to a preset command by imprint lithography. Then, we aimed to reprogram the initially raised code patterns into temporary flat patterns using programming mold that, when triggered by a preset stimulus process such as an alternating magnetic field, radiofrequency field, 365 nm UV, and direct heating, could transform these language codes into the information passed by the customer. The concept introduced here will be applied to other available SMPs and provide a practical method to realize the information delivery.

  11. Low temperature nickel titanium iron shape memory alloys: Actuator engineering and investigation of deformation mechanisms using in situ neutron diffraction at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Krishnan, Vinu B.

    Shape memory alloys are incorporated as actuator elements due to their inherent ability to sense a change in temperature and actuate against external loads by undergoing a shape change as a result of a temperature-induced phase transformation. The cubic so-called austenite to the trigonal so-called R-phase transformation in NiTiFe shape memory alloys offers a practical temperature range for actuator operation at low temperatures, as it exhibits a narrow temperature-hysteresis with a desirable fatigue response. Overall, this work is an investigation of selected science and engineering aspects of low temperature NiTiFe shape memory alloys. The scientific study was performed using in situ neutron diffraction measurements at the newly developed low temperature loading capability on the Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory and encompasses three aspects of the behavior of Ni46.8Ti50Fe3.2 at 92 K (the lowest steady state temperature attainable with the capability). First, in order to study deformation mechanisms in the R-phase in NiTiFe, measurements were performed at a constant temperature of 92 K under external loading. Second, with the objective of examining NiTiFe in one-time, high-stroke, actuator applications (such as in safety valves), a NiTiFe sample was strained to approximately 5% (the R-phase was transformed to B19' phase in the process) at 92 K and subsequently heated to full strain recovery under a load. Third, with the objective of examining NiTiFe in cyclic, low-stroke, actuator applications (such as in cryogenic thermal switches), a NiTiFe sample was strained to 1% at 92 K and subsequently heated to full strain recovery under load. Neutron diffraction spectra were recorded at selected time and stress intervals during these experiments. The spectra were subsequently used to obtain quantitative information related to the phase-specific strain, texture and phase fraction evolution using the Rietveld technique. The mechanical characterization of NiTiFe alloys using the cryogenic capability at SMARTS provided considerable insight into the mechanisms of phase transformation and twinning at cryogenic temperatures. Both mechanisms contribute to shape memory and pseudoelasticity phenomena. Three phases (R, B19' and B33 phases) were found to coexist at 92 K in the unloaded condition (nominal holding stress of 8 MPa). For the first time the elastic modulus of R-phase was reported from neutron diffraction experiments. Furthermore, for the first time a base-centered orthorhombic (B33) martensitic phase was identified experimentally in a NiTi-based shape memory alloy. The orthorhombic B33 phase has been theoretically predicted in NiTi from density function theory (DFT) calculations but hitherto has never been observed experimentally. The orthorhombic B33 phase was observed while observing shifting of a peak (identified to be {021}B33) between the {111}R and {100}B19' peaks in the diffraction spectra collected during loading. Given the existing ambiguity in the published literature as to whether the trigonal R-phase belongs to the P3 or P3¯ space groups, Rietveld analyses were separately carried out incorporating the symmetries associated with both space groups and the impact of this choice evaluated. The constrained recovery of the B19' phase to the R-phase recorded approximately 4% strain recovery between 150 K and 170 K, with half of that recovery occurring between 160 K and 162 K. Additionally, the aforementioned research methodology developed for Ni46.8Ti50Fe3.2 shape memory alloys was applied to experiments performed on a new high temperature Ni 29.5Ti50.5Pd20 shape memory alloys. The engineering aspect focused on the development of (i) a NiTiFe based thermal conduction switch that minimized the heat gradient across the shape memory actuator element, (ii) a NiTiFe based thermal conduction switch that incorporated the actuator element in the form of helical springs, and (iii) a NiTi based release mechanism. Patents are being filed for all the three shape memory actuators developed as a part of this work. This work was supported by grants from SRI, NASA (NAG3-2751) and NSF (CAREER DMR-0239512) to UCF. Additionally, this work benefited from the use of the Lujan Center at the Los Alamos Neutron Science Center, funded by the United States Department of Energy, Office of Basic Energy Sciences, under Contract No. W-7405-ENG-36.

  12. Astrocyte activation and wound healing in intact-skull mouse after focal brain injury.

    PubMed

    Suzuki, Takayuki; Sakata, Honami; Kato, Chiaki; Connor, John A; Morita, Mitsuhiro

    2012-12-01

    Localised brain tissue damage activates surrounding astrocytes, which significantly influences subsequent long-term pathological processes. Most existing focal brain injury models in rodents employ craniotomy to localise mechanical insults. However, the craniotomy procedure itself induces gliosis. To investigate perilesional astrocyte activation under conditions in which the skull is intact, we created focal brain injuries using light exposure through a cranial window made by thinning the skull without inducing gliosis. The lesion size was maximal at ~ 12 h and showed substantial recovery over the subsequent 30 days. Two distinct types of perilesional reactive astrocyte, identified by GFAP upregulation and hypertrophy, were found. In proximal regions the reactive astrocytes proliferated and expressed nestin, whereas in regions distal to the injury core the astrocytes showed increased GFAP expression but did not proliferate, lacked nestin expression, and displayed different morphology. Simply making the window did not induce any of these changes. There were also significant numbers of neurons in the recovering cortical tissue. In the recovery region, reactive astrocytes radially extended processes which appeared to influence the shapes of neuronal nuclei. The proximal reactive astrocytes also formed a cell layer which appeared to serve as a protective barrier, blocking the spread of IgG deposition and migration of microglia from the lesion core to surrounding tissue. The recovery was preceded by perilesional accumulation of leukocytes expressing vascular endothelial growth factor. These results suggest that, under intact skull conditions, focal brain injury is followed by perilesional reactive astrocyte activities that foster cortical tissue protection and recovery. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  13. Active Vibration Control of Elastic Beam by Means of Shape Memory Alloy Layers

    NASA Technical Reports Server (NTRS)

    Chen, Q.; Levy, C.

    1996-01-01

    The mathematical model of a flexible beam covered with shape memory alloy (SMA) layers is presented. The SMA layers are used as actuators, which are capable of changing their elastic modulus and recovery stress, thus changing the natural frequency of, and adjusting the excitation to, the vibrating beam. The frequency factor variation as a function of SMA Young's modulus, SMA layer thickness and beam thickness is discussed. Also control of the beam employing an optimal linear control law is evaluated. The control results indicate how the system reacts to various levels of excitation input through the non-homogeneous recovery shear term of the governing differential equation.

  14. Biconic cargo return vehicle with an advanced recovery system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The current space exploration initiative is focused around the development of the Space Station Freedom (SSF). Regular resupply missions must support a full crew on the station. The present mission capability of the shuttle is insufficient, making it necessary to find an alternative. One alternative is a reusable Cargo Return Vehicle (CRV). The suggested design is a biconic shaped, dry land recovery CRV with an advance recovery system (ARC). A liquid rocket booster will insert the CRV into a low Earth orbit. Three onboard liquid hydrogen/liquid oxygen engines are used to reach the orbit of the station. The CRV will dock to the station and cargo exchange will take place. Within the command and control zone (CCZ), the CRV will be controlled by a gaseous nitrogen reaction control system (RCS). The CRV will have the capability to exchange the payload with the Orbital Maneuvering Vehicle (OMV). The bent biconic shape will give the CRV sufficient crossrange to reach Edwards Air Force Base and several alternative sites. Near the landing site, a parafoil-shaped ARS is deployed. The CRV is designed to carry a payload of 40 klb, and has an unloaded weight of 35 klb.

  15. Effect of Cross-linking Density on Creep and Recovery Behavior in Epoxy-Based Shape Memory Polymers (SMEPs) for Structural Applications

    NASA Astrophysics Data System (ADS)

    Rao, Kavitha V.; Ananthapadmanabha, G. S.; Dayananda, G. N.

    2016-12-01

    Epoxy-based shape memory polymers (SMEPs) are gaining importance in the area of aerospace structures due to their high strength and stiffness which is a primary requirement for an SMEP in structural applications. The understanding of viscoelastic behavior of SMEPs is very essential to assess their shape memory effect. In the present work, three types of SMEPs with varying cross-linking densities were developed by curing an aromatic epoxy resin with aliphatic amines. Glass transition temperature ( T g) was measured for these SMEPs using advanced rheometric expansion system, and from the T g measurements, a range of temperatures from glassy to rubbery regimes were chosen. At selected temperatures, creep-recovery tests were performed in order to evaluate the viscoelastic behavior of SMEPs and also to investigate the effect of temperature on creep-recovery. Further, a three-parameter viscoelastic model (Zener) was used to fit the data obtained from experiments. Model parameters like moduli of the springs and viscosity of the dashpot were evaluated by curve fitting. Results revealed that Zener model was well suited to describe the viscoelastic behavior of SMEPs as a function of test temperatures.

  16. Attachment reorganization following divorce: normative processes and individual differences.

    PubMed

    Sbarra, David A; Borelli, Jessica L

    2018-03-21

    This paper uses attachment theory as a lens for reviewing contemporary research on how adults cope with marital separation and loss. The first section of the paper discusses the process of normative attachment reorganization, or the psychology of adaptive grief responses following relationship transitions. We argue that changes two processes, in particular, can be uses to track changes in this normative reorganization process: narrative coherence and self-concept clarity. The second section of the paper suggest that individual differences in attachment anxiety and avoidance shape the variability in this normative reorganization process, largely as a result of the characteristic ways in which these styles organize emotion-regulatory tendencies. The paper closes with a series of integrative questions for future research, including a call for new studies aimed at understanding under what contexts anxiety and avoidance may be adaptive in promoting emotion recovery to separation and divorce experiences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Recycle technology for recovering resources and products from waste printed circuit boards.

    PubMed

    Li, Jia; Lu, Hongzhou; Guo, Jie; Xu, Zhenming; Zhou, Yaohe

    2007-03-15

    The printed circuit board (PCB) contains nearly 28% metals that are abundant non-ferrous metals such as Cu, Al, Sn, etc. The purity of precious metals in PCBs is more than 10 times higher than that of rich-content minerals. Therefore, recycling of PCBs is an important subject not only from the treatment of waste but also from the recovery of valuable materials. Chemical and mechanical methods are two traditional recycling processes for waste PCBs. However, the prospect of chemical methods will be limited since the emission of toxic liquid or gas brings secondary pollution to the environment during the process. Mechanical processes, such as shape separation, jigging, density-based separation, and electrostatic separation have been widely utilized in the recycling industry. But, recycling of waste PCBs is only beginning. In this study, a total of 400 kg of waste PCBs was processed by a recycle technology without negative impact to the environment. The technology contained mechanical two-step crushing, corona electrostatic separating, and recovery. The results indicated that (i) two-step crushing was an effect process to strip metals from base plates completely; (ii) the size of particles between 0.6 and 1.2 mm was suitable for corona electrostatic separating during industrial application; and (iii) the nonmetal of waste PCBs attained 80% weight of a kind of nonmetallic plate that expanded the applying prospect of waste nonmetallic materials.

  18. Numerical details and SAS programs for parameter recovery of the SB distribution

    Treesearch

    Bernard R. Parresol; Teresa Fidalgo Fonseca; Carlos Pacheco Marques

    2010-01-01

    The four-parameter SB distribution has seen widespread use in growth-and-yield modeling because it covers a broad spectrum of shapes, fitting both positively and negatively skewed data and bimodal configurations. Two recent parameter recovery schemes, an approach whereby characteristics of a statistical distribution are equated with attributes of...

  19. Remarkable recovery and colonization behaviour of methane oxidizing bacteria in soil after disturbance is controlled by methane source only.

    PubMed

    Pan, Yao; Abell, Guy C J; Bodelier, Paul L E; Meima-Franke, Marion; Sessitsch, Angela; Bodrossy, Levente

    2014-08-01

    Little is understood about the relationship between microbial assemblage history, the composition and function of specific functional guilds and the ecosystem functions they provide. To learn more about this relationship we used methane oxidizing bacteria (MOB) as model organisms and performed soil microcosm experiments comprised of identical soil substrates, hosting distinct overall microbial diversities(i.e., full, reduced and zero total microbial and MOB diversities). After inoculation with undisturbed soil, the recovery of MOB activity, MOB diversity and total bacterial diversity were followed over 3 months by methane oxidation potential measurements and analyses targeting pmoA and 16S rRNA genes. Measurement of methane oxidation potential demonstrated different recovery rates across the different treatments. Despite different starting microbial diversities, the recovery and succession of the MOB communities followed a similar pattern across the different treatment microcosms. In this study we found that edaphic parameters were the dominant factor shaping microbial communities over time and that the starting microbial community played only a minor role in shaping MOB microbial community.

  20. Pendant Allyl Crosslinking as a Tunable Shape Memory Actuator for Vascular Applications

    PubMed Central

    Zachman, Angela L.; Lee, Sue Hyun; Balikov, Daniel A.; Kim, Kwangho; Bellan, Leon M.; Sung, Hak-Joon

    2015-01-01

    Thermo-responsive shape memory polymers (SMPs) can be fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly( -caprolactone)-co-y%( -allyl carboxylate -caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit high elastic, switch-like shape recovery near 37 °C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. PMID:26072363

  1. The effect of bacterial cellulose on the shape memory behavior of polyvinyl alcohol nanocomposite hydrogel

    NASA Astrophysics Data System (ADS)

    Pirahmadi, Pegah; Kokabi, Mehrdad

    2018-01-01

    Most research on shape memory polymers has been confined to neat polymers in their dry state, while, some hydrogel networks are known for their shape memory properties. Hydrogels have low glass transition temperatures which are below 100°C depend on the content of water. But they are usually weak and brittle, and not suitable for structural applications due to their low mechanical strengths because of these materials have large amount of water (>50%), so they could not remember original shape perfectly. Bacterial cellulose nanofibers with perfect properties such as high water holding capacity, high crystallinity, high tensile strength and good biocompatibility can dismiss all the drawbacks. In the present study, polyvinyl alcohol/bacterial cellulose nanocomposite hydrogel prepared by repetitive freezing-thawing method. The bacterial cellulose was used as reinforcement to improve the mechanical properties and stimuli response. Differential scanning calorimetry was employed to obtain the glass transition temperature. Nanocomposite morphology was characterized by field-emission scanning electron microscopy and mechanical properties were investigated by standard tensile test. Finally, the effect of bacterial cellulose nanofiber on shape memory behavior of polyvinyl alcohol/bacterial cellulose nanocomposite hydrogel was investigated. It is found that switching temperature of this system is the glass transition temperature of the nano domains formed within the system. The results also show increase of shape recovery, and shape recovery speed due to presence of bacterial cellulose.

  2. Electroactive Shape Memory Property of a Cu-decorated CNT Dispersed PLA/ESO Nanocomposite

    PubMed Central

    Alam, Javed; Khan, Aslam; Alam, Manawwer; Mohan, Raja

    2015-01-01

    Shape memory polymer (SMP) nanocomposites with a fast electro-actuation speed were prepared by dispersing Cu-decorated carbon nanotubes (CNTs) (Cu-CNTs, 1 wt %, 2 wt %, and 3 wt %) in a polylactic acid (PLA)/epoxidized soybean oil (ESO) blend matrix. The shape memory effect (SME) induced by an electrical current was investigated by a fold-deploy “U”-shape bending test. In addition, the Cu-CNT dispersed PLA/ESO nanocomposite was characterized by atomic force microscopy (AFM), dynamic mechanical analysis (DMA) and tensile and electrical measurements. The results demonstrated that the SME was dependent on the Cu-CNT content in the nanocomposites. When comparing the SMEs of the nanocomposite specimens with different Cu-CNT contents, the 2 wt % Cu-CNT dispersed system exhibited a shape recovery as high as 98% within 35 s due to its higher electrical conductivity that results from uniform Cu-CNT dispersion. However, the nanocomposites that contained 1 wt % and 3 wt % Cu-CNTs required 75 s and 63 s, respectively, to reach a maximum recovery level. In addition, the specimens exhibited better mechanical properties after the addition of Cu-CNTs. PMID:28793570

  3. Confining jackets for concrete cylinders using NiTiNb and NiTi shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Nam, Tae-Hyun; Yoon, Soon-Jong; Cho, Sun-Kyu; Park, Joonam

    2010-05-01

    This study used prestrained NiTiNb and NiTi shape memory alloy (SMA) wires to confine concrete cylinders. The recovery stress of the wires was measured with respect to the maximal prestrain of the wires. SMA wires were preelongated during the manufacturing process and then wrapped around concrete cylinders of 150 mm×300 mm (phi×L). Unconfined concrete cylinders were tested for compressive strength and the results were compared to those of cylinders confined by SMA wires. NiTiNb SMA wires increased the compressive strength and ductility of the cylinders due to the confining effect. NiTiNb wires were found to be more effective in increasing the peak strength of the cylinders and dissipating energy than NiTi wires. This study showed the potential of the proposed method to retrofit reinforced concrete columns using SMA wires to protect them from earthquakes.

  4. Neuromechanical principles underlying movement modularity and their implications for rehabilitation

    PubMed Central

    Ting, Lena H.; Chiel, Hillel J.; Trumbower, Randy D.; Allen, Jessica L.; McKay, J. Lucas; Hackney, Madeleine E.; Kesar, Trisha M.

    2015-01-01

    Summary Neuromechanical principles define the properties and problems that shape neural solutions for movement. Although the theoretical and experimental evidence is debated, we present arguments for consistent structures in motor patterns, i.e. motor modules, that are neuromechanical solutions for movement particular to an individual and shaped by evolutionary, developmental, and learning processes. As a consequence, motor modules may be useful in assessing sensorimotor deficits specific to an individual, and define targets for the rational development of novel rehabilitation therapies that enhance neural plasticity and sculpt motor recovery. We propose that motor module organization is disrupted and may be improved by therapy in spinal cord injury, stroke, and Parkinson’s disease. Recent studies provide insights into the yet unknown underlying neural mechanisms of motor modules, motor impairment and motor learning, and may lead to better understanding of the causal nature of modularity and its underlying neural substrates. PMID:25856485

  5. Acetone-based cellulose solvent.

    PubMed

    Kostag, Marc; Liebert, Tim; Heinze, Thomas

    2014-08-01

    Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Microgravity

    NASA Image and Video Library

    1997-04-01

    Apfel's excellent match: This series of photos shows a water drop containing a surfactant (Triton-100) as it experiences a complete cycle of superoscillation on U.S. Microgravity Lab-2 (USML-2; October 1995). The time in seconds appears under the photos. The figures above the photos are the oscillation shapes predicted by a numerical model. The time shown with the predictions is nondimensional. Robert Apfel (Yale University) used the Drop Physics Module on USML-2 to explore the effect of surfactants on liquid drops. Apfel's research of surfactants may contribute to improvements in a variety of industrial processes, including oil recovery and environmental cleanup.

  7. A new application of Fe-28Mn-6Si-5Cr (mass%) shape memory alloy, for self-adjustable axial preloading of ball bearings

    NASA Astrophysics Data System (ADS)

    Paleu, V.; Gurău, G.; Comăneci, R. I.; Sampath, V.; Gurău, C.; Bujoreanu, L. G.

    2018-07-01

    A new application of Fe-Mn-Si based shape memory alloys (SMAs) was developed under the form of truncated cone-shaped module, for self-adaptive axial preload control in angular contact bearings. The modules were processed by high-speed high-pressure torsion (HS-HPT), from circular crowns cut from axially drilled ingots of Fe-28Mn-6Si-9Cr (mass%) SMA. The specimens were mechanically tested in the hot rolled state, prior to HS-HPT processing, demonstrating free-recovery shape memory effect (SME) and high values for ultimate tensile stress and strain as well as low cycle fatigue life. The HS-HPT modules were subjected to static loading–unloading compression, without/with lubrication at specimen-tool interface, both individually and in different coupling modes. Dry compression cycles revealed reproducible stress plateaus both during loading and unloading stages, being associated with hardness gradient, along cone generator, caused by HS-HPT processing. Constrained recovery tests, performed using compressed modules, emphasized the continuous generation of stress during heating, by one way SME, at a rate of ∼9.3 kPa/%. Dynamic compression tests demonstrated the capability of modules to develop closed stress–strain loops after 50 000 cycles, without visible signs of fatigue. HS-HPT caused the fragmentation of crystalline grains, while compression cycles enabled the formation of ε hexagonal close-packed stress-induced martensite (ε), which is characterized by a high density of stacking faults. Using an experimental setup, specifically designed and manufactured for this purpose, both feasibility and functionality tests were performed using HS-HPT modules. The feasibility tests proved the existence of a general tendency of both axial force and friction torque to increase in time, favoured by the increase of initial preloading force and the augmentation of rotation speed. Functionality tests, performed on two pairs of HS-HPT modules fastened in base-to-base coupling mode, demonstrated the capacity of modules to accommodate high preloads while maintaining both axial force and friction torque at constant values in time. These preliminary results suggest that, for the time being, the modules can operate only as single use applications, more effective during the running-in period. This bevahior recommends HS-HPT modules as a new application of Fe-Mn-Si SMAs, with the potential to be used for the development of new temperature-responsive compression displacement systems.

  8. Tunable thiol-epoxy shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Ellson, Gregory; Di Prima, Matthew; Ware, Taylor; Tang, Xiling; Voit, Walter

    2015-05-01

    Shape memory polymers (SMPs) are uniquely suited to a number of applications due to their shape storage and recovery abilities and the wide range of available chemistries. However, many of the desired performance properties are tied to the polymer chemistry which can make optimization difficult. The use of foaming techniques is one way to tune mechanical response of an SMP without changing the polymer chemistry. In this work, a novel thiol-epoxy SMP was foamed using glass microspheres (40 and 50% by volume Q-Cel 6019), using expandable polymer microspheres (1% 930 DU 120), and by a chemical blowing agent (1% XOP-341). Each approach created SMP foam with a differing density and microstructure from the others. Thermal and thermomechanical analysis was performed to observe the behavioral difference between the foaming techniques and to confirm that the glass transition (Tg) was relatively unchanged near 50 °C while the glassy modulus varied from 19.1 to 345 MPa and the rubbery modulus varied from 0.04 to 2.2 MPa. The compressive behavior of the foams was characterized through static compression testing at different temperatures, and cyclic compression testing at Tg. Constrained shape recovery testing showed a range of peak recovery stress from 5 MPa for the syntactic Q-Cel foams to ˜0.1 MPa for the chemically blown XOP-341 foam. These results showed that multiple foaming approaches can be used with a novel SMP to vary the mechanical response independent of Tg and polymer chemistry.

  9. Biodegradable toughened nanohybrid shape memory polymer for smart biomedical applications.

    PubMed

    Biswas, Arpan; Singh, Akhand Pratap; Rana, Dipak; Aswal, Vinod K; Maiti, Pralay

    2018-05-31

    A polyurethane nanohybrid has been prepared through the in situ polymerization of an aliphatic diisocyanate, ester polyol and a chain extender in the presence of two-dimensional platelets. Polymerization within the platelet galleries helps to intercalate, generate diverse nanostructure and improve the nano to macro scale self-assembly, which leads to a significant enhancement in the toughness and thermal stability of the nanohybrid in comparison to pure polyurethane. The extensive interactions, the reason for property enhancement, between nanoplatelets and polymer chains are revealed through spectroscopic measurements and thermal studies. The nanohybrid exhibits significant improvement in the shape memory phenomena (91% recovery) at the physiological temperature, which makes it suitable for many biomedical applications. The structural alteration, studied through temperature dependent small angle neutron scattering and X-ray diffraction, along with unique crystallization behavior have extensively revealed the special shape memory behavior of this nanohybrid and facilitated the understanding of the molecular flipping in the presence of nanoplatelets. Cell line studies and subsequent imaging testify that this nanohybrid is a superior biomaterial that is suitable for use in the biomedical arena. In vivo studies on albino rats exhibit the potential of the shape memory effect of the nanohybrid as a self-tightening suture in keyhole surgery by appropriately closing the lips of the wound through the recovery of the programmed shape at physiological temperature with faster healing of the wound and without the formation of any scar. Further, the improved biodegradable nature along with the rapid self-expanding ability of the nanohybrid at 37 °C make it appropriate for many biomedical applications including a self-expanding stent for occlusion recovery due to its tough and flexible nature.

  10. High Performance Shape Memory Epoxy/Carbon Nanotube Nanocomposites.

    PubMed

    Liu, Yayun; Zhao, Jun; Zhao, Lingyu; Li, Weiwei; Zhang, Hui; Yu, Xiang; Zhang, Zhong

    2016-01-13

    A series of shape memory nanocomposites based on diglycidyl ether of bisphenol A (DGEBA) E51/methylhexahydrophthalic anhydride (MHHPA)/multiwalled carbon nanotube (MWCNT) with various stoichiometric ratios (rs) of DGEBA/MHHPA from 0.5 to 1.2 and filler contents of 0.25 and 0.75 wt % are fabricated. Their morphology, curing kinetics, phase transition, mechanical properties, thermal conduction, and shape memory behaviors are systematically investigated. The prepared materials show a wide range of glass transition temperatures (Tg) of ca. 65-140 °C, high flexural modulus (E) at room temperature up to ca. 3.0 GPa, high maximum stress (σm) up to ca. 30 MPa, high strain at break (εb) above 10%, and a fast recovery of 32 s. The results indicate that a small amount of MWCNT fillers (0.75 wt %) can significantly increase all three key mechanical properties (E, σm, and εb) at temperatures close to Tg, the recovery rate, and the repetition stability of the shape memory cycles. All of these remarkable advantages make the materials good candidates for the applications in aerospace and other important fields.

  11. Non-lambertian reflectance modeling and shape recovery of faces using tensor splines.

    PubMed

    Kumar, Ritwik; Barmpoutis, Angelos; Banerjee, Arunava; Vemuri, Baba C

    2011-03-01

    Modeling illumination effects and pose variations of a face is of fundamental importance in the field of facial image analysis. Most of the conventional techniques that simultaneously address both of these problems work with the Lambertian assumption and thus fall short of accurately capturing the complex intensity variation that the facial images exhibit or recovering their 3D shape in the presence of specularities and cast shadows. In this paper, we present a novel Tensor-Spline-based framework for facial image analysis. We show that, using this framework, the facial apparent BRDF field can be accurately estimated while seamlessly accounting for cast shadows and specularities. Further, using local neighborhood information, the same framework can be exploited to recover the 3D shape of the face (to handle pose variation). We quantitatively validate the accuracy of the Tensor Spline model using a more general model based on the mixture of single-lobed spherical functions. We demonstrate the effectiveness of our technique by presenting extensive experimental results for face relighting, 3D shape recovery, and face recognition using the Extended Yale B and CMU PIE benchmark data sets.

  12. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    NASA Technical Reports Server (NTRS)

    Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.

    2005-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  13. Doubly stochastic radial basis function methods

    NASA Astrophysics Data System (ADS)

    Yang, Fenglian; Yan, Liang; Ling, Leevan

    2018-06-01

    We propose a doubly stochastic radial basis function (DSRBF) method for function recoveries. Instead of a constant, we treat the RBF shape parameters as stochastic variables whose distribution were determined by a stochastic leave-one-out cross validation (LOOCV) estimation. A careful operation count is provided in order to determine the ranges of all the parameters in our methods. The overhead cost for setting up the proposed DSRBF method is O (n2) for function recovery problems with n basis. Numerical experiments confirm that the proposed method not only outperforms constant shape parameter formulation (in terms of accuracy with comparable computational cost) but also the optimal LOOCV formulation (in terms of both accuracy and computational cost).

  14. Low density biodegradable shape memory polyurethane foams for embolic biomedical applications

    PubMed Central

    Singhal, Pooja; Small, Ward; Cosgriff-Hernandez, Elizabeth; Maitland, Duncan J; Wilson, Thomas S

    2014-01-01

    Low density shape memory polymer foams hold significant interest in the biomaterials community for their potential use in minimally invasive embolic biomedical applications. The unique shape memory behavior of these foams allows them to be compressed to a miniaturized form, which can be delivered to an anatomical site via a transcatheter process, and thereafter actuated to embolize the desired area. Previous work in this field has described the use of a highly covalently crosslinked polymer structure for maintaining excellent mechanical and shape memory properties at the application-specific ultra low densities. This work is aimed at further expanding the utility of these biomaterials, as implantable low density shape memory polymer foams, by introducing controlled biodegradability. A highly covalently crosslinked network structure was maintained by use of low molecular weight, symmetrical and polyfunctional hydroxyl monomers such as Polycaprolactone triol (PCL-t, Mn 900 g), N,N,N0,N0-Tetrakis (hydroxypropyl) ethylenediamine (HPED), and Tris (2-hydroxyethyl) amine (TEA). Control over the degradation rate of the materials was achieved by changing the concentration of the degradable PCL-t monomer, and by varying the material hydrophobicity. These porous SMP materials exhibit a uniform cell morphology and excellent shape recovery, along with controllable actuation temperature and degradation rate. We believe that they form a new class of low density biodegradable SMP scaffolds that can potentially be used as “smart” non-permanent implants in multiple minimally invasive biomedical applications. PMID:24090987

  15. Modeling and Simulating Multiple Failure Masking enabled by Local Recovery for Stencil-based Applications at Extreme Scales

    DOE PAGES

    Gamell, Marc; Teranishi, Keita; Mayo, Jackson; ...

    2017-04-24

    By obtaining multi-process hard failure resilience at the application level is a key challenge that must be overcome before the promise of exascale can be fully realized. Some previous work has shown that online global recovery can dramatically reduce the overhead of failures when compared to the more traditional approach of terminating the job and restarting it from the last stored checkpoint. If online recovery is performed in a local manner further scalability is enabled, not only due to the intrinsic lower costs of recovering locally, but also due to derived effects when using some application types. In this papermore » we model one such effect, namely multiple failure masking, that manifests when running Stencil parallel computations on an environment when failures are recovered locally. First, the delay propagation shape of one or multiple failures recovered locally is modeled to enable several analyses of the probability of different levels of failure masking under certain Stencil application behaviors. These results indicate that failure masking is an extremely desirable effect at scale which manifestation is more evident and beneficial as the machine size or the failure rate increase.« less

  16. Modeling and Simulating Multiple Failure Masking enabled by Local Recovery for Stencil-based Applications at Extreme Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamell, Marc; Teranishi, Keita; Mayo, Jackson

    By obtaining multi-process hard failure resilience at the application level is a key challenge that must be overcome before the promise of exascale can be fully realized. Some previous work has shown that online global recovery can dramatically reduce the overhead of failures when compared to the more traditional approach of terminating the job and restarting it from the last stored checkpoint. If online recovery is performed in a local manner further scalability is enabled, not only due to the intrinsic lower costs of recovering locally, but also due to derived effects when using some application types. In this papermore » we model one such effect, namely multiple failure masking, that manifests when running Stencil parallel computations on an environment when failures are recovered locally. First, the delay propagation shape of one or multiple failures recovered locally is modeled to enable several analyses of the probability of different levels of failure masking under certain Stencil application behaviors. These results indicate that failure masking is an extremely desirable effect at scale which manifestation is more evident and beneficial as the machine size or the failure rate increase.« less

  17. The quintuple-shape memory effect in electrospun nanofiber membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Lu, Haibao; Leng, Jinsong

    2013-08-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future.

  18. What predicts recovery orientation in county departments of mental health? A pilot study.

    PubMed

    Brown, Timothy T; Mahoney, Christine B; Adams, Neal; Felton, Mistique; Pareja, Candy

    2010-09-01

    In this pilot study we examined the determinants of recovery orientation among employees and influential stakeholders in a sample of 12 county departments of mental health in California. A two-level hierarchical linear model with random intercepts was estimated. Analyses show that recovery orientation has a U-shaped relationship with the age of staff/influential stakeholders and is negatively related to the difference between the desired level of adhocracy and the current level of adhocracy. Recovery orientation is positively related to the education level of staff/influential stakeholders, satisfying transformational leadership outcomes, and larger mental health budgets per capita. Policy implications are discussed.

  19. Analysis and machine mapping of the distribution of band recoveries

    USGS Publications Warehouse

    Cowardin, L.M.

    1977-01-01

    A method of calculating distance and bearing from banding site to recovery location based on the solution of a spherical triangle is presented. X and Y distances on an ordinate grid were applied to computer plotting of recoveries on a map. The advantages and disadvantages of tables of recoveries by State or degree block, axial lines, and distance of recovery from banding site for presentation and comparison of the spatial distribution of band recoveries are discussed. A special web-shaped partition formed by concentric circles about the point of banding and great circles at 30-degree intervals through the point of banding has certain advantages over other methods. Comparison of distributions by means of a X? contingency test is illustrated. The statistic V = X?/N can be used as a measure of difference between two distributions of band recoveries and its possible use is illustrated as a measure of the degree of migrational homing.

  20. Control of Thermal Deflection, Panel Flutter and Acoustic Fatigue at Elevated Temperatures Using Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Huang, Jen-Kuang

    1996-01-01

    The High Speed Civil Transport (HSCT) will have to be designed to withstand high aerodynamic load at supersonic speeds (panel flutter) and high acoustic load (acoustic or sonic fatigue) due to fluctuating boundary layer or jet engine acoustic pressure. The thermal deflection of the skin panels will also alter the vehicle's configuration, thus it may affect the aerodynamic characteristics of the vehicle and lead to poor performance. Shape memory alloys (SMA) have an unique ability to recover large strains completely when the alloy is heated above the characteristic transformation (austenite finish T(sub f)) temperature. The recovery stress and elastic modulus are both temperature dependent, and the recovery stress also depends on the initial strain. An innovative concept is to utilize the recovery stress by embedding the initially strained SMA wire in a graphite/epoxy composite laminated panel. The SMA wires are thus restrained and large inplane forces are induced in the panel at elevated temeperatures. By embedding SMA in composite panel, the panel becomes much stiffer at elevated temperatures. That is because the large tensile inplane forces induced in the panel from the SMA recovery stress. A stiffer panel would certainly yield smaller dynamic responses.

  1. Transferring of speech movements from video to 3D face space.

    PubMed

    Pei, Yuru; Zha, Hongbin

    2007-01-01

    We present a novel method for transferring speech animation recorded in low quality videos to high resolution 3D face models. The basic idea is to synthesize the animated faces by an interpolation based on a small set of 3D key face shapes which span a 3D face space. The 3D key shapes are extracted by an unsupervised learning process in 2D video space to form a set of 2D visemes which are then mapped to the 3D face space. The learning process consists of two main phases: 1) Isomap-based nonlinear dimensionality reduction to embed the video speech movements into a low-dimensional manifold and 2) K-means clustering in the low-dimensional space to extract 2D key viseme frames. Our main contribution is that we use the Isomap-based learning method to extract intrinsic geometry of the speech video space and thus to make it possible to define the 3D key viseme shapes. To do so, we need only to capture a limited number of 3D key face models by using a general 3D scanner. Moreover, we also develop a skull movement recovery method based on simple anatomical structures to enhance 3D realism in local mouth movements. Experimental results show that our method can achieve realistic 3D animation effects with a small number of 3D key face models.

  2. Evaluation of changes arising in the pig mesenchymal stromal cells transcriptome following cryopreservation and Trichostatin A treatment

    PubMed Central

    Romanek, Joanna; Pawlina-Tyszko, Klaudia; Szmatoła, Tomasz

    2018-01-01

    Cryopreservation is an important procedure in maintenance and clinical applications of mesenchymal stem/stromal cells (MSCs). Although the methods of cell freezing using various cryoprotectants are well developed and allow preserving structurally intact living cells, the freezing process can be considered as a severe cellular stress associated with ice formation, osmotic damage, cryoprotectants migration/cytotoxicity or rapid cell shrinkage. The cellular response to freezing stress is aimed at the restoring of homeostasis and repair of cell damage and is crucial for cell viability. In this study we evaluated the changes arising in the pig mesenchymal stromal cell transcriptome following cryopreservation and showed the vast alterations in cell transcriptional activity (5,575 genes with altered expression) suggesting the engagement in post-thawing cell recovery of processes connected with cell membrane tension regulation, membrane damage repair, cell shape maintenance, mitochondria-connected energy homeostasis and apoptosis mediation. We also evaluated the effect of known gene expression stimulator—Trichostain A (TSA) on the frozen/thawed cells transcriptome and showed that TSA is able to counteract to a certain extent transcriptome alterations, however, its specificity and advantages for cell recovery after cryopreservation require further studies. PMID:29390033

  3. Adaptive Plasticity in the Healthy Language Network: Implications for Language Recovery after Stroke

    PubMed Central

    2016-01-01

    Across the last three decades, the application of noninvasive brain stimulation (NIBS) has substantially increased the current knowledge of the brain's potential to undergo rapid short-term reorganization on the systems level. A large number of studies applied transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) in the healthy brain to probe the functional relevance and interaction of specific areas for different cognitive processes. NIBS is also increasingly being used to induce adaptive plasticity in motor and cognitive networks and shape cognitive functions. Recently, NIBS has been combined with electrophysiological techniques to modulate neural oscillations of specific cortical networks. In this review, we will discuss recent advances in the use of NIBS to modulate neural activity and effective connectivity in the healthy language network, with a special focus on the combination of NIBS and neuroimaging or electrophysiological approaches. Moreover, we outline how these results can be transferred to the lesioned brain to unravel the dynamics of reorganization processes in poststroke aphasia. We conclude with a critical discussion on the potential of NIBS to facilitate language recovery after stroke and propose a phase-specific model for the application of NIBS in language rehabilitation. PMID:27830094

  4. Long-term Behavior of Hydrocarbon Production Curves

    NASA Astrophysics Data System (ADS)

    Lovell, A.; Karra, S.; O'Malley, D.; Viswanathan, H. S.; Srinivasan, G.

    2017-12-01

    Recovering hydrocarbons (such as natural gas) from naturally-occurring formations with low permeability has had a huge impact on the energy sector, however, recovery rates are low due to poor understanding of recovery and transport mechanisms [1]. The physical mechanisms that control the production of hydrocarbon are only partially understood. Calculations have shown that the short-term behavior in the peak of the production curve is understood to come from the free hydrocarbons in the fracture networks, but the long-term behavior of these curves is often underpredicted [2]. This behavior is thought to be due to small scale processes - such as matrix diffusion, desorption, and connectivity in the damage region around the large fracture network. In this work, we explore some of these small-scale processes using discrete fracture networks (DFN) and the toolkit dfnWorks [3], the matrix diffusion, size of the damage region, and distribution of free gas between the fracture networks and rock matrix. Individual and combined parameter spaces are explored, and comparisons of the resulting production curves are made to experimental site data from the Haynesville formation [4]. We find that matrix diffusion significantly controls the shape of the tail of the production curve, while the distribution of free gas impacts the relative magnitude of the peak to the tail. The height of the damage region has no effect on the shape of the tail. Understanding the constrains of the parameter space based on site data is the first step in rigorously quantifying the uncertainties coming from these types of systems, which can in turn optimize and improve hydrocarbon recovery. [1] C. McGlade, et. al., (2013) Methods of estimating shale gas resources - comparison, evaluation, and implications, Energy, 59, 116-125 [2] S. Karra, et. al., (2015) Effect of advective flow in fractures and matrix diffusion on natural gas production, Water Resources Research, 51(10), 8646-8657 [3] J.D. Hyman, et. al., (2015) dfnworks: A discrete fracture network framework for modeling subsurface flow and transport, Computers & Geosciences, 84, 10-19 [4] E.J. Moniz, et. al., (2011) The future of natural gas, Cambridge, MA, Massachusetts Institute of Technology

  5. Deformation Mechanisms and Formability Window for As-Cast Mg-6Al-2Ca-1Sn-0.3Sr Alloy (MRI 230D)

    NASA Astrophysics Data System (ADS)

    Suresh, Kalidass; Pitcheswara Rao, Kamineni; Chalasani, Dharmendra; Yellapregada Venkata Rama Krishna, Prasad; Hort, Norbert; Dieringa, Hajo

    2018-03-01

    The hot deformation characteristics of MRI 230D alloy have been evaluated in the temperature range 260-500 °C and strain rate range 0.0003-10 s-1, on the basis of processing map. The processing map exhibited two domains in the ranges: (1) 300-370 °C and 0.0003-0.001 s-1 and (2) 370-480 °C and 0.0003-0.1 s-1. Dynamic recrystallization occurs in the both domains with basal slip dominating in the first domain along with climb as recovery process and second-order pyramidal slip dominating in the second with the recovery by cross-slip. In Domains (1) and (2), the apparent activation energy values estimated using the kinetic rate equation are 143 and 206 kJ/mole, respectively, the first one being close to that for lattice self-diffusion confirming climb. It is recommended that the alloy is best processed at 450 °C and strain rates less than 0.1 s-1, where non-basal slip and cross-slip occur extensively to impart excellent workability. The alloy exhibits flow instability in the form of adiabatic shear band formation and flow localization at lower temperatures and higher strain rates. Forging of a cup-shaped component was performed under various conditions, and the results validated the predictions of the processing map on the workability domains as well as the instability regimes.

  6. FlowShape: a runoff connectivity index for patched environments, based on shape and orientation of runoff sources

    NASA Astrophysics Data System (ADS)

    Callegaro, Chiara; Malkinson, Dan; Ursino, Nadia; Wittenberg, Lea

    2016-04-01

    The properties of vegetation cover are recognized to be a key factor in determining runoff processes and yield over natural areas. Still, how the actual vegetation spatial distribution affects these processes is not completely understood. In Mediterranean semi-arid regions, patched landscapes are often found, with clumped vegetation, grass or shrubs, surrounded by bare soil patches. These two phases produce a sink-source system for runoff, as precipitation falling over bare areas barely infiltrates and rather flows downslope. In contrast, vegetated patches have high infiltrability and can partially retain the runon water. We hypothesize that, at a relatively small scale, the shape and orientation of bare soil patches with respect to the runoff flow direction is a significant for the connectivity of the runoff flow paths, and consequently for runoff values. We derive an index, FlowShape, which is candidate to be a good proxy for runoff connectivity and thus runoff production in patched environments. FlowShape is an area-weighted average of the geometrical properties of each bare soil patch. Eight experimental plots in northern Israel were monitored during 2 years after a wildfire which occurred in 2006. Runoff was collected and measured - along with rainfall depth - after each rainfall event, at different levels of vegetation cover corresponding to post-fire recovery of vegetation and seasonality. We obtained a good correlation between FlowShape and the runoff coefficient, at two conditions: a minimal percentage of vegetation cover over the plot, and minimal rainfall depth. Our results support the hypothesis that the spatial distribution of the two phases (vegetation and bare soil) in patched landscapes dictates, at least partially, runoff yield. The correlation between the runoff coefficient and FlowShape, which accounts for shape and orientation of soil patches, is higher than the correlation between the runoff coefficient and the bare soil percentage alone. Besides that, the existence of a vegetation cover threshold under which FlowShape loses correlation with runoff yield, suggests that different processes occur at different levels of vegetation cover. On bare or almost bare plots, runoff flows as a sheet, and small isolated plants do not impose a directionality to the flow or interrupt runoff connectivity. On the other hand, rainfall depth - and possibly rainfall intensity - also affect the hydrological processes of infiltration and runoff production, and thus the applicability of any purely geometrical index. We compared the correlation to runoff coefficient with the FlowShape and FlowLength, a well-known index for runoff connectivity (Mayor et al., 2008) which is defined as the average of runoff flow paths over the plot. As microtopography was not available, our plots were idealized as planar hillslopes. We found that FlowShape is a better predictor than FlowLength for runoff yield over our experimental plots.

