Sample records for shaping compression characterization

  1. High-quality lossy compression: current and future trends

    NASA Astrophysics Data System (ADS)

    McLaughlin, Steven W.

    1995-01-01

    This paper is concerned with current and future trends in the lossy compression of real sources such as imagery, video, speech and music. We put all lossy compression schemes into common framework where each can be characterized in terms of three well-defined advantages: cell shape, region shape and memory advantages. We concentrate on image compression and discuss how new entropy constrained trellis-based compressors achieve cell- shape, region-shape and memory gain resulting in high fidelity and high compression.

  2. The compressed breast during mammography and breast tomosynthesis: in vivo shape characterization and modeling

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ruiz, Alejandro; Agasthya, Greeshma A.; Sechopoulos, Ioannis

    2017-09-01

    To characterize and develop a patient-based 3D model of the compressed breast undergoing mammography and breast tomosynthesis. During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3D breast surface imaging with structured light (SL) during breast compression, along with simultaneous acquisition of a tomosynthesis image. A pair of SL systems were used to acquire 3D surface images by projecting 24 different patterns onto the compressed breast and capturing their reflection off the breast surface in approximately 12-16 s. The 3D surface was characterized and modeled via principal component analysis. The resulting surface model was combined with a previously developed 2D model of projected compressed breast shapes to generate a full 3D model. Data from ten patients were discarded due to technical problems during image acquisition. The maximum breast thickness (found at the chest-wall) had an average value of 56 mm, and decreased 13% towards the nipple (breast tilt angle of 5.2°). The portion of the breast not in contact with the compression paddle or the support table extended on average 17 mm, 18% of the chest-wall to nipple distance. The outermost point along the breast surface lies below the midline of the total thickness. A complete 3D model of compressed breast shapes was created and implemented as a software application available for download, capable of generating new random realistic 3D shapes of breasts undergoing compression. Accurate characterization and modeling of the breast curvature and shape was achieved and will be used for various image processing and clinical tasks.

  3. Preparation and characterization of triple shape memory composite foams.

    PubMed

    Nejad, Hossein Birjandi; Baker, Richard M; Mather, Patrick T

    2014-10-28

    Foams prepared from shape memory polymers (SMPs) offer the potential for low density materials that can be triggered to deploy with a large volume change, unlike their solid counterparts that do so at near-constant volume. While examples of shape memory foams have been reported in the past, they have been limited to dual SMPs: those polymers featuring one switching transition between an arbitrarily programmed shape and a single permanent shape established by constituent crosslinks. Meanwhile, advances by SMP researchers have led to several approaches toward triple- or multi-shape polymers that feature more than one switching phase and thus a multitude of temporary shapes allowing for a complex sequence of shape deployments. Here, we report the design, preparation, and characterization of a triple shape memory polymeric foam that is open cell in nature and features a two phase, crosslinked SMP with a glass transition temperature of one phase at a temperature lower than a melting transition of the second phase. The soft materials were observed to feature high fidelity, repeatable triple shape behavior, characterized in compression and demonstrated for complex deployment by fixing a combination of foam compression and bending. We further explored the wettability of the foams, revealing composition-dependent behavior favorable for future work in biomedical investigations.

  4. TU-CD-207-09: Analysis of the 3-D Shape of Patients’ Breast for Breast Imaging and Surgery Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agasthya, G; Sechopoulos, I

    2015-06-15

    Purpose: Develop a method to accurately capture the 3-D shape of patients’ external breast surface before and during breast compression for mammography/tomosynthesis. Methods: During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3-D breast surface imaging during breast compression and imaging for the cranio-caudal (CC) view on a digital mammography/breast tomosynthesis system. Digital projectors and cameras mounted on tripods were used to acquire 3-D surface images of the breast, in three conditions: (a) positioned on the support paddle before compression, (b) during compression by the compression paddle and (c) the anterior-posterior view with the breast in its natural,more » unsupported position. The breast was compressed to standard full compression with the compression paddle and a tomosynthesis image was acquired simultaneously with the 3-D surface. The 3-D surface curvature and deformation with respect to the uncompressed surface was analyzed using contours. The 3-D surfaces were voxelized to capture breast shape in a format that can be manipulated for further analysis. Results: A protocol was developed to accurately capture the 3-D shape of patients’ breast before and during compression for mammography. Using a pair of 3-D scanners, the 50 patient breasts were scanned in three conditions, resulting in accurate representations of the breast surfaces. The surfaces were post processed, analyzed using contours and voxelized, with 1 mm{sup 3} voxels, converting the breast shape into a format that can be easily modified as required. Conclusion: Accurate characterization of the breast curvature and shape for the generation of 3-D models is possible. These models can be used for various applications such as improving breast dosimetry, accurate scatter estimation, conducting virtual clinical trials and validating compression algorithms. Ioannis Sechopoulos is consultant for Fuji Medical Systems USA.« less

  5. On Characterizing Particle Shape

    NASA Technical Reports Server (NTRS)

    Ennis, Bryan J.; Rickman, Douglas; Rollins, A. Brent; Ennis, Brandon

    2014-01-01

    It is well known that particle shape affects flow characteristics of granular materials, as well as a variety of other solids processing issues such as compaction, rheology, filtration and other two-phase flow problems. The impact of shape crosses many diverse and commercially important applications, including pharmaceuticals, civil engineering, metallurgy, health, and food processing. Two applications studied here include the dry solids flow of lunar simulants (e.g. JSC-1, NU-LHT-2M, OB-1), and the flow properties of wet concrete, including final compressive strength. A multi-dimensional generalized, engineering method to quantitatively characterize particle shapes has been developed, applicable to both single particle orientation and multi-particle assemblies. The two-dimension, three dimension inversion problem is also treated, and the application of these methods to DEM model particles will be discussed. In the case of lunar simulants, flow properties of six lunar simulants have been measured, and the impact of particle shape on flowability - as characterized by the shape method developed here -- is discussed, especially in the context of three simulants of similar size range. In the context of concrete processing, concrete construction is a major contributor to greenhouse gas production, of which the major contributor is cement binding loading. Any optimization in concrete rheology and packing that can reduce cement loading and improve strength loading can also reduce currently required construction safety factors. The characterization approach here is also demonstrated for the impact of rock aggregate shape on concrete slump rheology and dry compressive strength.

  6. Avalanches in compressed Ti-Ni shape-memory porous alloys: An acoustic emission study.

    PubMed

    Soto-Parra, Daniel; Zhang, Xiaoxin; Cao, Shanshan; Vives, Eduard; Salje, Ekhard K H; Planes, Antoni

    2015-06-01

    Mechanical avalanches during compression of martensitic porous Ti-Ni have been characterized by high-frequency acoustic emission (AE). Two sequences of AE signals were found in the same sample. The first sequence is mainly generated by detwinning at the early stages of compression while fracture dominates the later stages. Fracture also determines the catastrophic failure (big crash). For high-porosity samples, the AE energies of both sequences display power-law distributions with exponents ɛ≃2 (twinning) and 1.7 (fracture). The two power laws confirm that twinning and fracture both lead to avalanche criticality during compression. As twinning precedes fracture, the observation of twinning allows us to predict incipient fracture of the porous shape memory material as an early warning sign (i.e., in bone implants) before the fracture collapse actually happens.

  7. Influence of crystal habit on the compression and densification mechanism of ibuprofen

    NASA Astrophysics Data System (ADS)

    Di Martino, Piera; Beccerica, Moira; Joiris, Etienne; Palmieri, Giovanni F.; Gayot, Anne; Martelli, Sante

    2002-08-01

    Ibuprofen was recrystallized from several solvents by two different methods: addition of a non-solvent to a drug solution and cooling of a drug solution. Four samples, characterized by different crystal habit, were selected: sample A, sample E and sample T, recrystallized respectively from acetone, ethanol and THF by addition of water as non-solvent and sample M recrystallized from methanol by temperature decrease. By SEM analysis, sample were characterized with the respect of their crystal habit, mean particle diameter and elongation ratio. Sample A appears stick-shaped, sample E acicular with lamellar characteristics, samples T and M polyhedral. DSC and X-ray diffraction studies permit to exclude a polymorphic modification of ibuprofen during crystallization. For all samples micromeritics properties, densification behaviour and compression ability was analysed. Sample M shows a higher densification tendency, evidenciated by its higher apparent and tapped particle density. The ability to densificate is also pointed out by D0' value of Heckel's plot, which indicate the rearrangement of original particles at the initial stage of compression. This fact is related to the crystal habit of sample M, which is characterized by strongly smoothed coins. The increase in powder bed porosity permits a particle-particle interaction of greater extent during the subsequent stage of compression, which allows higher tabletability and compressibility.

  8. Mechanical Behavior of AZ31B Mg Alloy Sheets under Monotonic and Cyclic Loadings at Room and Moderately Elevated Temperatures

    PubMed Central

    Nguyen, Ngoc-Trung; Seo, Oh Suk; Lee, Chung An; Lee, Myoung-Gyu; Kim, Ji-hoon; Kim, Heon Young

    2014-01-01

    Large-strain monotonic and cyclic loading tests of AZ31B magnesium alloy sheets were performed with a newly developed testing system, at different temperatures, ranging from room temperature to 250 °C. Behaviors showing significant twinning during initial in-plane compression and untwinning in subsequent tension at and slightly above room temperature were recorded. Strong yielding asymmetry and nonlinear hardening behavior were also revealed. Considerable Bauschinger effects, transient behavior, and variable permanent softening responses were observed near room temperature, but these were reduced and almost disappeared as the temperature increased. Different stress–strain responses were inherent to the activation of twinning at lower temperatures and non-basal slip systems at elevated temperatures. A critical temperature was identified to account for the transition between the twinning-dominant and slip-dominant deformation mechanisms. Accordingly, below the transition point, stress–strain curves of cyclic loading tests exhibited concave-up shapes for compression or compression following tension, and an unusual S-shape for tension following compression. This unusual shape disappeared when the temperature was above the transition point. Shrinkage of the elastic range and variation in Young’s modulus due to plastic strain deformation during stress reversals were also observed. The texture-induced anisotropy of both the elastic and plastic behaviors was characterized experimentally. PMID:28788514

  9. Magnetic and conventional shape memory behavior of Mn-Ni-Sn and Mn-Ni-Sn(Fe) alloys

    NASA Astrophysics Data System (ADS)

    Turabi, A. S.; Lázpita, P.; Sasmaz, M.; Karaca, H. E.; Chernenko, V. A.

    2016-05-01

    Magnetic and conventional shape memory properties of Mn49Ni42Sn9(at.%) and Mn49Ni39Sn9Fe3(at.%) polycrystalline alloys exhibiting martensitic transformation from ferromagnetic austenite into weakly magnetic martensite are characterized under compressive stress and magnetic field. Magnetization difference between transforming phases drastically increases, while transformation temperature decreases with the addition of Fe. Both Mn49Ni42Sn9 and Mn49Ni39Sn9Fe3 alloys show remarkable superelastic and shape memory properties with recoverable strain of 4% and 3.5% under compression at room temperature, respectively. These characteristics can be counted as extraordinary among the polycrystalline NiMn-based magnetic shape memory alloys. Critical stress for phase transformation was increased by 34 MPa in Mn49Ni39Sn9Fe3 and 21 MPa in Mn49Ni42Sn9 at 9 T, which can be qualitatively understood in terms of thermodynamic Clausius-Clapeyron relationships and in the framework of the suggested physical concept of a volume magnetostress.

  10. Ultrafast Kα x-ray Thomson scattering from shock compressed lithium hydride

    DOE PAGES

    Kritcher, A. L.; Neumayer, P.; Castor, J.; ...

    2009-04-13

    Spectrally and temporally resolved x-ray Thomson scattering using ultrafast Ti Kα x rays has provided experimental validation for modeling of the compression and heating of shocked matter. The coalescence of two shocks launched into a solid density LiH target by a shaped 6 ns heater beam was observed from rapid heating to temperatures of 2.2 eV, enabling tests of shock timing models. Here, the temperature evolution of the target at various times during shock progression was characterized from the intensity of the elastic scattering component. The observation of scattering from plasmons, electron plasma oscillations, at shock coalescence indicates a transitionmore » to a dense metallic plasma state in LiH. From the frequency shift of the measured plasmon feature the electron density was directly determined with high accuracy, providing a material compression of a factor of 3 times solid density. The quality of data achieved in these experiments demonstrates the capability for single shot dynamic characterization of dense shock compressed matter. Here, the conditions probed in this experiment are relevant for the study of the physics of planetary formation and to characterize inertial confinement fusion targets for experiments such as on the National Ignition Facility, Lawrence Livermore National Laboratory.« less

  11. Preparation and evaluation of a novel star-shaped polyacid-constructed dental glass-ionomer system.

    PubMed

    Howard, Leah; Weng, Yiming; Xie, Dong

    2014-06-01

    The objective of this study was to synthesize and characterize novel star-shaped poly(acrylic acid-co-itaconic acid)s via chain-transfer radical polymerization technique, use these polyacids to formulate the resin-modified glass-ionomer cements, and evaluate the mechanical strengths of the formed cements The star-shaped poly(acrylic acid-co-itaconic acid)s were synthesized via a chain-transfer radical polymerization reaction using a newly synthesized star-shaped chain-transfer agent. The effects of MW, GM-tethering ratio, P/L ratio and aging on the compressive properties of the formed experimental cements were studied. Compressive, diametral tensile as well as flexural strengths were evaluated and compared to those of Fuji II and Fuji II LC cements. The star-shaped polyacids showed significantly lower viscosities in water as compared to their linear counterparts. The cements formulated with these novel polyacids showed significantly improved mechanical strengths i.e., 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS and 36% in FS, higher than commercial Fuji II LC. After aging in water for 30 days, the compressive strengths of the experimental cements were significantly changed with an increase of 29% in YS, 19% in modulus as well as 23% in CS and a decrease of 5% in toughness, indicating that aging in water enhances the salt-bridge formation and increases brittleness. A novel light-cured glass-ionomer cement system composed of the star-shaped poly(carboxylic acid)s has been developed via a cost-effective and time-efficient chain-transfer radical polymerization. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Normalized stiffness ratios for mechanical characterization of isotropic acoustic foams.

    PubMed

    Sahraoui, Sohbi; Brouard, Bruno; Benyahia, Lazhar; Parmentier, Damien; Geslain, Alan

    2013-12-01

    This paper presents a method for the mechanical characterization of isotropic foams at low frequency. The objective of this study is to determine the Young's modulus, the Poisson's ratio, and the loss factor of commercially available foam plates. The method is applied on porous samples having square and circular sections. The main idea of this work is to perform quasi-static compression tests of a single foam sample followed by two juxtaposed samples having the same dimensions. The load and displacement measurements lead to a direct extraction of the elastic constants by means of normalized stiffness and normalized stiffness ratio which depend on Poisson's ratio and shape factor. The normalized stiffness is calculated by the finite element method for different Poisson ratios. The no-slip boundary conditions imposed by the loading rigid plates create interfaces with a complex strain distribution. Beforehand, compression tests were performed by means of a standard tensile machine in order to determine the appropriate pre-compression rate for quasi-static tests.

  13. Tunable thiol-epoxy shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Ellson, Gregory; Di Prima, Matthew; Ware, Taylor; Tang, Xiling; Voit, Walter

    2015-05-01

    Shape memory polymers (SMPs) are uniquely suited to a number of applications due to their shape storage and recovery abilities and the wide range of available chemistries. However, many of the desired performance properties are tied to the polymer chemistry which can make optimization difficult. The use of foaming techniques is one way to tune mechanical response of an SMP without changing the polymer chemistry. In this work, a novel thiol-epoxy SMP was foamed using glass microspheres (40 and 50% by volume Q-Cel 6019), using expandable polymer microspheres (1% 930 DU 120), and by a chemical blowing agent (1% XOP-341). Each approach created SMP foam with a differing density and microstructure from the others. Thermal and thermomechanical analysis was performed to observe the behavioral difference between the foaming techniques and to confirm that the glass transition (Tg) was relatively unchanged near 50 °C while the glassy modulus varied from 19.1 to 345 MPa and the rubbery modulus varied from 0.04 to 2.2 MPa. The compressive behavior of the foams was characterized through static compression testing at different temperatures, and cyclic compression testing at Tg. Constrained shape recovery testing showed a range of peak recovery stress from 5 MPa for the syntactic Q-Cel foams to ˜0.1 MPa for the chemically blown XOP-341 foam. These results showed that multiple foaming approaches can be used with a novel SMP to vary the mechanical response independent of Tg and polymer chemistry.

  14. Investigation of Multi-Functional Ferroelectric Nanorod/Carbon Nanotube/Polymer Composites and Shape Memory Alloy Treatment for Vibration Control of Fire Control System to Improve Firing Accuracy

    DTIC Science & Technology

    2015-08-10

    representative of the main barrel of a tank or structural health monitoring, for example. We have been working on determining the proper shape of the sensor...needed to be addressed, namely cantilever beam vibrations that were representative of the main barrel of a tank or structural health monitoring, for...MWCNT was made using a frit compression technique; the morphological characterization of the PANI/MWCNT film; its electrical resistance as a

  15. Evaluation of suitable porosity for sintered porous {beta}-tricalcium phosphate as a bone substitute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jin-Hong; Bae, Ji-Yong; Shim, Jaebum

    2012-09-15

    Structural and mechanical characterization is performed for sintered porous beta tricalcium phosphate ({beta}-TCP) to determine the appropriate porosity for use as a bone substitute. Four different types of porous {beta}-TCP specimen with different porosities are fabricated through a sintering process. For structural characterization, scanning electron microscopy and a Microfocus X-ray computed tomography system are used to investigate the pore openings on the specimen's surface, pore size, pore distribution, and pore interconnections. Compression tests of the specimens are performed, and mechanical properties such as the elastic modulus and compressive strength are obtained. Also, the geometric shape and volume of the {beta}-TCPmore » around the contact region of two pores, which need to be initially resolved after implantation in order to increase the size of the pore openings, are evaluated through simple calculations. The results show that porous {beta}-TCP with 42.1% porosity may be a suitable bone substitute candidate in terms of sustaining external loads, and inducing and cultivating bone cells. - Highlights: Black-Right-Pointing-Pointer Structural and mechanical characterization was performed for sintered porous {beta}-TCP specimens. Black-Right-Pointing-Pointer For structural characterization, SEM and Microfocus X-ray CT system were used. Black-Right-Pointing-Pointer For mechanical characterization, compression tests were performed. Black-Right-Pointing-Pointer Porous {beta}-TCP with 42.1% porosity may be a suitable bone substitute.« less

  16. Compression-induced texture change in NiMnGa-polymer composites observed by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Scheerbaum, Nils; Hinz, Dietrich; Gutfleisch, Oliver; Skrotzki, Werner; Schultz, Ludwig

    2007-05-01

    Composites consisting of magnetic shape memory (MSM) particles embedded in a polyester matrix were prepared. Single-crystalline MSM particles were obtained by mortar grinding of melt-extracted and subsequently annealed Ni50.9Mn27.1Ga22.0 (at. %) fibers. The crystal structure of the martensite is tetragonal (5M) with c

  17. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting.

    PubMed

    Taheri Andani, Mohsen; Saedi, Soheil; Turabi, Ali Sadi; Karamooz, M R; Haberland, Christoph; Karaca, Haluk Ersin; Elahinia, Mohammad

    2017-04-01

    Near equiatomic NiTi shape memory alloys were fabricated in dense and designed porous forms by Selective Laser Melting (SLM) and their mechanical and shape memory properties were systematically characterized. Particularly, the effects of pore morphology on their mechanical responses were investigated. Dense and porous NiTi alloys exhibited good shape memory effect with a recoverable strain of about 5% and functional stability after eight cycles of compression. The stiffness and residual plastic strain of porous NiTi were found to depend highly on the pore shape and the level of porosity. Since porous NiTi structures have lower elastic modulus and density than dense NiTi with still good shape memory properties, they are promising materials for lightweight structures, energy absorbers, and biomedical implants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Use of the shape memory effect of a titanium nickelide spring in a suturing device for the formation of compression esophageal anastomoses.

    PubMed

    Robak, A N

    2008-11-01

    A new method for the formation of a compression esophagointestinal anastomosis is proposed. The compression force in the new device for creation of compression circular anastomoses is created by means of a titanium nickelide spring with a "shape memory" effect. Experimental study showed good prospects of the new device and the advantages of the anastomosis compression suture formed by means of this device in comparison with manual ligature suturing.

  19. Sinking a Granular Raft

    NASA Astrophysics Data System (ADS)

    Protière, Suzie; Josserand, Christophe; Aristoff, Jeffrey M.; Stone, Howard A.; Abkarian, Manouk

    2017-03-01

    We report experiments that yield new insights on the behavior of granular rafts at an oil-water interface. We show that these particle aggregates can float or sink depending on dimensionless parameters taking into account the particle densities and size and the densities of the two fluids. We characterize the raft shape and stability and propose a model to predict its shape and maximum length to remain afloat. Finally we find that wrinkles and folds appear along the raft due to compression by its own weight, which can trigger destabilization. These features are characteristics of an elastic instability, which we discuss, including the limitations of our model.

  20. Properties of a Ni(sub 19.5)Pd(sub 30)Ti(sub 50.5) high-temperature shape memory alloy in tension and compression

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald; Padula, Santo, II; Bigelow, Glen; Rios, Orlando; Garg, Anita; Lerch, Brad

    2006-01-01

    Potential applications involving high-temperature shape memory alloys have been growing in recent years. Even in those cases where promising new alloys have been identified, the knowledge base for such materials contains gaps crucial to their maturation and implementation in actuator and other applications. We begin to address this issue by characterizing the mechanical behavior of a Ni19.5Pd30Ti50.5 high-temperature shape memory alloy in both uniaxial tension and compression at various temperatures. Differences in the isothermal uniaxial deformation behavior were most notable at test temperatures below the martensite finish temperature. The elastic modulus of the material was very dependent on strain level; therefore, dynamic Young#s Modulus was determined as a function of temperature by an impulse excitation technique. More importantly, the performance of a thermally activated actuator material is dependent on the work output of the alloy. Consequently, the strain-temperature response of the Ni19.5Pd30Ti50.5 alloy under various loads was determined in both tension and compression and the specific work output calculated and compared in both loading conditions. It was found that the transformation strain and thus, the specific work output were similar regardless of the loading condition. Also, in both tension and compression, the strain-temperature loops determined under constant load conditions did not close due to the fact that the transformation strain during cooling was always larger than the transformation strain during heating. This was apparently the result of permanent plastic deformation of the martensite phase with each cycle. Consequently, before this alloy can be used under cyclic actuation conditions, modification of the microstructure or composition would be required to increase the resistance of the alloy to plastic deformation by slip.

  1. Configuring and Characterizing X-Rays for Laser-Driven Compression Experiments at the Dynamic Compression Sector

    NASA Astrophysics Data System (ADS)

    Li, Y.; Capatina, D.; D'Amico, K.; Eng, P.; Hawreliak, J.; Graber, T.; Rickerson, D.; Klug, J.; Rigg, P. A.; Gupta, Y. M.

    2017-06-01

    Coupling laser-driven compression experiments to the x-ray beam at the Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS) of Argonne National Laboratory requires state-of-the-art x-ray focusing, pulse isolation, and diagnostics capabilities. The 100J UV pulsed laser system can be fired once every 20 minutes so precise alignment and focusing of the x-rays on each new sample must be fast and reproducible. Multiple Kirkpatrick-Baez (KB) mirrors are used to achieve a focal spot size as small as 50 μm at the target, while the strategic placement of scintillating screens, cameras, and detectors allows for fast diagnosis of the beam shape, intensity, and alignment of the sample to the x-ray beam. In addition, a series of x-ray choppers and shutters are used to ensure that the sample is exposed to only a single x-ray pulse ( 80ps) during the dynamic compression event and require highly precise synchronization. Details of the technical requirements, layout, and performance of these instruments will be presented. Work supported by DOE/NNSA.

  2. PERCUTANEOUS BALLOON COMPRESSION OF GASSERIAN GANGLION FOR THE TREATMENT OF TRIGEMINAL NEURALGIA: AN EXPERIENCE FROM INDIA.

    PubMed

    Agarwal, Anurag; Dhama, Vipin; Manik, Yogesh K; Upadhyaya, M K; Singh, C S; Rastogi, V

    2015-02-01

    Trigeminal neuralgia (TN) is characterized by unilateral, lancinating, paroxysmal pain in the dermatomal distribution area of trigeminal nerve. Percutaneous balloon compression (PBC) of Gasserian ganglion is an effective, comparatively cheaper and simple therapeutic modality for treatment of TN. Compression secondary to PBC selectively injures the large myelinated A-alfa (afferent) fibers that mediate light touch and does not affect A-delta and C-fibres, which carry pain sensation. Balloon compression reduces the sensory neuronal input, thus turning off the trigger to the neuropathic trigeminal pain. In this current case series, we are sharing our experience with PBC of Gasserian Ganglion for the treatment of idiopathic TN in our patients at an academic university-based medical institution in India. During the period of August 2012 to October 2013, a total of twelve PBCs of Gasserian Ganglion were performed in eleven patients suffering from idiopathic TN. There were nine female patients and two male patients with the age range of 35-70 years (median age: 54 years). In all patients cannulation of foramen ovale was done successfully in the first attempt. In eight out of eleven (72.7%) patients ideal 'Pear-shaped' balloon visualization could be achieved. In the remaining three patients (27.3%), inflated balloon was 'Bullet-shaped'. In one patient final placement of Fogarty balloon was not satisfactory and it ruptured during inflation. This case was deferred for one week when it was completed successfully with 'Pear-shaped' balloon inflation. During the follow up period of 1-13 months, there have been no recurrences of TN. Eight out of eleven patients (72.7%) are completely off medicines (carbamazepine and baclofen) and other two patients are stable on very low doses of carbamazepine. All patients have reported marked improvement in quality of life. This case series shows that percutaneous balloon compression is a useful minimally invasive intervention for the treatment of trigeminal neuralgia.

  3. Characterization and compression of dissipative-soliton-resonance pulses in fiber lasers

    PubMed Central

    Li, Daojing; Li, Lei; Zhou, Junyu; Zhao, Luming; Tang, Dingyuan; Shen, Deyuan

    2016-01-01

    We report numerical and experimental studies of dissipative-soliton-resonance (DSR) in a fiber laser with a nonlinear optical loop mirror. The DSR pulse presents temporally a flat-top profile and a clamped peak power. Its spectrum has a rectangle profile with characteristic steep edges. It shows a unique behavior as pulse energy increases: The rectangle part of the spectrum is unchanged while the newly emerging spectrum sits on the center part and forms a peak. Experimental observations match well with the numerical results. Moreover, the detailed evolution of the DSR pulse compression is both numerically and experimentally demonstrated for the first time. An experimentally obtained DSR pulse of 63 ps duration is compressed down to 760 fs, with low-intensity pedestals using a grating pair. Before being compressed to its narrowest width, the pulse firstly evolves into a cat-ear profile, and the corresponding autocorrelation trace shows a crown shape, which distinguishes itself from properties of other solitons formed in fiber lasers. PMID:27025189

  4. Effects of axial compression and rotation angle on torsional mechanical properties of bovine caudal discs.

    PubMed

    Bezci, Semih E; Klineberg, Eric O; O'Connell, Grace D

    2018-01-01

    The intervertebral disc is a complex joint that acts to support and transfer large multidirectional loads, including combinations of compression, tension, bending, and torsion. Direct comparison of disc torsion mechanics across studies has been difficult, due to differences in loading protocols. In particular, the lack of information on the combined effect of multiple parameters, including axial compressive preload and rotation angle, makes it difficult to discern whether disc torsion mechanics are sensitive to the variables used in the test protocol. Thus, the objective of this study was to evaluate compression-torsion mechanical behavior of healthy discs under a wide range of rotation angles. Bovine caudal discs were tested under a range of compressive preloads (150, 300, 600, and 900N) and rotation angles (± 1, 2, 3, 4, or 5°) applied at a rate of 0.5°/s. Torque-rotation data were used to characterize shape changes in the hysteresis loop and to calculate disc torsion mechanics. Torsional mechanical properties were described using multivariate regression models. The rate of change in torsional mechanical properties with compression depended on the maximum rotation angle applied, indicating a strong interaction between compressive stress and maximum rotation angle. The regression models reported here can be used to predict disc torsion mechanics under axial compression for a given disc geometry, compressive preload, and rotation angle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Fabrication and characterization of an egg-shaped hollow fiber microbubble

    NASA Astrophysics Data System (ADS)

    Wang, Guanjun; Ruan, Yinlan; Jia, Pinggang; Gui, Zhiguo; Zhang, Pengcheng; Wang, Chao; Liu, Shen; Liao, Changrui; Yin, Guolu; Wang, Yiping

    2017-04-01

    In this paper, an egg-shaped microbubble is proposed and analyzed firstly, which is fabricated by the pressure-assisted arc discharge technique. By tailoring the arc parameters and the position of glass tube during the fabrication process, the thinnest wall of the fabricated microbubble could reach to the level of 873nm. Then, the fiber Fabry-Perot interference technique is used to analyze the deformation of microbubble that under different filling pressures. It is found that the endface of micro-bubble occurs compression when the inner pressure increasing from 4Kpa to 1400KPa. And the pressure sensitivity of such egg-shaped microbubble sample is14.3pm/Kpa. Results of this study could be good reference for developing new pressure sensors, etc.

  6. Filamentation and light bullet formation dynamics in solid-state dielectric media with weak, moderate and strong anomalous group velocity dispersion

    NASA Astrophysics Data System (ADS)

    Gražulevičiūtė, I.; Garejev, N.; Majus, D.; Jukna, V.; Tamošauskas, G.; Dubietis, A.

    2016-02-01

    We present a series of measurements, which characterize filamentation dynamics of intense ultrashort laser pulses in the space-time domain, as captured by means of three-dimensional imaging technique in sapphire and fused silica, in the wavelength range of 1.45-2.25 μm, accessing the regimes of weak, moderate and strong anomalous group velocity dispersion (GVD). In the regime of weak anomalous GVD (at 1.45 μm), pulse splitting into two sub-pulses producing a pair of light bullets with spectrally shifted carrier frequencies in both nonlinear media is observed. In contrast, in the regimes of moderate (at 1.8 μm) and strong (at 2.25 μm) anomalous GVD we observe notably different transient dynamics, which however lead to the formation of a single self-compressed quasistationary light bullet with an universal spatiotemporal shape comprised of an extended ring-shaped periphery and a localized intense core that carries the self-compressed pulse.

  7. Large magnetic entropy change and magnetoresistance in a Ni 41Co 9Mn 40Sn 10 magnetic shape memory alloy

    DOE PAGES

    Huang, L.; Cong, D. Y.; Ma, L.; ...

    2015-07-02

    A polycrystalline Ni 41Co 9Mn 40Sn 10 (at. %) magnetic shape memory alloy was prepared by arc melting and characterized mainly by magnetic measurements, in-situ high-energy X-ray diffraction (HEXRD), and mechanical testing. A large magnetoresistance of 53.8% (under 5 T) and a large magnetic entropy change of 31.9 J/(kg K) (under 5 T) were simultaneously achieved. Both of these values are among the highest values reported so far in Ni-Mn-Sn-based Heusler alloys. The large magnetic entropy change, closely related to the structural entropy change, is attributed to the large unit cell volume change across martensitic transformation as revealed by ourmore » in-situ HEXRD experiment. Furthermore, good compressive properties were also obtained. Lastly, the combination of large magnetoresistance, large magnetic entropy change, and good compressive properties, as well as low cost makes this alloy a promising candidate for multifunctional applications.« less

  8. Evaluation on Compressive Characteristics of Medical Stents Applied by Mesh Structures

    NASA Astrophysics Data System (ADS)

    Hirayama, Kazuki; He, Jianmei

    2017-11-01

    There are concerns about strength reduction and fatigue fracture due to stress concentration in currently used medical stents. To address these problems, meshed stents applied by mesh structures were interested for achieving long life and high strength perfromance of medical stents. The purpose of this study is to design basic mesh shapes to obatin three dimensional (3D) meshed stent models for mechanical property evaluation. The influence of introduced design variables on compressive characteristics of meshed stent models are evaluated through finite element analysis using ANSYS Workbench code. From the analytical results, the compressive stiffness are changed periodically with compressive directions, average results need to be introduced as the mean value of compressive stiffness of meshed stents. Secondly, compressive flexibility of meshed stents can be improved by increasing the angle proportional to the arm length of the mesh basic shape. By increasing the number of basic mesh shapes arranged in stent’s circumferential direction, compressive rigidity of meshed stent tends to be increased. Finaly reducing the mesh line width is found effective to improve compressive flexibility of meshed stents.

  9. Evaluation on Compression Properties of Different Shape and Perforated rHDPE in Concrete Structures

    NASA Astrophysics Data System (ADS)

    Yuhazri, M. Y.; Hafiz, K. M.; Myia, Y. Z. A.; Jia, C. P.; Sihombing, H.; Sapuan, S. M.; Badarulzaman, N. A.

    2017-10-01

    The purpose of this study was to develop a concrete structure by incorporating waste HDPE plastic as the main reinforcement material and cement as the matrix via standard casting technique. There are eight different shapes of rHDPE reinforcing structure were used to investigate the compression properties of produced concrete composites. Experimental result shown that the highest shape in compressive strength of rHDPE reinforcing structure were the concrete with the addition of X-perforated beam (18.22 MPa), followed by X-beam (17.7 MPa), square perforated tube (17.54 MPa), round tube (17.42 MPa) and round perforated tube (16.69 MPa). In terms of their compressive behavior, the average concrete containing rHDPE reinforcement was successfully improved by 6 % of the mechanical characteristic compared to control concrete. It is shown that the addition of waste plastic as reinforcement structure can provide better compressive strength based on their shape and pattern respectively.

  10. Preparation and characterization of shape memory polymer scaffolds via solvent casting/particulate leaching.

    PubMed

    De Nardo, Luigi; Bertoldi, Serena; Cigada, Alberto; Tanzi, Maria Cristina; Haugen, Håvard Jostein; Farè, Silvia

    2012-09-27

    Porous Shape Memory Polymers (SMPs) are ideal candidates for the fabrication of defect fillers, able to support tissue regeneration via minimally invasive approaches. In this regard, control of pore size, shape and interconnection is required to achieve adequate nutrient transport and cell ingrowth. Here, we assessed the feasibility of the preparation of SMP porous structures and characterized their chemico-physical properties and in vitro cell response. SMP scaffolds were obtained via solvent casting/particulate leaching of gelatin microspheres, prepared via oil/water emulsion. A solution of commercial polyether-urethane (MM-4520, Mitsubishi Heavy Industries) was cast on compacted microspheres and leached-off after polymer solvent evaporation. The obtained structures were characterized in terms of morphology (SEM and micro-CT), thermo-mechanical properties (DMTA), shape recovery behavior in compression mode, and in vitro cytocompatibility (MG63 Osteoblast-like cell line). The fabrication process enabled easy control of scaffold morphology, pore size, and pore shape by varying the gelatin microsphere morphology. Homogeneous spherical and interconnected pores have been achieved together with the preservation of shape memory ability, with recovery rate up to 90%. Regardless of pore dimensions, MG63 cells were observed adhering and spreading onto the inner surface of the scaffolds obtained for up to seven days of static in vitro tests. A new class of SMP porous structures has been obtained and tested in vitro: according to these preliminary results reported, SMP scaffolds can be further exploited in the design of a new class of implantable devices.

  11. Synthesis and characterization of shape-memory poly carbonate urethane microspheres for future vascular embolization.

    PubMed

    Liu, Rongrong; Dai, Honglian; Zhou, Qian; Zhang, Qian; Zhang, Ping

    2016-08-01

    Two types of shape memory poly carbonate urethanes (PCUs) microspheres were synthesized by pre-polymerization and suspension polymerization, based on Polycarbonate diol (PCDL) as the soft segment, Isophorone diisocyanate (IPDI) and 1,6-hexamethylene diisocyanate (HDI) as the hard segments and 1,4-butanediol (BDO) as the chain expanding agent. The structure, crystallinity, and thermal property of the two synthesized PCUs were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Differential scanning calorimetery (DSC), respectively. The results showed that the two types of PCUs exhibited high thermal stability with phase separation and semi-crystallinity. Also, the results of the compression test displayed that the shape fixity and the shape recovery of two PCUs were more than 90% compared to the originals, indicating their similar bio-applicability and shape-memory properties. The tensile strength, elongation at break was enhanced by introducing and increasing content of HDI. The water contact angles of PCUs decreased and their surface tension increased by surface modified with Bovine serum albumin (BSA). Furthermore, the biological study results of two types of PCUs from the platelet adhesion test and the cell proliferation inhibition test indicated they had some biocompatibilites. Hence, the PCU microspheres might represent a smart and shape-memory embolic agent for vascular embolization.

  12. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert

    2013-11-01

    Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  13. Prechamber Compression-Ignition Engine Performance

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H , Jr

    1938-01-01

    Single-cylinder compression-ignition engine tests were made to investigate the performance characteristics of prechamber type of cylinder head. Certain fundamental variables influencing engine performance -- clearance distribution, size, shape, and direction of the passage connecting the cylinder and prechamber, shape of prechamber, cylinder clearance, compression ratio, and boosting -- were independently tested. Results of motoring and of power tests, including several typical indicator cards, are presented.

  14. Phase Transition and Texture Evolution in the Ni-Mn-Ga Ferromagnetic Shape-Memory Alloys Studied by a Neutron Diffraction Technique

    NASA Astrophysics Data System (ADS)

    Nie, Z. H.; Wang, Y. D.; Wang, G. Y.; Richardson, J. W.; Wang, G.; Liu, Y. D.; Liaw, P. K.; Zuo, L.

    2008-12-01

    The phase transition and influence of the applied stress on the texture evolution in the as-cast Ni-Mn-Ga ferromagnetic shape-memory alloys were studied by the time-of-flight (TOF) neutron diffraction technique. The neutron diffraction experiments were performed on the General Purpose Powder Diffractometer (Argonne National Laboratory). Inverse pole figures were determined from the neutron data for characterizing the orientation distributions and variant selections of polycrystalline Ni-Mn-Ga alloys subjected to different uniaxial compression deformations. Texture analyses reveal that the initial texture for the parent phase in the as-cast specimen was composed of {left\\{ {{text{001}}} right\\}}{left< {{text{100}}} rightrangle } , {left\\{ {{text{001}}} right\\}}{left< {{text{110}}} rightrangle } , {left\\{ {{text{011}}} right\\}}{left< {{text{100}}} rightrangle } , and {left\\{ {{text{011}}} right\\}}{left< {{text{110}}} rightrangle } , which was weakened after the compression deformation. Moreover, a strong preferred selection of martensitic-twin variants ( {left\\{ {{text{110}}} right\\}}{left< {{text{001}}} rightrangle } and {left\\{ {{text{100}}} right\\}}{left< {{text{001}}} rightrangle } ) was observed in the transformed martensite after a compression stress applied on the parent phase along the cyclindrical axis of the specimens. The preferred selection of variants can be well explained by considering the grain/variant-orientation-dependent Bain-distortion energy.

  15. Mechanical Properties of Shock-Damaged Rocks

    NASA Technical Reports Server (NTRS)

    He, Hongliang; Ahrens, T. J.

    1994-01-01

    Stress-strain tests were performed both on shock-damaged gabbro and limestone. The effective Young's modulus decreases with increasing initial damage parameter value, and an apparent work-softening process occurs prior to failure. To further characterize shock-induced microcracks, the longitudinal elastic wave velocity behavior of shock-damaged gabbro in the direction of compression up to failure was measured using an acoustic transmission technique under uniaxial loading. A dramatic increase in velocity was observed for the static compressive stress range of 0-50 MPa. Above that stress range, the velocity behavior of lightly damaged (D(sub 0) less than 0.1) gabbro is almost equal to unshocked gabbro. The failure strength of heavily-damaged (D(sub 0) greater than 0.1) gabbro is approx. 100-150 MPa, much lower than that of lightly damaged and unshocked gabbros (approx. 230-260 MPa). Following Nur's theory, the crack shape distribution was analyzed. The shock-induced cracks in gabbro appear to be largely thin penny-shaped cracks with c/a values below 5 x 10(exp -4). Moreover, the applicability of Ashby and Sammis's theory relating failure strength and damage parameter of shock-damaged rocks was examined and was found to yield a good estimate of the relation of shock-induced deficit in elastic modulus with the deficit in compressive strength.

  16. A new application of Fe-28Mn-6Si-5Cr (mass%) shape memory alloy, for self-adjustable axial preloading of ball bearings

    NASA Astrophysics Data System (ADS)

    Paleu, V.; Gurău, G.; Comăneci, R. I.; Sampath, V.; Gurău, C.; Bujoreanu, L. G.

    2018-07-01

    A new application of Fe-Mn-Si based shape memory alloys (SMAs) was developed under the form of truncated cone-shaped module, for self-adaptive axial preload control in angular contact bearings. The modules were processed by high-speed high-pressure torsion (HS-HPT), from circular crowns cut from axially drilled ingots of Fe-28Mn-6Si-9Cr (mass%) SMA. The specimens were mechanically tested in the hot rolled state, prior to HS-HPT processing, demonstrating free-recovery shape memory effect (SME) and high values for ultimate tensile stress and strain as well as low cycle fatigue life. The HS-HPT modules were subjected to static loading–unloading compression, without/with lubrication at specimen-tool interface, both individually and in different coupling modes. Dry compression cycles revealed reproducible stress plateaus both during loading and unloading stages, being associated with hardness gradient, along cone generator, caused by HS-HPT processing. Constrained recovery tests, performed using compressed modules, emphasized the continuous generation of stress during heating, by one way SME, at a rate of ∼9.3 kPa/%. Dynamic compression tests demonstrated the capability of modules to develop closed stress–strain loops after 50 000 cycles, without visible signs of fatigue. HS-HPT caused the fragmentation of crystalline grains, while compression cycles enabled the formation of ε hexagonal close-packed stress-induced martensite (ε), which is characterized by a high density of stacking faults. Using an experimental setup, specifically designed and manufactured for this purpose, both feasibility and functionality tests were performed using HS-HPT modules. The feasibility tests proved the existence of a general tendency of both axial force and friction torque to increase in time, favoured by the increase of initial preloading force and the augmentation of rotation speed. Functionality tests, performed on two pairs of HS-HPT modules fastened in base-to-base coupling mode, demonstrated the capacity of modules to accommodate high preloads while maintaining both axial force and friction torque at constant values in time. These preliminary results suggest that, for the time being, the modules can operate only as single use applications, more effective during the running-in period. This bevahior recommends HS-HPT modules as a new application of Fe-Mn-Si SMAs, with the potential to be used for the development of new temperature-responsive compression displacement systems.

  17. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.

    PubMed

    Miao, Shida; Zhu, Wei; Castro, Nathan J; Leng, Jinsong; Zhang, Lijie Grace

    2016-10-01

    The objective of this study was to four-dimensional (4D) print novel biomimetic gradient tissue scaffolds with highly biocompatible naturally derived smart polymers. The term "4D printing" refers to the inherent smart shape transformation of fabricated constructs when implanted minimally invasively for seamless and dynamic integration. For this purpose, a series of novel shape memory polymers with excellent biocompatibility and tunable shape changing effects were synthesized and cured in the presence of three-dimensional printed sacrificial molds, which were subsequently dissolved to create controllable and graded porosity within the scaffold. Surface morphology, thermal, mechanical, and biocompatible properties as well as shape memory effects of the synthesized smart polymers and resultant porous scaffolds were characterized. Fourier transform infrared spectroscopy and gel content analysis confirmed the formation of chemical crosslinking by reacting polycaprolactone triol and castor oil with multi-isocyanate groups. Differential scanning calorimetry revealed an adjustable glass transition temperature in a range from -8°C to 35°C. Uniaxial compression testing indicated that the obtained polymers, possessing a highly crosslinked interpenetrating polymeric networks, have similar compressive modulus to polycaprolactone. Shape memory tests revealed that the smart polymers display finely tunable recovery speed and exhibit greater than 92% shape fixing at -18°C or 0°C and full shape recovery at physiological temperature. Scanning electron microscopy analysis of fabricated scaffolds revealed a graded microporous structure, which mimics the nonuniform distribution of porosity found within natural tissues. With polycaprolactone serving as a control, human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and differentiation greatly increased on our novel smart polymers. The current work will significantly advance the future design and development of novel and functional biomedical scaffolds with advanced 4D printing technology and highly biocompatible smart biomaterials.

  18. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications

    PubMed Central

    Miao, Shida; Zhu, Wei; Castro, Nathan J.; Leng, Jinsong

    2016-01-01

    The objective of this study was to four-dimensional (4D) print novel biomimetic gradient tissue scaffolds with highly biocompatible naturally derived smart polymers. The term “4D printing” refers to the inherent smart shape transformation of fabricated constructs when implanted minimally invasively for seamless and dynamic integration. For this purpose, a series of novel shape memory polymers with excellent biocompatibility and tunable shape changing effects were synthesized and cured in the presence of three-dimensional printed sacrificial molds, which were subsequently dissolved to create controllable and graded porosity within the scaffold. Surface morphology, thermal, mechanical, and biocompatible properties as well as shape memory effects of the synthesized smart polymers and resultant porous scaffolds were characterized. Fourier transform infrared spectroscopy and gel content analysis confirmed the formation of chemical crosslinking by reacting polycaprolactone triol and castor oil with multi-isocyanate groups. Differential scanning calorimetry revealed an adjustable glass transition temperature in a range from −8°C to 35°C. Uniaxial compression testing indicated that the obtained polymers, possessing a highly crosslinked interpenetrating polymeric networks, have similar compressive modulus to polycaprolactone. Shape memory tests revealed that the smart polymers display finely tunable recovery speed and exhibit greater than 92% shape fixing at −18°C or 0°C and full shape recovery at physiological temperature. Scanning electron microscopy analysis of fabricated scaffolds revealed a graded microporous structure, which mimics the nonuniform distribution of porosity found within natural tissues. With polycaprolactone serving as a control, human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and differentiation greatly increased on our novel smart polymers. The current work will significantly advance the future design and development of novel and functional biomedical scaffolds with advanced 4D printing technology and highly biocompatible smart biomaterials. PMID:28195832

  19. Anthropomorphic breast phantoms for preclinical imaging evaluation with transmission or emission imaging

    NASA Astrophysics Data System (ADS)

    Tornai, Martin P.; McKinley, Randolph L.; Bryzmialkiewicz, Caryl N.; Cutler, Spencer J.; Crotty, Dominic J.

    2005-04-01

    With the development of several classes of dedicated emission and transmission imaging technologies utilizing ionizing radiation for improved breast cancer detection and in vivo characterization, it is extremely useful to have available anthropomorphic breast phantoms in a variety of shapes, sizes and malleability prior to clinical imaging. These anthropomorphic phantoms can be used to evaluate the implemented imaging approaches given a known quantity, the phantom, and to evaluate the variability of the measurement due to the imaging system chain. Thus, we have developed a set of fillable and incompressible breast phantoms ranging in volume from 240 to 1730mL with nipple-to-chest distances from 3.8 to 12cm. These phantoms are mountable and exchangeable on either a uniform chest plate or anthropomorphic torso phantom containing tissue equivalent bones and surface tissue. Another fillable ~700mL breast phantom with solid anterior chest plate is intentionally compressible, and can be used for direct comparisons between standard planar imaging approaches using mild-to-severe compression, partially compressed tomosynthesis, and uncompressed computed mammotomography applications. These phantoms can be filled with various fluids (water and oil based liquids) to vary the fatty tissue background composition. Shaped cellulose sponges with two cell densities are fabricated and can be added to the breasts to simulate connective tissue. Additionally, microcalcifications can be simulated by peppering slits in the sponges with oyster shell fragments. These phantoms have a utility in helping to evaluate clinical imaging paradigms with known input object parameters using basic imaging characterization, in an effort to further evaluate contemporary and next generation imaging tools. They may additionally provide a means to collect known data samples for task based optimization studies.

  20. Producing Zirconium Diboride Components with Complex, Near-Net Shape Geometries by Aqueous Room-Temperature Injection Molding

    NASA Technical Reports Server (NTRS)

    Wiesner, Valerie L.; Youngblood, Jeffrey; Trice, Rodney

    2014-01-01

    Room-temperature injection molding is proposed as a novel, low-cost and more energy efficient manufacturing process capable of forming complex-shaped zirconium diboride (ZrB2) parts. This innovative processing method utilized aqueous suspensions with high powder loading and a minimal amount (5 vol.) of water-soluble polyvinylpyrrolidone (PVP), which was used as a viscosity modifier. Rheological characterization was performed to evaluate the room-temperature flow properties of ZrB2-PVP suspensions. ZrB2 specimens were fabricated with high green body strength and were machinable prior to binder removal despite their low polymer content. After binder burnout and pressureless sintering, the bulk density and microstructure of specimens were characterized using Archimedes technique and scanning electron microscopy. X-Ray Diffraction was used to determine the phase compositions present in sintered specimens. Ultimate strength of sintered specimens will be determined using ASTM C1323-10 compressive C-ring test.

  1. 3D Printed Silicones with Shape Memory

    DOE PAGES

    Wu, Amanda S.; Small IV, Ward; Bryson, Taylor M.; ...

    2017-07-05

    Direct ink writing enables the layer-by-layer manufacture of ordered, porous structures whose mechanical behavior is driven by architecture and material properties. Here, we incorporate two different gas filled microsphere pore formers to evaluate the effect of shell stiffness and T g on compressive behavior and compression set in siloxane matrix printed structures. The lower T g microsphere structures exhibit substantial compression set when heated near and above T g, with full structural recovery upon reheating without constraint. By contrast, the higher T g microsphere structures exhibit reduced compression set with no recovery upon reheating. Aside from their role in tuningmore » the mechanical behavior of direct ink write structures, polymer microspheres are good candidates for shape memory elastomers requiring structural complexity, with potential applications toward tandem shape memory polymers.« less

  2. 3D Printed Silicones with Shape Memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Amanda S.; Small IV, Ward; Bryson, Taylor M.

    Direct ink writing enables the layer-by-layer manufacture of ordered, porous structures whose mechanical behavior is driven by architecture and material properties. Here, we incorporate two different gas filled microsphere pore formers to evaluate the effect of shell stiffness and T g on compressive behavior and compression set in siloxane matrix printed structures. The lower T g microsphere structures exhibit substantial compression set when heated near and above T g, with full structural recovery upon reheating without constraint. By contrast, the higher T g microsphere structures exhibit reduced compression set with no recovery upon reheating. Aside from their role in tuningmore » the mechanical behavior of direct ink write structures, polymer microspheres are good candidates for shape memory elastomers requiring structural complexity, with potential applications toward tandem shape memory polymers.« less

  3. Working Ni-Mn-Ga Single Crystals in a Magnetic Field Against a Spring Load

    NASA Astrophysics Data System (ADS)

    Lindquist, P. G.; Müllner, P.