  7. Mechanical properties of shape memory polymers for morphing aircraft applications

    NASA Astrophysics Data System (ADS)

    Keihl, Michelle M.; Bortolin, Robert S.; Sanders, Brian; Joshi, Shiv; Tidwell, Zeb

    2005-05-01

    This investigation addresses basic characterization of a shape memory polymer (SMP) as a suitable structural material for morphing aircraft applications. Tests were performed for monotonic loading in high shear at constant temperature, well below, or just above the glass transition temperature. The SMP properties were time-and temperature-dependent. Recovery by the SMP to its original shape needed to be unfettered. Based on the testing SMPs appear to be an attractive and promising component in the solution for a skin material of a morphing aircraft. Their multiple state abilities allow them to easily change shape and, once cooled, resist large loads.

  8. Separation and recycling of nanoparticles using cloud point extraction with non-ionic surfactant mixtures.

    PubMed

    Nazar, Muhammad Faizan; Shah, Syed Sakhawat; Eastoe, Julian; Khan, Asad Muhammad; Shah, Afzal

    2011-11-15

    A viable cost-effective approach employing mixtures of non-ionic surfactants Triton X-114/Triton X-100 (TX-114/TX-100), and subsequent cloud point extraction (CPE), has been utilized to concentrate and recycle inorganic nanoparticles (NPs) in aqueous media. Gold Au- and palladium Pd-NPs have been pre-synthesized in aqueous phases and stabilized by sodium 2-mercaptoethanesulfonate (MES) ligands, then dispersed in aqueous non-ionic surfactant mixtures. Heating the NP-micellar systems induced cloud point phase separations, resulting in concentration of the NPs in lower phases after the transition. For the Au-NPs UV/vis absorption has been used to quantify the recovery and recycle efficiency after five repeated CPE cycles. Transmission electron microscopy (TEM) was used to investigate NP size, shape, and stability. The results showed that NPs are preserved after the recovery processes, but highlight a potential limitation, in that further particle growth can occur in the condensed phases. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. More shock recovery experiments on mesosiderite analogs

    NASA Technical Reports Server (NTRS)

    Rowan, L. R.; Mittlefehldt, D. W.

    1994-01-01

    Mesosiderites, a small but unique group of stony-iron meteorites with affinities to howardites, eucrites, and pallasites, remain enigmatic in terms of their petrogenesis. They are composed of approximately equal weight proportions of Fe-Ni metal plus troilite and gabbroic, basaltic, and orthopyroxenitic materials. The metal and silicates, which display variable grain sizes and shapes, are delicately intermingled, forming irregular grain boundaries that have been attributed to a wide range of origins from subsolidus metamorphism to supersolidus igneous processes. Perhaps the most relevant question regarding the petrogenesis of mesosiderites is: what is the source and duration of heating that could produce the unequilibrated textures and chemistry of these meteorites? A leading candidate appears to be impacts of metallic core fragments with a differentiated asteroidal surface. This provides not only a suitable source of heat, but also the metal component uniquely required by mesosiderites. A series of shock recovery experiments on mesosiderite analogs has been continued. Textural and chemical similarities have been found that support an impact-derived origin for these unusual meteorites.

  10. Toward Understanding Music Therapy as a Recovery-Oriented Practice within Mental Health Care: A Meta-Synthesis of Service Users' Experiences.

    PubMed

    Solli, Hans Petter; Rolvsjord, Randi; Borg, Marit

    2013-01-01

    The perspective of mental health recovery is increasingly shaping mental health care policies. Current texts in music therapy identify the importance of this critical and user-oriented perspective, but the relevance and implications for music therapy need to be outlined. This study explores service users' experiences of music therapy in mental health care, and the potential role of music therapy in the development of recovery-oriented service provision. We conducted a qualitative meta-synthesis of studies examining service users' experiences in music therapy; included were 14 studies with a total of 113 participants. Both first-hand account of participants and the researchers' representations of such statements were taken into account in the analysis. A taxonomy of four areas of users' experiences was identified: "having a good time;" "being together;" "feeling;" and "being someone." These core categories point towards music therapy as an arena that can be used by persons with mental health problems in their personal and social recovery process. Music therapy can contribute to the quality of mental health care by providing an arena for stimulation and development of strengths and resources that may contribute to growth of positive identity and hope for people with mental illness. The findings from this meta-synthesis indicate that the provision of music therapy closely resembles recognized benefits of a recovery-oriented practice. Awareness of users' self-determination and the development of a strength-based and contextual approach to music therapy that fosters mutual empowering relationships are recommended. © 2013 by the American Music Therapy Association.

  11. Patient Information Needs and Breast Reconstruction After Mastectomy: A Qualitative Meta-Synthesis.

    PubMed

    Carr, Tracey L; Groot, Gary; Cochran, David; Holtslander, Lorraine

    2018-04-27

    Although many women benefit from breast reconstruction after mastectomy, several studies report women's dissatisfaction with the level of information they were provided with before reconstruction. The present meta-synthesis examines the qualitative literature that explores women's experiences of breast reconstruction after mastectomy and highlights women's healthcare information needs. After a comprehensive search of 6 electronic databases (CINAHL, Cochrane Library, EMBASE, MEDLINE, PsycINFO, and Scopus), we followed the methodology for synthesizing qualitative research. The search produced 423 studies, which were assessed against 5 inclusion criteria. A meta-synthesis methodology was used to analyze the data through taxonomic classification and constant targeted comparison. Some 17 studies met the inclusion criteria, and findings from 16 studies were synthesized. The role of the healthcare practitioner is noted as a major influence on women's expectations, and in some instances, women did not feel adequately informed about the outcomes of surgery and the recovery process. In general, women's desire for normality and effective emotional coping shapes their information needs. The information needs of women are better understood after considering women's actual experiences with breast reconstruction. It is important to inform women of the immediate outcomes of reconstruction surgery and the recovery process. In an attempt to better address women's information needs, healthcare practitioners should discover women's initial expectations of reconstruction as a starting point in the consultation. In addition, the research revealed the importance of the nurse navigator in terms of assisting women through the recovery process.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  12. Impact of elliptical shaped red oak logs on lumber grade and volume recovery

    Treesearch

    Patrick M. Rappold; Brian H. Bond; Janice K. Wiedenbeck; Roncs Ese-Etame

    2007-01-01

    This research examined the grade and volume of lumber recovered from red oak logs with elliptical shaped cross sections. The volume and grade of lumber recovered from red oak logs with low (e ≤ 0.3) and high (e ≥ 0.4) degrees of ellipticity was measured at four hardwood sawmills. There was no significant difference (...

  13. Soft materials with recoverable shape factors from extreme distortion states

    DOE PAGES

    Goff, Jonathan; Sulaiman, Santy; Arkles, Barry; ...

    2016-01-20

    We present elastomeric polysiloxane nanocomposites with elongations of >5000% (more than 3× greater than any previously reported material) with excellent shape recovery. Highly deformable materials are desirable for the fabrication of stretchable implants and microfluidic devices. No crosslinking or domain formation is observed by a variety of analytical techniques, suggesting that their elastomeric behavior is caused by polymer chain entanglements.

  14. Human footprint affects US carbon balance more than climate change

    USGS Publications Warehouse

    Bachelet, Dominique; Ferschweiler, Ken; Sheehan, Tim; Baker, Barry; Sleeter, Benjamin M.; Zhu, Zhiliang

    2017-01-01

    The MC2 model projects an overall increase in carbon capture in conterminous United States during the 21st century while also simulating a rise in fire causing much carbon loss. Carbon sequestration in soils is critical to prevent carbon losses from future disturbances, and we show that natural ecosystems store more carbon belowground than managed systems do. Natural and human-caused disturbances affect soil processes that shape ecosystem recovery and competitive interactions between native, exotics, and climate refugees. Tomorrow's carbon budgets will depend on how land use, natural disturbances, and climate variability will interact and affect the balance between carbon capture and release.

  15. Fabrication and characterization of shape memory polymers at small-scales

    NASA Astrophysics Data System (ADS)

    Wornyo, Edem

    The objective of this research is to thoroughly investigate the shape memory effect in polymers, characterize, and optimize these polymers for applications in information storage systems. Previous research effort in this field concentrated on shape memory metals for biomedical applications such as stents. Minimal work has been done on shape memory polymers; and the available work on shape memory polymers has not characterized the behaviors of this category of polymers fully. Copolymer shape memory materials based on diethylene glycol dimethacrylate (DEGDMA) crosslinker, and tert butyl acrylate (tBA) monomer are designed. The design encompasses a careful control of the backbone chemistry of the materials. Characterization methods such as dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC); and novel nanoscale techniques such as atomic force microscopy (AFM), and nanoindentation are applied to this system of materials. Designed experiments are conducted on the materials to optimize spin coating conditions for thin films. Furthermore, the recovery, a key for the use of these polymeric materials for information storage, is examined in detail with respect to temperature. In sum, the overarching objectives of the proposed research are to: (i) Design shape memory polymers based on polyethylene glycol dimethacrylate (PEGDMA) and diethylene glycol dimethacrylate (DEGDMA) crosslinkers, 2-hydroxyethyl methacrylate (HEMA) and tert-butyl acrylate monomer (tBA). (ii) Utilize dynamic mechanical analysis (DMA) to comprehend the thermomechanical properties of shape memory polymers based on DEGDMA and tBA. (iii) Utilize nanoindentation and atomic force microscopy (AFM) to understand the nanoscale behavior of these SMPs, and explore the strain storage and recovery of the polymers from a deformed state. (iv) Study spin coating conditions on thin film quality with designed experiments. (iv) Apply neural networks and genetic algorithms to optimize these systems.

  16. Temperature effect on the recovery process in stretched Bombyx mori silk fibers

    NASA Astrophysics Data System (ADS)

    Aksakal, Baki

    2016-01-01

    The recovery process in stretched Bombyx mori silk fibers at different strain levels from 3% to 17% was investigated at room conditions during long period of time from 5 min to 20 days and more. How the temperature affects the recovery process in the silk fibers stretched at room conditions was examined at temperatures from 25 to 125 °C. The results of the recovery process at 25 °C revealed that although the recovery process from strain values higher than 3% strain continued slowly which caused quite high remaining deformation, a complete recovery from 3% strain was observed after 3 days. However, better recovery process was observed with increasing temperature which led to lower remaining deformations. For instance, a complete recovery from 6% strain was observed after 144 h and 3 h for the recovery process at 100 °C and 125 °C, respectively which indicates an important result that the deformations induced by stretching the silk fibers up to 6% strain are reversible and increasing temperature affects the velocity of this process significantly. The recovery process expressed in the strain (ε) and logarithm time coordinates showed a linear dependence for which a linear equation was proposed. Thus, this linear equation enables to estimate the required time for a complete recovery from different strain levels and remaining deformation at any stage of the recovery at different temperatures. The ATR-FTIR spectra of the stretched silk fibers during the recovery process revealed some changes in the absorbance ratios and shifts in the positions of the bands assigned to Cα-C, N-H stretching vibrations, and the Amide III mode. It was suggested that new formation of the hydrogen bonds between polypeptide chains especially in amorphous regions and the changes in the intra-sheet hydrogen bonds in β-sheet crystalline regions greatly contribute to the recovery process.

  17. Bacterial Transport Experiments in Fractured Crystalline Bedrock

    USGS Publications Warehouse

    Becker, M.W.; Metge, D.W.; Collins, S.A.; Shapiro, A.M.; Harvey, R.W.

    2003-01-01

    The efficiency of contaminant biodegradation in ground water depends, in part, on the transport properties of the degrading bacteria. Few data exist concerning the transport of bacteria in saturated bedrock, particularly at the field scale. Bacteria and microsphere tracer experiments were conducted in a fractured crystalline bedrock under forced-gradient conditions over a distance of 36 m. Bacteria isolated from the local ground water were chosen on the basis of physicochemical and physiological differences (shape, cell-wall type, motility), and were differentially stained so that their transport behavior could be compared. No two bacterial strains transported in an identical manner, and microspheres produced distinctly different breakthrough curves than bacteria. Although there was insufficient control in this field experiment to completely separate the effects of bacteria shape, reaction to Gram staining, cell size, and motility on transport efficiency, it was observed that (1) the nonmotile, mutant strain exhibited better fractional recovery than the motile parent strain; (2) Gram-negative rod-shaped bacteria exhibited higher fractional recovery relative to the Gram-positive rod-shaped strain of similar size; and (3) coccoidal (spherical-shaped) bacteria transported better than all but one strain of the rod-shaped bacteria. The field experiment must be interpreted in the context of the specific bacterial strains and ground water environment in which they were conducted, but experimental results suggest that minor differences in the physical properties of bacteria can lead to major differences in transport behavior at the field scale.

  18. Focal brain lesions induced with ultraviolet irradiation.

    PubMed

    Nakata, Mariko; Nagasaka, Kazuaki; Shimoda, Masayuki; Takashima, Ichiro; Yamamoto, Shinya

    2018-05-22

    Lesion and inactivation methods have played important roles in neuroscience studies. However, traditional techniques for creating a brain lesion are highly invasive, and control of lesion size and shape using these techniques is not easy. Here, we developed a novel method for creating a lesion on the cortical surface via 365 nm ultraviolet (UV) irradiation without breaking the dura mater. We demonstrated that 2.0 mWh UV irradiation, but not the same amount of non-UV light irradiation, induced an inverted bell-shaped lesion with neuronal loss and accumulation of glial cells. Moreover, the volume of the UV irradiation-induced lesion depended on the UV light exposure amount. We further succeeded in visualizing the lesioned site in a living animal using magnetic resonance imaging (MRI). Importantly, we also observed using an optical imaging technique that the spread of neural activation evoked by adjacent cortical stimulation disappeared only at the UV-irradiated site. In summary, UV irradiation can induce a focal brain lesion with a stable shape and size in a less invasive manner than traditional lesioning methods. This method is applicable to not only neuroscientific lesion experiments but also studies of the focal brain injury recovery process.

  19. Mitigation of Adverse Effects Caused by Shock Wave Boundary Layer Interactions Through Optimal Wall Shaping

    NASA Technical Reports Server (NTRS)

    Liou, May-Fun; Lee, Byung Joon

    2013-01-01

    It is known that the adverse effects of shock wave boundary layer interactions in high speed inlets include reduced total pressure recovery and highly distorted flow at the aerodynamic interface plane (AIP). This paper presents a design method for flow control which creates perturbations in geometry. These perturbations are tailored to change the flow structures in order to minimize shock wave boundary layer interactions (SWBLI) inside supersonic inlets. Optimizing the shape of two dimensional micro-size bumps is shown to be a very effective flow control method for two-dimensional SWBLI. In investigating the three dimensional SWBLI, a square duct is employed as a baseline. To investigate the mechanism whereby the geometric elements of the baseline, i.e. the bottom wall, the sidewall and the corner, exert influence on the flow's aerodynamic characteristics, each element is studied and optimized separately. It is found that arrays of micro-size bumps on the bottom wall of the duct have little effect in improving total pressure recovery though they are useful in suppressing the incipient separation in three-dimensional problems. Shaping sidewall geometry is effective in re-distributing flow on the side wall and results in a less distorted flow at the exit. Subsequently, a near 50% reduction in distortion is achieved. A simple change in corner geometry resulted in a 2.4% improvement in total pressure recovery.

  20. Negative affective experiences in relation to stages of eating disorder recovery.

    PubMed

    Harney, Megan B; Fitzsimmons-Craft, Ellen E; Maldonado, Christine R; Bardone-Cone, Anna M

    2014-01-01

    The purpose of this study was to examine a collection of negative affect symptoms in relation to stages of eating disorder recovery. Depressive symptoms, anxiety symptoms, loneliness, and perceived stress are known to be present in individuals with eating disorders; however, less is known about the presence of such constructs throughout the recovery process. Does this negative affect fog continue to linger in individuals who have recovered from an eating disorder? Female participants seen at some point for an eating disorder at a primary care clinic were categorized into one of three groups using a stringent definition of eating disorder recovery based on physical, behavioral, and psychological criteria: active eating disorder (n=53), partially recovered (n=15; psychological criteria not met), and fully recovered (n=20; all recovery criteria met). Additionally, data were obtained from 67 female controls who had no history of an eating disorder. Self-report data indicated that controls and women fully recovered from an eating disorder scored significantly lower than partially recovered and active eating disorder groups in perceived stress, depression, and anxiety. Controls and the fully recovered group were statistically indistinguishable from each other in these domains, as were the partially recovered and active eating disorder groups, suggesting an interesting divide depending on whether psychological criteria (e.g., normative levels of weight/shape concern) were met. In contrast, controls and fully recovered and partially recovered groups all reported feeling significantly less lonely relative to those with an active eating disorder suggesting that improved perceptions of interpersonal functioning and social support may act as a stepping stone toward more comprehensive eating disorder recovery. Future research may want to longitudinally determine if an increase in actual or perceived social support facilitates the movement toward full recovery and whether this, in turn, has salutatory effects on depression, anxiety, and perceived stress. © 2013.

  1. Negative Affective Experiences in Relation to Stages of Eating Disorder Recovery

    PubMed Central

    Harney, Megan B.; Fitzsimmons-Crafr, Ellen E.; Maldonado, Christine R.; Bardone-Cone, Anna M.

    2013-01-01

    The purpose of this study was to examine a collection of negative affect symptoms in relation to stages of eating disorder recovery. Depressive symptoms, anxiety symptoms, loneliness, and perceived stress are known to be present in individuals with eating disorders; however, less is known about the presence of such constructs throughout the recovery process. Does this negative affect fog continue to linger in individuals who have recovered from an eating disorder? Female participants seen at some point for an eating disorder at a primary care clinic were categorized into one of three groups using a stringent definition of eating disorder recovery based on physical, behavioral, and psychological criteria: active eating disorder (n =53), partially recovered (n =15; psychological criteria not met), and fully recovered (n =20; all recovery criteria met). Additionally, data were obtained from 67 female controls who had no history of an eating disorder. Self-report data indicated that controls and women fully recovered from an eating disorder scored significantly lower than partially recovered and active eating disorder groups in perceived stress, depression, and anxiety. Controls and the fully recovered group were statistically indistinguishable from each other in these domains, as were the partially recovered and active eating disorder groups, suggesting an interesting divide depending on whether psychological criteria (e.g., normative levels of weight/shape concern) were met. In contrast, controls and fully recovered and partially recovered groups all reported feeling significantly less lonely relative to those with an active eating disorder suggesting that improved perceptions of interpersonal, social support may act as a stepping stone toward more comprehensive eating disorder recovery. Future research may want to longitudinally determine if an increase in actual or perceived social support facilitates the movement toward full recovery and whether this, in turn, has salutatory effects on depression, anxiety, and perceived stress. PMID:24411745

  2. Analysis of the inhibitory effects of chloropicrin fumigation on nitrification in various soil types.

    PubMed

    Yan, Dongdong; Wang, Qiuxia; Li, Yuan; Ouyang, Canbin; Guo, Meixia; Cao, Aocheng

    2017-05-01

    Chloropicrin retards the conversion of ammonia to nitrite during the nitrification process in soil. In our study, the dynamic effect of chloropicrin fumigation on soil nitrification was evaluated in five different soil types to identify relationships between soil properties and the effect of fumigation on nitrification. Chloropicrin significantly inhibited nitrification in all soils; however, the recovery of nitrification varied greatly between the soils. Following chloropicrin fumigation, nitrification recovered to the control level in all soils, except in the acidic Guangxi soil. Nitrification recovered faster in fumigated sandy loam Beijing soil than in the other four fumigated soils. Soil texture and pH were two important factors that influenced chloropicrin's inhibitory effect on nitrification. An S-shaped function was fitted to soil NO 3 - -N content to assess the nitrification recovery tendency in different soils. The time taken to reach maximum nitrification (t max ) ranged from 2.4 to 3.0 weeks in all unfumigated soils. Results demonstrated that t max was greater in all fumigated soils than in untreated soils. Correlation calculations showed that t max was strongly correlated to soil texture. The correlation analysis results indicated that the recovery rate of nitrification after chloropicrin fumigation is much faster in sandy loam soil than silty loam soil. Copyright © 2017. Published by Elsevier Ltd.

  3. Detecting the subtle shape differences in hemodynamic responses at the group level

    PubMed Central

    Chen, Gang; Saad, Ziad S.; Adleman, Nancy E.; Leibenluft, Ellen; Cox, Robert W.

    2015-01-01

    The nature of the hemodynamic response (HDR) is still not fully understood due to the multifaceted processes involved. Aside from the overall amplitude, the response may vary across cognitive states, tasks, brain regions, and subjects with respect to characteristics such as rise and fall speed, peak duration, undershoot shape, and overall duration. Here we demonstrate that the fixed-shape (FSM) or adjusted-shape (ASM) methods may fail to detect some shape subtleties (e.g., speed of rise or recovery, or undershoot). In contrast, the estimated-shape method (ESM) through multiple basis functions can provide the opportunity to identify some subtle shape differences and achieve higher statistical power at both individual and group levels. Previously, some dimension reduction approaches focused on the peak magnitude, or made inferences based on the area under the curve (AUC) or interaction, which can lead to potential misidentifications. By adopting a generic framework of multivariate modeling (MVM), we showcase a hybrid approach that is validated by simulations and real data. With the whole HDR shape integrity maintained as input at the group level, the approach allows the investigator to substantiate these more nuanced effects through the unique HDR shape features. Unlike the few analyses that were limited to main effect, two- or three-way interactions, we extend the modeling approach to an inclusive platform that is more adaptable than the conventional GLM. With multiple effect estimates from ESM for each condition, linear mixed-effects (LME) modeling should be used at the group level when there is only one group of subjects without any other explanatory variables. Under other situations, an approximate approach through dimension reduction within the MVM framework can be adopted to achieve a practical equipoise among representation, false positive control, statistical power, and modeling flexibility. The associated program 3dMVM is publicly available as part of the AFNI suite. PMID:26578853

  4. Development of wet process with substitution reaction for the mass production of Li 2TiO 3 pebbles

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi

    2000-12-01

    Recently, lithium titanate (Li 2TiO 3) has attracted the attention of many researchers from the point of good tritium recovery at low temperature, chemical stability, etc. As the shape of Li 2TiO 3, a small pebble was selected as the Japanese design for a fusion reactor blanket. On the other hand, as the fabrication method of Li 2TiO 3 pebbles, the wet process is the most advantageous from the viewpoint of mass production, etc. In this study, fabrication of small Li 2TiO 3 pebbles less than ∅0.5 mm was performed by the wet process with substitution reaction, and the characteristics of Li 2TiO 3 pebbles fabricated by this process were evaluated. From the results of the fabrication tests, excellent prospects were obtained concerning mass production of Li 2TiO 3 pebbles with the target density (80-85% T.D.) and target diameter (less than ∅0.5 mm).

  5. Peptidoglycan turnover and recycling in Gram-positive bacteria.

    PubMed

    Reith, Jan; Mayer, Christoph

    2011-10-01

    Bacterial cells are protected by an exoskeleton, the stabilizing and shape-maintaining cell wall, consisting of the complex macromolecule peptidoglycan. In view of its function, it could be assumed that the cell wall is a static structure. In truth, however, it is steadily broken down by peptidoglycan-cleaving enzymes during cell growth. In this process, named cell wall turnover, in one generation up to half of the preexisting peptidoglycan of a bacterial cell is released from the wall. This would result in a massive loss of cell material, if turnover products were not be taken up and recovered. Indeed, in the Gram-negative model organism Escherichia coli, peptidoglycan recovery has been recognized as a complex pathway, named cell wall recycling. It involves about a dozen dedicated recycling enzymes that convey cell wall turnover products to peptidoglycan synthesis or energy pathways. Whether Gram-positive bacteria also recover their cell wall is currently questioned. Given the much larger portion of peptidoglycan in the cell wall of Gram-positive bacteria, however, recovery of the wall material would provide an even greater benefit in these organisms compared to Gram-negatives. Consistently, in many Gram-positives, orthologs of recycling enzymes were identified, indicating that the cell wall may also be recycled in these organisms. This mini-review provides a compilation of information about cell wall turnover and recycling in Gram-positive bacteria during cell growth and division, including recent findings relating to muropeptide recovery in Bacillus subtilis and Clostridium acetobutylicum from our group. Furthermore, the impact of cell wall turnover and recycling on biotechnological processes is discussed.

  6. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction.

    PubMed

    Xie, Ming; Shon, Ho Kyong; Gray, Stephen R; Elimelech, Menachem

    2016-02-01

    Wastewater nutrient recovery holds promise for more sustainable water and agricultural industries. We critically review three emerging membrane processes - forward osmosis (FO), membrane distillation (MD) and electrodialysis (ED) - that can advance wastewater nutrient recovery. Challenges associated with wastewater nutrient recovery were identified. The advantages and challenges of applying FO, MD, and ED technologies to wastewater nutrient recovery are discussed, and directions for future research and development are identified. Emphasis is given to exploration of the unique mass transfer properties of these membrane processes in the context of wastewater nutrient recovery. We highlight that hybridising these membrane processes with existing nutrient precipitation process will lead to better management of and more diverse pathways for near complete nutrient recovery in wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Measuring and Monitoring Long Term Disaster Recovery Using Remote Sensing: A Case Study of Post Katrina New Orleans

    NASA Astrophysics Data System (ADS)

    Archer, Reginald S.

    This research focuses on measuring and monitoring long term recovery progress from the impacts of Hurricane Katrina on New Orleans, LA. Remote sensing has frequently been used for emergency response and damage assessment after natural disasters. However, techniques for analysis of long term disaster recovery using remote sensing have not been widely explored. With increased availability and lower costs, remote sensing offers an objective perspective, systematic and repeatable analysis, and provides a substitute to multiple site visits. In addition, remote sensing allows access to large geographical areas and areas where ground access may be disrupted, restricted or denied. This dissertation addressed the primary difficulties involved in the development of change detection methods capable of detecting changes experienced by disaster recovery indicators. Maximum likelihood classification and post-classification change detection were applied to multi-temporal high resolution aerial images to quantitatively measure the progress of recovery. Images were classified to automatically identify disaster recovery indicators and exploit the indicators that are visible within each image. The spectral analysis demonstrated that employing maximum likelihood classification to high resolution true color aerial images performed adequately and provided a good indication of spectral pattern recognition, despite the limited spectral information. Applying the change detection to the classified images was effective for determining the temporal trajectory of indicators categorized as blue tarps, FEMA trailers, houses, vegetation, bare earth and pavement. The results of the post classification change detection revealed a dominant change trajectory from bluetarp to house, as damaged houses became permanently repaired. Specifically, the level of activity of blue tarps, housing, vegetation, FEMA trailers (temporary housing) pavement and bare earth were derived from aerial image processing to measure and monitor the progress of recovery. Trajectories of recovery for each individual indicator were examined to provide a better understanding of activity during reconstruction. A collection of spatial metrics was explored in order to identify spatial patterns and characterize classes in terms of patches of pixels. One of the key findings of the spatial analysis is that patch shapes were more complex in the presence of debris and damaged or destroyed buildings. The combination of spectral, temporal, and spatial analysis provided a satisfactory, though limited, solution to the question of whether remote sensing alone, can be used to quantitatively assess and monitor the progress of long term recovery following a major disaster. The research described in this dissertation provided a detailed illustration of the level of activity experienced by different recovery indicators during the long term recovery process. It also addressed the primary difficulties involved in the development of change detection methods capable of detecting changes experienced by disaster recovery indicators identified from classified high resolution true color aerial imagery. The results produced in this research demonstrate that the observed trajectories for actual indicators of recovery indicate different levels of recovery activity even within the same community. The level of activity of the long term reconstruction phase observed in the Kates model is not consistent with the level of activity of key recovery indicators in the Lower 9th Ward during the same period. Used in the proper context, these methods and results provide decision making information for determining resources. KEYWORDS: Change detection, classification, Katrina, New Orleans, remote sensing, disaster recovery, spatial metrics

  8. Maneuver Recovery Analysis for the Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Carpenter, Russell; Volle, Michael; Lee, Taesul; Long, Anne

    2007-01-01

    The use of spacecraft formations creates new and more demanding requirements for orbit determination accuracy. In addition to absolute navigation requirements, there are typically relative navigation requirements that are based on the size or shape of the formation. The difficulty in meeting these requirements is related to the relative dynamics of the spacecraft orbits and the frequency of the formation maintenance maneuvers. This paper examines the effects of bi-weekly formation maintenance maneuvers on the absolute and relative orbit determination accuracy for the four-spacecraft Magnetospheric Multiscale (MMS) formation. Results are presented from high fidelity simulations that include the effects of realistic orbit determination errors in the maneuver planning process. Solutions are determined using a high accuracy extended Kalman filter designed for onboard navigation. Three different solutions are examined, considering the effects of process noise and measurement rate on the solutions.

  9. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.

    PubMed

    Miao, Shida; Zhu, Wei; Castro, Nathan J; Leng, Jinsong; Zhang, Lijie Grace

    2016-10-01

    The objective of this study was to four-dimensional (4D) print novel biomimetic gradient tissue scaffolds with highly biocompatible naturally derived smart polymers. The term "4D printing" refers to the inherent smart shape transformation of fabricated constructs when implanted minimally invasively for seamless and dynamic integration. For this purpose, a series of novel shape memory polymers with excellent biocompatibility and tunable shape changing effects were synthesized and cured in the presence of three-dimensional printed sacrificial molds, which were subsequently dissolved to create controllable and graded porosity within the scaffold. Surface morphology, thermal, mechanical, and biocompatible properties as well as shape memory effects of the synthesized smart polymers and resultant porous scaffolds were characterized. Fourier transform infrared spectroscopy and gel content analysis confirmed the formation of chemical crosslinking by reacting polycaprolactone triol and castor oil with multi-isocyanate groups. Differential scanning calorimetry revealed an adjustable glass transition temperature in a range from -8°C to 35°C. Uniaxial compression testing indicated that the obtained polymers, possessing a highly crosslinked interpenetrating polymeric networks, have similar compressive modulus to polycaprolactone. Shape memory tests revealed that the smart polymers display finely tunable recovery speed and exhibit greater than 92% shape fixing at -18°C or 0°C and full shape recovery at physiological temperature. Scanning electron microscopy analysis of fabricated scaffolds revealed a graded microporous structure, which mimics the nonuniform distribution of porosity found within natural tissues. With polycaprolactone serving as a control, human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and differentiation greatly increased on our novel smart polymers. The current work will significantly advance the future design and development of novel and functional biomedical scaffolds with advanced 4D printing technology and highly biocompatible smart biomaterials.

  10. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications

    PubMed Central

    Miao, Shida; Zhu, Wei; Castro, Nathan J.; Leng, Jinsong

    2016-01-01

    The objective of this study was to four-dimensional (4D) print novel biomimetic gradient tissue scaffolds with highly biocompatible naturally derived smart polymers. The term “4D printing” refers to the inherent smart shape transformation of fabricated constructs when implanted minimally invasively for seamless and dynamic integration. For this purpose, a series of novel shape memory polymers with excellent biocompatibility and tunable shape changing effects were synthesized and cured in the presence of three-dimensional printed sacrificial molds, which were subsequently dissolved to create controllable and graded porosity within the scaffold. Surface morphology, thermal, mechanical, and biocompatible properties as well as shape memory effects of the synthesized smart polymers and resultant porous scaffolds were characterized. Fourier transform infrared spectroscopy and gel content analysis confirmed the formation of chemical crosslinking by reacting polycaprolactone triol and castor oil with multi-isocyanate groups. Differential scanning calorimetry revealed an adjustable glass transition temperature in a range from −8°C to 35°C. Uniaxial compression testing indicated that the obtained polymers, possessing a highly crosslinked interpenetrating polymeric networks, have similar compressive modulus to polycaprolactone. Shape memory tests revealed that the smart polymers display finely tunable recovery speed and exhibit greater than 92% shape fixing at −18°C or 0°C and full shape recovery at physiological temperature. Scanning electron microscopy analysis of fabricated scaffolds revealed a graded microporous structure, which mimics the nonuniform distribution of porosity found within natural tissues. With polycaprolactone serving as a control, human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and differentiation greatly increased on our novel smart polymers. The current work will significantly advance the future design and development of novel and functional biomedical scaffolds with advanced 4D printing technology and highly biocompatible smart biomaterials. PMID:28195832

  11. The Patient's Experience of the Psychosocial Process That Influences Identity following Stroke Rehabilitation: A Metaethnography

    PubMed Central

    Hole, E.; Stubbs, B.; Roskell, C.; Soundy, A.

    2014-01-01

    Background and Purpose. Patient experience is increasingly being recognised as a key health outcome due to its positive correlation with quality of life and treatment compliance. The aim of this study was to create a model of how patient's experiences of rehabilitation after stroke influence their outcome. Methods. A metaethnography of qualitative articles published since 2000 was undertaken. A systematic search of four databases using the keywords was competed. Original studies were included if at least 50% of their data from results was focused on stroke survivors experiences and if they reflected an overarching experience of stroke rehabilitation. Relevant papers were appraised for quality using the COREQ tool. Pata analysis as undertaken using traditional processes of extracting, interpreting, translating, and synthesizing the included studies. Results. Thirteen studies were included. Two themes (1) evolution of identity and (2) psychosocial constructs that influence experience were identified. A model of recovery was generated. Conclusion. The synthesis model conceptualizes how the recovery of stroke survivors' sense of identity changes during rehabilitation illustrating changes and evolution over time. Positive experiences are shaped by key psychosocial concepts such as hope, social support, and rely on good self-efficacy which is influenced by both clinical staff and external support. PMID:24616623

  12. SVBRDF-Invariant Shape and Reflectance Estimation from a Light-Field Camera.

    PubMed

    Wang, Ting-Chun; Chandraker, Manmohan; Efros, Alexei A; Ramamoorthi, Ravi

    2018-03-01

    Light-field cameras have recently emerged as a powerful tool for one-shot passive 3D shape capture. However, obtaining the shape of glossy objects like metals or plastics remains challenging, since standard Lambertian cues like photo-consistency cannot be easily applied. In this paper, we derive a spatially-varying (SV)BRDF-invariant theory for recovering 3D shape and reflectance from light-field cameras. Our key theoretical insight is a novel analysis of diffuse plus single-lobe SVBRDFs under a light-field setup. We show that, although direct shape recovery is not possible, an equation relating depths and normals can still be derived. Using this equation, we then propose using a polynomial (quadratic) shape prior to resolve the shape ambiguity. Once shape is estimated, we also recover the reflectance. We present extensive synthetic data on the entire MERL BRDF dataset, as well as a number of real examples to validate the theory, where we simultaneously recover shape and BRDFs from a single image taken with a Lytro Illum camera.

  13. Exploring identity within the recovery process of people with serious mental illnesses.

    PubMed

    Buckley-Walker, Kellie; Crowe, Trevor; Caputi, Peter

    2010-01-01

    To examine self-identity within the recovery processes of people with serious mental illnesses using a repertory grid methodology. Cross-sectional study involving 40 mental health service consumers. Participants rated different "self" and "other" elements on the repertory grid against constructs related to recovery, as well as other recovery focused measures. Perceptions of one's "ideal self" represented more advanced recovery in contrast to perceptions of "a person mentally unwell." Current perceptions of self were most similar to perceptions of "usual self" and least similar to "a person who is mentally unwell." Increased identification with one's "ideal self" reflected increased hopefulness in terms of recovery. The recovery repertory grid shows promise in clinical practice, in terms of exploring identity as a key variable within mental health recovery processes. Distance measures of similarity between various self-elements, including perceptions of others, maps logically against the recovery process of hope.

  14. Temperature dependent evolution of wrinkled single-crystal silicon ribbons on shape memory polymers.

    PubMed

    Wang, Yu; Yu, Kai; Qi, H Jerry; Xiao, Jianliang

    2017-10-25

    Shape memory polymers (SMPs) can remember two or more distinct shapes, and thus can have a lot of potential applications. This paper presents combined experimental and theoretical studies on the wrinkling of single-crystal Si ribbons on SMPs and the temperature dependent evolution. Using the shape memory effect of heat responsive SMPs, this study provides a method to build wavy forms of single-crystal silicon thin films on top of SMP substrates. Silicon ribbons obtained from a Si-on-insulator (SOI) wafer are released and transferred onto the surface of programmed SMPs. Then such bilayer systems are recovered at different temperatures, yielding well-defined, wavy profiles of Si ribbons. The wavy profiles are shown to evolve with time, and the evolution behavior strongly depends on the recovery temperature. At relatively low recovery temperatures, both wrinkle wavelength and amplitude increase with time as evolution progresses. Finite element analysis (FEA) accounting for the thermomechanical behavior of SMPs is conducted to study the wrinkling of Si ribbons on SMPs, which shows good agreement with experiment. Merging of wrinkles is observed in FEA, which could explain the increase of wrinkle wavelength observed in the experiment. This study can have important implications for smart stretchable electronics, wrinkling mechanics, stimuli-responsive surface engineering, and advanced manufacturing.

  15. Effects of programming and healing temperatures on the healing efficiency of a confined healable polymer composite

    NASA Astrophysics Data System (ADS)

    Yougoubare, Y. Quentin; Pang, Su-Seng

    2014-02-01

    In previous work, a biomimetic close-then-heal (CTH) healing mechanism was proposed and validated to repeatedly heal wide-open cracks in load carrying engineering structures by using constrained expansion of compression programmed thermoset shape memory polymers (SMPs). In this study, the effects on healing efficiencies of variation of temperature during both thermomechanical programming and shape recovery (healing) under three-dimensional (3D) confinement are evaluated. The polymer considered is a polystyrene shape memory polymer with 6% by volume of thermoplastic particle additives (copolyester) dispersed in the matrix. In addition to the programming and healing temperatures, some of the parameters investigated include the flexural strength, crack width and elemental composition at the crack interface. It is observed that while increase of the programming temperature is slightly beneficial to strength recovery, most of the strength recovered and damage repair are strongly dependent on the healing temperature. The best healing efficiency (63%) is achieved by a combination of a programming temperature above the glass transition temperature of the polymer and a healing temperature above the bonding point of the copolyester.

  16. a Thermal Conduction Switch Based on Low Hysteresis Nitife Shape Memory Alloy Helical Springs

    NASA Astrophysics Data System (ADS)

    Krishnan, V. B.; Bewerse, C.; Notardonato, W. U.; Vaidyanathan, R.

    2008-03-01

    Shape memory alloy (SMA) actuators possess an inherent property of sensing a change in temperature and delivering significant force against external loads through a shape change resulting from a temperature-induced phase transformation. The utilization of a reversible trigonal (R-phase) to cubic phase transformation in NiTiFe SMAs allows for this strain recovery to occur with reduced hysteresis between the forward and reverse transformations. However, the magnitude of the strain recovery associated with the R-phase transformation is lower than that of the monoclinic to cubic phase transformation. The use of helical springs can compensate for this design constraint as they produce significant stroke when compared to straight elements such as thin strips and wires. This work reports on the development and implementation of NiTiFe helical springs in a low-hysteresis thermal conduction switch for advanced spaceport applications associated with NASA's requirements for future lunar and Mars missions. Such a low-hysteresis thermal conduction switch can provide on-demand heat transfer between two reservoirs at different temperatures.

  17. Chemical cross-linking of polypropylenes towards new shape memory polymers.

    PubMed

    Raidt, Thomas; Hoeher, Robin; Katzenberg, Frank; Tiller, Joerg C

    2015-04-01

    In this work, syndiotactic polypropylene (sPP) as well as isotactic polypropylene (iPP) are cross-linked to gain a shape memory effect. Both prepared PP networks exhibit maximum strains of 700%, stored strains of up to 680%, and recoveries of nearly 100%. While x-iPP is stable for many cycles, x-sPP ruptures after the first shape-memory cycle. It is shown by wide-angle X-ray scattering (WAXS) experiments that cross-linked iPP exhibits homoepitaxy in the temporary, stretched shape but in contrast to previous reports it contains a higher amount of daughter than mother crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Microstructure and Shape Memory Behavior of Ti-Nb Shape Memory Alloy Thin Film

    NASA Astrophysics Data System (ADS)

    Meng, X. L.; Sun, B.; Sun, J. Y.; Gao, Z. Y.; Cai, W.; Zhao, L. C.

    2017-09-01

    Ti-Nb shape memory alloy (SMA) thin film is a promising candidate applied as microactuator in biomedical field. In this study, the microstructure and shape memory behavior of Ti-Nb SMA thin films in different heat treatment conditions have been investigated. Fine ω phases embedded in the β phase matrix suppress the martensitic transformation of the films. As a result, the as-deposited and most of the annealed films consist of the β and α″ dual phases. The annealed Ti-Nb thin film shows excellent superelasticity effect when deformed above the reverse martensitic transformation temperature, that is 3.5% total recovery strain can be obtained when 4% pre-strain is loaded.

  19. KIC 8462852 Brightness Pattern Repeating Every 1600 days

    NASA Astrophysics Data System (ADS)

    Gary, Bruce; Bourne, Rafik

    2017-12-01

    Observations of KIC 8462852 (aka Boyajian's Star) reveal a yearlong fade pattern that is remarkably similar to the fade pattern derived from Kepler mission observations. The ground-based observations reported here can be described as a gradual fade that ended in late 2016 with the beginning of a yearlong U-shaped fade of 1.1 percent. Near the end of this U-shaped fade a series of very brief dips occurred. The Kepler data exhibit a similar pattern 1600 days earlier, except with an abrupt end of observations before the U-shape recovery. Observations lasting many years are needed, especially during our predicted repeat of the U-shape and short dip pattern in 2021.

  20. Gravitational lens recovery with GLASS: measuring the mass profile and shape of a lens

    NASA Astrophysics Data System (ADS)

    Coles, Jonathan P.; Read, Justin I.; Saha, Prasenjit

    2014-12-01

    We use a new non-parametric gravitational modelling tool - GLASS - to determine what quality of data (strong lensing, stellar kinematics, and/or stellar masses) are required to measure the circularly averaged mass profile of a lens and its shape. GLASS uses an underconstrained adaptive grid of mass pixels to model the lens, searching through thousands of models to marginalize over model uncertainties. Our key findings are as follows: (i) for pure lens data, multiple sources with wide redshift separation give the strongest constraints as this breaks the well-known mass-sheet or steepness degeneracy; (ii) a single quad with time delays also performs well, giving a good recovery of both the mass profile and its shape; (iii) stellar masses - for lenses where the stars dominate the central potential - can also break the steepness degeneracy, giving a recovery for doubles almost as good as having a quad with time-delay data, or multiple source redshifts; (iv) stellar kinematics provide a robust measure of the mass at the half-light radius of the stars r1/2 that can also break the steepness degeneracy if the Einstein radius rE ≠ r1/2; and (v) if rE ˜ r1/2, then stellar kinematic data can be used to probe the stellar velocity anisotropy β - an interesting quantity in its own right. Where information on the mass distribution from lensing and/or other probes becomes redundant, this opens up the possibility of using strong lensing to constrain cosmological models.