    2015-03-01

    This research characterizes ferromagnetic shape memory elements for use as mechanical actuators. A single crystal of Ni-Mn-Ga was pre-strained in compression from 0 to 6 % and then the shape was recovered with a magnetic field perpendicular to the loading direction while working against a pair of springs. The magnetic field was raised from 0 to 0.64 MA/m and then reduced to zero field. Eight pairs of springs with combined spring constants ranging from 14.3 to 269.4 N/mm were used. When the magnetic field was on, the sample expanded against the springs due to magnetic field-induced strain. When the magnetic field was turned off, the springs compressed the sample back to the initial size before the next cycle. During each cycle, force and displacement were measured and the specific work was computed. Specific work increased with the applied magnetic field and the pre-strain, with a maximum of 14 kJ/m3 at 4.5 % pre-strain and 0.64 MA/m. This value is five times less than the values suggested in the literature which were inferred from stress-strain curves measured under various magnetic fields. The spring prescribes the load-displacement path of the magnetic shape memory element and controls the work output of the actuator.

  4. Realizing Ultrafast Electron Pulse Self-Compression by Femtosecond Pulse Shaping Technique.

    PubMed

    Qi, Yingpeng; Pei, Minjie; Qi, Dalong; Yang, Yan; Jia, Tianqing; Zhang, Shian; Sun, Zhenrong

    2015-10-01

    Uncorrelated position and velocity distribution of the electron bunch at the photocathode from the residual energy greatly limit the transverse coherent length and the recompression ability. Here we first propose a femtosecond pulse-shaping method to realize the electron pulse self-compression in ultrafast electron diffraction system based on a point-to-point space-charge model. The positively chirped femtosecond laser pulse can correspondingly create the positively chirped electron bunch at the photocathode (such as metal-insulator heterojunction), and such a shaped electron pulse can realize the self-compression in the subsequent propagation process. The greatest advantage for our proposed scheme is that no additional components are introduced into the ultrafast electron diffraction system, which therefore does not affect the electron bunch shape. More importantly, this scheme can break the limitation that the electron pulse via postphotocathode static compression schemes is not shorter than the excitation laser pulse due to the uncorrelated position and velocity distribution of the initial electron bunch.

  5. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations

    DOE PAGES

    Chen, Yanyu; Li, Tiantian; Jia, Zian; ...

    2017-10-12

    Here, we describe the in-plane compressive performance of a new type of hierarchical cellular structure created by replacing cell walls in regular honeycombs with triangular lattice configurations. The fabrication of this relatively complex material architecture with size features spanning from micrometer to centimeter is facilitated by the availability of commercial 3D printers. We apply to these hierarchical honeycombs a thermal treatment that facilitates the shape preservation and structural integrity of the structures under large compressive loading. The proposed hierarchical honeycombs exhibit a progressive failure mode, along with improved stiffness and energy absorption under uniaxial compression. High energy dissipation and shapemore » integrity at large imposed strains (up to 60%) have also been observed in these hierarchical honeycombs under cyclic loading. Experimental and numerical studies suggest that these anomalous mechanical behaviors are attributed to the introduction of a structural hierarchy, intrinsically controlled by the cell wall slenderness of the triangular lattice and by the shape memory effect induced by the thermal and mechanical compressive treatment.« less

  6. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yanyu; Li, Tiantian; Jia, Zian

    Here, we describe the in-plane compressive performance of a new type of hierarchical cellular structure created by replacing cell walls in regular honeycombs with triangular lattice configurations. The fabrication of this relatively complex material architecture with size features spanning from micrometer to centimeter is facilitated by the availability of commercial 3D printers. We apply to these hierarchical honeycombs a thermal treatment that facilitates the shape preservation and structural integrity of the structures under large compressive loading. The proposed hierarchical honeycombs exhibit a progressive failure mode, along with improved stiffness and energy absorption under uniaxial compression. High energy dissipation and shapemore » integrity at large imposed strains (up to 60%) have also been observed in these hierarchical honeycombs under cyclic loading. Experimental and numerical studies suggest that these anomalous mechanical behaviors are attributed to the introduction of a structural hierarchy, intrinsically controlled by the cell wall slenderness of the triangular lattice and by the shape memory effect induced by the thermal and mechanical compressive treatment.« less

  7. Shape memory behavior of single crystal and polycrystalline Ni-rich NiTiHf high temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Saghaian, Sayed M.

    NiTiHf shape memory alloys have been receiving considerable attention for high temperature and high strength applications since they could have transformation temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and superelasticity at high temperatures. Moreover, their shape memory properties can be tailored by microstructural engineering. However, NiTiHf alloys have some drawbacks such as low ductility and high work hardening in stress induced martensite transformation region. In order to overcome these limitations, studies have been focused on microstructural engineering by aging, alloying and processing. Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti 29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at. %)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics. The effects of the heat treatments on the transformation characteristics and microstructure of the Ni-rich NiTiHf shape memory alloys have been investigated. Transformation temperatures are found to be highly annealing temperature dependent. Generation of nanosize precipitates (˜20 nm in size) after three hours aging at 450 °C and 550 °C improved the strength of the material, resulting in a near perfect dimensional stability under high stress levels (> 1500 MPa) with a work output of 20-30 J cm- 3. Superelastic behavior with 4% recoverable strain was demonstrated at low and high temperatures where stress could reach to a maximum value of more than 2 GPa after three hours aging at 450 and 550 °C for alloys with Ni great than 50.3 at. %. Shape memory properties of polycrystalline Ni50.3Ti29.7 Hf20 alloys were studied via thermal cycling under stress and isothermal stress cycling experiments in tension. Recoverable strain of ˜5% was observed for the as-extruded samples while it was decreased to ˜4% after aging due to the formation of precipitates. The aged alloys demonstrated near perfect shape memory effect under high tensile stress level of 700 MPa and perfect superelasticity at high temperatures up to 230 °C. Finally, the tension-compression asymmetry observed in NiTiHf where recoverable tensile strain was higher than compressive strain. The shape memory properties of solutionized and aged Ni-rich Ni50.3Ti29.7Hf20 single crystals were investigated along the [001], [011], and [111] orientations in compression. [001]-oriented single crystals showed high dimensional stability under stress levels as high as 1500 MPa in both the solutionized and aged conditions, but with transformation strains of less than 2%. Perfect superelasticity with recoverable strain of more than 4% was observed for solutionized and 550 °C-3h aged single crystals along the [011] and [111] orientations, and general superelastic behavior was observed over a wide temperature range. The calculated transformation strains were higher than the experimentally observed strains since the calculated strains could not capture the formation of martensite plates with (001) compound twins. KEYWORDS: NiTiHf, High Temperature Shape memory alloys, Mechanical Characterization, High Strength Shape Memory Alloy, Orientation Dependence of NiTiHf Sayed.

  8. Functional Fatigue and Tension-Compression Asymmetry in [001]-Oriented Co49Ni21Ga30 High-Temperature Shape Memory Alloy Single Crystals

    NASA Astrophysics Data System (ADS)

    Krooß, P.; Niendorf, T.; Kadletz, P. M.; Somsen, C.; Gutmann, M. J.; Chumlyakov, Y. I.; Schmahl, W. W.; Eggeler, G.; Maier, H. J.

    2015-03-01

    Conventional shape memory alloys cannot be employed for applications in the elevated temperature regime due to rapid functional degradation. Co-Ni-Ga has shown the potential to be used up to temperatures of about 400 °C due to a fully reversible superelastic stress-strain response. However, available results only highlight the superelastic response for single cycle tests. So far, no data addressing cyclic loading and functional fatigue are available. In order to close this gap, the current study reports on the cyclic degradation behavior and tension-compression asymmetry in [001]-oriented Co49Ni21Ga30 single crystals at elevated temperatures. The cyclic stress-strain response of the material under displacement controlled superelastic loading conditions was found to be dictated by the number of active martensite variants and different resulting stabilization effects. Co-Ni-Ga shows a large superelastic temperature window of about 400 °C under tension and compression, but a linear Clausius-Clapeyron relationship could only be observed up to a temperature of 200 °C. In the present experiments, the samples were subjected to 1000 cycles at different temperatures. Degradation mechanisms were characterized by neutron diffraction and transmission electron microscopy. The results in this study confirm the potential of these alloys for damping applications at elevated temperatures.

  9. Fracture Property of Y-Shaped Cracks of Brittle Materials under Compression

    PubMed Central

    Zhang, Xiaoyan; Zhu, Zheming; Liu, Hongjie

    2014-01-01

    In order to investigate the properties of Y-shaped cracks of brittle materials under compression, compression tests by using square cement mortar specimens with Y-shaped crack were conducted. A true triaxial loading device was applied in the tests, and the major principle stresses or the critical stresses were measured. The results show that as the branch angle θ between the branch crack and the stem crack is 75°, the cracked specimen has the lowest strength. In order to explain the test results, numerical models of Y-shaped cracks by using ABAQUS code were established, and the J-integral method was applied in calculating crack tip stress intensity factor (SIF). The results show that when the branch angle θ increases, the SIF K I of the branch crack increases from negative to positive and the absolute value K II of the branch crack first increases, and as θ is 50°, it is the maximum, and then it decreases. Finally, in order to further investigate the stress distribution around Y-shaped cracks, photoelastic tests were conducted, and the test results generally agree with the compressive test results. PMID:25013846

  10. Characterization of Novel Gel Casting System to Make Complex Shaped Aluminum Oxide (Al2O3) Parts

    DTIC Science & Technology

    2016-03-01

    investigated including systems based on starch , gelatin, protein, and agarose. Generally, all systems are too expensive for high-volume casting.13 While gel...was determined by measuring the resistance force in uniaxial compression. Therefore, the specimen was considered gelled when the resistance force was...used to lower the indenter tip at a rate of 30 mm/min by a distance of 6 mm while measuring the maximum resistance force during the indentation. At the

  11. Shape Memory Silk Protein Sponges for Minimally Invasive Tissue Regeneration.

    PubMed

    Brown, Joseph E; Moreau, Jodie E; Berman, Alison M; McSherry, Heather J; Coburn, Jeannine M; Schmidt, Daniel F; Kaplan, David L

    2017-01-01

    Porous silk protein scaffolds are designed to display shape memory characteristics and volumetric recovery following compression. Two strategies are utilized to realize shape recovery: addition of hygroscopic plasticizers like glycerol, and tyrosine modifications with hydrophilic sulfonic acid chemistries. Silk sponges are evaluated for recovery following 80% compressive strain, total porosity, pore size distribution, secondary structure development, in vivo volume retention, cell infiltration, and inflammatory responses. Glycerol-modified sponges recover up to 98.3% of their original dimensions following compression, while sulfonic acid/glycerol modified sponges swell in water up to 71 times their compressed volume, well in excess of their original size. Longer silk extraction times (lower silk molecular weights) and higher glycerol concentrations yielded greater flexibility and shape fidelity, with no loss in modulus following compression. Sponges are over 95% porous, with secondary structure analysis indicating glycerol-induced β-sheet physical crosslinking. Tyrosine modifications with sulfonic acid interfere with β-sheet formation. Glycerol-modified sponges exhibit improved rates of cellular infiltration at subcutaneous implant sites with minimal immune response in mice. They also degrade more rapidly than unmodified sponges, a result posited to be cell-mediated. Overall, this work suggests that silk sponges may be useful for minimally invasive deployment in soft tissue augmentation procedures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Pore geometry as a control on rock strength

    NASA Astrophysics Data System (ADS)

    Bubeck, A.; Walker, R. J.; Healy, D.; Dobbs, M.; Holwell, D. A.

    2017-01-01

    The strength of rocks in the subsurface is critically important across the geosciences, with implications for fluid flow, mineralisation, seismicity, and the deep biosphere. Most studies of porous rock strength consider the scalar quantity of porosity, in which strength shows a broadly inverse relationship with total porosity, but pore shape is not explicitly defined. Here we use a combination of uniaxial compressive strength measurements of isotropic and anisotropic porous lava samples, and numerical modelling to consider the influence of pore shape on rock strength. Micro computed tomography (CT) shows that pores range from sub-spherical to elongate and flat ellipsoids. Samples that contain flat pores are weaker if compression is applied parallel to the short axis (i.e. across the minimum curvature), compared to compression applied parallel to the long axis (i.e. across the maximum curvature). Numerical models for elliptical pores show that compression applied across the minimum curvature results in relatively broad amplification of stress, compared to compression applied across the maximum curvature. Certain pore shapes may be relatively stable and remain open in the upper crust under a given remote stress field, while others are inherently weak. Quantifying the shape, orientations, and statistical distributions of pores is therefore a critical step in strength testing of rocks.

  13. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  14. Post-deformation shape-recovery behavior of vitamin E-diffused, radiation crosslinked polyethylene acetabular components.

    PubMed

    Takahashi, Yasuhito; Tateiwa, Toshiyuki; Shishido, Takaaki; Masaoka, Toshinori; Kubo, Kosuke; Yamamoto, Kengo

    2016-10-01

    The in-vivo progression of creep and wear in ultra-high molecular weight polyethylene (UHMWPE) acetabular liners has been clinically evaluated by measuring radiographic penetration of femoral heads. In such clinical assessments, however, viscoelastic strain relaxation has been rarely considered after a removal of hip joint loading, potentially leading to an underestimation of the penetrated thickness. The objective of this study was to investigate shape-recovery behavior of pre-compressed, radiation crosslinked and antioxidant vitamin E-diffused UHMWPE acetabular liners, and also to characterize the effects of varying their internal diameter (ID) and wall thickness (WT). We applied uniaxial compression to the UHMWPE specimens of various ID (28, 32, 36mm) and WT (4.8, 6.8, 8.9mm) for 4320min under the constant load of 3000N, and subsequently monitored the strain-relaxation behavior as a function of time after unloading. It was observed that there was a considerable shape recovery of the components after removal of the external static load. Reducing ID and WT significantly accelerated the rate of creep strain recovery, and varying WT was more sensitive to the recovery behavior than ID. Creep deformation of the tested liners recovered mostly within the first 300min after unloading. Note that approximately half of the total recovery amount proceeded just within 5min after unloading. These results suggest a remarkably high capability of shape recovery of vitamin E-diffused highly crosslinked UHMWPE. In conclusion, the time-dependent shape recovering and the diameter-thickness effect on its behavior should be carefully considered when the postoperative penetration is quantified in highly crosslinked UHMWPE acetabular liners (especially on the non-weight bearing radiographs). Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Thermomechanical Characterization and Modeling of Superelastic Shape Memory Alloy Beams and Frames

    NASA Astrophysics Data System (ADS)

    Watkins, Ryan

    Of existing applications, the majority of shape memory alloy (SMA) devices consist of beam (orthodontic wire, eye glasses frames, catheter guide wires) and framed structures (cardiovascular stents, vena cava filters). Although uniaxial tension data is often sufficient to model basic beam behavior (which has been the main focus of the research community), the tension-compression asymmetry and complex phase transformation behavior of SMAs suggests more information is necessary to properly model higher complexity states of loading. In this work, SMA beams are experimentally characterized under general loading conditions (including tension, compression, pure bending, and buckling); furthermore, a model is developed with respect to general beam deformation based on the relevant phenomena observed in the experimental characterization. Stress induced phase transformation within superelastic SMA beams is shown to depend on not only the loading mode, but also kinematic constraints imposed by beam geometry (such as beam cross-section and length). In the cases of tension and pure bending, the structural behavior is unstable and corresponds to phase transformation localization and propagation. This unstable behavior is the result of a local level up--down--up stress/strain response in tension, which is measured here using a novel composite-based experimental technique. In addition to unstable phase transformation, intriguing post-buckling straightening is observed in short SMA columns during monotonic loading (termed unbuckling here). Based on this phenomenological understanding of SMA beam behavior, a trilinear based material law is developed in the context of a Shanley column model and is found to capture many of the relevant features of column buckling, including the experimentally observed unbuckling behavior. Due to the success of this model, it is generalized within the context of beam theory and, in conjunction with Bloch wave stability analysis, is used to model and design SMA honeycombs.

  16. Performance prediction for a magnetostrictive actuator using a simplified model

    NASA Astrophysics Data System (ADS)

    Yoo, Jin-Hyeong; Jones, Nicholas J.

    2018-03-01

    Iron-Gallium alloys (Galfenol) are promising transducer materials that combine high magnetostriction, desirable mechanical properties, high permeability, and a wide operational temperature range. Most of all, the material is capable of operating under tensile stress, and is relatively resistant to shock. These materials are generally characterized using a solid, cylindrically-shaped specimen under controlled compressive stress and magnetization conditions. Because the magnetostriction strongly depends on both the applied stress and magnetization, the characterization of the material is usually conducted under controlled conditions so each parameter is varied independently of the other. However, in a real application the applied stress and magnetization will not be maintained constant during operation. Even though the controlled characterization measurement gives insight into standard material properties, usage of this data in an application, while possible, is not straight forward. This study presents an engineering modeling methodology for magnetostrictive materials based on a piezo-electric governing equation. This model suggests phenomenological, nonlinear, three-dimensional functions for strain and magnetic flux density responses as functions of applied stress and magnetic field. Load line performances as a function of maximum magnetic field input were simulated based on the model. To verify the modeling performance, a polycrystalline magnetostrictive rod (Fe-Ga alloy, Galfenol) was characterized under compressive loads using a dead-weight test setup, with strain gages on the rod and a magnetic field driving coil around the sample. The magnetic flux density through the Galfenol rod was measured with a sensing coil; the compressive loads were measured using a load cell on the bottom of the Galfenol rod. The experimental results are compared with the simulation results using the suggested model, showing good agreement.

  17. Impact of initial pulse shape on the nonlinear spectral compression in optical fibre

    NASA Astrophysics Data System (ADS)

    Boscolo, Sonia; Chaussard, Frederic; Andresen, Esben; Rigneault, Hervé; Finot, Christophe

    2018-02-01

    We theoretically study the effects of the temporal intensity profile of the initial pulse on the nonlinear propagation spectral compression process arising from nonlinear propagation in an optical fibre. Various linearly chirped input pulse profiles are considered, and their dynamics is explained with the aid of time-frequency representations. While initially parabolic-shaped pulses show enhanced spectral compression compared to Gaussian pulses, no significant spectral narrowing occurs when initially super-Gaussian pulses are used. Triangular pulses lead to a spectral interference phenomenon similar to the Fresnel bi-prism experiment.

  18. Characterization of hot bonding of bi-metal C45/25CrMo4 by plane strain compression test

    NASA Astrophysics Data System (ADS)

    Enaim, Mohammed; Langlois, Laurent; Zimmer-Chevret, Sandra; Bigot, Régis; Krumpipe, Pierre

    2018-05-01

    The need to produce multifunctional parts in order to conform to complex specifications becomes crucial in today's industrial context. This is why new processes are under study to develop multi-material parts which can satisfy this kind of requirements. This paper investigates the possibility of producing hot bonding of bi-metal C45/25CrMo4 parts by forging. This manufacturing process is a solid state joining process that involves, simultaneously, the welding and shaping of multi-material part. In this study, the C45/25CrMo4 bimetal was investigated. The forging is conducted at 1100°C and the influence of reduction rate on microstructure and bonding was investigated. The bonding model is inspired from Bay's model. Following this model, two parameters govern the solid-state bonding at the interface between materials: normal contact pressure and surface expansion. The objective is to check the bonding quality under different pressure and surface expansion. To achieve this goal, the plane strain compression test is chosen as the characterization test. Finally, simulations and experiments of this test are compared.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelenyuk, Alla; Reitz, Paul; Stewart, Mark L.

    Gasoline Compression Ignition (GCI) engines have the potential to achieve high fuel efficiency and to significantly reduce both NOx and particulate matter (PM) emissions by operating under dilute partially-premixed conditions. This low temperature combustion strategy is dependent upon direct-injection of gasoline during the compression stroke and potentially near top dead center (TDC). The timing and duration of the in-cylinder injections can be tailored based on speed and load to create optimized conditions that result in a stable combustion. We present the results of advanced aerosol analysis methods that have been used for detailed real-time characterization of PM emitted from amore » single-cylinder GCI engine operated at different speed, load, timing, and number and duration of near-TDC fuel injections. PM characterization included 28 measurements of size and composition of individual particles sampled directly from the exhaust and after mass and/or mobility classification. We use these data to calculate particle effective density, fractal dimension, dynamic shape factors in free-molecular and transition flow regimes, average diameter of primary spherules, number of spherules, and void fraction of soot agglomerates.« less

  20. Oxidation-Mediated Fingering in Liquid Metals

    NASA Astrophysics Data System (ADS)

    Eaker, Collin B.; Hight, David C.; O'Regan, John D.; Dickey, Michael D.; Daniels, Karen E.

    2017-10-01

    We identify and characterize a new class of fingering instabilities in liquid metals; these instabilities are unexpected due to the large interfacial tension of metals. Electrochemical oxidation lowers the effective interfacial tension of a gallium-based liquid metal alloy to values approaching zero, thereby inducing drastic shape changes, including the formation of fractals. The measured fractal dimension (D =1.3 ±0.05 ) places the instability in a different universality class than other fingering instabilities. By characterizing changes in morphology and dynamics as a function of droplet volume and applied electric potential, we identify the three main forces involved in this process: interfacial tension, gravity, and oxidative stress. Importantly, we find that electrochemical oxidation can generate compressive interfacial forces that oppose the tensile forces at a liquid interface. The surface oxide layer ultimately provides a physical and electrochemical barrier that halts the instabilities at larger positive potentials. Controlling the competition between interfacial tension and oxidative (compressive) stresses at the interface is important for the development of reconfigurable electronic, electromagnetic, and optical devices that take advantage of the metallic properties of liquid metals.

  1. Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb

    PubMed Central

    Schulze, Christian; Weinmann, Markus; Schweigel, Christoph; Keßler, Olaf; Bader, Rainer

    2018-01-01

    The application of Ti-6Al-4V alloy or commercially pure titanium for additive manufacturing enables the fabrication of complex structural implants and patient-specific implant geometries. However, the difference in Young’s modulus of α + β-phase Ti alloys compared to the human bone promotes stress-shielding effects in the implant–bone interphase. The aim of the present study is the mechanical characterization of a new pre-alloyed β-phase Ti-42Nb alloy for application in additive manufacturing. The present investigation focuses on the mechanical properties of SLM-printed Ti-42Nb alloy in tensile and compression tests. In addition, the raw Ti-42Nb powder, the microstructure of the specimens prior to and after compression tests, as well as the fracture occurring in tensile tests are characterized by means of the SEM/EDX analysis. The Ti-42Nb raw powder exhibits a dendrite-like Ti-structure, which is melted layer-by-layer into a microstructure with a very homogeneous distribution of Nb and Ti during the SLM process. Tensile tests display Young’s modulus of 60.51 ± 3.92 GPa and an ultimate tensile strength of 683.17 ± 16.67 MPa, whereas, under a compressive load, a compressive strength of 1330.74 ± 53.45 MPa is observed. The combination of high mechanical strength and low elastic modulus makes Ti-42Nb an interesting material for orthopedic and dental implants. The spherical shape of the pre-alloyed material additionally allows for application in metal 3D printing, enabling the fabrication of patient-specific structural implants. PMID:29342864

  2. Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb.

    PubMed

    Schulze, Christian; Weinmann, Markus; Schweigel, Christoph; Keßler, Olaf; Bader, Rainer

    2018-01-13

    The application of Ti-6Al-4V alloy or commercially pure titanium for additive manufacturing enables the fabrication of complex structural implants and patient-specific implant geometries. However, the difference in Young's modulus of α + β-phase Ti alloys compared to the human bone promotes stress-shielding effects in the implant-bone interphase. The aim of the present study is the mechanical characterization of a new pre-alloyed β-phase Ti-42Nb alloy for application in additive manufacturing. The present investigation focuses on the mechanical properties of SLM-printed Ti-42Nb alloy in tensile and compression tests. In addition, the raw Ti-42Nb powder, the microstructure of the specimens prior to and after compression tests, as well as the fracture occurring in tensile tests are characterized by means of the SEM/EDX analysis. The Ti-42Nb raw powder exhibits a dendrite-like Ti-structure, which is melted layer-by-layer into a microstructure with a very homogeneous distribution of Nb and Ti during the SLM process. Tensile tests display Young's modulus of 60.51 ± 3.92 GPa and an ultimate tensile strength of 683.17 ± 16.67 MPa, whereas, under a compressive load, a compressive strength of 1330.74 ± 53.45 MPa is observed. The combination of high mechanical strength and low elastic modulus makes Ti-42Nb an interesting material for orthopedic and dental implants. The spherical shape of the pre-alloyed material additionally allows for application in metal 3D printing, enabling the fabrication of patient-specific structural implants.

  3. Influence of metronidazole particle properties on granules prepared in a high-shear mixer-granulator.

    PubMed

    Di Martino, Piera; Censi, Roberta; Malaj, Ledjan; Martelli, Sante; Joiris, Etienne; Barthélémy, Christine

    2007-02-01

    Metronidazole is a good example of high-dose drug substance with poor granulating and tableting properties. Tablets are generally produced by liquid granulation; however, the technological process failure is quite frequent. In order to verify how the metronidazole particle characteristics can influence granule properties, three metronidazole batches differing for crystal habit, mean particle size, BET surface area and wettability were selected, primarily designed according to their different elongation ratio: needle-shaped, stick-shaped, and isodimensional. In the presence of lactose monohydrate and pregelatinized maize starch, respectively as diluent and binder, they were included in a formula for wet granulation in a high-shear mixer-granulator. In order to render the process comparable as far as possible, all parameters and experimental conditions were maintained constant. Four granule batches were obtained: granules from placebo (G-placebo), granules from needle-shaped crystals (G-needle-shaped), granules from stick-shaped crystals (G-stick-shaped), and granules from isodimensional crystals (G-isodimensional). Different granule properties were considered, in particular concerning porosity, friability, loss on drying (LOD), and flowability. In order to study their tabletability and compressibility, the different granules obtained were then compressed in a rotary press. The best tabletability was obtained with the isodimensional batch, while the poorest was exhibited by the stick-shaped one. Differences in tabletability are in good accordance with compressibility results: to a better tabletability corresponds an important granule ability to undergo a volume reduction as a result of an applied pressure. In particular, it was proposed that the greatest compressibility of the G-isodimensional must be related to the greatest granule porosity percentage.

  4. A Monte Carlo model for mean glandular dose evaluation in spot compression mammography.

    PubMed

    Sarno, Antonio; Dance, David R; van Engen, Ruben E; Young, Kenneth C; Russo, Paolo; Di Lillo, Francesca; Mettivier, Giovanni; Bliznakova, Kristina; Fei, Baowei; Sechopoulos, Ioannis

    2017-07-01

    To characterize the dependence of normalized glandular dose (DgN) on various breast model and image acquisition parameters during spot compression mammography and other partial breast irradiation conditions, and evaluate alternative previously proposed dose-related metrics for this breast imaging modality. Using Monte Carlo simulations with both simple homogeneous breast models and patient-specific breasts, three different dose-related metrics for spot compression mammography were compared: the standard DgN, the normalized glandular dose to only the directly irradiated portion of the breast (DgNv), and the DgN obtained by the product of the DgN for full field irradiation and the ratio of the mid-height area of the irradiated breast to the entire breast area (DgN M ). How these metrics vary with field-of-view size, spot area thickness, x-ray energy, spot area and position, breast shape and size, and system geometry was characterized for the simple breast model and a comparison of the simple model results to those with patient-specific breasts was also performed. The DgN in spot compression mammography can vary considerably with breast area. However, the difference in breast thickness between the spot compressed area and the uncompressed area does not introduce a variation in DgN. As long as the spot compressed area is completely within the breast area and only the compressed breast portion is directly irradiated, its position and size does not introduce a variation in DgN for the homogeneous breast model. As expected, DgN is lower than DgNv for all partial breast irradiation areas, especially when considering spot compression areas within the clinically used range. DgN M underestimates DgN by 6.7% for a W/Rh spectrum at 28 kVp and for a 9 × 9 cm 2 compression paddle. As part of the development of a new breast dosimetry model, a task undertaken by the American Association of Physicists in Medicine and the European Federation of Organizations of Medical Physics, these results provide insight on how DgN and two alternative dose metrics behave with various image acquisition and model parameters. © 2017 American Association of Physicists in Medicine.

  5. Pulse compression at 1.06 μm in dispersion-decreasing holey fibers

    NASA Astrophysics Data System (ADS)

    Tse, M. L. V.; Horak, P.; Price, J. H. V.; Poletti, F.; He, F.; Richardson, D. J.

    2006-12-01

    We report compression of low-power femtosecond pulses at 1.06 μm in a dispersion-decreasing holey fiber. Near-adiabatic compression of 130 fs pulses down to 60 fs has been observed. Measured spectra and pulse shapes agree well with numerical simulations. Compression factors of ten are possible in optimized fibers.

  6. Laser pulse shape design for laser-indirect-driven quasi-isentropic compression experiments

    NASA Astrophysics Data System (ADS)

    Xue, Quanxi; Jiang, Shaoen; Wang, Zhebin; Wang, Feng; Zhao, Xueqing; Ding, Yongkun

    2018-02-01

    Laser pulse shape design is a key work in the design of indirect-laser-driven experiments, especially for long pulse laser driven quasi-isentropic compression experiments. A method for designing such a laser pulse shape is given here. What's more, application experiments were performed, and the results of a typical shot are presented. At last of this article, the details of the application of the method are discussed, such as the equation parameter choice, radiation ablation pressure expression, and approximations in the method. The application shows that the method can provide reliable descriptions of the energy distribution in a hohlraum target; thus, it can be used in the design of long-pulse laser driven quasi-isentropic compression experiments and even other indirect-laser-driven experiments.

  7. Impact of trailing edge shape on the wake and propulsive performance of pitching panels

    NASA Astrophysics Data System (ADS)

    Van Buren, T.; Floryan, D.; Brunner, D.; Senturk, U.; Smits, A. J.

    2017-01-01

    The effects of changing the trailing edge shape on the wake and propulsive performance of a pitching rigid panel are examined experimentally. The panel aspect ratio is AR=1 , and the trailing edges are symmetric chevron shapes with convex and concave orientations of varying degree. Concave trailing edges delay the natural vortex bending and compression of the wake, and the mean streamwise velocity field contains a single jet. Conversely, convex trailing edges promote wake compression and produce a quadfurcated wake with four jets. As the trailing edge shape changes from the most concave to the most convex, the thrust and efficiency increase significantly.

  8. Seal assembly

    DOEpatents

    Johnson, Roger Neal; Longfritz, William David

    2001-01-01

    A seal assembly that seals a gap formed by a groove comprises a seal body, a biasing element, and a connection that connects the seal body to the biasing element to form the seal assembly. The seal assembly further comprises a concave-shaped center section and convex-shaped contact portions at each end of the seal body. The biasing element is formed from an elastic material and comprises a convex-shaped center section and concave-shaped biasing zones that are opposed to the convex-shaped contact portions. The biasing element is adapted to be compressed to change a width of the seal assembly from a first width to a second width that is smaller than the first width. In the compressed state, the seal assembly can be disposed in the groove. After release of the compressing force, the seal assembly expands. The contact portions will move toward a surface of the groove and the biasing zones will move into contact with another surface of the groove. The biasing zones will bias the contact portions of the seal body against the surface of the groove.

  9. 3D finite element modelling of force transmission and particle fracture of sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imseeh, Wadi H.; Alshibli, Khalid A.

    Global compressive loading of granular media causes rearrangements of particles into a denser configuration. Under 1D compression, researchers observed that particles initially translate and rotate which lead to more contacts between particles and the development of force chains to resist applied loads. Particles within force chains resist most of the applied loads while neighbor particles provide lateral support to prevent particles within force chains from buckling. Several experimental and numerical models have been proposed in the literature to characterize force chains within granular materials. This paper presents a 3D finite element (FE) model that simulates 1D compression experiment on F-75more » Ottawa sand. The FE mesh of particles closely matched 3D physical shape of sand particles that were acquired using 3D synchrotron micro-computed tomography (SMT) technique. The paper presents a quantitative assessment of the model, in which evolution of force chains, fracture modes, and stress-strain relationships showed an excellent agreement with experimental measurements reported by Cil et al. Alshibli (2017).« less

  10. Pseudoelastic intramedullary nailing for tibio-talo-calcaneal arthrodesis.

    PubMed

    Yakacki, Christopher M; Gall, Ken; Dirschl, Douglas R; Pacaccio, Douglas J

    2011-03-01

    Tibio-talo-calcaneal (TTC) arthrodesis is a procedure to treat severe ankle arthropathy by providing a pain-free and stable fusion. Intramedullary (IM) nails offer a method of internal fixation for TTC arthrodesis by providing compressive stability, as well as shear and torsional rigidity. IM nails have been developed to apply compression to the TTC complex during installation; however, current designs are highly susceptible to a loss of compression when exposed to small amounts of bone resorption and cyclic loading. Nickel titanium (NiTi) is a shape-memory alloy capable of recovering large amounts of deformation via shape-memory or pseudoelasticity. Currently, the next generation of IM nails is being developed to utilize the adaptive, pseudoelastic properties of NiTi and provide a fusion nail that is resistant to loss of compression or loosening. Specifically, the pseudoelastic IM nail contains an internal NiTi compression element that applies sustained compression during the course of fusion, analogous to external fixators. © 2011 Expert Reviews Ltd

  11. Effect of Particle Shape on Mechanical Behaviors of Rocks: A Numerical Study Using Clumped Particle Model

    PubMed Central

    Rong, Guan; Liu, Guang; Zhou, Chuang-bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied. PMID:23997677

  12. Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model.

    PubMed

    Rong, Guan; Liu, Guang; Hou, Di; Zhou, Chuang-Bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied.

  13. A New Minimum Trees-Based Approach for Shape Matching with Improved Time Computing: Application to Graphical Symbols Recognition

    NASA Astrophysics Data System (ADS)

    Franco, Patrick; Ogier, Jean-Marc; Loonis, Pierre; Mullot, Rémy

    Recently we have developed a model for shape description and matching. Based on minimum spanning trees construction and specifics stages like the mixture, it seems to have many desirable properties. Recognition invariance in front shift, rotated and noisy shape was checked through median scale tests related to GREC symbol reference database. Even if extracting the topology of a shape by mapping the shortest path connecting all the pixels seems to be powerful, the construction of graph induces an expensive algorithmic cost. In this article we discuss on the ways to reduce time computing. An alternative solution based on image compression concepts is provided and evaluated. The model no longer operates in the image space but in a compact space, namely the Discrete Cosine space. The use of block discrete cosine transform is discussed and justified. The experimental results led on the GREC2003 database show that the proposed method is characterized by a good discrimination power, a real robustness to noise with an acceptable time computing.

  14. Size, shape and flow characterization of ground wood chip and ground wood pellet particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaei, Hamid; Lim, C. Jim; Lau, Anthony

    Size, shape and density of biomass particles influence their transportation, fluidization, rates of drying and thermal decomposition. Pelleting wood particles increases the particle density and reduces the variability of physical properties among biomass particles. In this study, pine chips prepared for pulping and commercially produced pine pellets were ground in a hammer mill using grinder screens of 3.2, 6.3, 12.7 and 25.4mmperforations. Pellets consumed about 7 times lower specific grinding energy than chips to produce the same size of particles. Grinding pellets produced the smaller particles with narrower size distribution than grinding chips. Derived shape factors in digital image analysismore » showed that chip particles were rectangular and had the aspect ratios about one third of pellet particles. Pellet particles were more circular shape. The mechanical sieving underestimated the actual particle size and did not represent the size of particles correctly. Instead, digital imaging is preferred. Angle of repose and compressibility tests represented the flow properties of ground particles. Pellet particles made a less compacted bulk, had lower cohesion and did flow easier in a pile of particles. In conclusion, particle shape affected the flow properties more than particle size« less

  15. Size, shape and flow characterization of ground wood chip and ground wood pellet particles

    DOE PAGES

    Rezaei, Hamid; Lim, C. Jim; Lau, Anthony; ...

    2016-07-11

    Size, shape and density of biomass particles influence their transportation, fluidization, rates of drying and thermal decomposition. Pelleting wood particles increases the particle density and reduces the variability of physical properties among biomass particles. In this study, pine chips prepared for pulping and commercially produced pine pellets were ground in a hammer mill using grinder screens of 3.2, 6.3, 12.7 and 25.4mmperforations. Pellets consumed about 7 times lower specific grinding energy than chips to produce the same size of particles. Grinding pellets produced the smaller particles with narrower size distribution than grinding chips. Derived shape factors in digital image analysismore » showed that chip particles were rectangular and had the aspect ratios about one third of pellet particles. Pellet particles were more circular shape. The mechanical sieving underestimated the actual particle size and did not represent the size of particles correctly. Instead, digital imaging is preferred. Angle of repose and compressibility tests represented the flow properties of ground particles. Pellet particles made a less compacted bulk, had lower cohesion and did flow easier in a pile of particles. In conclusion, particle shape affected the flow properties more than particle size« less

  16. Experimental Study of Hybrid Fractures and the Transition From Joints to Faults

    NASA Astrophysics Data System (ADS)

    Ramsey, J. M.; Chester, F. M.

    2003-12-01

    Joints and faults are end members of a continuous spectrum of brittle fractures including the hybrid fractures, hypothesized to form under mixed compressive and tensile stress. However, unequivocal evidence for the existence of hybrid fractures has not been presented. To investigate this transition, we have conducted triaxial extension experiments on dog-bone shaped cylindrical samples of Carrara marble at room temperature, an axial extension rate of 2x10-2 mm s-1, and confining pressures between 7.5 and 170 MPa. Two parallel suites of experiments were completed, one using very weak, latex jacketing to obtain accurate failure strength, and another using copper foil jacketing to preserve fracture surfaces. The combined data set provides strong evidence for the existence of hybrid fractures on the basis of the progressive change in failure strength, fracture orientation, and fracture surface morphology from joints to faults. At the lowest confining pressures (7.5 to 60 MPa), fractures are oriented approximately parallel to the maximum principal compressive stress, form at a tensile axial stress of approximately -7.75 MPa (i.e. the uniaxial tensile strength), and display fracture surfaces characterized by many reflective grain-scale cleavage faces, consistent with jointing. At the highest confining pressures (130 to 170 MPa), fractures are oriented from 13.4 to 21.6 degrees to the maximum principal compressive stress, form under completely compressive stress states where the axial stress is between 0 and 4.3 MPa, and are characterized by short slip lineations and powdery, finely comminuted grains consistent with faulting. At intermediate confining pressures (70 to 120 MPa), fractures are oriented from 3.7 to 12.4 degrees to the maximum principal compressive stress, form under mixed stress conditions with the axial stress ranging from -10.6 to -3.0 MPa, and display both reflective cleavage faces and short slip lineations with comminuted grains, consistent with hybrid fracturing.

  17. [Utility of nickel-titanium shape memory alloys of vertebral body reduction fixator with assisted distraction bar].

    PubMed

    Man, Yi; Zheng, Yue-huan; Cao, Peng; Chen, Bo; Zheng, Tao; Sun, Chang-hui; Lu, Jiong

    2011-06-07

    To test the nickel-titanium (Ni-Ti) shape memory alloys of vertebral body reduction fixator with assisted distraction bar for the treatment of traumatic and osteoporotic vertebral body fracture. A Ni-Ti shape memory alloys of vertebral body reduction fixator with assisted distraction bar was implanted into the compressed fracture specimens through vertebral pedicle with the radiographic monitoring to reduce the collapsed endplate as well as distract the compressed vertebral fracture. Radiographic film and computed tomographic reconstruction technique were employed to evaluate the effects of reduction and distraction. A biomechanic test machine was used to measure the fatigue and the stability of deformation of fixation segments. Relying on the effect of temperature shape memory, such an assembly could basically reduce the collapsed endplate as well as distract the compressed vertebral fracture. And when unsatisfied results of reduction and distraction occurred, its super flexibility could provide additional distraction strength. A Ni-Ti shape memory alloys of vertebral body reduction fixator with assisted distraction bar may provide effective endplate reduction, restore the vertebral height and the immediate biomechanic spinal stability. So the above assembly is indicated for the treatment of traumatic and osteoporotic vertebral body fracture.

  18. Patterns through elastic instabilities, from thin sheets to twisted ribbons

    NASA Astrophysics Data System (ADS)

    Damman, Pascal

    Sheets embedded in a given shape by external forces store the exerted work in elastic deformations. For pure tensile forces, the work is stored as stretching energy. When the forces are compressive, several ways to store the exerted work, combining stretching and bending deformations can be explored. For large deflections, the ratio of bending, Eh3ζ2 /L4 and stretching, Ehζ4 /L4 energies, suggests that strain-free solutions should be favored for thin sheets, provided ζ2 >>h2 (where E , ζ , Land h are the elastic modulus, the deflection, a characteristic sheet size and its thickness). For uniaxially constrained sheets deriving from the Elastica, strain-free solutions are obvious, i.e., buckles, folds or wrinkles grow to absorb the stress of compression. In contrast, crumpled sheets exhibit ``origami-like'' solutions usually described as an assembly of flat polygonal facets delimitated by ridges focusing strains are observed. This type of solutions is particularly interesting since a faceted morphology is isometric to the undeformed sheet, except at those narrow ridges. In some cases however, the geometric constraints imposed by the external forces do not allow solutions with negligible strain in the deformed state. For instance, considering a circular sheet on a small drop, so thin that bending becomes negligible, i.e., Eh3 / γL2 << 1 . The capillary tension, γ at the edge forces the sheet to follow the spherical shape of the drop. Depending on the magnitude of the capillary tension with respect to the stretching modulus, such a sheet on a sphere can be in full tension or subjected to azimuthal compression. These spherical solutions could generate a hoop stress of compression within a small strip at the sheet's edge. The mechanical response of the sheet will generate tiny wrinkles decorating the edge to relax the compression stress while keeping its spherical shape. Finally, twisting a paper ribbon under high tension spontaneously produces helicoidal shapes that also reflect stretching and bending deformations. When the tension is progressively relieved, longitudinal and transverse compressive stresses build. To relax the longitudinal stress while keeping the helicoid shape, the ribbons produce wrinkles that ultimately becomes sharp folds similar to the ridge singularities observed in crumpled paper. The relaxation of the transverse compression stress produces cylindrical solutions. All these examples illustrates the natural tendency of an elastic sheet to stay as close as possible to the imposed shape, i.e. flat, spherical, helicoid. The mechanical response of the elastic sheet aims to relieve the compressive stress by growing a given micro-structure, i.e. wrinkles, singularities. In this talk, we will explore the general mechanisms at work, based on geometry and a competition between various energy terms, involving stretching and bending modes.

  19. Bonded-cell model for particle fracture.

    PubMed

    Nguyen, Duc-Hanh; Azéma, Emilien; Sornay, Philippe; Radjai, Farhang

    2015-02-01

    Particle degradation and fracture play an important role in natural granular flows and in many applications of granular materials. We analyze the fracture properties of two-dimensional disklike particles modeled as aggregates of rigid cells bonded along their sides by a cohesive Mohr-Coulomb law and simulated by the contact dynamics method. We show that the compressive strength scales with tensile strength between cells but depends also on the friction coefficient and a parameter describing cell shape distribution. The statistical scatter of compressive strength is well described by the Weibull distribution function with a shape parameter varying from 6 to 10 depending on cell shape distribution. We show that this distribution may be understood in terms of percolating critical intercellular contacts. We propose a random-walk model of critical contacts that leads to particle size dependence of the compressive strength in good agreement with our simulation data.

  20. Polymer planar waveguide Bragg gratings: fabrication, characterization, and sensing applications

    NASA Astrophysics Data System (ADS)

    Rosenberger, M.; Hessler, S.; Pauer, H.; Girschikofsky, M.; Roth, G. L.; Adelmann, B.; Woern, H.; Schmauss, B.; Hellmann, R.

    2017-02-01

    In this contribution, we give a comprehensive overview of the fabrication, characterization, and application of integrated planar waveguide Bragg gratings (PPBGs) in cyclo-olefin copolymers (COC). Starting with the measurement of the refractive index depth profile of integrated UV-written structures in COC by phase shifting Mach-Zehnder- Interferometry, we analyze the light propagation using numerical simulations. Furthermore, we show the rapid fabrication of humidity insensitive polymer waveguide Bragg gratings in cyclo-olefin copolymers and discuss the influence of the UV-dosage onto the spectral characteristics and the transmission behavior of the waveguide. Based on these measurements we exemplify that our Bragg gratings exhibit a reflectivity of over 99 % and are highly suitable for sensing applications. With regard to a negligible affinity to absorb water and in conjunction with high temperature stability these polymer devices are ideal for mechanical deformation sensing. Since planar structures are not limited to tensile but can also be applied for measuring compressive strain, we manufacture different functional devices and corroborate their applicability as optical sensors. Exemplarily, we highlight a temperature referenced PPBG sensor written into a femtosecond-laser cut tensile test geometry for tensile and compressive strain sensing. Furthermore, a flexible polymer planar shape sensor is presented.

  1. Quantitative characterization of the interfacial adhesion of Ni thin film on steel substrate: A compression-induced buckling delamination test

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Zhou, Y. C.; Guo, J. W.; Yang, L.; Lu, C.

    2015-01-01

    A compression-induced buckling delamination test is employed to quantitatively characterize the interfacial adhesion of Ni thin film on steel substrate. It is shown that buckles initiate from edge flaws and surface morphologies exhibit symmetric, half-penny shapes. Taking the elastoplasticity of film and substrate into account, a three-dimensional finite element model for an edge flaw with the finite size is established to simulate the evolution of energy release rates and phase angles in the process of interfacial buckling-driven delamination. The results show that delamination propagates along both the straight side and curved front. The mode II delamination plays a dominant role in the process with a straight side whilst the curved front experiences almost the pure mode I. Based on the results of finite element analysis, a numerical model is developed to evaluate the interfacial energy release rate, which is in the range of 250-315 J/m2 with the corresponding phase angle from -41° to -66°. These results are in agreement with the available values determined by other testing methods, which confirms the effectiveness of the numerical model.

  2. Laser shock wave and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin

    2007-12-01

    The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.

  3. Empirical Study of the Multiaxial, Thermomechanical Behavior of NiTiHf Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Shukla, Dhwanil; Noebe, Ronald D.; Stebner Aaron P.

    2013-01-01

    An empirical study was conducted to characterize the multiaxial, thermomechanical responses of new high temperature NiTiHf alloys. The experimentation included loading thin walled tube Ni(sub 50.3)Ti(sub 29.7)Hf(sub 20) alloy samples along both proportional and nonproportional axial-torsion paths at different temperatures while measuring surface strains using stereo digital image correlation. A Ni(sub 50.3)Ti(sub 33.7)Hf(sub 16) alloy was also studied in tension and compression to document the effect of slightly depleting the Hf content on the constitutive responses of NiTiHf alloys. Samples of both alloys were made from nearly texture free polycrystalline material processed by hot extrusion. Analysis of the data shows that very small changes in composition significantly alter NiTiHf alloy properties, as the austenite finish (Af) temperature of the 16-at Hf alloy was found to be approximately 60 C less than the 20-at Hf alloy (approximately 120 C vs. 180 C). In addition, the 16-at Hf alloy exhibited smaller compressive transformation strains (2 vs. 2.5 percent). Multi-axial characterization of the 20-at % Hf alloy showed that while the random polycrystal transformation strains in tension (4 percent) and compression (2.5 percent) are modest in comparison with binary NiTi (6 percent, 4 percent), the torsion performance is superior (7 vs. 4 shear strain width to the pseudoelastic plateau).

  4. Compressive Sensing Based Bio-Inspired Shape Feature Detection CMOS Imager

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor)

    2015-01-01

    A CMOS imager integrated circuit using compressive sensing and bio-inspired detection is presented which integrates novel functions and algorithms within a novel hardware architecture enabling efficient on-chip implementation.

  5. The influence of the compression interface on the failure behavior and size effect of concrete

    NASA Astrophysics Data System (ADS)

    Kampmann, Raphael

    The failure behavior of concrete materials is not completely understood because conventional test methods fail to assess the material response independent of the sample size and shape. To study the influence of strength and strain affecting test conditions, four typical concrete sample types were experimentally evaluated in uniaxial compression and analyzed for strength, deformational behavior, crack initiation/propagation, and fracture patterns under varying boundary conditions. Both low friction and conventional compression interfaces were assessed. High-speed video technology was used to monitor macrocracking. Inferential data analysis proved reliably lower strength results for reduced surface friction at the compression interfaces, regardless of sample shape. Reciprocal comparisons revealed statistically significant strength differences between most sample shapes. Crack initiation and propagation was found to differ for dissimilar compression interfaces. The principal stress and strain distributions were analyzed, and the strain domain was found to resemble the experimental results, whereas the stress analysis failed to explain failure for reduced end confinement. Neither stresses nor strains indicated strength reductions due to reduced friction, and therefore, buckling effects were considered. The high-speed video analysis revealed localize buckling phenomena, regardless of end confinement. Slender elements were the result of low friction, and stocky fragments developed under conventional confinement. The critical buckling load increased accordingly. The research showed that current test methods do not reflect the "true'' compressive strength and that concrete failure is strain driven. Ultimate collapse results from buckling preceded by unstable cracking.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.

    A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth and fuel adiabat, separately and controllably. Three principal conclusions are drawn from this study: (1) It is shown that reducing ablation-front instability growth in low-foot implosions results in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. (2) It is shown that reducing the fuel adiabat in high-foot implosions results inmore » a significant (36%) increase in fuel compression together with a small (10%) increase in neutron yield. (3) Increased electron preheat at higher laser power in high-foot implosions, however, appears to offset the gain in compression achieved by adiabat-shaping at lower power. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.« less

  7. Method for determining damping properties of materials using a suspended mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Biscans, S.; Gras, S.; Evans, M.; Fritschel, P.; Pezerat, C.; Picart, P.

    2018-06-01

    We present a new approach for characterizing the loss factor of materials, using a suspended mechanical oscillator. Compared to more standard techniques, this method offers freedom in terms of the size and shape of the tested samples. Using a finite element model and the vibration measurements, the loss factor is deduced from the oscillator's ring-down. In this way the loss factor can be estimated independently for shear and compression deformation of the sample over a range of frequencies. As a proof of concept, we present measurements for EPO-TEK 353ND epoxy samples.

  8. The Use of Sphere Indentation Experiments to Characterize Ceramic Damage Models

    DTIC Science & Technology

    2011-09-01

    state having two equal eigenvalues. For TXC, the axial stress (single eigenvalue) is more compressive than the lateral stresses (dual eigenvalues). For...parameters. These dynamic experiments supplement traditional characterization experiments such as tension, triaxial compression , Brazilian, and...These dynamic experiments supplement traditional characterization experiments such as tension, triaxial compression , Brazilian, and plate impact, which

  9. Pre-loading of components during laser peenforming

    DOEpatents

    Hackel, Lloyd A [Livermore, CA; Halpin, John M [Tracy, CA; Harris, Fritz B [Rocklin, CA

    2003-12-30

    A method and apparatus are provided for forming shapes and contours in metal sections by prestressing a workpiece and generating laser induced compressive stress on the surface of the metal workpiece. The step of prestressing the workpiece is carried out with a jig. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts.

  10. A Fiber-Optic System Generating Pulses of High Spectral Density

    NASA Astrophysics Data System (ADS)

    Abramov, A. S.; Zolotovskii, I. O.; Korobko, D. A.; Fotiadi, A. A.

    2018-03-01

    A cascade fiber-optic system that generates pulses of high spectral density by using the effect of nonlinear spectral compression is proposed. It is demonstrated that the shape of the pulse envelope substantially influences the degree of compression of its spectrum. In so doing, maximum compression is achieved for parabolic pulses. The cascade system includes an optical fiber exhibiting normal dispersion that decreases along the fiber length, thereby ensuring that the pulse envelope evolves toward a parabolic shape, along with diffraction gratings and a fiber spectral compressor. Based on computer simulation, we determined parameters of cascade elements leading to maximum spectral density of radiation originating from a subpicosecond laser pulse of medium energy.