  1. Harnessing Natural Recovery Processes to Improve Restoration Outcomes: An Experimental Assessment of Sponge-Mediated Coral Reef Restoration

    PubMed Central

    Biggs, Brendan C.

    2013-01-01

    Background Restoration is increasingly implemented to reestablish habitat structure and function following physical anthropogenic disturbance, but scientific knowledge of effectiveness of methods lags behind demand for guidelines. On coral reefs, recovery is largely dependent on coral reestablishment, and substratum stability is critical to the survival of coral fragments and recruits. Concrete is often used to immobilize rubble, but its ecological performance has not been rigorously evaluated, and restoration has generally fallen short of returning degraded habitat to pre-disturbance conditions. Fragments of erect branching sponges mediate reef recovery by facilitating rubble consolidation, yet such natural processes have been largely overlooked in restoring reefs. Methods On two reefs in Curacao, four treatments - coral rubble alone, rubble seeded with sponge fragments, rubble bound by concrete, and concrete “rubble” bound by concrete - were monitored over four years to investigate rubble consolidation with and without sponges and the ecological performance of treatments in terms of the number and diversity of coral recruits. Species specific rates of sponge fragment attachment to rubble, donor sponge growth and tissue replacement, and fragment survival inside rubble piles were also investigated to evaluate sponge species performance and determine rates for sustainably harvesting tissue. Findings/Significance Rubble piles seeded with sponges retained height and shape to a significantly greater degree, lost fewer replicates to water motion, and were significantly more likely to be consolidated over time than rubble alone. Significantly more corals recruited to sponge-seeded rubble than to all other treatments. Coral diversity was also greatest for rubble with sponges and it was the only treatment to which framework building corals recruited. Differences in overall sponge species performance suggest species selection is important to consider. Employing organisms that jump start successional pathways and facilitate recovery can significantly improve restoration outcomes; however, best practices require techniques be tailored to each system. PMID:23750219

  2. Experimental and numerical investigation of the recovery ratio of a wedge-shaped hot-film probe

    NASA Astrophysics Data System (ADS)

    Krause, M.; Gaisbauer, U.; Kraemer, E.; Kosinov, A. D.

    2017-03-01

    The recovery ratio of a wedge-shaped hot-film probe was determined in an experimental as well as numerical study, since this information is still unpublished and essential for using the probe in hot-film anemometry. The experiments were conducted at the Khristianovich Institute of Theoretical and Applied Mechanics (ITAM) in Novosibirsk, Russia, and the simulations were performed with StarCCM+, a commercial 2nd order finite volume code. In the analysis, the Mach number was varied between M = 2 and M = 4, and the unit Reynolds number ranged from Re1 = 3.8•106 to Re1 = 26.1•106 m-1, depending on the Mach number. During the experiment, the stagnation temperature was kept constant for each Mach number at a separate value in the range of T 0 = 289 ± 7 K. Three different stagnation temperatures were used in the simulations: T 0 = 259 K, T 0 = 289 K, and T 0 = 319 K. The difference between the experimental and the numerical results is ≤ 0.5 %, and, therefore, both are in very good accordance. The influence of the Mach number, of the unit Reynolds number, and of the stagnation temperature was analysed, and three different fitting functions for the recovery ratio were established. In general, the recovery ratio shows small variations with all three tested parameters. These dependencies are of the same order of magnitude.

  3. Thermomechanical testing of FeNiCoTi shape memory alloy for active confinement of concrete

    NASA Astrophysics Data System (ADS)

    Chen, Qiwen; Andrawes, Bassem; Sehitoglu, Huseyin

    2014-05-01

    The thermomechanical properties of a new type of shape memory alloy (SMA), FeNiCoTi, are explored in this paper with the aim of examining the feasibility of using this new material as transverse reinforcement for concrete structures subjected to earthquake loading. One advantage of using FeNiCoTi alloy is its cost effectiveness compared to commonly studied NiTi alloy. Differential scanning calorimetry (DSC) tests are conducted to investigate the transformation temperatures of FeNiCoTi alloy under different heat treatment methods and prestrain schemes. First, a heat treatment method is established to produce FeNiCoTi alloy with wide thermal hysteresis that is pertinent to civil structural applications. Next, recovery stress tests are conducted to explore the effect of parameters including heating method, heating temperature, heating rate, heating protocol and prestrain level on the recovery stress. An optimum prestrain level is determined based on the recovery stress results. Moreover, cyclic tests are carried out to examine the cyclic response of FeNiCoTi alloy after stress recovery. Thermal cyclic tests are also carried out on the FeNiCoTi alloy to better understand the effect of temperature variation on the recovery stress. In addition, reheating of the FeNiCoTi alloy after deformation is conducted to examine the reusability of the material after being subjected to excessive deformation. Test results of the FeNiCoTi alloy indicate that this cost-effective SMA can potentially be a promising new material for civil structural applications.

  4. Nanoscale Design of Nano-Sized Particles in Shape-Memory Polymer Nanocomposites Driven by Electricity

    PubMed Central

    Lu, Haibao; Huang, Wei Min; Liang, Fei; Yu, Kai

    2013-01-01

    In the last few years, we have witnessed significant progress in developing high performance shape memory polymer (SMP) nanocomposites, in particular, for shape recovery activated by indirect heating in the presence of electricity, magnetism, light, radio frequency, microwave and radiation, etc. In this paper, we critically review recent findings in Joule heating of SMP nanocomposites incorporated with nanosized conductive electromagnetic particles by means of nanoscale control via applying an electro- and/or magnetic field. A few different nanoscale design principles to form one-/two-/three- dimensional conductive networks are discussed. PMID:28788303

  5. A water-responsive shape memory ionomer with permanent shape reconfiguration ability

    NASA Astrophysics Data System (ADS)

    Bai, Yongkang; Zhang, Jiwen; Tian, Ran; Chen, Xin

    2018-04-01

    In this work, a water-responsive shape memory ionomer with high toughness was fabricated by cross-linking hyaluronic acid sodium (HAS) and polyvinyl alcohol (PVA) through coordination interactions. The strong Fe3+-carboxyl (from HAS) coordination interactions served as main physical cross-linking points for the performance of water-responsive shape memory, which associated with the flexibility of PVA chain producing excellent mechanical properties of this ionomer. The optimized ionomer was not only able to recover to its original shape within just 22 s by exposing to water, but exhibited high tensile strength up to 35.4 MPa and 4 times higher tractility than the ionomer without PVA. Moreover, the ionomers can be repeatedly programed to various new permanent shapes on demand due to the reversible physical interactions, which still performed complete and fast geometric recovery under stimuli even after 4 cycles of reprograming with 3 different shapes. The excellent shape memory and strong mechanical behaviors make our ionomers significant and promising smart materials for variety of applications.

  6. Inlet Trade Study for a Low-Boom Aircraft Demonstrator

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Slater, John W.; Rallabhandi, Sriram K.

    2016-01-01

    Propulsion integration for low-boom supersonic aircraft requires careful inlet selection, placement, and tailoring to achieve acceptable propulsive and aerodynamic performance, without compromising vehicle sonic boom loudness levels. In this investigation, an inward-turning streamline-traced and axisymmetric spike inlet are designed and independently installed on a conceptual low-boom supersonic demonstrator aircraft. The airframe was pre-shaped to achieve a target ground under-track loudness of 76.4 PLdB at cruise using an adjoint-based design optimization process. Aircraft and inlet performance characteristics were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Isolated cruise inlet performance including total pressure recovery and distortion were computed and compared against installed inlet performance metrics. Evaluation of vehicle near-field pressure signatures, along with under- and off-track propagated loudness levels is also reported. Results indicate the integrated axisymmetric spike design offers higher inlet pressure recovery, lower fan distortion, and reduced sonic boom. The vehicle with streamline-traced inlet exhibits lower external wave drag, which translates to a higher lift-to-drag ratio and increased range capability.

  7. GRAIL Twins are Covered

    NASA Image and Video Library

    2011-08-25

    Spacecraft technicians monitor the movement of a section of the clamshell-shaped Delta payload fairing as it encloses NASA twin Gravity Recovery and Interior Laboratory spacecraft at Cape Canaveral Air Force Station in Florida on Aug. 23, 2011.

  8. Recovery and serious mental illness: a review of current clinical and research paradigms and future directions.

    PubMed

    Leonhardt, Bethany L; Huling, Kelsey; Hamm, Jay A; Roe, David; Hasson-Ohayon, Ilanit; McLeod, Hamish J; Lysaker, Paul H

    2017-11-01

    Recovery from serious mental illness has historically not been considered a likely or even possible outcome. However, a range of evidence suggests the courses of SMI are heterogeneous with recovery being the most likely outcome. One barrier to studying recovery in SMI is that recovery has been operationalized in divergent and seemingly incompatible ways: as an objective outcome versus a subjective process. Areas covered: This paper offers a review of recovery as a subjective process and recovery as an objective outcome; contrasts methodologies utilized by each approach to assess recovery; reports rates and correlates of recovery; and explores the relationship between objective and subjective forms of recovery. Expert commentary: There are two commonalities of approaching recovery as a subjective process and an objective outcome: (i) the need to make meaning out of one's experiences to engage in either type of recovery and (ii) there exist many threats to engaging in meaning making that may impact the likelihood of moving toward recovery. We offer four clinical implications that stem from these two commonalities within a divided approach to the concept of recovery from SMI.

  9. Device and method to enhance availability of cluster-based processing systems

    NASA Technical Reports Server (NTRS)

    Lupia, David J. (Inventor); Ramos, Jeremy (Inventor); Samson, Jr., John R. (Inventor)

    2010-01-01

    An electronic computing device including at least one processing unit that implements a specific fault signal upon experiencing an associated fault, a control unit that generates a specific recovery signal upon receiving the fault signal from the at least one processing unit, and at least one input memory unit. The recovery signal initiates specific recovery processes in the at least one processing unit. The input memory buffers input data signals input to the at least one processing unit that experienced the fault during the recovery period.

  10. Bilateral lesions of nucleus subpretectalis/interstitio-pretecto-subpretectalis (SP/IPS) selectively impair figure-ground discrimination in pigeons.

    PubMed

    Scully, Erin N; Acerbo, Martin J; Lazareva, Olga F

    2014-01-01

    Earlier, we reported that nucleus rotundus (Rt) together with its inhibitory complex, nucleus subpretectalis/interstitio-pretecto-subpretectalis (SP/IPS), had significantly higher activity in pigeons performing figure-ground discrimination than in the control group that did not perform any visual discriminations. In contrast, color discrimination produced significantly higher activity than control in the Rt but not in the SP/IPS. Finally, shape discrimination produced significantly lower activity than control in both the Rt and the SP/IPS. In this study, we trained pigeons to simultaneously perform three visual discriminations (figure-ground, color, and shape) using the same stimulus displays. When birds learned to perform all three tasks concurrently at high levels of accuracy, we conducted bilateral chemical lesions of the SP/IPS. After a period of recovery, the birds were retrained on the same tasks to evaluate the effect of lesions on maintenance of these discriminations. We found that the lesions of the SP/IPS had no effect on color or shape discrimination and that they significantly impaired figure-ground discrimination. Together with our earlier data, these results suggest that the nucleus Rt and the SP/IPS are the key structures involved in figure-ground discrimination. These results also imply that thalamic processing is critical for figure-ground segregation in avian brain.

  11. Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery (Quarterly Report: Q3-FY03)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, R; Wang, P

    2003-07-31

    In this quarter, an FEM simulation has been performed to compare the shape of the deformed slab after the 8th reduction pass with the experimental metrology data provided by Alcoa Technical Center (ATC). Also, a bug in the thermal contact algorithm used in parallel processing have been identified and corrected for consistent thermal solutions between the rollers and the slab. The overall shape of the slab at the end of the 8th pass is shown in Figure 1. Comparison of the sectional views at the center plane along the length of the slab for both experiment and simulation, shows thatmore » the curvature at the slab mouth at the centerline is slightly higher than the experimental result as shown in Figure 2. We are currently focusing on tuning the parameter values used in the simulation and a more complete parametric study for validation is underway. Also, unexpected fracture occurred along the surface of the slab in the 9th pass as shown in Figure 3. We believe that the reason is due to previously noted inadequacies in the fracture model at low strain rates and high stress triaxiality. We are expecting to receive a modified fracture model based on additional experiment shortly from Alcoa.« less

  12. Recovery from a psychiatrist's viewpoint.

    PubMed

    Diamond, Ronald J

    2006-09-01

    Recovery is not the same as cure. Recovery from mental illness is the process of having more to life than just illness. It is an ongoing process rather than simply a goal that can be achieved. Recovery from the stigma of mental illness may be as difficult as recovery from the illness itself. Several common, but incorrect, beliefs can interfere with the recovery process. Myths include the belief that the illness has an inherently downhill course, that rehabilitation is useful only after stabilization, and that people with schizophrenia can only work at low-level jobs. People who have schizophrenia have reported that their own process of recovery was helped by their determination to get better, an understanding of the illness, taking personal responsibility, having friends who accept them, an optimistic attitude, and spiritual beliefs that help them find meaning in life.

  13. U.sup.+4 generation in HTER

    DOEpatents

    Miller, William E [Naperville, IL; Gay, Eddie C [Park Forest, IL; Tomczuk, Zygmunt [Homer Glen, IL

    2006-03-14

    A improved device and process for recycling spent nuclear fuels, in particular uranium metal, that facilitates the refinement and recovery of uranium metal from spent metallic nuclear fuels. The electrorefiner device comprises two anodes in predetermined spatial relation to a cathode. The anodese have separate current and voltage controls. A much higher voltage than normal for the electrorefining process is applied to the second anode, thereby facilitating oxidization of uranium (III), U.sup.+, to uranium (IV), U.sup.+4. The current path from the second anode to the cathode is physically shorter than the similar current path from the second anode to the spent nuclear fuel contained in a first anode shaped as a basket. The resulting U.sup.+4 oxidizes and solubilizes rough uranium deposited on the surface of the cathode. A softer uranium metal surface is left on the cathode and is more readily removed by a scraper.

  14. Multiscale Mechano-Biological Finite Element Modelling of Oncoplastic Breast Surgery—Numerical Study towards Surgical Planning and Cosmetic Outcome Prediction

    PubMed Central

    Eiben, Bjoern; Hipwell, John H.; Williams, Norman R.; Keshtgar, Mo; Hawkes, David J.

    2016-01-01

    Surgical treatment for early-stage breast carcinoma primarily necessitates breast conserving therapy (BCT), where the tumour is removed while preserving the breast shape. To date, there have been very few attempts to develop accurate and efficient computational tools that could be used in the clinical environment for pre-operative planning and oncoplastic breast surgery assessment. Moreover, from the breast cancer research perspective, there has been very little effort to model complex mechano-biological processes involved in wound healing. We address this by providing an integrated numerical framework that can simulate the therapeutic effects of BCT over the extended period of treatment and recovery. A validated, three-dimensional, multiscale finite element procedure that simulates breast tissue deformations and physiological wound healing is presented. In the proposed methodology, a partitioned, continuum-based mathematical model for tissue recovery and angiogenesis, and breast tissue deformation is considered. The effectiveness and accuracy of the proposed numerical scheme is illustrated through patient-specific representative examples. Wound repair and contraction numerical analyses of real MRI-derived breast geometries are investigated, and the final predictions of the breast shape are validated against post-operative follow-up optical surface scans from four patients. Mean (standard deviation) breast surface distance errors in millimetres of 3.1 (±3.1), 3.2 (±2.4), 2.8 (±2.7) and 4.1 (±3.3) were obtained, demonstrating the ability of the surgical simulation tool to predict, pre-operatively, the outcome of BCT to clinically useful accuracy. PMID:27466815

  15. Energy Confinement Recovery in Low Collisionality ITER Shape Plasmas with Applied Resonant Magnetic Perturbations (RMPs)

    NASA Astrophysics Data System (ADS)

    Cui, L.; Grierson, B.; Logan, N.; Nazikian, R.

    2016-10-01

    Application of RMPs to low collisionality (ν*e < 0.4) ITER shape plasmas on DIII-D leads to a rapid reduction in stored energy due to density pumpout that is sometimes followed by a gradual recovery in the plasma stored energy. Understanding this confinement recovery is essential to optimize the confinement of RMP plasmas in present and future devices such as ITER. Transport modeling using TRANSP+TGLF indicates that the core a/LTi is stiff in these plasmas while the ion temperature gradient is much less stiff in the pedestal region. The reduction in the edge density during pumpout leads to an increase in the core ion temperature predicted by TGLF based on experimental data. This is correlated to the increase in the normalized ion heat flux. Transport stiffness in the core combined with an increase in the edge a/LTi results in an increase of the plasma stored energy, consistent with experimental observations. For plasmas where the edge density is controlled using deuterium gas puffs, the effect of the RMP on ion thermal confinement is significantly reduced. Work supported by US DOE Grant DE-FC02-04ER54698 and DE-AC02-09CH11466.

  16. Supercritical fluid attachment of palladium nanoparticles on aligned carbon nanotubes.

    PubMed

    Ye, Xiang-Rong; Lin, Yuehe; Wai, Chien M; Talbot, Jan B; Jin, Sungho

    2005-06-01

    Nanocomposite materials consisting of Pd nanoparticles deposited on aligned multi-walled carbon nanotubes have been fabricated through hydrogen reduction of palladium-beta-diketone precursor in supercritical carbon dioxide. The supercritical fluid processing allowed deposition of high-density Pd nanoparticles (approximately 5-10 nm) on both as-grown (unfunctionalized) and functionalized (using HNO3 oxidation) nanotubes. However, the wet processing for functionalization results in pre-agglomerated, bundle-shaped nanotubes, thus significantly reducing the effective surface area for Pd particle deposition, although the bundling provides more secure, lock-in-place positioning of nanotubes and Pd catalyst particles. The nanotube bundling is substantially mitigated by Pd nanoparticle deposition on the unfunctionalized and geometrically separated nanotubes, which provides much higher catalyst surface area. Such nanocomposite materials utilizing geometrically secured and aligned nanotubes can be useful for providing much enhanced catalytic activities to chemical and electrochemical reactions (e.g., fuel cell reactions), and eliminate the need for tedious catalyst recovery process after the reaction is completed.

  17. Mental health recovery: lived experience of consumers, carers and nurses.

    PubMed

    Jacob, Sini; Munro, Ian; Taylor, Beverley Joan

    2015-01-01

    Background Mental health recovery is a prominent topic of discussion in the global mental health settings. The concept of mental health recovery brought about a major shift in the traditional philosophical views of many mental health systems. Aim The purpose of this article is to outline the results of a qualitative study on mental health recovery, which involved mental health consumers, carers and mental health nurses from an Area Mental Health Service in Victoria, Australia. This paper is Part One of the results that explored the meaning of recovery. Methods The study used van Manen's hermeneutic phenomenology to analyse the data. Findings Themes suggested that the cohort had varying views on recovery that were similar and dissimilar. The similar views were categorised under two processes involving the self, an internal process and an external process. These two processes involved reclaiming various aspects of oneself, living life, cure or absence of symptoms and contribution to community. The dissimilar views involved returning to pre-illness state and recovery was impossible. Conclusion This study highlights the need for placing importance on the person's sense of self in the recovery process.

  18. Mental health recovery: Lived experience of consumers, carers and nurses.

    PubMed

    Jacob, Sini; Munro, Ian; Taylor, Beverley Joan

    2014-09-06

    Abstract Background Mental health recovery is a prominent topic of discussion in the global mental health settings. The concept of mental health recovery brought about a major shift in the traditional philosophical views of many mental health systems. Aim The purpose of this article is to outline the results of a qualitative study on mental health recovery, which involved mental health consumers, carers and mental health nurses from an Area Mental Health Service in Victoria, Australia. This paper is part one of the results that explored the meaning of recovery. Methods The study used van Manen's hermeneutic phenomenology to analyse the data. Findings Themes suggested that the cohort had varying views on recovery that were similar and dissimilar. The similar views were categorised under two processes involving the self, an internal process and an external process. These two processes involved reclaiming various aspects of oneself, living life, cure or absence of symptoms and contribution to community. The dissimilar views involved returning to pre-illness state and recovery was impossible. Conclusion This study highlights the need for placing importance to the person's sense of self in the recovery process.

  19. 75 FR 4528 - Endangered and Threatened Species: Notice of Intent to Prepare a Recovery Plan for Cook Inlet...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... recovery of Cook Inlet belugas, which are listed as endangered under the ESA. The recovery planning process... effort to expedite the recovery plan process, NMFS will work towards incorporating relevant portions of... and Threatened Species: Notice of Intent to Prepare a Recovery Plan for Cook Inlet Beluga Whales...

  20. Magnetic Field Triggered Multicycle Damage Sensing and Self Healing.

    PubMed

    Ahmed, Anansa S; Ramanujan, R V

    2015-09-08

    Multifunctional materials inspired by biological structures have attracted great interest, e.g. for wearable/ flexible "skin" and smart coatings. A current challenge in this area is to develop an artificial material which mimics biological skin by simultaneously displaying color change on damage as well as self healing of the damaged region. Here we report, for the first time, the development of a damage sensing and self healing magnet-polymer composite (Magpol), which actively responds to an external magnetic field. We incorporated reversible sensing using mechanochromic molecules in a shape memory thermoplastic matrix. Exposure to an alternating magnetic field (AMF) triggers shape recovery and facilitates damage repair. Magpol exhibited a linear strain response upto 150% strain and complete recovery after healing. We have demonstrated the use of this concept in a reusable biomedical device i.e., coated guidewires. Our findings offer a new synergistic method to bestow multifunctionality for applications ranging from medical device coatings to adaptive wing structures.

  1. Mechanical stability of the cell nucleus: roles played by the cytoskeleton in nuclear deformation and strain recovery.

    PubMed

    Wang, Xian; Liu, Haijiao; Zhu, Min; Cao, Changhong; Xu, Zhensong; Tsatskis, Yonit; Lau, Kimberly; Kuok, Chikin; Filleter, Tobin; McNeill, Helen; Simmons, Craig A; Hopyan, Sevan; Sun, Yu

    2018-05-18

    Extracellular forces transmitted through the cytoskeleton can deform the cell nucleus. Large nuclear deformation increases the risk of disrupting the nuclear envelope's integrity and causing DNA damage. Mechanical stability of the nucleus defines its capability of maintaining nuclear shape by minimizing nuclear deformation and recovering strain when deformed. Understanding the deformation and recovery behavior of the nucleus requires characterization of nuclear viscoelastic properties. Here, we quantified the decoupled viscoelastic parameters of the cell membrane, cytoskeleton, and the nucleus. The results indicate that the cytoskeleton enhances nuclear mechanical stability by lowering the effective deformability of the nucleus while maintaining nuclear sensitivity to mechanical stimuli. Additionally, the cytoskeleton decreases the strain energy release rate of the nucleus and might thus prevent shape change-induced structural damage to chromatin. © 2018. Published by The Company of Biologists Ltd.

  2. Mechanical stress and network structure drive protein dynamics during cytokinesis.

    PubMed

    Srivastava, Vasudha; Robinson, Douglas N

    2015-03-02

    Cell-shape changes associated with processes like cytokinesis and motility proceed on several-second timescales but are derived from molecular events, including protein-protein interactions, filament assembly, and force generation by molecular motors, all of which occur much faster [1-4]. Therefore, defining the dynamics of such molecular machinery is critical for understanding cell-shape regulation. In addition to signaling pathways, mechanical stresses also direct cytoskeletal protein accumulation [5-7]. A myosin-II-based mechanosensory system controls cellular contractility and shape during cytokinesis and under applied stress [6, 8]. In Dictyostelium, this system tunes myosin II accumulation by feedback through the actin network, particularly through the crosslinker cortexillin I. Cortexillin-binding IQGAPs are major regulators of this system. Here, we defined the short timescale dynamics of key cytoskeletal proteins during cytokinesis and under mechanical stress, using fluorescence recovery after photobleaching and fluorescence correlation spectroscopy, to examine the dynamic interplay between these proteins. Equatorially enriched proteins including cortexillin I, IQGAP2, and myosin II recovered much more slowly than actin and polar crosslinkers. The mobility of equatorial proteins was greatly reduced at the furrow compared to the interphase cortex, suggesting their stabilization during cytokinesis. This mobility shift did not arise from a single biochemical event, but rather from a global inhibition of protein dynamics by mechanical-stress-associated changes in the cytoskeletal structure. Mechanical tuning of contractile protein dynamics provides robustness to the cytoskeletal framework responsible for regulating cell shape and contributes to cytokinesis fidelity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Assessing the morphology of selective laser melted NiTi-scaffolds for a three-dimensional quantification of the one-way shape memory effect

    NASA Astrophysics Data System (ADS)

    Bormann, Therese; de Wild, Michael; Beckmann, Felix; Müller, Bert

    2013-04-01

    NiTi is promising for the use as bone scaffold, because the pseudoelasticity or the one- and two-way shape memory effect in the physiological window can mechanically stimulate the adherent cells. Such stimuli can enhance osseointegration and might reduce stress shielding associated with load bearing implants. The present study is based on the additive manufacturing technique of selective laser melting (SLM) to fabricate three-dimensional NiTi scaffolds. We demonstrate that the morphology of the scaffolds can be quantified using synchrotron radiation-based micro computed tomography (SRμCT) and sophisticated registration software. Comparing the CAD file with the SLM scaffolds, quality factors are derived. With respect to the CAD file, the overlap corresponds to (92.5 +/- 0.6) %. (7.4 +/- 0.42) % of material was missing and (48.9 +/- 2.3) % of excess material found. This means that the actual scaffold is less porous than expected, a fact that has to be considered for the scaffold design. In order to quantify the shape memory effect during the shape recovery process, we acquired radiographs rotating an initially deformed scaffold in angular steps of 0.2 degree during controlled heating. The continuously acquired radiographs were combined to tomography data, showing that the quality factors evolved with temperature as the scaffold height, measured by conventional thermo-mechanical analysis. Furthermore, the data comprise the presence of compressive and tensile local strains in the three-dimensional scaffolds to be compared with the physiological situation.

  4. Influence of optical pumping wavelength on the ultrafast gain and phase recovery acceleration of quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Kim, Jungho

    2013-10-01

    We numerically investigate the influence of the optical pumping wavelength on the ultrafast gain and phase recovery acceleration of quantum-dot (QD) semiconductor optical amplifiers (SOAs) by solving 1088 coupled rate equations. The temporal variations of the gain and phase recovery response at the ground state (GS) of QDs are calculated at various signal wavelengths when the optical pumping wavelengths at the excited state (ES) of QDs are varied. The phase recovery response is fastest when the wavelength of the signal and pumping beams corresponds to the respective emission wavelength of the GS and the ES in the same size of QDs. The absorption efficiency of the optical pumping beam at the ES is determined by the Lorentzian line shape function of the homogeneous broadening.

  5. Numerical modeling of reverse recovery characteristic in silicon pin diodes

    NASA Astrophysics Data System (ADS)

    Yamashita, Yusuke; Tadano, Hiroshi

    2018-07-01

    A new numerical reverse recovery model of silicon pin diode is proposed by the approximation of the reverse recovery waveform as a simple shape. This is the first model to calculate the reverse recovery characteristics using numerical equations without adjusted by fitting equations and fitting parameters. In order to verify the validity and the accuracy of the numerical model, the calculation result from the model is verified through the device simulation result. In 1980, he joined Toyota Central R&D Labs, Inc., where he was involved in the research and development of power devices such as SIT, IGBT, diodes and power MOSFETs. Since 2013 he has been a professor at the Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Japan. His current research interest is high-efficiency power conversion circuits for electric vehicles using advanced power devices.

  6. Status of pre-processing of waste electrical and electronic equipment in Germany and its influence on the recovery of gold.

    PubMed

    Chancerel, Perrine; Bolland, Til; Rotter, Vera Susanne

    2011-03-01

    Waste electrical and electronic equipment (WEEE) contains gold in low but from an environmental and economic point of view relevant concentration. After collection, WEEE is pre-processed in order to generate appropriate material fractions that are sent to the subsequent end-processing stages (recovery, reuse or disposal). The goal of this research is to quantify the overall recovery rates of pre-processing technologies used in Germany for the reference year 2007. To achieve this goal, facilities operating in Germany were listed and classified according to the technology they apply. Information on their processing capacity was gathered by evaluating statistical databases. Based on a literature review of experimental results for gold recovery rates of different pre-processing technologies, the German overall recovery rate of gold at the pre-processing level was quantified depending on the characteristics of the treated WEEE. The results reveal that - depending on the equipment groups - pre-processing recovery rates of gold of 29 to 61% are achieved in Germany. Some practical recommendations to reduce the losses during pre-processing could be formulated. Defining mass-based recovery targets in the legislation does not set incentives to recover trace elements. Instead, the priorities for recycling could be defined based on other parameters like the environmental impacts of the materials. The implementation of measures to reduce the gold losses would also improve the recovery of several other non-ferrous metals like tin, nickel, and palladium.

  7. Strategic design and fabrication of acrylic shape memory polymers

    NASA Astrophysics Data System (ADS)

    Park, Ju Hyuk; Kim, Hansu; Ryoun Youn, Jae; Song, Young Seok

    2017-08-01

    Modulation of thermomechanics nature is a critical issue for an optimized use of shape memory polymers (SMPs). In this study, a strategic approach was proposed to control the transition temperature of SMPs. Free radical vinyl polymerization was employed for tailoring and preparing acrylic SMPs. Transition temperatures of the shape memory tri-copolymers were tuned by changing the composition of monomers. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses were carried out to evaluate the chemical structures and compositions of the synthesized SMPs. The thermomechanical properties and shape memory performance of the SMPs were also examined by performing dynamic mechanical thermal analysis. Numerical simulation based on a finite element method provided consistent results with experimental cyclic shape memory tests of the specimens. Transient shape recovery tests were conducted and optical transparence of the samples was identified. We envision that the materials proposed in this study can help develop a new type of shape-memory devices in biomedical and aerospace engineering applications.

  8. Patient Experiences of Recovery After Autologous Chondrocyte Implantation: A Qualitative Study

    PubMed Central

    Toonstra, Jenny L.; Howell, Dana; English, Robert A.; Lattermann, Christian; Mattacola, Carl G.

    2016-01-01

    Context: The recovery process after autologous chondrocyte implantation (ACI) can be challenging for patients and clinicians alike due to significant functional limitations and a lengthy healing time. Understanding patients' experiences during the recovery process may assist clinicians in providing more individualized care. Objective: To explore and describe patients' experiences during the recovery process after ACI. Design: Qualitative study. Setting: Orthopaedic clinic. Patients or Other Participants: Participants from a single orthopaedic practice who had undergone ACI within the previous 12 months were purposefully selected. Data Collection and Analysis: Volunteers participated in 1-on-1 semistructured interviews to describe their recovery experiences after ACI. Data were analyzed using the process of horizontalization. Results: Seven patients (2 men, 5 women; age = 40.7 ± 7.5 years, time from surgery = 8.7 ± 4.2 months) participated. Four themes and 6 subthemes emerged from the data and suggested that the recovery process is a lengthy and emotional experience. Therapy provides optimism for the future but requires a collaborative effort among the patient, surgeon, rehabilitation provider, and patient's caregiver(s). Furthermore, patients expressed frustration that their expectations for recovery did not match the reality of the process, including greater dependence on caregivers than expected. Conclusions: Patients' expectations should be elicited before surgery and managed throughout the recovery process. Providing preoperative patient and caregiver education and encouraging preoperative rehabilitation can assist in managing expectations. Establishing realistic goals and expectations may improve rehabilitation adherence, encourage optimism for recovery, and improve outcomes in the long term. PMID:27835044

  9. 78 FR 18947 - Fisheries of the Northeastern United States; Tilefish Fishery Management Plan; Regulatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... IFQ cost recovery process. This action proposes regulatory changes to Sec. 648.294(h) to reconcile the... different aspects of the cost recovery fee collection process, including Payment Responsibility, IFQ Fee... process for appealing the cost recovery fee. Under the appeals process, an IFQ allocation permit holder...

  10. The meanings of recovery from addiction: evolution and promises.

    PubMed

    El-Guebaly, Nady

    2012-03-01

    To review the evolution of the paradigm of recovery in addiction and its implications. A systematic literature review was conducted using the MEDLINE and PsychInfo databases over the past 10 years and key references from the retrieved literature. The historical evolution of the concept of recovery has been shaped by several driving forces, including consumer experience, the need to better define our treatment outcome and parallel elaboration of the concepts of health, quality of life, and chronic disorders. Similarities and differences with the concept of "recovery" in mental health and other biomedical fields are identified.The empirical basis is growing in support of various proposed attributions and features of recovery along with the temporal benchmarks involved. The various forms of recovery, such as "natural," "transformational," or "medication-assisted," describe a choice of pathways to a common goal.The management implications are far-reaching and call for system shifts from acute stabilization to sustained recovery, including the growth of alternative institutions, and roles complementary to mutual help. Tools for the sustenance of recovery, including educational kits, recovery workbooks, and e-recovery initiatives, are developing. Although first-person accounts of recovery abound, a more systematic empirical investigation of the concept has just begun, including demographic and cultural differences. Management implications are derived from the experience with other "mainstream" chronic disorders with treatment providing stabilization and initiation of recovery and a range of long-term resources becoming available to sustain it.

  11. Compensatory motor control after stroke: an alternative joint strategy for object-dependent shaping of hand posture.

    PubMed

    Raghavan, Preeti; Santello, Marco; Gordon, Andrew M; Krakauer, John W

    2010-06-01

    Efficient grasping requires planned and accurate coordination of finger movements to approximate the shape of an object before contact. In healthy subjects, hand shaping is known to occur early in reach under predominantly feedforward control. In patients with hemiparesis after stroke, execution of coordinated digit motion during grasping is impaired as a result of damage to the corticospinal tract. The question addressed here is whether patients with hemiparesis are able to compensate for their execution deficit with a qualitatively different grasp strategy that still allows them to differentiate hand posture to object shape. Subjects grasped a rectangular, concave, and convex object while wearing an instrumented glove. Reach-to-grasp was divided into three phases based on wrist kinematics: reach acceleration (reach onset to peak horizontal wrist velocity), reach deceleration (peak horizontal wrist velocity to reach offset), and grasp (reach offset to lift-off). Patients showed reduced finger abduction, proximal interphalangeal joint (PIP) flexion, and metacarpophalangeal joint (MCP) extension at object grasp across all three shapes compared with controls; however, they were able to partially differentiate hand posture for the convex and concave shapes using a compensatory strategy that involved increased MCP flexion rather than the PIP flexion seen in controls. Interestingly, shape-specific hand postures did not unfold initially during reach acceleration as seen in controls, but instead evolved later during reach deceleration, which suggests increased reliance on sensory feedback. These results indicate that kinematic analysis can identify and quantify within-limb compensatory motor control strategies after stroke. From a clinical perspective, quantitative study of compensation is important to better understand the process of recovery from brain injury. From a motor control perspective, compensation can be considered a model for how joint redundancy is exploited to accomplish the task goal through redistribution of work across effectors.

  12. Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces

    NASA Astrophysics Data System (ADS)

    Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer

    2018-01-01

    Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.

  13. Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces

    NASA Astrophysics Data System (ADS)

    Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer

    2018-03-01

    Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.

  14. A multi-stage oil-water-separating process design for the sea oil spill recovery robot

    NASA Astrophysics Data System (ADS)

    Zhang, Min-ge; Wu, Jian-guo; Lin, Xinhua; Wang, Xiao-ming

    2018-03-01

    Oil spill have the most common pollution to the marine ecological environment. In the late stage of physical method recovery, because of the thin oil and the strong sea breeze, the recovery vessels has low efficiency and high energy consumption. This paper develops a multi-stage oil-water-separating process carried by the sea oil spill recovery robot in severe conditions. This design consists of three separation process, among which both the first and third process adopt corrugated sheets horizontal oil-water separator, while the second is hydraulic rotary breaker. This design also equiptment with rectifier and cyclone separator and other important components. This process has high flexibility and high recovery efficiency. The implement effect is significant.

  15. Fatigue and mechanical properties of nickel-titanium endodontic instruments.

    PubMed

    Kuhn, Grégoire; Jordan, Laurence

    2002-10-01

    Shape memory alloys are increasingly used in superelastic conditions under complex cyclic deformation situations. In these applications, it is very difficult to predict the service life based on the theoretical law. In the present work, fatigue properties of NiTi engine-driven rotary files have been characterized by using differential scanning calorimetry (DSC) and mechanical testing (bending). The DSC technique was used to measure precise transformation. The degree of deformation by bending was studied with combined DSC and mechanical property measurements. In these cold-worked files, the high dislocation density influences the reorientation processes and the crack growth. Some thermal treatments are involved in promoting some changes in the mechanical properties and transformation characteristics. Annealing around 400 degrees C shows good results; the recovery allows a compromise between an adequate density for the R-Phase germination and a low density to limit the brittleness of these instruments. In clinical usage, it is important to consider different canal shapes. It could be proposed that only few cycles of use is safe for very curved canals but to follow the manufacturer's advise for straight canals.

  16. RECOVERY OF BY-PRODUCTS FROM ANIMAL WASTES: A LITERATURE REVIEW

    EPA Science Inventory

    The primary purpose of this report was to identify and summarize by-product-from-animal-wastes-recovery processes from the current literature. By-product recovery processes are distinguishable from wastes reuse and recycle processes by the formation of a chemically or physically ...

  17. Improving ASR Recovery Efficiency by Partially-penetrating Wells in Brackish Aquifers

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2015-12-01

    Aquifer storage and recovery (ASR) is a proven cost-effective powerful technology for environmental protection and water resources optimization. The recovery efficiency (RE) is regarded as the key criteria for evaluating the ASR performance. In this study, a particular ASR scheme with the fully-penetrating well (FPW) for injection and the partially-penetrating well (PPW) for recovery is proposed to improve the RE for ASR schemes implemented in brackish aquifers. This design appreciates the tilting shape of the interface with underlying heavier salt water. For the FPW, recovery has to be terminated as soon as the interface toe reaches the well, while the toe can be pulled up to the PPW for recovery termination, resulting in later breakthrough of salt water into the pumping well, more recoverable water extracted from the shallow layers, and a higher RE. Key hydrogeological and operational parameters affecting the RE were investigated by numerical simulations. Results demonstrated the effectiveness and efficiency of the new ASR scheme and provided practical guidance for designing such a scheme in various hydrogeological conditions.

  18. Adaptive composites with embedded NiTiCu wires

    NASA Astrophysics Data System (ADS)

    Balta-Neumann, J. Antonio; Michaud, Veronique J.; Parlinska, Magdelena; Gotthardt, Rolf; Manson, Jan-Anders E.

    2001-07-01

    Adaptive composites have been produced by embedding prestrained shape memory alloy (SMA) wires into an epoxy matrix, reinforced with aramid fibers. These materials demonstrate attractive effects such as shape change or a shift in the vibration frequency upon activation. When heated above their transformation temperature, the wires' strain recovery is confined, and recovery stresses are generated. As a result, if the wires are placed along the neutral axis of a composite beam, a shift in resonance vibration frequency can be observed. To optimize the design of such composites, the matrix - SMA wire interfacial shear strength has been analyzed with the pull out testing technique. It is shown that the nature of the wire surface influences the interfacial shear strength, and that satisfactory results are obtained for SMA wires with a thin oxide layer. Composite samples consisting of two different types of pre- strained NiTiCu wires embedded in either pure epoxy matrix or Kevlar-epoxy matrix were produced. The recovery force and vibration response of composites were measured in a clamped-clamped configuration, to assess the effect of wire type and volume fraction. The results are highly reproducible in all cases with a narrow hysteresis loop, which makes NiTiCu wires good candidates for adaptive composites. The recovery forces increase with the volume fraction of the embedded wires, are higher when the wires are embedded in a low CTE matrix and, at a given temperature, are higher when the wire transformation temperature is lower.

  19. The Process of Divorce Recovery: A Review of the Research.

    ERIC Educational Resources Information Center

    Gastil, Richard W.

    Many researchers have speculated over the nature of the divorce recovery process. Is the process similar to Kubler-Ross's stages of grief or does divorce recovery follow a unique process? This paper examines the current body of empirical research in an attempt to answer these questions. From the 91 sources analyzed, it was discovered that most of…

  20. [Experimental study of recovery force of surface-modified TiNi memory alloy rod].

    PubMed

    Wang, Aiyuan; Peng, Jiang; Zhang, Xian; Xu, Wenjin; Wang, Xing; Sun, Minxue; Lu, Shibi

    2006-08-01

    The recovery force of Ti-Nb coated and uncoated TiNi shape memory alloy rods was investigated. The rods were 6.0 mm, 6.5 mm and 7.0 mm in diameter respectively. The mean transition temperature was 33.0 degrees C. The rods were stored at -18 degrees C and pre-bent with a three-point bending fixture, the span was 20. 0 centimeters and the deflections were 5.0 mm, 10.0 mm, 15.0 mm and 20.0 mm, respectively. The rods were then heated in a constant temperature saline solution chamber. The experimental temperature was 37.0 C and 50.0 C respectively. The recovery force was measured in a constant displacement mode on biomaterial test machine. The results showed that the recovery force of the memory alloy rod increased with increasing recovery temperature, rod diameter and deformation of both Ti-Nb coated and uncoated surface. The recovery force of Ti-Nb coated rods of 6.0 and 6.5 millimeter in diameter was lower than the uncoated rods in the same diameter. However, the recovery force of 7.0-mm-diameter rods showed no significant difference between coated and uncoated surface.

  1. Economic evaluation of an electrochemical process for the recovery of metals from electronic waste.

    PubMed

    Diaz, Luis A; Lister, Tedd E

    2018-04-01

    As the market of electronic devices continues to evolve, the waste stream generated from antiquated technology is increasingly view as an alternative to substitute primary sources of critical a value metals. Nevertheless, the sustainable recovery of materials can only be achieved by environmentally friendly processes that are economically competitive with the extraction from mineral ores. Hence, This paper presents the techno-economic assessment for a comprehensive process for the recovery of metals and critical materials from e-waste, which is based in an electrochemical recovery (ER) technology. Economic comparison is performed with the treatment of e-waste via smelting, which is currently the primary route for recycling metals from electronics. Results indicate that the electrochemical recovery process is a competitive alternative for the recovery of value from electronic waste when compared with the traditional black Cu smelting process. A significantly lower capital investment, 2.9 kg e-waste per dollar of capital investment, can be achieved with the ER process vs. 1.3 kg per dollar in the black Cu smelting process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Scoliosis correction with shape-memory metal: results of an experimental study.

    PubMed

    Wever, D J; Elstrodt, J A; Veldhuizen, A G; v Horn, J R

    2002-04-01

    The biocompatibility and functionality of a new scoliosis correction device, based on the properties of the shape-memory metal nickel-titanium alloy, were studied. With this device, the shape recovery forces of a shape-memory metal rod are used to achieve a gradual three-dimensional scoliosis correction. In the experimental study the action of the new device was inverted: the device was used to induce a scoliotic curve instead of correcting one. Surgical procedures were performed in six pigs. An originally curved squared rod, in the cold condition, was straightened and fixed to the spine with pedicle screws. Peroperatively, the memory effect of the rod was activated by heating the rod to 50 degrees C by a low-voltage, high-frequency current. After 3 and after 6 months the animals were sacrificed. The first radiographs, obtained immediately after surgery, showed in all animals an induced curve of about 40 degrees Cobb angle - the original curve of the rod. This curve remained constant during the follow-up. The postoperative serum nickel measurements were around the detection limit, and were not significantly higher compared to the preoperative nickel concentration. Macroscopic inspection after 3 and 6 months showed that the device was almost overgrown with newly formed bone. Corrosion and fretting processes were not observed. Histologic examination of the sections of the surrounding tissues and sections of the lung, liver, spleen and kidney showed no evidence of a foreign body response. In view of the initiation of the scoliotic deformation, it is expected that the shape-memory metal based scoliosis correction device also has the capacity to correct a scoliotic curve. Moreover, it is expected that the new device will show good biocompatibility in clinical application. Extensive fatigue testing of the whole system should be performed before clinical trials are initiated.

  3. “Recovery Came First”: Desistance versus Recovery in the Criminal Careers of Drug-Using Offenders

    PubMed Central

    Colman, Charlotte; Vander Laenen, Freya

    2012-01-01

    The aim of our paper is to gain insight in the desistance process of drug-using offenders. We explore the components of change in the desistance process of drug-using offenders by using the cognitive transformation theory of Giordano et al. as a theoretical framework. The desistance process of drug-using offenders entails a two-fold process: desistance of criminal offending and recovery. The results however indicate that desistance is subordinate to recovery because of the fact that drug-using offenders especially see themselves as drug users and not as “criminals.” Their first goal was to start recovery from drug use. They were convinced that recovery from drug use would lead them to a stop in their offending. In the discussion, we explore the implications of this result for further research. PMID:23346020

  4. An approach to predict the shape-memory behavior of amorphous polymers from Dynamic Mechanical Analysis (DMA) data

    NASA Astrophysics Data System (ADS)

    Kuki, Ákos; Czifrák, Katalin; Karger-Kocsis, József; Zsuga, Miklós; Kéki, Sándor

    2015-02-01

    The prediction of shape-memory behavior is essential regarding the design of a smart material for different applications. This paper proposes a simple and quick method for the prediction of shape-memory behavior of amorphous shape memory polymers (SMPs) on the basis of a single dynamic mechanical analysis (DMA) temperature sweep at constant frequency. All the parameters of the constitutive equations for linear viscoelasticity are obtained by fitting the DMA curves. The change with the temperature of the time-temperature superposition shift factor ( a T ) is expressed by the Williams-Landel-Ferry (WLF) model near and above the glass transition temperature ( T g ), and by the Arrhenius law below T g . The constants of the WLF and Arrhenius equations can also be determined. The results of our calculations agree satisfactorily with the experimental free recovery curves from shape-memory tests.

  5. Poly(glycerol sebacate urethane)-cellulose nanocomposites with water-active shape-memory effects.

    PubMed

    Wu, Tongfei; Frydrych, Martin; O'Kelly, Kevin; Chen, Biqiong

    2014-07-14

    Biodegradable and biocompatible materials with shape-memory effects (SMEs) are attractive for use as minimally invasive medical devices. Nanocomposites with SMEs were prepared from biodegradable poly(glycerol sebacate urethane) (PGSU) and renewable cellulose nanocrystals (CNCs). The effects of CNC content on the structure, water absorption, and mechanical properties of the PGSU were studied. The water-responsive mechanically adaptive properties and shape-memory performance of PGSU-CNC nanocomposites were observed, which are dependent on the content of CNCs. The PGSU-CNC nanocomposite containing 23.2 vol % CNCs exhibited the best SMEs among the nanocomposites investigated, with the stable shape fixing and shape recovery ratios being 98 and 99%, respectively, attributable to the formation of a hydrophilic, yet strong, CNC network in the elastomeric matrix. In vitro degradation profiles of the nanocomposites were assessed with and without the presence of an enzyme.

  6. Improved Functional Properties and Efficiencies of Nitinol Wires Under High-Performance Shape Memory Effect (HP-SME)

    NASA Astrophysics Data System (ADS)

    Casati, R.; Saghafi, F.; Biffi, C. A.; Vedani, M.; Tuissi, A.

    2017-10-01

    Martensitic Ti-rich NiTi intermetallics are broadly used in various cyclic applications as actuators, which exploit the shape memory effect (SME). Recently, a new approach for exploiting austenitic Ni-rich NiTi shape memory alloys as actuators was proposed and named high-performance shape memory effect (HP-SME). HP-SME is based on thermal recovery of de-twinned martensite produced by mechanical loading of the parent phase. The aim of the manuscript consists in evaluating and comparing the fatigue and actuation properties of austenitic HP-SME wires and conventional martensitic SME wires. The effect of the thermomechanical cycling on the actuation response and the changes in the electrical resistivity of both shape memory materials were studied by performing the actuation tests at different stages of the fatigue life. Finally, the changes in the transition temperatures before and after cycling were also investigated by differential calorimetric tests.

  7. Tumor-Triggered Geometrical Shape Switch of Chimeric Peptide for Enhanced in Vivo Tumor Internalization and Photodynamic Therapy.

    PubMed

    Han, Kai; Zhang, Jin; Zhang, Weiyun; Wang, Shibo; Xu, Luming; Zhang, Chi; Zhang, Xianzheng; Han, Heyou

    2017-03-28

    Geometrical shape of nanoparticles plays an important role in cellular internalization. However, the applicability in tumor selective therapeutics is still scarcely reported. In this article, we designed a tumor extracellular acidity-responsive chimeric peptide with geometrical shape switch for enhanced tumor internalization and photodynamic therapy. This chimeric peptide could self-assemble into spherical nanoparticles at physiological condition. While at tumor extracellular acidic microenvironment, chimeric peptide underwent detachment of acidity-sensitive 2,3-dimethylmaleic anhydride groups. The subsequent recovery of ionic complementarity between chimeric peptides resulted in formation of rod-like nanoparticles. Both in vitro and in vivo studies demonstrated that this acidity-triggered geometrical shape switch endowed chimeric peptide with accelerated internalization in tumor cells, prolonged accumulation in tumor tissue, enhanced photodynamic therapy, and minimal side effects. Our results suggested that fusing tumor microenvironment with geometrical shape switch should be a promising strategy for targeted drug delivery.

  8. Effective thermo-mechanical properties and shape memory effect of CNT/SMP composites

    NASA Astrophysics Data System (ADS)

    Yang, Qingsheng; Liu, Xia; Leng, Fangfang

    2009-07-01

    Shape memory polymer (SMP) has been applied in many fields as intelligent sensors and actuators. In order to improve the mechanical properties and recovery force of SMP, the addition of minor amounts of carbon nanotubes (CNT) into SMP has attracted wide attention. A micromechanical model and thermo-mechanical properties of CNT/SMP composites were studied in this paper. The thermo-mechanical constitutive relation of intellectual composites with isotropic and transversely isotropic CNT was obtained. Moreover, the shape memory effect of CNT/SMP composites and the effect of temperature and the volume fraction of CNT were discussed. The work shows that CNT/SMP composites exhibit excellent macroscopic thermo-mechanical properties and shape memory effect, while both of them can be affected remarkably by temperature and the microstructure parameters.

  9. The kinematic recovery process of rhesus monkeys after spinal cord injury.

    PubMed

    Wei, Rui-Han; Zhao, Can; Rao, Jia-Sheng; Zhao, Wen; Zhou, Xia; Tian, Peng-Yu; Song, Wei; Ji, Run; Zhang, Ai-Feng; Yang, Zhao-Yang; Li, Xiao-Guang

    2018-05-16

    After incomplete spinal cord injury (SCI), neural circuits may be plastically reconstructed to some degree, resulting in extensive functional locomotor recovery. The present study aimed to observe the post-SCI locomotor recovery of rhesus monkey hindlimbs and compare the recovery degrees of different hindlimb parts, thus revealing the recovery process of locomotor function. Four rhesus monkeys were chosen for thoracic hemisection injury. The hindlimb locomotor performance of these animals was recorded before surgery, as well as 6 and 12 weeks post-lesion. Via principal component analysis, the relevant parameters of the limb endpoint, pelvis, hindlimb segments, and joints were processed and analyzed. Twelve weeks after surgery, partial kinematic recovery was observed at the limb endpoint, shank, foot, and knee joints, and the locomotor performance of the ankle joint even recovered to the pre-lesion level; the elevation angle of the thigh and hip joints showed no obvious recovery. Generally, different parts of a monkey hindlimb had different spontaneous recovery processes; specifically, the closer the part was to the distal end, the more extensive was the locomotor function recovery. Therefore, we speculate that locomotor recovery may be attributed to plastic reconstruction of the motor circuits that are mainly composed of corticospinal tract. This would help to further understand the plasticity of motor circuits after spinal cord injury.

  10. 16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM RECOVERY PROCESSED RELATIVELY PURE MATERIALS AND SOLUTIONS AND SOLID RESIDUES WITH RELATIVELY LOW URANIUM CONTENT. URANIUM RECOVERY INVOLVED BOTH SLOW AND FAST PROCESSES. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  11. Deformation behavior of carbon-fiber reinforced shape-memory-polymer composites used for deployable structures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lan, Xin; Liu, Liwu; Li, Fengfeng; Pan, Chengtong; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Shape memory polymers (SMPs) are a new type of smart material, they perform large reversible deformation with a certain external stimulus (e.g., heat and electricity). The properties (e.g., stiffness, strength and other mechanically static or quasi-static load-bearing capacity) are primarily considered for conventional resin-based composite materials which are mainly used for structural materials. By contrast, the mechanical actuating performance with finite deformation is considered for the shape memory polymers and their composites which can be used for both structural materials and functional materials. For shape memory polymers and their composites, the performance of active deformation is expected to further promote the development in smart active deformation structures, such as deployable space structures and morphing wing aircraft. The shape memory polymer composites (SMPCs) are also one type of High Strain Composite (HSC). The space deployable structures based on carbon fiber reinforced shape memory polymer composites (SMPCs) show great prospects. Considering the problems that SMPCs are difficult to meet the practical applications in space deployable structures in the recent ten years, this paper aims to research the mechanics of deformation, actuation and failure of SMPCs. In the overall view of the shape memory polymer material's nonlinearity (nonlinearity and stress softening in the process of pre-deformation and recovery, relaxation in storage process, irreversible deformation), by the multiple verifications among theory, finite element and experiments, one obtains the deformation and actuation mechanism for the process of "pre-deformation, energy storage and actuation" and its non-fracture constraint domain. Then, the parameters of SMPCs will be optimized. Theoretical analysis is realized by the strain energy function, additionally considering the interaction strain energy between the fiber and the matrix. For the common resin-based or soft-material-based composites under pure bending deformation, we expect to uniformly explain the whole process of buckling occurrence, evolution and finally failure, especially for the early evolution characteristics of fiber microbuckling inside the microstructures. The research results are meaningful for the practical applications for SMPC deployable structures in space. Considering the deformation mechanisms of SMPCs, the local post-microbuckling is required for the unidirectional fiber reinforced composite materials, at the conditions of its large geometrical deflection. The cross section of SMPC is divided into three areas: non-buckling stretching area, non-buckling compressive area, and buckling compressive area. Three variables are considered: critical buckling position, and neutral plane, the fiber buckling half-wavelength. Considering the condition of the small strain and large displacement, the strain energy expression of the SMP/fiber system was derived, which contains two types, e.g., strain energy of SMP and fiber. According to the minimum energy principle, the expression for all key parameters were derived, including the critical buckling curvature, neutral plane position, the buckling half-wavelength, fiber buckling amplitude, and strain.

  12. The Setting is the Service: How the Architecture of Sober Living Residences Supports Community Based Recovery

    PubMed Central

    Wittman, Fried; Jee, Babette; Polcin, Douglas L.; Henderson, Diane

    2014-01-01

    The architecture of residential recovery settings is an important silent partner in the alcohol/drug recovery field. The settings significantly support or hinder recovery experiences of residents, and shape community reactions to the presence of sober living houses (SLH) in ordinary neighborhoods. Grounded in the principles of Alcoholics Anonymous, the SLH provides residents with settings designed to support peer based recovery; further, these settings operate in a community context that insists on sobriety and strongly encourages attendance at 12-step meetings. Little formal research has been conducted to show how architectural features of the recovery setting – building appearance, spatial layouts, furnishings and finishes, policies for use of the facilities, physical care and maintenance of the property, neighborhood features, aspects of location in the city – function to promote (or retard) recovery, and to build (or detract from) community support. This paper uses a case-study approach to analyze the architecture of a community-based residential recovery service that has demonstrated successful recovery outcomes for its residents, is popular in its community, and has achieved state-wide recognition. The Environmental Pattern Language (Alexander, Ishikawa, & Silverstein, 1977) is used to analyze its architecture in a format that can be tested, critiqued, and adapted for use by similar programs in many communities, providing a model for replication and further research. PMID:25328377

  13. The Setting is the Service: How the Architecture of Sober Living Residences Supports Community Based Recovery.

    PubMed

    Wittman, Fried; Jee, Babette; Polcin, Douglas L; Henderson, Diane

    2014-07-01

    The architecture of residential recovery settings is an important silent partner in the alcohol/drug recovery field. The settings significantly support or hinder recovery experiences of residents, and shape community reactions to the presence of sober living houses (SLH) in ordinary neighborhoods. Grounded in the principles of Alcoholics Anonymous, the SLH provides residents with settings designed to support peer based recovery; further, these settings operate in a community context that insists on sobriety and strongly encourages attendance at 12-step meetings. Little formal research has been conducted to show how architectural features of the recovery setting - building appearance, spatial layouts, furnishings and finishes, policies for use of the facilities, physical care and maintenance of the property, neighborhood features, aspects of location in the city - function to promote (or retard) recovery, and to build (or detract from) community support. This paper uses a case-study approach to analyze the architecture of a community-based residential recovery service that has demonstrated successful recovery outcomes for its residents, is popular in its community, and has achieved state-wide recognition. The Environmental Pattern Language (Alexander, Ishikawa, & Silverstein, 1977) is used to analyze its architecture in a format that can be tested, critiqued, and adapted for use by similar programs in many communities, providing a model for replication and further research.

  14. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni

    This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments onmore » the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in both fluid phases. IFT measurements were carried out in a standard ternary liquid system of benzene, ethanol and water using drop shape analysis and capillary rise techniques. The experimental results indicate strong correlation among the three thermodynamic properties solubility, miscibility and IFT. The miscibility determined from IFT measurements for this ternary liquid system is in good agreement with phase diagram and solubility data, which clearly indicates the sound conceptual basis of VIT technique to determine fluid-fluid miscibility. Model fluid systems have been identified for VIT experimentation at elevated pressures and temperatures. Section III comprises of the experimental study aimed at evaluating the multiphase displacement characteristics of the various gas injection EOR process performances using Berea sandstone cores. During this reporting period, extensive literature review was completed to: (1) study the gravity drainage concepts, (2) identify the various factors influencing gravity stable gas injection processes, (3) identify various multiphase mechanisms and fluid dynamics operative during the GAGD process, and (4) identify important dimensionless groups governing the GAGD process performance. Furthermore, the dimensional analysis of the GAGD process, using Buckingham-Pi theorem to isolate the various dimensionless groups, as well as experimental design based on these dimensionless quantities have been completed in this reporting period. On the experimental front, recommendations from previous WAG and CGI have been used to modify the experimental protocol. This report also includes results from scaled preliminary GAGD displacements as well as the details of the planned GAGD corefloods for the next quarter. The technology transfer activities have mainly consisted of preparing technical papers, progress reports and discussions with industry personnel for possible GAGD field tests.« less

  15. Barriers to the long-term recovery of individuals with disabilities following a disaster.

    PubMed

    Stough, Laura M; Sharp, Amy N; Resch, J Aaron; Decker, Curt; Wilker, Nachama

    2016-07-01

    This study examines how pre-existing disabling conditions influenced the recovery process of survivors of Hurricane Katrina. It focuses specifically on the barriers that hindered the recovery process in these individuals. Focus groups were convened in four Gulf Coast states with 31 individuals with disabilities who lived in or around New Orleans, Louisiana, prior to Hurricane Katrina in August 2005. Qualitative data were analysed using grounded theory methodology. Five themes emerged as the most significant barriers to recovery: housing; transportation; employment; physical and mental health; and accessing recovery services. While these barriers to recovery were probably common to most survivors of the disaster, the research results suggest that disability status enhanced the challenges that participants experienced in negotiating the recovery process and in acquiring resources that accommodated their disabilities. The findings indicate that, when disaster recovery services and resources did not accommodate the needs of individuals with disabilities, recovery was hindered. Recovery efforts should include building accessible infrastructure and services that will allow for participation by all. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.

  16. Mechanical recycling of waste electric and electronic equipment: a review.

    PubMed

    Cui, Jirang; Forssberg, Eric

    2003-05-30

    The production of electric and electronic equipment (EEE) is one of the fastest growing areas. This development has resulted in an increase of waste electric and electronic equipment (WEEE). In view of the environmental problems involved in the management of WEEE, many counties and organizations have drafted national legislation to improve the reuse, recycling and other forms of recovery of such wastes so as to reduce disposal. Recycling of WEEE is an important subject not only from the point of waste treatment but also from the recovery of valuable materials.WEEE is diverse and complex, in terms of materials and components makeup as well as the original equipment's manufacturing processes. Characterization of this waste stream is of paramount importance for developing a cost-effective and environmentally friendly recycling system. In this paper, the physical and particle properties of WEEE are presented. Selective disassembly, targeting on singling out hazardous and/or valuable components, is an indispensable process in the practice of recycling of WEEE. Disassembly process planning and innovation of disassembly facilities are most active research areas. Mechanical/physical processing, based on the characterization of WEEE, provides an alternative means of recovering valuable materials. Mechanical processes, such as screening, shape separation, magnetic separation, Eddy current separation, electrostatic separation, and jigging have been widely utilized in recycling industry. However, recycling of WEEE is only beginning. For maximum separation of materials, WEEE should be shredded to small, even fine particles, generally below 5 or 10mm. Therefore, a discussion of mechanical separation processes for fine particles is highlighted in this paper. Consumer electronic equipment (brown goods), such as television sets, video recorders, are most common. It is very costly to perform manual dismantling of those products, due to the fact that brown goods contain very low-grade precious metals and copper. It is expected that a mechanical recycling process will be developed for the upgrading of low metal content scraps.

  17. Membrane shape modulates transmembrane protein distribution.

    PubMed

    Aimon, Sophie; Callan-Jones, Andrew; Berthaud, Alice; Pinot, Mathieu; Toombes, Gilman E S; Bassereau, Patricia

    2014-01-27

    Although membrane shape varies greatly throughout the cell, the contribution of membrane curvature to transmembrane protein targeting is unknown because of the numerous sorting mechanisms that take place concurrently in cells. To isolate the effect of membrane shape, we used cell-sized giant unilamellar vesicles (GUVs) containing either the potassium channel KvAP or the water channel AQP0 to form membrane nanotubes with controlled radii. Whereas the AQP0 concentrations in flat and curved membranes were indistinguishable, KvAP was enriched in the tubes, with greater enrichment in more highly curved membranes. Fluorescence recovery after photobleaching measurements showed that both proteins could freely diffuse through the neck between the tube and GUV, and the effect of each protein on membrane shape and stiffness was characterized using a thermodynamic sorting model. This study establishes the importance of membrane shape for targeting transmembrane proteins and provides a method for determining the effective shape and flexibility of membrane proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. 76 FR 60941 - Policy Regarding Submittal of Amendments for Processing of Equivalent Feed at Licensed Uranium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... State-licensed uranium recovery site, either conventional, heap leach, or in situ recovery. DATES... types of new uranium recovery facilities (conventional mills, heap leach facilities, and in situ... from the ground for processing at a mill. Rather, the ore is processed in-situ with the resulting...

  19. Meshless methods in shape optimization of linear elastic and thermoelastic solids

    NASA Astrophysics Data System (ADS)

    Bobaru, Florin

    This dissertation proposes a meshless approach to problems in shape optimization of elastic and thermoelastic solids. The Element-free Galerkin (EFG) method is used for this purpose. The ability of the EFG to avoid remeshing, that is normally done in a Finite Element approach to correct highly distorted meshes, is clearly demonstrated by several examples. The shape optimization example of a thermal cooling fin shows a dramatic improvement in the objective compared to a previous FEM analysis. More importantly, the new solution, displaying large shape changes contrasted to the initial design, was completely missed by the FEM analysis. The EFG formulation given here for shape optimization "uncovers" new solutions that are, apparently, unobtainable via a FEM approach. This is one of the main achievements of our work. The variational formulations for the analysis problem and for the sensitivity problems are obtained with a penalty method for imposing the displacement boundary conditions. The continuum formulation is general and this facilitates 2D and 3D with minor differences from one another. Also, transient thermoelastic problems can use the present development at each time step to solve shape optimization problems for time-dependent thermal problems. For the elasticity framework, displacement sensitivity is obtained in the EFG context. Excellent agreements with analytical solutions for some test problems are obtained. The shape optimization of a fillet is carried out in great detail, and results show significant improvement of the EFG solution over the FEM or the Boundary Element Method solutions. In our approach we avoid differentiating the complicated EFG shape functions, with respect to the shape design parameters, by using a particular discretization for sensitivity calculations. Displacement and temperature sensitivities are formulated for the shape optimization of a linear thermoelastic solid. Two important examples considered in this work, the optimization of a thermal fin and of a uniformly loaded thermoelastic beam, reveal new characteristics of the EFG method in shape optimization applications. Among other advantages of the EFG method over traditional FEM treatments of shape optimization problems, some of the most important ones are shown to be: elimination of post-processing for stress and strain recovery that directly gives more accurate results in critical positions (near the boundaries, for example) for shape optimization problems; nodes movement flexibility that permits new, better shapes (previously missed by an FEM analysis) to be discovered. Several new research directions that need further consideration are exposed.

  20. Parents' perceptions of their adolescent sons' recovery in a therapeutic community for addicted clients.

    PubMed

    Chen, Gila; Elisha, Ety; Timor, Uri; Ronel, Natti

    2013-11-01

    A qualitative phenomenological study of parents of addicted male adolescents who were residents of a Jewish therapeutic community (TC) describes and interprets the parents' perceptions of the recovery process. Deep, semistructured interviews with 14 parents provided the data. The parents' perceptions were clustered into three main themes of meaning: (a) the process of change, (b) the experiences of family members in the course of the son's recovery process, and (c) the parents' perception of the treatment at Retorno. According to the parents, the admission of their sons into the TC brought notable relief to the family life, which enabled the whole family to begin a recovery process. The findings support the positive criminology perspective that emphasizes the disintegration-integration vector as significant in the recovery process. Recommendations for intervention planning are provided.

  1. A recovery journey for people with personality disorder.

    PubMed

    Castillo, Heather; Ramon, Shulamit; Morant, Nicola

    2013-05-01

    The study investigates the process of recovery for people diagnosed with personality disorder, a client group that suffers significant social exclusion known to impact on demand for health and other public services. It aims to examine efforts that attempt to reverse this social exclusion as an aspect of the recovery process. and The following study aims to (1) explore what recovery means to people with personality disorder; (2) develop a conceptual model of recovery in personality disorder; and (3) evaluate the contribution of the setting (The Haven) to recovery practice. The study uses a Participatory Action Research (PAR) design. Data was collected from 66 participants by focus groups and individual interviews. A map based on thematic analysis of data collected during the study is proposed of the recovery journey for people with this diagnosis, shown as a pyramid that represents a hierarchy of progress, from building trust through stages of recovery to social inclusion. The findings offer contributions to knowledge in terms of the service design and propose a new model of recovery in personality disorder. This is defined as a journey of small steps highlighting recovery as a process rather than a goal, leading to the emergence of the new concept of transitional recovery.

  2. Asynchronous timing and Doppler recovery in DSP based DPSK modems for fixed and mobile satellite applications

    NASA Astrophysics Data System (ADS)

    Koblents, B.; Belanger, M.; Woods, D.; McLane, P. J.

    While conventional analog modems employ some kind of clock wave regenerator circuit for synchronous timing recovery, in sampled modem receivers the timing is recovered asynchronously to the incoming data stream, with no adjustment being made to the input sampling rate. All timing corrections are accomplished by digital operations on the sampled data stream, and timing recovery is asynchronous with the uncontrolled, input A/D system. A good timing error measurement algorithm is a zero crossing tracker proposed by Gardner. Digital, speech rate (2400 - 4800 bps) M-PSK modem receivers employing Gardner's zero crossing tracker were implemented and tested and found to achieve BER performance very close to theoretical values on the AWGN channel. Nyguist pulse shaped modem systems with excess bandwidth factors ranging from 100 to 60 percent were considered. We can show that for any symmetric M-PSK signal set Gardner's NDA algorithm is free of pattern jitter for any carrier phase offset for rectangular pulses and for Nyquist pulses having 100 percent excess bandwidth. Also, the Nyquist pulse shaped system is studied on the mobile satellite channel, where Doppler shifts and multipath fading degrade the pi/4-DQPSK signal. Two simple modifications to Gardner's zero crossing tracker enable it to remain useful in the presence of multipath fading.

  3. Asynchronous timing and Doppler recovery in DSP based DPSK modems for fixed and mobile satellite applications

    NASA Technical Reports Server (NTRS)

    Koblents, B.; Belanger, M.; Woods, D.; Mclane, P. J.

    1993-01-01

    While conventional analog modems employ some kind of clock wave regenerator circuit for synchronous timing recovery, in sampled modem receivers the timing is recovered asynchronously to the incoming data stream, with no adjustment being made to the input sampling rate. All timing corrections are accomplished by digital operations on the sampled data stream, and timing recovery is asynchronous with the uncontrolled, input A/D system. A good timing error measurement algorithm is a zero crossing tracker proposed by Gardner. Digital, speech rate (2400 - 4800 bps) M-PSK modem receivers employing Gardner's zero crossing tracker were implemented and tested and found to achieve BER performance very close to theoretical values on the AWGN channel. Nyguist pulse shaped modem systems with excess bandwidth factors ranging from 100 to 60 percent were considered. We can show that for any symmetric M-PSK signal set Gardner's NDA algorithm is free of pattern jitter for any carrier phase offset for rectangular pulses and for Nyquist pulses having 100 percent excess bandwidth. Also, the Nyquist pulse shaped system is studied on the mobile satellite channel, where Doppler shifts and multipath fading degrade the pi/4-DQPSK signal. Two simple modifications to Gardner's zero crossing tracker enable it to remain useful in the presence of multipath fading.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voskoboynikov, O., E-mail: vam@faculty.nctu.edu.tw

    We theoretically investigate suppression and recovery of the Aharonov-Bohm oscillations of the diamagnetic response of electrons (holes) confined in self-assembled In{sub c}Ga{sub 1−c}As/GaAs semiconductor reflection asymmetrical quantum rings. Based on the mapping method and gauge-origin-independent definition for the magnetic vector potential we simulate the energies and wave functions of the electron (hole) under external magnetic and electric fields. We examine the transformation of the ground state wave function of the electron (hole) in reflection asymmetrical rings from localized in one of the potential valleys (dotlike shape of the wave function) to distributed over all volume of the ring (ringlike shape)more » under an appropriate lateral electric field. This transformation greatly recovers the electron (hole) diamagnetic coefficient and Aharonov-Bohm oscillations of the diamagnetic response of the ring. However, the recovering electric field for the first Aharonov-Bohm diamagnetic oscillation of the electron is a suppressing one for the hole (and vice versa). This can block the recovery of the optical Aharonow-Bohm effect in In{sub c}Ga{sub 1−c}As/GaAs asymmetrically wobbled rings. However, the recovery of the Aharonov-Bohm oscillations for the independent electron (hole) by the external electric field remains interesting and feasible objective for the asymmetric rings.« less

  5. Analysis of backward error recovery for concurrent processes with recovery blocks

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Lee, Y. H.

    1982-01-01

    Three different methods of implementing recovery blocks (RB's). These are the asynchronous, synchronous, and the pseudo recovery point implementations. Pseudo recovery points so that unbounded rollback may be avoided while maintaining process autonomy are proposed. Probabilistic models for analyzing these three methods under standard assumptions in computer performance analysis, i.e., exponential distributions for related random variables were developed. The interval between two successive recovery lines for asynchronous RB's mean loss in computation power for the synchronized method, and additional overhead and rollback distance in case PRP's are used were estimated.

  6. Metallurgical recovery of metals from electronic waste: a review.

    PubMed

    Cui, Jirang; Zhang, Lifeng

    2008-10-30

    Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the topic are presented. In addition, mechanisms and models of biosorption of precious metal ions from solutions are discussed.

  7. Early Phase Contingency Trajectory Design for the Failure of the First Lunar Orbit Insertion Maneuver: Direct Recovery Options

    NASA Astrophysics Data System (ADS)

    Song, Young-Joo; Bae, Jonghee; Kim, Young-Rok; Kim, Bang-Yeop

    2017-12-01

    To ensure the successful launch of the Korea pathfinder lunar orbiter (KPLO) mission, the Korea Aerospace Research Institute (KARI) is now performing extensive trajectory design and analysis studies. From the trajectory design perspective, it is crucial to prepare contingency trajectory options for the failure of the first lunar brake or the failure of the first lunar orbit insertion (LOI) maneuver. As part of the early phase trajectory design and analysis activities, the required time of flight (TOF) and associated delta-V magnitudes for each recovery maneuver (RM) to recover the KPLO mission trajectory are analyzed. There are two typical trajectory recovery options, direct recovery and low energy recovery. The current work is focused on the direct recovery option. Results indicate that a quicker execution of the first RM after the failure of the first LOI plays a significant role in saving the magnitudes of the RMs. Under the conditions of the extremely tight delta-V budget that is currently allocated for the KPLO mission, it is found that the recovery of the KPLO without altering the originally planned mission orbit (a 100 km circular orbit) cannot be achieved via direct recovery options. However, feasible recovery options are suggested within the boundaries of the currently planned delta-V budget. By changing the shape and orientation of the recovered final mission orbit, it is expected that the KPLO mission may partially pursue its scientific mission after successful recovery, though it will be limited.

  8. Former patients' experiences of recovery from self-harm as an individual, prolonged learning process: a phenomenological hermeneutical study.

    PubMed

    Tofthagen, Randi; Talseth, Anne Grethe; Fagerstrøm, Lisbeth Maria

    2017-10-01

    To explore, describe and understand former patients' experiences of recovery from self-harm. Previous research shows that a person's development towards a more secure self-image, mastery of their emotions, an understanding of what triggers self-harm and mastery of new ways to cope with problems are central to recovery. Recovery from self-harm is still a relatively new field of research. A phenomenological hermeneutical approach. Eight participants were interviewed in 2013. Inclusion criteria were as follows: to have committed no self-harm during the past 2 years, to have experienced recovery and to be 18 or older. We analysed data using a phenomenological hermeneutical method. The findings resulted in three themes with subthemes. The first theme, the turning point, occurred at the start of the recovery process. Participants learned to choose life, verbally express their inner pain and reconcile with their life histories. In the second theme, coping with everyday life, participants learned how to choose alternative actions instead of self-harm and attend to their basic, physical needs. In the third theme, valuing close relationships and relationships with mental health nurses, participants learned to receive support from close relationships with others and mental health nurses. A tentative model illustrates the comprehensive understanding of the recovery process, described as an individual, prolonged learning process. To achieve recovery, persons who self-harm need guidance and knowledge of how to realize a personal learning process. More research is needed on how mental health nurses can support individual transition processes and thereby facilitate recovery. © 2017 John Wiley & Sons Ltd.

  9. Women's experiences of how their recovery process is promoted after a first myocardial infarction: Implications for cardiac rehabilitation care

    PubMed Central

    Wieslander, Inger; Mårtensson, Jan; Fridlund, Bengt; Svedberg, Petra

    2016-01-01

    Background A rapid improvement in the care of myocardial infarction (MI) in the emergency services has been witnessed in recent years. There is, however, a lack of understanding of the factors involved in a successful recovery process, after the initial stages of emergency care among patients, and in particular those who are women. Both preventive and promotive perspectives should be taken into consideration for facilitating the recovery process of women after a MI. Aim To explore how women's recovery processes are promoted after a first MI. Methods A qualitative content analysis was used. Findings The women's recovery process is a multidirectional process with a desire to develop and approach a new perspective on life. The women's possibility to approach new perspectives on life incorporates how they handle the three dimensions: behaviour, that is, women's acting and engaging in various activities; social, that is, how women receive and give support in their social environment; and psychological, that is, their way of thinking, reflecting, and appreciating life. Conclusions The personal recovery of women is a multidirectional process with a desire to develop and approach a new perspective on life. It is important for cardiac rehabilitation nurses to not only focus on lifestyle changes and social support but also on working actively with the women's inner strength in order to promote the recovery of the women. PMID:27172514

  10. Watershed restoration: planning and implementing small dam removals to maximize ecosystem services

    NASA Astrophysics Data System (ADS)

    Tonitto, C.; Riha, S. J.

    2016-12-01

    River restoration and enhancing watershed connectivity is of growing concern in industrialized nations. The past two decades have seen a number of small dam removals, though many removals remain unstudied and poorly documented. We summarize socio-economic and biophysical lessons learned during the past two decades of accelerated activity regarding small dam removals throughout the United States. We present frameworks for planning and implementing removals developed by interdisciplinary engagement. Toward the goal of achieving thorough dam removal planning, we present outcomes from well-documented small dam removals covering ecological, chemical, and physical change in rivers post-dam removal, including field observation and modeling methodologies. Guiding principles of a dam removal process should include: 1) stakeholder engagement to navigate the complexity of watershed landuse, 2) an impacts assessment to inform the planning process, 3) pre- and post-dam removal observations of ecological, chemical and physical properties, 4) the expectation that there are short- and long-term ecological dynamics with population recovery depending on whether dam impacts were largely related to dispersion or to habitat destruction, 5) an expectation that changes in watershed chemistry are dependent on sediment type, sediment transport and watershed landuse, and 6) rigorous assessment of physical changes resulting from dam removal, understanding that alteration in hydrologic flows, sediment transport, and channel evolution will shape ecological and chemical dynamics, and shape how stakeholders engage with the watershed.

  11. Neural activations are related to body-shape, anxiety, and outcomes in adolescent anorexia nervosa.

    PubMed

    Xu, Jie; Harper, Jessica A; Van Enkevort, Erin A; Latimer, Kelsey; Kelley, Urszula; McAdams, Carrie J

    2017-04-01

    Anorexia nervosa (AN) is an illness that frequently begins during adolescence and involves weight loss. Two groups of adolescent girls (AN-A, weight-recovered following AN) and (HC-A, healthy comparison) completed a functional magnetic resonance imaging task involving social evaluations, allowing comparison of neural activations during self-evaluations, friend-evaluations, and perspective-taking self-evaluations. Although the two groups were not different in their whole-brain activations, anxiety and body shape concerns were correlated with neural activity in a priori regions of interest. A cluster in medial prefrontal cortex and the dorsal anterior cingulate correlated with the body shape questionnaire; subjects with more body shape concerns used this area less during self than friend evaluations. A cluster in medial prefrontal cortex and the cingulate also correlated with anxiety such that more anxiety was associated with engagement when disagreeing rather than agreeing with social terms during self-evaluations. This data suggests that differences in the utilization of frontal brain regions during social evaluations may contribute to both anxiety and body shape concerns in adolescents with AN. Clinical follow-up was obtained, allowing exploration of whether brain function early in course of disease relates to illness trajectory. The adolescents successful in recovery used the posterior cingulate and precuneus more for friend than self evaluations than the adolescents that remained ill, suggesting that neural differences related to social evaluations may provide clinical predictive value. Utilization of both MPFC and the precuneus during social and self evaluations may be a key biological component for achieving sustained weight-recovery in adolescents with AN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Enhance gas processing with reflux heat-exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, A.J.

    1994-05-01

    Despite recent successes of membrane-based separations in low-throughput applications, cryogenic processing remains the best route for separating and purifying gas mixtures, especially when high recoveries are required. Now conventional units are being modified to yield even higher recoveries at lower costs. Throughout the chemical process industries (CPI), this is being accomplished with reflux or plate-fin exchangers, especially for processing of natural gas, and offgases from refineries and petrochemical facilities. The concept of utilizing a heat exchanger as a multi stage rectification device is not new. However, only in the last fifteen years or so has accurate design of reflux exchangersmore » become feasible. Also helpful have been the availability of prediction techniques for high-quality thermodynamic data, and process simulators that can rapidly solve the complex material, equilibrium and enthalpy relationships involved in simulating the performance of reflux exchangers. Four projects that show the value and effectiveness of reflux exchangers are discussed below in more detail. The first example considers hydrogen recovery from demethanizer overheads; the second highlights a low energy process for NGL and LPG recovery from natural gas. The third is a simple process for recovery of ethylene from fluid-catalytic cracker (FCC) offgas; and the fourth is a similar process for olefin recovery from dehydrogenation-reactor offgas.« less

  13. "I struggle to count my blessings": recovery after hip fracture from the patients' perspective.

    PubMed

    Bruun-Olsen, Vigdis; Bergland, Astrid; Heiberg, Kristi Elisabeth

    2018-01-19

    Recovery outlooks of physical functioning and quality of life after hip fracture have not changed significantly over the past 25 years. Previous research has mainly dealt with causalities and acute treatment, while the recovery process from the patients' perspective has been less comprehensively described. Expanded knowledge of what the patients consider important in their recovery process may have important consequences for how these patients are treated in the future and thereby on future patient outcomes. The aim presently is therefore to explore how elderly patients with hip fracture enrolled in an ongoing RCT have experienced their recovery process. The study was qualitative in design. Eight frail elderly in recovery after hip fracture (aged 69-91) were interviewed in their home four months after their fracture. The interviews covered issues related to their experiences of facilitators and barriers throughout the different stages in the recovery process. The patients were already enrolled in an ongoing randomized controlled trial, examining the effects of habitual functional training during their short term stays at nursing homes. The patients were chosen strategically according to age, gender, and participation in rehabilitation. The interviews were recorded, transcribed and subjected to a method of systematic text condensation inspired by Giorgi's phenomenological method. The results revealed that the patients' experiences of the recovery process fell into three main themes: "Feeling vulnerable", "A span between self-reliance and dependency" and "Disruption from a normal life". The feeling of gloominess and vulnerability persisted throughout. Being in recovery was also experienced as a tension between self-reliance and dependency; a disrupted life where loss of mobility and the impact of age was profoundly present. Being in recovery after hip fracture was experienced as a life breaking event. Based on these findings, increased focus on individualized treatment to each patient through each stage of the recovery process should be emphasized.

  14. Intermediate water recovery system

    NASA Technical Reports Server (NTRS)

    Deckman, G.; Anderson, A. R. (Editor)

    1973-01-01

    A water recovery system for collecting, storing, and processing urine, wash water, and humidity condensates from a crew of three aboard a spacecraft is described. The results of a 30-day test performed on a breadboard system are presented. The intermediate water recovery system produced clear, sterile, water with a 96.4 percent recovery rate from the processed urine. Recommendations for improving the system are included.

  15. The influence of cold on the recovery of three neuromuscular blocking agents in man.

    PubMed

    England, A J; Wu, X; Richards, K M; Redai, I; Feldman, S A

    1996-03-01

    The Arrhenius hypothesis suggests that change in temperature has a less marked effect on the rate of physical processes than on biological reactions. We have investigated the process underlying recovery from neuromuscular block in man by studying the effect of cooling on the rate of recovery from depolarising and non-depolarising block. Vecuronium, rocuronium and decamethonium (C10) neuromuscular block were investigated using the isolated forearm technique on awake human volunteers. In these experiments, one arm was cooled whilst the other was used as control. Moderate hypothermia decreased the rate of recovery from all three agents, but this was significantly less marked with the depolarising drug. The mean Q10 (the anticipated change in rate of a reaction across of 10 degrees C temperature gradient) of the rate of recovery for vecuronium was 3.21, rocuronium 2.86 and decamethonium 1.29. This suggests a different process in the recovery of these two types of drug. According to the Arrhenius hypothesis this would suggest that the recovery from non-depolarising drugs is likely to involve a biochemical mechanism and that recovery from decamethonium is controlled by a physical process.

  16. Assessment of Shape Memory Alloys - From Atoms To Actuators - Via In Situ Neutron Diffraction

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane

    2014-01-01

    As shape memory alloys (SMAs) become an established actuator technology, it is important to identify the fundamental mechanisms responsible for their performance by understanding microstructure performance relationships from processing to final form. Yet, microstructural examination of SMAs at stress and temperature is often a challenge since structural changes occur with stress and temperature and microstructures cannot be preserved through quenching or after stress removal, as would be the case for conventional materials. One solution to this dilemma is in situ neutron diffraction, which has been applied to the investigation of SMAs and has offered a unique approach to reveal the fundamental micromechanics and microstructural aspects of bulk SMAs in a non-destructive setting. Through this technique, it is possible to directly correlate the micromechanical responses (e.g., internal residual stresses, lattice strains), microstructural evolutions (e.g., texture, defects) and phase transformation properties (e.g., phase fractions, kinetics) to the macroscopic actuator behavior. In this work, in situ neutron diffraction was systematically employed to evaluate the deformation and transformation behavior of SMAs under typical actuator conditions. Austenite and martensite phases, yield behavior, variant selection and transformation temperatures were characterized for a polycrystalline NiTi (49.9 at. Ni). As the alloy transforms under thermomechanical loading, the measured textures and lattice plane-level variations were directly related to the cyclic actuation-strain characteristics and the dimensional instability (strain ratcheting) commonly observed in this alloy. The effect of training on the shape memory characteristics of the alloy and the development of two-way shape memory effect (TWSME) were also assessed. The final conversion from a material to a useful actuator, typically termed shape setting, was also investigated in situ during constrained heatingcooling and subsequent shape recovery experiments. Neutron diffraction techniques are also being applied to the investigation of novel high temperature SMAs with the objective of designing alloys with better stability, higher transition temperatures and ultimately superior durability.

  17. The impact of familial expressed emotion on clinical and personal recovery among patients with psychiatric disorders: The mediating roles of self-stigma content and process.

    PubMed

    Chan, Kevin Ka Shing; Lam, Chun Bun

    2018-05-24

    The present study examined the associations of familial expressed emotion (EE) with clinical and personal recovery among patients with psychiatric disorders, as well as the potential mechanisms underlying these associations. Guided by the content-process theory of self-stigma, we hypothesized that EE would be negatively associated with clinical and personal recovery and that these associations would be mediated by self-stigma content and process. A total of 311 patients with psychiatric disorders completed questionnaires on their perceptions of EE, self-stigma, and recovery. Structural equation modeling demonstrated that EE was positively associated with self-stigma content and process, which were in turn negatively associated with clinical and personal recovery. The indirect effects of EE on clinical and personal recovery, via self-stigma content and process, were also significant. Multigroup analyses further demonstrated that the impact of EE on self-stigma and recovery was generalizable across patients with psychotic and nonpsychotic disorders. Theoretically, our findings revealed the potential pathways through which EE may adversely affect psychiatric recovery. Practically, our findings highlighted the importance of designing multipronged intervention programs to reduce familial EE and its potential harmful impact on psychiatric patients. In addition to helping family members improve their knowledge about psychiatric disorders and adjust their communication styles, practitioners should help psychiatric patients develop resilience against EE, mitigate self-stigma, and achieve recovery. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Beyond the extreme: Recovery dynamics following heat and drought stress in trees

    NASA Astrophysics Data System (ADS)

    Ruehr, N.; Duarte, A. G.; Arneth, A.