  11. Characterization and damage evaluation of advanced materials

    NASA Astrophysics Data System (ADS)

    Mitrovic, Milan

    Mechanical characterization of advanced materials, namely magnetostrictive and graphite/epoxy composite materials, is studied in this dissertation, with an emphasis on damage evaluation of composite materials. Consequently, the work in this dissertation is divided into two parts, with the first part focusing on characterization of the magneto-elastic response of magnetostrictlve materials, while the second part of this dissertation describes methods for evaluating the fatigue damage in composite materials. The objective of the first part of this dissertation is to evaluate a nonlinear constitutive relation which more closely depict the magneto-elastic response of magnetostrictive materials. Correlation between experimental and theoretical values indicate that the model adequately predicts the nonlinear strain/field relations in specific regimes, and that the currently employed linear approaches are inappropriate for modeling the response of this material in a structure. The objective of the second part of this dissertation is to unravel the complexities associated with damage events associated with polymeric composite materials. The intent is to characterize and understand the influence of impact and fatigue induced damage on the residual thermo-mechanical properties and compressive strength of composite systems. The influence of fatigue generated matrix cracking and micro-delaminations on thermal expansion coefficient (TEC) and compressive strength is investigated for woven graphite/epoxy composite system. Experimental results indicate that a strong correlation exists between TEC and compressive strength measurements, indicating that TEC measurements can be used as a damage metric for this material systems. The influence of delaminations on the natural frequencies and mode shapes of a composite laminate is also investigated. Based on the changes of these parameters as a function of damage, a methodology for determining the size and location of damage is suggested. Finally, the influence of loading parameters on impact damage growth is investigated experimentally though constant amplitude and spectrum loading fatigue tests. Based on observed impact damage growth during these tests it is suggested that the low load levels can be deleted from the standardized test sequence without significant influence on impact damage propagation.

  12. Application of nonlinear pulse shaping of femtosecond pulse generation in a fiber amplifier at 500 MHz repetition rate

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Luo, Daping; Wang, Chao; Zhu, Zhiwei; Li, Wenxue

    2018-03-01

    We numerically and experimentally demonstrate that a nonlinear pulse shaping technique based on pre-chirping management in a short gain fiber can be exploited to improve the quality of a compressed pulse. With prior tuning of the pulse chirp, the amplified pulse express different nonlinear propagating processes. A spectrum with s flat top and more smooth wings, showing a similariton feature, generates with the optimal initial pulse chirp, and the shortest pulses with minimal pulse pedestals are obtained. Experimental results show the ability of nonlinear pulse shaping to enhance the quality of compressed pulses, as theoretically expected.

  13. Effect of surface energy on powder compactibility.

    PubMed

    Fichtner, Frauke; Mahlin, Denny; Welch, Ken; Gaisford, Simon; Alderborn, Göran

    2008-12-01

    The influence of surface energy on the compactibility of lactose particles has been investigated. Three powders were prepared by spray drying lactose solutions without or with low proportions of the surfactant polysorbate 80. Various powder and tablet characterisation procedures were applied. The surface energy of the powders was characterized by Inverse Gas Chromatography and the compressibility of the powders was described by the relationship between tablet porosity and compression pressure. The compactibility of the powders was analyzed by studying the evolution of tablet tensile strength with increasing compaction pressure and porosity. All powders were amorphous and similar in particle size, shape, and surface area. The compressibility of the powders and the microstructure of the formed tablets were equal. However, the compactibility and dispersive surface energy was dependent of the composition of the powders. The decrease in tablet strength correlated to the decrease in powder surface energy at constant tablet porosities. This supports the idea that tablet strength is controlled by formation of intermolecular forces over the areas of contact between the particles and that the strength of these bonding forces is controlled by surface energy which, in turn, can be altered by the presence of surfactants.

  14. Effect of Porosity on the Properties of Open Cell Titanium Foams Intended for Orthopedic Applications

    NASA Astrophysics Data System (ADS)

    Lefebvre, L. P.; Baril, E.

    2010-05-01

    Porous metals have been used in various orthopedic applications as coating to promote implant fixation or as scaffolds for bone reconstruction. Since these materials were up to recently only used as thin coating (i.e. sintered beads or mesh) and not available into shapes adequate for detailed characterization, the effect of the structure on the static and dynamic properties of these materials has not been widely reported in the literature. This paper presents the effect of the porosity (49.3-66.7%) on the static and dynamic properties of titanium foams produced with a powder metallurgy process. All materials exhibited compression curves with three stages, typical of ductile porous materials. When the porosity level increases, the materials become more brittle. The compression yield strength increases while the modulus is more or less unaffected when the porosity increases from 49.3 to 66.7% and does not follow the power law model accepted for porous medium. The shear strength/adhesion with dense substrates increases with density and is proportional to the compression yield strength. The fatigue limit is not directly link with the porosity. The discrepancies observed are attributed to differences in the structure as the porosity increases.

  15. A mixture approach to the acoustic properties of a macroscopically inhomogeneous porous aluminum in the equivalent fluid approximation.

    PubMed

    Sacristan, C J; Dupont, T; Sicot, O; Leclaire, P; Verdière, K; Panneton, R; Gong, X L

    2016-10-01

    The acoustic properties of an air-saturated macroscopically inhomogeneous aluminum foam in the equivalent fluid approximation are studied. A reference sample built by forcing a highly compressible melamine foam with conical shape inside a constant diameter rigid tube is studied first. In this process, a radial compression varying with depth is applied. With the help of an assumption on the compressed pore geometry, properties of the reference sample can be modelled everywhere in the thickness and it is possible to use the classical transfer matrix method as theoretical reference. In the mixture approach, the material is viewed as a mixture of two known materials placed in a patchwork configuration and with proportions of each varying with depth. The properties are derived from the use of a mixing law. For the reference sample, the classical transfer matrix method is used to validate the experimental results. These results are used to validate the mixture approach. The mixture approach is then used to characterize a porous aluminium for which only the properties of the external faces are known. A porosity profile is needed and is obtained from the simulated annealing optimization process.

  16. Procedures for characterizing an alloy and predicting cyclic life with the total strain version of Strainrange Partitioning

    NASA Technical Reports Server (NTRS)

    Saltsman, James F.; Halford, Gary R.

    1989-01-01

    Procedures are presented for characterizing an alloy and predicting cyclic life for isothermal and thermomechanical fatigue conditions by using the total strain version of strainrange partitioning (TS-SRP). Numerical examples are given. Two independent alloy characteristics are deemed important: failure behavior, as reflected by the inelastic strainrange versus cyclic life relations; and flow behavior, as indicated by the cyclic stress-strain-time response (i.e., the constitutive behavior). Failure behavior is characterized by conducting creep-fatigue tests in the strain regime, wherein the testing times are reasonably short and the inelastic strains are large enough to be determined accurately. At large strainranges, stress-hold, strain-limited tests are preferred because a high rate of creep damage per cycle is inherent in this type of test. At small strainranges, strain-hold cycles are more appropriate. Flow behavior is characterized by conducting tests wherein the specimen is usually cycled far short of failure and the wave shape is appropriate for the duty cycle of interest. In characterizing an alloy pure fatigue, or PP, failure tests are conducted first. Then depending on the needs of the analyst a series of creep-fatigue tests are conducted. As many of the three generic SRP cycles are featured as are required to characterize the influence of creep on fatigue life (i.e., CP, PC, and CC cycles, respectively, for tensile creep only, compressive creep only, and both tensile and compressive creep). Any mean stress effects on life also must be determined and accounted for when determining the SRP inelastic strainrange versus life relations for cycles featuring creep. This is particularly true for small strainranges. The life relations thus are established for a theoretical zero mean stress condition.

  17. Three-dimensional finite element analyses of four designs of a high-strength silicon nitride implant.

    PubMed

    Lin, S; Shi, S; LeGeros, R Z; LeGeros, J P

    2000-01-01

    The effects of implant shape and size on the stress distribution around high-strength silicon nitride implants under vertical and oblique forces were determined using a three-dimensional finite element analysis. Finite element models were designed using as a basis the serial sections of the mandible. Using Auto-CAD software, the model simulated the placement of implants in the molar region of the left mandible. Results of the analyses demonstrated that mainly the implant root shape and the directions of bite forces influence the stress distributions in the supporting bone around each implant. Implant size is a lesser factor. The serrated implants presented a larger surface area to the bone than either the cylindrical or tapered implants, which resulted in lower compressive stress around the serrated implants. With increasing implant diameter and length, compressive stress decreased. The mean compressive stress distribution on the serrated implants was more flat (platykurtic) than on either the cylindrical or tapered implants. Results of studies on two load directions (vertical and oblique) showed that, in either case, the compressive stress in the cortical bone around the neck of the implant was higher than in the cancellous bone along the length of the implant. The most extreme principal compressive stress was found with oblique force. This study provides the first information on the relationship between shape of the silicon nitride implant and stress on the supporting bone.

  18. Ramp compression of a metallic liner driven by a shaped 5 MA current on the SPHINX machine

    NASA Astrophysics Data System (ADS)

    D'Almeida, Thierry; Lassalle, Francis; Morell, Alain; Grunenwald, Julien; Zucchini, Frédéric; Loyen, Arnaud; Maysonnave, Thomas; Chuvatin, Alexandre

    2013-06-01

    SPHINX is a 6MA, 1- μs Linear Transformer Driver operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being considered for improving the generator performances, there is a compact Dynamic Load Current Amplifier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse. We present the overall experimental configuration chosen for these experiments, based on electrical and hydrodynamic simulations. Initial results obtained over a set of experiments on an aluminum cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented. Details of the electrical and Photonic Doppler Velocimetry (PDV) setups used to monitor and diagnose the ramp compression experiments are provided. Current profiles measured at various locations across the system, particularly the load current, agree with simulated current profile and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements agree with the hydrocode results obtained using the measured load current as the input. Higher ramp pressure levels are foreseen in future experiments with an improved DLCM system.

  19. Mathematical Model Relating Uniaxial Compressive Behavior of Manufactured Sand Mortar to MIP-Derived Pore Structure Parameters

    PubMed Central

    Tian, Zhenghong; Bu, Jingwu

    2014-01-01

    The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed. PMID:25133257

  20. Effect of Aging Treatment on the Compressibility and Recovery of NiTi Shape Memory Alloys as Static Seals

    NASA Astrophysics Data System (ADS)

    Lu, Xiaofeng; Li, Gang; Liu, Luwei; Zhu, Xiaolei; Tu, Shan-Tung

    2017-07-01

    The improvement of the compressibility and recovery of the gaskets can decrease the leakage occurrence in bolted flange connections. In this study, the effect of aging treatment on the compressibility and recovery of NiTi shape memory alloys is investigated as static seals together with thermal analysis. The experimental results indicate that different phase transformations of NiTi alloys are exhibited in the DSC curves during aging treatment. The recovery coefficient of NiTi alloys aged at 500 °C for 2 h is quite low accompanied with a large residual strain. With increasing aging time at the aging temperature of 400 °C, the residual strain and area of hysteresis loop of NiTi alloys are both increased, whereas the recovery coefficient is decreased. Since the deformation associates the phase transformation behavior, aging treatment could improve the compressibility and recovery of NiTi alloys as static seals.

  1. Mathematical model relating uniaxial compressive behavior of manufactured sand mortar to MIP-derived pore structure parameters.

    PubMed

    Tian, Zhenghong; Bu, Jingwu

    2014-01-01

    The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed.

  2. Surface activity of lipid extract surfactant in relation to film area compression and collapse.

    PubMed

    Schürch, S; Schürch, D; Curstedt, T; Robertson, B

    1994-08-01

    The physical properties of modified porcine surfactant (Curosurf), isolated from minced lungs by extraction with chloroform-methanol and further purified by liquid-gel chromatography, were investigated with the captive bubble technique. Bubble size, and thus the surface tension of an insoluble film at the bubble surface, is altered by changing the pressure within the closed bubble chamber. The film surface tension and area are determined from the shape (height and diameter) of the bubble. Adsorption of fresh Curosurf is characterized by stepwise decreases in surface tension, which can easily be observed by sudden quick movements of the bubble apex. These "adsorption clicks" imply a cooperative movement of large collective units of molecules, approximately 10(14) (corresponding to approximately 120 ng of phospholipid) or approximately 10(18) molecules/m2, into the interface during adsorption. Films formed in this manner are already highly enriched in dipalmitoyl phosphatidylcholine, as seen by the extremely low compressibility, close to that of dipalmitoyl phosphatidylcholine. Near-zero minimum tensions are obtained, even at phospholipid concentrations as low as 50 micrograms/ml. During dynamic cycling (20-50 cycles/min), low minimum surface tensions, good film stability, low compressibility, and maximum surface tensions between 30 and 40 mN/m are possible only if the films are not overcompressed near zero surface tension; i.e., the overall film area compression should not substantially exceed 30%.

  3. The Shape of a Ponytail and the Statistical Physics of Hair Fiber Bundles

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.; Warren, Patrick B.; Ball, Robin C.

    2012-02-01

    From Leonardo to the Brothers Grimm our fascination with hair has endured in art and science. Yet, a quantitative understanding of the shapes of a hair bundles has been lacking. Here we combine experiment and theory to propose an answer to the most basic question: What is the shape of a ponytail? A model for the shape of hair bundles is developed from the perspective of statistical physics, treating individual fibers as elastic filaments with random intrinsic curvatures. The combined effects of bending elasticity, gravity, and bundle compressibility are recast as a differential equation for the envelope of a bundle, in which the compressibility enters through an ``equation of state.'' From this, we identify the balance of forces in various regions of the ponytail, extract the equation of state from analysis of ponytail shapes, and relate the observed pressure to the measured random curvatures of individual hairs.

  4. Fully recoverable rigid shape memory foam based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) using a salt leaching technique.

    PubMed

    Alzahrani, Abeer A; Saed, Mohand; Yakacki, Christopher M; Song, Han Byul; Sowan, Nancy; Walston, Joshua J; Shah, Parag K; McBride, Matthew K; Stansbury, Jeffrey W; Bowman, Christopher N

    2018-01-07

    This study is the first to employ the use of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization to form a tough and stiff, porous material from a well-defined network possessing a high glass transition temperature. The effect of the network linkages formed as a product of the CuAAC reaction, i.e., the triazoles, on the mechanical behavior at high strain was evaluated by comparing the CuAAC foam to an epoxy-amine-based foam, which consisted of monomers with similar backbone structures and mechanical properties (i.e., T g of 115 °C and a rubbery modulus of 1.0 MPa for the CuAAC foam, T g of 125 °C and a rubbery modulus of 1.2 MPa for the epoxy-amine foam). When each foam was compressed uniformly to 80% strain at ambient temperature, the epoxy-amine foam was severely damaged after only reaching 70% strain in the first compression cycle with a toughness of 300 MJ/m 3 . In contrast, the CuAAC foam exhibited pronounced ductile behavior in the glassy state with three times higher toughness of 850 MJ/m 3 after the first cycle of compression to 80% strain. Additionally, when the CuAAC foam was heated above T g after each of five compression cycles to 80% strain at ambient temperature, the foam completely recovered its original shape while exhibiting a gradual decrease in mechanical performance over the multiple compression cycles. The foam demonstrated almost complete shape fixity and recovery ratios even through five successive cycles, indicative of "reversible plasticity", making it highly desirable as a glassy shape memory foams.

  5. Spiral wave classification using normalized compression distance: Towards atrial tissue spatiotemporal electrophysiological behavior characterization.

    PubMed

    Alagoz, Celal; Guez, Allon; Cohen, Andrew; Bullinga, John R

    2015-08-01

    Analysis of electrical activation patterns such as re-entries during atrial fibrillation (Afib) is crucial in understanding arrhythmic mechanisms and assessment of diagnostic measures. Spiral waves are a phenomena that provide intuitive basis for re-entries occurring in cardiac tissue. Distinct spiral wave behaviors such as stable spiral waves, meandering spiral waves, and spiral wave break-up may have distinct electrogram manifestations on a mapping catheter. Hence, it is desirable to have an automated classification of spiral wave behavior based on catheter recordings for a qualitative characterization of spatiotemporal electrophysiological activity on atrial tissue. In this study, we propose a method for classification of spatiotemporal characteristics of simulated atrial activation patterns in terms of distinct spiral wave behaviors during Afib using two different techniques: normalized compressed distance (NCD) and normalized FFT (NFFTD). We use a phenomenological model for cardiac electrical propagation to produce various simulated spiral wave behaviors on a 2D grid and labeled them as stable, meandering, or breakup. By mimicking commonly used catheter types, a star shaped and a circular shaped both of which do the local readings from atrial wall, monopolar and bipolar intracardiac electrograms are simulated. Virtual catheters are positioned at different locations on the grid. The classification performance for different catheter locations, types and for monopolar or bipolar readings were also compared. We observed that the performance for each case differed slightly. However, we found that NCD performance is superior to NFFTD. Through the simulation study, we showed the theoretical validation of the proposed method. Our findings suggest that a qualitative wavefront activation pattern can be assessed during Afib without the need for highly invasive mapping techniques such as multisite simultaneous electrogram recordings.

  6. In vitro characterization of design and compressive properties of 3D-biofabricated/decellularized hybrid grafts for tracheal tissue engineering.

    PubMed

    Johnson, Christopher; Sheshadri, Priyanka; Ketchum, Jessica M; Narayanan, Lokesh K; Weinberger, Paul M; Shirwaiker, Rohan A

    2016-06-01

    Infection or damage to the trachea, a thin walled and cartilage reinforced conduit that connects the pharynx and larynx to the lungs, leads to serious respiratory medical conditions which can often prove fatal. Current clinical strategies for complex tracheal reconstruction are of limited availability and efficacy, but tissue engineering and regenerative medicine approaches may provide viable alternatives. In this study, we have developed a new "hybrid graft" approach that utilizes decellularized tracheal tissue along with a resorbable polymer scaffold, and holds promise for potential clinical applications. First, we evaluated the effect of our decellularization process on the compression properties of porcine tracheal segments, and noted approximately 63% decrease in resistance to compression following decellularization. Next we developed four C-shape scaffold designs by varying the base geometry and thickness, and fabricated polycaprolactone scaffolds using a combination of 3D-Bioplotting and thermally-assisted forming. All scaffolds designs were evaluated in vitro under three different environmental testing conditions to determine the design that offered the best resistance to compression. These were further studied to determine the effect of gamma radiation sterilization and cyclic compression loading. Finally, hybrid grafts were developed by securing these optimal design scaffolds to decellularized tracheal segments and evaluated in vitro under physiological testing conditions. Results show that the resistance to compression offered by the hybrid grafts created using gamma radiation sterilized scaffolds was comparable to that of fresh tracheal segments. Given that current clinical attempts at tracheal transplantation using decellularized tissue have been fraught with luminal collapse and complications, our data support the possibility that future embodiments using a hybrid graft approach may reduce the need for intraluminal stenting in tracheal transplant recipients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Confinement of NORMAL- AND HIGH-STRENGTH CONCRETE by Shape Memory Alloy (SMA) Spirals

    NASA Astrophysics Data System (ADS)

    Gholampour, A.; Ozbakkaloglu, T.

    2018-01-01

    This paper presents the results of an experimental study on the axial compressive behaviour of normal- and high-strength concrete (NSC and HSC) confined by shape memory alloy (SMA) spirals. A spiral pitch space of 36 and 20 mm was used for SMA confinement of NSC and HSC columns, respectively. The confining pressure was applied on the concrete cylinders by SMA spirals that were prestrained at 0, 5.5, and 9.5%. The compression test results on the SMA-confined specimens indicate that the prestrain level of SMA significantly affects the axial compressive behaviour of both NSC and HSC. An increase in the level of prestrain leads to an increase in the peak axial stress and corresponding strain of SMA-confined concrete.

  8. Breaking of rod-shaped model material during compression

    NASA Astrophysics Data System (ADS)

    Lukas, Kulaviak; Vera, Penkavova; Marek, Ruzicka; Miroslav, Puncochar; Petr, Zamostny; Zdenek, Grof; Frantisek, Stepanek; Marek, Schongut; Jaromir, Havlica

    2017-06-01

    The breakage of a model anisometric dry granular material caused by uniaxial compression was studied. The bed of uniform rod-like pasta particles (8 mm long, aspect ratio 1:8) was compressed (Gamlen Tablet Press) and their size distribution was measured after each run (Dynamic Image Analysing). The compression dynamics was recorded and the effect of several parameters was tested (rate of compression, volume of granular bed, pressure magnitude and mode of application). Besides the experiments, numerical modelling of the compressed breakable material was performed as well, employing the DEM approach (Discrete Element Method). The comparison between the data and the model looks promising.

  9. Effect of Fractal Dimension on the Strain Behavior of Particulate Media

    NASA Astrophysics Data System (ADS)

    Altun, Selim; Sezer, Alper; Goktepe, A. Burak

    2016-12-01

    In this study, the influence of several fractal identifiers of granular materials on dynamic behavior of a flexible pavement structure as a particulate stratum is considered. Using experimental results and numerical methods as well, 15 different grain-shaped sands obtained from 5 different sources were analyzed as pavement base course materials. Image analyses were carried out by use of a stereomicroscope on 15 different samples to obtain quantitative particle shape information. Furthermore, triaxial compression tests were conducted to determine stress-strain and shear strength parameters of sands. Additionally, the dynamic response of the particulate media to standard traffic loads was computed using finite element modeling (FEM) technique. Using area-perimeter, line divider and box counting methods, over a hundred grains for each sand type were subjected to fractal analysis. Relationships among fractal dimension descriptors and dynamic strain levels were established for assessment of importance of shape descriptors of sands at various scales on the dynamic behavior. In this context, the advantage of fractal geometry concept to describe irregular and fractured shapes was used to characterize the sands used as base course materials. Results indicated that fractal identifiers can be preferred to analyze the effect of shape properties of sands on dynamic behavior of pavement base layers.

  10. Effect of trailing edge shape on the wake and propulsive performance of pitching panels

    NASA Astrophysics Data System (ADS)

    van Buren, Tyler; Floryan, Daniel; Brunner, Daniel; Senturk, Utku; Smits, Alexander

    2016-11-01

    We present the effects of the trailing edge shape on the wake and propulsive performance of a pitching panel with an aspect ratio of 1. The trailing edges are symmetric chevron shapes with convex and concave orientations of varying degree. Concave trailing edges delay the natural vortex bending and compression of the wake, and the streamwise velocity field contains a single jet-like structure. Conversely, convex trailing edges promote wake compression and produce a wake split into four jets. Deviation from the square trailing edge mostly reduces the thrust and efficiency. Supported by the Office of Naval Research under MURI Grant Number N00014-14-1-0533.

  11. Additivity of nonsimultaneous masking for short Gaussian-shaped sinusoids.

    PubMed

    Laback, Bernhard; Balazs, Peter; Necciari, Thibaud; Savel, Sophie; Ystad, Solvi; Meunier, Sabine; Kronland-Martinet, Richard

    2011-02-01

    The additivity of nonsimultaneous masking was studied using Gaussian-shaped tone pulses (referred to as Gaussians) as masker and target stimuli. Combinations of up to four temporally separated Gaussian maskers with an equivalent rectangular bandwidth of 600 Hz and an equivalent rectangular duration of 1.7 ms were tested. Each masker was level-adjusted to produce approximately 8 dB of masking. Excess masking (exceeding linear additivity) was generally stronger than reported in the literature for longer maskers and comparable target levels. A model incorporating a compressive input/output function, followed by a linear summation stage, underestimated excess masking when using an input/output function derived from literature data for longer maskers and comparable target levels. The data could be predicted with a more compressive input/output function. Stronger compression may be explained by assuming that the Gaussian stimuli were too short to evoke the medial olivocochlear reflex (MOCR), whereas for longer maskers tested previously the MOCR caused reduced compression. Overall, the interpretation of the data suggests strong basilar membrane compression for very short stimuli.

  12. Axial strength test for round flat faced versus capsule shaped bilayer tablets.

    PubMed

    Franck, Jason; Abebe, Admassu; Keluskar, Rekha; Martin, Kyle; Majumdar, Antara; Kottala, Niranjan; Stamato, Howard

    2015-03-01

    There has been increasing interest in fixed dose combination (FDC) therapy. Multi-layer tablets are a popular choice among various technologies to deliver FDCs. In most cases, round flat faced tooling is used in testing tablets as they have the simplest geometry. However, shaped tooling is more common for commercial products and may have an effect on bilayer tablet strength. Capsule shaped bilayer tablets, similar to a commercial image, and holders conforming to the tablet topology, were compared with similar round flat faced bilayer tablets and their corresponding holders. Bilayer tablets were subjected to an axial test device, until fracture and the quantitative breaking force value was recorded. As the second layer compression force increases, regardless of holder design, an increase in breaking force occurs as expected. This consistent trend provides insight regarding the breaking force of capsule shaped bilayer tablets. The results of this study show that at lower second layer compression forces, tablet geometry does not significantly impact the results. However, at higher compression forces, a significant difference in breaking force between tablet geometries exists. Therefore, using a test geometry close to the final commercial tablet image is recommended to have the most accurate prediction for tablet breakage.

  13. The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting.

    PubMed

    Zhao, S; Li, S J; Hou, W T; Hao, Y L; Yang, R; Misra, R D K

    2016-06-01

    Additive manufacturing technique is a promising approach for fabricating cellular bone substitutes such as trabecular and cortical bones because of the ability to adjust process parameters to fabricate different shapes and inner structures. Considering the long term safe application in human body, the metallic cellular implants are expected to exhibit superior fatigue property. The objective of the study was to study the influence of cell shape on the compressive fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting. The results indicated that the underlying fatigue mechanism for the three kinds of meshes (cubic, G7 and rhombic dodecahedron) is the interaction of cyclic ratcheting and fatigue crack growth on the struts, which is closely related to cumulative effect of buckling and bending deformation of the strut. By increasing the buckling deformation on the struts through cell shape design, the cyclic ratcheting rate of the meshes during cyclic deformation was decreased and accordingly, the compressive fatigue strength was increased. With increasing bending deformation of struts, fatigue crack growth in struts contributed more to the fatigue damage of meshes. Rough surface and pores contained in the struts significantly deteriorated the compressive fatigue strength of the struts. By optimizing the buckling and bending deformation through cell shape design, Ti-6Al-4V alloy cellular solids with high fatigue strength and low modulus can be fabricated by the EBM technique. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Vortex Generators in a Two-Dimensional, External-Compression Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.

    2016-01-01

    Vortex generators within a two-dimensional, external-compression supersonic inlet for Mach 1.6 were investigated to determine their ability to increase total pressure recovery, reduce total pressure distortion, and improve the boundary layer. The vortex generators studied included vanes and ramps. The geometric factors of the vortex generators studied included height, length, spacing, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated through the computational solution of the steady-state Reynolds-averaged Navier-Stokes equations on multi-block, structured grids. The vortex generators were simulated by either gridding the geometry of the vortex generators or modeling the vortices generated by the vortex generators. The inlet performance was characterized by the inlet total pressure recovery, total pressure distortion, and incompressible shape factor of the boundary-layer at the engine face. The results suggested that downstream vanes reduced the distortion and improved the boundary layer. The height of the vortex generators had the greatest effect of the geometric factors.

  15. On the shape memory of red blood cells

    NASA Astrophysics Data System (ADS)

    Cordasco, Daniel; Bagchi, Prosenjit

    2017-04-01

    Red blood cells (RBCs) undergo remarkably large deformations when subjected to external forces but return to their biconcave discoid resting shape as the forces are withdrawn. In many experiments, such as when RBCs are subjected to a shear flow and undergo the tank-treading motion, the membrane elements are also displaced from their original (resting) locations along the cell surface with respect to the cell axis, in addition to the cell being deformed. A shape memory is said to exist if after the flow is stopped the RBC regains its biconcave shape and the membrane elements also return to their original locations. The shape memory of RBCs was demonstrated by Fischer ["Shape memory of human red blood cells," Biophys. J. 86, 3304-3313 (2004)] using shear flow go-and-stop experiments. Optical tweezer and micropipette based stretch-relaxation experiments do not reveal the complete shape memory because while the RBC may be deformed, the membrane elements are not significantly displaced from their original locations with respect to the cell axis. Here we present the first three-dimensional computational study predicting the complete shape memory of RBCs using shear flow go-and-stop simulations. The influence of different parameters, namely, membrane shear elasticity and bending rigidity, membrane viscosity, cytoplasmic and suspending fluid viscosity, as well as different stress-free states of the RBC is studied. For all cases, the RBCs always exhibit shape memory. The complete recovery of the RBC in shear flow go-and-stop simulations occurs over a time that is orders of magnitude longer than that for optical tweezer and micropipette based relaxations. The response is also observed to be more complex and composed of widely disparate time scales as opposed to only one time scale that characterizes the optical tweezer and micropipette based relaxations. We observe that the recovery occurs in three phases: a rapid compression of the RBC immediately after the flow is stopped, followed by a slow recovery to the biconcave shape combined with membrane rotation, and a final rotational return of the membrane elements back to their original locations. A fast time scale on the order of a few hundred milliseconds characterizes the initial compression phase while a slow time scale on the order of tens of seconds is associated with the rotational phase. We observe that the response is strongly dependent on the stress-free state of the cells, that is, the relaxation time decreases significantly and the mode of recovery changes from rotation-driven to deformation-driven as the stress-free state becomes more non-spherical. We show that while membrane shear elasticity and non-spherical stress-free shape are necessary and sufficient for the membrane elements to return to their original locations, bending rigidity is needed for the "global" recovery of the biconcave shape. We also perform a novel relaxation simulation in which the cell axis of revolution is not aligned with the shear plane and show that the shape memory is exhibited even when the membrane elements are displaced normal to the imposed flow direction. The results presented here could motivate new experiments to determine the exact stress-free state of the RBC and also to clearly identify different tank-treading modes.

  16. The suitability of common compressibility equations for characterizing plasticity of diverse powders.

    PubMed

    Paul, Shubhajit; Sun, Changquan Calvin

    2017-10-30

    The analysis of powder compressibility data yields useful information for characterizing compaction behavior and mechanical properties of powders, especially plasticity. Among the many compressibility equations proposed in powder compaction research, the Heckel equation and the Kawakita equation are the most commonly used, despite their known limitations. Systematic evaluation of the performance in analyzing compressibility data suggested the Kuentz-Leuenberger equation is superior to both the Heckel equation and the Kawakita equation for characterizing plasticity of powders exhibiting a wide range of mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An experimental investigation on the three-point bending behavior of composite laminate

    NASA Astrophysics Data System (ADS)

    A, Azzam; W, Li

    2014-08-01

    The response of composite laminate structure to three-point bending load was investigated by subjecting two types of stacking sequences of composite laminate structure by using electronic universal tester (Type: WDW-20) machine. Optical microscope was selected in order to characterize bending damage, delamination, and damage shapes in composite laminate structures. The results showed that the [0/90/-45/45]2s exhibits a brittle behavior, while other laminates exhibit a progressive failure mode consisting of fiber failure, debonding (splitting), and delamination. The [45/45/90/0]2s laminate has a highly nonlinear load- displacement curve due to compressive yielding.

  18. Effect of Pore Size, Morphology and Orientation on the Bulk Stiffness of a Porous Ti35Nb4Sn Alloy

    NASA Astrophysics Data System (ADS)

    Torres-Sanchez, Carmen; McLaughlin, John; Bonallo, Ross

    2018-04-01

    The metal foams of a titanium alloy were designed to study porosity as well as pore size and shape independently. These were manufactured using a powder metallurgy/space-holder technique that allowed a fine control of the pore size and morphology; and then characterized and tested against well-established models to predict a relationship between porosity, pore size and shape, and bulk stiffness. Among the typically used correlations, existing power-law models were found to be the best fit for the prediction of macropore morphology against compressive elastic moduli, outperforming other models such as exponential, polynomial or binomial. Other traditional models such as linear ones required of updated coefficients to become relevant to metal porous sintered macrostructures. The new coefficients reported in this study contribute toward a design tool that allows the tailoring of mechanical properties through porosity macrostructure. The results show that, for the same porosity range, pore shape and orientation have a significant effect on mechanical performance and that they can be predicted. Conversely, pore size has only a mild impact on bulk stiffness.

  19. NASA Tech Briefs, January 2014

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Topics include: Multi-Source Autonomous Response for Targeting and Monitoring of Volcanic Activity; Software Suite to Support In-Flight Characterization of Remote Sensing Systems; Visual Image Sensor Organ Replacement; Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna; Centering a DDR Strobe in the Middle of a Data Packet; Using a Commercial Ethernet PHY Device in a Radiation Environment; Submerged AUV Charging Station; Habitat Demonstration Unit (HDU) Vertical Cylinder Habitat; Origami-Inspired Folding of Thick, Rigid Panels; A Novel Protocol for Decoating and Permeabilizing Bacterial Spores for Epifluorescent Microscopy; Method and Apparatus for Automated Isolation of Nucleic Acids from Small Cell Samples; Enabling Microliquid Chromatography by Microbead Packing of Microchannels; On-Command Force and Torque Impeding Devices (OC-FTID) Using ERF; Deployable Fresnel Rings; Transition-Edge Hot-Electron Microbolometers for Millimeter and Submillimeter Astrophysics; Spacecraft Trajectory Analysis and Mission Planning Simulation (STAMPS) Software; Cross Support Transfer Service (CSTS) Framework Library; Arbitrary Shape Deformation in CFD Design; Range Safety Flight Elevation Limit Calculation Software; Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors; Calculation of Operations Efficiency Factors for Mars Surface Missions; GPU Lossless Hyperspectral Data Compression System; Robust, Optimal Subsonic Airfoil Shapes; Protograph-Based Raptor-Like Codes; Fuzzy Neuron: Method and Hardware Realization; Kalman Filter Input Processor for Boresight Calibration; Organizing Compression of Hyperspectral Imagery to Allow Efficient Parallel Decompression; and Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption.

  20. Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions

    PubMed Central

    Sachse, F. B.

    2015-01-01

    Microstructural characterization of cardiac tissue and its remodeling in disease is a crucial step in many basic research projects. We present a comprehensive approach for three-dimensional characterization of cardiac tissue at the submicrometer scale. We developed a compression-free mounting method as well as labeling and imaging protocols that facilitate acquisition of three-dimensional image stacks with scanning confocal microscopy. We evaluated the approach with normal and infarcted ventricular tissue. We used the acquired image stacks for segmentation, quantitative analysis and visualization of important tissue components. In contrast to conventional mounting, compression-free mounting preserved cell shapes, capillary lumens and extracellular laminas. Furthermore, the new approach and imaging protocols resulted in high signal-to-noise ratios at depths up to 60 μm. This allowed extensive analyses revealing major differences in volume fractions and distribution of cardiomyocytes, blood vessels, fibroblasts, myofibroblasts and extracellular space in control versus infarct border zone. Our results show that the developed approach yields comprehensive data on microstructure of cardiac tissue and its remodeling in disease. In contrast to other approaches, it allows quantitative assessment of all major tissue components. Furthermore, we suggest that the approach will provide important data for physiological models of cardiac tissue at the submicrometer scale. PMID:26399990

  1. The nucleus is irreversibly shaped by motion of cell boundaries in cancer and non-cancer cells.

    PubMed

    Tocco, Vincent J; Li, Yuan; Christopher, Keith G; Matthews, James H; Aggarwal, Varun; Paschall, Lauren; Luesch, Hendrik; Licht, Jonathan D; Dickinson, Richard B; Lele, Tanmay P

    2018-02-01

    Actomyosin stress fibers impinge on the nucleus and can exert compressive forces on it. These compressive forces have been proposed to elongate nuclei in fibroblasts, and lead to abnormally shaped nuclei in cancer cells. In these models, the elongated or flattened nuclear shape is proposed to store elastic energy. However, we found that deformed shapes of nuclei are unchanged even after removal of the cell with micro-dissection, both for smooth, elongated nuclei in fibroblasts and abnormally shaped nuclei in breast cancer cells. The lack of shape relaxation implies that the nuclear shape in spread cells does not store any elastic energy, and the cellular stresses that deform the nucleus are dissipative, not static. During cell spreading, the deviation of the nucleus from a convex shape increased in MDA-MB-231 cancer cells, but decreased in MCF-10A cells. Tracking changes of nuclear and cellular shape on micropatterned substrata revealed that fibroblast nuclei deform only during deformations in cell shape and only in the direction of nearby moving cell boundaries. We propose that motion of cell boundaries exert a stress on the nucleus, which allows the nucleus to mimic cell shape. The lack of elastic energy in the nuclear shape suggests that nuclear shape changes in cells occur at constant surface area and volume. © 2017 Wiley Periodicals, Inc.

  2. Theoretical extension and experimental demonstration of spectral compression in second-harmonic generation by Fresnel-inspired binary phase shaping

    NASA Astrophysics Data System (ADS)

    Li, Baihong; Dong, Ruifang; Zhou, Conghua; Xiang, Xiao; Li, Yongfang; Zhang, Shougang

    2018-05-01

    Selective two-photon microscopy and high-precision nonlinear spectroscopy rely on efficient spectral compression at the desired frequency. Previously, a Fresnel-inspired binary phase shaping (FIBPS) method was theoretically proposed for spectral compression of two-photon absorption and second-harmonic generation (SHG) with a square-chirped pulse. Here, we theoretically show that the FIBPS can introduce a negative quadratic frequency phase (negative chirp) by analogy with the spatial-domain phase function of Fresnel zone plate. Thus, the previous theoretical model can be extended to the case where the pulse can be transformed limited and in any symmetrical spectral shape. As an example, we experimentally demonstrate spectral compression in SHG by FIBPS for a Gaussian transform-limited pulse and show good agreement with the theory. Given the fundamental pulse bandwidth, a narrower SHG bandwidth with relatively high intensity can be obtained by simply increasing the number of binary phases. The experimental results also verify that our method is superior to that proposed in [Phys. Rev. A 46, 2749 (1992), 10.1103/PhysRevA.46.2749]. This method will significantly facilitate the applications of selective two-photon microscopy and spectroscopy. Moreover, as it can introduce negative dispersion, hence it can also be generalized to other applications in the field of dispersion compensation.

  3. Morphing Compression Garments for Space Medicine and Extravehicular Activity Using Active Materials.

    PubMed

    Holschuh, Bradley T; Newman, Dava J

    2016-02-01

    Compression garments tend to be difficult to don/doff, due to their intentional function of squeezing the wearer. This is especially true for compression garments used for space medicine and for extravehicular activity (EVA). We present an innovative solution to this problem by integrating shape changing materials-NiTi shape memory alloy (SMA) coil actuators formed into modular, 3D-printed cartridges-into compression garments to produce garments capable of constricting on command. A parameterized, 2-spring analytic counterpressure model based on 12 garment and material inputs was developed to inform garment design. A methodology was developed for producing novel SMA cartridge systems to enable active compression garment construction. Five active compression sleeve prototypes were manufactured and tested: each sleeve was placed on a rigid cylindrical object and counterpressure was measured as a function of spatial location and time before, during, and after the application of a step voltage input. Controllable active counterpressures were measured up to 34.3 kPa, exceeding the requirement for EVA life support (29.6 kPa). Prototypes which incorporated fabrics with linear properties closely matched analytic model predictions (4.1%/-10.5% error in passive/active pressure predictions); prototypes using nonlinear fabrics did not match model predictions (errors >100%). Pressure non-uniformities were observed due to friction and the rigid SMA cartridge structure. To our knowledge this is the first demonstration of controllable compression technology incorporating active materials, a novel contribution to the field of compression garment design. This technology could lead to easy-to-don compression garments with widespread space and terrestrial applications.

  4. Characterization of the diversity in bat biosonar beampatterns with spherical harmonics power spectra.

    PubMed

    Motamedi, Mohammad; Müller, Rolf

    2014-06-01

    The biosonar beampatterns found across different bat species are highly diverse in terms of global and local shape properties such as overall beamwidth or the presence, location, and shape of multiple lobes. It may be hypothesized that some of this variability reflects evolutionary adaptation. To investigate this hypothesis, the present work has searched for patterns in the variability across a set of 283 numerical predictions of emission and reception beampatterns from 88 bat species belonging to four major families (Rhinolophidae, Hipposideridae, Phyllostomidae, Vespertilionidae). This was done using a lossy compression of the beampatterns that utilized real spherical harmonics as basis functions. The resulting vector representations showed differences between the families as well as between emission and reception. These differences existed in the means of the power spectra as well as in their distribution. The distributions were characterized in a low dimensional space found through principal component analysis. The distinctiveness of the beampatterns across the groups was corroborated by pairwise classification experiments that yielded correct classification rates between ~85 and ~98%. Beamwidth was a major factor but not the sole distinguishing feature in these classification experiments. These differences could be seen as an indication of adaptive trends at the beampattern level.

  5. Non-destructive investigation of thermoplastic reinforced composites

    DOE PAGES

    Hassen, Ahmed; Taheri, Hossein; Vaidya, Uday

    2016-05-09

    This paper studies various manufacturing defects in glass fiber/Polypropylene (PP) composite parts and their methods of detection. Foreign Object Inclusion (FOI) of different shapes, sizes, and materials were placed in a glass fiber/PP panel made by compression molding. The paper aims to characterize the fiber orientation and fiber related defects such as fiber waviness in the composite specimen. Comprehensive investigation for different Non Destructive Evaluation (NDE) techniques, namely X-ray radiography and Ultrasonic Testing (UT) techniques to trace and characterize the embedded defects and the composite texture are presented. Conventional X-ray radiography successfully identified the fiber orientation in two dimension (2-D)more » plane; however, information for the sample depth was not captured. The radiography techniques showed low relative errors for the defect size measurements (maximum error was below 9.5%) when compared to the ultrasonic techniques. Ultrasonic techniques were able to map all the embedded artificial defects. Phase Array (PA) ultrasonic technique was able to precisely locate the FOI in the glass fiber/PP specimen. Nerveless, the shape and size of the defects were not accurately determined due to the high signal attenuation and distortion characteristics of the E-glass fiber.« less

  6. Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping

    DOE PAGES

    Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; ...

    2016-04-01

    A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth & fuel adiabat, separately and controllably. Two principal conclusions are drawn from this study: 1) It is shown that an increase in laser picket energy reduces ablation-front instability growth in low-foot implosions resulting in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. 2.) It is shown that a decrease inmore » laser trough power reduces the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with no reduction in neutron yield. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.« less

  7. Determining the Mechanical Properties of Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Wilmoth, Nathan

    2013-01-01

    Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.

  8. The effects of embedded internal delaminations on composite laminate compression strength; an experimental review

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    1994-01-01

    Delaminations in laminated composite materials can degrade the compressive strength of these materials. Delaminations can form as a result of impact damage or processing flaws. In order to better understand the effects of these delaminations on the compressive behavior of laminated composite plates, programs have been conducted to assess the criticality of prescribed delaminations of known size, shape, and location on the compression strength of laminated composites. A review of these programs is presented along with highlights of pertinent findings from each.

  9. Characterization of multiaxial warp knit composites

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Hasko, Gregory H.; Cano, Roberto J.

    1991-01-01

    The objectives were to characterize the mechanical behavior and damage tolerance of two multiaxial warp knit fabrics to determine the acceptability of these fabrics for high performance composite applications. The tests performed included compression, tension, open hole compression, compression after impact and compression-compression fatigue. Tests were performed on as-fabricated fabrics and on multi-layer fabrics that were stitched together with either carbon or Kevlar stitching yarn. Results of processing studies for vacuum impregnation with Hercules 3501-6 epoxy resin and pressure impregnation with Dow Tactix 138/H41 epoxy resin and British Petroleum BP E905L epoxy resin are presented.

  10. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response

    PubMed Central

    Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo

    2017-01-01

    Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process. PMID:29027925

  11. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response.

    PubMed

    Hu, Li; Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo

    2017-10-13

    Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process.

  12. Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wang, Qian; Zhao, Xu; Wang, Fang; Liu, Qingsuo

    2018-03-01

    The effect of Ga element on the microstructure, mechanical properties and shape memory effect of Cu-13.0Al-4.0Ni- xGa (wt%) high-temperature shape memory alloy was investigated by optical microscopy, SEM, XRD and compression test. The microstructure observation results showed that the Cu-13.0Al-4.0Ni- xGa ( x = 0.5 and 1.0) alloys displayed dual-phase morphology which consisted of 18R martensite and (Al, Ga)Cu phase, and their grain size was about several hundred microns, smaller than that of Cu-13.0Al-4.0Ni alloy. The compression test results proved that the mechanical properties of Cu-13.0Al-4.0Ni- xGa alloys were improved by addition of Ga element owing to the grain refinement and solid solution strengthening, and the compressive fracture strains were 11.5% for x = 0.5 and 14.9% for x = 1.0, respectively. When the pre-strain was 8%, the shape memory effect of 4.2 and 4.6% were obtained for Cu-13.0Al-4.0Ni-0.5 Ga and Cu-13.0Al-4.0Ni-1.0 Ga alloys after being heated to 400 °C for 1 min.

  13. Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass

    NASA Astrophysics Data System (ADS)

    Chen, Chang-hong; Feng, Ke-qin; Zhou, Yu; Zhou, Hong-ling

    2017-08-01

    Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature (900-1060°C) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060°C. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength (16.64 MPa) among the investigated samples and a relatively low bulk density (0.83 g/cm3), were attained in the case of the foamed glass-ceramics sintered at 1000°C.

  14. Characterization of cell mechanical properties by computational modeling of parallel plate compression.

    PubMed

    McGarry, J P

    2009-11-01

    A substantial body of work has been reported in which the mechanical properties of adherent cells were characterized using compression testing in tandem with computational modeling. However, a number of important issues remain to be addressed. In the current study, using computational analyses, the effect of cell compressibility on the force required to deform spread cells is investigated and the possibility that stiffening of the cell cytoplasm occurs during spreading is examined based on published experimental compression test data. The effect of viscoelasticity on cell compression is considered and difficulties in performing a complete characterization of the viscoelastic properties of a cell nucleus and cytoplasm by this method are highlighted. Finally, a non-linear force-deformation response is simulated using differing linear viscoelastic properties for the cell nucleus and the cell cytoplasm.

  15. 46 CFR 56.30-25 - Flared, flareless, and compression fittings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Flared, flareless, and compression fittings. 56.30-25 Section 56.30-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING... devices, and shape memory alloys. Fittings to which this section applies must be designed, constructed...

  16. Fibrocartilage tissue engineering: the role of the stress environment on cell morphology and matrix expression.

    PubMed

    Thomopoulos, Stavros; Das, Rosalina; Birman, Victor; Smith, Lester; Ku, Katherine; Elson, Elliott L; Pryse, Kenneth M; Marquez, Juan Pablo; Genin, Guy M

    2011-04-01

    Although much is known about the effects of uniaxial mechanical loading on fibrocartilage development, the stress fields to which fibrocartilaginous regions are subjected to during development are mutiaxial. That fibrocartilage develops at tendon-to-bone attachments and in compressive regions of tendons is well established. However, the three-dimensional (3D) nature of the stresses needed for the development of fibrocartilage is not known. Here, we developed and applied an in vitro system to determine whether fibrocartilage can develop under a state of periodic hydrostatic tension in which only a single principal component of stress is compressive. This question is vital to efforts to mechanically guide morphogenesis and matrix expression in engineered tissue replacements. Mesenchymal stromal cells in a 3D culture were exposed to compressive and tensile stresses as a result of an external tensile hydrostatic stress field. The stress field was characterized through mechanical modeling. Tensile cyclic stresses promoted spindle-shaped cells, upregulation of scleraxis and type one collagen, and cell alignment with the direction of tension. Cells experiencing a single compressive stress component exhibited rounded cell morphology and random cell orientation. No difference in mRNA expression of the genes Sox9 and aggrecan was observed when comparing tensile and compressive regions unless the medium was supplemented with the chondrogenic factor transforming growth factor beta3. In that case, Sox9 was upregulated under static loading conditions and aggrecan was upregulated under cyclic loading conditions. In conclusion, the fibrous component of fibrocartilage could be generated using only mechanical cues, but generation of the cartilaginous component of fibrocartilage required biologic factors in addition to mechanical cues. These studies support the hypothesis that the 3D stress environment influences cell activity and gene expression in fibrocartilage development.

  17. Fibrocartilage Tissue Engineering: The Role of the Stress Environment on Cell Morphology and Matrix Expression

    PubMed Central

    Das, Rosalina; Birman, Victor; Smith, Lester; Ku, Katherine; Elson, Elliott L.; Pryse, Kenneth M.; Marquez, Juan Pablo; Genin, Guy M.

    2011-01-01

    Although much is known about the effects of uniaxial mechanical loading on fibrocartilage development, the stress fields to which fibrocartilaginous regions are subjected to during development are mutiaxial. That fibrocartilage develops at tendon-to-bone attachments and in compressive regions of tendons is well established. However, the three-dimensional (3D) nature of the stresses needed for the development of fibrocartilage is not known. Here, we developed and applied an in vitro system to determine whether fibrocartilage can develop under a state of periodic hydrostatic tension in which only a single principal component of stress is compressive. This question is vital to efforts to mechanically guide morphogenesis and matrix expression in engineered tissue replacements. Mesenchymal stromal cells in a 3D culture were exposed to compressive and tensile stresses as a result of an external tensile hydrostatic stress field. The stress field was characterized through mechanical modeling. Tensile cyclic stresses promoted spindle-shaped cells, upregulation of scleraxis and type one collagen, and cell alignment with the direction of tension. Cells experiencing a single compressive stress component exhibited rounded cell morphology and random cell orientation. No difference in mRNA expression of the genes Sox9 and aggrecan was observed when comparing tensile and compressive regions unless the medium was supplemented with the chondrogenic factor transforming growth factor beta3. In that case, Sox9 was upregulated under static loading conditions and aggrecan was upregulated under cyclic loading conditions. In conclusion, the fibrous component of fibrocartilage could be generated using only mechanical cues, but generation of the cartilaginous component of fibrocartilage required biologic factors in addition to mechanical cues. These studies support the hypothesis that the 3D stress environment influences cell activity and gene expression in fibrocartilage development. PMID:21091338

  18. Mass-related traumatic tissue displacement and behavior: a screen for treatments that reduce [corrected] harm to bystander cells and recovery of function.

    PubMed

    Yang, Hongyan; Preston, Marnie; Chopp, Michael; Jiang, Feng; Zhang, Xuepeng; Schallert, Timothy

    2006-05-01

    In this study, we focused on a preclinical model of brain compression injury that has relevance to pathological conditions such as tumor, hematoma, blood clot, and intracerebral bony fragment. We investigated behavioral impairment as a result of rapid-onset small mass, and the factors involved in lesion formation and neuroplasticity. An epidural bead implantation method was adopted. Two sizes (1.5 mm and 2.0 mm thick) of hemisphere-shaped beads were used. The beads were implanted into various locations over the sensorimotor cortex (SMC--anterior, middle and posterior). The effects of early versus delayed bead removal were examined to model clinical neurosurgical or other treatment procedures. Forelimb and hind-limb behavioral deficits and recovery were observed, and histological changes were quantified to determine brain reaction to focal compression. Our results showed that the behavioral deficits of compression were influenced by the location, timing of compression release, and magnitude of compression. Even persistent compression by the thicker bead (2.0 mm) caused only minor behavioral deficits, followed by fast recovery within a week in most animals, suggesting a mild lesion pattern for this model. Brain tissue was compressed into a deformed shape under pressure with slight tissue damage, evidenced by pathological evaluation on hematoxylin and eosin (H&E)- and TUNEL-stained sections. Detectable but not severe behavioral dysfunction exhibited by this model makes it particularly suitable for direct assessment of adverse effects of interventions on neuroplasticity after brain compression injury. This model may permit development of treatment strategies to alleviate brain mass effects, without disrupting neuroplasticity.