    2016-12-01

    Plant recovery processes following extreme events can have profound impacts on forest carbon and water cycling. However, large knowledge gaps persist on recovery dynamics of tree physiological processes following heat and drought stress. To date, few experimental studies exist that include recovery responses in stress research. We synthesized recent research on tree recovery processes related to carbon and water exchange following heat and drought stress, and show that the intensity of stress can affect the pace of recovery with large variations among tree species and processes. Following stress release, leaf water potential recovers instantaneously upon rewatering as found in most studies. Transpiration (T), stomatal conductance (gs) and photosynthesis (A) often lag behind, with lowest recovery following severe stress. Interestingly, the patterns in heat and drought stress recovery apparently differ. While A recovers generally more quickly than gs following drought, which increases water-use-efficiency, both gs and A tend to remain reduced following heat events. The pace of recovery following heat events likely depends on water availability during stress and temperature maxima reached (photosynthetic impairment at temperatures > 40°C). Slow recovery during the initial post-stress days might result from hydraulic limitation and elevated levels of abscisic acid. The mechanisms resulting in a continued impairment of T and gs during a later stage of the recovery period (from weeks up to months) are still elusive. Feedback loops from the photosynthetic machinery, reduced mesophyll conductance or leaf morphological changes may play an important role. In summary, post-stress recovery can substantially affect tree carbon and water cycling. Thus, in order to estimate the impacts of extreme climate events on forest ecosystems in the long-term, we need a better understanding of recovery dynamics and their limitations in terms of stress timing, intensity and duration.

  19. Locomotor Recovery in Spinal Cord Injury: Insights Beyond Walking Speed and Distance.

    PubMed

    Awai, Lea; Curt, Armin

    2016-08-01

    Recovery of locomotor function after incomplete spinal cord injury (iSCI) is clinically assessed through walking speed and distance, while improvements in these measures might not be in line with a normalization of gait quality and are, on their own, insensitive at revealing potential mechanisms underlying recovery. The objective of this study was to relate changes of gait parameters to the recovery of walking speed while distinguishing between parameters that rather reflect speed improvements from factors contributing to overall recovery. Kinematic data of 16 iSCI subjects were repeatedly recorded during in-patient rehabilitation. The responsiveness of gait parameters to walking speed was assessed by linear regression. Principal component analysis (PCA) was applied on the multivariate data across time to identify factors that contribute to recovery after iSCI. Parameters of gait cycle and movement dynamics were both responsive and closely related to the recovery of walking speed, which increased by 96%. Multivariate analysis revealed specific gait parameters (intralimb shape normality and consistency) that, although less related to speed increments, loaded highly on principal component one (PC1) (58.6%) explaining the highest proportion of variance (i.e., recovery of outcome over time). Interestingly, measures of hip, knee, and ankle range of motion showed varying degrees of responsiveness (from very high to very low) while not contributing to gait recovery as revealed by PCA. The conjunct application of two analysis methods distinguishes gait parameters that simply reflect increased walking speed from parameters that actually contribute to gait recovery in iSCI. This distinction may be of value for the evaluation of interventions for locomotor recovery.

  20. Physical and thermal processing of Waste Printed Circuit Boards aiming for the recovery of gold and copper.

    PubMed

    Ventura, E; Futuro, A; Pinho, S C; Almeida, M F; Dias, J M

    2018-06-20

    The recovery of electronic waste to obtain secondary raw materials is a subject of high relevance in the context of circular economy. Accordingly, the present work relies on the evaluation of mining separation/concentration techniques (comminution, size screening, magnetic separation and gravity concentration) alone as well as combined with thermal pre-treatment to recover gold and copper from Waste Printed Circuit Boards. For that purpose, Waste Printed Circuit Boards were subjected to physical processing (comminution, size screening in 6 classes from <0.425 mm to > 6.70 mm, magnetic separation and gravity concentration) alone and combined with thermal treatment (200-500 °C), aiming the recovery of gold and copper. Mixed motherboards and graphic cards (Lot 1 and 3) and highly rich components (connectors separated from memory cards, Lot 2) were analyzed. Gold and copper concentrations were determined before and after treatment. Before treatment, concentrations from 0.01 to 0.6 % wt. and from 9 to 20 % wt. were found for gold and copper respectively. The highest concentrations were observed in the size fractions between 0.425 and 1.70 mm. The highest copper concentration was around 35 % wt. (class 0.425-0.85 mm) and when analyzing memory card connectors alone, gold concentrations reached almost 2% in the same class, reflecting the interest of separating such components. The physical treatment alone was more effective for Lot 1/3, compared to Lot 2, allowing recoveries of 67 % wt. and 87 % wt. for gold and copper respectively, mostly due to differences in particles size and shape. The thermal treatment showed unperceptive influence on gold concentration but significant effect for copper concentration, mostly attributed to the size of the copper particles. Concentrations increased in a factor of around 10 when the thermal treatment was performed at 300 °C for the larger particles (1.70-6.70 mm); the best results were obtained at 400 °C for the other sizes, when the highest rate of thermal decomposition of the material occurred. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Nondestructive examination of recovery stage during annealing of a cold-rolled low-carbon steel using eddy current testing technique

    NASA Astrophysics Data System (ADS)

    Seyfpour, M.; Ghanei, S.; Mazinani, M.; Kashefi, M.; Davis, C.

    2018-04-01

    The recovery process in steel is usually investigated by conventional destructive tests that are expensive, time-consuming and also cumbersome. In this study, an alternative non-destructive test technique (based on eddy current testing) is used to characterise the recovery process during annealing of cold-rolled low-carbon steels. For assessing the reliability of eddy current results corresponding to different levels of recovery, X-ray line broadening analysis is also employed. It is shown that there is a strong relationship between eddy current outputs and the extent to which recovery occurs at different annealing temperatures. Accordingly, the non-destructive eddy current test technique represents the potential to be used as a reliable process for detection of the occurrence of recovery in the steel microstructure.

  2. The experiences of male sudden cardiac arrest survivors and their partners: a gender analysis.

    PubMed

    Uren, Alan; Galdas, Paul

    2015-02-01

    To explore how masculinities shape the experiences of men and their partners after survival from out-of-hospital cardiac arrest. Survivors of out-of-hospital cardiac arrest report depression, dependence on others for daily functioning, decreased participation in society and significant decreases in quality of life. There is growing evidence that masculine gender identities play a central role in the recovery experiences of men and their families following other major cardiac events. However, to date, there has been no examination of how masculinities shape men's experiences of recovery following out-of-hospital cardiac arrest. Interview study guided by an interpretive description approach. Data were subjected to thematic analysis. A purposive sample of seven male sudden cardiac arrest survivors and 6 female partners was recruited in 2010 from a secondary care centre in British Columbia, Canada. Three themes were prominent in the experiences of the participants: (1) Support and self-reliance; (2) Dealing with emotional (in) vulnerability; and (3) No longer a 'He-man'. Masculinities played a role in men's experiences of recovery and adaptation following out-of-hospital cardiac arrest. Hegemonic masculinity partly explained men's experiences, notably their reluctance to seek professional support and reactions to changes in lifestyle. However, the study also suggests that the popular stereotype of men being 'strong and silent' in the face of ill-health may only be a part of a more complex story. Nurses would benefit from taking into consideration the potential influence of male gender identities on men's recovery postcardiac arrest. © 2014 John Wiley & Sons Ltd.

  3. Magnetic Field Triggered Multicycle Damage Sensing and Self Healing

    NASA Astrophysics Data System (ADS)

    Ahmed, Anansa S.; Ramanujan, R. V.

    2015-09-01

    Multifunctional materials inspired by biological structures have attracted great interest, e.g. for wearable/ flexible “skin” and smart coatings. A current challenge in this area is to develop an artificial material which mimics biological skin by simultaneously displaying color change on damage as well as self healing of the damaged region. Here we report, for the first time, the development of a damage sensing and self healing magnet-polymer composite (Magpol), which actively responds to an external magnetic field. We incorporated reversible sensing using mechanochromic molecules in a shape memory thermoplastic matrix. Exposure to an alternating magnetic field (AMF) triggers shape recovery and facilitates damage repair. Magpol exhibited a linear strain response upto 150% strain and complete recovery after healing. We have demonstrated the use of this concept in a reusable biomedical device i.e., coated guidewires. Our findings offer a new synergistic method to bestow multifunctionality for applications ranging from medical device coatings to adaptive wing structures.

  4. Magnetic Field Triggered Multicycle Damage Sensing and Self Healing

    PubMed Central

    Ahmed, Anansa S.; Ramanujan, R. V.

    2015-01-01

    Multifunctional materials inspired by biological structures have attracted great interest, e.g. for wearable/ flexible “skin” and smart coatings. A current challenge in this area is to develop an artificial material which mimics biological skin by simultaneously displaying color change on damage as well as self healing of the damaged region. Here we report, for the first time, the development of a damage sensing and self healing magnet-polymer composite (Magpol), which actively responds to an external magnetic field. We incorporated reversible sensing using mechanochromic molecules in a shape memory thermoplastic matrix. Exposure to an alternating magnetic field (AMF) triggers shape recovery and facilitates damage repair. Magpol exhibited a linear strain response upto 150% strain and complete recovery after healing. We have demonstrated the use of this concept in a reusable biomedical device i.e., coated guidewires. Our findings offer a new synergistic method to bestow multifunctionality for applications ranging from medical device coatings to adaptive wing structures. PMID:26348284

  5. Recovery from forward masking in cochlear implant listeners depends on stimulation mode, level, and electrode location

    PubMed Central

    Chatterjee, Monita; Kulkarni, Aditya M.

    2017-01-01

    Psychophysical recovery from forward masking was measured in adult cochlear implant users of CochlearTM and Advanced BionicsTM devices, in monopolar and in focused (bipolar and tripolar) stimulation modes, at four electrode sites across the arrays, and at two levels (loudness balanced across modes and electrodes). Results indicated a steeper psychophysical recovery from forward masking in monopolar over bipolar and tripolar modes, modified by differential effects of electrode and level. The interactions between factors varied somewhat across devices. It is speculated that psychophysical recovery from forward masking may be driven by different populations of neurons in the different modes, with a broader stimulation pattern resulting in a greater likelihood of response by healthier and/or faster-recovering neurons within the stimulated population. If a more rapid recovery from prior stimulation reflects responses of neurons not necessarily close to the activating site, the spectral pattern of the incoming acoustic signal may be distorted. These results have implications for speech processor implementations using different degrees of focusing of the electric field. The primary differences in the shape of the recovery function were observed in the earlier portion (between 2 and 45 ms) of recovery, which is significant in terms of the speech envelope. PMID:28682084

  6. Work Engagement: Investigating the Role of Transformational Leadership, Job Resources, and Recovery.

    PubMed

    Hawkes, Amy J; Biggs, Amanda; Hegerty, Erin

    2017-08-18

    While the relationship between job resources and engagement has been well established, a greater understanding of the upstream factors that shape job resources is required to develop strategies to promote work engagement. The current study addresses this need by exploring transformational leadership as an upstream job resource, and the moderating role of recovery experiences. It was hypothesized that job resources would mediate the relationship between transformational leadership and engagement. Recovery experiences were expected to moderate the relationship between resources and engagement. A sample of 277 employees from a variety of organizations and industries was obtained. Analysis showed direct relationships between: transformational leadership and engagement, and transformational leadership and job resources. Mediation analysis using bootstrapping found a significant indirect path between transformational leadership and engagement via job resources. Recovery experiences did not significantly moderate the relationship between job resources and engagement. To date, the majority of published literature on recovery has focused on job demands; hence the nonsignificant result offers insight of a potentially more complex relationship for recovery with resources and engagement. Overall, the current study extends the JD-R model and provides evidence for broadening the model to include upstream organizational variables such as transformational leadership.

  7. Accelerated wavefront determination technique for optical imaging through scattering medium

    NASA Astrophysics Data System (ADS)

    He, Hexiang; Wong, Kam Sing

    2016-03-01

    Wavefront shaping applied on scattering light is a promising optical imaging method in biological systems. Normally, optimized modulation can be obtained by a Liquid-Crystal Spatial Light Modulator (LC-SLM) and CCD hardware iteration. Here we introduce an improved method for this optimization process. The core of the proposed method is to firstly detect the disturbed wavefront, and then to calculate the modulation phase pattern by computer simulation. In particular, phase retrieval method together with phase conjugation is most effective. In this way, the LC-SLM based system can complete the wavefront optimization and imaging restoration within several seconds which is two orders of magnitude faster than the conventional technique. The experimental results show good imaging quality and may contribute to real time imaging recovery in scattering medium.

  8. Impact of carbon nanotubes based nanofluid on oil recovery efficiency using core flooding

    NASA Astrophysics Data System (ADS)

    Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek

    2018-06-01

    This study aims to investigate the influence of carbon nanotubes based nanofluid on interfacial tension and oil recovery efficiency. Practically multi-walled carbon nanotubes were successfully synthesized using chemical vapour deposition technique and characterized using X-ray diffraction and Field Emission Scanning Electron microscope in order to understand its structure, shape, and morphology. Nanofluids are one of the interesting new agents for enhanced oil recovery (EOR) that can change the reservoir rock-fluid properties in terms of interfacial tension and wettability. In this work, different concentration of carbon nanotubes based fluids were prepared and the effect of each concentration on surface tension was determined using pendant drop method. After specifying the optimum concentration of carbon nanotubes based nanofluid, core flooding experiment was conducted by two pore volume of brine and two pore volume of nanofluid and then oil recovery factor was calculated. The results show that carbon nanotubes can bring in additional recovery factor of 18.57% in the glass bead sample. It has been observed that nanofluid with high surface tension value gives higher recovery. It was found that the optimum value of concentration is 0.3 wt% at which maximum surface tension of 33.46 mN/m and oil recovery factor of 18.57% was observed. This improvement in recovery factor can be recognized due to interfacial tension reduction and wettability alteration.

  9. Flourishing With Psychosis: A Prospective Examination on the Interactions Between Clinical, Functional, and Personal Recovery Processes on Well-being Among Individuals with Schizophrenia Spectrum Disorders.

    PubMed

    Chan, Randolph C H; Mak, Winnie W S; Chio, Floria H N; Tong, Alan C Y

    2017-09-08

    Well-being is not just the absence of mental disorder but also involves positive feelings and contentment (emotional well-being), meaningful engagement (psychological well-being), and contribution of one's community or society (social well-being). Recovery processes, which encompass mitigation of clinical symptomatology (clinical recovery), improvement in occupational, social, and adaptive functioning (functional recovery), and development of personally valued goals and identity (personal recovery), have demonstrated to be important markers of well-being. This study examined the relative contribution of clinical, functional, and personal recovery processes on well-being among individuals with schizophrenia and explored the effect of personal recovery on people with varying levels of symptom severity and functional ability. A longitudinal quantitative research design was used in which 181 people with schizophrenia spectrum disorders were assessed at baseline and 6 months. At baseline, 28.2% of the participants were considered as flourishing. Around half of the participants (52.5%) were moderately mentally healthy, while 19.3% were identified as languishing. Results showed that clinical recovery was predictive of better well-being at 6-month postbaseline. Personal recovery was found to positively predict well-being, above and beyond the effects of clinical and functional recovery. Moderation analysis showed that the effect of personal recovery on well-being did not depend on clinical and functional recovery, which implied that people with schizophrenia can participate in the process of personal recovery and enjoy positive well-being regardless of their clinical stability and functional competence. Given the robust salutogenic effect of personal recovery, greater emphasis should be placed on developing person-centered, strength-based, recovery-oriented services. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Processes of recovery through routine or specialist treatment for borderline personality disorder (BPD): a qualitative study.

    PubMed

    Katsakou, Christina; Pistrang, Nancy; Barnicot, Kirsten; White, Hayley; Priebe, Stefan

    2017-07-04

    Recovery processes in borderline personality disorder (BPD) are poorly understood. This study explored how recovery in BPD occurs through routine or specialist treatment, as perceived by service users (SUs) and therapists. SUs were recruited from two specialist BPD services, three community mental health teams, and one psychological therapies service. Semi-structured interviews were conducted with 48 SUs and 15 therapists. The "framework" approach was used to analyse the data. The findings were organized into two domains of themes. The first domain described three parallel processes that constituted SUs' recovery journey: fighting ambivalence and committing to taking action; moving from shame to self-acceptance and compassion; and moving from distrust and defensiveness to opening up to others. The second domain described four therapeutic challenges that needed to be addressed to support this journey: balancing self-exploration and finding solutions; balancing structure and flexibility; confronting interpersonal difficulties and practicing new ways of relating; and balancing support and independence. Therapies facilitating the identified processes may promote recovery. The recovery processes and therapeutic challenges identified in this study could provide a framework to guide future research.

  11. Multifunctional shape-memory polymers.

    PubMed

    Behl, Marc; Razzaq, Muhammad Yasar; Lendlein, Andreas

    2010-08-17

    The thermally-induced shape-memory effect (SME) is the capability of a material to change its shape in a predefined way in response to heat. In shape-memory polymers (SMP) this shape change is the entropy-driven recovery of a mechanical deformation, which was obtained before by application of external stress and was temporarily fixed by formation of physical crosslinks. The high technological significance of SMP becomes apparent in many established products (e.g., packaging materials, assembling devices, textiles, and membranes) and the broad SMP development activities in the field of biomedical as well as aerospace applications (e.g., medical devices or morphing structures for aerospace vehicles). Inspired by the complex and diverse requirements of these applications fundamental research is aiming at multifunctional SMP, in which SME is combined with additional functions and is proceeding rapidly. In this review different concepts for the creation of multifunctionality are derived from the various polymer network architectures of thermally-induced SMP. Multimaterial systems, such as nanocomposites, are described as well as one-component polymer systems, in which independent functions are integrated. Future challenges will be to transfer the concept of multifunctionality to other emerging shape-memory technologies like light-sensitive SMP, reversible shape changing effects or triple-shape polymers.

  12. The Meaning of Recovery from Co-Occurring Disorder: Views from Consumers and Staff Members Living and Working in Housing First Programming

    PubMed Central

    Rollins, Angela L.

    2015-01-01

    The current study seeks to understand the concept of recovery from the perspectives of consumers and staff living and working in a supportive housing model designed to serve those with co-occurring disorder. Interview and focus group data were collected from consumers and staff from four housing programs. Data analyzed using an approach that combined case study and grounded theory methodologies demonstrate that: consumers’ and staff members’ views of recovery were highly compatible and resistant to abstinence-based definitions of recovery; recovery is personal; stability is a foundation for recovery; recovery is a process; and the recovery process is not linear. These themes are more consistent with mental health-focused conceptions of recovery than those traditionally used within the substance abuse field, and they help demonstrate how recovery can be influenced by the organization of services in which consumers are embedded. PMID:26388709

  13. Nanoscale Mechanical Properties of Nanoindented Ni48.8Mn27.2Ga24 Ferromagnetic Shape Memory Thin Film

    PubMed Central

    Fu, Xiaofei; Li, Xianli; Lv, Jingwei; Wang, Famei; Wang, Liying

    2017-01-01

    The structure and nanoscale mechanical properties of Ni48.8Mn27.2Ga24 thin film fabricated by DC magnetron sputtering are investigated systematically. The thin film has the austenite state at room temperature with the L21 Hesuler structure. During nanoindentation, stress-induced martensitic transformation occurs on the nanoscale for the film annealed at 823 K for 1 hour and the shape recovery ratio is up to 85.3%. The associated mechanism is discussed. PMID:29109812

  14. Process Recovery after CaO Addition Due to Granule Formation in a CSTR Co-Digester—A Tool to Influence the Composition of the Microbial Community and Stabilize the Process?

    PubMed Central

    Liebrich, Marietta; Kleyböcker, Anne; Kasina, Monika; Miethling-Graff, Rona; Kassahun, Andrea; Würdemann, Hilke

    2016-01-01

    The composition, structure and function of granules formed during process recovery with calcium oxide in a laboratory-scale fermenter fed with sewage sludge and rapeseed oil were studied. In the course of over-acidification and successful process recovery, only minor changes were observed in the bacterial community of the digestate, while granules appeared during recovery. Fluorescence microscopic analysis of the granules showed a close spatial relationship between calcium and oil and/or long chain fatty acids. This finding further substantiated the hypothesis that calcium precipitated with carbon of organic origin and reduced the negative effects of overloading with oil. Furthermore, the enrichment of phosphate minerals in the granules was shown, and molecular biological analyses detected polyphosphate-accumulating organisms as well as methanogenic archaea in the core. Organisms related to Methanoculleus receptaculi were detected in the inner zones of a granule, whereas they were present in the digestate only after process recovery. This finding indicated more favorable microhabitats inside the granules that supported process recovery. Thus, the granule formation triggered by calcium oxide addition served as a tool to influence the composition of the microbial community and to stabilize the process after overloading with oil. PMID:27681911

  15. Process Recovery after CaO Addition Due to Granule Formation in a CSTR Co-Digester-A Tool to Influence the Composition of the Microbial Community and Stabilize the Process?

    PubMed

    Liebrich, Marietta; Kleyböcker, Anne; Kasina, Monika; Miethling-Graff, Rona; Kassahun, Andrea; Würdemann, Hilke

    2016-03-17

    The composition, structure and function of granules formed during process recovery with calcium oxide in a laboratory-scale fermenter fed with sewage sludge and rapeseed oil were studied. In the course of over-acidification and successful process recovery, only minor changes were observed in the bacterial community of the digestate, while granules appeared during recovery. Fluorescence microscopic analysis of the granules showed a close spatial relationship between calcium and oil and/or long chain fatty acids. This finding further substantiated the hypothesis that calcium precipitated with carbon of organic origin and reduced the negative effects of overloading with oil. Furthermore, the enrichment of phosphate minerals in the granules was shown, and molecular biological analyses detected polyphosphate-accumulating organisms as well as methanogenic archaea in the core. Organisms related to Methanoculleus receptaculi were detected in the inner zones of a granule, whereas they were present in the digestate only after process recovery. This finding indicated more favorable microhabitats inside the granules that supported process recovery. Thus, the granule formation triggered by calcium oxide addition served as a tool to influence the composition of the microbial community and to stabilize the process after overloading with oil.

  16. Integrated butanol recovery for an advanced biofuel: current state and prospects.

    PubMed

    Xue, Chuang; Zhao, Jing-Bo; Chen, Li-Jie; Bai, Feng-Wu; Yang, Shang-Tian; Sun, Jian-Xin

    2014-04-01

    Butanol has recently gained increasing interest due to escalating prices in petroleum fuels and concerns on the energy crisis. However, the butanol production cost with conventional acetone-butanol-ethanol fermentation by Clostridium spp. was higher than that of petrochemical processes due to the low butanol titer, yield, and productivity in bioprocesses. In particular, a low butanol titer usually leads to an extremely high recovery cost. Conventional biobutanol recovery by distillation is an energy-intensive process, which has largely restricted the economic production of biobutanol. This article thus reviews the latest studies on butanol recovery techniques including gas stripping, liquid-liquid extraction, adsorption, and membrane-based techniques, which can be used for in situ recovery of inhibitory products to enhance butanol production. The productivity of the fermentation system is improved efficiently using the in situ recovery technology; however, the recovered butanol titer remains low due to the limitations from each one of these recovery technologies, especially when the feed butanol concentration is lower than 1 % (w/v). Therefore, several innovative multi-stage hybrid processes have been proposed and are discussed in this review. These hybrid processes including two-stage gas stripping and multi-stage pervaporation have high butanol selectivity, considerably higher energy and production efficiency, and should outperform the conventional processes using single separation step or method. The development of these new integrated processes will give a momentum for the sustainable production of industrial biobutanol.

  17. Comparison of the recovery patterns of language and cognitive functions in patients with post-traumatic language processing deficits and in patients with aphasia following a stroke.

    PubMed

    Vukovic, Mile; Vuksanovic, Jasmina; Vukovic, Irena

    2008-01-01

    In this study we investigated the recovery patterns of language and cognitive functions in patients with post-traumatic language processing deficits and in patients with aphasia following a stroke. The correlation of specific language functions and cognitive functions was analyzed in the acute phase and 6 months later. Significant recovery of the tested functions was observed in both groups. However, in patients with post-traumatic language processing deficits the degree of recovery of most language functions and some cognitive functions was higher. A significantly greater correlation was revealed within language and cognitive functions, as well as between language functions and other aspects of cognition in patients with post-traumatic language processing deficits than in patients with aphasia following a stroke. Our results show that patients with post-traumatic language processing deficits have a different recovery pattern and a different pattern of correlation between language and cognitive functions compared to patients with aphasia following a stroke. (1) Better understanding of the differences in recovery of language and cognitive functions in patients who have suffered strokes and those who have experienced traumatic brain injury. (2) Better understanding of the relationship between language and cognitive functions in patients with post-traumatic language processing deficits and in patients with aphasia following a stroke. (3) Better understanding of the factors influencing recovery.

  18. Self-regulation and recovery: approaching an understanding of the process of recovery from stress.

    PubMed

    Beckmann, Jürgen; Kellmann, Michael

    2004-12-01

    Stress has been studied extensively in psychology. Only recently, however, has research started to address the question of how individuals manage to recover from stress. Recovery from stress is analyzed as a process of self-regulation. Several individual difference variables which affect the efficiency of self-regulation have been integrated into a structured model of the recovery process. Such variables are action versus state orientation (a tendency to ruminate, e.g., about a past experience) and volitional components, such as self-determination, self-motivation, emotion control, rumination, and self-discipline. Some of these components are assumed to promote recovery from stress, whereas others are assumed to further the perseverance of stress. The model was supported by the empirical findings of three independent studies (Study 1, N=58; Study 2, N=221; Study 3, N= 105). Kuhl's Action Control Scale measured action versus state orientation. Volitional components were assessed with Kuhl and Fuhrmann's Volitional Components Questionnaire. The amounts of experienced stress and recovery from stress was assessed with Kellmann and Kallus's Recovery-Stress Questionnaire. As hypothesized in the model, the disposition towards action versus state orientation was a more distant determinant of the recovery from stress and perseverance of stress. The volitional components are more proximal determinants in the recovery process. Action orientation promotes recovery from stress via adequate volitional skills, e.g., self-determination, self-motivation, emotion control, whereas state orientation furthers a perseverance of stress through rumination and self-discipline.

  19. Development of Measures to Assess Personal Recovery in Young People Treated in Specialist Mental Health Services.

    PubMed

    John, Mary; Jeffries, Fiona W; Acuna-Rivera, Marcela; Warren, Fiona; Simonds, Laura M

    2015-01-01

    Recovery has become a central concept in mental health service delivery, and several recovery-focused measures exist for adults. The concept's applicability to young people's mental health experience has been neglected, and no measures yet exist. Aim The aim of this work is to develop measures of recovery for use in specialist child and adolescent mental health services. On the basis of 21 semi-structured interviews, three recovery measures were devised, one for completion by the young person and two for completion by the parent/carer. Two parent/carer measures were devised in order to assess both their perspective on their child's recovery and their own recovery process. The questionnaires were administered to a UK sample of 47 young people (10-18 years old) with anxiety and depression and their parents, along with a measure used to routinely assess treatment progress and outcome and a measure of self-esteem. All three measures had high internal consistency (alpha ≥ 0.89). Young people's recovery scores were correlated negatively with scores on a measure used to routinely assess treatment progress and outcome (r = -0.75) and positively with self-esteem (r = 0.84). Parent and young persons' reports of the young person's recovery were positively correlated (r = 0.61). Parent report of the young person's recovery and of their own recovery process were positively correlated (r = 0.75). The three measures have the potential to be used in mental health services to assess recovery processes in young people with mental health difficulties and correspondence with symptomatic improvement. The measures provide a novel way of capturing the parental/caregiver perspective on recovery and caregivers' own wellbeing. No tools exist to evaluate recovery-relevant processes in young people treated in specialist mental health services. This study reports on the development and psychometric evaluation of three self-report recovery-relevant assessments for young people and their caregivers. Findings indicate a high degree of correspondence between young person and caregiver reports of recovery in the former. The recovery assessments correlate inversely with a standardized symptom-focused measure and positively with self-esteem. Copyright © 2014 John Wiley & Sons, Ltd.

  20. 40 CFR 60.2025 - What if my chemical recovery unit is not listed in § 60.2020(n)?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... materials that are recovered. (3) A description (including a process flow diagram) of the process in which... process. (4) A description (including a process flow diagram) of the chemical constituent recovery process...

  1. 40 CFR 60.2025 - What if my chemical recovery unit is not listed in § 60.2020(n)?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... materials that are recovered. (3) A description (including a process flow diagram) of the process in which... process. (4) A description (including a process flow diagram) of the chemical constituent recovery process...

  2. 40 CFR 60.2025 - What if my chemical recovery unit is not listed in § 60.2020(n)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... materials that are recovered. (3) A description (including a process flow diagram) of the process in which... process. (4) A description (including a process flow diagram) of the chemical constituent recovery process...

  3. 40 CFR 60.2558 - What if a chemical recovery unit is not listed in § 60.2555(n)?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... materials that are recovered. (3) A description (including a process flow diagram) of the process in which... process. (4) A description (including a process flow diagram) of the chemical constituent recovery process...

  4. Fact Sheet on the History of the Resource Conservation and Recovery Act (RCRA) Corrective Action Program

    EPA Pesticide Factsheets

    This fact sheet provides an overview of the main events that have shaped the current RCRA Corrective Action Program. It also provides a brief history of the statutory authorities, regulations, and policy that form the framework for the program.

  5. Recovery of speed of information processing in closed-head-injury patients.

    PubMed

    Zwaagstra, R; Schmidt, I; Vanier, M

    1996-06-01

    After severe traumatic brain injury, patients almost invariably demonstrate a slowing of reaction time, reflecting a slowing of central information processing. Methodological problems associated with the traditional method for the analysis of longitudinal data (MANOVA) severely complicate studies on cognitive recovery. It is argued that multilevel models are often better suited for the analysis of improvement over time in clinical settings. Multilevel models take into account individual differences in both overall performance level and recovery. These models enable individual predictions for the recovery of speed of information processing. Recovery is modelled in a group of closed-head-injury patients (N = 24). Recovery was predicted by age and severity of injury, as indicated by coma duration. Over a period up to 44 months post trauma, reaction times were found to decrease faster for patients with longer coma duration.

  6. A critical review on tablet disintegration.

    PubMed

    Quodbach, Julian; Kleinebudde, Peter

    2016-09-01

    Tablet disintegration is an important factor for drug release and can be modified with excipients called tablet disintegrants. Tablet disintegrants act via different mechanisms and the efficacy of these excipients is influenced by various factors. In this review, the existing literature on tablet disintegration is critically reviewed. Potential disintegration mechanisms, as well as impact factors on the disintegration process will be discussed based on experimental evidence. Search terms for Scopus and Web of Science included "tablet disintegration", "mechanism tablet disintegration", "superdisintegrants", "disintegrants", "swelling force", "disintegration force", "disintegration mechanisms", as well as brand names of commonly applied superdisintegrants. References of identified papers were screened as well. Experimental data supports swelling and shape recovery as main mechanisms of action of disintegrants. Other tablet excipients and different manufacturing techniques greatly influence the disintegration process. The use of different excipients, experimental setups and manufacturing techniques, as well as the demand for original research led to a distinct patchwork of knowledge. Broader, more systematic approaches are necessary not only to structure the past but also future findings.

  7. Mineral-microbe interactions: biotechnological potential of bioweathering.

    PubMed

    Mapelli, Francesca; Marasco, Ramona; Balloi, Annalisa; Rolli, Eleonora; Cappitelli, Francesca; Daffonchio, Daniele; Borin, Sara

    2012-02-20

    Mineral-microbe interaction has been a key factor shaping the lithosphere of our planet since the Precambrian. Detailed investigation has been mainly focused on the role of bioweathering in biomining processes, leading to the selection of highly efficient microbial inoculants for the recovery of metals. Here we expand this scenario, presenting additional applications of bacteria and fungi in mineral dissolution, a process with novel biotechnological potential that has been poorly investigated. The ability of microorganisms to trigger soil formation and to sustain plant establishment and growth are suggested as invaluable tools to counteract the expansion of arid lands and to increase crop productivity. Furthermore, interesting exploitations of mineral weathering microbes are represented by biorestoration and bioremediation technologies, innovative and competitive solutions characterized by economical and environmental advantages. Overall, in the future the study and application of the metabolic properties of microbial communities capable of weathering can represent a driving force in the expanding sector of environmental biotechnology. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Central composite design with the help of multivariate curve resolution in loadability optimization of RP-HPLC to scale-up a binary mixture.

    PubMed

    Taheri, Mohammadreza; Moazeni-Pourasil, Roudabeh Sadat; Sheikh-Olia-Lavasani, Majid; Karami, Ahmad; Ghassempour, Alireza

    2016-03-01

    Chromatographic method development for preparative targets is a time-consuming and subjective process. This can be particularly problematic because of the use of valuable samples for isolation and the large consumption of solvents in preparative scale. These processes could be improved by using statistical computations to save time, solvent and experimental efforts. Thus, contributed by ESI-MS, after applying DryLab software to gain an overview of the most effective parameters in separation of synthesized celecoxib and its co-eluted compounds, design of experiment software that relies on multivariate modeling as a chemometric approach was used to predict the optimized touching-band overloading conditions by objective functions according to the relationship between selectivity and stationary phase properties. The loadability of the method was investigated on the analytical and semi-preparative scales, and the performance of this chemometric approach was approved by peak shapes beside recovery and purity of products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structuring Disaster Recovery Infrastructure Decisions: Lessons from Boulder County's 2013 Flood Recovery

    NASA Astrophysics Data System (ADS)

    Clavin, C.; Petropoulos, Z.

    2017-12-01

    Recovery phase decision making processes, as compared to mitigation and response phase decision making processes, require communities make significant financial and capital decisions in the months after a disaster. Collectively, these investments may significantly contribute to the resilience of a community to future hazards. Pre-disaster administrative decisions are well-established within existing planning processes. Post-event recovery requires community decision makers to quickly evaluate technical proposals and manage significant recovery financial resources to ensure their community rebuilds in a manner that will be more resilient to future events. These technical and administrative hurdles in the aftermath of a disaster create a challenging atmosphere to make sound, scientifically-informed decisions leading to resilient recovery. In September 2013, a 1,000-year rain event that resulted in flooding throughout the Front Range of Colorado, significantly impacting Boulder County. While the event is long past, disaster recovery efforts still continue in parts of Boulder County. Boulder County officials formed a county collaborative that adapted the NIST Community Resilience Planning Guide for Buildings and Infrastructure Systems to facilitate a goals-based multi-criteria decision making process. Rather than use hazard-based information to guide infrastructure design, the county's decision process established time-to-recovery goals for infrastructure systems that were used as criteria for project design. This presentation explores the decision-making process employed by Boulder County to specify design standards for resilient rebuilding of infrastructure systems and examine how this infrastructure planning model could be extrapolated to other situations where there is uncertainty regarding future infrastructure design standards.

  10. New roads paved on losses: photovoice perspectives about recovery from mental illness.

    PubMed

    Mizock, Lauren; Russinova, Zlatka; Shani, Roni

    2014-11-01

    People with serious mental illness face stigma that interferes with recovery. Photovoice is a method that integrates photography and writing, providing a valuable means for capturing the narratives of people with mental illness whose voices are often marginalized. The purpose of the present article is to explore the meaning of recovery for individuals with serious mental illness based on a qualitative analysis of a new photovoice-based intervention, Recovery Narrative Photovoice. This intervention focuses on promoting the process of recovery and sense of identity through the creation of empowering visual images and narratives of recovery for individuals with serious mental illness. In this article, we present iconographic and thematic analysis for the 23 photovoice works from two pilots of the Recovery Narrative Photovoice intervention. Results reveal several themes, including metaphors for mental illness, associated losses, recovery strategies, and recovery outcomes. A final theme pertains to recovery messages learned from the recovery process. © The Author(s) 2014.

  11. Design and fabrication of plasmonic cavities for magneto-optical sensing

    NASA Astrophysics Data System (ADS)

    Loughran, T. H. J.; Roth, J.; Keatley, P. S.; Hendry, E.; Barnes, W. L.; Hicken, R. J.; Einsle, J. F.; Amy, A.; Hendren, W.; Bowman, R. M.; Dawson, P.

    2018-05-01

    The design and fabrication of a novel plasmonic cavity, intended to allow far-field recovery of signals arising from near field magneto-optical interactions, is presented. Finite element modeling is used to describe the interaction between a gold film, containing cross-shaped cavities, with a nearby magnetic under-layer. The modeling revealed strong electric field confinement near the center of the cross structure for certain optical wavelengths, which may be tuned by varying the length of the cross through a range that is compatible with available fabrication techniques. Furthermore, the magneto optical Kerr effect (MOKE) response of the composite structure can be enhanced with respect to that of the bare magnetic film. To confirm these findings, cavities were milled within gold films deposited upon a soluble film, allowing relocation to a ferromagnetic film using a float transfer technique. Cross cavity arrays were fabricated and characterized by optical transmission spectroscopy prior to floating, revealing resonances at optical wavelengths in good agreement with the finite element modeling. Following transfer to the magnetic film, circular test apertures within the gold film yielded clear magneto-optical signals even for diameters within the sub-wavelength regime. However, no magneto-optical signal was observed for the cross cavity arrays, since the FIB milling process was found to produce nanotube structures within the soluble under-layer that adhered to the gold. Further optimization of the fabrication process should allow recovery of magneto-optical signal from cross cavity structures.

  12. Qualitative study of peer workers within the 'Partners in Recovery' programme in regional Australia.

    PubMed

    Hurley, John; Cashin, Andrew; Mills, Jem; Hutchinson, Marie; Kozlowski, Desiree; Graham, Iain

    2018-02-01

    In Australia and internationally, Peer Workers are increasingly being incorporated into the mental health workforce. Underpinning this trend is the conviction that the inclusion of workers with lived experience in overcoming mental health challenges is central to transforming service delivery. Given there are few identified Australian studies into the experiences of Peer Workers, this paper reports findings from qualitative interviews conducted in a Partners In Recovery programme in one regional area in Australia. The interviews formed part of a larger mixed-method study evaluating Peer Worker roles in the programme. Thematic analysis of interview transcripts with Peer Workers and other staff employed in the programme (n = 22) was undertaken. Central to the five themes that emerged was the concept of lived experience expertise in overcoming mental health challenges. The themes were: (i) role variance, (ii) the challenges and opportunities for Peer Worker, (iii) the processes Peer Workers employed as they attempted to shape an identify and language, (iv) the inconsistencies and challenges of employing lived experience as a defining feature of the peer worker role, and (v) the nature of trust arising from lived experience relationships. From this study, it is evident that the Peer Worker role remains underdeveloped. The difficulties experienced by Peer Workers in establishing a homogenous identity and role is not unique. The process and lack of clarity around role identity revealed from the narratives, parallels the experiences of Mental Health Nursing. © 2016 Australian College of Mental Health Nurses Inc.

  13. Acceptance and Avoidance Processes at Different Levels of Psychological Recovery from Enduring Mental Illness.

    PubMed

    Siqueira, Vinicius R; Oades, Lindsay G

    2015-01-01

    Objective. This study examined the use of psychological acceptance and experiential avoidance, two key concepts of Acceptance and Commitment Therapy (ACT), in the psychological recovery process of people with enduring mental illness. Method. Sixty-seven participants were recruited from the metropolitan, regional, and rural areas of New South Wales, Australia. They all presented some form of chronic mental illness (at least 12 months) as reflected in DSM-IV Axis I diagnostic criteria. The Acceptance and Action Questionnaire (AAQ-19) was used to measure the presence of psychological acceptance and experiential avoidance; the Recovery Assessment Scale (RAS) was used to examine the levels of psychological recovery; and the Scales of Psychological Well-Being was used to observe if there are benefits in utilizing psychological acceptance and experiential avoidance in the recovery process. Results. An analysis of objectively quantifiable measures found no clear correlation between the use of psychological acceptance and recovery in mental illness as measured by the RAS. The data, however, showed a relationship between psychological acceptance and some components of recovery, thereby demonstrating its possible value in the recovery process. Conclusion. The major contribution of this research was the emerging correlation that was observed between psychological acceptance and positive levels of psychological well-being among individuals with mental illness.

  14. Design of two-way reversible bending actuator based on a shape memory alloy/shape memory polymer composite

    NASA Astrophysics Data System (ADS)

    Taya, Minoru; Liang, Yuanchang; Namli, Onur C.; Tamagawa, Hirohisa; Howie, Tucker

    2013-10-01

    The design of a reversible bending actuator based on a SMA/SMP composite is presented. The SMA/SMP composite is made of SMA NiTi wires with a bent ‘U’-shape in the austenite phase embedded in an epoxy SMP matrix which has a memorized flat shape. The bending motion is caused by heating the composite above TAf to activate the NiTi recovery. Upon cooling, the softening from the austenite to R-phase transformation results in a relaxation of the composite towards its original flat shape. In the three-point bending measurement the composite was able to exhibit a reversible deflection of 1.3 mm on a support with a 10 mm span. In addition, a material model for predicting the composite’s deflection is presented and predicts the experimental results reasonably well. The model also estimates the in-plane internal force and the degree of the SMA phase transformation.

  15. Effect of diffuser vane shape on the performance of a centrifugal compressor stage

    NASA Astrophysics Data System (ADS)

    Reddy, T. Ch Siva; Ramana Murty, G. V.; Prasad, M. V. S. S. S. M.

    2014-04-01

    The present paper reports the results of experimental investigations on the effect of diffuser vane shape on the performance of a centrifugal compressor stage. These studies were conducted on the chosen stage having a backward curved impeller of 500 mm tip diameter and 24.5 mm width and its design flow coefficient is ϕd=0.0535. Three different low solidity diffuser vane shapes namely uncambered aerofoil, constant thickness flat plate and circular arc cambered constant thickness plate were chosen as the variants for diffuser vane shape and all the three shapes have the same thickness to chord ratio (t/c=0.1). Flow coefficient, polytropic efficiency, total head coefficient, power coefficient and static pressure recovery coefficient were chosen as the parameters for evaluating the effect of diffuser vane shape on the stage performance. The results show that there is reasonable improvement in stage efficiency and total head coefficient with the use of the chosen diffuser vane shapes as compared to conventional vaneless diffuser. It is also noticed that the aero foil shaped LSD has shown better performance when compared to flat plate and circular arc profiles. The aerofoil vane shape of the diffuser blade is seen to be tolerant over a considerable range of incidence.

  16. Tension Recovery following Ramp-Shaped Release in High-Ca and Low-Ca Rigor Muscle Fibers: Evidence for the Dynamic State of AMADP Myosin Heads in the Absence of ATP

    PubMed Central

    Sugi, Haruo; Yamaguchi, Maki; Ohno, Tetsuo; Kobayashi, Takakazu; Chaen, Shigeru; Okuyama, Hiroshi

    2016-01-01

    During muscle contraction, myosin heads (M) bound to actin (A) perform power stroke associated with reaction, AMADPPi → AM + ADP + Pi. In this scheme, A • M is believed to be a high-affinity complex after removal of ATP. Biochemical studies on extracted protein samples show that, in the AM complex, actin-binding sites are located at both sides of junctional peptide between 50K and 20K segments of myosin heavy chain. Recently, we found that a monoclonal antibody (IgG) to the junctional peptide had no effect on both in vitro actin-myosin sliding and skinned muscle fiber contraction, though it covers the actin-binding sites on myosin. It follows from this that, during muscle contraction, myosin heads do not pass through the static rigor AM configuration, determined biochemically and electron microscopically using extracted protein samples. To study the nature of AM and AMADP myosin heads, actually existing in muscle, we examined mechanical responses to ramp-shaped releases (0.5% of Lo, complete in 5ms) in single skinned rabbit psoas muscle fibers in high-Ca (pCa, 4) and low-Ca (pCa, >9) rigor states. The fibers exhibited initial elastic tension drop and subsequent small but definite tension recovery to a steady level. The tension recovery was present over many minutes in high-Ca rigor fibers, while it tended to decrease quickly in low-Ca rigor fibers. EDTA (10mM, with MgCl2 removed) had no appreciable effect on the tension recovery in high-Ca rigor fibers, while it completely eliminated the tension recovery in low-Ca rigor fibers. These results suggest that the AMADP myosin heads in rigor muscle have long lifetimes and dynamic properties, which show up as the tension recovery following applied release. Possible AM linkage structure in muscle is discussed in connection with the X-ray diffraction pattern from contracting muscle, which is intermediate between resting and rigor muscles. PMID:27583360

  17. Tension Recovery following Ramp-Shaped Release in High-Ca and Low-Ca Rigor Muscle Fibers: Evidence for the Dynamic State of AMADP Myosin Heads in the Absence of ATP.

    PubMed

    Sugi, Haruo; Yamaguchi, Maki; Ohno, Tetsuo; Kobayashi, Takakazu; Chaen, Shigeru; Okuyama, Hiroshi

    2016-01-01

    During muscle contraction, myosin heads (M) bound to actin (A) perform power stroke associated with reaction, AMADPPi → AM + ADP + Pi. In this scheme, A • M is believed to be a high-affinity complex after removal of ATP. Biochemical studies on extracted protein samples show that, in the AM complex, actin-binding sites are located at both sides of junctional peptide between 50K and 20K segments of myosin heavy chain. Recently, we found that a monoclonal antibody (IgG) to the junctional peptide had no effect on both in vitro actin-myosin sliding and skinned muscle fiber contraction, though it covers the actin-binding sites on myosin. It follows from this that, during muscle contraction, myosin heads do not pass through the static rigor AM configuration, determined biochemically and electron microscopically using extracted protein samples. To study the nature of AM and AMADP myosin heads, actually existing in muscle, we examined mechanical responses to ramp-shaped releases (0.5% of Lo, complete in 5ms) in single skinned rabbit psoas muscle fibers in high-Ca (pCa, 4) and low-Ca (pCa, >9) rigor states. The fibers exhibited initial elastic tension drop and subsequent small but definite tension recovery to a steady level. The tension recovery was present over many minutes in high-Ca rigor fibers, while it tended to decrease quickly in low-Ca rigor fibers. EDTA (10mM, with MgCl2 removed) had no appreciable effect on the tension recovery in high-Ca rigor fibers, while it completely eliminated the tension recovery in low-Ca rigor fibers. These results suggest that the AMADP myosin heads in rigor muscle have long lifetimes and dynamic properties, which show up as the tension recovery following applied release. Possible AM linkage structure in muscle is discussed in connection with the X-ray diffraction pattern from contracting muscle, which is intermediate between resting and rigor muscles.

  18. Polarization recovery through scattering media.

    PubMed

    de Aguiar, Hilton B; Gigan, Sylvain; Brasselet, Sophie

    2017-09-01

    The control and use of light polarization in optical sciences and engineering are widespread. Despite remarkable developments in polarization-resolved imaging for life sciences, their transposition to strongly scattering media is currently not possible, because of the inherent depolarization effects arising from multiple scattering. We show an unprecedented phenomenon that opens new possibilities for polarization-resolved microscopy in strongly scattering media: polarization recovery via broadband wavefront shaping. We demonstrate focusing and recovery of the original injected polarization state without using any polarizing optics at the detection. To enable molecular-level structural imaging, an arbitrary rotation of the input polarization does not degrade the quality of the focus. We further exploit the robustness of polarization recovery for structural imaging of biological tissues through scattering media. We retrieve molecular-level organization information of collagen fibers by polarization-resolved second harmonic generation, a topic of wide interest for diagnosis in biomedical optics. Ultimately, the observation of this new phenomenon paves the way for extending current polarization-based methods to strongly scattering environments.

  19. A shape-based account for holistic face processing.

    PubMed

    Zhao, Mintao; Bülthoff, Heinrich H; Bülthoff, Isabelle

    2016-04-01

    Faces are processed holistically, so selective attention to 1 face part without any influence of the others often fails. In this study, 3 experiments investigated what type of facial information (shape or surface) underlies holistic face processing and whether generalization of holistic processing to nonexperienced faces requires extensive discrimination experience. Results show that facial shape information alone is sufficient to elicit the composite face effect (CFE), 1 of the most convincing demonstrations of holistic processing, whereas facial surface information is unnecessary (Experiment 1). The CFE is eliminated when faces differ only in surface but not shape information, suggesting that variation of facial shape information is necessary to observe holistic face processing (Experiment 2). Removing 3-dimensional (3D) facial shape information also eliminates the CFE, indicating the necessity of 3D shape information for holistic face processing (Experiment 3). Moreover, participants show similar holistic processing for faces with and without extensive discrimination experience (i.e., own- and other-race faces), suggesting that generalization of holistic processing to nonexperienced faces requires facial shape information, but does not necessarily require further individuation experience. These results provide compelling evidence that facial shape information underlies holistic face processing. This shape-based account not only offers a consistent explanation for previous studies of holistic face processing, but also suggests a new ground-in addition to expertise-for the generalization of holistic processing to different types of faces and to nonface objects. (c) 2016 APA, all rights reserved).

  20. The Specific Challenges of Globalization for Teaching and Vice Versa.

    ERIC Educational Resources Information Center

    Smith, David Geoffrey

    2000-01-01

    Contemporary globalization is a continuation of European colonialism, shaped by the Protestant capitalist ethic and technology. The changing mandates of teaching and education under the influence of globalization are identified. Possibilities for teaching in the age of globalization are explored under three themes: recovery of personal truth,…

  1. Shaping Speech Patterns via Predictability and Recoverability

    ERIC Educational Resources Information Center

    Whang, James Doh Yeon

    2017-01-01

    Recoverability refers to the ease of recovering the underlying form--stored mental representations--given a surface form--actual, variable output signals s (e.g., [Daet^, Daet[superscript h] ] ? /Daet/ "that"). Recovery can be achieved from phonetic cues explicitly present in the acoustic signal or through prediction from the context.…

  2. Study on stimulus-responsive cellulose-based polymeric materials

    NASA Astrophysics Data System (ADS)

    Luo, Hongsheng

    Stimulus-responsive cellulose-based polymeric materials were developed by physical and chemical approaches. The thermal, structural, mechanical and morphological properties of the samples were comprehensively investigated by multiple tools. Shape memory effect (SME), programming-structure-property relationship and underling mechanisms were emphasized in this study. Some new concepts, such as heterogeneous-twin-switch, path-dependent multi-shape, rapidly switchable water-sensitive SME were established. The samples were divided into two categories. For the first category, cellulose nano-whiskers (CNWs) were incorporated into crystalline shape memory polyurethane (SMPU) and thermal plastic polyurethane (TPU). The CNW-SMPU nano-composites had heterogeneous switches. Triple- and multi-shape effects were achieved for the CNW-SMPU nano-composites by applying into appropriate thermal-aqueous-mechanical programming. Furthermore, the thermally triggered shape recovery of the composites was found to be tuneable, depending on the PCN content. Theoretical prediction along with numerical analysis was conducted, providing evidence on the possible microstructure of the CNW-SMPU nano-composites. Rapidly switchable water-sensitive SME of the CNW-TPU nano-composites was unprecedentedly studied, which originated from the reversible regulation of hydrogen bonding by water. The samples in the second category consisted of cellulose-polyurethane (PU) blends, cellulose-poly(acrylic acid) (PAA) composites and modified cellulose with supramolecular switches, featuring the requirement of homogeneous cellulose solution in the synthesis process. The reversible behaviours of the cellulose-PU blends in wet-dry cycles as well as the underlying shape memory mechanism were characterized and disclosed. The micro-patterns of the blends were found to be self-similar in fractal dimensions. Cellulose-PAA semi-interpenetrating networks exhibited mechanical adaptability in wet-dry cycles. A type of thermally reversible quadruple hydrogen bonding units, ureidopyrimidinone (UPy), reacted with the cellulose as pendent side-groups, which may impart the modified cellulose with thermal sensitivity. It is the first attempt to explore the natural cellulose as smart polymeric materials systematically and comprehensively. The concepts originally created in the study provided new viewpoints and routes for the development of novel shape memory polymers. The findings significantly benefits extension of the potential application of the cellulose in smart polymeric materials field.

  3. Design of Three-Dimensional Hypersonic Inlets with Rectangular to Elliptical Shape Transition

    NASA Technical Reports Server (NTRS)

    Smart, M. K.

    1998-01-01

    A methodology has been devised for the design of three-dimensional hypersonic inlets which include a rectangular to elliptical shape transition. This methodology makes extensive use of inviscid streamtracing techniques to generate a smooth shape transition from a rectangular-like capture to an elliptical throat. Highly swept leading edges and a significantly notched cowl enable use of these inlets in fixed geometry configurations. The design procedure includes a three dimensional displacement thickness calculation and uses established correlations to check for boundary layer separation due to shock wave interactions. Complete details of the design procedure are presented and the characteristics of a modular inlet with rectangular to elliptical shape transition and a design point of Mach 7.1 are examined. Comparison with a classical two-dimensional inlet optimized for maximum total pressure recovery indicates that this three-dimensional inlet demonstrates good performance even well below its design point.

  4. Thermorheological characteristics and comparison of shape memory polymers fabricated by novel 3D printing technique

    NASA Astrophysics Data System (ADS)

    Hassan, Rizwan Ul; Jo, Soohwan; Seok, Jongwon

    The feasibility of fabrication of shape memory polymers (SMPs) was investigated using a customized 3-dimensional (3D) printing technique with an excellent resolution that could be less than 100 microns. The thermorheological effects of SMPs were adjusted by contact and non-contact triggering, which led to the respective excellent shape recoveries of 100% and 99.89%. Thermogravimetric analyses of SMPs resulted in a minor weight loss, thereby revealing good thermal stability at higher temperatures. The viscoelastic properties of SMPs were measured using dynamic mechanical analyses, exhibiting increased viscous and elastic characteristics. Mechanical strength, thermal stability and viscoelastic properties, of the two SMPs were compared [di(ethylene) glycol dimethacrylate (DEGDMA) and poly (ethylene glycol) dimethacrylate (PEGDMA)] to investigate the shape memory behavior. This novel 3D printing technique can be used as a promising method for fabricating smart materials with increased accuracy in a cost-effective manner.

  5. Microbial enhanced oil recovery: Entering the log phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, R.S.

    1995-12-31

    Microbial enhanced oil recovery (MEOR) technology has advanced internationally since 1980 from a laboratory-based evaluation of microbial processes to field applications. In order to adequately support the decline in oil production in certain areas, research on cost-effective technologies such as microbial enhanced oil recovery processes must focus on both near-term and long-term applications. Many marginal wells are desperately in need of an inexpensive improved oil recovery technology today that can assist producers in order to prevent their abandonment. Microbial enhanced waterflooding technology has also been shown to be an economically feasible technology in the United States. Complementary environmental research andmore » development will also be required to address any potential environmental impacts of microbial processes. In 1995 at this conference, the goal is to further document and promote microbial processes for improved oil recovery and related technology for solving environmental problems.« less

  6. From recovery to regulation: an attempt to reconceptualize 'recovery from work'.

    PubMed

    Zijlstra, F R H; Cropley, M; Rydstedt, L W

    2014-08-01

    The concept of 'recovery' (from work) has quickly gained in importance in the occupational health literature. However, we think that the conceptualization of 'recovery' needs some more attention. Although many authors acknowledge that 'recovery' refers to a 'process', the concept is often treated as a static construct. In this paper, we argue that recovery should be conceptualized as a dynamic construct related to changes in psychophysiological state of the person. We refer to two main theories that have provided a theoretical framework for research in this area: Meijman & Mulder's Effort-Recovery (E-R) model and Hobfoll's Conservation of Resources theory. In particular, the E-R model has been seminal in this area and stresses the element of changing psychophysiological states that has been used for reconceptualising 'recovery'. Various biological rhythms influence these changing psychophysiological states, and thus the level of energy (or effort) a person can mobilize or wants to mobilize. A distinction is made between 'physical fatigue' and 'mental fatigue' and its consequences for recovery. The discrepancy between 'actual state' and 'required state' has been suggested as the basis for 'recovery'. This emphasises that recovery is a dynamic and ongoing process, which also included motivational aspects, in particular as far as mental work is concerned. The capacity to maintain self-regulation of one's psychophysiological state is important in this respect. Thus, we propose that 'recovery' is the continuous process of harmonizing the 'actual state' with the state that is 'required' at that moment. Copyright © 2014 John Wiley & Sons, Ltd.

  7. An Integrated Recovery-oriented Model (IRM) for mental health services: evolution and challenges.

    PubMed

    Frost, Barry G; Tirupati, Srinivasan; Johnston, Suzanne; Turrell, Megan; Lewin, Terry J; Sly, Ketrina A; Conrad, Agatha M

    2017-01-17

    Over past decades, improvements in longer-term clinical and personal outcomes for individuals experiencing serious mental illness (SMI) have been moderate, although recovery has clearly been shown to be possible. Recovery experiences are inherently personal, and recovery can be complex and non-linear; however, there are a broad range of potential recovery contexts and contributors, both non-professional and professional. Ongoing refinement of recovery-oriented models for mental health (MH) services needs to be fostered. This descriptive paper outlines a service-wide Integrated Recovery-oriented Model (IRM) for MH services, designed to enhance personally valued health, wellbeing and social inclusion outcomes by increasing access to evidenced-based psychosocial interventions (EBIs) within a service context that supports recovery as both a process and an outcome. Evolution of the IRM is characterised as a series of five broad challenges, which draw together: relevant recovery perspectives; overall service delivery frameworks; psychiatric and psychosocial rehabilitation approaches and literature; our own clinical and service delivery experience; and implementation, evaluation and review strategies. The model revolves around the person's changing recovery needs, focusing on underlying processes and the service frameworks to support and reinforce hope as a primary catalyst for symptomatic and functional recovery. Within the IRM, clinical rehabilitation (CR) practices, processes and partnerships facilitate access to psychosocial EBIs to promote hope, recovery, self-agency and social inclusion. Core IRM components are detailed (remediation of functioning; collaborative restoration of skills and competencies; and active community reconnection), together with associated phases, processes, evaluation strategies, and an illustrative IRM scenario. The achievement of these goals requires ongoing collaboration with community organisations. Improved outcomes are achievable for people with a SMI. It is anticipated that the IRM will afford MH services an opportunity to validate hope, as a critical element for people with SMI in assuming responsibility and developing skills in self-agency and advocacy. Strengthening recovery-oriented practices and policies within MH services needs to occur in tandem with wide-ranging service evaluation strategies.

  8. Biodegradable near-infrared-photoresponsive shape memory implants based on black phosphorus nanofillers.

    PubMed

    Xie, Hanhan; Shao, Jundong; Ma, Yufei; Wang, Jiahong; Huang, Hao; Yang, Na; Wang, Huaiyu; Ruan, Changshun; Luo, Yanfeng; Wang, Qu-Quan; Chu, Paul K; Yu, Xue-Feng

    2018-05-01

    In this paper, we propose a new shape memory polymer (SMP) composite with excellent near-infrared (NIR)-photoresponsive shape memory performance and biodegradability. The composite is fabricated by using piperazine-based polyurethane (PU) as thermo-responsive SMP incorporated with black-phosphorus (BP) sheets as NIR photothermal nanofillers. Under 808 nm light irradiation, the incorporated BP sheets with concentration of only 0.08 wt% enable rapid temperature increase over the glass temperature of PU and trigger the shape change of the composite with shape recovery rate of ∼100%. The in vitro and in vivo toxicity examinations demonstrate the good biocompatibility of the PU/BP composite, and it degrades naturally into non-toxic carbon dioxide and water from PU and non-toxic phosphate from BP. By implanting PU/BP columns into back subcutis and vagina of mice, they exhibit excellent shape memory activity to change their shape quickly under moderate 808 nm light irradiaiton. Such SMP composite enable the development of intelligent implantable devices, which can be easily controlled by the remote NIR light and degrade gradually after performing the designed functions in the body. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Modern process designs for very high NGL recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, A.J.; Tomlinson, T.R.; Johnson, G.L.

    1999-07-01

    Typical margins between NGL and sales gas can justify consideration of very high NGL recovery from natural gas but traditionally, very high percentage recovery of propane or ethane has led to disproportionally high incremental power consumption and hence expensive compressors. Recent technical advances in the process design of cryogenic gas processing plants and in the equipment they se have led to a new breed of flowsheets that can cost-effectively give propane recoveries of as high as 99%. The high NGL recovery achievable with modern plants is economically possible due to their high thermodynamic efficiency. This is mainly because they usemore » the refrigeration available from the process more effectively and so recover more NGL. A high pressure rectification step can further improve NGL recovery economically, especially on larger plants. This residual NGL content would normally remain in the sales gas on a conventional turboexpander plant. Improved recovery of NGL can be obtained with little or no increase in sales gas compression power compared to conventional plants by judicious use of heat exchanger area. With high feed gas pressure and particularly with dense phase operation, the use of two expanders in series for feed gas let-down gives good process efficiency and relatively low specific power per ton of NGL recovered. Use of two expanders also avoids excessive liquid flows in the expander exhaust, thus improving the performance and reliability of the turboexpander system. The techniques discussed in the paper can be employed on revamps to improve NGL recovery. Improved process performance relies heavily on the use of efficient, multistream plant-fin exchangers and these can be easily added to an existing facility to increase NGL production.« less

  10. Surgical management of U-shaped sacral fractures: a systematic review of current treatment strategies.

    PubMed

    König, M A; Jehan, S; Boszczyk, A A; Boszczyk, B M

    2012-05-01

    U-shaped sacral fractures usually result from axial loading of the spine with simultaneous sacral pivoting due to a horizontal fracture which leads to a highly unstable spino-pelvic dissociation. Due to the rarity of these fractures, there is lack of an agreed treatment strategy. A thorough literature search was carried out to identify current treatment concepts. The studies were analysed for mechanism of injury, diagnostic imaging, associated injuries, type of surgery, follow-up times, complications, neurological, clinical and radiological outcome. Sixty-three cases were found in 12 articles. No Class I, II or III evidence was found in the literature. The most common mechanism of injury was a fall or jump from height. Pre-operative neurological deficit was noted in 50 (94.3%) out of 53 cases (not available in 10 patients). The most used surgical options were spino-pelvic fixation with or without decompression and ilio-sacral screws. Post-operative complications occurred in 24 (38.1%) patients. Average follow-up time was 18.6 months (range 2-34 months). Full neurological recovery was noted in 20 cases, partial recovery in 14 and 9 patients had no neurological recovery (5 patients were lost in follow-up). Fracture healing was mentioned in 7 articles with only 1 case of fracture reduction loss. From the current available data, an evidence based treatment strategy regarding outcome, neurological recovery or fracture healing could not be identified. Limited access and minimal-invasive surgery focussing on sacral reduction and restoration seems to offer comparable results to large spino-pelvic constructs with fewer complications and should be considered as the method of choice. If the fracture is highly unstable and displaced, spino-pelvic fixation might offer better stability.

  11. 40 CFR 61.132 - Standard: Process vessels, storage tanks, and tar-intercepting sumps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.132... furnace or a foundry coke byproduct recovery plant shall enclose and seal all openings on each process... or operator of a furnace coke by-product recovery plant also shall comply with the requirements of...

  12. 40 CFR 61.132 - Standard: Process vessels, storage tanks, and tar-intercepting sumps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.132... furnace or a foundry coke byproduct recovery plant shall enclose and seal all openings on each process... or operator of a furnace coke by-product recovery plant also shall comply with the requirements of...

  13. 40 CFR 61.132 - Standard: Process vessels, storage tanks, and tar-intercepting sumps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.132... furnace or a foundry coke byproduct recovery plant shall enclose and seal all openings on each process... or operator of a furnace coke by-product recovery plant also shall comply with the requirements of...

  14. 40 CFR 61.132 - Standard: Process vessels, storage tanks, and tar-intercepting sumps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.132... furnace or a foundry coke byproduct recovery plant shall enclose and seal all openings on each process... or operator of a furnace coke by-product recovery plant also shall comply with the requirements of...

  15. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.

  16. Self-recovery of stressed nanomembranes

    NASA Astrophysics Data System (ADS)

    Jiang, Chaoyang; Rybak, Beth M.; Markutsya, Sergiy; Kladitis, Paul E.; Tsukruk, Vladimir V.

    2005-03-01

    Long-term stability and self-recovery properties were studied for the compliant nanomembranes with a thickness of 55nm free suspended over openings of several hundred microns across. These nanomembranes were assembled with spin-assisted layer-by-layer routines and were composed of polymer multilayers and gold nanoparticles. In a wide pressure range, the membranes behave like completely elastic freely suspended plates. Temporal stability was tested under extreme deformational conditions close to ultimate strain and very modest creep behavior was observed. A unique "self-recovery" ability of these nanomembranes was revealed in these tests. We observed a complete restoration of the initial nanomembrane shape and properties after significant inelastic deformation. These unique micromechanical properties are suggested to be the result of strong Coulombic interaction between the polyelectrolyte layers combined with a high level of biaxial orientation of polymer chains and in-plane prestretching stresses.

  17. Feasibility of Crosslinked Acrylic Shape Memory Polymer for a Thrombectomy Device

    PubMed Central

    Muschenborn, Andrea D.; Hearon, Keith; Volk, Brent L.; Conway, Jordan W.; Maitland, Duncan J.

    2014-01-01

    Purpose To evaluate the feasibility of utilizing a system of SMP acrylates for a thrombectomy device by determining an optimal crosslink density that provides both adequate recovery stress for blood clot removal and sufficient strain capacity to enable catheter delivery. Methods Four thermoset acrylic copolymers containing benzylmethacrylate (BzMA) and bisphenol A ethoxylate diacrylate (Mn~512, BPA) were designed with differing thermomechanical properties. Finite element analysis (FEA) was performed to ensure that the materials were able to undergo the strains imposed by crimping, and fabricated devices were subjected to force-monitored crimping, constrained recovery, and bench-top thrombectomy. Results Devices with 25 and 35 mole% BPA exhibited the highest recovery stress and the highest brittle response as they broke upon constrained recovery. On the contrary, the 15 mole % BPA devices endured all testing and their recovery stress (5 kPa) enabled successful bench-top thrombectomy in 2/3 times, compared to 0/3 for the devices with the lowest BPA content. Conclusion While the 15 mole% BPA devices provided the best trade-off between device integrity and performance, other SMP systems that offer recovery stresses above 5 kPa without increasing brittleness to the point of causing device failure would be more suitable for this application. PMID:25414549

  18. The role of complaint management in the service recovery process.

    PubMed

    Bendall-Lyon, D; Powers, T L

    2001-05-01

    Patient satisfaction and retention can be influenced by the development of an effective service recovery program that can identify complaints and remedy failure points in the service system. Patient complaints provide organizations with an opportunity to resolve unsatisfactory situations and to track complaint data for quality improvement purposes. Service recovery is an important and effective customer retention tool. One way an organization can ensure repeat business is by developing a strong customer service program that includes service recovery as an essential component. The concept of service recovery involves the service provider taking responsive action to "recover" lost or dissatisfied customers and convert them into satisfied customers. Service recovery has proven to be cost-effective in other service industries. The complaint management process involves six steps that organizations can use to influence effective service recovery: (1) encourage complaints as a quality improvement tool; (2) establish a team of representatives to handle complaints; (3) resolve customer problems quickly and effectively; (4) develop a complaint database; (5) commit to identifying failure points in the service system; and (6) track trends and use information to improve service processes. Customer retention is enhanced when an organization can reclaim disgruntled patients through the development of effective service recovery programs. Health care organizations can become more customer oriented by taking advantage of the information provided by patient complaints, increasing patient satisfaction and retention in the process.

  19. Treatment of patella fracture by claw-like shape memory alloy.

    PubMed

    Hao, Wei; Zhou, Lugang; Sun, Yujie; Shi, Peng; Liu, Hongzhi; Wang, Xin

    2015-07-01

    Titanium-nickel shape memory alloy (Ti-Ni SMA) is characterized by shape-memory effect, super-elasticity, excellent fatigue behavior, corrosion resistance, acceptable biocompatibility and high damping capacity. Claw-like Ti-Ni SMA fixator (SMA-claw) has been used to treat transverse fracture of patella. 29 patients (19 males, 10 females) aged from 21 to 71 years old (averaged 43.0 years old) have been received open reduction and internal fixation with SMA-claw from January 2011 to December 2011. After operation, patients have been received gradual knee function exercises, followed by radiographic analysis and Lysholm Knee Score at 1, 2, 3, 6, 9 and 12 months postoperation. The mean follow-up time was 11.48 months (25 patients finished, 1 lost after 6 months and 3 lost after 9 months). Radiographic bone union occurred at 2 months (7 patients) or 3 months (22 patients). Satisfied range of motion for the knee joint has been observed with 1.90/141.72° (hyperextension/flexion) at 3 months, 4.83/143.97° at 6 months, 4.82/144.82° at 9 months and 5.2/145° at 12 months postsurgery. The Ti-Ni SMA-claw fixator produced good osteosynthesis effect by continuous recovery stress with relatively simple and minimally invasive handling process, which can be introduced as an alternative to traditional tension band technique for treatment of patellar transverse fracture.

  20. Challenges and Progress in the Development of High-Temperature Shape Memory Alloys Based on NiTiX Compositions for High-Force Actuator Applications

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II; Bigelow, Glen; Noebe, Ronald; Gaydosh, Darrell; Garg, Anita

    2006-01-01

    Interest in high-temperature shape memory alloys (HTSMA) has been growing in the aerospace, automotive, process control, and energy industries. However, actual materials development has seriously lagged component design, with current commercial NiTi alloys severely limited in their temperature capability. Additions of Pd, Pt, Au, Hf, and Zr at levels greater than 10 at.% have been shown to increase the transformation temperature of NiTi alloys, but with few exceptions, the shape memory behavior (strain recovery) of these NiTiX systems has been determined only under stress free conditions. Given the limited amount of basic mechanical test data and general lack of information regarding the work attributes of these materials, a program to investigate the mechanical behavior of potential HTSMAs, with transformation temperatures between 100 and 500 C, was initiated. This paper summarizes the results of studies, focusing on both the practical temperature limitations for ternary TiNiPd and TiNiPt systems based on the work output of these alloys and the ability of these alloys to undergo repeated thermal cycling under load without significant permanent deformation or "walking". These issues are ultimately controlled by the detwinning stress of the martensite and resistance to dislocation slip of the individual martensite and austenite phases. Finally, general rules that govern the development of useful, high work output, next-generation HTSMA materials, based on the lessons learned in this work, will be provided

  1. [APPLICATION OF BUTTERFLY SHAPED LOCKING COMPRESSION PLATE IN COMPLEX DISTAL RADIUS FRACTURES].

    PubMed

    Jiang, Zongyuan; Ma, Tao; Xia, Jiang; Hu, Caizhi; Xu, Lei

    2014-06-01

    To investigate the effectiveness of butterfly shaped locking compression plate for the treatment of complex distal radius fractures. Between June 2011 and January 2013, 20 cases of complex distal radius fractures were treated with butterfly shaped locking compression plate fixation. There were 11 males and 9 females with an average age of 54 years (range, 25-75 years). Injury was caused by falling in 10 cases, by traffic accident in 7 cases, and by falling from height in 3 cases. All of fractures were closed. According to AO classification system, there were 8 cases of type C1, 8 cases of type C2, and 4 cases of type C3. Of them, 9 cases had radial styloid process fracture, 4 cases had sigmoid notch fracture, and 7 cases had both radial styloid process fracture and sigmoid notch fracture. The mean interval between injury and operation was 5.2 days (range, 3-15 days). All incisions healed by first intention; no complications of infection and necrosis occurred. All cases were followed up 14 months on average (range, 10-22 months). All factures healed after 9.3 weeks on average (range, 6-11 weeks). No complications such as displacement of fracture, joint surface subsidence, shortening of the radius, and carpal tunnel syndrome were found during follow-up. At last follow-up, the mean palmar tilt angle was 10.2° (range, 7-15°), and the mean ulnar deviation angle was 21.8° (range, 17-24°). The mean range of motion of the wrist was 45.3° (range, 35-68°) in dorsal extension, 53.5° (range, 40-78°) in palmar flexion, 19.8° (range, 12-27°) in radial inclination, 26.6° (range, 18-31°) in ulnar inclination, 70.2° (range, 45-90°) in pronation, and 68.4° (range, 25-88°) in supination. According to the Dienst scoring system, the results were excellent in 8 cases, good in 10 cases, and fair in 2 cases, and the excellent and good rate was 90%. Treatment of complex distal radius fractures with butterfly shaped locking compression plate can reconstruct normal anatomic structures, especially for radial styloid process and sigmoid notch fractures, and it can get good functional recovery of the wrist and the distal radioulnar joint.

  2. Soft lithography of ceramic microparts using wettability-tunable poly(dimethylsiloxane) (PDMS) molds

    NASA Astrophysics Data System (ADS)

    Su, Bo; Zhang, Aijun; Meng, Junhu; Zhang, Zhaozhu

    2016-07-01

    Green alumina microparts were fabricated from a high solid content aqueous suspension by microtransfer molding using air plasma-treated poly(dimethylsiloxane) (PDMS) molds. The wettability of the air plasma-treated PDMS molds spontaneously changed between the hydrophilic and hydrophobic states during the process. Initial hydrophilicity of the air plasma-treated PDMS molds significantly improved the flowability of the concentrated suspension. Subsequent hydrophobic recovery of the air plasma-treated PDMS molds enabled a perfect demolding of the green microparts. Consequently, defect-free microchannel parts of 60 μm and a micromixer with an area of several square centimeters were successfully fabricated. In soft lithography, tuning the wetting behavior of PDMS molds has a great effect on the quality of ceramic microparts. Using wettability-tunable PDMS molds has great potential in producing complex-shaped and large-area ceramic microparts and micropatterns.

  3. Postfire Forest Recovery in California's National Forests

    NASA Astrophysics Data System (ADS)

    Welch, K.; Young, T.; Safford, H.

    2012-12-01

    Due to fire suppression policies and other management practices over the last century, many low- to mid-elevation forest types in the Sierra Nevada have accumulated high fuel loads that promote stand-replacing high-intensity fires. Current and future projected trends in climate are predicted to increase the occurrence of such fires. We established over 1,000 plots in a range of elevations, environments, forest types, climate zones and fire severity classes to provide insight into the factors that promote natural tree regeneration after wildfires, the limiting factors in species establishment, and the differences in post-fire responses of conifers and hardwoods. We employed a standardized protocol that measured site characteristics, seedling densities, and woody plant growth. Preliminary results reveal that fire severity generally has a unimodal relationship with rates of natural regeneration, although effects of site and local environment act to modulate the shape of the relationship. Above low to moderate severities, natural regeneration rates of all tree species decrease with increasing severity, possibly due to a combination of factors including seed mortality, increasing distance to the nearest living seed tree, and more severe microclimatic conditions. Though hardwoods (oaks) are able to both seed and resprout from top-killed root crowns in a postfire environment, conifers still have the numerical advantage over hardwoods through seeding alone. We did not find evidence that shrubs have a strong either facilitative or competitive effect on conifer seedling establishment or growth in the first five years of forest recovery. Understanding forest recovery and regeneration processes after high severity fires is critical to appropriately applying management strategies on National Forest lands.

  4. Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry.

    PubMed

    Li, Qian-Zhu; Jiang, Xing-Lin; Feng, Xin-Jun; Wang, Ji-Ming; Sun, Chao; Zhang, Hai-Bo; Xian, Mo; Liu, Hui-Zhou

    2016-01-01

    The new movement towards green chemistry and renewable feedstocks makes microbial production of chemicals more competitive. Among the numerous chemicals, organic acids are more attractive targets for process development efforts in the renewable-based biorefinery industry. However, most of the production costs in microbial processes are higher than that in chemical processes, among which over 60% are generated by separation processes. Therefore, the research of separation and purification processes is important for a promising biorefinery industry. This review highlights the progress of recovery processes in the separation and purification of organic acids, including their advantages and disadvantages, current situation, and future prospects in terms of recovery yields and industrial application.

  5. Recent advances in the science and engineering of organic light-emitting diodes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kippelen, Bernard; Gaj, Michael P.; Zhang, Xiaoqing; Choi, Sangmoo; Fuentes-Hernandez, Canek; Zhang, Yadong; Barlow, Stephen; Marder, Seth R.; Voit, Walter E.; Wei, Andrew

    2016-09-01

    In this talk, we will discuss recent advances in the science and engineering of organic light-emitting diodes (OLEDs). First, we will focus on materials in which light emission involves the process of thermally activated delayed fluorescence (TADF). In these materials, triplet excited states can convert into optically emissive singlet excited states by reverse intersystem crossing, allowing for nearly 100% internal quantum efficiency. This process can be used to design a new class of materials that are all organic, offering a lower cost alternative to conventional electrophosphorescent materials that contain heavy and expensive elements such as Pt and Ir. We will discuss molecular design strategies and present examples of materials that can be used as emitters or hosts in the emissive layer. In a second part of this talk, we will review recent progress in fabricating OLEDs on shape memory polymer substrates (SMPs). SMPs are mechanically active, smart materials that can exhibit a significant drop in modulus once an external stimulus such as temperature is applied. In their rubbery state upon heating, the SMP can be easily deformed by external stresses into a temporary geometric configuration that can be retained even after the stress is removed by cooling the SMP to below the glass transition temperature. Reheating the SMP causes strain relaxation within the polymer network and induces recovery of its original shape. We will discuss how these unique mechanical properties can also be extended to a new class of OLEDs.

  6. Another breed of "service" animals: STARS study findings about pet ownership and recovery from serious mental illness.

    PubMed

    Wisdom, Jennifer P; Saedi, Goal Auzeen; Green, Carla A

    2009-07-01

    This study elucidates the role of pets in recovery processes among adults with serious mental illness. Data derive from interviews with 177 HMO members with serious mental illness (52.2% women, average age 48.8 years) in the Study of Transitions and Recovery Strategies (STARS). Interviews and questionnaires addressed factors affecting recovery processes and included questions about pet ownership. Data were analyzed using a modified grounded theory method to identify the roles pets play in the recovery process. Primary themes indicate pets assist individuals in recovery from serious mental illness by (a) providing empathy and "therapy"; (b) providing connections that can assist in redeveloping social avenues; (c) serving as "family" in the absence of or in addition to human family members; and (d) supporting self-efficacy and strengthening a sense of empowerment. Pets appear to provide more benefits than merely companionship. Participants' reports of pet-related contributions to their well-being provide impetus to conduct more formal research on the mechanisms by which pets contribute to recovery and to develop pet-based interventions.

  7. Alkali metal recovery from carbonaceous material conversion process

    DOEpatents

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  8. Post-event Processing Predicts Impaired Cortisol Recovery Following Social Stressor: The Moderating Role of Social Anxiety.

    PubMed

    Maeda, Shunta; Sato, Tomoya; Shimada, Hironori; Tsumura, Hideki

    2017-01-01

    There is growing evidence that individuals with social anxiety show impaired cortisol recovery after experiencing social evaluative stressors. Yet, little is known regarding the cognitive processes underlying such impaired cortisol recovery. The present study examined the effect of post-event processing (PEP), referred to as repetitive thinking about social situations, on cortisol recovery following a social stressor. Forty-two non-clinical university students (23 women, 19 men, mean age = 22.0 ± 2.0 years) completed the Trier Social Stress Test (TSST), followed by a thought sampling procedure which assessed the frequency of PEP reflecting the TSST. A growth curve model showed PEP and social anxiety interactively predicted cortisol recovery. In particular, PEP predicted impaired cortisol recovery in those with low levels of social anxiety but not in those with high levels of social anxiety, which contradicted the initial hypothesis. These findings suggest that PEP is differentially associated with cortisol recovery depending on levels of social anxiety. The possible mechanisms underlying these findings were discussed in terms of protective inhibition framework.

  9. A Perspective on Long-Term Recovery Following the Fukushima Nuclear Accident - 12075

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.Y.

    2012-07-01

    The tragic events at the Fukushima Daiichi Nuclear Power Station began occurring on March 11, 2011, following Japan's unprecedented earthquake and tsunami. The subsequent loss of external power and on-site cooling capacity severely compromised the plant's safety systems, and subsequently, led to core melt in the affected reactors and damage to spent nuclear fuel in the storage pools. Together with hydrogen explosions, this resulted in a substantial release of radioactive material to the environment (mostly Iodine-131 and Cesium- 137), prompting an extensive evacuation effort. The latest release estimate places the event at the highest severity level (Level 7) on themore » International Nuclear Event Scale, the same as the Chernobyl accident of 1986. As the utility owner endeavored to stabilize the damaged facility, environmental contamination continued to propagate and affect every aspect of daily life in the affected region of Japan. Elevated levels of radioactivity (mostly dominated by Cs-137 with the passage of time) were found in soil, drinking water, vegetation, produce, seafood, and other foodstuffs. An estimated 80,000 to 90,000 people were evacuated; more evacuations are being contemplated months after the accident, and a vast amount of land has become contaminated. Early actions were taken to ban the shipment and sale of contaminated food and drinking water, followed by later actions to ban the shipment and sale of contaminated beef, mushrooms, and seafood. As the event continues to evolve toward stabilization, the long-term recovery effort needs to commence - a process that doubtless will involve rather complex decision-making interactions between various stakeholders. Key issues that may be encountered and considered in such a process include (1) socio-political factors, (2) local economic considerations, (3) land use options, (4) remediation approaches, (5) decontamination methods, (6) radioactive waste management, (7) cleanup levels and options, and (8) government policies, among others. This paper offers a perspective on this likely long and arduous journey toward establishing a 'new normal' that will ultimately take shape. Toward this end, it is important to evaluate the 'optimization' process advocated by the international community in achieving long-term recovery from this particularly fateful event in Fukushima. In the process, experience and lessons learned from past events will be fully evaluated and considered. (author)« less

  10. Behavior of NiTiNb SMA wires under recovery stress or prestressing.

    PubMed

    Choi, Eunsoo; Nam, Tae-Hyun; Chung, Young-Soo; Kim, Yeon-Wook; Lee, Seung-Yong

    2012-01-05

    The recovery stress of martensitic shape-memory alloy [SMA] wires can be used to confine concrete, and the confining effectiveness of the SMA wires was previously proved through experimental tests. However, the behavior of SMA wires under recovery stress has not been seriously investigated. Thus, this study conducted a series of tests of NiTiNb martensitic SMA wires under recovery stress with varying degrees of prestrain on the wires and compared the behavior under recovery stress with that under prestressing of the wires. The remaining stress was reduced by the procedure of additional strain loading and unloading. More additional strains reduced more remaining stresses. When the SMA wires were heated up to the transformation temperature under prestress, the stress on the wires increased due to the state transformation. Furthermore, the stress decreased with a decreasing temperature of the wires down to room temperature. The stress of the NiTiNb wires was higher than the prestress, and the developed stress seemed to depend on the composition of the SMAs. When an additional strain was subsequently loaded and unloaded on the prestressed SMA wires, the remaining stress decreased. Finally, the remaining stress becomes zero when loading and unloading a specific large strain.

  11. Recovery in Psychosis: A Delphi Study With Experts by Experience

    PubMed Central

    Law, Heather; Morrison, Anthony P.

    2014-01-01

    This study aimed to establish consensus about the meaning of recovery among individuals with experience of psychosis. A Delphi approach was utilized to allow a large sample of service users to be anonymously consulted about their views on recovery. Service users were invited to take part in a 3-stage consultation process. A total of 381 participants gave their views on recovery in the main stage of this study, with 100 of these taking part in the final review stage. The final list of statements about recovery included 94 items, which were rated as essential or important by >80% of respondents. These statements covered items which define recovery, factors which help recovery, factors which hinder recovery, and factors which show that someone is recovering. As far as we are aware, it is the first study to identify areas of consensus in relation to definitions of recovery from a service user perspective, which are typically reported to be an idiosyncratic process. Implications and recommendations for clinical practice and future research are discussed. PMID:24727194

  12. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    DOEpatents

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain H. R.; Jung, Hun Bok; Carroll, Kenneth

    2016-09-20

    An electrophilic acid gas-reactive fracturing and recovery fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. Proppants stabilize openings in fractures and fissures following fracturing.

  13. Recovery of decomposition and soil microarthropod communities in a clearcut watershed in the Southern Appalachians

    Treesearch

    Liam Heneghan; Alissa Salmore

    2014-01-01

    The recovery of ecosystems after disturbance remains a productive theme for ecological research. Numerous studies have focused either on the reestablishment of biological communities or on the recovery of ecosystem processes after perturbations. In the case of decomposer organisms an the processes of organic matter decay and the mineralization of nutrients, the...

  14. 40 CFR 61.132 - Standard: Process vessels, storage tanks, and tar-intercepting sumps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.132... system, or other enclosed point in the by-product recovery process where the benzene in the gas will be... or operator of a furnace coke by-product recovery plant also shall comply with the requirements of...

  15. Visual and Haptic Shape Processing in the Human Brain: Unisensory Processing, Multisensory Convergence, and Top-Down Influences.

    PubMed

    Lee Masson, Haemy; Bulthé, Jessica; Op de Beeck, Hans P; Wallraven, Christian

    2016-08-01

    Humans are highly adept at multisensory processing of object shape in both vision and touch. Previous studies have mostly focused on where visually perceived object-shape information can be decoded, with haptic shape processing receiving less attention. Here, we investigate visuo-haptic shape processing in the human brain using multivoxel correlation analyses. Importantly, we use tangible, parametrically defined novel objects as stimuli. Two groups of participants first performed either a visual or haptic similarity-judgment task. The resulting perceptual object-shape spaces were highly similar and matched the physical parameter space. In a subsequent fMRI experiment, objects were first compared within the learned modality and then in the other modality in a one-back task. When correlating neural similarity spaces with perceptual spaces, visually perceived shape was decoded well in the occipital lobe along with the ventral pathway, whereas haptically perceived shape information was mainly found in the parietal lobe, including frontal cortex. Interestingly, ventrolateral occipito-temporal cortex decoded shape in both modalities, highlighting this as an area capable of detailed visuo-haptic shape processing. Finally, we found haptic shape representations in early visual cortex (in the absence of visual input), when participants switched from visual to haptic exploration, suggesting top-down involvement of visual imagery on haptic shape processing. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Feature precedence in processing multifeature visual information in the human brain: an event-related potential study.