  19. Contour forming of metals by laser peening

    DOEpatents

    Hackel, Lloyd; Harris, Fritz

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  20. Martensitic and magnetic transformation in Ni-Mn-Ga-Co ferromagnetic shape memory alloys.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cong, D. Y.; Wang, S.; Wang, Y. D.

    2008-01-01

    The effect of Co addition on crystal structure, martensitic transformation, Curie temperature and compressive properties of Ni{sub 53-x}Mn{sub 25}Ga{sub 22}Co{sub x} alloys with the Co content up to 14 at% was investigated. An abrupt decrease of martensitic transformation temperature was observed when the Co content exceeded 6 at.%, which can be attributed to the atomic disorder resulting from the Co addition. Substitution of Co for Ni proved efficient in increasing the Curie temperature. Compression experiments showed that the substitution of 4 at.% Co for Ni did not change the fracture strain, but lead to the increase in the compressive strengthmore » and the decrease in the yield stress. This study may offer experimental data for developing high performance ferromagnetic shape memory alloys.« less

  1. Characterization of Impact Initiation of Aluminum-Based Intermetallic-Forming Reactive Materials

    DTIC Science & Technology

    2011-12-01

    compressed intermetallic-forming aluminum-based reactive materials upon impact initiation, consisting of equi-volumetric tantalum-aluminum, tungsten-aluminum...18 2.3.4 Dynamic Energy Release Characterization using Pig Test . . . . . . 21 2.3.5 Shock Compression of Reactive Powder Mixtures...is to evaluate the reaction initiation characteristics of quasi-statically compressed intermetallic-forming aluminum-based reactive materials upon

  2. Effects of laser source parameters on the generation of narrow band and directed laser ultrasound

    NASA Technical Reports Server (NTRS)

    Spicer, James B.; Deaton, John B., Jr.; Wagner, James W.

    1992-01-01

    Predictive and prescriptive modeling of laser arrays is performed to demonstrate the effects of the extension of array elements on laser array performance. For a repetitively pulsed laser source (the temporal laser array), efficient frequency compression is best achieved by detecting longitudinal waves off-epicenter in plates where the source size and shape directly influence the longitudinal wave shape and duration; the longitudinal array may be tailored for a given repetition frequency to yield efficient overtone energy compression into the fundamental frequency band. For phased arrays, apparent array directivity is heavily influenced by array element size.

  3. Magnetic Diagnostics on the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Hutchinson, T. M.; Weber, T. E.; Boguski, J. C.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high-Alfvénic, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. An array of high-bandwidth, multi-axis, robust, internal magnetic probes has been constructed to characterize flux compression ratios, instability formation, and turbulent macro-scale features of the post-shock plasma. The mirror magnet is mounted on a linear translation stage, providing a capability to axially move the shock layer through the probe field of view. An independent, external probe array also provides conventional information on the FRC shape, velocity, and total pressure during the formation and acceleration phases. Probe design, characterization, configuration, and initial results are presented. This work is supported by the DOE OFES and NNSA under LANS contract DE-AC52-06NA25369. LA-UR-13-25189.

  4. Anomalous behavior of curves of pseudo-elastic deformation of Ni-Fe-Ga-Co alloy crystals as a result of interphase stresses

    NASA Astrophysics Data System (ADS)

    Malygin, G. A.; Nikolaev, V. I.; Averkin, A. I.; Zograf, A. P.

    2016-12-01

    The compression diagram of Ni49Fe18Ga27Co6 alloy crystals in the [011] direction was studied until full shape memory strain at various temperatures in the range of 259-340 K. It is found that all load curves are anomalously shaped and contain portions of sharp and gradual decreases in deformation stresses. Simulation of pseudo-elastic stress-strain curves within the theory of diffuse martensitic transitions, describing not only equilibrium of phases, but also the kinetics of the transition between them, shows that elastic interphase stresses during martensitic reactions Ll 2 → 14 M and 14 M → Ll 0 characteristic of this alloy can be responsible for the extraordinary shape of compression diagrams.

  5. Seismic Strain Field in Taiwan

    NASA Astrophysics Data System (ADS)

    Kao, H.; Liang, W.; Chang, T.; Liu, Y.; Lee, E.

    2001-12-01

    Centroid-moment-tensor (CMT) solutions determined by inverting waveform data of Broadband Array in Taiwan for Seismology (BATS) are collected for earthquakes that occurred in the Taiwan region. In total, the dataset contains more than 300 events that scattered across an area of 400 km by 400 km, including the devastating 1999 Chi-Chi earthquake sequence. The entire region is divided into 3 layers (0-40 km, 40-70 km, and greater than 70 km) with blocks of 0.2 degree by 0.2 degree in lateral dimension. Seismic moment tensors of all earthquakes that occurred inside each block are summed to give the strain tensor characterizing the corresponding seismic deformation. We calculate the eigenvalues and eigenvectors of the resulted strain tensor for each block and project the normalized maximum compressional (P) and extensional (T) axes on horizontal plane to resolve the strain field in Taiwan associated with regional seismic activities. For the majority of events with depths less than 40 km (i.e., at crustal scale), the strain field is characterized by nearly E-W compression along the eastern coastline and immediately offshore east of Taiwan. Once inland, clear fan-shaped trajectories of P-axes are observed, ranging from NW-SE in the northwest to NE-SW in the southwest. The Ryukyu and Luzon subduction systems show compression in the forearc region and extension in the backarc and outerrise regions. For depths greater than 40 km, a clear pattern of lateral compression is observed within the subducted Philippine Sea plate to the northeast of Taiwan. It is doubtless that the "slab-continent" collision is predominant at deeper depths near the junction between the Ryukyu arc and Taiwan Collision Zone, whereas the "arc-continent" collision is predominant in the central and southern Taiwan.

  6. Sock Shaped Internal Strength Member for Towed Arrays

    DTIC Science & Technology

    hose -shaped sheath. The member has a plurality of longitudinally extending high strength cords formed of braids or strands of high tensile strength...interfering with the sensors’ acoustic sensing capabilities. The hose -shaped sheath contains the tubular-shaped strength member in a non-compressive...relationship to reduce the problems normally associated with flow noise. The cords are braided together in an eye-splice where they are wrapped about

  7. Detecting objects in radiographs for homeland security

    NASA Astrophysics Data System (ADS)

    Prasad, Lakshman; Snyder, Hans

    2005-05-01

    We present a general scheme for segmenting a radiographic image into polygons that correspond to visual features. This decomposition provides a vectorized representation that is a high-level description of the image. The polygons correspond to objects or object parts present in the image. This characterization of radiographs allows the direct application of several shape recognition algorithms to identify objects. In this paper we describe the use of constrained Delaunay triangulations as a uniform foundational tool to achieve multiple visual tasks, namely image segmentation, shape decomposition, and parts-based shape matching. Shape decomposition yields parts that serve as tokens representing local shape characteristics. Parts-based shape matching enables the recognition of objects in the presence of occlusions, which commonly occur in radiographs. The polygonal representation of image features affords the efficient design and application of sophisticated geometric filtering methods to detect large-scale structural properties of objects in images. Finally, the representation of radiographs via polygons results in significant reduction of image file sizes and permits the scalable graphical representation of images, along with annotations of detected objects, in the SVG (scalable vector graphics) format that is proposed by the world wide web consortium (W3C). This is a textual representation that can be compressed and encrypted for efficient and secure transmission of information over wireless channels and on the Internet. In particular, our methods described here provide an algorithmic framework for developing image analysis tools for screening cargo at ports of entry for homeland security.

  8. Evaluation of a method for enhancing interaural level differences at low frequencies.

    PubMed

    Moore, Brian C J; Kolarik, Andrew; Stone, Michael A; Lee, Young-Woo

    2016-10-01

    A method (called binaural enhancement) for enhancing interaural level differences at low frequencies, based on estimates of interaural time differences, was developed and evaluated. Five conditions were compared, all using simulated hearing-aid processing: (1) Linear amplification with frequency-response shaping; (2) binaural enhancement combined with linear amplification and frequency-response shaping; (3) slow-acting four-channel amplitude compression with independent compression at the two ears (AGC4CH); (4) binaural enhancement combined with four-channel compression (BE-AGC4CH); and (5) four-channel compression but with the compression gains synchronized across ears. Ten hearing-impaired listeners were tested, and gains and compression ratios for each listener were set to match targets prescribed by the CAM2 fitting method. Stimuli were presented via headphones, using virtualization methods to simulate listening in a moderately reverberant room. The intelligibility of speech at ±60° azimuth in the presence of competing speech on the opposite side of the head at ±60° azimuth was not affected by the binaural enhancement processing. Sound localization was significantly better for condition BE-AGC4CH than for condition AGC4CH for a sentence, but not for broadband noise, lowpass noise, or lowpass amplitude-modulated noise. The results suggest that the binaural enhancement processing can improve localization for sounds with distinct envelope fluctuations.

  9. Formation mechanisms of nano and microcones by laser radiation on surfaces of Si, Ge, and SiGe crystals

    PubMed Central

    2013-01-01

    In this work we study the mechanisms of laser radiation interaction with elementary semiconductors such as Si and Ge and their solid solution SiGe. As a result of this investigation, the mechanisms of nanocones and microcones formation on a surface of semiconductor were proposed. We have shown the possibility to control the size and the shape of cones both by the laser. The main reason for the formation of nanocones is the mechanical compressive stresses due to the atoms’ redistribution caused by the gradient of temperature induced by strongly absorbed laser radiation. According to our investigation, the nanocone formation mechanism in semiconductors is characterized by two stages. The first stage is characterized by formation of a p-n junction for elementary semiconductors or of a Ge/Si heterojunction for SiGe solid solution. The generation and redistribution of intrinsic point defects in elementary semiconductors and Ge atoms concentration on the irradiated surface of SiGe solid solution in temperature gradient field take place at this stage due to the thermogradient effect which is caused by strongly absorbed laser radiation. The second stage is characterized by formation of nanocones due to mechanical plastic deformation of the compressed Ge layer on Si. Moreover, a new 1D-graded band gap structure in elementary semiconductors due to quantum confinement effect was formed. For the formation of microcones Ni/Si structure was used. The mechanism of the formation of microcones is characterized by two stages as well. The first stage is the melting of Ni film after irradiation by laser beam and formation of Ni islands due to surface tension force. The second step is the melting of Ni and subsequent manifestations of Marangoni effect with the growth of microcones. PMID:23735193

  10. S-EMG signal compression based on domain transformation and spectral shape dynamic bit allocation

    PubMed Central

    2014-01-01

    Background Surface electromyographic (S-EMG) signal processing has been emerging in the past few years due to its non-invasive assessment of muscle function and structure and because of the fast growing rate of digital technology which brings about new solutions and applications. Factors such as sampling rate, quantization word length, number of channels and experiment duration can lead to a potentially large volume of data. Efficient transmission and/or storage of S-EMG signals are actually a research issue. That is the aim of this work. Methods This paper presents an algorithm for the data compression of surface electromyographic (S-EMG) signals recorded during isometric contractions protocol and during dynamic experimental protocols such as the cycling activity. The proposed algorithm is based on discrete wavelet transform to proceed spectral decomposition and de-correlation, on a dynamic bit allocation procedure to code the wavelets transformed coefficients, and on an entropy coding to minimize the remaining redundancy and to pack all data. The bit allocation scheme is based on mathematical decreasing spectral shape models, which indicates a shorter digital word length to code high frequency wavelets transformed coefficients. Four bit allocation spectral shape methods were implemented and compared: decreasing exponential spectral shape, decreasing linear spectral shape, decreasing square-root spectral shape and rotated hyperbolic tangent spectral shape. Results The proposed method is demonstrated and evaluated for an isometric protocol and for a dynamic protocol using a real S-EMG signal data bank. Objective performance evaluations metrics are presented. In addition, comparisons with other encoders proposed in scientific literature are shown. Conclusions The decreasing bit allocation shape applied to the quantized wavelet coefficients combined with arithmetic coding results is an efficient procedure. The performance comparisons of the proposed S-EMG data compression algorithm with the established techniques found in scientific literature have shown promising results. PMID:24571620

  11. Column compression strength of tubular packaging forms made from paper

    Treesearch

    Thomas J. Urbanik; Sung K. Lee; Charles G. Johnson

    2006-01-01

    Tubular packaging forms fabricated and shaped from rolled paper are used as reinforcing corner posts for major appliances packaged in corrugated containers. Tests of column compression strength simulate the expected performance loads from appliances stacked in warehouses. Column strength depends on tube geometry, paper properties, basis weight, and number of...

  12. Main drive optimization of a high-foot pulse shape in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2016-12-01

    While progress towards hot-spot ignition has been made achieving an alpha-heating dominated state in high-foot implosion experiments [Hurricane et al., Nat. Phys. 12, 800 (2016)] on the National Ignition Facility, improvements are needed to increase the fuel compression for the enhancement of the neutron yield. A strategy is proposed to improve the fuel compression through the recompression of a shock/compression wave generated by the end of the main drive portion of a high-foot pulse shape. Two methods for the peak pulse recompression, namely, the decompression-and-recompression (DR) and simple recompression schemes, are investigated and compared. Radiation hydrodynamic simulations confirm that the peak pulse recompression can clearly improve fuel compression without significantly compromising the implosion stability. In particular, when the convergent DR shock is tuned to encounter the divergent shock from the capsule center at a suitable position, not only the neutron yield but also the stability of stagnating hot-spot can be noticeably improved, compared to the conventional high-foot implosions [Hurricane et al., Phys. Plasmas 21, 056314 (2014)].

  13. Design optimization of natural laminar flow bodies in compressible flow

    NASA Technical Reports Server (NTRS)

    Dodbele, Simha S.

    1992-01-01

    An optimization method has been developed to design axisymmetric body shapes such as fuselages, nacelles, and external fuel tanks with increased transition Reynolds numbers in subsonic compressible flow. The new design method involves a constraint minimization procedure coupled with analysis of the inviscid and viscous flow regions and linear stability analysis of the compressible boundary-layer. In order to reduce the computer time, Granville's transition criterion is used to predict boundary-layer transition and to calculate the gradients of the objective function, and linear stability theory coupled with the e(exp n)-method is used to calculate the objective function at the end of each design iteration. Use of a method to design an axisymmetric body with extensive natural laminar flow is illustrated through the design of a tiptank of a business jet. For the original tiptank, boundary layer transition is predicted to occur at a transition Reynolds number of 6.04 x 10(exp 6). For the designed body shape, a transition Reynolds number of 7.22 x 10(exp 6) is predicted using compressible linear stability theory coupled with the e(exp n)-method.

  14. Characterizing Speech Intelligibility in Noise After Wide Dynamic Range Compression.

    PubMed

    Rhebergen, Koenraad S; Maalderink, Thijs H; Dreschler, Wouter A

    The effects of nonlinear signal processing on speech intelligibility in noise are difficult to evaluate. Often, the effects are examined by comparing speech intelligibility scores with and without processing measured at fixed signal to noise ratios (SNRs) or by comparing the adaptive measured speech reception thresholds corresponding to 50% intelligibility (SRT50) with and without processing. These outcome measures might not be optimal. Measuring at fixed SNRs can be affected by ceiling or floor effects, because the range of relevant SNRs is not know in advance. The SRT50 is less time consuming, has a fixed performance level (i.e., 50% correct), but the SRT50 could give a limited view, because we hypothesize that the effect of most nonlinear signal processing algorithms at the SRT50 cannot be generalized to other points of the psychometric function. In this article, we tested the value of estimating the entire psychometric function. We studied the effect of wide dynamic range compression (WDRC) on speech intelligibility in stationary, and interrupted speech-shaped noise in normal-hearing subjects, using a fast method-based local linear fitting approach and by two adaptive procedures. The measured performance differences for conditions with and without WDRC for the psychometric functions in stationary noise and interrupted speech-shaped noise show that the effects of WDRC on speech intelligibility are SNR dependent. We conclude that favorable and unfavorable effects of WDRC on speech intelligibility can be missed if the results are presented in terms of SRT50 values only.

  15. Calibrating nadir striped artifacts in a multibeam backscatter image using the equal mean-variance fitting model

    NASA Astrophysics Data System (ADS)

    Yang, Fanlin; Zhao, Chunxia; Zhang, Kai; Feng, Chengkai; Ma, Yue

    2017-07-01

    Acoustic seafloor classification with multibeam backscatter measurements is an attractive approach for mapping seafloor properties over a large area. However, artifacts in the multibeam backscatter measurements prevent accurate characterization of the seafloor. In particular, the backscatter level is extremely strong and highly variable in the near-nadir region due to the specular echo phenomenon. Consequently, striped artifacts emerge in the backscatter image, which can degrade the classification accuracy. This study focuses on the striped artifacts in multibeam backscatter images. To this end, a calibration algorithm based on equal mean-variance fitting is developed. By fitting the local shape of the angular response curve, the striped artifacts are compressed and moved according to the relations between the mean and variance in the near-nadir and off-nadir region. The algorithm utilized the measured data of near-nadir region and retained the basic shape of the response curve. The experimental results verify the high performance of the proposed method.

  16. Chincup treatment modifies the mandibular shape in children with prognathism.

    PubMed

    Alarcón, José Antonio; Bastir, Markus; Rosas, Antonio; Molero, Julia

    2011-07-01

    Although chincups are the preferred treatment for growing children with mandibular prognathism, the mechanism by which chincups improve this condition remains unclear. The aim of this study was to use geometric morphometrics to evaluate changes in the shape of the mandible of prognathic children treated with a chincup. Geometric morphometrics were used to evaluate the short-term mandibular shape changes in 50 prognathic children treated with chincups compared with 40 untreated matched controls. Twenty-one 2-dimensional mandibular landmarks from cephalograms taken before and after 36 months of treatment or observation were analyzed by Procrustes superimposition and thin plate spline. Permutation tests of the treated patients showed highly significant differences in the mandibular shapes before and after treatment, and compared with the control group after the observation period. The thin plate spline grid deformations indicated more rectangular mandibular configuration, forward condyle orientation, condyle neck compression, gonial area compression, and symphysis narrowing. Early chincup treatment widely modifies the mandibular shape of prognathic children to improve Class III malocclusion. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  17. Characterization of Transformation-Induced Defects in Nickel Titanium Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Bowers, Matthew L.

    Shape memory alloys have remarkable strain recovery properties that make them ideal candidates for many applications that include devices in the automotive, aerospace, medical, and MEMS industries. Although these materials are widely used today, their performance is hindered by poor dimensional stability resulting from cyclic degradation of the martensitic transformation behavior. This functional fatigue results in decreased work output and cyclic accumulation of permanent strain. To date, few studies have taken a fundamental approach to investigating the interaction between plasticity and martensite growth and propagation, which is vitally important to mitigating functional fatigue in future alloy development. The current work focuses on understanding the interplay of these deformation mechanisms in NiTi-based shape memory alloys under a variety of different thermomechanical test conditions. Micron-scale compression testing of NiTi shape memory alloy single crystals is undertaken in an effort to probe the mechanism of austenite dislocation generation. Mechanical testing is paired with post mortem defect analysis via diffraction contrast scanning transmission electron microscopy (STEM). Accompanied by micromechanics-based modeling of local stresses surrounding a martensite plate, these results demonstrate that the previously existing martensite and resulting austenite dislocation substructure are intimately related. A mechanism of transformation-induced dislocation generation is described in detail. A study of pure and load-biased thermal cycling of bulk polycrystalline NiTi is done for comparison of the transformation behavior and resultant defects to the stress-induced case. Post mortem and in situ STEM characterization demonstrate unique defect configurations in this test mode and STEM-based orientation mapping reveals local crystal rotation with increasing thermal cycles. Changes in both martensite and austenite microstructures are explored. The results for several different thermomechanical histories are discussed and a new mechanism of austenite grain refinement is proposed with support from ab initio calculations and crystallographic theory.

  18. Short-wavelength buckling and shear failures for compression-loaded composite laminates. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.

    1985-01-01

    The short-wavelength buckling (or the microbuckling) and the interlaminar and inplane shear failures of multi-directional composite laminates loaded in uniaxial compression are investigated. A laminate model is presented that idealizes each lamina. The fibers in the lamina are modeled as a plate, and the matrix in the lamina is modeled as an elastic foundation. The out-of-plane w displacement for each plate is expressed as a trigonometric series in the half-wavelength of the mode shape for laminate short-wavelength buckling. Nonlinear strain-displacement relations are used. The model is applied to symmetric laminates having linear material behavior. The laminates are loaded in uniform end shortening and are simply supported. A linear analysis is used to determine the laminate stress, strain, and mode shape when short-wavelength buckling occurs. The equations for the laminate compressive stress at short-wavelength buckling are dominated by matrix contributions.

  19. A Kolsky tension bar technique using a hollow incident tube

    NASA Astrophysics Data System (ADS)

    Guzman, O.; Frew, D. J.; Chen, W.

    2011-04-01

    Load control of the incident pulse profiles in compression Kolsky bar experiments has been widely used to subject the specimen to optimal testing conditions. Tension Kolsky bars have been used to determine dynamic material behavior since the 1960s with limited capability to shape the loading pulses due to the pulse-generating mechanisms. We developed a modified Kolsky tension bar where a hollow incident tube is used to carry the incident stress waves. The incident tube also acts as a gas gun barrel that houses the striker for impact. The main advantage of this new design is that the striker impacts on an impact cap of the incident tube. Compression pulse shapers can be attached to the impact cap, thus fully utilizing the predictive compression pulse-shaping capability in tension experiments. Using this new testing technique, the dynamic tensile material behavior for Al 6061-T6511 and TRIP 800 (transformation-induced plasticity) steel has been obtained.

  20. Bending fracture in carbon nanotubes.

    PubMed

    Kuo, Wen-Shyong; Lu, Hsin-Fang

    2008-12-10

    A novel approach was adopted to incur bending fracture in carbon nanotubes (CNTs). Expanded graphite (EG) was made by intercalating and exfoliating natural graphite flakes. The EG was deposited with nickel particles, from which CNTs were grown by chemical vapor deposition. The CNTs were tip-grown, and their roots were fixed on the EG flakes. The EG flakes were compressed, and many CNTs on the surface were fragmented due to the compression-induced bending. Two major modes of the bending fracture were observed: cone-shaped and shear-cut. High-resolution scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the crack growth within the graphene layers. The bending fracture is characterized by two-region crack growth. An opening crack first appears around the outer-tube due to the bending-induced tensile stress. The crack then branches to grow along an inclined direction toward the inner-tube due to the presence of the shear stress in between graphene layers. An inner-tube pullout with inclined side surface is formed. The onset and development of the crack in these two regions are discussed.

  1. Vibration-based monitoring and diagnostics using compressive sensing

    NASA Astrophysics Data System (ADS)

    Ganesan, Vaahini; Das, Tuhin; Rahnavard, Nazanin; Kauffman, Jeffrey L.

    2017-04-01

    Vibration data from mechanical systems carry important information that is useful for characterization and diagnosis. Standard approaches rely on continually streaming data at a fixed sampling frequency. For applications involving continuous monitoring, such as Structural Health Monitoring (SHM), such approaches result in high volume data and rely on sensors being powered for prolonged durations. Furthermore, for spatial resolution, structures are instrumented with a large array of sensors. This paper shows that both volume of data and number of sensors can be reduced significantly by applying Compressive Sensing (CS) in vibration monitoring applications. The reduction is achieved by using random sampling and capitalizing on the sparsity of vibration signals in the frequency domain. Preliminary experimental results validating CS-based frequency recovery are also provided. By exploiting the sparsity of mode shapes, CS can also enable efficient spatial reconstruction using fewer spatially distributed sensors. CS can thereby reduce the cost and power requirement of sensing as well as streamline data storage and processing in monitoring applications. In well-instrumented structures, CS can enable continued monitoring in case of sensor or computational failures.

  2. A survey of pulse shape options for a revised plastic ablator ignition design

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Eder, David; Haan, Steven; Hinkel, Denise; Jones, Ogden; Marinak, Michael; Milovich, Jose; Peterson, Jayson; Robey, Harold; Salmonson, Jay; Smalyuk, Vladimir; Weber, Christopher

    2014-10-01

    Recent experimental results using the ``high foot'' pulse shape on the National Ignition Facility (NIF) have shown encouraging progress compared to earlier ``low foot'' experiments. These results strongly suggest that controlling ablation front instability growth can dramatically improve implosion performance, even in the presence of persistent, large, low-mode distortions. In parallel, Hydro. Growth Radiography experiments have so far validated the techniques used for modeling ablation front growth in NIF experiments. It is timely then to combine these two results and ask how current ignition pulse shapes could be modified so as to improve implosion performance, namely fuel compressibility, while maintaining the stability properties demonstrated with the high foot. This talk presents a survey of pulse shapes intermediate between the low and high foot extremes in search of a more optimal design. From the database of pulse shapes surveyed, a higher picket version of the original low foot pulse shape shows the most promise for improved compression without loss of stability. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Uniaxial Compressive Constitutive Relationship of Concrete Confined by Special-Shaped Steel Tube Coupled with Multiple Cavities

    PubMed Central

    Wu, Haipeng; Cao, Wanlin; Qiao, Qiyun; Dong, Hongying

    2016-01-01

    A method is presented to predict the complete stress-strain curves of concrete subjected to triaxial stresses, which were caused by axial load and lateral force. The stress can be induced due to the confinement action inside a special-shaped steel tube having multiple cavities. The existing reinforced confined concrete formulas have been improved to determine the confinement action. The influence of cross-sectional shape, of cavity construction, of stiffening ribs and of reinforcement in cavities has been considered in the model. The parameters of the model are determined on the basis of experimental results of an axial compression test for two different kinds of special-shaped concrete filled steel tube (CFT) columns with multiple cavities. The complete load-strain curves of the special-shaped CFT columns are estimated. The predicted concrete strength and the post-peak behavior are found to show good agreement within the accepted limits, compared with the experimental results. In addition, the parameters of proposed model are taken from two kinds of totally different CFT columns, so that it can be concluded that this model is also applicable to concrete confined by other special-shaped steel tubes. PMID:28787886

  4. Uniaxial Compressive Constitutive Relationship of Concrete Confined by Special-Shaped Steel Tube Coupled with Multiple Cavities.

    PubMed

    Wu, Haipeng; Cao, Wanlin; Qiao, Qiyun; Dong, Hongying

    2016-01-29

    A method is presented to predict the complete stress-strain curves of concrete subjected to triaxial stresses, which were caused by axial load and lateral force. The stress can be induced due to the confinement action inside a special-shaped steel tube having multiple cavities. The existing reinforced confined concrete formulas have been improved to determine the confinement action. The influence of cross-sectional shape, of cavity construction, of stiffening ribs and of reinforcement in cavities has been considered in the model. The parameters of the model are determined on the basis of experimental results of an axial compression test for two different kinds of special-shaped concrete filled steel tube (CFT) columns with multiple cavities. The complete load-strain curves of the special-shaped CFT columns are estimated. The predicted concrete strength and the post-peak behavior are found to show good agreement within the accepted limits, compared with the experimental results. In addition, the parameters of proposed model are taken from two kinds of totally different CFT columns, so that it can be concluded that this model is also applicable to concrete confined by other special-shaped steel tubes.

  5. Solid-state characterization of nevirapine.

    PubMed

    Sarkar, Mahua; Perumal, O P; Panchagnula, R

    2008-09-01

    The purpose of this investigation is to characterize nevirapine from commercial samples and samples crystallized from different solvents under various conditions. The solid-state behavior of nevirapine samples was investigated using a variety of complementary techniques such as microscopy (optical, polarized, hot stage microscopy), differential scanning calorimeter, thermogravimetric analysis, Fourier transform infrared spectroscopy and powder X-ray diffractometry. The commercial samples of nevirapine had the same polymorphic crystalline form with an anhedral crystal habit. Intrinsic dissolution of nevirapine was similar for both the commercial batches. Powder dissolution showed pH dependency, with maximum dissolution in acidic pH and there was no significant effect of particle size. The samples recrystallized from different solvent systems with varying polarity yielded different crystal habits. Stirring and degrees of supersaturation influenced the size and shape of the crystals. The recrystallized samples did not produce any new polymorphic form, but weak solvates with varying crystal habit were produced. Recrystallized samples showed differences in the x-ray diffractograms. However, all the samples had the same internal crystal lattice as revealed from their similar melting points and heat of fusion. The intrinsic dissolution rate of recrystallized samples was lower than the commercial sample. It was found that the compression pressure resulted in desolvation and partial conversion of the crystal form. After compression, the recrystallized samples showed similar x-ray diffractograms to the commercial sample. Amorphous form showed slightly higher aqueous solubility than the commercial crystalline form.

  6. Functional Performances of CuZnAl Shape Memory Alloy Open-Cell Foams

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Casati, R.; Bassani, P.; Tuissi, A.

    2018-01-01

    Shape memory alloys (SMAs) with cellular structure offer a unique mixture of thermo-physical-mechanical properties. These characteristics can be tuned by changing the pore size and make the shape memory metallic foams very attractive for developing new devices for structural and functional applications. In this work, CuZnAl SMA foams were produced through the liquid infiltration of space holder method. In comparison, a conventional CuZn brass alloy was foamed trough the same method. Functional performances were studied on both bulk and foamed SMA specimens. Calorimetric response shows similar martensitic transformation (MT) below 0 °C. Compressive response of CuZnAl revealed that mechanical behavior is strongly affected by sample morphology and that damping capacity of metallic foam is increased above the MT temperatures. The shape memory effect was detected in the CuZnAl foams. The conventional brass shows a compressive response similar to that of the martensitic CuZnAl, in which plastic deformation accumulation occurs up to the cellular structure densification after few thermal cycles.

  7. Neural networks for data compression and invariant image recognition

    NASA Technical Reports Server (NTRS)

    Gardner, Sheldon

    1989-01-01

    An approach to invariant image recognition (I2R), based upon a model of biological vision in the mammalian visual system (MVS), is described. The complete I2R model incorporates several biologically inspired features: exponential mapping of retinal images, Gabor spatial filtering, and a neural network associative memory. In the I2R model, exponentially mapped retinal images are filtered by a hierarchical set of Gabor spatial filters (GSF) which provide compression of the information contained within a pixel-based image. A neural network associative memory (AM) is used to process the GSF coded images. We describe a 1-D shape function method for coding of scale and rotationally invariant shape information. This method reduces image shape information to a periodic waveform suitable for coding as an input vector to a neural network AM. The shape function method is suitable for near term applications on conventional computing architectures equipped with VLSI FFT chips to provide a rapid image search capability.

  8. Accelerating gradient improvement using shape-tailor laser front in radiation pressure acceleration progress

    NASA Astrophysics Data System (ADS)

    Wang, W. P.; Shen, B. F.; Xu, Z. Z.

    2017-05-01

    The accelerating gradient of a proton beam is crucial for stable radiation pressure acceleration (RPA) because the multi-dimensional instabilities increase γ times slower in the relativistic region. In this paper, a shape-tailored laser is proposed to significantly accelerate the ions in a controllable high accelerating gradient. In this method, the fastest ions initially rest in the middle of the foil are controlled to catch the compressed electron layer at the end of the hole-boring stage, thus the light-sail stage can start as soon as possible. Then the compressed electron layer is accelerated tightly together with the fastest ions by the shaped laser intensity, which further increases the accelerating gradient in the light-sail stage. Such tailored pulse may be beneficial for the RPA driven by the 10-fs 10 petawatt laser in the future.

  9. Baseline-dependent sampling and windowing for radio interferometry: data compression, field-of-interest shaping, and outer field suppression

    NASA Astrophysics Data System (ADS)

    Atemkeng, M.; Smirnov, O.; Tasse, C.; Foster, G.; Keimpema, A.; Paragi, Z.; Jonas, J.

    2018-07-01

    Traditional radio interferometric correlators produce regular-gridded samples of the true uv-distribution by averaging the signal over constant, discrete time-frequency intervals. This regular sampling and averaging then translate to be irregular-gridded samples in the uv-space, and results in a baseline-length-dependent loss of amplitude and phase coherence, which is dependent on the distance from the image phase centre. The effect is often referred to as `decorrelation' in the uv-space, which is equivalent in the source domain to `smearing'. This work discusses and implements a regular-gridded sampling scheme in the uv-space (baseline-dependent sampling) and windowing that allow for data compression, field-of-interest shaping, and source suppression. The baseline-dependent sampling requires irregular-gridded sampling in the time-frequency space, i.e. the time-frequency interval becomes baseline dependent. Analytic models and simulations are used to show that decorrelation remains constant across all the baselines when applying baseline-dependent sampling and windowing. Simulations using MeerKAT telescope and the European Very Long Baseline Interferometry Network show that both data compression, field-of-interest shaping, and outer field-of-interest suppression are achieved.

  10. Analysis and testing of axial compression in imperfect slender truss struts

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Georgiadis, Nicholas

    1990-01-01

    The axial compression of imperfect slender struts for large space structures is addressed. The load-shortening behavior of struts with initially imperfect shapes and eccentric compressive end loading is analyzed using linear beam-column theory and results are compared with geometrically nonlinear solutions to determine the applicability of linear analysis. A set of developmental aluminum clad graphite/epoxy struts sized for application to the Space Station Freedom truss are measured to determine their initial imperfection magnitude, load eccentricity, and cross sectional area and moment of inertia. Load-shortening curves are determined from axial compression tests of these specimens and are correlated with theoretical curves generated using linear analysis.

  11. Induced sensitivity of Bacillus subtilis colony morphology to mechanical media compression

    PubMed Central

    Polka, Jessica K.

    2014-01-01

    Bacteria from several taxa, including Kurthia zopfii, Myxococcus xanthus, and Bacillus mycoides, have been reported to align growth of their colonies to small features on the surface of solid media, including anisotropies created by compression. While the function of this phenomenon is unclear, it may help organisms navigate on solid phases, such as soil. The origin of this behavior is also unknown: it may be biological (that is, dependent on components that sense the environment and regulate growth accordingly) or merely physical. Here we show that B. subtilis, an organism that typically does not respond to media compression, can be induced to do so with two simple and synergistic perturbations: a mutation that maintains cells in the swarming (chained) state, and the addition of EDTA to the growth media, which further increases chain length. EDTA apparently increases chain length by inducing defects in cell separation, as the treatment has only marginal effects on the length of individual cells. These results lead us to three conclusions. First, the wealth of genetic tools available to B. subtilis will provide a new, tractable chassis for engineering compression sensitive organisms. Second, the sensitivity of colony morphology to media compression in Bacillus can be modulated by altering a simple physical property of rod-shaped cells. And third, colony morphology under compression holds promise as a rapid, simple, and low-cost way to screen for changes in the length of rod-shaped cells or chains thereof. PMID:25289183

  12. Shape memory behavior of single and polycrystalline nickel rich nickel titanium alloys

    NASA Astrophysics Data System (ADS)

    Kaya, Irfan

    NiTi is the most commonly used shape memory alloy (SMA) and has been widely used for bio-medical, electrical and mechanical applications. Nickel rich NiTi shape memory alloys are coming into prominence due to their distinct superelasticity and shape memory properties as compared to near equi-atomic NiTi shape memory alloys. Besides, their lower density and higher work output than steels makes these alloys an excellent candidate for aerospace and automotive industry. Shape memory properties and phase transformation behavior of high Ni-rich Ni54Ti46 (at.%) polycrystals and Ni-rich Ni 51Ti49 (at.%) single-crystals are determined. Their properties are sensitive to heat treatments that affect the phase transformation behavior of these alloys. Phase transformation properties and microstructure were investigated in aged Ni54Ti46 alloys with differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) to reveal the precipitation characteristics and R-phase formation. It was found that Ni54Ti46 has the ability to exhibit perfect superelasticity under high stress levels (~2 GPa) with 4% total strain after 550°C-3h aging. Stress independent R-phase transformation was found to be responsible for the change in shape memory behavior with stress. The shape memory responses of [001], [011] and [111] oriented Ni 51Ti49 single-crystals alloy were reported under compression to reveal the orientation dependence of their shape memory behavior. It has been found that transformation strain, temperatures and hysteresis, Classius-Clapeyron slopes, critical stress for plastic deformation are highly orientation dependent. The effects of precipitation formation and compressive loading at selected temperatures on the two-way shape memory effect (TWSME) properties of a [111]- oriented Ni51Ti49 shape memory alloy were revealed. Additionally, aligned Ni4Ti3 precipitates were formed in a single crystal of Ni51Ti49 alloy by aging under applied compression stress along the [111] direction. Formation of a single family of Ni4Ti3 precipitates were exhibited significant TWSME without any training or deformation. When the homogenized and aged specimens were loaded in martensite, positive TWSME was observed. After loading at high temperature in austenite, the homogenized specimen did not show TWSME while the aged specimen revealed negative TWSME.

  13. Modeling and characterization of through-the-thickness properties of 3D woven composites

    NASA Technical Reports Server (NTRS)

    Hartranft, Dru; Pravizi-Majidi, Azar; Chou, Tsu-Wei

    1995-01-01

    The through-the-thickness properties of three-dimensionally (3D) woven carbon/epoxy composites have been studied. The investigation aimed at the evaluation and development of test methodologies for the property characterization in the thickness direction, and the establishment of fiber architectures were studied: layer-to-layer Angle Interlock, through-the-thickness Orthogonal woven preform with surface pile was also designed and manufactured for the fabrication of tensile test coupons with integrated grips. All the preforms were infiltrated by the resin transfer molding technique. The microstructures of the composites were characterized along the warp and fill (weft) directions to determine the degree of yarn undulations, yarn cross-sectional shapes, and microstructural dimensions. These parameters were correlated to the fiber architecture. Specimens were designed and tested for the direct measurement of the through-the-thickness tensile, compressive and shear properties of the composites. Design optimization was conducted through the analysis of the stress fields within the specimen coupled with experimental verification. The experimentally-derived elastic properties in the thickness direction compared well with analytical predictions obtained from a volume averaging model.

  14. Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sesé, Luis M., E-mail: msese@ccia.uned.es

    2016-03-07

    Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) thatmore » can be useful to characterize freezing.« less

  15. Transfer molding of PMR-15 polyimide resin

    NASA Technical Reports Server (NTRS)

    Reardon, J. P.; Moyer, D. W.; Nowak, B. E.

    1985-01-01

    Transfer molding is an economically viable method of producing small shapes of PMR-15 polyimide. It is shown that with regard to flexural, compressive, and tribological properties transfer-molded PMR-15 polyimide is essentially equivalent to PMR-15 polyimide produced by the more common method of compression molding. Minor variations in anisotropy are predictable effects of molding design and secondary finishing operations.

  16. Mechanisms Inducing Jet Rotation in Shear-Formed Shaped-Charge Liners.

    DTIC Science & Technology

    1990-03-01

    of deviatoric strain, and compressibility affects only the equation of state , not the deviatoric stress /strain relation. An anisotropic formulation is...strains, a more accurate scalar equation of state should simultaneously be employed to account for non-linear compressibility effects . A4 A.3 Elastic... obtainable knowing the previous and present cycles’ average stress . However, many non-linear equations

  17. Comparison between various patch wise strategies for reconstruction of ultra-spectral cubes captured with a compressive sensing system

    NASA Astrophysics Data System (ADS)

    Oiknine, Yaniv; August, Isaac Y.; Revah, Liat; Stern, Adrian

    2016-05-01

    Recently we introduced a Compressive Sensing Miniature Ultra-Spectral Imaging (CS-MUSI) system. The system is based on a single Liquid Crystal (LC) cell and a parallel sensor array where the liquid crystal cell performs spectral encoding. Within the framework of compressive sensing, the CS-MUSI system is able to reconstruct ultra-spectral cubes captured with only an amount of ~10% samples compared to a conventional system. Despite the compression, the technique is extremely complex computationally, because reconstruction of ultra-spectral images requires processing huge data cubes of Gigavoxel size. Fortunately, the computational effort can be alleviated by using separable operation. An additional way to reduce the reconstruction effort is to perform the reconstructions on patches. In this work, we consider processing on various patch shapes. We present an experimental comparison between various patch shapes chosen to process the ultra-spectral data captured with CS-MUSI system. The patches may be one dimensional (1D) for which the reconstruction is carried out spatially pixel-wise, or two dimensional (2D) - working on spatial rows/columns of the ultra-spectral cube, as well as three dimensional (3D).

  18. The effects of transverse rotation angle on compression and effective lever arm of prosthetic feet during simulated stance.

    PubMed

    Major, Matthew J; Howard, David; Jones, Rebecca; Twiste, Martin

    2012-06-01

    Unlike sagittal plane prosthesis alignment, few studies have observed the effects of transverse plane alignment on gait and prosthesis behaviour. Changes in transverse plane rotation angle will rotate the points of loading on the prosthesis during stance and may alter its mechanical behaviour. This study observed the effects of increasing the external transverse plane rotation angle, or toe-out, on foot compression and effective lever arm of three commonly prescribed prosthetic feet. The roll-over shape of a SACH, Flex and single-axis foot was measured at four external rotation angle conditions (0°, 5°, 7° and 12° relative to neutral). Differences in foot compression between conditions were measured as average distance between roll-over shapes. Increasing the transverse plane rotation angle did not affect foot compression. However, it did affect the effective lever arm, which was maximized with the 5° condition, although differences between conditions were small. Increasing the transverse plane rotation angle of prosthetic feet by up to 12° beyond neutral has minimal effects on their mechanical behaviour in the plane of walking progression during weight-bearing.

  19. Tectonic stress in the plates

    NASA Technical Reports Server (NTRS)

    Richardson, R. M.; Solomon, S. C.; Sleep, N. H.

    1979-01-01

    In the present paper, the basic set of global intraplate stress orientation data is plotted and tabulated. Although the global intraplate stress field is complicated, several large-scale patterns can be seen. Much of stable North America is characterized by an E-W to NE-SW trend for the maximum compressive stress. South American lithosphere beneath the Andes, and perhaps farther east in the stable interior, has horizontal compressive stresses trending E-W to NW-SE. Western Europe north of the Alps is characterized by a NW-SE trending maximum horizontal compression, while Asia has the maximum horizontal compressive stress trending more nearly N-S, especially near the Himalayan front.

  20. Shock formation and the ideal shape of ramp compression waves

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Kraus, Richard G.; Loomis, Eric N.; Hicks, Damien G.; McNaney, James M.; Johnson, Randall P.

    2008-12-01

    We derive expressions for shock formation based on the local curvature of the flow characteristics during dynamic compression. Given a specific ramp adiabat, calculated for instance from the equation of state for a substance, the ideal nonlinear shape for an applied ramp loading history can be determined. We discuss the region affected by lateral release, which can be presented in compact form for the ideal loading history. Example calculations are given for representative metals and plastic ablators. Continuum dynamics (hydrocode) simulations were in good agreement with the algebraic forms. Example applications are presented for several classes of laser-loading experiment, identifying conditions where shocks are desired but not formed, and where long-duration ramps are desired.

  1. Simulating CC and MLO compressions with the Surface Evolver

    NASA Astrophysics Data System (ADS)

    Zanchetta do Nascimento, Marcelo; Ramos Batista, Valério

    2015-01-01

    Mammographies are X-ray images of the breast under external compressions called Craniocaudal (CC) and Mediolateral Oblique (MLO). Together they increase the chances of detecting cancer but the breast is shown in strongly deformed shapes. Cancer location is highly uncertain for the surgery and so the breast is commonly taken out entirely, a serious trauma for the patient. In this paper we present a fully virtual mammography procedure that faithfully reproduces all shapes of the breast and in its inside tracks the cancer at any step. The cancer is then precisely located for the surgery and can be removed through a small incision. So the whole structure is preserved and cured as an integral benefit to the patient.

  2. Flexural Progressive Failure of Carbon/Glass Interlayer and Intralayer Hybrid Composites.

    PubMed

    Wang, Qingtao; Wu, Weili; Gong, Zhili; Li, Wei

    2018-04-17

    The flexural progressive failure modes of carbon fiber and glass fiber (C/G) interlayer and intralayer hybrid composites were investigated in this work. Results showed that the bending failure modes for interlayer hybrid composites are determined by the layup structure. Besides, the bending failure is characterized by the compression failure of the upper layer, when carbon fiber tends to distribute in the upper layer, the interlayer hybrid composite fails early, the failure force is characterized by a multi-stage slightly fluctuating decline and the fracture area exhibits a diamond shape. While carbon fiber distributes in the middle or bottom layer, the failure time starts late, and the failure process exhibits one stage sharp force/stress drop, the fracture zone of glass fiber above the carbon layers presents an inverted trapezoid shape, while the fracture of glass fiber below the carbon layers exhibits an inverted triangular shape. With regards to the intralayer hybrid composites, the C/G hybrid ratio plays a dominating role in the bending failure which could be considered as the mixed failures of four structures. The bending failure of intralayer hybrid composites occurs in advance since carbon fiber are located in each layer; the failure process shows a multi-stage fluctuating decline, and the decline slows down as carbon fiber content increases, and the fracture sound release has the characteristics of a low intensity and high frequency for a long time. By contrast, as glass fiber content increases, the bending failure of intralayer composites is featured with a multi-stage cliff decline with a high amplitude and low frequency for a short-time fracture sound release.

  3. Investigation of primary static recrystallization in a NiTiFe shape memory alloy subjected to cold canning compression using the coupling crystal plasticity finite element method with cellular automaton

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Jiang, Shuyong; Hu, Li; Zhao, Yanan; Sun, Dong

    2017-10-01

    The behavior of primary static recrystallization (SRX) in a NiTiFe shape memory alloy (SMA) subjected to cold canning compression was investigated using the coupling crystal plasticity finite element method (CPFEM) with the cellular automaton (CA) method, where the distribution of the dislocation density and the deformed grain topology quantified by CPFEM were used as the input for the subsequent SRX simulation performed using the CA method. The simulation results were confirmed by the experimental ones in terms of microstructures, average grain size and recrystallization fraction, which indicates that the proposed coupling method is well able to describe the SRX behavior of the NiTiFe SMA. The results show that the dislocation density exhibits an inhomogeneous distribution in the deformed sample and the recrystallization nuclei mainly concentrate on zones where the dislocation density is relatively higher. An increase in the compressive deformation degree leads to an increase in nucleation rate and a decrease in grain boundary spaces in the compression direction, which reduces the growth spaces for the SRX nuclei and impedes their further growth. In addition, both the mechanisms of local grain refinement in the incomplete SRX and the influence of compressive deformation degree on the grain size of SRX were vividly illustrated by the corresponding physical models.

  4. Diatomite based ceramics macro- and microscopic characterization

    NASA Astrophysics Data System (ADS)

    Aderdour, H.; Bentayeb, A.; Nadiri, A.; Ouammou, A.; Sangleboeuf, J.-C.; Lucas-Girot, A.; Carel, C.

    2005-03-01

    A Moroccan diatomite is characterized chemically and physically. Mechanical properties of ceramics prepared by sintering at different temperatures ranging from 1050 to 1350° C are studied. Compressive strength and Young modulus are determined by compression tests. Densification and evolution of the microstructure are followed by SEM and other tests.

  5. Theoretical insight into the sensitive mechanism of multilayer-shaped cocrystal explosives: compression and slide.

    PubMed

    Gao, Hong-fei; Zhang, Shu-hai; Ren, Fu-de; Gou, Rui-jun; Han, Gang; Wu, Jing-bo; Ding, Xiong; Zhao, Wen-hu

    2016-05-01

    Multilayer-shaped compression and slide models were employed to investigate the complex sensitive mechanisms of cocrystal explosives in response to external mechanical stimuli. Here, density functional theory (DFT) calculations implementing the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) with the Tkatchenko-Scheffler (TS) dispersion correction were applied to a series of cocrystal explosives: diacetone diperoxide (DADP)/1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB), DADP/1,3,5-tribromo-2,4,6-trinitrobenzene (TBTNB) and DADP/1,3,5-triiodo-2,4,6-trinitrobenzene (TITNB). The results show that the GGA-PBE-TS method is suitable for calculating these cocrystal systems. Compression and slide models illustrate well the sensitive mechanism of layer-shaped cocrystals of DADP/TCTNB and DADP/TITNB, in accordance with the results from electrostatic potentials and free space per molecule in cocrystal lattice analyses. DADP/TCTNB and DADP/TBTNB prefer sliding along a diagonal direction on the a-c face and generating strong intermolecular repulsions, compared to DADP/TITNB, which slides parallel to the b-c face. The impact sensitivity of DADP/TBTNB is predicted to be the same as that of DADP/TCTNB, and the impact sensitivity of DADP/TBTNB may be slightly more insensitive than that of DADP and much more sensitive than that of TBTNB.

  6. Finite element analysis and cadaveric cinematic analysis of fixation options for anteriorly implanted trabecular metal interbody cages.

    PubMed

    Berjano, Pedro; Blanco, Juan Francisco; Rendon, Diego; Villafañe, Jorge Hugo; Pescador, David; Atienza, Carlos Manuel

    2015-11-01

    To assess, with finite element analysis and an in vitro biomechanical study in cadaver, whether the implementation of an anterior interbody cage made of hedrocel with nitinol shape memory staples in compression increases the stiffness of the stand-alone interbody cage and to compare these constructs' stiffness to other constructs common in clinical practice. A biomechanical study with a finite element analysis and cadaveric testing assessed the stiffness of different fixation modes for the L4-L5 functional spinal unit: intact spine, destabilized spine with discectomy, posterior pedicle-screw fixation, anterior stand-alone interbody cage, anterior interbody cage with bilateral pedicle screws and anterior interbody cage with two shape memory staples in compression. These modalities of vertebral fixation were compared in four loading modes (flexion, extension, lateral bending, and axial rotation). The L4-L5 spinal unit with an anterior interbody cage and two staples was stiffer than the stand-alone cage. The construct stiffness was similar to that of a model of posterior pedicular stabilization. The stiffness was lower than that of the anterior cage plus bilateral pedicle-screw fixation. The use of an anterior interbody implant with shape memory staples in compression may be an alternative to isolated posterior fixation and to anterior isolated implants, with increased stiffness.

  7. Pulse-Shaping-Based Nonlinear Microscopy: Development and Applications

    NASA Astrophysics Data System (ADS)

    Flynn, Daniel Christopher

    The combination of optical microscopy and ultrafast spectroscopy make the spatial characterization of chemical kinetics on the femtosecond time scale possible. Commercially available octave-spanning Ti:Sapphire oscillators with sub-8 fs pulse durations can drive a multitude of nonlinear transitions across a significant portion of the visible spectrum with minimal average power. Unfortunately, dispersion from microscope objectives broadens pulse durations, decreases temporal resolution and lowers the peak intensities required for driving nonlinear transitions. In this dissertation, pulse shaping is used to compress laser pulses after the microscope objective. By using a binary genetic algorithm, pulse-shapes are designed to enable selective two-photon excitation. The pulse-shapes are demonstrated in two-photon fluorescence of live COS-7 cells expressing GFP-variants mAmetrine and tdTomato. The pulse-shaping approach is applied to a new multiphoton fluorescence resonance energy transfer (FRET) stoichiometry method that quantifies donor and acceptor molecules in complex, as well as the ratio of total donor to acceptor molecules. Compared to conventional multi-photon imaging techniques that require laser tuning or multiple laser systems to selectively excite individual fluorophores, the pulse-shaping approach offers rapid selective multifluorphore imaging at biologically relevant time scales. By splitting the laser beam into two beams and building a second pulse shaper, a pulse-shaping-based pump-probe microscope is developed. The technique offers multiple imaging modalities, such as excited state absorption (ESA), ground state bleach (GSB), and stimulated emission (SE), enhancing contrast of structures via their unique quantum pathways without the addition of contrast agents. Pulse-shaping based pump-probe microscopy is demonstrated for endogenous chemical-contrast imaging of red blood cells. In the second section of this dissertation, ultrafast spectroscopic techniques are used to characterize structure-function relationships of two-photon absorbing GFP-type probes and optical limiting materials. Fluorescence lifetimes of GFP-type probes are shown to depend on functional group substitution position, therefore, enabling the synthesis of designer probes for the possible study of conformation changes and aggregation in biological systems. Similarly, it is determined that small differences in the structure and dimensionality of organometallic macrocycles result in a diverse set of optical properties, which serves as a basis for the molecular level design of nonlinear optical materials.