    PubMed

    Liu, B; Meng, X; Wu, G; Huang, Y

    2012-05-17

    In this article, we aimed to study whether feature precedence existed in the cognitive processing of multifeature visual information in the human brain. In our experiment, we paid attention to two important visual features as follows: color and shape. In order to avoid the presence of semantic constraints between them and the resulting impact, pure color and simple geometric shape were chosen as the color feature and shape feature of visual stimulus, respectively. We adopted an "old/new" paradigm to study the cognitive processing of color feature, shape feature and the combination of color feature and shape feature, respectively. The experiment consisted of three tasks as follows: Color task, Shape task and Color-Shape task. The results showed that the feature-based pattern would be activated in the human brain in processing multifeature visual information without semantic association between features. Furthermore, shape feature was processed earlier than color feature, and the cognitive processing of color feature was more difficult than that of shape feature. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Developmental Differences in Shape Processing

    ERIC Educational Resources Information Center

    Sera, Maria D.; Gordon Millett, Katherine

    2011-01-01

    Considerable evidence indicates that shape similarity plays a major role in object recognition, identification and categorization. However, little is known about shape processing and its development. Across four experiments, we addressed two related questions. First, what makes objects similar in shape? Second, how does the processing of shape…

  18. Nanoindentation of the surface layer of Hadfield's steel after sliding friction

    NASA Astrophysics Data System (ADS)

    Kolubaev, A. V.; Kolubaev, E. A.; Sizova, O. V.

    2007-12-01

    We have measured the nanohardness of a deformed near-surface layer of Hadfield’s steel upon friction testing. The phenomenon of shape recovery upon indentation has been observed, which is retained for several days after tribological tests. It s suggested that the strained material exhibits behavior analogous to nonlinear elasticity.

  19. Spirituality and the Treatment of Substance Abuse.

    ERIC Educational Resources Information Center

    Prezioso, Frederick Alan

    This document attempts to give some shape and definition to the term spirituality as it relates to the addiction and recovery of chemically dependent persons and co-dependents. Positive and negative spirituality are discussed and addiction and "hitting bottom" are described. A variety of spiritual issues that are a part of the recovery…

  20. Creating the Infrastructure for Rapid Application Development and Processing Response to the HIRDLS Radiance Anomaly

    NASA Astrophysics Data System (ADS)

    Cavanaugh, C.; Gille, J.; Francis, G.; Nardi, B.; Hannigan, J.; McInerney, J.; Krinsky, C.; Barnett, J.; Dean, V.; Craig, C.

    2005-12-01

    The High Resolution Dynamics Limb Sounder (HIRDLS) instrument onboard the NASA Aura spacecraft experienced a rupture of the thermal blanketing material (Kapton) during the rapid depressurization of launch. The Kapton draped over the HIRDLS scan mirror, severely limiting the aperture through which HIRDLS views space and Earth's atmospheric limb. In order for HIRDLS to achieve its intended measurement goals, rapid characterization of the anomaly, and rapid recovery from it were required. The recovery centered around a new processing module inserted into the standard HIRDLS processing scheme, with a goal of minimizing the effect of the anomaly on the already existing processing modules. We describe the software infrastructure on which the new processing module was built, and how that infrastructure allows for rapid application development and processing response. The scope of the infrastructure spans three distinct anomaly recovery steps and the means for their intercommunication. Each of the three recovery steps (removing the Kapton-induced oscillation in the radiometric signal, removing the Kapton signal contamination upon the radiometric signal, and correcting for the partially-obscured atmospheric view) is completely modularized and insulated from the other steps, allowing focused and rapid application development towards a specific step, and neutralizing unintended inter-step influences, thus greatly shortening the design-development-test lifecycle. The intercommunication is also completely modularized and has a simple interface to which the three recovery steps adhere, allowing easy modification and replacement of specific recovery scenarios, thereby heightening the processing response.

  1. Top-down approach to vestibular compensation: translational lessons from vestibular rehabilitation

    PubMed Central

    Balaban, Carey D.; Hoffer, Michael E.; Gottshall, Kim R.

    2012-01-01

    This review examines vestibular compensation and vestibular rehabilitation from a unified translational research perspective. Laboratory studies illustrate neurobiological principles of vestibular compensation at the molecular, cellular and systems levels in animal models that inform vestibular rehabilitation practice. However, basic research has been hampered by an emphasis on ‘naturalistic’ recovery, with time after insult and drug interventions as primary dependent variables. The vestibular rehabilitation literature, on the other hand, provides information on how the degree of compensation can be shaped by specific activity regimens. The milestones of the early spontaneous static compensation mark the re-establishment of static gaze stability, which provides a common coordinate frame for the brain to interpret residual vestibular information in the context of visual, somatosensory and visceral signals that convey gravitoinertial information. Stabilization of the head orientation and the eye orientation (suppression of spontaneous nystagmus) appear to be necessary by not sufficient conditions for successful rehabilitation, and define a baseline for initiating retraining. The lessons from vestibular rehabilitation in animal models offer the possibility of shaping the recovery trajectory to identify molecular and genetic factors that can improve vestibular compensation. PMID:22981400

  2. Advancing reversible shape memory by tuning the polymer network architecture

    DOE PAGES

    Li, Qiaoxi; Zhou, Jing; Vatankhah-Varnoosfaderani, Mohammad; ...

    2016-02-02

    Because of counteraction of a chemical network and a crystalline scaffold, semicrystalline polymer networks exhibit a peculiar behavior—reversible shape memory (RSM), which occurs naturally without applying any external force and particular structural design. There are three RSM properties: (i) range of reversible strain, (ii) rate of strain recovery, and (iii) decay of reversibility with time, which can be improved by tuning the architecture of the polymer network. Different types of poly(octylene adipate) networks were synthesized, allowing for control of cross-link density and network topology, including randomly cross-linked network by free-radical polymerization, thiol–ene clicked network with enhanced mesh uniformity, and loosemore » network with deliberately incorporated dangling chains. It is shown that the RSM properties are controlled by average cross-link density and crystal size, whereas topology of a network greatly affects its extensibility. In conclusion, we have achieved 80% maximum reversible range, 15% minimal decrease in reversibility, and fast strain recovery rate up to 0.05 K –1, i.e., ca. 5% per 10 s at a cooling rate of 5 K/min.« less

  3. Solvent stimulated actuation of polyurethane-based shape memory polymer foams using dimethyl sulfoxide and ethanol

    NASA Astrophysics Data System (ADS)

    Boyle, A. J.; Weems, A. C.; Hasan, S. M.; Nash, L. D.; Monroe, M. B. B.; Maitland, D. J.

    2016-07-01

    Solvent exposure has been investigated to trigger actuation of shape memory polymers (SMPs) as an alternative to direct heating. This study aimed to investigate the feasibility of using dimethyl sulfoxide (DMSO) and ethanol (EtOH) to stimulate polyurethane-based SMP foam actuation and the required solvent concentrations in water for rapid actuation of hydrophobic SMP foams. SMP foams exhibited decreased T g when submerged in DMSO and EtOH when compared to water submersion. Kinetic DMA experiments showed minimal or no relaxation for all SMP foams in water within 30 min, while SMP foams submerged in EtOH exhibited rapid relaxation within 1 min of submersion. SMP foams expanded rapidly in high concentrations of DMSO and EtOH solutions, where complete recovery over 30 min was observed in DMSO concentrations greater than 90% and in EtOH concentrations greater than 20%. This study demonstrates that both DMSO and EtOH are effective at triggering volume recovery of polyurethane-based SMP foams, including in aqueous environments, and provides promise for use of this actuation technique in various applications.

  4. On the velocity distribution of ion jets during substorm recovery

    NASA Technical Reports Server (NTRS)

    Birn, J.; Forbes, T. G.; Hones, E. W., Jr.; Bame, S. J.; Paschmann, G.

    1981-01-01

    The velocity distribution of earthward jetting ions that are observed principally during substorm recovery by satellites at approximately 15-35 earth radii in the magnetotail is quantitatively compared with two different theoretical models - the 'adiabatic deformation' of an initially flowing Maxwellian moving into higher magnetic field strength (model A) and the field-aligned electrostatic acceleration of an initially nonflowing isotropic Maxwellian including adiabatic deformation effects (model B). The assumption is made that the ions are protons or, more generally, that they consist of only one species. It is found that both models can explain the often observed concave-convex shape of isodensity contours of the distribution function.

  5. Co3O4 nanoboxes with abundant porestructure boosted ultrasensitive toluene gas sensors

    NASA Astrophysics Data System (ADS)

    Tan, Jianfeng; Dun, Menghan; Li, Long; Huang, Xintang

    2018-04-01

    Hollow and hollowed-out Co3O4 nanoboxes (denoted as Co3O4-HHNBs) that assembled by porous ultrathin nanosheets (∼2 nm) have been synthesized through a morphology-conserved transformations of metal-organic framework (MOF) based precursors strategy and then applied to gas sensors. The switching process used a facile two-step approach, including the formation of box-shaped Co(OH)2 followed by thermal conversion to Co3O4-HHNBs. The sensors based on Co3O4-HHNBs exhibit high response with the value of 56.6 to 100 ppm of toluene at 200 °C and 15.9 for ethanol at 220 °C, respectively. The response/recovery time to 50 ppm toluene and ethanol are as short as 10 s/9 s and 0.4 s/0.5 s at 200 °C, respectively. The formation mechanism of Co3O4-HHNBs and the gas sensing mechanism are discussed in detail. Benefiting from the unique structural features, it exhibit high response and ultra-fast response/recovery speed. This synthesis concept of Co3O4-HHNBs may open new avenues to fabricate high performance gas sensor by carefully controlling the morphology of sensitive nanomaterials.

  6. Overcoming Abuse: A Phenomenological Investigation of the Journey to Recovery From Past Intimate Partner Violence.

    PubMed

    Flasch, Paulina; Murray, Christine E; Crowe, Allison

    2015-08-10

    To date, minimal research has focused on the recovery process for survivors of intimate partner violence (IPV). This study utilized a phenomenological methodology to understand the lived experiences of survivors of IPV (N = 123) who had overcome abusive relationships and created violence-free and meaningful lives. The researchers aimed to understand key factors involved in their recovery processes. Results indicated two main processes in the IPV recovery process: intrapersonal processes and interpersonal processes. Intrapersonal processes included (a) regaining and recreating one's identity, (b) embracing the freedom and power to direct one's own life, (c) healing from the mental and physical health symptoms of the abuse, (d) fostering acceptance and forgiveness with self and abuser, (e) education and examination of abusive relationships, (f) determining whether and how to enter new intimate relationships, and (g) acknowledging the long-term process of overcoming abuse. Interpersonal processes included themes of (a) building positive social support and relationships and (b) using ones' experiences with abuse to help others. Results of the present study are presented, and implications for practitioners are discussed. © The Author(s) 2015.

  7. Advances in primary recovery: centrifugation and membrane technology.

    PubMed

    Roush, David J; Lu, Yuefeng

    2008-01-01

    Significant and continual improvements in upstream processing for biologics have resulted in challenges for downstream processing, both primary recovery and purification. Given the high cell densities achievable in both microbial and mammalian cell culture processes, primary recovery can be a significant bottleneck in both clinical and commercial manufacturing. The combination of increased product titer and low viability leads to significant relative increases in the levels of process impurities such as lipids, intracellular proteins and nucleic acid versus the product. In addition, cell culture media components such as soy and yeast hydrolysates have been widely applied to achieve the cell culture densities needed for higher titers. Many of the process impurities can be negatively charged at harvest pH and can form colloids during the cell culture and harvest processes. The wide size distribution of these particles and the potential for additional particles to be generated by shear forces within a centrifuge may result in insufficient clarification to prevent fouling of subsequent filters. The other residual process impurities can lead to precipitation and increased turbidity during processing and even interference with the performance of the capturing chromatographic step. Primary recovery also poses significant challenges owing to the necessity to execute in an expedient manner to minimize both product degradation and bioburden concerns. Both microfiltration and centrifugation coupled with depth filtration have been employed successfully as primary recovery processing steps. Advances in the design and application of membrane technology for microfiltration and dead-end filtration have contributed to significant improvements in process performance and integration, in some cases allowing for a combination of multiple unit operations in a given step. Although these advances have increased productivity and reliability, the net result is that optimization of primary recovery processes has become substantially more complicated. Ironically, the application of classical chemical engineering approaches to overcome issues in primary recovery and purification (e.g., turbidity and trace impurity removal) are just recently gaining attention. Some of these techniques (e.g., membrane cascades, pretreatment, precipitation, and the use of affinity tags) are now seen almost as disruptive technologies. This paper will review the current and potential future state of research on primary recovery, including relevant papers presented at the 234th American Chemical Society (ACS) National Meeting in Boston.

  8. Energy recovery from solid waste. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A systems analysis of energy recovery from solid waste which demonstrates the feasibility of several processes for converting solid waste to an energy form is presented. The social, legal, environmental, and political factors are considered and recommendations made in regard to legislation and policy. A technical and economic evaluation of available and developing energy-recovery processes is given with emphasis on thermal decomposition and biodegradation. A pyrolysis process is suggested. The use of prepared solid waste as a fuel supplemental to coal is considered to be the most economic process for recovery of energy from solid waste. Markets are discussed with suggestions for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste.

  9. Myths and realities about the recovery of L׳Aquila after the earthquake

    PubMed Central

    Contreras, Diana; Blaschke, Thomas; Kienberger, Stefan; Zeil, Peter

    2014-01-01

    There is a set of myths which are linked to the recovery of L׳Aquila, such as: the L׳Aquila recovery has come to a halt, it is still in an early recovery phase, and there is economic stagnation. The objective of this paper is threefold: (a) to identify and develop a set of spatial indicators for the case of L׳Aquila, (b) to test the feasibility of a numerical assessment of these spatial indicators as a method to monitor the progress of a recovery process after an earthquake and (c) to answer the question whether the recovery process in L׳Aquila stagnates or not. We hypothesize that after an earthquake the spatial distribution of expert defined variables can constitute an index to assess the recovery process more objectively. In these articles, we aggregated several indicators of building conditions to characterize the physical dimension, and we developed building use indicators to serve as proxies for the socio-economic dimension while aiming for transferability of this approach. The methodology of this research entailed six steps: (1) fieldwork, (2) selection of a sampling area, (3) selection of the variables and indicators for the physical and socio-economic dimensions, (4) analyses of the recovery progress using spatial indicators by comparing the changes in the restricted core area as well as building use over time; (5) selection and integration of the results through expert weighting; and (6) determining hotspots of recovery in L׳Aquila. Eight categories of building conditions and twelve categories of building use were identified. Both indicators: building condition and building use are aggregated into a recovery index. The reconstruction process in the city center of L׳Aquila seems to stagnate, which is reflected by the five following variables: percentage of buildings with on-going reconstruction, partial reconstruction, reconstruction projected residential building use and transport facilities. These five factors were still at low levels within the core area in 2012. Nevertheless, we can conclude that the recovery process in L׳Aquila did not come to a halt but is still ongoing, albeit being slow. PMID:26779431

  10. Effect of a Dispersant Agent in Fine Coal Recovery from Washery Tailings by Oil Agglomeration (Preliminary Study)

    NASA Astrophysics Data System (ADS)

    Yasar, Özüm; Uslu, Tuncay

    2017-12-01

    Among the fine coal cleaning methods, the oil agglomeration process has important advantages such as high process recovery, more clean product, simple dewatering stage. Several coal agglomeration studies have been undertaken recently and effects of different variables on the process performance have been investigated. However, unlike flotation studies, most of the previous agglomeration studies have not used dispersing agents to minimize slime coating effects of clays. In this study, agglomeration process was applied for recovery of fine coals from coal washery tailings containing remarkable amount of fine coal. Negative effect of fine clays during recovery was tried to be eliminated by using dispersing agent instead of de-sliming. Although ash reductions over 90 % were achieved, performance remained below expectations in terms of combustible matter recovery. However, this study is a preliminary one. It is considered that more satisfied results will be obtained in the next studies by changing the variables such as solid ratio, oil dosage, dispersant type and dosage.

  11. Disaster recovery plan for HANDI 2000 business management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, D.E.

    The BMS production implementation will be complete by October 1, 1998 and the server environment will be comprised of two types of platforms. The PassPort Supply and the PeopleSoft Financials will reside on LNIX servers and the PeopleSoft Human Resources and Payroll will reside on Microsoft NT servers. Because of the wide scope and the requirements of the COTS products to run in various environments backup and recovery responsibilities are divided between two groups in Technical Operations. The Central Computer Systems Management group provides support for the LTNIX/NT Backup Data Center, and the Network Infrastructure Systems group provides support formore » the NT Application Server Backup outside the Data Center. The disaster recovery process is dependent on a good backup and recovery process. Information and integrated system data for determining the disaster recovery process is identified from the Fluor Daniel Hanford (FDH) Risk Assessment Plan, Contingency Plan, and Backup and Recovery Plan, and Backup Form for HANDI 2000 BMS.« less

  12. Stochastic resetting in backtrack recovery by RNA polymerases

    NASA Astrophysics Data System (ADS)

    Roldán, Édgar; Lisica, Ana; Sánchez-Taltavull, Daniel; Grill, Stephan W.

    2016-06-01

    Transcription is a key process in gene expression, in which RNA polymerases produce a complementary RNA copy from a DNA template. RNA polymerization is frequently interrupted by backtracking, a process in which polymerases perform a random walk along the DNA template. Recovery of polymerases from the transcriptionally inactive backtracked state is determined by a kinetic competition between one-dimensional diffusion and RNA cleavage. Here we describe backtrack recovery as a continuous-time random walk, where the time for a polymerase to recover from a backtrack of a given depth is described as a first-passage time of a random walker to reach an absorbing state. We represent RNA cleavage as a stochastic resetting process and derive exact expressions for the recovery time distributions and mean recovery times from a given initial backtrack depth for both continuous and discrete-lattice descriptions of the random walk. We show that recovery time statistics do not depend on the discreteness of the DNA lattice when the rate of one-dimensional diffusion is large compared to the rate of cleavage.

  13. The trees and the forest: mixed methods in the assessment of recovery based interventions' processes and outcomes in mental health.

    PubMed

    Hasson-Ohayon, Ilanit; Roe, David; Yanos, Philip T; Lysaker, Paul H

    2016-12-01

    Recent developments in mental health have emphasized recovery as an outcome for people with serious mental illness (SMI). Accordingly, several studies have attempted to evaluate the process and outcome of recovery-oriented psychosocial interventions. To review and discuss quantitative and qualitative findings from previous efforts to study the impact of five recovery-oriented interventions: Illness Management and Recovery (IMR), Narrative Enhancement and Cognitive Therapy (NECT), Supported Employment (SE), Supported Socialization (SS), and Family Psychoeducation. Reviewing the literature on studies that examine the effectiveness of these interventions by using both quantitative and qualitative approach. Qualitative findings in these studies augment quantitative findings and at times draw attention to unexpected findings and uniquely illuminate the effects of these interventions on self-reflective processes. There is a need for further exploration of how mixed-methods can be implemented to explore recovery-oriented outcomes. Critical questions regarding the implications of qualitative findings are posed.

  14. Personality and recovery: integrating personality assessment data to facilitate the recovery process.

    PubMed

    Donat, D C

    2001-01-01

    The relatively enduring and persistent nature of personality traits means that they will likely continue to impact the course of psychiatric recovery after Axis I symptoms are stabilized. These traits can significantly impact the choices that recovering persons make and the quality of interpersonal relationships with care providers who are trying to facilitate the recovery process. Despite this, they are often inadequately assessed and considered in providing psychiatric care. This manuscript reviews the common combinations of personality traits that have emerged across a variety of clinical samples. The implications of these personality features for the provision of care in an inpatient setting to facilitate recovery are discussed.

  15. Analysis of energy recovery potential using innovative technologies of waste gasification.

    PubMed

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2012-04-01

    In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. PROCESS FOR RECOVERY OF CONSTITUENTS OF ORES

    DOEpatents

    McCullough, R.F.

    1959-05-01

    A process for U recovery from leached zone material is described. Calcination with alkali metal carbonate at 600 to 2000 deg F followed by digestion with H/sub 2/SO/sub 4/ and filtration forms the basis of the process. (T.R.H.)

  17. Capturing the Surface Texture and Shape of Pollen: A Comparison of Microscopy Techniques

    PubMed Central

    Sivaguru, Mayandi; Mander, Luke; Fried, Glenn; Punyasena, Surangi W.

    2012-01-01

    Research on the comparative morphology of pollen grains depends crucially on the application of appropriate microscopy techniques. Information on the performance of microscopy techniques can be used to inform that choice. We compared the ability of several microscopy techniques to provide information on the shape and surface texture of three pollen types with differing morphologies. These techniques are: widefield, apotome, confocal and two-photon microscopy (reflected light techniques), and brightfield and differential interference contrast microscopy (DIC) (transmitted light techniques). We also provide a first view of pollen using super-resolution microscopy. The three pollen types used to contrast the performance of each technique are: Croton hirtus (Euphorbiaceae), Mabea occidentalis (Euphorbiaceae) and Agropyron repens (Poaceae). No single microscopy technique provided an adequate picture of both the shape and surface texture of any of the three pollen types investigated here. The wavelength of incident light, photon-collection ability of the optical technique, signal-to-noise ratio, and the thickness and light absorption characteristics of the exine profoundly affect the recovery of morphological information by a given optical microscopy technique. Reflected light techniques, particularly confocal and two-photon microscopy, best capture pollen shape but provide limited information on very fine surface texture. In contrast, transmitted light techniques, particularly differential interference contrast microscopy, can resolve very fine surface texture but provide limited information on shape. Texture comprising sculptural elements that are spaced near the diffraction limit of light (∼250 nm; NDL) presents an acute challenge to optical microscopy. Super-resolution structured illumination microscopy provides data on the NDL texture of A. repens that is more comparable to textural data from scanning electron microscopy than any other optical microscopy technique investigated here. Maximizing the recovery of morphological information from pollen grains should lead to more robust classifications, and an increase in the taxonomic precision with which ancient vegetation can be reconstructed. PMID:22720050

  18. Personnel Recovery: Using Game Theory to Model Strategic Decision Making in the Contemporary Operating Environment

    DTIC Science & Technology

    2005-06-17

    conventional military superiority of the U.S. presents significant operational challenges. Recovery forces are vulnerable conducting personnel recovery... forced to evade. In this strategic context, the military’s decision-making process with regard to personnel recovery is completely rational. 15...superiority of the U.S. presents significant operational challenges. Recovery forces are vulnerable conducting personnel recovery because the situation

  19. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  20. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  1. Application study of fluid pressure energy recycling of decarbonisation process by C4H6O3 in ammonia synthesis systems by hydraulic turbochargers

    NASA Astrophysics Data System (ADS)

    Ji, Yunguang; Xu, Yangyang; Li, Hongtao; Oklejas, Michael; Xue, Shuqi

    2018-01-01

    A new type of hydraulic turbocharger energy recovery system was designed and applied in the decarbonisation process by propylene carbonate of a 100k tons ammonia synthesis system firstly in China. Compared with existing energy recovery devices, hydraulic turbocharger energy recovery system runs more smoothly, has lower failure rate, longer service life and greater comprehensive benefits due to its unique structure, simpler adjustment process and better adaptability to fluid fluctuation.

  2. Specification of Fenix MPI Fault Tolerance library version 1.0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, Marc; Van Der Wijngaart, Rob; Teranishi, Keita

    This document provides a specification of Fenix, a software library compatible with the Message Passing Interface (MPI) to support fault recovery without application shutdown. The library consists of two modules. The first, termed process recovery , restores an application to a consistent state after it has suffered a loss of one or more MPI processes (ranks). The second specifies functions the user can invoke to store application data in Fenix managed redundant storage, and to retrieve it from that storage after process recovery.

  3. Natural history of idiopathic abducens nerve paresis in a young adult.

    PubMed

    Hussaindeen, Jameel Rizwana; Mani, Revathy; Rakshit, Archayeeta; Ramasubramanian, Srikanth; Vittal Praveen, Smitha

    2016-01-01

    The natural history of idiopathic abducens nerve paresis and the role of conservative management such as vision training during the recovery process is not well documented in the literature to the best of our knowledge. This case report presents the natural recovery process of idiopathic abducens nerve paresis in a young adult and the role of vision therapy in the recovery process. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  4. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain

    An electrophilic acid gas-reactive fracturing fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. The proppant stabilizes fracture openings in the bedrock to enhance recovery of energy-producing materials.

  5. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process.

    PubMed

    Sun, Min; Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi

    2013-12-15

    The chelated-iron process is among the most promising techniques for the hydrogen sulfide (H2S) removal due to its double advantage of waste minimization and resource recovery. However, this technology has encountered the problem of chelate degradation which made it difficult to ensure reliable and economical operation. This work aims to develop a novel fuel-cell-assisted chelated-iron process which employs an air-cathode fuel cell for the catalyst regeneration. By using such a process, sulfur and electricity were effectively recovered from H2S and the problem of chelate degradation was well controlled. Experiment on a synthetic sulfide solution showed the fuel-cell-assisted chelated-iron process could maintain high sulfur recovery efficiencies generally above 90.0%. The EDTA was preferable to NTA as the chelating agent for electricity generation, given the Coulombic efficiencies (CEs) of 17.8 ± 0.5% to 75.1 ± 0.5% for the EDTA-chelated process versus 9.6 ± 0.8% to 51.1 ± 2.7% for the NTA-chelated process in the pH range of 4.0-10.0. The Fe (III)/S(2-) ratio exhibited notable influence on the electricity generation, with the CEs improved by more than 25% as the Fe (III)/S(2-) molar ratio increased from 2.5:1 to 3.5:1. Application of this novel process in treating a H2S-containing biogas stream achieved 99% of H2S removal efficiency, 78% of sulfur recovery efficiency, and 78.6% of energy recovery efficiency, suggesting the fuel-cell-assisted chelated-iron process was effective to remove the H2S from gas streams with favorable sulfur and energy recovery efficiencies. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Recovery from schizophrenia and the recovery model.

    PubMed

    Warner, Richard

    2009-07-01

    The recovery model refers to subjective experiences of optimism, empowerment and interpersonal support, and to a focus on collaborative treatment approaches, finding productive roles for user/consumers, peer support and reducing stigma. The model is influencing service development around the world. This review will assess whether optimism about outcome from serious mental illness and other tenets of the recovery model are borne out by recent research. Remission of symptoms has been precisely defined, but the definition of 'recovery' is a more diffuse concept that includes such factors as being productive and functioning independently. Recent research and a large, earlier body of data suggest that optimism about outcome from schizophrenia is justified. A substantial proportion of people with the illness will recover completely and many more will regain good social functioning. Outcome is better for people in the developing world. Mortality for people with schizophrenia is increasing but is lower in the developing world. Working appears to help people recover from schizophrenia, and recent advances in vocational rehabilitation have been shown to be effective in countries with differing economies and labor markets. A growing body of research supports the concept that empowerment is an important component of the recovery process. Key tenets of the recovery model - optimism about recovery from schizophrenia, the importance of access to employment and the value of empowerment of user/consumers in the recovery process - are supported by the scientific research. Attempts to reduce the internalized stigma of mental illness should enhance the recovery process.

  7. Application study on aircraft structures of CFRP laminates with embedded SMA foils

    NASA Astrophysics Data System (ADS)

    Ogisu, Toshimichi; Nomura, Masato; Ando, Norio; Takaki, Junji; Takeda, Nobuo

    2002-07-01

    This paper reports some research results for the application study of the smart materials an structural using Shape Memory Alloy (SMA) foils. First, the authors acquired the recovery strain of CFRP laminates generated by the recovery stress of the pre-strained SMA foils. Then, the quasi-static load-unload tests were conducted using several kinds of quasi-isotropic CFRP laminates with embedded SMA foils. Micro-mechanics of damage behavior due to the effects of the recovery strain and the first transverse crack strain were discussed. The improvement of maximum 40 percent for the onset strain of the transverse cracks and maximum 60 percent for the onset strain of delamination were achieved for CFRP laminates with embedded pre-strained SMA foils compared with standard CFRP laminates. Furthermore, the authors conducted the structural element test for application to actual structures. Testing technique and the manufacturing technique of the structural element specimen were established.

  8. Neural Substrates for the Effects of Rehabilitative Training on Motor Recovery After Ischemic Infarct

    NASA Astrophysics Data System (ADS)

    Nudo, Randolph J.; Wise, Birute M.; Sifuentes, Frank; Milliken, Garrett W.

    1996-06-01

    Substantial functional reorganization takes place in the motor cortex of adult primates after a focal ischemic infarct, as might occur in stroke. A subtotal lesion confined to a small portion of the representation of one hand was previously shown to result in a further loss of hand territory in the adjacent, undamaged cortex of adult squirrel monkeys. In the present study, retraining of skilled hand use after similar infarcts resulted in prevention of the loss of hand territory adjacent to the infarct. In some instances, the hand representations expanded into regions formerly occupied by representations of the elbow and shoulder. Functional reorganization in the undamaged motor cortex was accompanied by behavioral recovery of skilled hand function. These results suggest that, after local damage to the motor cortex, rehabilitative training can shape subsequent reorganization in the adjacent intact cortex, and that the undamaged motor cortex may play an important role in motor recovery.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Somasundaran

    The aim of the project is to develop a knowledge base to help the design of enhanced processes for mobilizing and extracting untrapped oil. We emphasize evaluation of novel surfactant mixtures and obtaining optimum combinations of the surfactants for efficient chemical flooding EOR processes. In this regard, an understanding of the aggregate shape, size and structure is crucial since these properties govern the crude oil removal efficiency. During the three-year period, the adsorption and aggregation behavior of sugar-based surfactants and their mixtures with other types of surfactants have been studied. Sugar-based surfactants are made from renewable resources, nontoxic and biodegradable.more » They are miscible with water and oil. These environmentally benign surfactants feature high surface activity, good salinity, calcium and temperature tolerance, and unique adsorption behavior. They possess the characteristics required for oil flooding surfactants and have the potential for replacing currently used surfactants in oil recovery. A novel analytical ultracentrifugation technique has been successfully employed for the first time, to characterize the aggregate species present in mixed micellar solution due to its powerful ability to separate particles based on their size and shape and monitor them simultaneously. Analytical ultracentrifugation offers an unprecedented opportunity to obtain important information on mixed micelles, structure-performance relationship for different surfactant aggregates in solution and their role in interfacial processes. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. Four softwares: OptimaTM XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The results have been compared to that from Light Scattering. Based on the tests, Svedberg and SEDFIT analysis were chosen for further studies.« less

  10. NASA Tech Briefs, March 2014

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Topics include: Data Fusion for Global Estimation of Forest Characteristics From Sparse Lidar Data; Debris and Ice Mapping Analysis Tool - Database; Data Acquisition and Processing Software - DAPS; Metal-Assisted Fabrication of Biodegradable Porous Silicon Nanostructures; Post-Growth, In Situ Adhesion of Carbon Nanotubes to a Substrate for Robust CNT Cathodes; Integrated PEMFC Flow Field Design for Gravity-Independent Passive Water Removal; Thermal Mechanical Preparation of Glass Spheres; Mechanistic-Based Multiaxial-Stochastic-Strength Model for Transversely-Isotropic Brittle Materials; Methods for Mitigating Space Radiation Effects, Fault Detection and Correction, and Processing Sensor Data; Compact Ka-Band Antenna Feed with Double Circularly Polarized Capability; Dual-Leadframe Transient Liquid Phase Bonded Power Semiconductor Module Assembly and Bonding Process; Quad First Stage Processor: A Four-Channel Digitizer and Digital Beam-Forming Processor; Protective Sleeve for a Pyrotechnic Reefing Line Cutter; Metabolic Heat Regenerated Temperature Swing Adsorption; CubeSat Deployable Log Periodic Dipole Array; Re-entry Vehicle Shape for Enhanced Performance; NanoRacks-Scale MEMS Gas Chromatograph System; Variable Camber Aerodynamic Control Surfaces and Active Wing Shaping Control; Spacecraft Line-of-Sight Stabilization Using LWIR Earth Signature; Technique for Finding Retro-Reflectors in Flash LIDAR Imagery; Novel Hemispherical Dynamic Camera for EVAs; 360 deg Visual Detection and Object Tracking on an Autonomous Surface Vehicle; Simulation of Charge Carrier Mobility in Conducting Polymers; Observational Data Formatter Using CMOR for CMIP5; Propellant Loading Physics Model for Fault Detection Isolation and Recovery; Probabilistic Guidance for Swarms of Autonomous Agents; Reducing Drift in Stereo Visual Odometry; Future Air-Traffic Management Concepts Evaluation Tool; Examination and A Priori Analysis of a Direct Numerical Simulation Database for High-Pressure Turbulent Flows; and Resource-Constrained Application of Support Vector Machines to Imagery.

  11. Design of an Integrated Plasma Control System and Extension of XSCTools to Ignitor

    NASA Astrophysics Data System (ADS)

    Albanese, R.; Ambrosino, G.; Artaserse, G.; Pironti, A.; Rubinacci, G.; Villone, F.; Ramogida, G.

    2010-11-01

    The performance of the integrated system for vertical stability, shape and plasma current control for the Ignitor machine has been assessed by means of the CREATELlinearized model of plasma responseootnotetextR. Albanese, F. Villone, Nucl. Fusion 38, 723 (1998) against a set of disturbances for the reference 11 MA limiter configuration and the 9 MA Double Null configuration. A new design, based on the methodology of the eXtreme Shape Controller (XSC) at JET, has been tested : by using all the shape control circuits with the exception of those used to control the vertical stability is possible to control up to four independent linear combinations of the 36 plasma-wall gaps. The results point out a substantial improvement in shape recovery, especially in the presence of a disturbance in li. The new shape controller can also automatically generate, via feedback control, new plasma shapes in the proximity of a given equilibrium configuration. The XSC ToolsootnotetextG. Ambrosino, R. Albanese et al., Fus. Eng.& Des. 74, 521 (2005) have been adapted and extended to develop linearized Ignitor models including 2D eddy currents and to solve inverse linearized plasma equilibria.

  12. Vehicle Surveillance with a Generic, Adaptive, 3D Vehicle Model.

    PubMed

    Leotta, Matthew J; Mundy, Joseph L

    2011-07-01

    In automated surveillance, one is often interested in tracking road vehicles, measuring their shape in 3D world space, and determining vehicle classification. To address these tasks simultaneously, an effective approach is the constrained alignment of a prior model of 3D vehicle shape to images. Previous 3D vehicle models are either generic but overly simple or rigid and overly complex. Rigid models represent exactly one vehicle design, so a large collection is needed. A single generic model can deform to a wide variety of shapes, but those shapes have been far too primitive. This paper uses a generic 3D vehicle model that deforms to match a wide variety of passenger vehicles. It is adjustable in complexity between the two extremes. The model is aligned to images by predicting and matching image intensity edges. Novel algorithms are presented for fitting models to multiple still images and simultaneous tracking while estimating shape in video. Experiments compare the proposed model to simple generic models in accuracy and reliability of 3D shape recovery from images and tracking in video. Standard techniques for classification are also used to compare the models. The proposed model outperforms the existing simple models at each task.

  13. Thermomechanical behavior of shape memory elastomeric composites

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Luo, Xiaofan; Rodriguez, Erika D.; Zhang, Xiao; Mather, Patrick T.; Dunn, Martin L.; Qi, H. Jerry

    2012-01-01

    Shape memory polymers (SMPs) can fix a temporary shape and recover their permanent shape in response to environmental stimuli such as heat, electricity, or irradiation. Most thermally activated SMPs use the macromolecular chain mobility change around the glass transition temperature ( Tg) to achieve the shape memory (SM) effects. During this process, the stiffness of the material typically changes by three orders of magnitude. Recently, a composite materials approach was developed to achieve thermally activated shape memory effect where the material exhibits elastomeric response in both the temporary and the recovered configurations. These shape memory elastomeric composites (SMECs) consist of an elastomeric matrix reinforced by a semicrystalline polymer fiber network. The matrix provides background rubber elasticity while the fiber network can transform between solid crystals and melt phases over the operative temperature range. As such it serves as a reversible "switching phase" that enables shape fixing and recovery. Shape memory elastomeric composites provide a new paradigm for the development of a wide array of active polymer composites that utilize the melt-crystal transition to achieve the shape memory effect. This potentially allows for material systems with much simpler chemistries than most shape memory polymers and thus can facilitate more rapid material development and insertion. It is therefore important to understand the thermomechanical behavior and to develop corresponding material models. In this paper, a 3D finite-deformation constitutive modeling framework was developed to describe the thermomechanical behavior of SMEC. The model is phenomenological, although inspired by micromechanical considerations of load transfer between the matrix and fiber phases of a composite system. It treats the matrix as an elastomer and the fibers as a complex solid that itself is an aggregate of melt and crystal phases that evolve from one to the other during a temperature change. As such, the composite consists of an elastomer reinforced by a soft liquid at high temperature and a stiff solid at low temperature. The model includes a kinetic description of the non-isothermal crystallization and melting of the fibers during a temperature change. As the fibers transform from melt to crystal during cooling it is assumed that new crystals are formed in an undeformed state, which requires careful tracking of the kinematics of the evolving phases which comes at a significant computational cost. In order to improve the computational efficiency, an effective phase model (EPM) is adopted to treat the evolving crystal phases as an effective medium. A suite of careful thermomechanical experiments with a SMEC was carried out to calibrate various model parameters, and then to demonstrate the ability of the model to accurately capture the shape memory behavior of the SMEC system during complex thermomechanical loading scenarios. The model also identifies the effects of microstructural design parameters such as the fiber volume fraction.

  14. Phase-Change Thermoplastic Elastomer Blends for Tunable Shape Memory by Physical Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mineart, Kenneth P.; Tallury, Syamal S.; Li, Tao

    Shape-memory polymers (SMPs) change shape upon exposure to an environmental stimulus.1-3 They are of considerable importance in the ongoing development of stimuli-responsive biomedical4,5 and deployable6 devices, and their function depends on the presence of two components.7 The first provides mechanical rigidity to ensure retention of one or more temporary strain states and also serves as a switch capable of releasing a temporary strain state. The second, a network-forming component, is required to restore the polymer to a prior strain state upon stimulation. In thermally-activated SMPs, the switching element typically relies on a melting or glass transition temperature,1-3,7 and broad ormore » multiple switches permit several temporary strain states.8-10 Chemical integration of network-forming and switching species endows SMPs with specific properties.8,10,11 Here, we demonstrate that phase-change materials incorporated into network-forming macromolecules yield shape-memory polymer blends (SMPBs) with physically tunable switching temperatures and recovery kinetics for use in multi-responsive laminates and shape-change electronics.« less

  15. Role of GATA transcription factor ELT-2 and p38 MAPK PMK-1 in recovery from acute P. aeruginosa infection in C. elegans

    PubMed Central

    Head, Brian P.; Olaitan, Abiola O.; Aballay, Alejandro

    2017-01-01

    ABSTRACT Infectious diseases caused by bacterial pathogens reduce the fitness of their associated host but are generally limited in duration. In order for the diseased host to regain any lost fitness upon recovery, a variety of molecular, cellular, and physiological processes must be employed. To better understand mechanisms underlying the recovery process, we have modeled an acute Pseudomonas aeruginosa infection in C. elegans using brief exposures to this pathogen and subsequent antibiotic treatment. To identify host genes altered during recovery from P. aeruginosa infection, we performed whole genome expression profiling. The analysis of this dataset indicated that the activity of the host immune system is down-regulated upon recovery and revealed shared and pathogen-specific host responses during recovery. We determined that the GATA transcription factor ELT-2 and the p38 MAP kinase PMK-1 are necessary for animals to successfully recover from an acute P. aeruginosa infection. In addition, we found that ELT-2 plays a more prominent and earlier role than PMK-1 during recovery. Our data sheds further light on the molecular mechanisms and transcriptional programs involved in recovery from an acute bacterial infection, which provides a better understanding of the entire infectious disease process. PMID:27600703

  16. Flow behavior of N2 huff and puff process for enhanced oil recovery in tight oil reservoirs.

    PubMed

    Lu, Teng; Li, Zhaomin; Li, Jian; Hou, Dawei; Zhang, Dingyong

    2017-11-16

    In the present work, the potential of N 2 huff and puff process to enhance the recovery of tight oil reservoir was evaluated. N 2 huff and puff experiments were performed in micromodels and cores to investigate the flow behaviors of different cycles. The results showed that, in the first cycle, N 2 was dispersed in the oil, forming the foamy oil flow. In the second cycle, the dispersed gas bubbles gradually coalesced into the continuous gas phase. In the third cycle, N 2 was produced in the form of continuous gas phase. The results from the coreflood tests showed that, the primary recovery was only 5.32%, while the recoveries for the three N 2 huff and puff cycles were 15.1%, 8.53% and 3.22%, respectively.The recovery and the pressure gradient in the first cycle were high. With the increase of huff and puff cycles, and the oil recovery and the pressure gradient rapidly decreased. The oil recovery of N 2 huff and puff has been found to increase as the N 2 injection pressure and the soaking time increased. These results showed that, the properly designed and controlled N 2 huff and puff process can lead to enhanced recovery of tight oil reservoirs.

  17. 40 CFR 430.35 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-chemical (cross recovery) process and/or a combined unbleached kraft and semi-chemical process, wherein the spent semi-chemical cooking liquor is burned within the unbleached kraft chemical recovery system...

  18. Ten Years of Post-Fire Vegetation Recovery following the 2007 Zaca Fire using Landsat Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Hallett, J. K. E.; Miller, D.; Roberts, D. A.

    2017-12-01

    Forest fires play a key role in shaping eco-systems. The risk to vegetation depends on the fire regime, fuel conditions (age and amount), fire temperature, and physiological characteristics such as bark thickness and stem diameter. The 2007 Zaca Fire (24 kilometers NE of Buellton, Santa Barbara County, California) burned 826.4 km2 over the course of 2 months. In this study, we used a time series of Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager imagery, to evaluate plant burn severity and post fire recovery as defined into classes of above average recovery, normal recovery, and below average recovery. We spectrally unmixed the images into green vegetation (GV), non-photosynthetic vegetation (NPV), soil surface (SOIL), and ash with a spectral library developed using Constrained Reference Endmember Selection (CRES). We delineated the fire perimeter using the differenced Normalized Burn Ratio (dNBR) and evaluated changes in this index and the Normalized Difference Vegetation Index through time. The results showed an immediate decline in GV and NPV fractions, with a rise in soil and ash fractions directly following the fire, with a slow recovery in GV fraction and a loss of bare soil cover. The was a sharp increase in the ash fraction following the fire and gradual decrease in the year after. Most areas have recovered as of 2017, with prominent recovery in the center of the burn scar and reduced recovery in areas to the south. These results indicate how post-fire vegetation varies based on initial burn severity and pre-fire GV and NPV fractions.