  8. Shape-memory NiTi foams produced by replication of NaCl space-holders.

    PubMed

    Bansiddhi, A; Dunand, D C

    2008-11-01

    NiTi foams were created with a structure (32-36% open pores 70-400 microm in size) and mechanical properties (4-25 GPa stiffness, >1000 MPa compressive strength, >42% compressive ductility, and shape-memory strains up to 4%) useful for bone implant applications. A mixture of NiTi and NaCl powders was hot-isostatically pressed at 950 and 1065 degrees C and the NaCl phase was then dissolved in water. The resulting NiTi foams show interconnected pores that replicate the shape and size of the NaCl powders, indicating that NiTi powders densified significantly before NaCl melted at 801 degrees C. Densifying NiTi or other metal powders above the melting point of the space-holder permits the use of NaCl, with the following advantages compared with higher-melting, solid space-holders such as oxides and fluorides used to date: (i) no temperature limit for densification; (ii) lower cost; (iii) greater flexibility in powder (and thus pore) shape; (iv) faster dissolution; (v) reduced metal corrosion during dissolution; (vi) lower toxicity if space-holder residues remain in the foam.

  9. Solid-state experiments at high pressure and strain rates

    NASA Astrophysics Data System (ADS)

    Kalantar, D. H.

    1999-11-01

    We are developing experiments on intense laser facilities to study shock compressed metal foils in the solid state. At high pressure, Rayleigh-Taylor induced perturbation growth can be reduced by the strength of the material. [1] We use this to characterize the strength of the metal foils accelerated at high pressure in the solid state. In our experiments, Al and Cu foils are compressed and accelerated with staged shocks using a temporally shaped x-ray drive that is generated in a Nova laser hohlraum target. [2] The peak pressures exceed 1 Mbar (100 GPa), and strain rates are very high, 10^7-10^9 s-1. The instability growth is observed by x-ray radiography. To probe the state of the material under compression and to demonstrate that it remains solid, we are using the dynamic Bragg diffraction technique. [3] This technique has been demonstrated on the Nova laser [4] using Si crystals shocked to 200-500 kbar. Additionally, we have observed diffraction from Cu crystals that are shocked to 100-200 kbar by direct laser irradiation on the Trident and OMEGA lasers. Compressions of up to a 10in the crystal lattice spacing have been observed. We will present the results of our work to develop these high pressure solid-state hydrodynamics experiments. 1. J. F. Barnes et al, J. Appl. Phys. 45, 727 (1974); A. I. Lebedev et al , Proc. 4th IWPCTM, 29 March-1 April, 1993, p. 81. 2. D. H. Kalantar et al., to appear in Int. J. of Impact Eng. (1999). 3. R. R. Whitlock and J. S. Wark, Phys. Rev. B 52, 8 (1995). 4. D. H. Kalantar et al, Rev. Sci. Instrum. 70, 629 (1999).

  10. Optimum shape of a blunt forebody in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Ting, L.

    1989-01-01

    The optimum shape of a blunt forebody attached to a symmetric wedge or cone is determined. The length of the forebody, its semi-thickness or base radius, the nose radius and the radius of the fillet joining the forebody to the wedge or cone are specified. The optimum shape is composed of simple curves. Thus experimental models can be built readily to investigate the utilization of aerodynamic heating for boundary layer control. The optimum shape based on the modified Newtonian theory can also serve as the preliminary shape for the numerical solution of the optimum shape using the governing equations for a compressible inviscid or viscous flow.

  11. Interfraction Liver Shape Variability and Impact on GTV Position During Liver Stereotactic Radiotherapy Using Abdominal Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eccles, Cynthia L., E-mail: cynthia.eccles@rob.ox.ac.uk; Dawson, Laura A.; Moseley, Joanne L.

    2011-07-01

    Purpose: For patients receiving liver stereotactic body radiotherapy (SBRT), abdominal compression can reduce organ motion, and daily image guidance can reduce setup error. The reproducibility of liver shape under compression may impact treatment delivery accuracy. The purpose of this study was to measure the interfractional variability in liver shape under compression, after best-fit rigid liver-to-liver registration from kilovoltage (kV) cone beam computed tomography (CBCT) scans to planning computed tomography (CT) scans and its impact on gross tumor volume (GTV) position. Methods and Materials: Evaluable patients were treated in a Research Ethics Board-approved SBRT six-fraction study with abdominal compression. Kilovoltage CBCTmore » scans were acquired before treatment and reconstructed as respiratory sorted CBCT scans offline. Manual rigid liver-to-liver registrations were performed from exhale-phase CBCT scans to exhale planning CT scans. Each CBCT liver was contoured, exported, and compared with the planning CT scan for spatial differences, by use of in house-developed finite-element model-based deformable registration (MORFEUS). Results: We evaluated 83 CBCT scans from 16 patients with 30 GTVs. The mean volume of liver that deformed by greater than 3 mm was 21.7%. Excluding 1 outlier, the maximum volume that deformed by greater than 3 mm was 36.3% in a single patient. Over all patients, the absolute maximum deformations in the left-right (LR), anterior-posterior (AP), and superior-inferior directions were 10.5 mm (SD, 2.2), 12.9 mm (SD, 3.6), and 5.6 mm (SD, 2.7), respectively. The absolute mean predicted impact of liver volume displacements on GTV by use of center of mass displacements was 0.09 mm (SD, 0.13), 0.13 mm (SD, 0.18), and 0.08 mm (SD, 0.07) in the left-right, anterior-posterior, and superior-inferior directions, respectively. Conclusions: Interfraction liver deformations in patients undergoing SBRT under abdominal compression after rigid liver-to-liver registrations on respiratory sorted CBCT scans were small in most patients (<5 mm).« less

  12. Impacts to the chest of PMHSs - Influence of impact location and load distribution on chest response.

    PubMed

    Holmqvist, Kristian; Svensson, Mats Y; Davidsson, Johan; Gutsche, Andreas; Tomasch, Ernst; Darok, Mario; Ravnik, Dean

    2016-02-01

    The chest response of the human body has been studied for several load conditions, but is not well known in the case of steering wheel rim-to-chest impact in heavy goods vehicle frontal collisions. The aim of this study was to determine the response of the human chest in a set of simulated steering wheel impacts. PMHS tests were carried out and analysed. The steering wheel load pattern was represented by a rigid pendulum with a straight bar-shaped front. A crash test dummy chest calibration pendulum was utilised for comparison. In this study, a set of rigid bar impacts were directed at various heights of the chest, spanning approximately 120mm around the fourth intercostal space. The impact energy was set below a level estimated to cause rib fracture. The analysed results consist of responses, evaluated with respect to differences in the impacting shape and impact heights on compression and viscous criteria chest injury responses. The results showed that the bar impacts consistently produced lesser scaled chest compressions than the hub; the Middle bar responses were around 90% of the hub responses. A superior bar impact provided lesser chest compression; the average response was 86% of the Middle bar response. For inferior bar impacts, the chest compression response was 116% of the chest compression in the middle. The damping properties of the chest caused the compression to decrease in the high speed bar impacts to 88% of that in low speed impacts. From the analysis it could be concluded that the bar impact shape provides lower chest criteria responses compared to the hub. Further, the bar responses are dependent on the impact location of the chest. Inertial and viscous effects of the upper body affect the responses. The results can be used to assess the responses of human substitutes such as anthropomorphic test devices and finite element human body models, which will benefit the development process of heavy goods vehicle safety systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Analysis of direct-drive capsule compression experiments on the Iskra-5 laser facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gus'kov, S. Yu.; Demchenko, N. N.; Zhidkov, N. V.

    2010-09-15

    We have analyzed and numerically simulated our experiments on the compression of DT-gas-filled glass capsules under irradiation by a small number of beams on the Iskra-5 facility (12 beams) at the second harmonic of an iodine laser ({lambda} = 0.66 {mu}m) for a laser pulse energy of 2 kJ and duration of 0.5 ns in the case of asymmetric irradiation and compression. Our simulations include the construction of a target illumination map and a histogram of the target surface illumination distribution; 1D capsule compression simulations based on the DIANA code corresponding to various target surface regions; and 2D compression simulationsmore » based on the NUTCY code corresponding to the illumination conditions. We have succeeded in reproducing the shape of the compressed region at the time of maximum compression and the reduction in neutron yield (compared to the 1D simulations) to the experimentally observed values. For the Iskra-5 conditions, we have considered targets that can provide a more symmetric compression and a higher neutron yield.« less

  14. Generation of 360 ps laser pulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme.

    PubMed

    Zhu, Xuehua; Wang, Yulei; Lu, Zhiwei; Zhang, Hengkang

    2015-09-07

    A new technique for generating high energy sub-400 picosecond laser pulses is presented in this paper. The temporally super-Gaussian-shaped laser pulses are used as light source. When the forward pump is reflected by the rear window of SBS cell, the frequency component that fulfills Brillouin frequency shift in its sideband spectrum works as a seed and excites SBS, which results in efficient compression of the incident pump pulse. First the pulse compression characteristics of 20th-order super-Gaussian temporally shaped pulses with 5 ns duration are analyzed theoretically. Then experiment is carried out with a narrow-band high power Nd:glass laser system at the double-frequency and wavelength of 527 nm which delivers 5 ns super-Gaussian temporally shaped pulses with single pulse energy over 10 J. FC-40 is used as the active SBS medium for its brief phonon lifetime and high power capacity. In the experiment, the results agree well with the numerical calculations. With pump energy of 5.36J, the compression of pulse duration from 5 ns to 360 ps is obtained. The output energy is 3.02 J and the peak-power is magnified 8.3 times. Moreover, the compressed pulse shows a high stability because it is initiated by the feedback of rear window rather than the thermal noise distributing inside the medium. This technique of generating high energy hundred picosecond laser pulses has simple structure and is easy to operate, and it also can be scaled to higher energy pulse compression in the future. Meanwhile, it should also be taken into consideration that in such a nonfocusing scheme, the noise-initiated SBS would increase the distortion on the wavefront of Stokes beam to some extent, and the pump energy should be controlled below the threshold of noise-initiated SBS.

  15. Novel Spectral Representations and Sparsity-Driven Algorithms for Shape Modeling and Analysis

    NASA Astrophysics Data System (ADS)

    Zhong, Ming

    In this dissertation, we focus on extending classical spectral shape analysis by incorporating spectral graph wavelets and sparsity-seeking algorithms. Defined with the graph Laplacian eigenbasis, the spectral graph wavelets are localized both in the vertex domain and graph spectral domain, and thus are very effective in describing local geometry. With a rich dictionary of elementary vectors and forcing certain sparsity constraints, a real life signal can often be well approximated by a very sparse coefficient representation. The many successful applications of sparse signal representation in computer vision and image processing inspire us to explore the idea of employing sparse modeling techniques with dictionary of spectral basis to solve various shape modeling problems. Conventional spectral mesh compression uses the eigenfunctions of mesh Laplacian as shape bases, which are highly inefficient in representing local geometry. To ameliorate, we advocate an innovative approach to 3D mesh compression using spectral graph wavelets as dictionary to encode mesh geometry. The spectral graph wavelets are locally defined at individual vertices and can better capture local shape information than Laplacian eigenbasis. The multi-scale SGWs form a redundant dictionary as shape basis, so we formulate the compression of 3D shape as a sparse approximation problem that can be readily handled by greedy pursuit algorithms. Surface inpainting refers to the completion or recovery of missing shape geometry based on the shape information that is currently available. We devise a new surface inpainting algorithm founded upon the theory and techniques of sparse signal recovery. Instead of estimating the missing geometry directly, our novel method is to find this low-dimensional representation which describes the entire original shape. More specifically, we find that, for many shapes, the vertex coordinate function can be well approximated by a very sparse coefficient representation with respect to the dictionary comprising its Laplacian eigenbasis, and it is then possible to recover this sparse representation from partial measurements of the original shape. Taking advantage of the sparsity cue, we advocate a novel variational approach for surface inpainting, integrating data fidelity constraints on the shape domain with coefficient sparsity constraints on the transformed domain. Because of the powerful properties of Laplacian eigenbasis, the inpainting results of our method tend to be globally coherent with the remaining shape. Informative and discriminative feature descriptors are vital in qualitative and quantitative shape analysis for a large variety of graphics applications. We advocate novel strategies to define generalized, user-specified features on shapes. Our new region descriptors are primarily built upon the coefficients of spectral graph wavelets that are both multi-scale and multi-level in nature, consisting of both local and global information. Based on our novel spectral feature descriptor, we developed a user-specified feature detection framework and a tensor-based shape matching algorithm. Through various experiments, we demonstrate the competitive performance of our proposed methods and the great potential of spectral basis and sparsity-driven methods for shape modeling.

  16. A material-sparing method for assessment of powder deformation characteristics using data collected during a single compression-decompression cycle.

    PubMed

    Katz, Jeffrey M; Roopwani, Rahul; Buckner, Ira S

    2013-10-01

    Compressibility profiles, or functions of solid fraction versus applied pressure, are used to provide insight into the fundamental mechanical behavior of powders during compaction. These functions, collected during compression (in-die) or post ejection (out-of-die), indicate the amount of pressure that a given powder formulation requires to be compressed to a given density or thickness. To take advantage of the benefits offered by both methods, the data collected in-die during a single compression-decompression cycle will be used to generate the equivalent of a complete out-of-die compressibility profile that has been corrected for both elastic and viscoelastic recovery of the powder. This method has been found to be both a precise and accurate means of evaluating out-of-die compressibility for four common tableting excipients. Using this method, a comprehensive characterization of powder compaction behavior, specifically in relation to plastic/brittle, elastic and viscoelastic deformation, can be obtained. Not only is the method computationally simple, but it is also material-sparing. The ability to characterize powder compressibility using this approach can improve productivity and streamline tablet development studies. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Micro Fluidic Channel Machining on Fused Silica Glass Using Powder Blasting

    PubMed Central

    Jang, Ho-Su; Cho, Myeong-Woo; Park, Dong-Sam

    2008-01-01

    In this study, micro fluid channels are machined on fused silica glass via powder blasting, a mechanical etching process, and the machining characteristics of the channels are experimentally evaluated. In the process, material removal is performed by the collision of micro abrasives injected by highly compressed air on to the target surface. This approach can be characterized as an integration of brittle mode machining based on micro crack propagation. Fused silica glass, a high purity synthetic amorphous silicon dioxide, is selected as a workpiece material. It has a very low thermal expansion coefficient and excellent optical qualities and exceptional transmittance over a wide spectral range, especially in the ultraviolet range. The powder blasting process parameters affecting the machined results are injection pressure, abrasive particle size and density, stand-off distance, number of nozzle scanning, and shape/size of the required patterns. In this study, the influence of the number of nozzle scanning, abrasive particle size, and pattern size on the formation of micro channels is investigated. Machined shapes and surface roughness are measured using a 3-dimensional vision profiler and the results are discussed. PMID:27879730

  18. Simulations of High Speed Fragment Trajectories

    NASA Astrophysics Data System (ADS)

    Yeh, Peter; Attaway, Stephen; Arunajatesan, Srinivasan; Fisher, Travis

    2017-11-01

    Flying shrapnel from an explosion are capable of traveling at supersonic speeds and distances much farther than expected due to aerodynamic interactions. Predicting the trajectories and stable tumbling modes of arbitrary shaped fragments is a fundamental problem applicable to range safety calculations, damage assessment, and military technology. Traditional approaches rely on characterizing fragment flight using a single drag coefficient, which may be inaccurate for fragments with large aspect ratios. In our work we develop a procedure to simulate trajectories of arbitrary shaped fragments with higher fidelity using high performance computing. We employ a two-step approach in which the force and moment coefficients are first computed as a function of orientation using compressible computational fluid dynamics. The force and moment data are then input into a six-degree-of-freedom rigid body dynamics solver to integrate trajectories in time. Results of these high fidelity simulations allow us to further understand the flight dynamics and tumbling modes of a single fragment. Furthermore, we use these results to determine the validity and uncertainty of inexpensive methods such as the single drag coefficient model.

  19. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, Ramkrishna G.

    1986-01-01

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  20. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, R.G.

    1984-08-31

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  1. The fluid-dynamic paradigm of the dust-acoustic soliton

    NASA Astrophysics Data System (ADS)

    McKenzie, J. F.

    2002-06-01

    In most studies, the properties of dust-acoustic solitons are derived from the first integral of the Poisson equation, in which the shape of the pseudopotential determines both the conditions in which a soliton may exist and its amplitude. Here this first integral is interpreted as conservation of total momentum, which, along with the Bernoulli-like energy equations for each species, may be cast as the structure equation for the dust (or heavy-ion) speed in the wave. In this fluid-dynamic picture, the significance of the sonic points of each species becomes apparent. In the wave, the heavy-ion (or dust) flow speed is supersonic (relative to its sound speed), whereas the protons and electrons are subsonic (relative to their sound speeds), and the dust flow is driven towards its sonic point. It is this last feature that limits the strength (amplitude) of the wave, since the equilibrium point (the centre of the wave) must be reached before the dust speed becomes sonic. The wave is characterized by a compression in the heavies and a compression (rarefaction) in the electrons and a rarefaction (compression) in the protons if the heavies have positive (negative) charge, and the corresponding potential is a hump (dip). These features are elucidated by an exact analytical soliton, in a special case, which provides the fully nonlinear counterpoint to the weakly nonlinear sech2-type solitons associated with the Korteweg de Vries equation, and indicates the parameter regimes in which solitons may exist.

  2. Porous alumina-hydroxyapatite composites through protein foaming-consolidation method.

    PubMed

    Sopyan, I; Fadli, A; Mel, M

    2012-04-01

    This report presents physical characterization and cell culture test of porous alumina-hydroxyapatite (HA) composites fabricated through protein foaming-consolidation technique. Alumina and HA powders were mixed with yolk and starch at an adjusted ratio to make slurry. The resulting slip was poured into cylindrical shaped molds and followed by foaming and consolidation via 180 °C drying for 1 h. The obtained green bodies were burned at 600 °C for 1 h, followed by sintering at temperatures of 1200-1550 °C for 2 h. Porous alumina-HA bodies with 26-77 vol.% shrinkage, 46%-52% porosity and 0.1-6.4 MPa compressive strength were obtained. The compressive strength of bodies increased with the increasing sintering temperatures. The addition of commercial HA in the body was found to increase the compressive strength, whereas the case is reverse for sol-gel derived HA. Biocompatibility study of porous alumina-HA was performed in a stirred tank bioreactor using culture of Vero cells. A good compatibility of the cells to the porous microcarriers was observed as the cells attached and grew at the surface of microcarriers at 8-120 cultured hours. The cell growth on porous alumina microcarrier was 0.015 h(-1) and increased to 0.019 h(-1) for 0.3 w/w HA-to-alumina mass ratio and decreased again to 0.017 h(-1) for 1.0 w/w ratio. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Next generation control system for reflexive aerostructures

    NASA Astrophysics Data System (ADS)

    Maddux, Michael R.; Meents, Elizabeth P.; Barnell, Thomas J.; Cable, Kristin M.; Hemmelgarn, Christopher; Margraf, Thomas W.; Havens, Ernie

    2010-04-01

    Cornerstone Research Group Inc. (CRG) has developed and demonstrated a composite structural solution called reflexive composites for aerospace applications featuring CRG's healable shape memory polymer (SMP) matrix. In reflexive composites, an integrated structural health monitoring (SHM) system autonomously monitors the structural health of composite aerospace structures, while integrated intelligent controls monitor data from the SHM system to characterize damage and initiate healing when damage is detected. Development of next generation intelligent controls for reflexive composites were initiated for the purpose of integrating prognostic health monitoring capabilities into the reflexive composite structural solution. Initial efforts involved data generation through physical inspections and mechanical testing. Compression after impact (CAI) testing was conducted on composite-reinforced shape memory polymer samples to induce damage and investigate the effectiveness of matrix healing on mechanical performance. Non-destructive evaluation (NDE) techniques were employed to observe and characterize material damage. Restoration of mechanical performance was demonstrated through healing, while NDE data showed location and size of damage and verified mitigation of damage post-healing. Data generated was used in the development of next generation reflexive controls software. Data output from the intelligent controls could serve as input to Integrated Vehicle Health Management (IVHM) systems and Integrated Resilient Aircraft Controls (IRAC). Reflexive composite technology has the ability to reduce maintenance required on composite structures through healing, offering potential to significantly extend service life of aerospace vehicles and reduce operating and lifecycle costs.

  4. First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility

    DOE PAGES

    Smalyuk, V. A.; Robey, H. F.; Döppner, T.; ...

    2015-08-27

    Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ~25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.

  5. Orthotropic elasto-plastic behavior of AS4/APC-2 thermoplastic composite in compression

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Rui, Y.

    1989-01-01

    Uniaxial compression tests were performed on off-axis coupon specimens of unidirectional AS4/APC-2 thermoplastic composite at various temperatures. The elasto-plastic and strength properties of AS4/APC-2 composite were characterized with respect to temperature variation by using a one-parameter orthotropic plasticity model and a one-parameter failure criterion. Experimental results show that the orthotropic plastic behavior can be characterized quite well using the plasticity model, and the matrix-dominant compressive strengths can be predicted very accurately by the one-parameter failure criterion.

  6. The effect of compression and attention allocation on speech intelligibility

    NASA Astrophysics Data System (ADS)

    Choi, Sangsook; Carrell, Thomas

    2003-10-01

    Research investigating the effects of amplitude compression on speech intelligibility for individuals with sensorineural hearing loss has demonstrated contradictory results [Souza and Turner (1999)]. Because percent-correct measures may not be the best indicator of compression effectiveness, a speech intelligibility and motor coordination task was developed to provide data that may more thoroughly explain the perception of compressed speech signals. In the present study, a pursuit rotor task [Dlhopolsky (2000)] was employed along with word identification task to measure the amount of attention required to perceive compressed and non-compressed words in noise. Monosyllabic words were mixed with speech-shaped noise at a fixed signal-to-noise ratio and compressed using a wide dynamic range compression scheme. Participants with normal hearing identified each word with or without a simultaneous pursuit-rotor task. Also, participants completed the pursuit-rotor task without simultaneous word presentation. It was expected that the performance on the additional motor task would reflect effect of the compression better than simple word-accuracy measures. Results were complex. For example, in some conditions an irrelevant task actually improved performance on a simultaneous listening task. This suggests there might be an optimal level of attention required for recognition of monosyllabic words.

  7. Neurofilaments Function as Shock Absorbers: Compression Response Arising from Disordered Proteins.

    PubMed

    Kornreich, Micha; Malka-Gibor, Eti; Zuker, Ben; Laser-Azogui, Adi; Beck, Roy

    2016-09-30

    What can cells gain by using disordered, rather than folded, proteins in the architecture of their skeleton? Disordered proteins take multiple coexisting conformations, and often contain segments which act as random-walk-shaped polymers. Using x-ray scattering we measure the compression response of disordered protein hydrogels, which are the main stress-responsive component of neuron cells. We find that at high compression their mechanics are dominated by gaslike steric and ionic repulsions. At low compression, specific attractive interactions dominate. This is demonstrated by the considerable hydrogel expansion induced by the truncation of critical short protein segments. Accordingly, the floppy disordered proteins form a weakly cross-bridged hydrogel, and act as shock absorbers that sustain large deformations without failure.

  8. Neurofilaments Function as Shock Absorbers: Compression Response Arising from Disordered Proteins

    NASA Astrophysics Data System (ADS)

    Kornreich, Micha; Malka-Gibor, Eti; Zuker, Ben; Laser-Azogui, Adi; Beck, Roy

    2016-09-01

    What can cells gain by using disordered, rather than folded, proteins in the architecture of their skeleton? Disordered proteins take multiple coexisting conformations, and often contain segments which act as random-walk-shaped polymers. Using x-ray scattering we measure the compression response of disordered protein hydrogels, which are the main stress-responsive component of neuron cells. We find that at high compression their mechanics are dominated by gaslike steric and ionic repulsions. At low compression, specific attractive interactions dominate. This is demonstrated by the considerable hydrogel expansion induced by the truncation of critical short protein segments. Accordingly, the floppy disordered proteins form a weakly cross-bridged hydrogel, and act as shock absorbers that sustain large deformations without failure.

  9. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquila, Andrew Lee

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes themore » design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs described in this thesis can be extended to higher photon energies, and such designs can be used with those sources to enable new scientific studies, such as molecular bonding, phonon, and spin dynamics.« less

  10. Characterization and modeling of a highly-oriented thin film for composite forming

    NASA Astrophysics Data System (ADS)

    White, K. D.; Sherwood, J. A.

    2018-05-01

    Ultra High Molecular Weight Polyethylene (UHMWPE) materials exhibit high impact strength, excellent abrasion resistance and high chemical resistance, making them attractive for a number of impact applications for automotive, marine and medical industries. One format of this class of materials that is being considered for the thermoforming process is a highly-oriented extruded thin film. Parts are made using a two-step manufacturing process that involves first producing a set of preforms and then consolidating these preforms into a final shaped part. To assist in the design of the processing parameters, simulations of the preforming and compression molding steps can be completed using the finite element method. Such simulations require material input data as developed through a comprehensive characterization test program, e.g. shear, tensile and bending, over the range of potential processing temperatures. The current research investigates the challenges associated with the characterization of thin, highly-oriented UHMWPE films. Variations in grip type, sample size and testing rates are explored to achieve convergence of the characterization data. Material characterization results are then used in finite element simulations of the tension test to explore element formulations that work well with the mechanical behavior. Comparisons of the results from the material characterization tests to results of simulations of the same test are performed to validate the finite element method parameters and the credibility of the user-defined material model.

  11. Compression-triggered instabilities of multi-layer systems: From thin elastic membranes to lipid bilayers on flexible substrates

    NASA Astrophysics Data System (ADS)

    Stone, Howard A.

    2013-03-01

    Instabilities are triggered when elastic materials are subjected to compression. We explore new features of two distinct systems of this type. First, we describe a two-layer polymeric system under biaxial compressive stress, which exhibits a repetitive wrinkle-to-fold transition that subsequently generates a hierarchical network of folds during reorganization of the stress field. The folds delineate individual domains, and each domain subdivides into smaller ones over multiple generations. By modifying the boundary conditions and geometry, we demonstrate control over the final network morphology. Some analogies to the venation pattern of leaves are indicated. Second, motivated by the confined configurations common to cells, which are wrapped in lipid bilayer membranes, we study a lipid bilayer, coupled to an elastic sheet, and demonstrate that, upon straining, the confined lipid membrane is able to passively regulate its area. In particular, by stretching the elastic support, the bilayer laterally expands without rupture by fusing adhered lipid vesicles; upon compression, lipid tubes grow out of the membrane plane, thus reducing its area. These transformations are reversible, as we show using cycles of expansion and compression, and closely reproduce membrane processes found in cells during area regulation. The two distinct systems illustrate the influence of the substrate on finite amplitude shape changes, for which we describe the time-dependent shape evolution as the stress relaxes. This talk describes joint research with Manouk Abkarian, Marino Arroyo, Pilnam Kim, Mohammad Rahimi and Margarita Staykova.

  12. The compression of a heavy floating elastic film.

    PubMed

    Jambon-Puillet, Etienne; Vella, Dominic; Protière, Suzie

    2016-11-23

    We study the effect of film density on the uniaxial compression of thin elastic films at a liquid-fluid interface. Using a combination of experiments and theory, we show that dense films first wrinkle and then fold as the compression is increased, similarly to what has been reported when the film density is neglected. However, we highlight the changes in the shape of the fold induced by the film's own weight and extend the model of Diamant and Witten [Phys. Rev. Lett., 2011, 107, 164302] to understand these changes. In particular, we suggest that it is the weight of the film that breaks the up-down symmetry apparent from previous models, but elusive experimentally. We then compress the film beyond the point of self-contact and observe a new behaviour dependent on the film density: the single fold that forms after wrinkling transitions into a closed loop after self-contact, encapsulating a cylindrical droplet of the upper fluid. The encapsulated drop either causes the loop to bend upward or to sink deeper as the compression is increased, depending on the relative buoyancy of the drop-film combination. We propose a model to qualitatively explain this behaviour. Finally, we discuss the relevance of the different buckling modes predicted in previous theoretical studies and highlight the important role of surface tension in the shape of the fold that is observed from the side-an aspect that is usually neglected in theoretical analyses.

  13. Simultaneous masking additivity for short Gaussian-shaped tones: spectral effects.

    PubMed

    Laback, Bernhard; Necciari, Thibaud; Balazs, Peter; Savel, Sophie; Ystad, Sølvi

    2013-08-01

    Laback et al. [(2011). J. Acoust. Soc. Am. 129, 888-897] investigated the additivity of nonsimultaneous masking using short Gaussian-shaped tones as maskers and target. The present study involved Gaussian stimuli to measure the additivity of simultaneous masking for combinations of up to four spectrally separated maskers. According to most basilar membrane measurements, the maskers should be processed linearly at the characteristic frequency (CF) of the target. Assuming also compression of the target, all masker combinations should produce excess masking (exceeding linear additivity). The results for a pair of maskers flanking the target indeed showed excess masking. The amount of excess masking could be predicted by a model assuming summation of masker-evoked excitations in intensity units at the target CF and compression of the target, using compressive input/output functions derived from the nonsimultaneous masking study. However, the combinations of lower-frequency maskers showed much less excess masking than predicted by the model. This cannot easily be attributed to factors like off-frequency listening, combination tone perception, or between-masker suppression. It was better predicted, however, by assuming weighted intensity summation of masker excitations. The optimum weights for the lower-frequency maskers were smaller than one, consistent with partial masker compression as indicated by recent psychoacoustic data.

  14. Influence of Ce addition on biomedical porous Ti-51 atomic percentage (at. %) Ni shape memory alloy fabricated by microwave sintering

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mustafa K.; Hamzah, E.; Saud, Safaa N.; Nazim, E. M.; Bahador, A.

    2017-12-01

    Ti-Ni and Ti-Ni-Ce shape memory alloys (SMAs) were successfully fabricated by microwave sintering. The improvement of the mechanical properties especially the elastic modulus is the most important criterion in this research. The high elastic modulus problems are the most critical issues frequently encountered in hard tissue replacement applications. The effect of Ce addition with four atomic percentages (0 %, 0.19 %, 0.385 % and, 1.165 %) on the microstructure, phase composition, transformation temperatures and mechanical properties was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Differential Scanning Calorimeter (DSC), and compression test. The microstructure shows plates-like with needles-like inside the titanium-rich region. The compression strain was improved, but reduces the compression strength. The addition of cerium improved the properties by reducing the elastic modulus to be very close to the natural human bone, also the microwave sintering gives TiNi SMAs with low elastic modulus comparing with other methods. Based on the results, the 0.385 at. % Ce exhibited a remarkable highest compressive strain and lower elastic modulus compared with the other percentages. In conclusion, the present results indicate that Ti-Ni-Ce SMAs could be a potential alternative to improve Ti-51 at %Ni SMAs for certain biomedical applications.

  15. Characterization of Pediatric In-Hospital Cardiopulmonary Resuscitation Quality Metrics Across an International Resuscitation Collaborative.

    PubMed

    Niles, Dana E; Duval-Arnould, Jordan; Skellett, Sophie; Knight, Lynda; Su, Felice; Raymond, Tia T; Sweberg, Todd; Sen, Anita I; Atkins, Dianne L; Friess, Stuart H; de Caen, Allan R; Kurosawa, Hiroshi; Sutton, Robert M; Wolfe, Heather; Berg, Robert A; Silver, Annemarie; Hunt, Elizabeth A; Nadkarni, Vinay M

    2018-05-01

    Pediatric in-hospital cardiac arrest cardiopulmonary resuscitation quality metrics have been reported in few children less than 8 years. Our objective was to characterize chest compression fraction, rate, depth, and compliance with 2015 American Heart Association guidelines across multiple pediatric hospitals. Retrospective observational study of data from a multicenter resuscitation quality collaborative from October 2015 to April 2017. Twelve pediatric hospitals across United States, Canada, and Europe. In-hospital cardiac arrest patients (age < 18 yr) with quantitative cardiopulmonary resuscitation data recordings. None. There were 112 events yielding 2,046 evaluable 60-second epochs of cardiopulmonary resuscitation (196,669 chest compression). Event cardiopulmonary resuscitation metric summaries (median [interquartile range]) by age: less than 1 year (38/112): chest compression fraction 0.88 (0.61-0.98), chest compression rate 119/min (110-129), and chest compression depth 2.3 cm (1.9-3.0 cm); for 1 to less than 8 years (42/112): chest compression fraction 0.94 (0.79-1.00), chest compression rate 117/min (110-124), and chest compression depth 3.8 cm (2.9-4.6 cm); for 8 to less than 18 years (32/112): chest compression fraction 0.94 (0.85-1.00), chest compression rate 117/min (110-123), chest compression depth 5.5 cm (4.0-6.5 cm). "Compliance" with guideline targets for 60-second chest compression "epochs" was predefined: chest compression fraction greater than 0.80, chest compression rate 100-120/min, and chest compression depth: greater than or equal to 3.4 cm in less than 1 year, greater than or equal to 4.4 cm in 1 to less than 8 years, and 4.5 to less than 6.6 cm in 8 to less than 18 years. Proportion of less than 1 year, 1 to less than 8 years, and 8 to less than 18 years events with greater than or equal to 60% of 60-second epochs meeting compliance (respectively): chest compression fraction was 53%, 81%, and 78%; chest compression rate was 32%, 50%, and 63%; chest compression depth was 13%, 19%, and 44%. For all events combined, total compliance (meeting all three guideline targets) was 10% (11/112). Across an international pediatric resuscitation collaborative, we characterized the landscape of pediatric in-hospital cardiac arrest chest compression quality metrics and found that they often do not meet 2015 American Heart Association guidelines. Guideline compliance for rate and depth in children less than 18 years is poor, with the greatest difficulty in achieving chest compression depth targets in younger children.

  16. The Impact of Nitinol Staples on the Compressive Forces, Contact Area, and Mechanical Properties in Comparison to a Claw Plate and Crossed Screws for the First Tarsometatarsal Arthrodesis.

    PubMed

    Aiyer, Amiethab; Russell, Nicholas A; Pelletier, Matthew H; Myerson, Mark; Walsh, William R

    2016-06-01

    Background The optimal fixation method for the first tarsometatarsal arthrodesis remains controversial. This study aimed to develop a reproducible first tarsometatarsal testing model to evaluate the biomechanical performance of different reconstruction techniques. Methods Crossed screws or a claw plate were compared with a single or double shape memory alloy staple configuration in 20 Sawbones models. Constructs were mechanically tested in 4-point bending to 1, 2, and 3 mm of plantar displacement. The joint contact force and area were measured at time zero, and following 1 and 2 mm of bending. Peak load, stiffness, and plantar gapping were determined. Results Both staple configurations induced a significantly greater contact force and area across the arthrodesis than the crossed screw and claw plate constructs at all measurements. The staple constructs completely recovered their plantar gapping following each test. The claw plate generated the least contact force and area at the joint interface and had significantly greater plantar gapping than all other constructs. The crossed screw constructs were significantly stiffer and had significantly less plantar gapping than the other constructs, but this gapping was not recoverable. Conclusions Crossed screw fixation provides a rigid arthrodesis with limited compression and contact footprint across the joint. Shape memory alloy staples afford dynamic fixation with sustained compression across the arthrodesis. A rigid polyurethane foam model provides an anatomically relevant comparison for evaluating the interface between different fixation techniques. Clinical Relevance The dynamic nature of shape memory alloy staples offers the potential to permit early weight bearing and could be a useful adjunctive device to impart compression across an arthrodesis of the first tarsometatarsal joint. Therapeutic, Level V: Bench testing. © 2015 The Author(s).

  17. Static response of coated microbubbles compressed between rigid plates: Simulations and asymptotic analysis including elastic and adhesive forces

    NASA Astrophysics Data System (ADS)

    Lytra, A.; Pelekasis, N.

    2018-03-01

    The static response of coated microbubbles is investigated with a novel approach employed for modeling contact between a microbubble and the cantilever of an atomic force microscope. Elastic tensions and moments are described via appropriate constitutive laws. The encapsulated gas is assumed to undergo isothermal variations. Due to the hydrophilic nature of the cantilever, an ultrathin aqueous film is formed, which transfers the force onto the shell. An interaction potential describes the local pressure applied on the shell. The problem is solved in axisymmetric form with the finite element method. The response is governed by the dimensionless bending, k^ b=kb/(χ R02 ), pressure, P^ A=(PAR0 )/χ , and interaction potential, W ^ =w0/χ . Hard polymeric shells have negligible resistance to gas compression, while for the softer lipid shells gas compressibility is comparable with shell elasticity. As the external force increases, numerical simulations reveal that the force versus deformation (f vs d) curve of polymeric shells exhibits a transition from the linear O(d) (Reissner) regime, marked by flattened shapes around the contact region, to a non-linear O(d1/2) (Pogorelov) regime dominated by shapes exhibiting crater formation due to buckling. When lipid shells are tested, buckling is bypassed as the external force increases and flattened shapes prevail in an initially linear f vs d curve. Transition to a curved upwards regime is observed as the force increases, where gas compression and area dilatation form the dominant balance providing a nonlinear regime with an O(d3) dependence. Asymptotic analysis recovers the above patterns and facilitates estimation of the shell mechanical properties.

  18. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearlymore » establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. As a result, this nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.« less

  19. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    DOE PAGES

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; ...

    2017-03-16

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearlymore » establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. As a result, this nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.« less

  20. Shape distortions and Gestalt grouping in anorthoscopic perception

    PubMed Central

    Aydın, Murat; Herzog, Michael H.; Öğmen, Haluk

    2011-01-01

    When a figure moves behind a stationary narrow slit, observers often report seeing the figure as a whole, a phenomenon called slit viewing or anorthoscopic perception. Interestingly, in slit viewing, the figure is perceived compressed along the axis of motion. As with other perceptual distortions, it is unclear whether the perceptual space in the vicinity of the slit or the representation of the figure itself undergoes compression. In a psychophysical experiment, we tested these two hypotheses. We found that the percept of a stationary bar, presented within the slit, was not distorted even when at the same time a circle underwent compression by moving through the slit. This result suggests that the compression of form results from figural rather than from space compression. In support of this hypothesis, we found that when the bar was perceptually grouped with the circle, the bar appeared compressed. Our results show that, in slit viewing, the distortion occurs at a non-retinotopic level where grouped objects are jointly represented. PMID:19757947

  1. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    NASA Astrophysics Data System (ADS)

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou

    2017-03-01

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.

  2. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power.

    PubMed

    Li, Binsong; Bian, Kaifu; Lane, J Matthew D; Salerno, K Michael; Grest, Gary S; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou

    2017-03-16

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.

  3. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    PubMed Central

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou

    2017-01-01

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales. PMID:28300067

  4. Compressed gas fuel storage system

    DOEpatents

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  5. A database for assessment of effect of lossy compression on digital mammograms

    NASA Astrophysics Data System (ADS)

    Wang, Jiheng; Sahiner, Berkman; Petrick, Nicholas; Pezeshk, Aria

    2018-03-01

    With widespread use of screening digital mammography, efficient storage of the vast amounts of data has become a challenge. While lossless image compression causes no risk to the interpretation of the data, it does not allow for high compression rates. Lossy compression and the associated higher compression ratios are therefore more desirable. The U.S. Food and Drug Administration (FDA) currently interprets the Mammography Quality Standards Act as prohibiting lossy compression of digital mammograms for primary image interpretation, image retention, or transfer to the patient or her designated recipient. Previous work has used reader studies to determine proper usage criteria for evaluating lossy image compression in mammography, and utilized different measures and metrics to characterize medical image quality. The drawback of such studies is that they rely on a threshold on compression ratio as the fundamental criterion for preserving the quality of images. However, compression ratio is not a useful indicator of image quality. On the other hand, many objective image quality metrics (IQMs) have shown excellent performance for natural image content for consumer electronic applications. In this paper, we create a new synthetic mammogram database with several unique features. We compare and characterize the impact of image compression on several clinically relevant image attributes such as perceived contrast and mass appearance for different kinds of masses. We plan to use this database to develop a new objective IQM for measuring the quality of compressed mammographic images to help determine the allowed maximum compression for different kinds of breasts and masses in terms of visual and diagnostic quality.

  6. Compression failure of composite laminates

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.

    1983-01-01

    This presentation attempts to characterize the compressive behavior of Hercules AS-1/3501-6 graphite-epoxy composite. The effect of varying specimen geometry on test results is examined. The transition region is determined between buckling and compressive failure. Failure modes are defined and analytical models to describe these modes are presented.

  7. Toward topology-based characterization of small-scale mixing in compressible turbulence

    NASA Astrophysics Data System (ADS)

    Suman, Sawan; Girimaji, Sharath

    2011-11-01

    Turbulent mixing rate at small scales of motion (molecular mixing) is governed by the steepness of the scalar-gradient field which in turn is dependent upon the prevailing velocity gradients. Thus motivated, we propose a velocity-gradient topology-based approach for characterizing small-scale mixing in compressible turbulence. We define a mixing efficiency metric that is dependent upon the topology of the solenoidal and dilatational deformation rates of a fluid element. The mixing characteristics of solenoidal and dilatational velocity fluctuations are clearly delineated. We validate this new approach by employing mixing data from direct numerical simulations (DNS) of compressible decaying turbulence with passive scalar. For each velocity-gradient topology, we compare the mixing efficiency predicted by the topology-based model with the corresponding conditional scalar variance obtained from DNS. The new mixing metric accurately distinguishes good and poor mixing topologies and indeed reasonably captures the numerical values. The results clearly demonstrate the viability of the proposed approach for characterizing and predicting mixing in compressible flows.

  8. Tree-root control of shallow landslides

    NASA Astrophysics Data System (ADS)

    Cohen, Denis; Schwarz, Massimiliano

    2017-08-01

    Tree roots have long been recognized to increase slope stability by reinforcing the strength of soils. Slope stability models usually include the effects of roots by adding an apparent cohesion to the soil to simulate root strength. No model includes the combined effects of root distribution heterogeneity, stress-strain behavior of root reinforcement, or root strength in compression. Recent field observations, however, indicate that shallow landslide triggering mechanisms are characterized by differential deformation that indicates localized activation of zones in tension, compression, and shear in the soil. Here we describe a new model for slope stability that specifically considers these effects. The model is a strain-step discrete element model that reproduces the self-organized redistribution of forces on a slope during rainfall-triggered shallow landslides. We use a conceptual sigmoidal-shaped hillslope with a clearing in its center to explore the effects of tree size, spacing, weak zones, maximum root-size diameter, and different root strength configurations. Simulation results indicate that tree roots can stabilize slopes that would otherwise fail without them and, in general, higher root density with higher root reinforcement results in a more stable slope. The variation in root stiffness with diameter can, in some cases, invert this relationship. Root tension provides more resistance to failure than root compression but roots with both tension and compression offer the best resistance to failure. Lateral (slope-parallel) tension can be important in cases when the magnitude of this force is comparable to the slope-perpendicular tensile force. In this case, lateral forces can bring to failure tree-covered areas with high root reinforcement. Slope failure occurs when downslope soil compression reaches the soil maximum strength. When this occurs depends on the amount of root tension upslope in both the slope-perpendicular and slope-parallel directions. Roots in tension can prevent failure by reducing soil compressive forces downslope. When root reinforcement is limited, a crack parallel to the slope forms near the top of the hillslope. Simulations with roots that fail across this crack always resulted in a landslide. Slopes that did not form a crack could either fail or remain stable, depending on root reinforcement. Tree spacing is important for the location of weak zones but tree location on the slope (with respect to where a crack opens) is as important. Finally, for the specific cases tested here, intermediate-sized roots (5 to 20 mm in diameter) appear to contribute most to root reinforcement. Our results show more complex behaviors than can be obtained with the traditional slope-uniform, apparent-cohesion approach. A full understanding of the mechanisms of shallow landslide triggering requires a complete re-evaluation of this traditional approach that cannot predict where and how forces are mobilized and distributed in roots and soils, and how these control shallow landslides shape, size, location, and timing.

  9. Flexural Progressive Failure of Carbon/Glass Interlayer and Intralayer Hybrid Composites

    PubMed Central

    Wu, Weili; Gong, Zhili

    2018-01-01

    The flexural progressive failure modes of carbon fiber and glass fiber (C/G) interlayer and intralayer hybrid composites were investigated in this work. Results showed that the bending failure modes for interlayer hybrid composites are determined by the layup structure. Besides, the bending failure is characterized by the compression failure of the upper layer, when carbon fiber tends to distribute in the upper layer, the interlayer hybrid composite fails early, the failure force is characterized by a multi-stage slightly fluctuating decline and the fracture area exhibits a diamond shape. While carbon fiber distributes in the middle or bottom layer, the failure time starts late, and the failure process exhibits one stage sharp force/stress drop, the fracture zone of glass fiber above the carbon layers presents an inverted trapezoid shape, while the fracture of glass fiber below the carbon layers exhibits an inverted triangular shape. With regards to the intralayer hybrid composites, the C/G hybrid ratio plays a dominating role in the bending failure which could be considered as the mixed failures of four structures. The bending failure of intralayer hybrid composites occurs in advance since carbon fiber are located in each layer; the failure process shows a multi-stage fluctuating decline, and the decline slows down as carbon fiber content increases, and the fracture sound release has the characteristics of a low intensity and high frequency for a long time. By contrast, as glass fiber content increases, the bending failure of intralayer composites is featured with a multi-stage cliff decline with a high amplitude and low frequency for a short-time fracture sound release. PMID:29673236

  10. Ultraviolet and near-infrared femtosecond temporal pulse shaping with a new high-aspect-ratio one-dimensional micromirror array.

    PubMed

    Weber, Stefan M; Extermann, Jérôme; Bonacina, Luigi; Noell, Wilfried; Kiselev, Denis; Waldis, Severin; de Rooij, Nico F; Wolf, Jean-Pierre

    2010-09-15

    We demonstrate the capabilities of a new optical microelectromechanical systems device that we specifically developed for broadband femtosecond pulse shaping. It consists of a one-dimensional array of 100 independently addressable, high-aspect-ratio micromirrors with up to 3 μm stroke. We apply linear and quadratic phase modulations demonstrating the temporal compression of 800 and 400 nm pulses. Because of the device's surface flatness, stroke, and stroke resolution, phase shaping over an unprecedented bandwidth is attainable.

  11. Texture characterization for joint compression and classification based on human perception in the wavelet domain.

    PubMed

    Fahmy, Gamal; Black, John; Panchanathan, Sethuraman

    2006-06-01

    Today's multimedia applications demand sophisticated compression and classification techniques in order to store, transmit, and retrieve audio-visual information efficiently. Over the last decade, perceptually based image compression methods have been gaining importance. These methods take into account the abilities (and the limitations) of human visual perception (HVP) when performing compression. The upcoming MPEG 7 standard also addresses the need for succinct classification and indexing of visual content for efficient retrieval. However, there has been no research that has attempted to exploit the characteristics of the human visual system to perform both compression and classification jointly. One area of HVP that has unexplored potential for joint compression and classification is spatial frequency perception. Spatial frequency content that is perceived by humans can be characterized in terms of three parameters, which are: 1) magnitude; 2) phase; and 3) orientation. While the magnitude of spatial frequency content has been exploited in several existing image compression techniques, the novel contribution of this paper is its focus on the use of phase coherence for joint compression and classification in the wavelet domain. Specifically, this paper describes a human visual system-based method for measuring the degree to which an image contains coherent (perceptible) phase information, and then exploits that information to provide joint compression and classification. Simulation results that demonstrate the efficiency of this method are presented.

  12. Electronic and optical properties of α-InX (X = S, Se and Te) monolayer: Under strain conditions

    NASA Astrophysics Data System (ADS)

    Jalilian, Jaafar; Safari, Mandana

    2017-04-01

    Using ab initio study, the structural, electronic and optical properties of α-InX (X = S, Se and Te) are investigated under tensile and compressive strain conditions. The results illustrate that exerting biaxial tensile and compressive strain conditions can lead to a tunable energy gap with a linear trend. The shape of valence band maximum (VBM) and conduction band minimum (CBM) is so sensitive to applying tensile and compressive strain. Besides, a shift in optical spectra toward shorter wavelength (blue shift) occurs under compression. The exerting tensile strain, on the other hand, gives rise to a red shift in optical spectra correspondingly. The results have been presented that InX monolayers can be good candidates for optoelectronic applications as well.

  13. Intermittent particle distribution in synthetic free-surface turbulent flows.

    PubMed

    Ducasse, Lauris; Pumir, Alain

    2008-06-01

    Tracer particles on the surface of a turbulent flow have a very intermittent distribution. This preferential concentration effect is studied in a two-dimensional synthetic compressible flow, both in the inertial (self-similar) and in the dissipative (smooth) range of scales, as a function of the compressibility C . The second moment of the concentration coarse grained over a scale r , n_{r};{2} , behaves as a power law in both the inertial and the dissipative ranges of scale, with two different exponents. The shapes of the probability distribution functions of the coarse-grained density n_{r} vary as a function of scale r and of compressibility C through the combination C/r;{kappa} (kappa approximately 0.5) , corresponding to the compressibility, coarse grained over a domain of scale r , averaged over Lagrangian trajectories.

  14. Sign reversal of transformation entropy change in Co{sub 2}Cr(Ga,Si) shape memory alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiao, E-mail: xu@material.tohoku.ac.jp; Omori, Toshihiro; Kainuma, Ryosuke

    2015-11-02

    In situ X-ray diffraction (XRD) measurements and compression tests were performed on Co{sub 2}Cr(Ga,Si) shape memory alloys. The reentrant martensitic transformation behavior was directly observed during the in situ XRD measurements. The high-temperature parent phase and low-temperature reentrant parent phase were found to have a continuous temperature dependence of lattice parameter, therefore suggesting that they are the same phase in nature. Moreover, compression tests were performed on a parent-phase single crystal sample; an evolution from normal to inverse temperature dependence of critical stress for martensitic transformation was directly observed. Based on the Clausius-Clapeyron analysis, a sign reversal of entropy changemore » can be expected on the same alloy.« less

  15. High Performance Compression of Science Data

    NASA Technical Reports Server (NTRS)

    Storer, James A.; Carpentieri, Bruno; Cohn, Martin

    1994-01-01

    Two papers make up the body of this report. One presents a single-pass adaptive vector quantization algorithm that learns a codebook of variable size and shape entries; the authors present experiments on a set of test images showing that with no training or prior knowledge of the data, for a given fidelity, the compression achieved typically equals or exceeds that of the JPEG standard. The second paper addresses motion compensation, one of the most effective techniques used in interframe data compression. A parallel block-matching algorithm for estimating interframe displacement of blocks with minimum error is presented. The algorithm is designed for a simple parallel architecture to process video in real time.

  16. Interconnected porosity analysis by 3D X-ray microtomography and mechanical behavior of biomimetic organic-inorganic composite materials.

    PubMed

    Alonso-Sierra, S; Velázquez-Castillo, R; Millán-Malo, B; Nava, R; Bucio, L; Manzano-Ramírez, A; Cid-Luna, H; Rivera-Muñoz, E M

    2017-11-01

    Hydroxyapatite-based materials have been used for dental and biomedical applications. They are commonly studied due to their favorable response presented when used for replacement of bone tissue. Those materials should be porous enough to allow cell penetration, internal tissue growth, vascular incursion and nutrient supply. Furthermore, their morphology should be designed to guide the growth of new bone tissue in anatomically applicable ways. In this work, the mechanical performance and 3D X-ray microtomography (X-ray μCT) study of a biomimetic, organic-inorganic composite material, based on hydroxyapatite, with physicochemical, structural, morphological and mechanical properties very similar to those of natural bone tissue is reported. Ceramic pieces in different shapes and several porous sizes were produced using a Modified Gel Casting Method. Pieces with a controlled and 3D hierarchical interconnected porous structure were molded by adding polymethylmethacrylate microspheres. Subsequently, they were subject to a thermal treatment to remove polymers and to promote a sinterization of the ceramic particles, obtaining a HAp scaffold with controlled porosity. Then, two different organic phases were used to generate an organic-inorganic composite material, so gelatin and collagen, which was extracted from bovine tail, were used. The biomimetic organic-inorganic composite material was characterized by Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, X-ray Diffraction, Fourier Transform Infrared Spectroscopy and 3D X-ray microtomography techniques. Mechanical properties were characterized in compression tests, obtaining a dramatic and synergic increment in the mechanical properties due to the chemical and physical interactions between the two phases and to the open-cell cellular behavior of the final composite material; the maximum compressive strength obtained corresponds to about 3 times higher than that reported for natural cancellous bone. The pore size distribution obtained could be capable to allow cell penetration, internal tissue in-growth, vascular incursion and nutrient supply and this material has tremendous potential for use as a replacement of bone tissue or in the manufacture and molding of prosthesis with desired shapes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Characterization of bulk and shear properties of basmati and non-basmati rice flour.

    PubMed

    Jan, Shumaila; Ghoroi, Chinmay; Saxena, Dharmesh Chandra

    2018-01-01

    Flours are often unstable in relation to their flow performance, which is evident when a free-flowing material ceases to flow and the processing, handling, and production parameters depend on the inherent powder characteristics and their bulk behaviour. The present study was conducted to compare the flowability of basmati and non-basmati rice flour affecting bulk handling, which could be related to its particle size, shape and surface roughness (measured by atomic force microscopy) as well as bulk and shear properties, depending upon the processing conditions. Particle size (171.1-171.9 μm) of both samples was not significantly different. However, the flowability of the non-basmati rice flour was significantly affected by its particle shape (circularity 0.487), surface roughness (124.23 nm) and compressibility (25.32%) in comparison to basmati rice flour (circularity 0.653, surface roughness 113.59 nm and compressibility 21.09%), making it more cohesive than basmati rice flour. Also, basic flow energy was significantly higher in non-basmati flour, thus requiring more energy (147.54 mJ) to flow than basmati rice flour (130.15 mJ). Overall, flowability was analysed by applying three different pressures (3, 6 and 9 kPa), among which non-basmati rice flour was found to be less flowable (flow function coefficient (FFC) 2.33 at 9 kPa) in comparison to basmati (FFC 3.35 at 9 kPa), making bulk handling difficult. This study could be useful in designing processing equipment, hoppers and silos for rice flour handling. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. SU-E-I-58: Objective Models of Breast Shape Undergoing Mammography and Tomosynthesis Using Principal Component Analysis.

    PubMed

    Feng, Ssj; Sechopoulos, I

    2012-06-01

    To develop an objective model of the shape of the compressed breast undergoing mammographic or tomosynthesis acquisition. Automated thresholding and edge detection was performed on 984 anonymized digital mammograms (492 craniocaudal (CC) view mammograms and 492 medial lateral oblique (MLO) view mammograms), to extract the edge of each breast. Principal Component Analysis (PCA) was performed on these edge vectors to identify a limited set of parameters and eigenvectors that. These parameters and eigenvectors comprise a model that can be used to describe the breast shapes present in acquired mammograms and to generate realistic models of breasts undergoing acquisition. Sample breast shapes were then generated from this model and evaluated. The mammograms in the database were previously acquired for a separate study and authorized for use in further research. The PCA successfully identified two principal components and their corresponding eigenvectors, forming the basis for the breast shape model. The simulated breast shapes generated from the model are reasonable approximations of clinically acquired mammograms. Using PCA, we have obtained models of the compressed breast undergoing mammographic or tomosynthesis acquisition based on objective analysis of a large image database. Up to now, the breast in the CC view has been approximated as a semi-circular tube, while there has been no objectively-obtained model for the MLO view breast shape. Such models can be used for various breast imaging research applications, such as x-ray scatter estimation and correction, dosimetry estimates, and computer-aided detection and diagnosis. © 2012 American Association of Physicists in Medicine.

  19. A three-dimensional, compressible, laminar boundary-layer method for general fuselages. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1990-01-01

    This user's manual contains a complete description of the computer programs developed to calculate three-dimensional, compressible, laminar boundary layers for perfect gas flow on general fuselage shapes. These programs include the 3-D boundary layer program (3DBLC), the body-oriented coordinate program (BCC), and the streamline coordinate program (SCC). Subroutine description, input, output and sample case are discussed. The complete FORTRAN listings of the computer programs are given.

  20. Evolutions of elastic-plastic shock compression waves in different materials

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Zaretsky, E. B.; Razorenov, S. V.; Savinykh, A. S.; Garkushin, G. V.

    2017-01-01

    In the paper, we discuss such unexpected features in the wave evolution in solids as a departure from self-similar development of the wave process which is accompanied with apparent sub-sonic wave propagation, changes of shape of elastic precursor wave as a result of variations in the material structure and the temperature, unexpected peculiarities of reflection of elastic-plastic waves from free surface, effects of internal friction at shock compression of glasses and some other effects.

  1. Peculiarities of evolutions of elastic-plastic shock compression waves in different materials

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Savinykh, A. S.; Garkushin, G. V.; Razorenov, S. V.; Ashitkov, S. I.; Zaretsky, E. B.

    2016-11-01

    In the paper, we discuss such unexpected features in the wave evolution in solids as strongly nonlinear uniaxial elastic compression in a picosecond time range, a departure from self-similar development of the wave process which is accompanied with apparent sub-sonic wave propagation, changes of shape of elastic precursor wave as a result of variations in the material structure and the temperature, unexpected peculiarities of reflection of elastic-plastic waves from free surface.

  2. Room temperature deformation mechanisms of alumina particles observed from in situ micro-compression and atomistic simulations.

    DOE PAGES

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay D.; ...

    2015-09-22

    Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containingmore » numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. As a result, the identified deformation mechanisms provide insight into feedstock design for AD.« less

  3. Dynamical complexity of short and noisy time series. Compression-Complexity vs. Shannon entropy

    NASA Astrophysics Data System (ADS)

    Nagaraj, Nithin; Balasubramanian, Karthi

    2017-07-01

    Shannon entropy has been extensively used for characterizing complexity of time series arising from chaotic dynamical systems and stochastic processes such as Markov chains. However, for short and noisy time series, Shannon entropy performs poorly. Complexity measures which are based on lossless compression algorithms are a good substitute in such scenarios. We evaluate the performance of two such Compression-Complexity Measures namely Lempel-Ziv complexity (LZ) and Effort-To-Compress (ETC) on short time series from chaotic dynamical systems in the presence of noise. Both LZ and ETC outperform Shannon entropy (H) in accurately characterizing the dynamical complexity of such systems. For very short binary sequences (which arise in neuroscience applications), ETC has higher number of distinct complexity values than LZ and H, thus enabling a finer resolution. For two-state ergodic Markov chains, we empirically show that ETC converges to a steady state value faster than LZ. Compression-Complexity measures are promising for applications which involve short and noisy time series.

  4. Design Investigation on Applicable Mesh Structures for Medical Stent Applications

    NASA Astrophysics Data System (ADS)

    Asano, Shoji; He, Jianmei

    2017-11-01

    In recent years, utilization of medical stents is one of effective treatments for stenosis and occlusion occurring in a living body’s lumen indispensable for maintenance of human life such as superficial femoral artery (SFA) occlusion. However, there are concerns about the occurrence of fatigue fractures caused by stress concentrations, neointimal hyperplasia and the like due to the shape structure and the manufacturing method in the conventional stents, and a stent having high strength and high flexibility is required. Therefore, in this research, applicable mesh structures for medical stents based on the design concepts of high strength, high flexibility are interested to solve various problem of conventional stent. According to the shape and dimensions of SFA occlusion therapy stent and indwelling delivery catheter, shape design of the meshed stent are performed using 3-dimensional CAD software Solid Works first. Then analytical examination on storage characteristics and compression characteristics of such mesh structure applied stent models were carried out through finite element analysis software ANSYS Workbench. Meshed stent models with higher strength and higher flexibility with integral molding are investigated analytically. It was found that the storage characteristics and compression characteristics of meshed stent modles are highly dependent on the basic mesh shapes with same surface void ratio. Trade-off relationship between flexibility and storage characteristics is found exited, it is required to provide appropriate curvatures during basic mesh shape design.

  5. Recognition of rotated images using the multi-valued neuron and rotation-invariant 2D Fourier descriptors

    NASA Astrophysics Data System (ADS)

    Aizenberg, Evgeni; Bigio, Irving J.; Rodriguez-Diaz, Eladio

    2012-03-01

    The Fourier descriptors paradigm is a well-established approach for affine-invariant characterization of shape contours. In the work presented here, we extend this method to images, and obtain a 2D Fourier representation that is invariant to image rotation. The proposed technique retains phase uniqueness, and therefore structural image information is not lost. Rotation-invariant phase coefficients were used to train a single multi-valued neuron (MVN) to recognize satellite and human face images rotated by a wide range of angles. Experiments yielded 100% and 96.43% classification rate for each data set, respectively. Recognition performance was additionally evaluated under effects of lossy JPEG compression and additive Gaussian noise. Preliminary results show that the derived rotation-invariant features combined with the MVN provide a promising scheme for efficient recognition of rotated images.

  6. SAMPA Chip: the New 32 Channels ASIC for the ALICE TPC and MCH Upgrades

    NASA Astrophysics Data System (ADS)

    Adolfsson, J.; Ayala Pabon, A.; Bregant, M.; Britton, C.; Brulin, G.; Carvalho, D.; Chambert, V.; Chinellato, D.; Espagnon, B.; Hernandez Herrera, H. D.; Ljubicic, T.; Mahmood, S. M.; Mjörnmark, U.; Moraes, D.; Munhoz, M. G.; Noël, G.; Oskarsson, A.; Osterman, L.; Pilyar, A.; Read, K.; Ruette, A.; Russo, P.; Sanches, B. C. S.; Severo, L.; Silvermyr, D.; Suire, C.; Tambave, G. J.; Tun-Lanoë, K. M. M.; van Noije, W.; Velure, A.; Vereschagin, S.; Wanlin, E.; Weber, T. O.; Zaporozhets, S.

    2017-04-01

    This paper presents the test results of the second prototype of SAMPA, the ASIC designed for the upgrade of read-out front end electronics of the ALICE Time Projection Chamber (TPC) and Muon Chamber (MCH). SAMPA is made in a 130 nm CMOS technology with 1.25 V nominal voltage supply and provides 32 channels, with selectable input polarity, and three possible combinations of shaping time and sensitivity. Each channel consists of a Charge Sensitive Amplifier, a semi-Gaussian shaper and a 10-bit ADC; a Digital Signal Processor provides digital filtering and compression capability. In the second prototype run both full chip and single test blocks were fabricated, allowing block characterization and full system behaviour studies. Experimental results are here presented showing agreement with requirements for both the blocks and the full chip.

  7. On system behaviour using complex networks of a compression algorithm

    NASA Astrophysics Data System (ADS)

    Walker, David M.; Correa, Debora C.; Small, Michael

    2018-01-01

    We construct complex networks of scalar time series using a data compression algorithm. The structure and statistics of the resulting networks can be used to help characterize complex systems, and one property, in particular, appears to be a useful discriminating statistic in surrogate data hypothesis tests. We demonstrate these ideas on systems with known dynamical behaviour and also show that our approach is capable of identifying behavioural transitions within electroencephalogram recordings as well as changes due to a bifurcation parameter of a chaotic system. The technique we propose is dependent on a coarse grained quantization of the original time series and therefore provides potential for a spatial scale-dependent characterization of the data. Finally the method is as computationally efficient as the underlying compression algorithm and provides a compression of the salient features of long time series.

  8. SEM and TEM characterization of the microstructure of post-compressed TiB2/2024Al composite.

    PubMed

    Guo, Q; Jiang, L T; Chen, G Q; Feng, D; Sun, D L; Wu, G H

    2012-02-01

    In the present work, 55 vol.% TiB(2)/2024Al composites were obtained by pressure infiltration method. Compressive properties of 55 vol.% TiB(2)/2024Al composite under the strain rates of 10(-3) and 1S(-1) at different temperature were measured and microstructure of post-compressed TiB(2)/2024Al composite was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). No trace of Al(3)Ti compound flake was found. TiB(2)-Al interface was smooth without significant reaction products, and orientation relationships ( [Formula: see text] and [Formula: see text] ) were revealed by HRTEM. Compressive strength of TiB(2)/2024Al composites decreased with temperature regardless of strain rates. The strain-rate-sensitivity of TiB(2)/2024Al composites increased with the increasing temperature. Fracture surface of specimens compressed at 25 and 250°C under 10(-3)S(-1) were characterized by furrow. Under 10(-3)S(-1), high density dislocations were formed in Al matrix when compressed at 25°C and dynamic recrystallization occurred at 250°C. Segregation of Mg and Cu on the subgrain boundary was also revealed at 550°C. Dislocations, whose density increased with temperature, were formed in TiB(2) particles under 1S(-1). Deformation of composites is affected by matrix, reinforcement and strain rate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Portal radiation monitor

    DOEpatents

    Kruse, Lyle W.

    1985-01-01

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  10. Portal radiation monitor

    DOEpatents

    Kruse, L.W.

    1982-03-23

    A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  11. Direct evidence of detwinning in polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloys during deformation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Z. H.; Lin Peng, R.; Johansson, S.

    2008-01-01

    In situ time-of-flight neutron diffraction and high-energy x-ray diffraction techniques were used to reveal the preferred reselection of martensite variants through a detwinning process in polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloys under uniaxial compressive stress. The variant reorientation via detwinning during loading can be explained by considering the influence of external stress on the grain/variant orientation-dependent distortion energy. These direct observations of detwinning provide a good understanding of the deformation mechanisms in shape memory alloys.

  12. Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications.

    PubMed

    Gunduz, O; Gode, C; Ahmad, Z; Gökçe, H; Yetmez, M; Kalkandelen, C; Sahin, Y M; Oktar, F N

    2014-07-01

    The fabrication and characterization of bovine hydroxyapatite (BHA) and cerium oxide (CeO2) composites are presented. CeO2 (at varying concentrations 1, 5 and 10wt%) were added to calcinated BHA powder. The resulting mixtures were shaped into green cylindrical samples by powder pressing (350MPa) followed by sintering in air (1000-1300°C for 4h). Density, Vickers microhardness (HV), compression strength, scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies were performed on the products. The sintering behavior, microstructural characteristics and mechanical properties were evaluated. Differences in the sintering temperature (for 1wt% CeO2 composites) between 1200 and 1300°C, show a 3.3% increase in the microhardness (564 and 582.75HV, respectively). Composites prepared at 1300°C demonstrate the greatest compression strength with comparable results for 5 and 10wt% CeO2 content (106 and 107MPa) which are significantly better than those for 1wt% and those that do not include any CeO2 (90 and below 60MPa, respectively). The results obtained suggest optimal parameters to be used in preparation of BHA and CeO2 composites, while also highlighting the potential of such materials in several biomedical engineering applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Fractal aspects of the flow and shear behaviour of free-flowable particle size fractions of pharmaceutical directly compressible excipient sorbitol.

    PubMed

    Hurychová, Hana; Lebedová, Václava; Šklubalová, Zdenka; Dzámová, Pavlína; Svěrák, Tomáš; Stoniš, Jan

    Flowability of powder excipients is directly influenced by their size and shape although the granulometric influence of the flow and shear behaviour of particulate matter is not studied frequently. In this work, the influence of particle size on the mass flow rate through the orifice of a conical hopper, and the cohesion and flow function was studied for four free-flowable size fractions of sorbitol for direct compression in the range of 0.080-0.400 mm. The particles were granulometricaly characterized using an optical microscopy; a boundary fractal dimension of 1.066 was estimated for regular sorbitol particles. In the particle size range studied, a non-linear relationship between the mean particle size and the mass flow rate Q10 (g/s) was detected having amaximum at the 0.245mm fraction. The best flow properties of this fraction were verified with aJenike shear tester due to the highest value of flow function and the lowest value of the cohesion. The results of this work show the importance of the right choice of the excipient particle size to achieve the best flow behaviour of particulate material.Key words: flowability size fraction sorbitol for direct compaction Jenike shear tester fractal dimension.

  14. Swim stress, motion, and deformation of active matter: effect of an external field.

    PubMed

    Takatori, Sho C; Brady, John F

    2014-12-21

    We analyze the stress, dispersion, and average swimming speed of self-propelled particles subjected to an external field that affects their orientation and speed. The swimming trajectory is governed by a competition between the orienting influence (i.e., taxis) associated with the external (e.g., magnetic, gravitational, thermal, nutrient concentration) field versus the effects that randomize the particle orientations (e.g., rotary Brownian motion and/or an intrinsic tumbling mechanism like the flagella of bacteria). The swimmers' motion is characterized by a mean drift velocity and an effective translational diffusivity that becomes anisotropic in the presence of the orienting field. Since the diffusivity yields information about the micromechanical stress, the anisotropy generated by the external field creates a normal stress difference in the recently developed "swim stress" tensor [Takatori, Yan, and Brady, Phys. Rev. Lett., 2014]. This property can be exploited in the design of soft, compressible materials in which their size, shape, and motion can be manipulated and tuned by loading the material with active swimmers. Since the swimmers exert different normal stresses in different directions, the material can compress/expand, elongate, and translate depending on the external field strength. Such an active system can be used as nano/micromechanical devices and motors. Analytical solutions are corroborated by Brownian dynamics simulations.

  15. Distinguishing Raman from strongly coupled Brillouin amplification for short pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Qing; Barth, Ido; Edwards, Matthew R.

    2016-05-15

    Plasma-based amplification by strongly coupled Brillouin scattering has recently been suggested for the compression of a short seed laser to ultrahigh intensities in sub-quarter-critical-density plasmas. However, by employing detailed spectral analysis of particle-in-cell simulations in the same parameter regime, we demonstrate that, in fact, Raman backscattering amplification is responsible for the growth and compression of the high-intensity, leading spike, where most of the energy compression occurs, while the ion mode only affects the low-intensity tail of the amplified pulse. The critical role of the initial seed shape is identified. A number of subtleties in the numerical simulations are also pointedmore » out.« less

  16. An image compression algorithm for a high-resolution digital still camera

    NASA Technical Reports Server (NTRS)

    Nerheim, Rosalee

    1989-01-01

    The Electronic Still Camera (ESC) project will provide for the capture and transmission of high-quality images without the use of film. The image quality will be superior to video and will approach the quality of 35mm film. The camera, which will have the same general shape and handling as a 35mm camera, will be able to send images to earth in near real-time. Images will be stored in computer memory (RAM) in removable cartridges readable by a computer. To save storage space, the image will be compressed and reconstructed at the time of viewing. Both lossless and loss-y image compression algorithms are studied, described, and compared.

  17. High performance compression of science data

    NASA Technical Reports Server (NTRS)

    Storer, James A.; Cohn, Martin

    1994-01-01

    Two papers make up the body of this report. One presents a single-pass adaptive vector quantization algorithm that learns a codebook of variable size and shape entries; the authors present experiments on a set of test images showing that with no training or prior knowledge of the data, for a given fidelity, the compression achieved typically equals or exceeds that of the JPEG standard. The second paper addresses motion compensation, one of the most effective techniques used in the interframe data compression. A parallel block-matching algorithm for estimating interframe displacement of blocks with minimum error is presented. The algorithm is designed for a simple parallel architecture to process video in real time.

  18. Compressive sensing method for recognizing cat-eye effect targets.

    PubMed

    Li, Li; Li, Hui; Dang, Ersheng; Liu, Bo

    2013-10-01

    This paper proposes a cat-eye effect target recognition method with compressive sensing (CS) and presents a recognition method (sample processing before reconstruction based on compressed sensing, or SPCS) for image processing. In this method, the linear projections of original image sequences are applied to remove dynamic background distractions and extract cat-eye effect targets. Furthermore, the corresponding imaging mechanism for acquiring active and passive image sequences is put forward. This method uses fewer images to recognize cat-eye effect targets, reduces data storage, and translates the traditional target identification, based on original image processing, into measurement vectors processing. The experimental results show that the SPCS method is feasible and superior to the shape-frequency dual criteria method.

  19. Classifying elementary cellular automata using compressibility, diversity and sensitivity measures

    NASA Astrophysics Data System (ADS)

    Ninagawa, Shigeru; Adamatzky, Andrew

    2014-10-01

    An elementary cellular automaton (ECA) is a one-dimensional, synchronous, binary automaton, where each cell update depends on its own state and states of its two closest neighbors. We attempt to uncover correlations between the following measures of ECA behavior: compressibility, sensitivity and diversity. The compressibility of ECA configurations is calculated using the Lempel-Ziv (LZ) compression algorithm LZ78. The sensitivity of ECA rules to initial conditions and perturbations is evaluated using Derrida coefficients. The generative morphological diversity shows how many different neighborhood states are produced from a single nonquiescent cell. We found no significant correlation between sensitivity and compressibility. There is a substantial correlation between generative diversity and compressibility. Using sensitivity, compressibility and diversity, we uncover and characterize novel groupings of rules.

  20. Synthesis of Au microwires by selective oxidation of Au–W thin-film composition spreads

    PubMed Central

    Hamann, Sven; Brunken, Hayo; Salomon, Steffen; Meyer, Robert; Savan, Alan; Ludwig, Alfred

    2013-01-01

    We report on the stress-induced growth of Au microwires out of a surrounding Au–W matrix by selective oxidation, in view of a possible application as ‘micro-Velcro’. The Au wires are extruded due to the high compressive stress in the tungsten oxide formed by oxidation of elemental W. The samples were fabricated as a thin-film materials library using combinatorial sputter deposition followed by thermal oxidation. Sizes and shapes of the Au microwires were investigated as a function of the W to Au ratio. The coherence length and stress state of the Au microwires were related to their shape and plastic deformation. Depending on the composition of the Au–W precursor, the oxidized samples showed regions with differently shaped Au microwires. The Au48W52 composition yielded wires with the maximum length to diameter ratio due to the high compressive stress in the tungsten oxide matrix. The values of wire length (35 μm) and diameter (2 μm) achieved at the Au48W52 composition are suitable for micro-Velcro applications. PMID:27877561

  1. Anisotropic particles strengthen granular pillars under compression

    NASA Astrophysics Data System (ADS)

    Harrington, Matt; Durian, Douglas J.

    2018-01-01

    We probe the effects of particle shape on the global and local behavior of a two-dimensional granular pillar, acting as a proxy for a disordered solid, under uniaxial compression. This geometry allows for direct measurement of global material response, as well as tracking of all individual particle trajectories. In general, drawing connections between local structure and local dynamics can be challenging in amorphous materials due to lower precision of atomic positions, so this study aims to elucidate such connections. We vary local interactions by using three different particle shapes: discrete circular grains (monomers), pairs of grains bonded together (dimers), and groups of three bonded in a triangle (trimers). We find that dimers substantially strengthen the pillar and the degree of this effect is determined by orientational order in the initial condition. In addition, while the three particle shapes form void regions at distinct rates, we find that anisotropies in the local amorphous structure remain robust through the definition of a metric that quantifies packing anisotropy. Finally, we highlight connections between local deformation rates and local structure.

  2. Orbital ordering in FeV2O4: Spinel with two orbitally active sites

    NASA Astrophysics Data System (ADS)

    Sarkar, Soumyajit; Saha-Dasgupta, T.

    2011-12-01

    By employing first-principles electronic structure calculations, we investigate orbital ordering in FeV2O4, a spinel with orbital degrees of freedom both at Fe and V sites that exhibits two tetragonal phases, one compressed at high temperature and another elongated at low temperature. Our first-principles study shows the ferro-orbital ordering of dx2-y2 and d3z2-r2 types at Fe sites at the high- and low-temperature phases, respectively. The orbital ordering at V sites is found to consist of orbital chains running along different directions with orbitals rotated alternatively within each chain, similar to that found for MnV2O4 [S. Sarkar , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.216405 102, 216405 (2009)]. Further, we find that the single-ion anisotropy effect with hard and easy c axis favors the compressed and elongated tetrahedral shapes. This gives rise to magnetocrystalline anisotropy-dependent shapes, similar to that reported in the context of rare-earth-based magnetic shape memory alloys.

  3. Application of a Noise Adaptive Contrast Sensitivity Function to Image Data Compression

    NASA Astrophysics Data System (ADS)

    Daly, Scott J.

    1989-08-01

    The visual contrast sensitivity function (CSF) has found increasing use in image compression as new algorithms optimize the display-observer interface in order to reduce the bit rate and increase the perceived image quality. In most compression algorithms, increasing the quantization intervals reduces the bit rate at the expense of introducing more quantization error, a potential image quality degradation. The CSF can be used to distribute this error as a function of spatial frequency such that it is undetectable by the human observer. Thus, instead of being mathematically lossless, the compression algorithm can be designed to be visually lossless, with the advantage of a significantly reduced bit rate. However, the CSF is strongly affected by image noise, changing in both shape and peak sensitivity. This work describes a model of the CSF that includes these changes as a function of image noise level by using the concepts of internal visual noise, and tests this model in the context of image compression with an observer study.

  4. Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression

    NASA Astrophysics Data System (ADS)

    Linul, E.; Marsavina, L.; Voiconi, T.; Sadowski, T.

    2013-07-01

    Effect of density, loading rate, material orientation and temperature on dynamic compression behavior of rigid polyurethane foams are investigated in this paper. These parameters have a very important role, taking into account that foams are used as packing materials or dampers which require high energy impact absorption. The experimental study was carried out on closed-cell rigid polyurethane (PUR) foam specimens of different densities (100, 160 respectively 300 kg/m3), having a cubic shape. The specimens were subjected to uniaxial dynamic compression with loading rate in range of 1.37-3.25 m/s, using four different temperatures (20, 60, 90, 110°C) and two loading planes (direction (3) - rise direction and direction (2) - in plane). Experimental results show that Young's modulus, yield stress and plateau stress values increases with increasing density. One of the most significant effects of mechanical properties in dynamic compression of rigid PUR foams is the density, but also the loading speed, material orientation and temperature influences the behavior in compression

  5. 100J Pulsed Laser Shock Driver for Dynamic Compression Research

    NASA Astrophysics Data System (ADS)

    Wang, X.; Sethian, J.; Bromage, J.; Fochs, S.; Broege, D.; Zuegel, J.; Roides, R.; Cuffney, R.; Brent, G.; Zweiback, J.; Currier, Z.; D'Amico, K.; Hawreliak, J.; Zhang, J.; Rigg, P. A.; Gupta, Y. M.

    2017-06-01

    Logos Technologies and the Laboratory for Laser Energetics (LLE, University of Rochester) - in partnership with Washington State University - have designed, built and deployed a one of a kind 100J pulsed UV (351 nm) laser system to perform real-time, x-ray diffraction and imaging experiments in laser-driven compression experiments at the Dynamic Compression Sector (DCS) at the Advanced Photon Source, Argonne National Laboratory. The laser complements the other dynamic compression drivers at DCS. The laser system features beam smoothing for 2-d spatially uniform loading of samples and four, highly reproducible, temporal profiles (total pulse duration: 5-15 ns) to accommodate a wide variety of scientific needs. Other pulse shapes can be achieved as the experimental needs evolve. Timing of the laser pulse is highly precise (<200 ps) to allow accurate synchronization of the x-rays with the dynamic compression event. Details of the laser system, its operating parameters, and representative results will be presented. Work supported by DOE/NNSA.

  6. Environmental surfaces and the compression of perceived visual space

    PubMed Central

    Bian, Zheng; Andersen, George J.

    2011-01-01

    The present study examined whether the compression of perceived visual space varies according to the type of environmental surface being viewed. To examine this issue, observers made exocentric distance judgments when viewing simulated 3D scenes. In 4 experiments, observers viewed ground and ceiling surfaces and performed either an L-shaped matching task (Experiments 1, 3, and 4) or a bisection task (Experiment 2). Overall, we found considerable compression of perceived exocentric distance on both ground and ceiling surfaces. However, the perceived exocentric distance was less compressed on a ground surface than on a ceiling surface. In addition, this ground surface advantage did not vary systematically as a function of the distance in the scene. These results suggest that the perceived visual space when viewing a ground surface is less compressed than the perceived visual space when viewing a ceiling surface and that the perceived layout of a surface varies as a function of the type of the surface. PMID:21669858

  7. Spatially Targeted Activation of a Shape Memory, Polymer-Based, Reconfigurable Skin System

    DTIC Science & Technology

    2014-02-01

    bone samples described in ASTM Standard D638 using a CNC router. Compression test samples were cured in an aluminum cylinder mold treated with mold...release with Teflon end plugs and cut to length with a small lathe . 2.2 Tensile/Compressive Tests Tensile tests were conducted on a MTS QTest/1L...fixture with a CNC mill and a decal applied to the front surface for tracking by the DIC system. Figure 10: Shear Test Sample with DIC Decal 10

  8. Matched metal die compression molded structural random fiber sheet molding compound flywheel

    DOEpatents

    Kulkarni, Satish V.; Christensen, Richard M.; Toland, Richard H.

    1985-01-01

    A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel (10) may be economically produced by a matched metal die compression molding process. The flywheel (10) makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  9. Matched metal die compression molded structural random fiber sheet molding compound flywheel. [Patent application

    DOEpatents

    Kulkarni, S.V.; Christensen, R.M.; Toland, R.H.

    1980-09-24

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel may be economically produced by a matched metal die compression molding process. The flywheel makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  10. Carbon nano fibers reinforced composites origami inspired mechanical metamaterials with passive and active properties

    NASA Astrophysics Data System (ADS)

    Kshad, Mohamed Ali E.; D'Hondt, Clement; Naguib, Hani E.

    2017-10-01

    Core panels used for compression or impact damping are designed to dissipate energy and to reduce the transferred force and energy. They are designed to have high strain and deformation with low density. The geometrical configuration of such cores plays a significant role in redistributing the applied forces to dampen the compression and impact energy. Origami structures are renowned for affording large macroscopic deformation which can be employed for force redistribution and energy damping. The material selection for the fabrication of origami structures affects the core capacity to withstand compression and impact loads. Polymers are characterized by their high compression and impact resistance; the drawback of polymers is the low stiffness and elastic moduli compared with metallic materials. This work is focused on the study of the effect of Carbon Nano Fibers (CNF) on the global mechanical properties of the origami panel cores made of polymeric blends. The base matrix materials used were Polylactic Acid (PLA) and Thermoplastic Polyurethane (TPU) blends, and the percentages of the PLA/TPU were 100/0, 20/80, 65/35, 50/50, 20/80, and 0/100 as a percentage of weight. The weight percentages of CNF added to the polymeric blends were 1%, 3%, and 5%. This paper deals with the fabrication process of the polymeric reinforced blends and the origami cores, in order to predict the best fabrication conditions. The dynamic scanning calorimetry and the dynamic mechanical analyzer were used to test the reinforced blended base material for thermomechanical and viscoelastic properties. The origami core samples were fabricated using per-molded geometrical features and then tested for compression and impact properties. The results of the study were compared with previous published results which showed that there is considerable enhancement in the mechanical properties of the origami cores compared with the pure blended polymeric origami cores. The active properties of the origami unit cell made of composite polymers containing a low percentage of CNF were also investigated in this study, in which the shape memory effect test conducted on the origami unit cell.

  11. Visual feature discrimination versus compression ratio for polygonal shape descriptors

    NASA Astrophysics Data System (ADS)

    Heuer, Joerg; Sanahuja, Francesc; Kaup, Andre

    2000-10-01

    In the last decade several methods for low level indexing of visual features appeared. Most often these were evaluated with respect to their discrimination power using measures like precision and recall. Accordingly, the targeted application was indexing of visual data within databases. During the standardization process of MPEG-7 the view on indexing of visual data changed, taking also communication aspects into account where coding efficiency is important. Even if the descriptors used for indexing are small compared to the size of images, it is recognized that there can be several descriptors linked to an image, characterizing different features and regions. Beside the importance of a small memory footprint for the transmission of the descriptor and the memory footprint in a database, eventually the search and filtering can be sped up by reducing the dimensionality of the descriptor if the metric of the matching can be adjusted. Based on a polygon shape descriptor presented for MPEG-7 this paper compares the discrimination power versus memory consumption of the descriptor. Different methods based on quantization are presented and their effect on the retrieval performance are measured. Finally an optimized computation of the descriptor is presented.

  12. Fabrication and modeling of shape memory alloy springs

    NASA Astrophysics Data System (ADS)

    Heidari, B.; Kadkhodaei, M.; Barati, M.; Karimzadeh, F.

    2016-12-01

    In this paper, shape memory alloy (SMA) helical springs are produced by shape setting two sets of NiTi (Ti-55.87 at% Ni) wires, one of which showing shape memory effect and another one showing pseudoelasticity at the ambient temperature. Different pitches as well as annealing temperatures are tried to investigate the effect of such parameters on the thermomechanical characteristics of the fabricated springs. Phase transformation temperatures of the products are measured by differential scanning calorimetry and are compared with those of the original wires. Compression tests are also carried out, and stiffness of each spring is determined. The desired pitches are so that a group of springs experiences phase transition during loading while the other does not. The former shows a varying stiffness upon the application of compression, but the latter acts as passive springs with a predetermined stiffness. Based on the von-Mises effective stress and strain, an enhanced one-dimensional constitutive model is further proposed to describe the shear stress-strain response within the coils of an SMA spring. The theoretically predicted force-displacement responses of the produced springs are shown to be in a reasonable agreement with the experimental results. Finally, effects of variations in geometric parameters on the axial force-displacement response of an SMA spring are investigated.

  13. A novel star-shaped poly(carboxylic acid) for resin-modified glass-ionomer restoratives.

    PubMed

    Weng, Y; Howard, L; Xie, D

    2014-07-01

    We have developed a novel glass-ionomer cement (GIC) system composed of photo-curable star-shaped poly(acrylic acid-co-itaconic acid)s. These polyacids were synthesized via a chain-transfer radical polymerization using a newly synthesized multi-arm chain-transfer agent. The star-shaped polyacids showed significantly lower viscosities in water as compared to the linear polyacids. Due to the lower viscosities, the molecular weight (MW) of the polyacids can be significantly increased for enhancing the mechanical strengths while keeping the ease of mixing and handling. The effects of MW, GM-tethering ratio, P/L ratio, and aging on the compressive properties of the experimental cements were significant. The light-cured experimental cements showed significantly improved mechanical strengths i.e. 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS, and 36% in FS, higher than commercial Fuji II LC. After aging in water for 1 month, the compressive strength of the novel light-cured experimental cement reached 343 MPa, which was 34% and 42% higher than Fuji II and Fuji II LC, respectively. This one-month aged experimental cement was also 23% higher than itself after one day aging, indicating that aging in water can significantly enhance salt-bridge formation for this novel star-shaped polyacid-comprised GIC.

  14. A new method for shape and texture classification of orthopedic wear nanoparticles.

    PubMed

    Zhang, Dongning; Page, Janet R; Kavanaugh, Aaron E; Billi, Fabrizio

    2012-09-27

    Detailed morphologic analysis of particles produced during wear of orthopedic implants is important in determining a correlation among material, wear, and biological effects. However, the use of simple shape descriptors is insufficient to categorize the data and to compare the nature of wear particles generated by different implants. An approach based on Discrete Fourier Transform (DFT) is presented for describing particle shape and surface texture. Four metal-on-metal bearing couples were tested in an orbital wear simulator under standard and adverse (steep-angled cups) wear simulator conditions. Digitized Scanning Electron Microscope (SEM) images of the wear particles were imported into MATLAB to carry out Fourier descriptor calculations via a specifically developed algorithm. The descriptors were then used for studying particle characteristics (shape and texture) as well as for cluster classification. Analysis of the particles demonstrated the validity of the proposed model by showing that steep-angle Co-Cr wear particles were more asymmetric, compressed, extended, triangular, square, and roughened at 3 Mc than after 0.25 Mc. In contrast, particles from standard angle samples were only more compressed and extended after 3 Mc compared to 0.25 Mc. Cluster analysis revealed that the 0.25 Mc steep-angle particle distribution was a subset of the 3 Mc distribution.

  15. Mission STS-134: Results of Shape Memory Foam Experiment

    NASA Astrophysics Data System (ADS)

    Santo, Loredana; Quadrini, Fabrizio; Mascetti, Gabriele; Dolce, Ferdinando; Zolesi, Valfredo

    2013-10-01

    Shape memory epoxy foams were used for an experiment aboard the International Space Station (ISS) to evaluate the feasibility of their use for building light actuators and expandable/deployable structures. The experiment named I-FOAM was performed by an autonomous device contained in the BIOKON container (by Kayser Italia) which was in turn composed of control and heating system, battery pack and data acquisition system. To simulate the actuation of simple devices in micro-gravity conditions, three different configurations (compression, bending and torsion) were chosen during the memory step of the foams so as to produce their recovery on ISS. Micro-gravity does not affect the ability of the foams to recover their shape but it poses limits for the heating system design because of the difference in heat transfer on Earth and in orbit. A recovery about 70% was measured at a temperature of 110 °C for the bending and torsion configuration whereas poor recovery was observed for the compression case. Thanks to these results, a new experiment has been developed for a future mission by the same device: for the first time a shape memory composite will be recovered, and the actuation load during time will be measured during the recovery of an epoxy foam sample.

  16. Effect of Combustion-chamber Shape on the Performance of a Prechamber Compression-ignition Engine

    NASA Technical Reports Server (NTRS)

    Moore, C S; Collins, J H , Jr

    1934-01-01

    The effect on engine performance of variations in the shape of the prechamber, the shape and direction of the connecting passage, the chamber volume using a tangential passage, the injection system, and the direction od the fuel spray in the chamber was investigated using a 5 by 7 inch single-cylinder compression-ignition engine. The results show that the performance of this engine can be considerably improved by selecting the best combination of variables and incorporating them in a single design. The best combination as determined from these tests consisted of a disk-shaped chamber connected to the cylinder by means of a flared tangential passage. The fuel was injected through a single-orifice nozzle directed normal to the air swirl and in the same plane. At an engine speed of 1,500 r.p.m. and with the theoretical fuel quantity for no excess air, the engine developed a brake mean effective pressure of 115 pounds per square inch with a fuel consumption of 0.49 pound per brake horsepower-hour and an explosion pressure of 820 pounds per square inch. A brake mean effective pressure of 100 pounds per square inch with a brake-fuel consumption of 0.44 pound per horsepower-hour at 1,500 r.p.m. was obtained.

  17. In-situ TOF neutron diffraction studies of cyclic softening in superelasticity of a NiFeGaCo shape memory alloy

    DOE PAGES

    Yang, Hui; Yu, Dunji; Chen, Yan; ...

    2016-10-24

    Real-time in-situ neutron diffraction was conducted during uniaxial cycling compression of a Ni 49.3Fe 18Ga 27Co 5.7 shape memory alloy to explore the mechanism on its superelasticity at room temperature, which was manifested by the almost recoverable large strains and the apparent cyclic softening. Based on the Rietveld refinements, the real-time evolution of volume fraction of martensite was in-situ monitored, indicating the incremental amount of residual martensite with increasing load cycles. Real-time changes in intensities and lattice strains of { hkl} reflections for individual phase were obtained through fitting individual peaks, which reveal the quantitative information on phase transformation kineticsmore » as a function of grain orientation and stress/strain partitioning. Moreover, a large compressive residual stress was evidenced in the parent phase, which should be balanced by the residual martensite after the second unloading cycle. As a result, the large compressive residual stress found in the parent austenite phase may account for the cyclic effect on critical stress required for triggering the martensitic transformation in the subsequent loading.« less

  18. Size-dependent plastic deformation of twinned nanopillars in body-centered cubic tungsten

    NASA Astrophysics Data System (ADS)

    Xu, Shuozhi; Startt, Jacob K.; Payne, Thomas G.; Deo, Chaitanya S.; McDowell, David L.

    2017-05-01

    Compared with face-centered cubic metals, twinned nanopillars in body-centered cubic (BCC) systems are much less explored partly due to the more complicated plastic deformation behavior and a lack of reliable interatomic potentials for the latter. In this paper, the fault energies predicted by two semi-empirical interatomic potentials in BCC tungsten (W) are first benchmarked against density functional theory calculations. Then, the more accurate potential is employed in large scale molecular dynamics simulations of tensile and compressive loading of twinned nanopillars in BCC W with different cross sectional shapes and sizes. A single crystal, a twinned crystal, and single crystalline nanopillars are also studied as references. Analyses of the stress-strain response and defect nucleation reveal a strong tension-compression asymmetry and a weak pillar size dependence in the yield strength. Under both tensile and compressive loading, plastic deformation in the twinned nanopillars is dominated by dislocation slip on {110} planes that are nucleated from the intersections between the twin boundary and the pillar surface. It is also found that the cross sectional shape of nanopillars affects the strength and the initial site of defect nucleation but not the overall stress-strain response and plastic deformation behavior.

  19. Computational analysis of hypersonic flows past elliptic-cone waveriders

    NASA Technical Reports Server (NTRS)

    Yoon, Bok-Hyun; Rasmussen, Maurice L.

    1991-01-01

    A comprehensive study for the inviscid numerical calculation of the hypersonic flow past a class of elliptic-cone derived waveriders is presented. The theoretical background associated with hypersonic small-disturbance theory (HSDT) is reviewed. Several approximation formulas for the waverider compression surface are established. A CFD algorithm is used to calculate flow fields for the on-design case and a variety of off-design cases. The results are compared with HSDT, experiment, and other available CFD results. For the waverider shape used in previous investigations, the bow shock for the on-design condition stands off from the leading-edge tip of the waverider. It was found that this occurs because the tip was too thick according to the approximating shape formula that was used to describe the compression surface. When this was corrected, the bow shock became closer to attached as it should be. At Mach numbers greater than the design condition, a lambda-shock configuration develops near the tip of the compression surface. At negative angles of attack, other complicated shock patterns occur near the leading-edge tip. These heretofore unknown flow patterns show the power and utility of CFD for investigating novel hypersonic configurations such as waveriders.

  20. 46 CFR 151.50-22 - Hydrochloric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...), compressed air may be used to discharge hydrochloric acid from gravity type cargo tanks only if the tanks are of cylindrical shape with dished heads, provided the air pressure does not exceed the design pressure...

  1. Experimental and Numerical Investigations on Strength and Deformation Behavior of Cataclastic Sandstone

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Shao, J. F.; Xu, W. Y.; Zhao, H. B.; Wang, W.

    2015-05-01

    This work is devoted to characterization of the deformation and strength properties of cataclastic sandstones. Before conducting mechanical tests, the physical properties were first examined. These sandstones are characterized by a loose damaged microstructure and poorly cemented contacts. Then, a series of mechanical tests including hydrostatic, uniaxial, and triaxial compression tests were performed to study the mechanical strength and deformation of the sandstones. The results obtained show nonlinear stress-strain responses. The initial microcracks are closed at hydrostatic stress of 2.6 MPa, and the uniaxial compressive strength is about 0.98 MPa. Under triaxial compression, there is a clear transition from volumetric compressibility to dilatancy and a strong dependency on confining pressure. Based on the experimental evidence, an elastoplastic model is proposed using a linear yield function and a nonassociated plastic potential. There is good agreement between numerical results and experimental data.

  2. Determination of Uniaxial Compressive Strength of Ankara Agglomerate Considering Fractal Geometry of Blocks

    NASA Astrophysics Data System (ADS)

    Coskun, Aycan; Sonmez, Harun; Ercin Kasapoglu, K.; Ozge Dinc, S.; Celal Tunusluoglu, M.

    2010-05-01

    The uniaxial compressive strength (UCS) of rock material is a crucial parameter to be used for design stages of slopes, tunnels and foundations to be constructed in/on geological medium. However, preparation of high quality cores from geological mixtures or fragmented rocks such as melanges, fault rocks, coarse pyroclastic rocks, breccias and sheared serpentinites is often extremely difficult. According to the studies performed in literature, this type of geological materials may be grouped as welded and unwelded birmocks. Success of preparation of core samples from welded bimrocks is slightly better than unwelded ones. Therefore, some studies performed on the welded bimrocks to understand the mechanical behavior of geological mixture materials composed of stronger and weaker components (Gokceoglu, 2002; Sonmez et al., 2004; Sonmez et al., 2006; Kahraman, et al., 2008). The overall strength of bimrocks are generally depends on strength contrast between blocks and matrix; types and strength of matrix; type, size, strength, shape and orientation of blocks and volumetric block proportion. In previously proposed prediction models, while UCS of unwelded bimrocks may be determined by decreasing the UCS of matrix considering the volumetric block proportion, the welded ones can be predicted by considering both UCS of matrix and blocks together (Lindquist, 1994; Lindquist and Goodman, 1994; Sonmez et al., 2006 and Sonmez et al., 2009). However, there is a few attempts were performed about the effect of blocks shape and orientation on the strength of bimrock (Linqduist, 1994 and Kahraman, et al., 2008). In this study, Ankara agglomerate, which is composed of andesite blocks and surrounded weak tuff matrix, was selected as study material. Image analyses were performed on bottom, top and side faces of cores to identify volumetric block portions. In addition to the image analyses, andesite blocks on bottom, top and side faces were digitized for determination of fractal dimensions. To determine fractal dimensions of more than hundred andesite blocks in cores, a computer program namely FRACRUN were developed. Fractal geometry has been used as practical and popular tool to define particularly irregular shaped bodies in literature since the theory of fractal was developed by Mandelbrot (1967) (Hyslip and Vallejo, 1997; Kruhl and Nega, 1996; Bagde etal., 2002; Gulbin and Evangulova, 2003; Pardini, 2003; Kolay and Kayabali, 2006; Hamdi, 2008; Zorlu, 2009 and Sezer, 2009). Although there are some methods to determine fractal dimensions, square grid-cell count method for 2D and segment count method for 1D were followed in the algorithm of FRACRUN. FRACRUN has capable of determine fractal dimensions of many closed polygons on a single surface. In the study, a database composed of uniaxial compressive strength, volumetric block proportion, fractal dimensions and number of blocks for each core was established. Finally, prediction models were developed by regression analyses and compared with the empirical equations proposed by Sonmez et al. (2006). Acknowledgement This study is a product of ongoing project supported by TUBITAK (The Scientific and Technological Research Council of Turkey - Project No: 108Y002). References Bagde, M.N., Raina, A.K., Chakraborty, A.K., Jethwa, J.L., 2002. Rock mass characterization by fractal dimension. Engineering Geology 63, 141-155. Gokceoglu, C., 2002. A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition. Engineering Geology, 66 (1-2), 39-51. Gulbin, Y.L., Evangulova, E.B., 2003. Morphometry of quartz aggregates in granites: fractal images referring to nucleation and growth processes. Mathematical Geology 35 (7), 819-833 Hamdi, E., 2008. A fractal description of simulated 3D discontinuity networks. Rock Mechanics and Rock Engineering 41, 587-599. Hyslip, J.P., Vallejo, L.E., 1997. Fractals analysis of the roughness and size distribution of granular materials. Engineering Geology 48, 231-244. Kahraman, S., Alber, M., Fener, M. and Gunaydin, O. 2008. Evaluating the geomechanical properties of Misis fault breccia (Turkey). Int. J. Rock Mech. Min. Sci, 45, (8), 1469-1479. Kolay, E., Kayabali, K., 2006. Investigation of the effect of aggregate shape and surface roughness on the slake durability index using the fractal dimension approach. Engineering Geology 86, 271-294. Kruhl, J.H., Nega, M., 1996. The fractal shape of sutured quartz grain boundaries: application as a geothermometer. Geologische Rundschau 85, 38-43. Lindquist E.S. 1994. The strength, deformation properties of melange. PhD thesis, University of California, Berkeley, 1994. 264p. Lindquist E.S. and Goodman R.E. 1994. The strength and deformation properties of the physical model m!elange. In: Nelson PP, Laubach SE, editors. Proceedings of the First North American Rock Mechanics Conference (NARMS), Austin, Texas. Rotterdam: AA Balkema; 1994. Pardini, G., 2003. Fractal scaling of surface roughness in artificially weathered smectite rich soil regoliths. Geoderma 117, 157-167. Sezer E., 2009. A computer program for fractal dimension (FRACEK) with application on type of mass movement characterization. Computers and Geosciences (doi:10.1016/j.cageo.2009.04.006). Sonmez H, Tuncay E, and Gokceoglu C., 2004. Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. Int. J. Rock Mech. Min. Sci., 41 (5), 717-729. Sonmez, H., Gokceoglu, C., Medley, E.W., Tuncay, E., and Nefeslioglu, H.A., 2006. Estimating the uniaxial compressive strength of a volcanic bimrock. Int. J. Rock Mech. Min. Sci., 43 (4), 554-561. Zorlu K., 2008. Description of the weathering states of building stones by fractal geometry and fuzzy inference system in the Olba ancient city (Southern Turkey). Engineering Geology 101 (2008) 124-133.

  3. Sequential buckling of an elastic wall

    NASA Astrophysics Data System (ADS)

    Bico, Jose; Bense, Hadrien; Keiser, Ludovic; Roman, Benoit; Melo, Francisco; Abkarian, Manouk

    A beam under quasistatic compression classically buckles beyond a critical threshold. In the case of a free beam, the lowest buckling mode is selected. We investigate the case of a long ``wall'' grounded of a compliant base and compressed in the axial compression. In the case of a wall of slender rectangular cross section, the selected buckling mode adopts a nearly fixed wavelength proportional to the height of the wall. Higher compressive loads only increase the amplitude of the buckle. However if the cross section has a sharp shape (such as an Eiffel tower profile), we observe successive buckling modes of increasing wavelength. We interpret this unusual evolution in terms of scaling arguments. At small scales, this variable periodicity might be used to develop tunable optical devices. We thank ECOS C12E07, CNRS-CONICYT, and Fondecyt Grant No. N1130922 for partially funding this work.

  4. The influence of lay-up and thickness on composite impact damage and compression strength

    NASA Technical Reports Server (NTRS)

    Guynn, E. G.; Obrien, T. K.