  19. Extinction during reconsolidation eliminates recovery of fear conditioned to fear-irrelevant and fear-relevant stimuli.

    PubMed

    Thompson, Alina; Lipp, Ottmar V

    2017-05-01

    Extant literature suggests that extinction training delivered during the memory reconsolidation period is superior to traditional extinction training in the reduction of fear recovery, as it targets the original fear memory trace. At present it is debated whether different types of fear memories are differentially sensitive to behavioral manipulations of reconsolidation. Here, we examined post-reconsolidation recovery of fear as a function of conditioned stimulus (CS) fear-relevance, using the unconditioned stimulus (US) to reactivate and destabilize conditioned fear memories. Participants (N = 56; 25 male; M = 24.39 years, SD = 7.71) in the US-reactivation and control group underwent differential fear conditioning to fear-relevant (spiders/snakes) and fear-irrelevant (geometric shapes) CSs on Day 1. On Day 2, participants received either reminded (US-reactivation) or non-reminded extinction training. Tests of fear recovery, conducted 24 h later, revealed recovery of differential electrodermal responding to both classes of CSs in the control group, but not in the US-reactivation group. These findings indicate that the US reactivation-extinction procedure eliminated recovery of extinguished responding not only to fear-irrelevant, but also to fear-relevant CSs. Contrasting previous reports, our findings show that post-reconsolidation recovery of conditioned responding is not a function of CS fear-relevance and that persistent reduction of fear, conditioned to fear-relevant CSs, can be achieved through behavioral manipulations of reconsolidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Lumbar muscle inflammation alters spinally mediated locomotor recovery induced by training in a mouse model of complete spinal cord injury.

    PubMed

    Jeffrey-Gauthier, Renaud; Piché, Mathieu; Leblond, Hugues

    2017-09-17

    Locomotor networks after spinal cord injury (SCI) are shaped by training-activated proprioceptive and cutaneous inputs. Nociception from injured tissues may alter these changes but has largely been overlooked. The objective of the present study was to ascertain whether lumbar muscle inflammation hinders locomotion recovery in a mouse model of complete SCI. Lower limb kinematics during treadmill training was assessed before and after complete SCI at T8 (2, 7, 14, 21 and 28days post-injury). Locomotor recovery was compared in 4 groups of CD1 mice: control spinal mice; spinal mice with daily locomotor training; spinal mice with lumbar muscle inflammation (Complete Freund's Adjuvant (CFA) injection); and spinal mice with locomotor training and CFA. On day 28, H-reflex excitability and its inhibition at high-frequency stimulation (frequency-dependent depression: FDD) were compared between groups, all of which showed locomotor recovery. Recovery was enhanced by training, whereas lumbar muscle inflammation hindered these effects (knee angular excursion and paw drag: p's<0.05). In addition, lumbar muscle inflammation impaired hind limb coupling during locomotion (p<0.05) throughout recovery. Also, H-reflex disinhibition was prevented by training, with or without CFA injection (p's<0.05). Altogether, these results indicate that back muscle inflammation modulates spinally mediated locomotor recovery in mice with complete SCI, in part, by reducing adaptive changes induced by training. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics.

    PubMed Central

    Solé, Ricard V; Montoya, José M; Erwin, Douglas H

    2002-01-01

    Biotic recoveries following mass extinctions are characterized by a process in which whole ecologies are reconstructed from low-diversity systems, often characterized by opportunistic groups. The recovery process provides an unexpected window to ecosystem dynamics. In many aspects, recovery is very similar to ecological succession, but important differences are also apparently linked to the innovative patterns of niche construction observed in the fossil record. In this paper, we analyse the similarities and differences between ecological succession and evolutionary recovery to provide a preliminary ecological theory of recoveries. A simple evolutionary model with three trophic levels is presented, and its properties (closely resembling those observed in the fossil record) are compared with characteristic patterns of ecological response to disturbances in continuous models of three-level ecosystems. PMID:12079530

  2. Bushy sphere dendrites with husk-shaped branches axially spreading out from the core for photo-catalytic oxidation/remediation of toxins.

    PubMed

    Shenashen, Mohamed A; Kawada, Satoshi; Selim, Mahmoud M; Morsy, Wafaa M; Yamaguchi, Hitoshi; Alhamid, Abdulaziz A; Ohashi, Naoki; Ichinose, Izumi; El-Safty, Sherif A

    2017-06-14

    This work describes densely interlinked bushy "tree-like chains" characterized by neatly branched sphere dendrites (bushy sphere dendrites, BSD) with long fan-like, husk-shaped branching paths that extend longitudinally from the core axis of the {110}-exposed plane. We confirmed that the hierarchical dendrite surfaces created bowls of swirled caves along the tree-tube in the mat-like branches. These surfaces had high-index catalytic site facets associated with the formation of ridges/defects on the dominant {110}-top-cover surface. These swirled caves along the branches were completely filled with 50-100 nm poly-CN nano-sphere-fossils with orb-like appearance. Such structural features are key issues of the inherent surface reactivity of a powerful catalyst/trapper, enabling photocatalytic oxidation and trapping of extremely toxic arsenite (AsO 3 3- ) species and photo-induced recovery of arsenate (AsO 4 3- ) products from catalyst surfaces. The light-induced release of produced AsO 4 3- from BSD indicates (i) highly controlled waste collection/management (i.e., recovery), (ii) low cost and ecofriendly photo-adsorbent, (iii) selective trapping of real sample water to produce water-free arsenite species; (iv) multiple reuse cycles of catalysts (i.e., reduced waste volume). Matrixed dendrites, covered with 3D microscopic sphere cores that capture solar-light, trap toxins, and are triggered by light, were designed. These dendrites can withstand indoor and outdoor recovery of toxins from water sources.

  3. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster

    PubMed Central

    McCue, Marshall D.; Sunny, Nishanth E.; Szejner-Sigal, Andre; Morgan, Theodore J.; Allison, David B.; Hahn, Daniel A.

    2016-01-01

    Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using 13C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories. PMID:27605506

  4. Linam Ranch cryogenic gas plant: A design and operating retrospective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harwell, L.J.; Kuscinski, J.

    1999-07-01

    GPM Gas Corporation's Linam Ranch Gas Plant is the processing hub of their southeastern New Mexico gathering system, producing a y-grade NGL product which is pipelined primarily to the Phillips petrochemical complex at Sweeney, Texas, GPM acquired the facility near Hobbs, N.M. late in 1994 when it was still operating as a refrigerated lean oil plant, renamed it, and commenced an upgrade project culminating in its conversion to a high recovery cryogenic facility in early 1996 with a processing capacity of 150 MMscfd. Facilities that were upgraded included inlet liquids receiving and handling, the amine system, mol sieve dehydration, themore » sulfur recovery unit, inlet compression, and the propane refrigeration system. A Foxboro I/A DCS was also placed into operation. The lean oil system was replaced with a high recovery turboexpander unit supplied by KTI Fish based on their Flash Vapor Reflux (FVR) process. Resulting ethane recovery was greater than 95% for the new facilities. New residue compression units were installed including steam generators on the turbine exhausts, which complemented the existing plant steam system. During the three years since conversion to cryogenic operation, GPM has steadily improved plant operations. Expansion of the mol sieve dehydration system and retrofit of evaporation combustion air cooling on gas turbines have expanded nameplate capacity to 170 MMscfd while maintaining ethane recovery at 95%. Future expansion to 200 MMscfd with high recovery is achievable. In addition, creative use of the Foxboro DCS has been employed to implement advanced control schemes for handling inlet liquid slugs, gas and amine balancing for parallel amine contactors, improved sulfur recovery unit (SRU) trim air control, and constraint-based process optimization to maximize horsepower utilization and ethane recovery. Some challenges remain, leaving room for additional improvements. However, GPM's progress so far has resulted in a current ethane recovery level in excess of 97% when processing gas at the original design throughput of 150 MMscfd.« less

  5. Energy-neutral sustainable nutrient recovery incorporated with the wastewater purification process in an enlarged microbial nutrient recovery cell

    NASA Astrophysics Data System (ADS)

    Sun, Dongya; Gao, Yifan; Hou, Dianxun; Zuo, Kuichang; Chen, Xi; Liang, Peng; Zhang, Xiaoyuan; Ren, Zhiyong Jason; Huang, Xia

    2018-04-01

    Recovery of nutrient resources from the wastewater is now an inevitable strategy to maintain the supply of both nutrient and water for our huge population. While the intensive energy consumption in conventional nutrient recovery technologies still remained as the bottleneck towards the sustainable nutrient recycle. This study proposed an enlarged microbial nutrient recovery cell (EMNRC) which was powered by the energy contained in wastewater and achieved multi-cycle nutrient recovery incorporated with in situ wastewater treatment. With the optimal recovery solution of 3 g/L NaCl and the optimal volume ratio of wastewater to recovery solution of 10:1, >89% of phosphorus and >62% of ammonium nitrogen were recovered into struvite. An extremely low water input ratio of <1% was required to obtain the recovered fertilizer and the purified water. It was proved the EMNRC system was a promising technology which could utilize the chemical energy contained in wastewater itself and energy-neutrally recover nutrient during the continuous wastewater purification process.

  6. Recovery in involuntary psychiatric care: is there a gender difference?

    PubMed

    Schön, Ulla-Karin

    2013-10-01

    Research on recovery from mental illness and the influence of compulsory psychiatric institutional care has revealed the complexity of this concept. There is also limited knowledge regarding the impact of gender-role expectations in these contexts, and how such expectations may influence both the care and individuals' recovery processes. To explore women's and men's perceptions of the impact of compulsory inpatient care on recovery from severe mental illness. Grounded theory was used to analyse 30 first-person accounts of recovery from mental illness, elicited via interviews with individuals who had been compulsorily treated in hospital and diagnosed with a severe mental illness. Inpatient care at an early stage was crucial for the informants' recovery. However, there was ambivalence in their perceptions of the impact of compulsory inpatient care. The narratives confirmed gender differences as well as gender stereotypes. The results have implications for recovery research, in that they emphasise the importance of understanding recovery as a gender-influenced process.

  7. Checkpoint-based forward recovery using lookahead execution and rollback validation in parallel and distributed systems. Ph.D. Thesis, 1992

    NASA Technical Reports Server (NTRS)

    Long, Junsheng

    1994-01-01

    This thesis studies a forward recovery strategy using checkpointing and optimistic execution in parallel and distributed systems. The approach uses replicated tasks executing on different processors for forwared recovery and checkpoint comparison for error detection. To reduce overall redundancy, this approach employs a lower static redundancy in the common error-free situation to detect error than the standard N Module Redundancy scheme (NMR) does to mask off errors. For the rare occurrence of an error, this approach uses some extra redundancy for recovery. To reduce the run-time recovery overhead, look-ahead processes are used to advance computation speculatively and a rollback process is used to produce a diagnosis for correct look-ahead processes without rollback of the whole system. Both analytical and experimental evaluation have shown that this strategy can provide a nearly error-free execution time even under faults with a lower average redundancy than NMR.

  8. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia.

    PubMed

    Toshiki, Kosuke; Giang, Pham Quy; Serrona, Kevin Roy B; Sekikawa, Takahiro; Yu, Jeoung-soo; Choijil, Baasandash; Kunikane, Shoichi

    2015-02-01

    Currently, most developing countries have not set up municipal solid waste management systems with a view of recovering energy from waste or reducing greenhouse gas emissions. In this article, we have studied the possible effects of introducing three energy recovery processes either as a single or combination approach, refuse derived fuel production, incineration and waste power generation, and methane gas recovery from landfill and power generation in Ulaanbaatar, Mongolia, as a case study. We concluded that incineration process is the most suitable as first introduction of energy recovery. To operate it efficiently, 3Rs strategies need to be promoted. And then, RDF production which is made of waste papers and plastics in high level of sorting may be considered as the second step of energy recovery. However, safety control and marketability of RDF will be required at that moment. Copyright © 2014. Published by Elsevier B.V.

  9. Distributed and recoverable digital control system

    NASA Technical Reports Server (NTRS)

    Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)

    2010-01-01

    A real-time multi-tasking digital control system with rapid recovery capability is disclosed. The control system includes a plurality of computing units comprising a plurality of redundant processing units, with each of the processing units configured to generate one or more redundant control commands. One or more internal monitors are employed for detecting data errors in the control commands. One or more recovery triggers are provided for initiating rapid recovery of a processing unit if data errors are detected. The control system also includes a plurality of actuator control units each in operative communication with the computing units. The actuator control units are configured to initiate a rapid recovery if data errors are detected in one or more of the processing units. A plurality of smart actuators communicates with the actuator control units, and a plurality of redundant sensors communicates with the computing units.

  10. Executive Functions, Memory, and Social Cognitive Deficits and Recovery in Chronic Alcoholism: A Critical Review to Inform Future Research.

    PubMed

    Le Berre, Anne-Pascale; Fama, Rosemary; Sullivan, Edith V

    2017-08-01

    Alcoholism is a complex and dynamic disease, punctuated by periods of abstinence and relapse, and influenced by a multitude of vulnerability factors. Chronic excessive alcohol consumption is associated with cognitive deficits, ranging from mild to severe, in executive functions, memory, and metacognitive abilities, with associated impairment in emotional processes and social cognition. These deficits can compromise efforts in initiating and sustaining abstinence by hampering efficacy of clinical treatment and can obstruct efforts in enabling good decision making success in interpersonal/social interactions, and awareness of cognitive and behavioral dysfunctions. Despite evidence for differences in recovery levels of selective cognitive processes, certain deficits can persist even with prolonged sobriety. Herein is presented a review of alcohol-related cognitive impairments affecting component processes of executive functioning, memory, and the recently investigated cognitive domains of metamemory, social cognition, and emotional processing; also considered are trajectories of cognitive recovery with abstinence. Finally, in the spirit of critical review, limitations of current knowledge are noted and avenues for new research efforts are proposed that focus on (i) the interaction among emotion-cognition processes and identification of vulnerability factors contributing to the development of emotional and social processing deficits and (ii) the time line of cognitive recovery by tracking alcoholism's dynamic course of sobriety and relapse. Knowledge about the heterochronicity of cognitive recovery in alcoholism has the potential of indicating at which points during recovery intervention may be most beneficial. Copyright © 2017 by the Research Society on Alcoholism.

  11. Visual activity predicts auditory recovery from deafness after adult cochlear implantation.

    PubMed

    Strelnikov, Kuzma; Rouger, Julien; Demonet, Jean-François; Lagleyre, Sebastien; Fraysse, Bernard; Deguine, Olivier; Barone, Pascal

    2013-12-01

    Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients.

  12. Evaluation of fertilizer-drawn forward osmosis for sustainable agriculture and water reuse in arid regions.

    PubMed

    Chekli, Laura; Kim, Youngjin; Phuntsho, Sherub; Li, Sheng; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong

    2017-02-01

    The present study focused on the performance of the FDFO process to achieve simultaneous water reuse from wastewater and production of nutrient solution for hydroponic application. Bio-methane potential (BMP) measurements were firstly carried out to determine the effect of osmotic concentration of wastewater achieved in the FDFO process on the anaerobic activity. Results showed that 95% water recovery from the FDFO process is the optimum value for further AnMBR treatment. Nine different fertilizers were then tested based on their FO performance (i.e. water flux, water recovery and reverse salt flux) and final nutrient concentration. From this initial screening, ammonium phosphate monobasic (MAP), ammonium sulfate (SOA) and mono-potassium phosphate were selected for long term experiments to investigate the maximum water recovery achievable. After the experiments, hydraulic membrane cleaning was performed to assess the water flux recovery. SOA showed the highest water recovery rate, up to 76% while KH 2 PO 4 showed the highest water flux recovery, up to 75% and finally MAP showed the lowest final nutrient concentration. However, substantial dilution was still necessary to comply with the standards for fertigation even if the recovery rate was increased. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Near net shape processing: A necessity for advanced materials applications

    NASA Technical Reports Server (NTRS)

    Kuhn, Howard A.

    1993-01-01

    High quality discrete parts are the backbones for successful operation of equipment used in transportation, communication, construction, manufacturing, and appliances. Traditional shapemaking for discrete parts is carried out predominantly by machining, or removing unwanted material to produce the desired shape. As the cost and complexity of modern materials escalates, coupled with the expense and environmental hazards associated with handling of scrap, it is increasingly important to develop near net shape processes for these materials. Such processes involve casting of liquid materials, consolidation of powder materials, or deformation processing of simple solid shapes into the desired shape. Frequently, several of these operations may be used in sequence to produce a finished part. The processes for near net shape forming may be applied to any type of material, including metals, polymers, ceramics, and their composites. The ability to produce shapes is the key to implementation of laboratory developments in materials science into real world applications. This seminar presents an overview of near net shapemaking processes, some application examples, current developments, and future research opportunities.

  14. Residual stresses in injection molded shape memory polymer parts

    NASA Astrophysics Data System (ADS)

    Katmer, Sukran; Esen, Huseyin; Karatas, Cetin

    2016-03-01

    Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.

  15. Functional recovery in the avian ear after hair cell regeneration.

    PubMed

    Smolders, J W

    1999-01-01

    Trauma to the inner ear in birds, due to acoustic overstimulation or ototoxic aminoglycosides, can lead to hair cell loss which is followed by regeneration of new hair cells. These processes are paralleled by hearing loss followed by significant functional recovery. After acoustic trauma, functional recovery is rapid and nearly complete. The early and major part of functional recovery after sound trauma occurs before regenerated hair cells become functional. Even very intense sound trauma causes loss of only a proportion of the hair cell population, mainly so-called short hair cells residing on the abneural mobile part of the avian basilar membrane. Uncoupling of the tectorial membrane from the hair cells during sound overexposure may serve as a protection mechanism. The rapid functional recovery after sound trauma appears not to be associated with regeneration of the lost hair cells, but with repair processes involving the surviving hair cells. Small residual functional deficits after recovery are most likely associated with the missing upper fibrous layer of the tectorial membrane which fails to regenerate after sound trauma. After aminoglycoside trauma, functional recovery is slower and parallels the structural regeneration more closely. Aminoglycosides cause damage to both types of hair cells, starting at the basal (high frequency) part of the basilar papilla. However, functional hearing loss and recovery also occur at lower frequencies, associated with areas of the papilla where hair cells survive. Functional recovery in these low frequency areas is complete, whereas functional recovery in high frequency areas with complete hair cell loss is incomplete, despite regeneration of the hair cells. Permanent residual functional deficits remain. This indicates that in low frequency regions functional recovery after aminoglycosides involves repair of nonlethal injury to hair cells and/or hair cell-neural synapses. In the high frequency regions functional recovery involves regenerated hair cells. The permanent functional deficits after the regeneration process in these areas are most likely associated with functional deficits in the regenerated hair cells or shortcomings in the synaptic reconnections of nerve fibers with the regenerated hair cells. In conclusion, the avian inner ear appears to be much more resistant to trauma than the mammalian ear and possesses a considerable capacity for functional recovery based on repair processes along with its capacity to regenerate hair cells. The functional recovery in areas with regenerated hair cells is considerable but incomplete.

  16. Collaboration as a process and an outcome: Consumer experiences of collaborating with nurses in care planning in an acute inpatient mental health unit.

    PubMed

    Reid, Rebecca; Escott, Phil; Isobel, Sophie

    2018-04-14

    This qualitative study explores inpatient mental health consumer perceptions of how collaborative care planning with mental health nurses impacts personal recovery. Semi-structured interviews were conducted with consumers close to discharge from one unit in Sydney, Australia. The unit had been undertaking a collaborative care planning project which encouraged nurses to use care plan documentation to promote person-centred and goal-focussed interactions and the development of meaningful strategies to aid consumer recovery. The interviews explored consumer understandings of the collaborative care planning process, perceptions of the utility of the care plan document and the process of collaborating with the nurses, and their perception of the impact of collaboration on their recovery. Findings are presented under four organizing themes: the process of collaborating, the purpose of collaborating, the nurse as collaborator and the role of collaboration in wider care and recovery. Consumers highlighted the importance of the process of developing their care plan with a nurse as being as helpful for recovery as the goals and strategies themselves. The findings provide insights into consumers' experiences of care planning in an acute inpatient unit, the components of care that support recovery and highlight specific areas for mental health nursing practice improvement in collaboration. © 2018 Australian College of Mental Health Nurses Inc.

  17. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration.

    PubMed

    Versteegden, Luuk R; van Kampen, Kenny A; Janke, Heinz P; Tiemessen, Dorien M; Hoogenkamp, Henk R; Hafmans, Theo G; Roozen, Edwin A; Lomme, Roger M; van Goor, Harry; Oosterwijk, Egbert; Feitz, Wout F; van Kuppevelt, Toin H; Daamen, Willeke F

    2017-04-01

    Tubular collagen scaffolds have been used for the repair of damaged hollow organs in regenerative medicine, but they generally lack the ability to reversibly expand in radial direction, a physiological characteristic seen in many native tubular organs. In this study, tubular collagen scaffolds were prepared that display a shape recovery effect and therefore exhibit radial elasticity. Scaffolds were constructed by compression of fibrillar collagen around a star-shaped mandrel, mimicking folds in a lumen, a typical characteristic of empty tubular hollow organs, such as ureter or urethra. Shape recovery effect was introduced by in situ fixation using a star-shaped mandrel, 3D-printed clamps and cytocompatible carbodiimide crosslinking. Prepared scaffolds expanded upon increase of luminal pressure and closed to the star-shaped conformation after removal of pressure. In this study, we applied this method to construct a scaffold mimicking the dynamics of human urethra. Radial expansion and closure of the scaffold could be iteratively performed for at least 1000 cycles, burst pressure being 132±22mmHg. Scaffolds were seeded with human epithelial cells and cultured in a bioreactor under dynamic conditions mimicking urination (pulse flow of 21s every 2h). Cells adhered and formed a closed luminal layer that resisted flow conditions. In conclusion, a new type of a tubular collagen scaffold has been constructed with radial elastic-like characteristics based on the shape of the scaffold, and enabling the scaffold to reversibly expand upon increase in luminal pressure. These scaffolds may be useful for regenerative medicine of tubular organs. In this paper, a new type I collagen-based tubular scaffold is presented that possesses intrinsic radial elasticity. This characteristic is key to the functioning of a number of tubular organs including blood vessels and organs of the gastrointestinal and urogenital tract. The scaffold was given a star-shaped lumen by physical compression and chemical crosslinking, mimicking the folding pattern observed in many tubular organs. In rest, the lumen is closed but it opens upon increase of luminal pressure, e.g. when fluids pass. Human epithelial cells seeded on the luminal side adhered well and were compatible with voiding dynamics in a bioreactor. Collagen scaffolds with radial elasticity may be useful in the regeneration of dynamic tubular organs. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Influence of edging practices on cutting yields of Alaska birch lumber

    Treesearch

    David L. Nicholls; J.W. Funck; C.C. Brunner; J.E. Reeb

    2009-01-01

    Birch lumber is often characterized by a high degree of knots, bark pockets, heartwood, and other features which force sawmill owners to decide whether to edge and trim boards to produce standard grade lumber vs. proprietary grade character-marked lumber. In addition, the edging strategies used with irregularly shaped flitches can greatly influence cut-stock recovery....

  19. The riparian species recovery plan: A status report

    Treesearch

    Steven M. Chambers

    1996-01-01

    Several Federal and State agencies in Arizona and New Mexico are collaborating on the development of a strategy for the restoration of riparian systems. The strategy that is taking shape is the development of a package of formats, methods and information that can guide local groups in developing and implementing local riparian restoration plans. The major elements of...

  20. Structural stocking guides: a new look at an old friend

    Treesearch

    Jeffrey H. Gove

    2004-01-01

    A parameter recovery-based model is developed that allows the incorporation of diameter distribution information directly into stocking guides. The method is completely general in applicability across different guides and forest types and could be adapted to other systems such as density management diagrams. It relies on a simple measure of diameter distribution shape...

  1. The U.S. Machine Tool Industry and the Defense Industrial Base

    DTIC Science & Technology

    1983-01-01

    GOLD, Director, Research Program in Industrial Economics , Case Western Reserve University HAMILTON HERMAN, Management Consultant NATHANIEL S. HOWE...Traditional U.S. Machine Tool Industry ........ 8 Technological Trends Shaping the Industry ........ 18 Economic Trends .................................. 23...sustained economic recovery and aggressive steps by both government and industry, an effectively com- petitive domestic machine tool industry can emerge

  2. Investigation of the Self-Healing Behavior of Sn-Bi Metal Matrix Composite Reinforced with NiTi Shape Memory Alloy Strips Under Flexural Loading

    NASA Astrophysics Data System (ADS)

    Poormir, Mohammad Amin; Khalili, Seyed Mohammad Reza; Eslami-Farsani, Reza

    2018-03-01

    Utilizing intelligent materials such as shape memory alloys as reinforcement in metal matrix composites is a novel method to mimic self-healing behavior. In this study, the bending behavior of a self-healing metal matrix composite made from Sn-13 wt.% Bi alloy as matrix and NiTi shape memory alloy (SMA) strips as reinforcement is investigated. Specimens were fabricated in different reinforcement vol.% (0.78, 1.55, 2.33) and in various pre-strains (0, 2, 6%) and were healed at three healing temperatures (170°C, 180°C, 190°C). Results showed that shape recovery was accomplished in all the specimens, but not all of them were able to withstand second loading after healing. Only specimens with 2.33 vol.% of SMA strips, 1.55 vol.% of SMA, and 6% pre-strain could endure bending force after healing, and they gained 35.31-51.83% of bending force self-healing efficiency.

  3. Investigation of the Self-Healing Behavior of Sn-Bi Metal Matrix Composite Reinforced with NiTi Shape Memory Alloy Strips Under Flexural Loading

    NASA Astrophysics Data System (ADS)

    Poormir, Mohammad Amin; Khalili, Seyed Mohammad Reza; Eslami-Farsani, Reza

    2018-06-01

    Utilizing intelligent materials such as shape memory alloys as reinforcement in metal matrix composites is a novel method to mimic self-healing behavior. In this study, the bending behavior of a self-healing metal matrix composite made from Sn-13 wt.% Bi alloy as matrix and NiTi shape memory alloy (SMA) strips as reinforcement is investigated. Specimens were fabricated in different reinforcement vol.% (0.78, 1.55, 2.33) and in various pre-strains (0, 2, 6%) and were healed at three healing temperatures (170°C, 180°C, 190°C). Results showed that shape recovery was accomplished in all the specimens, but not all of them were able to withstand second loading after healing. Only specimens with 2.33 vol.% of SMA strips, 1.55 vol.% of SMA, and 6% pre-strain could endure bending force after healing, and they gained 35.31-51.83% of bending force self-healing efficiency.

  4. Lead recovery from waste CRT funnel glass by high-temperature melting process.

    PubMed

    Hu, Biao; Hui, Wenlong

    2018-02-05

    In this research, a novel and effective process for waste CRT funnel glass treatment was developed. The key to this process is removal of lead from the CRT funnel glass by high-temperature melting process. Sodium carbonate powder was used as a fusion agent, sodium sulfide serves as a catalytic agent and carbon powder acts as reducing agent. Experimental results showed that lead recovery rate increased with an increase in the amount of added sodium carbonate, sodium sulfide, carbonate, temperature and holding time initially, and then reached a stable value. The maximum lead recovery rate was approximately 94%, when the optimum adding amount of sodium carbonate, sodium sulfide, carbonate, temperature and holding time were 25%, 8%, 3.6%, 1200°C and 120min, respectively. In the high-temperature melting process, lead silicate in the funnel glass was firstly reduced, and then removed. The glass slag can be made into sodium and potassium silicate by hydrolysis process. This study proposed a practical and economical process for recovery of lead and utilization of waste glass slag. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Influence of single peer interventions on the recovery attitude of persons with a psychiatric disability.

    PubMed

    Rabenschlag, Franziska; Schusterschitz, Claudia; Conca, Antoinette; Knuf, Andreas; Needham, Ian; Hoffmann, Holger

    2012-12-01

    This study examined the influence of single peer to peer interventions on participants' recovery attitudes. Following a 40-hour training, pairs of individuals with a psychiatric disability offered a session (2.5 hour) in outpatient and residential psychiatric institutions. These peer to peer interventions aimed at inspiring and contributing to participants' recovery process, by introducing them to constituent parts of the concept Recovery. Thirteen of the peer interventions were evaluated by measuring participants' recovery attitudes before (N = 145), just after (N = 115) and at 6 months postintervention (N = 53) using the Recovery Attitudes Questionnaire (RAQ7) and the Recovery Process Inventory (RPI). Wilcoxon tests demonstrated that individuals participating in a peer intervention felt significantly more certain that Recovery is possible (factor 'Recovery is possible') just after the intervention (p = 0.004), but not 6 months later; likewise, the perception of the difficulty of recovery in spite of a mental illness (factor 'Recovery is difficult and differs') was significantly lower 6 months later (p = 0.016), but not from pre to just after. The statistically significant effect of a single recovery-oriented peer intervention on participants' attitude that recovery is possible was not sustainable. These results suggest a possible higher sustainability of repeated or longer-lasting peer interventions. © 2012 The Authors. Scandinavian Journal of Caring Sciences © 2012 Nordic College of Caring Science.

  6. ["I am nuts, but networking": the qualification process for peer support work with mental health users in the psychosocial care network of Rio de Janeiro].

    PubMed

    Magalhães Dahl, Catarina; de Araújo Carvalho, Maria C; Moscoso Teixeira de Mendonça, Joana; Mitkiewicz de Souza, Flávia; Wainstok Estivil Bustos, Mayra; Fernandes de Cintra Santos, Jacqueline; Marcos Lovisi, Giovani; Tavares Cavalcanti, Maria

    2013-01-01

    Peer support work has been increasingly incorporated by community services network in the context of mental health care paradigm shift; however, it is a relatively new device in Latin America. In this article, we will describe the qualification process of peer support workers for implementing a psychosocial intervention in the city of Rio de Janeiro. We use the following methodological strategies based on a narrative, participative and dialogical perspective: focus groups, knowledge transmission through a short course; visits to mental health services and field reports. We used a narrative analysis, building the following thematic categories: experience of the recovery process; what helps and what hinders in the recovery process; the role of the family; the role of community mental health services; prejudice among society and family members; the role of peer support work; challenges. From the users' perspective, recovery is tied to ups and downs and family can either help or disturb this process. Prejudice constitutes the main barrier for recovery. To have a social role and participating in training activities facilitate recovery. Users pointed out that it is necessary to have professional support for peer support work.

  7. DMS cyclone separation processes for optimization of plastic wastes recycling and their implications.

    PubMed

    Gent, Malcolm Richard; Menendez, Mario; Toraño, Javier; Torno, Susana

    2011-06-01

    It is demonstrated that substantial reductions in plastics presently disposed of in landfills can be achieved by cyclone density media separation (DMS). In comparison with the size fraction of plastics presently processed by industrial density separations (generally 6.4 to 9.5 mm), cyclone DMS methods are demonstrated to effectively process a substantially greater range of particle sizes (from 0.5 up to 120 mm). The purities of plastic products and recoveries obtained with a single stage separation using a cylindrical cyclone are shown to attain virtually 100% purity and recoveries >99% for high-density fractions and >98% purity and recoveries were obtained for low-density products. Four alternative schemas of multi-stage separations are presented and analyzed as proposed methods to obtain total low- and high-density plastics fraction recoveries while maintaining near 100% purities. The results of preliminary tests of two of these show that the potential for processing product purities and recoveries >99.98% of both density fractions are indicated. A preliminary economic comparison of capital costs of DMS systems suggests cyclone DMS methods to be comparable with other DMS processes even if the high volume capacity for recycling operations of these is not optimized.

  8. Full-scale phosphorus recovery from digested waste water sludge in Belgium - part I: technical achievements and challenges.

    PubMed

    Marchi, A; Geerts, S; Weemaes, M; Schiettecatte, W; Wim, S; Vanhoof, C; Christine, V

    2015-01-01

    To date, phosphorus recovery as struvite in wastewater treatment plants has been mainly implemented on water phases resulting from dewatering processes of the sludge line. However, it is possible to recover struvite directly from sludge phases. Besides minimising the return loads of phosphorus from the sludge line to the water line, placing such a process within the sludge line is claimed to offer advantages such as a higher recovery potential, enhanced dewaterability of the treated sludge, and reduced speed of scaling in pipes and dewatering devices. In the wastewater treatment plant at Leuven (Belgium), a full-scale struvite recovery process from digested sludge has been tested for 1 year. Several monitoring campaigns and experiments provided indications of the efficiency of the process for recovery. The load of phosphorus from the sludge line returning to the water line as centrate accounted for 15% of the P-load of the plant in the reference situation. Data indicated that the process divides this phosphorus load by two. An improved dewaterability of 1.5% of dry solids content was achieved, provided a proper tuning of the installation. Quality analyses showed that the formed struvite was quite pure.

  9. Temperature and electrical memory of polymer fibers

    NASA Astrophysics Data System (ADS)

    Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe

    2014-05-01

    We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.

  10. [A Correlational Study of the Recovery Process in Patients With Mental Illness].

    PubMed

    Huang, Yao-Hui; Lin, Yao-Yu; Lee, Shih-Kai; Lee, Ming-Feng; Lin, Ching-Lan Esther

    2018-04-01

    The ideology of recovery addresses the autonomy of patients with mental illness and their ability to reconstruct a normal life. Empirical knowledge of this process of recovery and related factors remains unclear. To assess the process of recovery and related factors in patients with mental illness. This cross-sectional, correlational study was conducted on a convenience sample in a psychiatric hospital. Two-hundred and fifty patients with mental illness were recruited and were assessed using 3 instruments: Questionnaire about the Process of Recovery (QPR), Perceived Psychiatric Stigma Scale (PPSS), and Personal and Social Performance Scale (PSP). Data were analyzed using descriptive statistics, χ 2 , analysis of variance, and multiple linear regression analysis. Most of the participants were male, middle-aged, unmarried, educated to the senior high school level, employed, receiving home-care treatment, and diagnosed with schizophrenia. Those who were unemployed, living in a community rehabilitative house, and living in the community, respectively, earned relatively higher recovery scores (p < .05). The total scores of QPR and the 3 subscales were negatively correlated with PPSS (p < .01) and positively correlated with PSPS (p < .01; p < .05). Multiple regression analysis indicated that the factors of education, employment, having received community rehabilitative models, and stigma, respectively, significantly explained the recovery capacity of patients with mental illness. Community psychiatric nurses should provide care to help employed patients adapt to stresses in the workplace, strengthen their stigma-coping strategies, and promote public awareness of mental health issues by increasing public knowledge and acceptance of mental illness in order to minimize patient-perceived stigma and facilitate their recovery.

  11. Adult Children of Dysfunctional Families: Treatment from a Disenfranchised Grief Perspective.

    ERIC Educational Resources Information Center

    Zupanick, Corinne E.

    1994-01-01

    Generalizes concept of disenfranchised grief to understanding of recovery process for adult children of dysfunctional families. Describes recovery process of this population as parallel to grief process. Identifies two layers of unrecognized loss: loss of one's childhood and loss of one's fantasized and idealized parent. Suggests specific…

  12. SEPARATIONS RESEARCH AT THE UNITED STATES ENVIRONMENTAL PROTECTION AGENCY - TOWARDS RECOVERY OF VOCS AND METALS USING MEMBRANES AND ADSORPTION PROCESSES

    EPA Science Inventory

    The USEPA's National Risk Management Research Laboratory is investigating new separations materials and processes for removal and recovery of volatile organic compounds (VOCs) and toxic metals from wastestreams and industrial process streams. Research applying membrane-based perv...

  13. 40 CFR 63.680 - Applicability and designation of affected sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for the treatment, recycling, or recovery of off-site material. Distillation means a process, either... equilibrium within the distillation unit. (ii) Fractionation process used for the treatment, recycling, or... process used for the treatment, recycling, or recovery of off-site material. Thin-film evaporation means a...

  14. Feasibility study of polyurethane shape-memory polymer actuators for pressure bandage application.

    PubMed

    Ahmad, Manzoor; Luo, Jikui; Miraftab, Mohsen

    2012-02-01

    The feasibility of laboratory-synthesized polyurethane-based shape-memory polymer (SMPU) actuators has been investigated for possible application in medical pressure bandages where gradient pressure is required between the ankle and the knee for treatment of leg ulcers. In this study, using heat as the stimulant, SMPU strip actuators have been subjected to gradual and cyclic stresses; their recovery force, reproducibility and reusability have been monitored with respect to changes in temperature and circumference of a model leg, and the stress relaxation at various temperatures has been investigated. The findings suggest that SMPU actuators can be used for the development of the next generation of pressure bandages.

  15. Tracking Control of Shape-Memory-Alloy Actuators Based on Self-Sensing Feedback and Inverse Hysteresis Compensation

    PubMed Central

    Liu, Shu-Hung; Huang, Tse-Shih; Yen, Jia-Yush

    2010-01-01

    Shape memory alloys (SMAs) offer a high power-to-weight ratio, large recovery strain, and low driving voltages, and have thus attracted considerable research attention. The difficulty of controlling SMA actuators arises from their highly nonlinear hysteresis and temperature dependence. This paper describes a combination of self-sensing and model-based control, where the model includes both the major and minor hysteresis loops as well as the thermodynamics effects. The self-sensing algorithm uses only the power width modulation (PWM) signal and requires no heavy equipment. The method can achieve high-accuracy servo control and is especially suitable for miniaturized applications. PMID:22315530

  16. Spatial Configuration of Drought Disturbance and Forest Gap Creation across Environmental Gradients

    PubMed Central

    Andrew, Margaret E.; Ruthrof, Katinka X.; Matusick, George; Hardy, Giles E. St. J.

    2016-01-01

    Climate change is increasing the risk of drought to forested ecosystems. Although drought impacts are often anecdotally noted to occur in discrete patches of high canopy mortality, the landscape effects of drought disturbances have received virtually no study. This study characterized the landscape configuration of drought impact patches and investigated the relationships between patch characteristics, as indicators of drought impact intensity, and environmental gradients related to water availability to determine factors influencing drought vulnerability. Drought impact patches were delineated from aerial surveys following an extreme drought in 2011 in southwestern Australia, which led to patchy canopy dieback of the Northern Jarrah Forest, a Mediterranean forest ecosystem. On average, forest gaps produced by drought-induced dieback were moderate in size (6.6 ± 9.7 ha, max = 85.7 ha), compact in shape, and relatively isolated from each other at the scale of several kilometers. However, there was considerable spatial variation in the size, shape, and clustering of forest gaps. Drought impact patches were larger and more densely clustered in xeric areas, with significant relationships observed with topographic wetness index, meteorological variables, and stand height. Drought impact patch clustering was more strongly associated with the environmental factors assessed (R2 = 0.32) than was patch size (R2 = 0.21); variation in patch shape remained largely unexplained (R2 = 0.02). There is evidence that the xeric areas with more intense drought impacts are ‘chronic disturbance patches’ susceptible to recurrent drought disturbance. The spatial configuration of drought disturbances is likely to influence ecological processes including forest recovery and interacting disturbances such as fire. Regime shifts to an alternate, non-forested ecosystem may occur preferentially in areas with large or clustered drought impact patches. Improved understanding of drought impacts and their patterning in space and time will expand our knowledge of forest ecosystems and landscape processes, informing management of these dynamic systems in an uncertain future. PMID:27275744

  17. Changes of soil prokaryotic communities after clear-cutting in a karst forest: evidences for cutting-based disturbance promoting deterministic processes.

    PubMed

    Zhang, Xiao; Liu, Shirong; Li, Xiangzhen; Wang, Jingxin; Ding, Qiong; Wang, Hui; Tian, Chao; Yao, Minjie; An, Jiaxing; Huang, Yongtao

    2016-03-01

    To understand the temporal responses of soil prokaryotic communities to clear-cutting disturbance, we examined the changes in soil bacterial and archaeal community composition, structure and diversity along a chronosequence of forest successional restoration using high-throughput 16S rRNA gene sequencing. Our results demonstrated that clear-cutting significantly altered soil bacterial community structure, while no significant shifts of soil archaeal communities were observed. The hypothesis that soil bacterial communities would become similar to those of surrounding intact primary forest with natural regeneration was supported by the shifts in the bacterial community composition and structure. Bacterial community diversity patterns induced by clear-cutting were consistent with the intermediate disturbance hypothesis. Dynamics of bacterial communities was mostly driven by soil properties, which collectively explained more than 70% of the variation in bacterial community composition. Community assembly data revealed that clear-cutting promoted the importance of the deterministic processes in shaping bacterial communities, coinciding with the resultant low resource environments. But assembly processes in the secondary forest returned a similar level compared to the intact primary forest. These findings suggest that bacterial community dynamics may be predictable during the natural recovery process. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. How Soon Is Too Soon? Addiction Recovery and Family Reunification.

    ERIC Educational Resources Information Center

    Hohman, Melinda M.; Butt, Rick L.

    2001-01-01

    Describes the addiction recovery process and its impact on parenting behaviors, as this information pertains to child welfare workers involved in family reunification decisions. Reviews two models of recovery, one from alcoholism and one from cocaine addiction, and discusses women's recovery issues, case examples, and child welfare applications.…

  19. Another Breed of “Service” Animals: STARS Study Findings about Pet Ownership and Recovery from Serious Mental Illness

    PubMed Central

    Wisdom, Jennifer P.; Saedi, Goal Auzeen; Green, Carla A.

    2010-01-01

    This study elucidates the role of pets in recovery processes among adults with serious mental illness. Data derive from interviews with 177 HMO members with serious mental illness (52.2% women, average age 48.8). Interviews and questionnaires addressed factors affecting recovery processes and included questions about pet ownership. Data were analyzed using a modified grounded theory method to identify the roles pets play in the recovery process. Primary themes indicate pets assist individuals in recovery from serious mental illness by (a) providing empathy and “therapy”; (b) providing connections that can assist in redeveloping social avenues; (c) serving as “family” in the absence of or in addition to human family members; and (d) supporting self-efficacy and strengthening a sense of empowerment. Pets appear to provide more benefits than merely companionship. Participants’ reports of pet-related contributions to their well-being provide impetus to conduct more formal research on the mechanisms by which pets contribute to recovery and to develop pet-based interventions. PMID:19839680

  20. First findings of monocrystalline aragonite inclusions in garnet from diamond-grade UHPM rocks (Kokchetav Massif, Northern Kazakhstan).

    PubMed

    Korsakov, Andrey V; Vandenabeele, Peter; Perraki, Maria; Moens, Luc

    2011-10-01

    The presence of aragonite inclusions in garnet from diamond-grade metamorphic rocks from the Kokchetav Massif, Northern Kazakhstan was identified for the first time by means of Raman analyses and mapping. Aragonite appears within the inclusions up to 50 μm in size as a single crystal. These inclusions have rounded shape. The grain boundary between the host-garnet is smooth. No cracks occur around the aragonite inclusions. No significant shift in the main aragonite Raman band was measured. These observations indicate that residual pressure within the inclusion is minor. These findings imply either non-UHPM origin of the host garnet or significant plastic deformation of host minerals during retrograde stage. These features should be taken into account for recovery peak metamorphic conditions and modeling of exhumation processes of UHPM complexes. Copyright © 2010 Elsevier B.V. All rights reserved.

Top