    1985-01-01

    The effects of composite stacking sequence, thickness, and percentage of zero-degree plies on the size, shape, and distribution of delamination through the laminate thickness and on residual compression strength following impact were studied. Graphite/epoxy laminates were impacted with an 0.5 inch diameter aluminum sphere at a specific low or high velocity. Impact damage was measured nondestructively by ultrasonic C-scans and X-radiography and destructively by the deply technique, and compression strength tests were performed. It was found that differences in compression failure strain due to stacking sequence were small, while laminates with very low percentages of zero-degree plies had similar failure loads but higher failure strains than laminates with higher percentages of zero-degree plies. Failure strain did not correlate with planar impact damage area, and delaminations in impact regions were associated with matrix cracking.

  5. The analysis and modelling of dilatational terms in compressible turbulence

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.; Kreiss, H. O.

    1991-01-01

    It is shown that the dilatational terms that need to be modeled in compressible turbulence include not only the pressure-dilatation term but also another term - the compressible dissipation. The nature of these dilatational terms in homogeneous turbulence is explored by asymptotic analysis of the compressible Navier-Stokes equations. A non-dimensional parameter which characterizes some compressible effects in moderate Mach number, homogeneous turbulence is identified. Direct numerical simulations (DNS) of isotropic, compressible turbulence are performed, and their results are found to be in agreement with the theoretical analysis. A model for the compressible dissipation is proposed; the model is based on the asymptotic analysis and the direct numerical simulations. This model is calibrated with reference to the DNS results regarding the influence of compressibility on the decay rate of isotropic turbulence. An application of the proposed model to the compressible mixing layer has shown that the model is able to predict the dramatically reduced growth rate of the compressible mixing layer.

  6. The analysis and modeling of dilatational terms in compressible turbulence

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.; Kreiss, H. O.

    1989-01-01

    It is shown that the dilatational terms that need to be modeled in compressible turbulence include not only the pressure-dilatation term but also another term - the compressible dissipation. The nature of these dilatational terms in homogeneous turbulence is explored by asymptotic analysis of the compressible Navier-Stokes equations. A non-dimensional parameter which characterizes some compressible effects in moderate Mach number, homogeneous turbulence is identified. Direct numerical simulations (DNS) of isotropic, compressible turbulence are performed, and their results are found to be in agreement with the theoretical analysis. A model for the compressible dissipation is proposed; the model is based on the asymptotic analysis and the direct numerical simulations. This model is calibrated with reference to the DNS results regarding the influence of compressibility on the decay rate of isotropic turbulence. An application of the proposed model to the compressible mixing layer has shown that the model is able to predict the dramatically reduced growth rate of the compressible mixing layer.

  7. Evaluation of several microcrystalline celluloses obtained from agricultural by-products

    PubMed Central

    Rojas, John; Lopez, Alvin; Guisao, Santiago; Ortiz, Carlos

    2011-01-01

    Microcrystalline cellulose (MCCI) has been widely used as an excipient for direct compression due to its good flowability, compressibility, and compactibility. In this study, MCCI was obtained from agricultural by-products, such as corn cob, sugar cane bagasse, rice husk, and cotton by pursuing acid hydrolysis, neutralization, clarification, and drying steps. Further, infrared spectroscopy (IR), X-ray diffraction (XRD), optical microscopy, degree of polymerization (DP), and powder and tableting properties were evaluated and compared to those of Avicel PH101, Avicel PH102, and Avicel PH200. Except for the commercial products, all materials showed a DP from 55 to 97. Particles of commercial products and corn cob had an irregular shape, whereas bagasse particles were elongated and thick. Rice and cotton particles exhibited a flake-like and fiber-like shape, respectively. MCCI as obtained from rice husk and cotton was the most densified material, while that produced from corn cob and bagasse was bulky, porous, and more compressible. All products had a moisture content of less than 10% and yields from 7.4% to 60.4%. MCCI as obtained from bagasse was the most porous and compressible material among all materials. This product also showed the best tableting properties along with Avicel products. Likewise, all MCCI products obtained from the above-mentioned sources showed a more rapid disintegration time than that of Avicel products. These materials can be used as a potential source of MCCI in the production of solid dosage forms. PMID:22171310

  8. Ramp compression of a metallic liner driven by a shaped 5 MA current on the SPHINX machine

    NASA Astrophysics Data System (ADS)

    d'Almeida, T.; Lassalle, F.; Morell, A.; Grunenwald, J.; Zucchini, F.; Loyen, A.; Maysonnave, T.; Chuvatin, A.

    2014-05-01

    SPHINX is a 6MA, 1-us Linear Transformer Driver operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. A method for performing magnetic ramp compression experiments was developed using a compact Dynamic Load Current Multiplier inserted between the convolute and the load, to shape the initial current pulse. We present the overall experimental configuration chosen for these experiments and initial results obtained over a set of experiments on an aluminum cylindrical liner. Current profiles measured at various critical locations across the system, are in good agreement with simulated current profiles. The liner inner free surface velocity measurements agree with the hydrocode results obtained using the measured load current as the input. The potential of the technique in terms of applications and achievable ramp pressure levels lies in the prospects for improving the DLCM efficiency.

  9. Exhaust Nozzle Plume and Shock Wave Interaction

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.; Elmiligui, Alaa; Cliff, Susan

    2013-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the exhaust plume. Both the nozzle exhaust plume shape and the tail shock shape may be affected by an interaction that may alter the vehicle sonic boom signature. The plume and shock interaction was studied using Computational Fluid Dynamics simulation on two types of convergent-divergent nozzles and a simple wedge shock generator. The nozzle plume effects on the lower wedge compression region are evaluated for two- and three-dimensional nozzle plumes. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the deflected lower plume boundary. The sonic boom pressure signature of the wedge is modified by the presence of the plume, and the computational predictions show significant (8 to 15 percent) changes in shock amplitude.

  10. Sudden death in spondylo-meta-epiphyseal dysplasia, short limb-abnormal calcification type.

    PubMed

    Dias, Cristina; Cairns, Robyn; Patel, Millan S

    2009-01-01

    The spondylo-meta-epiphyseal dysplasias are an expanding group of skeletal dysplasias with specific features differentiating each subtype. We review the precocious carpal mineralization, unique metacarpal shape, triangular distal phalanges and mushroom cloud-shaped proximal phalanges present at an early age in spondylo-meta-epiphyseal dysplasia, short limb-abnormal calcification type (SMED SL-AC) and report two patients with clinical and radiographic features consistent with SMED SL-AC, who died suddenly because of spinal cord compression. The patients presented are female siblings, providing further evidence for autosomal recessive inheritance. Cervical cord compression is found in half of reported patients and is the major cause of mortality. SMED SL-AC should be added to the list of genetic causes of sudden death. Radiological features in the hand may be used in the first few years of life to support an early diagnosis and thus allow for prevention of premature demise.

  11. Confining jackets for concrete cylinders using NiTiNb and NiTi shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Nam, Tae-Hyun; Yoon, Soon-Jong; Cho, Sun-Kyu; Park, Joonam

    2010-05-01

    This study used prestrained NiTiNb and NiTi shape memory alloy (SMA) wires to confine concrete cylinders. The recovery stress of the wires was measured with respect to the maximal prestrain of the wires. SMA wires were preelongated during the manufacturing process and then wrapped around concrete cylinders of 150 mm×300 mm (phi×L). Unconfined concrete cylinders were tested for compressive strength and the results were compared to those of cylinders confined by SMA wires. NiTiNb SMA wires increased the compressive strength and ductility of the cylinders due to the confining effect. NiTiNb wires were found to be more effective in increasing the peak strength of the cylinders and dissipating energy than NiTi wires. This study showed the potential of the proposed method to retrofit reinforced concrete columns using SMA wires to protect them from earthquakes.

  12. rf design of a pulse compressor with correction cavity chain for klystron-based compact linear collider

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Zha, Hao; Syratchev, Igor; Shi, Jiaru; Chen, Huaibi

    2017-11-01

    We present an X-band high-power pulse compression system for a klystron-based compact linear collider. In this system design, one rf power unit comprises two klystrons, a correction cavity chain, and two SLAC Energy Doubler (SLED)-type X-band pulse compressors (SLEDX). An rf pulse passes the correction cavity chain, by which the pulse shape is modified. The rf pulse is then equally split into two ways, each deploying a SLEDX to compress the rf power. Each SLEDX produces a short pulse with a length of 244 ns and a peak power of 217 MW to power four accelerating structures. With the help of phase-to-amplitude modulation, the pulse has a dedicated shape to compensate for the beam loading effect in accelerating structures. The layout of this system and the rf design and parameters of the new pulse compressor are described in this work.

  13. Compression Molding and Novel Sintering Treatments for Alnico Type-8 Permanent Magnets in Near-Final Shape with Preferred Orientation

    NASA Astrophysics Data System (ADS)

    Kassen, Aaron G.; White, Emma M. H.; Tang, Wei; Hu, Liangfa; Palasyuk, Andriy; Zhou, Lin; Anderson, Iver E.

    2017-09-01

    Economic uncertainty in the rare earth (RE) permanent magnet marketplace, as well as in an expanding electric drive vehicle market that favors permanent magnet alternating current synchronous drive motors, motivated renewed research in RE-free permanent magnets like "alnico," an Al-Ni-Co-Fe alloy. Thus, high-pressure, gas-atomized isotropic type-8H pre-alloyed alnico powder was compression molded with a clean burn- out binder to near-final shape and sintered to density >99% of cast alnico 8 (full density of 7.3 g/cm3). To produce aligned sintered alnico magnets for improved energy product and magnetic remanence, uniaxial stress was attempted to promote controlled grain growth, avoiding directional solidification that provides alignment in alnico 9. Successful development of solid-state powder processing may enable anisotropically aligned alnico magnets with enhanced energy density to be mass-produced.

  14. Robust Audio Watermarking by Using Low-Frequency Histogram

    NASA Astrophysics Data System (ADS)

    Xiang, Shijun

    In continuation to earlier work where the problem of time-scale modification (TSM) has been studied [1] by modifying the shape of audio time domain histogram, here we consider the additional ingredient of resisting additive noise-like operations, such as Gaussian noise, lossy compression and low-pass filtering. In other words, we study the problem of the watermark against both TSM and additive noises. To this end, in this paper we extract the histogram from a Gaussian-filtered low-frequency component for audio watermarking. The watermark is inserted by shaping the histogram in a way that the use of two consecutive bins as a group is exploited for hiding a bit by reassigning their population. The watermarked signals are perceptibly similar to the original one. Comparing with the previous time-domain watermarking scheme [1], the proposed watermarking method is more robust against additive noise, MP3 compression, low-pass filtering, etc.

  15. Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat

    NASA Astrophysics Data System (ADS)

    Hou, Huilong; Simsek, Emrah; Stasak, Drew; Hasan, Naila Al; Qian, Suxin; Ott, Ryan; Cui, Jun; Takeuchi, Ichiro

    2017-10-01

    The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. Here we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g-1. Adiabatic compression on as-fabricated TiNi displays cooling ΔT as high as  -7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress-strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti2Ni precipitates typically one micron in size with a large aspect ratio enclosing the TiNi matrix. A stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti2Ni precipitates is believed to be the origin of the unique superelasticity behavior.

  16. Quantification of the spatial strain distribution of scoliosis using a thin-plate spline method.

    PubMed

    Kiriyama, Yoshimori; Watanabe, Kota; Matsumoto, Morio; Toyama, Yoshiaki; Nagura, Takeo

    2014-01-03

    The objective of this study was to quantify the three-dimensional spatial strain distribution of a scoliotic spine by nonhomogeneous transformation without using a statistically averaged reference spine. The shape of the scoliotic spine was determined from computed tomography images from a female patient with adolescent idiopathic scoliosis. The shape of the scoliotic spine was enclosed in a rectangular grid, and symmetrized using a thin-plate spline method according to the node positions of the grid. The node positions of the grid were determined by numerical optimization to satisfy symmetry. The obtained symmetric spinal shape was enclosed within a new rectangular grid and distorted back to the original scoliotic shape using a thin-plate spline method. The distorted grid was compared to the rectangular grid that surrounded the symmetrical spine. Cobb's angle was reduced from 35° in the scoliotic spine to 7° in the symmetrized spine, and the scoliotic shape was almost fully symmetrized. The scoliotic spine showed a complex Green-Lagrange strain distribution in three dimensions. The vertical and transverse compressive/tensile strains in the frontal plane were consistent with the major scoliotic deformation. The compressive, tensile and shear strains on the convex side of the apical vertebra were opposite to those on the concave side. These results indicate that the proposed method can be used to quantify the three-dimensional spatial strain distribution of a scoliotic spine, and may be useful in quantifying the deformity of scoliosis. © 2013 Elsevier Ltd. All rights reserved.

  17. Cartilage elasticity resides in shape module decoran and aggrecan sumps of damping fluid: implications in osteoarthrosis

    PubMed Central

    Scott, John E; Stockwell, Robin A

    2006-01-01

    Cartilage ultrastructure is based on collagen fibrils tied together by proteoglycans (PGs). Interfibrillar orthogonal PG bridges (‘shape modules’) were located by electron histochemistry using Cupromeronic blue methodology. Their frequency and size, similar to those in tendon, cornea, etc., were compatible with biochemical estimates of tissue decoran (formerly decorin), the PG component of shape module bridges. Digestion by hyaluronanase and chondroitinase AC helped to identify aggrecan and decoran and exemplified the destruction of shape modular organization by glycan-splitting agents. The anionic glycosaminoglycan (AGAG) of decoran, dermochondan sulphate (DS, formerly dermatan sulphate), contains l-iduronate, an elastic sugar unit. Chondroitan, keratan (present in aggrecan) and hyaluronan are not similarly elastic but can participate in sliding-filament reversible deformability. Mechanical properties predicted for the interfibrillar bridges accord with anisotropic stress/strain responses of articular cartilage to compressive or tensile stresses. We propose that fluid from pericellular aggrecan-rich domains moves under pressure into the interterritorial fibrillar arrays against the elastic resistance of the shape modules, which return the fluid, post-compression, to its original position. Cartilage is tendon-like, with the addition of expansile aggrecan-rich reservoirs of aqueous shock absorber fluid. Rupture or loss of interfibrillar ties would allow expansile PG to force the collagenous matrix apart, imbibing water, increasing swelling and fissuring – characteristic manifestations of osteoarthrosis (OA), a joint disease of major economic importance. Decoran may be a primary target of the OA disease process. PMID:16581860

  18. Characterizing Effects of Nitric Oxide Sterilization on tert-Butyl Acrylate Shape Memory Polymers

    NASA Astrophysics Data System (ADS)

    Phillippi, Ben

    As research into the potential uses of shape memory polymers (SMPs) as implantable medical devices continues to grow and expand, so does the need for an accurate and reliable sterilization mechanism. The ability of an SMP to precisely undergo a programmed shape change will define its ability to accomplish a therapeutic task. To ensure proper execution of the in vivo shape change, the sterilization process must not negatively affect the shape memory behavior of the material. To address this need, this thesis investigates the effectiveness of a benchtop nitric oxide (NOx) sterilization process and the extent to which the process affects the shape memory behavior of a well-studied tert-Butyl Acrylate (tBA) SMP. Quantifying the effects on shape memory behavior was performed using a two-tiered analysis. A two-tiered study design was used to determine if the sterilization process induced any premature shape recovery and to identify any effects that NOx has on the overall shape memory behavior of the foams. Determining the effectiveness of the NOx system--specially, whether the treated samples are more sterile/less contaminated than untreated--was also performed with a two-tiered analysis. In this case, the two-tiered analysis was employed to have a secondary check for contamination. To elaborate, all of the samples that were deemed not contaminated from the initial test were put through a second sterility test to check for contamination a second time. The results of these tests indicated the NOx system is an effective sterilization mechanism and the current protocol does not negatively impact the shape memory behavior of the tBA SMP. The samples held their compressed shape throughout the entirety of the sterilization process. Additionally, there were no observable impacts on the shape memory behavior induced by NOx. Lastly, the treated samples demonstrated lower contamination than the untreated. This thesis demonstrates the effectiveness of NOx as a laboratory scale sterilization mechanism for heat triggered shape memory polymers. The shape memory analysis indicated that the magnitude of the length changes induced by NOx is small enough that it does not make a statistically significant impact on the shape memory behavior of the foams. Additionally, there were no observable effects on the shape memory behavior induced by NOx. The results further indicated the NOx system is effective at sterilizing porous scaffolds, as none of the sterilized samples showed contamination. Testing methods proved to be effective because the initial sterility test was able to identify all of the contaminated samples and preliminary results indicated that NOx sterilization improves the sterility of the foams.

  19. Well bore breakouts and in situ stress

    USGS Publications Warehouse

    Zoback, Mark D.; Moos, Daniel; Mastin, Larry; Anderson, Roger N.

    1985-01-01

    The detailed cross-sectional shape of stress induced well bore breakouts has been studied using specially processed ultrasonic borehole televiewer data. Breakout shapes are shown for a variety of rock types and introduce a simple elastic failure model which explains many features of the observations. Both the observations and calculations indicate that the breakouts define relatively broad and flat curvilinear surfaces which enlarge the borehole in the direction of minimum horizontal compression. Refs.

  20. Combination of experimental and numerical methods for mechanical characterization of Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Kruglova, A.; Roland, M.; Diebels, S.; Mücklich, F.

    2017-10-01

    In general, mechanical properties of Al-Si alloys strongly depend on the morphology and arrangement of microconstituents, such as primary aluminium dendrites, silicon particles, etc. Therefore, a detailed characterization of morphological and mechanical properties of the alloys is necessary to better understand the relations between the underlined properties and to tailor the material’s microstructure to the specific application needs. The mechanical characterization usually implies numerical simulations and mechanical tests, which allow to investigate the influence of different microstructural aspects on different scales. In this study, the uniaxial tension and compression tests have been carried out on Al-Si alloys having different microstructures. The mechanical behavior of the alloys has been interpreted with respect to the morphology of the microconstituents and has been correlated with the results of numerical simulations. The advantages and limitations of the experimental and numerical methods have been disclosed and the importance of combining both techniques for the interpretation of the mechanical behavior of Al-Si alloys has been shown. Thereby, it has been suggested that the density of Si particles and the size of Al dendrites are more important for the strengthening of the alloys than the size-shape features of the eutectic Si induced by the modification.

  1. NEUTRON SOURCE USING MAGNETIC COMPRESSION OF PLASMA

    DOEpatents

    Quinn, W.E.; Elmore, W.C.; Little, E.M.; Boyer, K.; Tuck, J.L.

    1961-10-31

    A fusion reactor is described that utilizes compression and heating of an ionized thermonuclear fuel by an externally applied magnetic field, thus avoiding reliance on the pinch effect and its associated instability problems. The device consists of a gas-confining ceramic container surrounded by a single circumferential coil having a shape such as to produce a magnetic mirror geometry. A sinusoidally-oscillating, exponentially-damped current is passed circumferentially around the container, through the coil, inducing a circumferential current in the gas. Maximum compression and plasma temperature are obtained at the peak of the current oscillations, coinciding with maximum magnetic field intensity. Enhanced temperatures are obtained in the second and succeeding half cycles because the thermal energy accumulates from one half cycle to the next. (AEC)

  2. [Eyeball shape in children with emmetropia and myopia].

    PubMed

    Dolzhich, G I; Shurygina, I P; Shapovalova, V M

    1991-01-01

    In order to determine the eyeball shape, the authors have carried out ultrasonic biometry of its three major parameters, the anteroposterior axis (APA), horizontal diameter (HD), and vertical diameter (VD), and estimated the ratios of these values (APA/HD and APA/VD) in children with emmetropia (234 eyes) and those with slight and medium-grave myopia (660 eyes), aged 7 to 14. The findings evidence a compressed ellipsoidal shape of the eyeball, presenting as a vertical oval, in all subjects with emmetropic refraction, whatever their age. In myopia the eyeball shape transforms, and all the eyeball sizes are increased, but the APA size is growing more rapidly than the rest sizes, and the eyeball acquires the ball shape with a trend to an elongated ellipsoidal shape. The mean APA length in 7-14-year-old children with emmetropia was up to 23 +/- 0.15 mm, whereas in those with the ball shape of the eyeball it was distended.

  3. Multistable wireless micro-actuator based on antagonistic pre-shaped double beams

    NASA Astrophysics Data System (ADS)

    Liu, X.; Lamarque, F.; Doré, E.; Pouille, P.

    2015-07-01

    This paper presents a monolithic multistable micro-actuator based on antagonistic pre-shaped double beams. The designed micro-actuator is formed by two rows of bistable micro-actuators providing four stable positions. The bistable mechanism for each row is a pair of antagonistic pre-shaped beams. This bistable mechanism has an easier pre-load operation compared to the pre-compressed bistable beams method. Furthermore, it solves the asymmetrical force output problem of parallel pre-shaped bistable double beams. At the same time, the geometrical limit is lower than parallel pre-shaped bistable double beams, which ensures a smaller stroke of the micro-actuator with the same dimensions. The designed micro-actuator is fabricated using laser cutting machine on medium density fiberboard (MDF). The bistability and merits of antagonistic pre-shaped double beams are experimentally validated. Finally, a contactless actuation test is performed using 660 nm wavelength laser heating shape memory alloy (SMA) active elements.

  4. The Agost Basin (Betic Cordillera, Alicante province, Spain): a pull-apart basin involving salt tectonics

    NASA Astrophysics Data System (ADS)

    Martín-Martín, Manuel; Estévez, Antonio; Martín-Rojas, Ivan; Guerrera, Francesco; Alcalá, Francisco J.; Serrano, Francisco; Tramontana, Mario

    2018-03-01

    The Agost Basin is characterized by a Miocene-Quaternary shallow marine and continental infilling controlled by the evolution of several curvilinear faults involving salt tectonics derived from Triassic rocks. From the Serravallian on, the area experienced a horizontal maximum compression with a rotation of the maximum stress axis from E-W to N-S. The resulting deformation gave rise to a strike-slip fault whose evolution is characterized progressively by three stages: (1) stepover/releasing bend with a dextral motion of blocks; (2) very close to pure horizontal compression; and (3) restraining bend with a sinistral movement of blocks. In particular, after an incipient fracturing stage, faults generated a pull-apart basin with terraced sidewall fault and graben subzones developed in the context of a dextral stepover during the lower part of late Miocene p.p. The occurrence of Triassic shales and evaporites played a fundamental role in the tectonic evolution of the study area. The salty material flowed along faults during this stage generating salt walls in root zones and salt push-up structures at the surface. During the purely compressive stage (middle part of late Miocene p.p.) the salt walls were squeezed to form extrusive mushroom-like structures. The large amount of clayish and salty material that surfaced was rapidly eroded and deposited into the basin, generating prograding fan clinoforms. The occurrence of shales and evaporites (both in the margins of the basin and in the proper infilling) favored folding of basin deposits, faulting, and the formation of rising blocks. Later, in the last stage (upper part of late Miocene p.p.), the area was affected by sinistral restraining conditions and faults must have bent to their current shape. The progressive folding of the basin and deformation of margins changed the supply points and finally caused the end of deposition and the beginning of the current erosive systems. On the basis of the interdisciplinary results, the Agost Basin can be considered a key case of the interference between salt tectonics and the evolution of strike-slip fault zones. The reconstructed model has been compared with several scaled sandbox analogical models and with some natural pull-apart basins.

  5. Comparison of interfacial properties of electrodeposited single carbon fiber/epoxy composites using tensile and compressive fragmentation tests and acoustic emission.

    PubMed

    Park, Joung-Man; Kim, Jin-Won; Yoon, Dong-Jin

    2002-03-01

    Interfacial and microfailure properties of carbon fiber/epoxy composites were evaluated using both tensile fragmentation and compressive Broutman tests with an aid of acoustic emission (AE). A monomeric and two polymeric coupling agents were applied via the electrodeposition (ED) and the dipping applications. A monomeric and a polymeric coupling agent showed significant and comparable improvements in interfacial shear strength (IFSS) compared to the untreated case under both tensile and compressive tests. Typical microfailure modes including cone-shaped fiber break, matrix cracking, and partial interlayer failure were observed under tension, whereas the diagonal slipped failure at both ends of the fractured fiber exhibited under compression. Adsorption and shear displacement mechanisms at the interface were described in terms of electrical attraction and primary and secondary bonding forces. For both the untreated and the treated cases AE distributions were separated well in tension, whereas AE distributions were rather closely overlapped in compression. It might be because of the difference in molecular failure energies and failure mechanisms between tension and compression. The maximum AE voltage for the waveform of either carbon or large-diameter basalt fiber breakages in tension exhibited much larger than that in compression. AE could provide more likely the quantitative information on the interfacial adhesion and microfailure.

  6. Numerical study on the lubrication performance of compression ring-cylinder liner system with spherical dimples

    PubMed Central

    Liu, Cheng; Zhang, Yong-Fang; Li, Sha; Müller, Norbert

    2017-01-01

    The effects of surface texture on the lubrication performance of a compression ring-cylinder liner system are studied in this paper. By considering the surface roughness of the compression ring and cylinder liner, a mixed lubrication model is presented to investigate the tribological behaviors of a barrel-shaped compression ring-cylinder liner system with spherical dimples on the liner. In order to determine the rupture and reformulation positions of fluid film accurately, the Jacoboson-Floberg-Olsson (JFO) cavitation boundary condition is applied to the mixed lubrication model for ensuring the mass-conservative law. On this basis, the minimum oil film thickness and average friction forces in the compression ring-cylinder liner system are investigated under the engine-like conditions by changing the dimple area density, radius, and depth. The wear load, average friction forces, and power loss of the compression ring-cylinder liner system with and without dimples are also compared for different compression ring face profiles. The results show that the spherical dimples can produce a larger reduction of friction in mixed lubrication region, and reduce power loss significantly in the middle of the strokes. In addition, higher reduction percentages of average friction forces and wear are obtained for smaller crown height or larger axial width. PMID:28732042

  7. Analysis of Deformation and Equivalent Stress during Biomass Material Compression Molding

    NASA Astrophysics Data System (ADS)

    Xu, Guiying; Wei, Hetao; Zhang, Zhien; Yu, Shaohui; Wang, Congzhe; Huang, Guowen

    2018-02-01

    Ansys is adopted to analyze mold deformation and stress field distribution rule during the process of compressing biomass under pressure of 20Mpa. By means of unit selection, material property setting, mesh partition, contact pair establishment, load and constraint applying, and solver setting, the stress and strain of overall mold are analyzed. Deformation and equivalent Stress of compression structure, base, mold, and compression bar were analyzed. We can have conclusions: The distribution of stress forced on compressor is not completely uniform, where the stress at base is slightly decreased; the stress and strain of compression bar is the largest, and stress concentration my occur at top of compression bar, which goes against compression bar service life; the overall deformation of main mold is smaller; although there is slight difference between upper and lower part, the overall variation is not obvious, but the stress difference between upper and lower part of main mold is extremely large so that reaches to 10 times; the stress and strain in base decrease in circular shape, but there is still stress concentration in ledge, which goes against service life; contact stress does not distribute uniformly, there is increasing or decreasing trend in adjacent parts, which is very large in some parts. in constructing both.

  8. Tabletted microspheres containing Cynara scolymus (var. Spinoso sardo) extract for the preparation of controlled release nutraceutical matrices.

    PubMed

    Gavini, E; Alamanni, M C; Cossu, M; Giunchedi, P

    2005-08-01

    Controlled release dosage forms based on tabletted microspheres containing fresh artichoke Cynara scolymus extract were performed for the oral administration of a nutritional supplement. Microspheres were prepared using a spray-drying technique; lactose or hypromellose have been chosen as excipients. Microspheres were characterized in terms of encapsulated extract content, size and morphology. Qualitative and quantitative composition of the extract before and after the spray process was determined. Compressed matrices (tablets) were prepared by direct compression of the spray-dried microspheres. In vitro release tests of microparticles and tablets prepared were carried out in both acidic and neutral media. Spray-drying is a good method to prepare microspheres containing the artichoke extract. The microspheres encapsulate an amount of extract close to the theoretical value. Particle size analyses indicate that the microparticles have dvs of approximately 6-7 microm. Electronic microscopy observations reveal that particles based on lactose have spherical shape and particles containing hypromellose are almost collapsed. The hydroalcoholic extract is stable to the microsphere production process: its polyphenolic composition (qualitative and quantitative) did not change after spraying. In vitro release studies show that microparticles characterized by a quick polyphenolic release both in acidic and neutral media due to the high water solubility of the carrier lactose. On the contrary, microspheres based hypromellose release only 20% of the loaded extract at pH 1.2 in 2 h and the total amount of polyphenols is released only after about further 6 h at pH 6.8. Matrices prepared tabletting lactose microspheres and hypromellose microparticles in the weight ratio 1:1 show a slow release rate, that lasts approximately 24 h. This one-a-day sustained release formulation containing Cynara scolymus extract could be proposed as a nutraceutical controlled release dosage form for oral administration.

  9. Fabrication of a helical coil shape memory alloy actuator

    NASA Astrophysics Data System (ADS)

    Odonnell, R. E.

    1992-02-01

    A fabrication process was developed to form, heat treat, and join NiTi shape memory alloy helical coils for use as mechanical actuators. Tooling and procedures were developed to wind both extension and compression-type coils on a manual lathe. Heat treating fixtures and techniques were used to set the 'memory' of the NiTi alloy to the desired configuration. A swaging process was devised to fasten shape memory alloy extension coils to end fittings for use in actuator testing and for potential attachment to mechanical devices. The strength of this mechanical joint was evaluated.

  10. Compression testing of thick-section composite materials

    NASA Astrophysics Data System (ADS)

    Camponeschi, Eugene T., Jr.

    A compression test fixture suitable for testing of composites up to 1 inch in thickness has been developed with a view to the characterization of the effects of constituents, fiber orientation, and thickness, on the compressive response of composites for naval applications. The in-plane moduli, compression strength, failure mechanisms, and both in-plane and through-thickness Poisson's ratios are shown to be independent of material thickness. The predominant failure mechanisms for both materials, namely kink bands and delaminations, are identical to those reported for composite one-tenth the thickness of those presently tested.

  11. Uniform shock waves in disordered granular matter.

    PubMed

    Gómez, Leopoldo R; Turner, Ari M; Vitelli, Vincenzo

    2012-10-01

    The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates continuously decreases as the confining pressure decreases, completely vanishing at the jamming-unjamming transition. This anomalous behavior suggests that the transport of energy at low pressures should not be dominated by phonons. In this work we use simulations and theory to show how the response of granular systems becomes increasingly nonlinear as pressure decreases. In the low-pressure regime the elastic energy is found to be mainly transported through nonlinear waves and shocks. We numerically characterize the propagation speed, shape, and stability of these shocks and model the dependence of the shock speed on pressure and impact intensity by a simple analytical approach.

  12. A theoretical approach to quantify the effect of random cracks on rock deformation in uniaxial compression

    NASA Astrophysics Data System (ADS)

    Zhou, Shuwei; Xia, Caichu; Zhou, Yu

    2018-06-01

    Cracks have a significant effect on the uniaxial compression of rocks. Thus, a theoretically analytical approach was proposed to assess the effects of randomly distributed cracks on the effective Young’s modulus during the uniaxial compression of rocks. Each stage of the rock failure during uniaxial compression was analyzed and classified. The analytical approach for the effective Young’s modulus of a rock with only a single crack was derived while considering the three crack states under stress, namely, opening, closure-sliding, and closure-nonsliding. The rock was then assumed to have many cracks with randomly distributed direction, and the effect of crack shape and number during each stage of the uniaxial compression on the effective Young’s modulus was considered. Thus, the approach for the effective Young’s modulus was used to obtain the whole stress-strain process of uniaxial compression. Afterward, the proposed approach was employed to analyze the effects of related parameters on the whole stress-stain curve. The proposed approach was eventually compared with some existing rock tests to validate its applicability and feasibility. The proposed approach has clear physical meaning and shows favorable agreement with the rock test results.

  13. Characterization of Mechanical Damage Mechanisms in Ceramic and Polymeric Matrix Composite Materials

    DTIC Science & Technology

    1991-11-01

    microplasticity is a vital factor in the compressive failure of even these very hard materials under essentially all conditions (temperature, strain rate...OF CONTENTS Pag= The Compressive Strength of Strong Ceramics: Microplasticity Versus 1 Microfracture Abstract 1 1. Introduction 2 2. Hardness 3 3...Acknowledgements 51 References 51 COATVANOORD1 24-91CDXC 11. LIST OF FIGURES Figure Page The Compressive Strength of Strong Ceramics: Microplasticity Versus

  14. [APPLICATION OF BUTTERFLY SHAPED LOCKING COMPRESSION PLATE IN COMPLEX DISTAL RADIUS FRACTURES].

    PubMed

    Jiang, Zongyuan; Ma, Tao; Xia, Jiang; Hu, Caizhi; Xu, Lei

    2014-06-01

    To investigate the effectiveness of butterfly shaped locking compression plate for the treatment of complex distal radius fractures. Between June 2011 and January 2013, 20 cases of complex distal radius fractures were treated with butterfly shaped locking compression plate fixation. There were 11 males and 9 females with an average age of 54 years (range, 25-75 years). Injury was caused by falling in 10 cases, by traffic accident in 7 cases, and by falling from height in 3 cases. All of fractures were closed. According to AO classification system, there were 8 cases of type C1, 8 cases of type C2, and 4 cases of type C3. Of them, 9 cases had radial styloid process fracture, 4 cases had sigmoid notch fracture, and 7 cases had both radial styloid process fracture and sigmoid notch fracture. The mean interval between injury and operation was 5.2 days (range, 3-15 days). All incisions healed by first intention; no complications of infection and necrosis occurred. All cases were followed up 14 months on average (range, 10-22 months). All factures healed after 9.3 weeks on average (range, 6-11 weeks). No complications such as displacement of fracture, joint surface subsidence, shortening of the radius, and carpal tunnel syndrome were found during follow-up. At last follow-up, the mean palmar tilt angle was 10.2° (range, 7-15°), and the mean ulnar deviation angle was 21.8° (range, 17-24°). The mean range of motion of the wrist was 45.3° (range, 35-68°) in dorsal extension, 53.5° (range, 40-78°) in palmar flexion, 19.8° (range, 12-27°) in radial inclination, 26.6° (range, 18-31°) in ulnar inclination, 70.2° (range, 45-90°) in pronation, and 68.4° (range, 25-88°) in supination. According to the Dienst scoring system, the results were excellent in 8 cases, good in 10 cases, and fair in 2 cases, and the excellent and good rate was 90%. Treatment of complex distal radius fractures with butterfly shaped locking compression plate can reconstruct normal anatomic structures, especially for radial styloid process and sigmoid notch fractures, and it can get good functional recovery of the wrist and the distal radioulnar joint.

  15. Frying of the Dispersion Droplets with Varying Contents of Chickpea Flour and Gum Arabic: Product Characterization and Modeling.

    PubMed

    Shanthilal, J; Babylatha, R; Navya, M C; Chakkaravarthi, A; Bhattacharya, Suvendu

    2018-03-01

    Dispersions having chickpea (37%, 40%, and 43%, w/w) and gum arabic (0%, 1%, 2%, 3%, 4%, and 5%, w/w) solids were prepared. These dispersion droplets were fried, and the physical, sensory, and microstructural characteristics of the fried products were determined. The oil content in the fried snack decreased up to 20.3% when the level of chickpea and/or gum in the dispersions was increased. The compression curve for fried snack showed 5 major zones and exhibited the failure phenomenon. Failure force (6.5 to 11.4 N) increased with chickpea flour in the dispersions. Fracture strain (12.0% to 19.5%) indicated that all the fried samples were soft-crisp products. An increase in chickpea flour concentration offered an ovoid/oblong shape of dispersion droplets while falling to oil, and changed the spherical shape of the fried snack. The near-spherical product could be obtained by using 37% chickpea flour containing 0 to 2% of gum arabic, or with the 40% and 0 to 1% combinations. The hue or dominant wavelength increased from 578.5 nm (flour) to 581.0 to 582.7 nm (product) indicating a shift toward red coloration. A porous microstructure with scattered small cavities and large vacuoles of the fried snack were observed; big vacuoles were located in the inner portion of the fried product. The cells were divided into closed and open cells and were characterized by image analysis. The air cells usually had an elliptical shape with varying sizes; the cell wall thickness was between 12 and 80 μm. An artificial neural network (ANN) structure of 2-9-2 was developed for the prediction of sensory overall acceptability and oil content of the fried snack. Chickpea flour is used in several food preparations. The addition of gum arabic affects the textural and structural characteristics, and the sensory acceptance; the fried dispersion droplets have a lower fat content when gum arabic is used compared to samples fried without the addition of gum arabic. The fried dispersion droplets change their shape with the level of the ingredients used in the dispersion. © 2018 Institute of Food Technologists®.

  16. Residual stresses in shape memory alloy fiber reinforced aluminium matrix composite

    NASA Astrophysics Data System (ADS)

    Tsz Loong, Tang; Jamian, Saifulnizan; Ismail, Al Emran; Nur, Nik Hisyammudin Muhd; Watanabe, Yoshimi

    2017-01-01

    Process-induced residual stress in shape memory alloy (SMA) fiber reinforced aluminum (Al) matrix composite was simulated by ANSYS APDL. The manufacturing process of the composite named as NiTi/Al is start with loading and unloading process of nickel titanium (NiTi) wire as SMA to generate a residual plastic strain. Then, this plastic deformed NiTi wire would be embedded into Al to become a composite. Lastly, the composite is heated form 289 K to 363 K and then cooled back to 300 K. Residual stress is generated in composite because of shape memory effect of NiTi and mismatch of thermal coefficient between NiTi wire and Al matrix of composite. ANSYS APDL has been used to simulate the distribution of residual stress and strain in this process. A sensitivity test has been done to determine the optimum number of nodes and elements used. Hence, the number of nodes and elements used are 15680 and 13680, respectively. Furthermore, the distribution of residual stress and strain of nickel fiber reinforced aluminium matrix composite (Ni/Al) and titanium fiber reinforced aluminium matrix composite (Ti/Al) under same simulation process also has been simulated by ANSYS APDL as comparison to NiTi/Al. The simulation results show that compressive residual stress is generated on Al matrix of Ni/Al, Ti/Al and NiTi/Al during heating and cooling process. Besides that, they also have similar trend of residual stress distribution but difference in term of value. For Ni/Al and Ti/Al, they are 0.4% difference on their maximum compressive residual stress at 363K. At same circumstance, NiTi/Al has higher residual stress value which is about 425% higher than Ni/Al and Ti/Al composite. This implies that shape memory effect of NiTi fiber reinforced in composite able to generated higher compressive residual stress in Al matrix, hence able to enhance tensile property of the composite.

  17. The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus

    NASA Astrophysics Data System (ADS)

    Zhang, Zuhua; Wang, Hao

    2016-08-01

    The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA) and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm) is considered. This “critical void model” is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.

  18. Numerical Investigation of the Macroscopic Mechanical Behavior of NiTi-Hybrid Composites Subjected to Static Load-Unload-Reload Path

    NASA Astrophysics Data System (ADS)

    Taheri-Behrooz, Fathollah; Kiani, Ali

    2017-04-01

    Shape memory alloys (SMAs) are a type of shape memory materials that recover large deformation and return to their primary shape by rising temperature. In the current research, the effect of embedding SMA wires on the macroscopic mechanical behavior of glass-epoxy composites is investigated through finite element simulations. A perfect interface between SMA wires and the host composite is assumed. Effects of various parameters such as SMA wires volume fraction, SMA wires pre-strain and temperature are investigated during loading-unloading and reloading steps by employing ANSYS software. In order to quantify the extent of induced compressive stress in the host composite and residual tensile stress in the SMA wires, a theoretical approach is presented. Finally, it was shown that smart structures fabricated using composite layers and pre-strained SMA wires exhibited overall stiffness reduction at both ambient and elevated temperatures which were increased by adding SMA volume fraction. Also, the induced compressive stress on the host composite was increased remarkably using 4% pre-strained SMA wires at elevated temperature. Results obtained by FE simulations were in good correlation with the rule of mixture predictions and available experimental data in the literature.

  19. Effect of acoustic radiation on the stability of spherical bubble oscillations

    NASA Astrophysics Data System (ADS)

    Gumerov, Nail A.

    1998-07-01

    A recent analysis of the stability of spherical bubble oscillations shows that the high order shape modes are parametrically unstable with respect to small but finite perturbations [Z. C. Feng and L. G. Leal, J. Fluid Mech. 266, 209 (1994)]. Using a heuristic approach it is shown here that the acoustic radiation due to the liquid compressibility plays an important role in stabilization of the high frequency modes and overall stability of the bubble spherical shape.

  20. Development of a method for the determination of caffeine anhydrate in various designed intact tablets [correction of tables] by near-infrared spectroscopy: a comparison between reflectance and transmittance technique.

    PubMed

    Ito, Masatomo; Suzuki, Tatsuya; Yada, Shuichi; Kusai, Akira; Nakagami, Hiroaki; Yonemochi, Etsuo; Terada, Katsuhide

    2008-08-05

    Using near-infrared (NIR) spectroscopy, an assay method which is not affected by such elements of tablet design as thickness, shape, embossing and scored line was developed. Tablets containing caffeine anhydrate were prepared by direct compression at various compression force levels using different shaped punches. NIR spectra were obtained from these intact tablets using the reflectance and transmittance techniques. A reference assay was performed by high-performance liquid chromatography (HPLC). Calibration models were generated by the partial least-squares (PLS) regression. Changes in the tablet thickness, shape, embossing and scored line caused NIR spectral changes in different ways, depending on the technique used. As a result, noticeable errors in drug content prediction occurred using calibration models generated according to the conventional method. On the other hand, when the various tablet design elements which caused the NIR spectral changes were included in the model, the prediction of the drug content in the tablets was scarcely affected by those elements when using either of the techniques. A comparison of these techniques resulted in higher predictability under the tablet design variations using the transmittance technique with preferable linearity and accuracy. This is probably attributed to the transmittance spectra which sensitively reflect the differences in tablet thickness or shape as a result of obtaining information inside the tablets.

  1. Development, characterization, and modeling of ballistic impact on composite laminates under compressive pre-stress

    NASA Astrophysics Data System (ADS)

    Kerr-Anderson, Eric

    Structural composite laminates were ballistically impacted while under in-plane compressive pre-stress. Residual properties, damage characterization, and energy absorption were compared to determine synergistic effects of in-plane compressive pre-stress and impact velocity. A fixture was developed to apply in-plane compressive loads up to 30 tons to structural composites during an impact event using a single-stage light-gas gun. Observed failure modes included typical conical delamination, the development of an impact initiated shear crack (IISC), and the shear failure of a pre-stressed composite due to impact. It was observed that the compressive failure threshold quadratically decreased in relation to the impact velocity up to velocities that caused partial penetration. For all laminates impacted at velocities causing partial or full penetration up to 350 ms-1, the failure threshold was consistent and used as an experimental normalization. Samples impacted below 65% of the failure threshold witnessed no significant change in damage morphology or residual properties when compared to typical conical delamination. Samples impacted above 65% of the failure threshold witnessed additional damage in the form of a shear crack extending perpendicular to the applied load from the point of impact. The presence of an IISC reduced the residual properties and even caused failure upon impact at extreme combinations. Four failure envelopes have been established as: transient failure, steady state failure, impact initiated shear crack, and conical damage. Boundaries and empirically based equations for residual compressive strength have been developed for each envelope with relation to two E-glass/vinyl ester laminate systems. Many aspects of pre-stressed impact have been individually examined, but there have been no comprehensive examinations of pre-stressed impact. This research has resulted in the exploration and characterization of compressively pre-stressed damage for impact velocities resulting in reflection, partial penetration, and penetration at pre-stress levels resulting in conical damage, shear cracking, and failure.

  2. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development ofmore » these technologies, should DOE choose to support non-vapor-compression technology further.« less

  3. 2D-RBUC for efficient parallel compression of residuals

    NASA Astrophysics Data System (ADS)

    Đurđević, Đorđe M.; Tartalja, Igor I.

    2018-02-01

    In this paper, we present a method for lossless compression of residuals with an efficient SIMD parallel decompression. The residuals originate from lossy or near lossless compression of height fields, which are commonly used to represent models of terrains. The algorithm is founded on the existing RBUC method for compression of non-uniform data sources. We have adapted the method to capture 2D spatial locality of height fields, and developed the data decompression algorithm for modern GPU architectures already present even in home computers. In combination with the point-level SIMD-parallel lossless/lossy high field compression method HFPaC, characterized by fast progressive decompression and seamlessly reconstructed surface, the newly proposed method trades off small efficiency degradation for a non negligible compression ratio (measured up to 91%) benefit.

  4. Surface integrity on grinding of gamma titanium aluminide intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Murtagian, Gregorio Roberto

    Gamma-TiAl is an ordered intermetallic compound characterized by high strength to density ratio, good oxidation resistance, and good creep properties at elevated temperatures. However, it is intrinsically brittle at room temperature. This thesis investigates the potential for the use of grinding to process TiAl into useful shapes. Grinding is far from completely understood, and many aspects of the individual mechanical interactions of the abrasive grit with the material and their effect on surface integrity are unknown. The development of new synthetic diamond superabrasives in which shape and size can be controlled raises the question of the influence of those variables on the surface integrity. The goal of this work is to better understand the fundamentals of the abrasive grit/material interaction in grinding operations. Experimental, analytical, and numerical work was done to characterize and predict the resultant deformation and surface integrity on ground lamellar gamma-TiAl. Grinding tests were carried out, by analyzing the effects of grit size and shape, workpiece speed, wheel depth of cut, and wear on the subsurface plastic deformation depth (PDD). A practical method to assess the PDD is introduced based on the measurement of the lateral material flow by 3D non-contact surface profilometry. This method combines the quantitative capabilities of the microhardness measurement with the sensitivity of Nomarski microscopy. The scope and limitations of this technique are analyzed. Mechanical properties were obtained by quasi-static and split Hopkinson bar compression tests. Residual stress plots were obtained by x-ray, and surface roughness and cracking were evaluated. The abrasive grit/material interaction was accounted by modeling the force per abrasive grit for different grinding conditions, and studying its correlation to the PDD. Numerical models of this interaction were used to analyze boundary conditions, and abrasive size effects on the PDD. An explicit 2D triple planar slip crystal plasticity model of single point scratching was used to analyze the effects of lamellae orientation, material anisotropy, and grain boundaries on the deformation.

  5. A representation for the turbulent mass flux contribution to Reynolds-stress and two-equation closures for compressible turbulence

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.

    1993-01-01

    The turbulent mass flux, or equivalently the fluctuating Favre velocity mean, appears in the first and second moment equations of compressible kappa-epsilon and Reynolds stress closures. Mathematically it is the difference between the unweighted and density-weighted averages of the velocity field and is therefore a measure of the effects of compressibility through variations in density. It appears to be fundamental to an inhomogeneous compressible turbulence, in which it characterizes the effects of the mean density gradients, in the same way the anisotropy tensor characterizes the effects of the mean velocity gradients. An evolution equation for the turbulent mass flux is derived. A truncation of this equation produces an algebraic expression for the mass flux. The mass flux is found to be proportional to the mean density gradients with a tensor eddy-viscosity that depends on both the mean deformation and the Reynolds stresses. The model is tested in a wall bounded DNS at Mach 4.5 with notable results.

  6. Lightweight, Self-Deployable Wheels

    NASA Technical Reports Server (NTRS)

    Chmielewski, Artur; Sokolowski, Witold; Rand, Peter

    2003-01-01

    Ultra-lightweight, self-deployable wheels made of polymer foams have been demonstrated. These wheels are an addition to the roster of cold hibernated elastic memory (CHEM) structural applications. Intended originally for use on nanorovers (very small planetary-exploration robotic vehicles), CHEM wheels could also be used for many commercial applications, such as in toys. The CHEM concept was reported in "Cold Hibernated Elastic Memory (CHEM) Expandable Structures" (NPO-20394), NASA Tech Briefs, Vol. 23, No. 2 (February 1999), page 56. To recapitulate: A CHEM structure is fabricated from a shape-memory polymer (SMP) foam. The structure is compressed to a very small volume while in its rubbery state above its glass-transition temperature (Tg). Once compressed, the structure can be cooled below Tg to its glassy state. As long as the temperature remains

  7. Effect of waste banner as fiber on mechanical properties of concrete

    NASA Astrophysics Data System (ADS)

    Rahmawati, Anis; Saputro, Ida Nugroho

    2017-06-01

    Banner is broadly used as advertisement media and event backdrop that is usually only used at one moment, resulting to a lot of waste banners. Banner made from nylon fiber is covered by polyvinyl. Nylon is well known as a material with high tensile strength. This research was done as a preliminary investigation on the opportunity of using the waste banner as fiber material of concrete by evaluating its mechanical properties, namely compressive and flexural strength. Research conducted by making cylinder shape specimens of 15 mm in diameter and 300 mm in height for the compressive strength test. While the specimen shape for flexural strength test was a rectangular prism with dimension of 150 mm in height, 150 mm in width, and 600 mm in length. Fiber generated from waste banner was added in concrete mixtures with percentage of 0.00%, 0.20%, 0.40%, 0.60%, 0.80%, and 1.00% by weight of concrete. The concrete strength was tested at 28 days after standard moisture and temperature curing. Experimental results indicated that the addition of 0.20% of waste banner obtained the highest compressive strength that was 21.967 Mpa, while 0.40% of waste banner obtained the highest flexural strength of 4.663 Mpa.

  8. [Arthrodesis of the shoulder. A new and soft-tissue-sparing technique with a deep locking plate in the supraspinatus fossa].

    PubMed

    Klonz, A; Habermeyer, P

    2007-10-01

    Arthrodesis of the glenohumeral joint is a difficult intervention that involves a relatively high probability of complications. A stable internal fixation and secure consolidation is required. The operation needs to achieve several conditions: thorough denudation of the cartilage and partial decortication of the subchondral bone; good congruence of the corresponding surfaces; compression of the gap by tension screws and lasting stability. For increased primary stability a neutralizing plate is generally used as well as a compression screw. Up to now, the plate has usually been applied starting from the scapular spine and extending across the acromial corner to the humeral shaft. A wide exposure is needed for this procedure; the plate is difficult to shape during the operation and often causes some discomfort because it protrudes at the acromial corner. We present an alternative position of the plate in the supraspinatus fossa, where we have sited a 4.5 mm LCP locking plate (Synthes). The implant is inserted under the acromion, does not cause any discomfort at the acromial corner, and is far easier to shape. When it is used in association with a transarticular compressive screw, the technique results in a very stable situation, which allows physiotherapy from the first day after surgery onward.

  9. The Degeneration of Meniscus Roots Is Accompanied by Fibrocartilage Formation, Which May Precede Meniscus Root Tears in Osteoarthritic Knees.

    PubMed

    Park, Do Young; Min, Byoung-Hyun; Choi, Byung Hyune; Kim, Young Jick; Kim, Mijin; Suh-Kim, Haeyoung; Kim, Joon Ho

    2015-12-01

    Fibrocartilage metaplasia in tendons and ligaments is an adaptation to compression as well as a pathological feature during degeneration. Medial meniscus posterior roots are unique ligaments that resist multidirectional forces, including compression. To characterize the degeneration of medial meniscus posterior root tears in osteoarthritic knees, with an emphasis on fibrocartilage and calcification. Cross-sectional study; Level of evidence, 3. Samples of medial meniscus posterior roots were harvested from cadaveric specimens and patients during knee replacement surgery and grouped as follows: normal reference, no tear, partial tear, and complete tear. Degeneration was analyzed with histology, immunohistochemistry, and real-time polymerase chain reaction. Uniaxial tensile tests were performed on specimens with and without fibrocartilage. Quantifiable data were statistically analyzed by the Kruskal-Wallis test with the Dunn comparison test. Thirty, 28, and 42 samples harvested from 99 patients were allocated into the no tear, partial tear, and complete tear groups, respectively. Mean modified Bonar tendinopathy scores for each group were 3.97, 9.31, and 14.15, respectively, showing a higher degree of degeneration associated with the extent of the tear (P < .05 for all groups). The characterization of root matrices revealed an increase in fibrocartilage according to the extent of the tear. Tear margins revealed fibrocartilage in 59.3% of partial tear samples and 76.2% of complete tear samples, with a distinctive cleavage-like shape. Root tears with a similar shape were induced within fibrocartilaginous areas during uniaxial tensile testing. Even in the no tear group, 56.7% of samples showed fibrocartilage in the anterior margin of the root, adjacent to the meniscus. An increased stained area of calcification and expression of the ectonucleotide pyrophosphatase/phosphodiesterase 1 gene were observed in the complete tear group compared with the no tear group (P < .0001 and P = .24, respectively). Fibrocartilage and calcification increased in medial meniscus posterior roots, associated with the degree of the tear. Both findings, which impair the ligament's resistance to tension, may play a pivotal role during the pathogenesis of degenerative meniscus root tears in osteoarthritic knees. Fibrocartilage and calcification may be useful as diagnostic markers as well as markers of degeneration, which may aid in determining the treatment modality in meniscus root tears. The presence of fibrocartilage in intact roots may suggest an impending tear in osteoarthritic knees. © 2015 The Author(s).

  10. Present-day stress tensors along the southern Caribbean plate boundary zone from inversion of focal mechanism solutions: A successful trial

    NASA Astrophysics Data System (ADS)

    Audemard M., Franck A.; Castilla, Raymi

    2016-11-01

    This paper presents a compilation of 16 present-day stress tensors along the southern Caribbean plate boundary zone (PBZ), and particularly in western and along northern Venezuela. As a trial, these new stress tensors along PBZ have been calculated from inversion of 125 focal mechanism solutions (FMS) by applying the Angelier & Mechler's dihedral method, which were originally gathered by the first author and published in 2005. These new tensors are compared to those 59 tensors inverted from fault-slip data measured only in Plio-Quaternary sedimentary rocks, compiled in Audemard et al. (2005), which were originally calculated by several researchers through the inversion methods developed by Angelier and Mechler or Etchecopar et al. The two sets of stress tensors, one derived from geological data and the other one from seismological data, compare very well throughout the PBZ in terms of both stress orientation and shape of the stress tensor. This region is characterized by a compressive strike-slip (transpressional senso lato), occasionally compressional, regime from the southern Mérida Andes on the southwest to the gulf of Paria in the east. Significant changes in direction of the maximum horizontal stress (σH = σ1) can be established along it though. The σ1 direction varies progressively from nearly east-west in the southern Andes (SW Venezuela) to between NW-SE and NNW-SSE in northwestern Venezuela; this direction remaining constant across northern Venezuela, from Colombia to Trinidad. In addition, the σV defined by inversion of focal mechanisms or by the shape of the stress ellipsoid derived from the Etchecopar et al.'s method better characterize whether the stress regime is transpressional or compressional, or even very rarely trantensional at local scale. The orientation and space variation of this regional stress field in western Venezuela results from the addition of the two major neighbouring interplate maximum horizontal stress orientations (σH): roughly east-west trending stress across the Nazca-South America type-B subduction along the pacific coast of Colombia and NNW-SSE oriented one across the southern Caribbean PBZ. Meanwhile, northern Venezuela, although dextral strike-slip (SS) is the dominant process, NW-SE to NNW-SSE compression is also taking place, which are both also supported by recent GPS results.

  11. Permanently densified SiO2 glasses: a structural approach.

    PubMed

    Martinet, C; Kassir-Bodon, A; Deschamps, T; Cornet, A; Le Floch, S; Martinez, V; Champagnon, B

    2015-08-19

    Densified silica can be obtained by different pressure and temperature paths and for different stress conditions, hydrostatic or including shear. The density is usually the macroscopic parameter used to characterize the different compressed silica samples. The aim of our present study is to compare structural modifications for silica glass, densified from several routes. For this, densified silica glasses are prepared from cold and high temperature (up to 1020 °C) compressions. The different densified glasses obtained in our study are characterized by micro-Raman spectroscopy. Intertetrahedral angles from the main band relative to the bending mode decrease and their values are larger for densified samples from high temperature compression than those samples from cold compression. The relative amount of 3-membered rings deduced from the D2 line area increases as a function of density for cold compression. The temperature increase during the compression process induces a decrease of the 3 fold ring population. Moreover, 3 fold rings are more deformed and stressed for densified samples at room temperature at the expense of those densified at high temperature. Temperature plays a main role in the reorganization structure during the densification and leads to obtaining a more relaxed structure with lower stresses than glasses densified from cold compression. The role of hydrostatic or non-hydrostatic applied stresses on the glass structure is discussed. From the Sen and Thorpe central force model, intertetrahedral angle average value and their distribution are estimated.

  12. Ultra Low Density and Highly Crosslinked Biocompatible Shape Memory Polyurethane Foams

    PubMed Central

    Singhal, Pooja; Rodriguez, Jennifer N.; Small, Ward; Eagleston, Scott; Van de Water, Judy; Maitland, Duncan J.; Wilson, Thomas S.

    2012-01-01

    We report the development of highly chemically crosslinked, ultra low density (~0.015 g/cc) polyurethane shape memory foams synthesized from symmetrical, low molecular weight and branched hydroxyl monomers. Sharp single glass transitions (Tg) customizable in the functional range of 45–70 °C were achieved. Thermomechanical testing confirmed shape memory behavior with 97–98% shape recovery over repeated cycles, a glassy storage modulus of 200–300 kPa and recovery stresses of 5–15 kPa. Shape holding tests under constrained storage above the Tg showed stable shape memory. A high volume expansion of up to 70 times was seen on actuation of these foams from a fully compressed state. Low in-vitro cell activation induced by the foam compared to controls demonstrates low acute bio-reactivity. We believe these porous polymeric scaffolds constitute an important class of novel smart biomaterials with multiple potential applications. PMID:22570509

  13. Comparison of different constitutive models to characterize the viscoelastic properties of human abdominal adipose tissue. A pilot study.

    PubMed

    Calvo-Gallego, Jose L; Domínguez, Jaime; Gómez Cía, Tomás; Gómez Ciriza, Gorka; Martínez-Reina, Javier

    2018-04-01

    Knowing the mechanical properties of human adipose tissue is key to simulate surgeries such as liposuction, mammoplasty and many plastic surgeries in which the subcutaneous fat is present. One of the most important surgeries, for its incidence, is the breast reconstruction surgery that follows a mastectomy. In this case, achieving a deformed shape similar to the healthy breast is crucial. The reconstruction is most commonly made using autologous tissue, taken from the patient's abdomen. The amount of autologous tissue and its mechanical properties have a strong influence on the shape of the reconstructed breast. In this work, the viscoelastic mechanical properties of the human adipose tissue have been studied. Uniaxial compression stress relaxation tests were performed in adipose tissue specimens extracted from the human abdomen. Two different viscoelastic models were used to fit to the experimental tests: a quasi-linear viscoelastic (QLV) model and an internal variables viscoelastic (IVV) model; each one with four different hyperelastic strain energy density functions to characterise the elastic response: a 5-terms polynomial function, a first order Ogden function, an isotropic Gasser-Ogden-Holzapfel function and a combination of a neoHookean and an exponential function. The IVV model with the Ogden function was the best combination to fit the experimental tests. The viscoelastic properties are not important in the simulation of the static deformed shape of the breast, but they are needed in a relaxation test performed under finite strain rate, particularly, to derive the long-term behaviour (as time tends to infinity), needed to estimate the static deformed shape of the breast. The so obtained stiffness was compared with previous results given in the literature for adipose tissue of different regions, which exhibited a wide dispersion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Flow-through compression cell for small-angle and ultra-small-angle neutron scattering measurements

    NASA Astrophysics Data System (ADS)

    Hjelm, Rex P.; Taylor, Mark A.; Frash, Luke P.; Hawley, Marilyn E.; Ding, Mei; Xu, Hongwu; Barker, John; Olds, Daniel; Heath, Jason; Dewers, Thomas

    2018-05-01

    In situ measurements of geological materials under compression and with hydrostatic fluid pressure are important in understanding their behavior under field conditions, which in turn provides critical information for application-driven research. In particular, understanding the role of nano- to micro-scale porosity in the subsurface liquid and gas flow is critical for the high-fidelity characterization of the transport and more efficient extraction of the associated energy resources. In other applications, where parts are produced by the consolidation of powders by compression, the resulting porosity and crystallite orientation (texture) may affect its in-use characteristics. Small-angle neutron scattering (SANS) and ultra SANS are ideal probes for characterization of these porous structures over the nano to micro length scales. Here we show the design, realization, and performance of a novel neutron scattering sample environment, a specially designed compression cell, which provides compressive stress and hydrostatic pressures with effective stress up to 60 MPa, using the neutron beam to probe the effects of stress vectors parallel to the neutron beam. We demonstrate that the neutron optics is suitable for the experimental objectives and that the system is highly stable to the stress and pressure conditions of the measurements.

  15. Characterization of refractory brick based on local raw material from Lampung Province - Indonesia

    NASA Astrophysics Data System (ADS)

    Amin, Muhammad; Suryana, Yayat I.; Isnugroho, Kusno; Aji, Bramantyo B.; Birawidha, David C.; Hendronursito, Yusup

    2018-04-01

    Refractories are non-metallic inorganic materials that are difficult to melt at high temperatures and used in high-temperature casting industries. Refractories are classified into their constituent mineral feed stocks, refractories having typical plot properties commonly called fire bricks. In the manufacture of refractory bricks that exist in the market during the use of mangrove materials derived from abroad that is from China. In this research the refractory brick materials used are quartz sand, feldspart, kaolin, bentonite, and ball clay. All materials come from local Lampung Province - Indonesia. The experiment, there are 7 kinds of experimental composition, made of plot shape with size 230 mm, 65 mm in thickness, 114 mm height mould using manual press machine with 10 tons power and burning at 1400°C for 5 hours. Refractory brick product is done by physical test in the form of porosity, specific gravity, compressive strength and XRF and SEM characteristics. The result of XRF characteristic of refractory brick composition of 1 to 5 compared to the refractory brick type SK 34 in the market and the result of composition 1 is a composition close to refractory brick composition type SK 34 namely SiO2 is 54.21 %, Al2O3 is 25.38 % and test Physical of Bulk density is 2.25 g/cm3, porosity is 18.98 % and compressive strength is 325 kg/cm2.

  16. In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering.

    PubMed

    Gupta, Ashim; Main, Benjamin J; Taylor, Brittany L; Gupta, Manu; Whitworth, Craig A; Cady, Craig; Freeman, Joseph W; El-Amin, Saadiq F

    2014-11-01

    The purpose of this study was to develop three-dimensional single-walled carbon nanotube composites (SWCNT/PLAGA) using 10-mg single-walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3-E1 cells via cell adhesion, growth, survival, proliferation, and gene expression. PLAGA (polylactic-co-glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated, characterized, and mechanical testing was performed. MC3T3-E1 cells were seeded and cell adhesion/morphology, growth/survival, proliferation, and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3-E1 cells adhered, grew/survived, and exhibited normal, nonstressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared with PLAGA. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration, for bone tissue engineering, and are promising for orthopedic applications as they possess the combined effect of increased mechanical strength, cell proliferation, and gene expression. © 2014 Wiley Periodicals, Inc.

  17. Fabrication and cytocompatibility of spherical magnesium ammonium phosphate granules.

    PubMed

    Christel, Theresa; Geffers, Martha; Klammert, Uwe; Nies, Berthold; Höß, Andreas; Groll, Jürgen; Kübler, Alexander C; Gbureck, Uwe

    2014-09-01

    Magnesium phosphate compounds, as for example struvite (MgNH4PO4·6H2O), have comparable characteristics to calcium phosphate bone substitutes, but degrade faster under physiological conditions. In the present work, we used a struvite forming calcium doped magnesium phosphate cement with the formulation Ca0.75Mg2.25(PO4)2 and an ammonium phosphate containing aqueous solution to produce round-shaped granules. For the fabrication of spherical granules, the cement paste was dispersed in a lipophilic liquid and stabilized by surfactants. The granules were characterized with respect to morphology, size distribution, phase composition, compressive strength, biocompatibility and solubility. In general, it was seen that small granules can hardly be produced by means of emulsification, when the raw material is a hydraulic paste, because long setting times promote coalescence of initially small unhardened cement droplets. Here, this problem was solved by using an aqueous solution containing both the secondary (NH4)2HPO4 and primary ammonium phosphates NH4H2PO4 to accelerate the setting reaction. This resulted in granules with 97 wt.% having a size in the range between 200 and 1,000 μm. The novel solution composition doubled the compressive strength of the cement to 37 ± 5 MPa without affecting either the conversion to struvite or the cytocompatibility using human fetal osteoblasts. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Microlabels For Auto Parts

    NASA Technical Reports Server (NTRS)

    Ash, John P.

    1993-01-01

    Proposed method of unique labeling and identification of automotive parts greatly simplifies recall campaigns and reduces effort and expense associated. Compressed symbols fully characterize each part by type and manufacturing history. Manufacturers notify only those owners whose cars need repairs or modifications. Similar compressed symbology developed for possible use on spacecraft.

  19. Fatigue Characterization of Fire Resistant Syntactic Foam Core Material

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Mynul

    Eco-Core is a fire resistant material for sandwich structural application; it was developed at NC A&T State University. The Eco-Core is made of very small amount of phenolic resin and large volume of flyash by a syntactic process. The process development, static mechanical and fracture, fire and toxicity safety and water absorption properties and the design of sandwich structural panels with Eco-Core material was established and published in the literature. One of the important properties that is needed for application in transportation vehicles is the fatigue performance under different stress states. Fatigue data are not available even for general syntactic foams. The objective of this research is to investigate the fatigue performance of Eco-Core under three types of stress states, namely, cyclic compression, shear and flexure, then document failure modes, and develop empherical equations for predicting fatigue life of Eco-Core under three stress states. Compression-Compression fatigue was performed directly on Eco-Core cylindrical specimen, whereas shear and flexure fatigue tests were performed using sandwich beam made of E glass-Vinyl Ester face sheet and Eco-Core material. Compression-compression fatigue test study was conducted at two values of stress ratios (R=10 and 5), for the maximum compression stress (sigmamin) range of 60% to 90% of compression strength (sigmac = 19.6 +/- 0.25 MPa) for R=10 and 95% to 80% of compression strength for R=5. The failure modes were characterized by the material compliance change: On-set (2% compliance change), propagation (5%) and ultimate failure (7%). The number of load cycles correspond to each of these three damages were characterized as on-set, propagation and total lives. A similar approach was used in shear and flexure fatigue tests with stress ratio of R=0.1. The fatigue stress-number of load cycles data followed the standard power law equation for all three stress states. The constant of the equation were established for the three stress states and three types of the failure modes. This equation was used to estimate endurance limit (106 cycles) of the material. Like metallic materials, the compression fatigue life of Eco-Core was found to be dependent on the stress range instead of maximum or mean cyclic stress. Furthermore shear and flexural ultimate failure of the core material was found to be due to a combination of shear and tensile stress.

  20. Demonstration of radiation pulse shaping with nested-tungsten-wire-array pinches for high-yield inertial confinement fusion.

    PubMed

    Cuneo, M E; Vesey, R A; Sinars, D B; Chittenden, J P; Waisman, E M; Lemke, R W; Lebedev, S V; Bliss, D E; Stygar, W A; Porter, J L; Schroen, D G; Mazarakis, M G; Chandler, G A; Mehlhorn, T A

    2005-10-28

    Nested wire-array pinches are shown to generate soft x-ray radiation pulse shapes required for three-shock isentropic compression and hot-spot ignition of high-yield inertial confinement fusion capsules. We demonstrate a reproducible and tunable foot pulse (first shock) produced by interaction of the outer and inner arrays. A first-step pulse (second shock) is produced by inner array collision with a central CH2 foam target. Stagnation of the inner array at the axis produces the third shock. Capsules optimized for several of these shapes produce 290-900 MJ fusion yields in 1D simulations.

  1. PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES

    DOEpatents

    Hamilton, N.E.

    1957-12-01

    A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.

  2. Broadband spectral shaping in regenerative amplifier based on modified polarization-encoded chirped pulse amplification

    NASA Astrophysics Data System (ADS)

    Wang, Xinliang; Lu, Xiaoming; Liu, Yanqi; Xu, Yi; Wang, Cheng; Li, Shuai; Yu, Linpeng; Liu, Xingyan; Liu, Keyang; Xu, Rongjie; Leng, Yuxin

    2018-06-01

    We present an intra-cavity spectral shaping method to suppress the spectral narrowing in a Ti:sapphire (Ti:Sa) regenerative amplifier. The spectral shaping is realized by manipulating the stored energies of two Ti:Sa crystals with orthogonal c-axes, changing the length of a quartz plate, and rotating a broadband achromatic half-wave plate. Using this method, in our proof-of-concept experiment, an 84-nm-(FWHM)-broadband amplified pulse with an energy gain larger than 106 is obtained, which supports a 17.8 fs Fourier-transform-limited pulse duration. The pulse is compressed to 18.9 fs.

  3. Research on relation between bending stress and characteristic frequency of H-shaped beam by free vibration deflection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Tsutomu; Watanabe, Takeshi

    2014-05-27

    In order to investigate a relation between a bending stress and a characteristic frequency of a beam, 4-point loading which had constant moment region was conducted to a beam with H shape configuration experimentally and numerically. H-shaped beam has many characteristic deformation modes. Axial tensile stress in the beam made its characteristic frequency higher, and compressive stress lower. In the experiment, some characteristic frequencies got higher by a bending stress, and the others stayed in a small frequency fluctuation. The distinction is anticipated as a capability to measure a bending stress of a beam by its characteristic frequencies.

  4. Optical Measurement Technology For Aluminium Extrusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Per Thomas; Willa-Hansen, Arnfinn; Stoeren, Sigurd

    2007-04-07

    Optical measurement techniques such as laser scanning, structured light scanning and photogrammetry can be used for accurate shape control for aluminum extrusion and downstream processes. The paper presents the fundamentals of optical shape measurement. Furthermore, it focuses on how full-field in- and off-line shape measurement during pure-bending of aluminum extrusions has been performed with stripe projection (structured light) using white light. Full field shape measurement is difficult to implement industrially, but is very useful as a laboratory tool. For example, it has been clearly shown how moderate internal air pressure (less than 5 bars) can significantly reduce undesirable cross-sectional shapemore » distortions during pure bending, and how buckling of the compressive flange occurs at an early stage. Finally, a stretch-bending set-up with adaptive shape control using internal gas pressure and optical techniques is presented.« less

  5. An Introduction to Structural Reliability Theory

    DTIC Science & Technology

    1989-01-01

    Test Samples psi COV Distribution Remarks Yield stress 66 (XX 0.09 assumed lognormal mill test I containment vesel SA537 GrB Yield stress 󈧗 6W8...straightened shape Tension :32 57.909 0.089 cold straightened shape Tension 9 84.039 0.1124 annealed , alloy steel Tension 9 124,9 0.1796 . quenched...alloys, annealed and quenched, and drawn samples Tension 22 29.50 X 103 0.0072 .. structural steel Compression 22 29.49 X 103 0.0146 ... structural

  6. Wrinkles, folds, and plasticity in granular rafts

    NASA Astrophysics Data System (ADS)

    Jambon-Puillet, Etienne; Josserand, Christophe; Protière, Suzie

    2017-09-01

    We investigate the mechanical response of a compressed monolayer of large and dense particles at a liquid-fluid interface: a granular raft. Upon compression, rafts first wrinkle; then, as the confinement increases, the deformation localizes in a unique fold. This characteristic buckling pattern is usually associated with floating elastic sheets, and as a result, particle laden interfaces are often modeled as such. Here, we push this analogy to its limits by comparing quantitative measurements of the raft morphology to a theoretical continuous elastic model of the interface. We show that, although powerful to describe the wrinkle wavelength, the wrinkle-to-fold transition, and the fold shape, this elastic description does not capture the finer details of the experiment. We describe an unpredicted secondary wavelength, a compression discrepancy with the model, and a hysteretic behavior during compression cycles, all of which are a signature of the intrinsic discrete and frictional nature of granular rafts. It suggests also that these composite materials exhibit both plastic transition and jamming dynamics.

  7. Compressible flow about symmetrical Joukowski profiles

    NASA Technical Reports Server (NTRS)

    Kaplan, Carl

    1938-01-01

    The method of Poggi is employed for the determination of the effects of compressibility upon the flow past an obstacle. A general expression for the velocity increment due to compressibility is obtained. The general result holds whatever the shape of the obstacle; but, in order to obtain the complete solution, it is necessary to know a certain Fourier expansion of the square of the velocity of flow past the obstacle. An application is made to the case flow of a symmetrical Joukowski profile with a sharp trailing edge, fixed in a stream of an arbitrary angle of attack and with the circulation determined by the Kutta condition. The results are obtained in a closed form and are exact insofar as the second approximation to the compressible flow is concerned, the first approximation being the result for the corresponding incompressible flow. Formulas for lift and moment analogous to the Blasius formulas in incompressible flow are developed and are applied to thin symmetrical Joukowski profiles for small angles of attack.

  8. Modification of flow and compressibility of corn starch using quasi-emulsion solvent diffusion method.

    PubMed

    Akhgari, Abbas; Sadeghi, Hasti; Dabbagh, Mohammad Ali

    2014-08-01

    The aim of this study was to improve flowability and compressibility characteristics of starch to use as a suitable excipient in direct compression tabletting. Quasi-emulsion solvent diffusion was used as a crystal modification method. Corn starch was dissolved in hydrochloric acid at 80°C and then ethanol as a non-solvent was added with lowering temperature until the formation of a precipitate of modified starch. Flow parameters, particle size and thermal behavior of the treated powders were compared with the native starch. Finally, the 1:1 mixture of naproxen and each excipient was tabletted, and hardness and friability of different tablets were evaluated. Larger and well shaped agglomerates were formed which showed different thermal behavior. Treated starch exhibited suitable flow properties and tablets made by the treated powder had relatively high hardness. It was found that recrystallization of corn starch by quasi emulsion solvent diffusion method could improve its flowability and compressibility characteristics.

  9. From few-cycle femtosecond pulse to single attosecond pulse-controlling and tracking electron dynamics with attosecond precision

    NASA Astrophysics Data System (ADS)

    Wang, He

    The few-cycle femtosecond laser pulse has proved itself to be a powerful tool for controlling the electron dynamics inside atoms and molecules. By applying such few-cycle pulses as a driving field, single isolated attosecond pulses can be produced through the high-order harmonic generation process, which provide a novel tool for capturing the real time electron motion. The first part of the thesis is devoted to the state of the art few-cycle near infrared (NIR) laser pulse development, which includes absolute phase control (carrier-envelope phase stabilization), amplitude control (power stabilization), and relative phase control (pulse compression and shaping). Then the double optical gating (DOG) method for generating single attosecond pulses and the attosecond streaking experiment for characterizing such pulses are presented. Various experimental limitations in the attosecond streaking measurement are illustrated through simulation. Finally by using the single attosecond pulses generated by DOG, an attosecond transient absorption experiment is performed to study the autoionization process of argon. When the delay between a few-cycle NIR pulse and a single attosecond XUV pulse is scanned, the Fano resonance shapes of the argon autoionizing states are modified by the NIR pulse, which shows the direct observation and control of electron-electron correlation in the temporal domain.

  10. Fabrication of a Low Density Carbon Fiber Foam and Its Characterization as a Strain Gauge

    PubMed Central

    Luhrs, Claudia C.; Daskam, Chris D.; Gonzalez, Edwin; Phillips, Jonathan

    2014-01-01

    Samples of carbon nano-fiber foam (CFF), essentially a 3D solid mat of intertwined nanofibers of pure carbon, were grown using the Constrained Formation of Fibrous Nanostructures (CoFFiN) process in a steel mold at 550 °C from a palladium particle catalysts exposed to fuel rich mixtures of ethylene and oxygen. The resulting material was studied using Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), Surface area analysis (BET), and Thermogravimetric Analysis (TGA). Transient and dynamic mechanical tests clearly demonstrated that the material is viscoelastic. Concomitant mechanical and electrical testing of samples revealed the material to have electrical properties appropriate for application as the sensing element of a strain gauge. The sample resistance versus strain values stabilize after a few compression cycles to show a perfectly linear relationship. Study of microstructure, mechanical and electrical properties of the low density samples confirm the uniqueness of the material: It is formed entirely of independent fibers of diverse diameters that interlock forming a tridimensional body that can be grown into different shapes and sizes at moderate temperatures. It regains its shape after loads are removed, is light weight, presents viscoelastic behavior, thermal stability up to 550 °C, hydrophobicity, and is electrically conductive. PMID:28788644

  11. Morphological and mechanical analyses of laminates manufactured from randomly positioned carbon fibre/epoxy resin prepreg scraps

    NASA Astrophysics Data System (ADS)

    Souza, Christiane S. R.; Cândido, Geraldo M.; Alves, Wellington; Marlet, José Maria F.; Rezende, Mirabel C.

    2017-10-01

    This study aims to contribute to sustainability by proposing the reuse of composite prepreg scrap as an added value from discards. The research evaluates the microstructure and mechanical properties of laminates processed by the reuse of uncured carbon fibre/F155-epoxy resin prepreg scraps, waste from the ply cutting area of an aeronautical industry. The composite scraps were used as collected and were randomly positioned to produce laminates to be cured at an autoclave. The mechanical characterization shows a decrease of 39% for the compression property due to the discontinuous fibres in the laminate and an increase of 34% for the interlaminar shear strength, when compared to continuous fibre laminates. This increase is attributed to the higher crosslink density of the epoxy resin, as a result of the cure temperature used in autoclave (60 °C higher than suggested by supplier) and also to the randomly positioned scraps. Microscopic analyses confirm the consolidation of laminates, although show resin rich areas with different sizes and shapes attributed to the overlapping of the scraps with different sizes and shapes. These resin rich areas may contribute to decrease the mechanical properties of laminates. The correlation between mechanical and morphological results shows potential to be used on non-critical structural application, as composite jigs, contributing to sustainability.

  12. CT angiography for one-year follow-up of intracranial aneurysms treated with the WEB device: Utility in evaluating aneurysm occlusion and WEB compression at one year.

    PubMed

    Raoult, Hélène; Eugène, François; Le Bras, Anthony; Mineur, Géraldine; Carsin-Nicol, Béatrice; Ferré, Jean-Christophe; Gauvrit, Jean-Yves

    2018-03-07

    The WEB is an innovative flow disruption device for cerebral aneurysm embolization with rapidly expanding indications. Our purpose was to evaluate the diagnostic performance of computed tomography angiography (CTA) at 1-year follow-up of aneurysms treated with the WEB. Between April 2014 and May 2016, the study prospectively included patients treated with the WEB at our institution, and followed up within 24hours by CTA and at 1year by CTA, time-of-flight magnetic resonance angiography (TOF MRA) and digital subtraction angiography (DSA). The diagnostic quality of imaging data was assessed based on the confidence index, artifacts, and WEB shape depiction. The imaging diagnostic performance was assessed using 3 criteria at 1year: aneurysm occlusion status and worsening, and WEB shape compression. Interobserver and intermodality agreement was determined by calculating κ values. The study ultimately included 16 patients (9 women, mean age 53±7.6years). CTA quality confidence was scored as 2/2, artifacts 0.4/2 and WEB shape depiction 1.9/2, superior to TOF MRA for the latter two criteria. Aneurysm occlusion was adequate in 93.7% of patients, with CTA showing excellent interobserver reproducibility and agreement with DSA on a 4-grade scale (κ=1.00), while TOF MRA yielded good reproducibility (κ=0.76) and agreement with DSA (κ=0.69). CTA also identified aneurysm occlusion worsening (43.7%) and WEB compression (81.2%) in excellent agreement with DSA (κ=0.85 and 1.00). CTA is a reproducible and reliable technique for the follow-up of aneurysms treated with the WEB device. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Carbon nanofiber reinforced epoxy matrix composites and syntactic foams - mechanical, thermal, and electrical properties

    NASA Astrophysics Data System (ADS)

    Poveda, Ronald Leonel

    The tailorability of composite materials is crucial for use in a wide array of real-world applications, which range from heat-sensitive computer components to fuselage reinforcement on commercial aircraft. The mechanical, electrical, and thermal properties of composites are highly dependent on their material composition, method of fabrication, inclusion orientation, and constituent percentages. The focus of this work is to explore carbon nanofibers (CNFs) as potential nanoscale reinforcement for hollow particle filled polymer composites referred to as syntactic foams. In the present study, polymer composites with high weight fractions of CNFs, ranging from 1-10 wt.%, are used for quasi-static and high strain rate compression analysis, as well as for evaluation and characterization of thermal and electrical properties. It is shown that during compressive characterization of vapor grown carbon nanofiber (CNF)/epoxy composites in the strain rate range of 10-4-2800 s-1, a difference in the fiber failure mechanism is identified based on the strain rate. Results from compression analyses show that the addition of fractions of CNFs and glass microballoons varies the compressive strength and elastic modulus of epoxy composites by as much as 53.6% and 39.9%. The compressive strength and modulus of the syntactic foams is also shown to generally increase by a factor of 3.41 and 2.96, respectively, with increasing strain rate when quasi-static and high strain rate testing data are compared, proving strain rate sensitivity of these reinforced composites. Exposure to moisture over a 6 month period of time is found to reduce the quasi-static and high strain rate strength and modulus, with a maximum of 7% weight gain with select grades of CNF/syntactic foam. The degradation of glass microballoons due to dealkalization is found to be the primary mechanism for reduced mechanical properties, as well as moisture diffusion and weight gain. In terms of thermal analysis results, the coefficient of thermal expansion (CTE) of CNF/epoxy and CNF/syntactic foam composites reinforced with glass microballoons decrease by as much as 11.6% and 38.4%. The experimental CTE values for all of the composites also fit within the bounds of established analytical models predicting the CTE of fiber and particle-reinforced composites. Further thermal studies through dynamic mechanical analysis demonstrated increased thermal stability and damping capability, where the maximum use and glass transition temperatures increase as much as 27.1% and 25.0%, respectively. The electrical properties of CNF reinforced composites are evaluated as well, where the electrical impedance decreases and the dielectric constant increases with addition of CNFs. Such behavior occurs despite the presence of epoxy and glass microballoons, which serve as insulative phases. Such results are useful in design considerations of lightweight composite materials used in weight saving, compressive strength, and damage tolerance applications, such as lightweight aircraft structure reinforcement, automobile components, and buoyancy control with marine submersibles. The results of the analyses have also evaluated certain factors for environmental exposure and temperature extremes, as well as considerations for electronics packaging, all of which have also played a role in shaping avant-garde composite structure designs for efficient, versatile, and long-life service use.

  14. A bioinspired study on the compressive resistance of helicoidal fibre structures

    NASA Astrophysics Data System (ADS)

    Tan, Ting; Ribbans, Brian

    2017-10-01

    Helicoidal fibre structures are widely observed in natural materials. In this paper, an integrated experimental and analytical approach was used to investigate the compressive resistance of helicoidal fibre structures. First, helicoidal fibre-reinforced composites were created using three-dimensionally printed helicoids and polymeric matrices, including plain, ring-reinforced and helix-reinforced helicoids. Then, load-displacement curves under monotonic compression tests were collected to measure the compressive strengths of helicoidal fibre composites. Fractographic characterization was performed using an X-ray microtomographer and scanning electron microscope, through which crack propagations in helicoidal structures were illustrated. Finally, mathematical modelling was performed to reveal the essential fibre architectures in the compressive resistance of helicoidal fibre structures. This work reveals that fibre-matrix ratios, helix pitch angles and interlayer rotary angles are critical to the compressive resistance of helicoidal structures.

  15. Strain-dependent dynamic compressive properties of magnetorheological elastomeric foams

    NASA Astrophysics Data System (ADS)

    Wereley, Norman M.; Perez, Colette; Choi, Young T.

    2018-05-01

    This paper addresses the strain-dependent dynamic compressive properties (i.e., so-called Payne effect) of magnetorheological elastomeric foams (MREFs). Isotropic MREF samples (i.e., no oriented particle chain structures), fabricated in flat square shapes (nominal size of 26.5 mm x 26.5 mm x 9.5 mm) were synthesized by randomly dispersing micron-sized iron oxide particles (Fe3O4) into a liquid silicone foam in the absence of magnetic field. Five different Fe3O4 particle concentrations of 0, 2.5, 5.0, 7.5, and 10 percent by volume fraction (hereinafter denoted as vol%) were used to investigate the effect of particle concentration on the dynamic compressive properties of the MREFs. The MREFs were sandwiched between two multi-pole flexible plate magnets in order to activate the magnetorheological (MR) strengthening effect. Under two different pre-compression conditions (i.e., 35% and 50%), the dynamic compressive stresses of the MREFs with respect to dynamic strain amplitudes (i.e., 1%-10%) were measured by using a servo-hydraulic testing machine. The complex modulus (i.e., storage modulus and loss modulus) and loss factors of the MREFs with respect to dynamic strain amplitudes were presented as performance indices to evaluate their strain-dependent dynamic compressive behavior.

  16. Compressed Air/Vacuum Transportation Techniques

    NASA Astrophysics Data System (ADS)

    Guha, Shyamal

    2011-03-01

    General theory of compressed air/vacuum transportation will be presented. In this transportation, a vehicle (such as an automobile or a rail car) is powered either by compressed air or by air at near vacuum pressure. Four version of such transportation is feasible. In all versions, a ``c-shaped'' plastic or ceramic pipe lies buried a few inches under the ground surface. This pipe carries compressed air or air at near vacuum pressure. In type I transportation, a vehicle draws compressed air (or vacuum) from this buried pipe. Using turbine or reciprocating air cylinder, mechanical power is generated from compressed air (or from vacuum). This mechanical power transferred to the wheels of an automobile (or a rail car) drives the vehicle. In type II-IV transportation techniques, a horizontal force is generated inside the plastic (or ceramic) pipe. A set of vertical and horizontal steel bars is used to transmit this force to the automobile on the road (or to a rail car on rail track). The proposed transportation system has following merits: virtually accident free; highly energy efficient; pollution free and it will not contribute to carbon dioxide emission. Some developmental work on this transportation will be needed before it can be used by the traveling public. The entire transportation system could be computer controlled.

  17. MP3 compression of Doppler ultrasound signals.

    PubMed

    Poepping, Tamie L; Gill, Jeremy; Fenster, Aaron; Holdsworth, David W

    2003-01-01

    The effect of lossy, MP3 compression on spectral parameters derived from Doppler ultrasound (US) signals was investigated. Compression was tested on signals acquired from two sources: 1. phase quadrature and 2. stereo audio directional output. A total of 11, 10-s acquisitions of Doppler US signal were collected from each source at three sites in a flow phantom. Doppler signals were digitized at 44.1 kHz and compressed using four grades of MP3 compression (in kilobits per second, kbps; compression ratios in brackets): 1400 kbps (uncompressed), 128 kbps (11:1), 64 kbps (22:1) and 32 kbps (44:1). Doppler spectra were characterized by peak velocity, mean velocity, spectral width, integrated power and ratio of spectral power between negative and positive velocities. The results suggest that MP3 compression on digital Doppler US signals is feasible at 128 kbps, with a resulting 11:1 compression ratio, without compromising clinically relevant information. Higher compression ratios led to significant differences for both signal sources when compared with the uncompressed signals. Copyright 2003 World Federation for Ultrasound in Medicine & Biology

  18. Definition and Modeling of Critical Flaws in Graphite Fiber Reinforced Resin Matrix Composite Materials

    DTIC Science & Technology

    1979-08-28

    11 EXPERIMENTAL PROGRAM .......................................*16 SHEAR TESTS ON THICK DISBONDED LAMINATES .... ....... 16 COMPRESSIVE BUCKLING OF...DISBONDED LAMINATES ...... .. 17 MECHANICAL CHARACTERIZATION FOR MOISTURE CONDITIONING EFFECTS .................................. 19 ULTRASONIC WAVE...SHEAR OF THICK LAMINATED BEAMS . . . ....... 24 PROPAGATION OF DISBOND IN FATIGUE ..... ............ .. 26 BUCKLING OF DISBONDED COMPRESSION SKIN

  19. Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA

    NASA Astrophysics Data System (ADS)

    Lin, Liulan; Zhang, Lingfeng; Guo, Yanwei

    2018-01-01

    In this study, the effect of content of glutaraldehyde (GA) on the shape memory behavior of a shape memory polymer based on polyvinyl alcohol chemically cross-linked with GA was investigated. Thermal-responsive shape memory composites with three different GA levels, GA-PVA (3 wt%, 5 wt%, 7 wt%), were prepared by particle melting, mold forming and freeze-drying technique. The mechanical properties, thermal properties and shape memory behavior were measured by differential scanning calorimeter, physical bending test and cyclic thermo-mechanical test. The addition of GA to PVA led to a steady shape memory transition temperature and an improved mechanical compressive strength. The composite with 5 wt% of GA exhibited the best shape recoverability. Further increase in the crosslinking agent content of GA would reduce the recovery force and prolong the recovery time due to restriction in the movement of the soft PVA chain segments. These results provide important information for the study on materials in 4D printing.

  20. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors

    PubMed Central

    Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.; Tahir, M. M.

    2016-01-01

    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed. PMID:27478894

  1. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors.

    PubMed

    Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N H; Tahir, M M

    2016-01-01

    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed.

  2. Multi-scale analysis and characterization of the ITER pre-compression rings

    NASA Astrophysics Data System (ADS)

    Foussat, A.; Park, B.; Rajainmaki, H.

    2014-01-01

    The toroidal field (TF) system of ITER Tokamak composed of 18 "D" shaped Toroidal Field (TF) coils during an operating scenario experiences out-of-plane forces caused by the interaction between the 68kA operating TF current and the poloidal magnetic fields. In order to keep the induced static and cyclic stress range in the intercoil shear keys between coils cases within the ITER allowable limits [1], centripetal preload is introduced by means of S2 fiber-glass/epoxy composite pre-compression rings (PCRs). Those PCRs consist in two sets of three rings, each 5 m in diameter and 337 × 288 mm in cross-section, and are installed at the top and bottom regions to apply a total resultant preload of 70 MN per TF coil equivalent to about 400 MPa hoop stress. Recent developments of composites in the aerospace industry have accelerated the use of advanced composites as primary structural materials. The PCRs represent one of the most challenging composite applications of large dimensions and highly stressed structures operating at 4 K over a long term life. Efficient design of those pre-compression composite structures requires a detailed understanding of both the failure behavior of the structure and the fracture behavior of the material. Due to the inherent difficulties to carry out real scale testing campaign, there is a need to develop simulation tools to predict the multiple complex failure mechanisms in pre-compression rings. A framework contract was placed by ITER Organization with SENER Ingenieria y Sistemas SA to develop multi-scale models representative of the composite structure of the Pre-compression rings based on experimental material data. The predictive modeling based on ABAQUS FEM provides the opportunity both to understand better how PCR composites behave in operating conditions and to support the development of materials by the supplier with enhanced performance to withstand the machine design lifetime of 30,000 cycles. The multi-scale stress analysis has revealed a complete picture of the stress levels within the fiber and the matrix regarding the static and fatigue performance of the rings structure including the presence of a delamination defect of critical size. The analysis results of the composite material demonstrate that the rings performance objectives under all loading and strength conditions are met.

  3. Experimental and Theoretical Investigations of Cavitation in Water

    NASA Technical Reports Server (NTRS)

    Ackeret, J.

    1945-01-01

    The cavitation in nozzles on airfoils of various shape and on a sphere are experimentally investigated. The limits of cavitation and the extension of the zone of the bubbles in different stages of cavitation are photographically established. The pressure in the bubble area is constant and very low, jumping to high values at the end of the area. The analogy with the gas compression shock is adduced and discussed. The collapse of the bubbles under compression shock produces very high pressures internally, which must be contributory factors to corrosion. The pressure required for purely mechanical corrosion is also discussed.

  4. Effect of Brake Forming on the Strength of 24S-T Aluminum-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Heimerl, George J; Woods, Walter

    1946-01-01

    Tests were made to determine the effect of brake forming on the strength of 24S-T aluminum alloy sheet that had been formed to an inside bend radius of three times the sheet thickness. The results for both directions of the grain of the material showed that the compressive yield stresses were appreciably increased, that the tensile yield stresses were moderately increased, that the ultimate tensile stresses were only slightly increased, that the elongations were considerably reduced, and that the shapes of the tensile and compressive stress-strain curves were markedly changed.

  5. Three-wave interaction solitons in optical parametric amplification.

    PubMed

    Ibragimov, E; Struthers, A A; Kaup, D J; Khaydarov, J D; Singer, K D

    1999-05-01

    This paper applies three-wave interaction (TWI)-soliton theory to optical parametric amplification when the signal, idler, and pump wave can all contain TWI solitons. We use an analogy between two different velocity regimes to compare the theory with output from an experimental synchronously pumped optical parametric amplifier. The theory explains the observed inability to compress the intermediate group-velocity wave and 20-fold pulse compression in this experiment. The theory and supporting numerics show that one can effectively control the shape and energy of the optical pulses by shifting the TWI solitons in the pulses.

  6. A three-dimensional, compressible, laminar boundary-layer method for general fuselages. Volume 1: Numerical method

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1990-01-01

    A procedure for calculating 3-D, compressible laminar boundary layer flow on general fuselage shapes is described. The boundary layer solutions can be obtained in either nonorthogonal 'body oriented' coordinates or orthogonal streamline coordinates. The numerical procedure is 'second order' accurate, efficient and independent of the cross flow velocity direction. Numerical results are presented for several test cases, including a sharp cone, an ellipsoid of revolution, and a general aircraft fuselage at angle of attack. Comparisons are made between numerical results obtained using nonorthogonal curvilinear 'body oriented' coordinates and streamline coordinates.

  7. Dynamics of the plasma current sheath in plasma focus discharges in different gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru; Mokeev, A. N.

    2016-12-15

    The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.

  8. Shock-absorbing caster wheel is simple and compact

    NASA Technical Reports Server (NTRS)

    Kindley, R. J.

    1968-01-01

    Compact shock-absorbing caster wheel mitigates or absorbs shock by a compressible tire which deforms into a cavity between its inner edge and the wheel hub. A tee-shaped annular ring embedded in the tire distributes loads more uniformly throughout both wheel and tire.

  9. Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat

    DOE PAGES

    Hou, Huilong; Simsek, Emrah; Stasak, Drew; ...

    2017-08-11

    The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. In this paper, we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g -1. Adiabatic compression on as-fabricated TiNi displays cooling ΔT as high as -7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress–strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti 2Ni precipitates typically onemore » micron in size with a large aspect ratio enclosing the TiNi matrix. Finally, a stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti 2Ni precipitates is believed to be the origin of the unique superelasticity behavior.« less

  10. Observations of disconnection of open coronal magnetic structures

    NASA Technical Reports Server (NTRS)

    Mccomas, D. J.; Phillips, J. L.; Hundhausen, A. J.; Burkepile, J. T.

    1991-01-01

    The solar maximum mission coronagraph/polarimeter observations are surveyed for evidence of magnetic disconnection of previously open magnetic structures and several sequences of images consistent with this interpretation are identified. Such disconnection occurs when open field lines above helmet streamers reconnect, in contrast to previously suggested disconnections of CMEs into closed plasmoids. In this paper a clear example of open field disconnection is shown in detail. The event, on June 27, 1988, is preceded by compression of a preexisting helmet streamer and the open coronal field around it. The compressed helmet streamer and surrounding open field region detach in a large U-shaped structure which subsequently accelerates outward from the sun. The observed sequence of events is consistent with reconnection across the heliospheric current sheet and the creation of a detached U-shaped magnetic structure. Unlike CMEs, which may open new magnetic flux into interplanetary space, this process could serve to close off previously open flux, perhaps helping to maintain the roughly constant amount of open magnetic flux observed in interplanetary space.

  11. Nanoparticle Assemblies at Fluid Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Thomas P.

    2015-03-10

    A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respectmore » to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.« less

  12. Compression Molding and Novel Sintering Treatments for Alnico Type-8 Permanent Magnets in Near-Final Shape with Preferred Orientation

    DOE PAGES

    Kassen, Aaron G.; White, Emma M. H.; Tang, Wei; ...

    2017-07-14

    We present economic uncertainty in the rare earth (RE) permanent magnet marketplace, as well as in an expanding electric drive vehicle market that favors permanent magnet alternating current synchronous drive motors, motivated renewed research in RE-free permanent magnets like “alnico,” an Al-Ni-Co-Fe alloy. Thus, high-pressure, gas-atomized isotropic type-8H pre-alloyed alnico powder was compression molded with a clean burn-out binder to near-final shape and sintered to density >99% of cast alnico 8 (full density of 7.3 g/cm 3). To produce aligned sintered alnico magnets for improved energy product and magnetic remanence, uniaxial stress was attempted to promote controlled grain growth, avoidingmore » directional solidification that provides alignment in alnico 9. Lastly, successful development of solid-state powder processing may enable anisotropically aligned alnico magnets with enhanced energy density to be mass-produced.« less

  13. Microsecond ramp compression of a metallic liner driven by a 5 MA current on the SPHINX machine using a dynamic load current multiplier pulse shaping

    NASA Astrophysics Data System (ADS)

    d'Almeida, T.; Lassalle, F.; Morell, A.; Grunenwald, J.; Zucchini, F.; Loyen, A.; Maysonnave, T.; Chuvatin, A. S.

    2013-09-01

    SPHINX is a 6 MA, 1-μs Linear Transformer Driver (LTD) operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being evaluated to improve the generator performances are an upgrade to a 20 MA, 1-μs LTD machine and various power amplification schemes, including a compact Dynamic Load Current Multiplier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse in order to obtain the desired load current profile. In this paper, we discuss the overall configuration that was selected for these experiments, including the choice of a coaxial cylindrical geometry for the load and its return current electrode. We present both 3-D Magneto-hydrodynamic and 1D Lagrangian hydrodynamic simulations which helped guide the design of the experimental configuration. Initial results obtained over a set of experiments on an aluminium cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented and analyzed. Details of the electrical and laser Doppler interferometer setups used to monitor and diagnose the ramp compression experiments are provided. In particular, the configuration used to field both homodyne and heterodyne velocimetry diagnostics in the reduced access available within the liner's interior is described. Current profiles measured at various critical locations across the system, particularly the load current, enabled a comprehensive tracking of the current circulation and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements obtained from the heterodyne velocimeter agree with the hydrocode results obtained using the measured load current as the input. An extensive hydrodynamic analysis is carried out to examine information such as pressure and particle velocity history profiles or magnetic diffusion across the liner. The potential of the technique in terms of applications and achievable ramp pressure levels lies in the prospects for improving the DLCM efficiency through the use of a closing switch (currently under development), reducing the load dimensions and optimizing the diagnostics.

  14. Dynamic compression of synthetic diamond windows (final report for LDRD project 93531).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolan, Daniel H.,

    2008-09-01

    Diamond is an attractive dynamic compression window for many reasons: high elastic limit,large mechanical impedance, and broad transparency range. Natural diamonds, however, aretoo expensive to be used in destructive experiments. Chemical vapor deposition techniquesare now able to produce large single-crystal windows, opening up many potential dynamiccompression applications. This project studied the behavior of synthetic diamond undershock wave compression. The results suggest that synthetic diamond could be a usefulwindow in this field, though complete characterization proved elusive.3

  15. Mechanical characterization of human brain tissue.

    PubMed

    Budday, S; Sommer, G; Birkl, C; Langkammer, C; Haybaeck, J; Kohnert, J; Bauer, M; Paulsen, F; Steinmann, P; Kuhl, E; Holzapfel, G A

    2017-01-15

    Mechanics are increasingly recognized to play an important role in modulating brain form and function. Computational simulations are a powerful tool to predict the mechanical behavior of the human brain in health and disease. The success of these simulations depends critically on the underlying constitutive model and on the reliable identification of its material parameters. Thus, there is an urgent need to thoroughly characterize the mechanical behavior of brain tissue and to identify mathematical models that capture the tissue response under arbitrary loading conditions. However, most constitutive models have only been calibrated for a single loading mode. Here, we perform a sequence of multiple loading modes on the same human brain specimen - simple shear in two orthogonal directions, compression, and tension - and characterize the loading-mode specific regional and directional behavior. We complement these three individual tests by combined multiaxial compression/tension-shear tests and discuss effects of conditioning and hysteresis. To explore to which extent the macrostructural response is a result of the underlying microstructural architecture, we supplement our biomechanical tests with diffusion tensor imaging and histology. We show that the heterogeneous microstructure leads to a regional but not directional dependence of the mechanical properties. Our experiments confirm that human brain tissue is nonlinear and viscoelastic, with a pronounced compression-tension asymmetry. Using our measurements, we compare the performance of five common constitutive models, neo-Hookean, Mooney-Rivlin, Demiray, Gent, and Ogden, and show that only the isotropic modified one-term Ogden model is capable of representing the hyperelastic behavior under combined shear, compression, and tension loadings: with a shear modulus of 0.4-1.4kPa and a negative nonlinearity parameter it captures the compression-tension asymmetry and the increase in shear stress under superimposed compression but not tension. Our results demonstrate that material parameters identified for a single loading mode fail to predict the response under arbitrary loading conditions. Our systematic characterization of human brain tissue will lead to more accurate computational simulations, which will allow us to determine criteria for injury, to develop smart protection systems, and to predict brain development and disease progression. There is a pressing need to characterize the mechanical behavior of human brain tissue under multiple loading conditions, and to identify constitutive models that are able to capture the tissue response under these conditions. We perform a sequence of experimental tests on the same brain specimen to characterize the regional and directional behavior, and we supplement our tests with DTI and histology to explore to which extent the macrostructural response is a result of the underlying microstructure. Results demonstrate that human brain tissue is nonlinear and viscoelastic, with a pronounced compression-tension asymmetry, and we show that the multiaxial data can best be captured by a modified version of the one-term Ogden model. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Magnetic Compression Experiment at General Fusion with Simulation Results

    NASA Astrophysics Data System (ADS)

    Dunlea, Carl; Khalzov, Ivan; Hirose, Akira; Xiao, Chijin; Fusion Team, General

    2017-10-01

    The magnetic compression experiment at GF was a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. External coil currents keep the CT off the outer wall (levitation) and then rapidly compress it inwards. The optimal external coil configuration greatly improved both the levitated CT lifetime and the rate of shots with good compressional flux conservation. As confirmed by spectrometer data, the improved levitation field profile reduced plasma impurity levels by suppressing the interaction between plasma and the insulating outer wall during the formation process. We developed an energy and toroidal flux conserving finite element axisymmetric MHD code to study CT formation and compression. The Braginskii MHD equations with anisotropic heat conduction were implemented. To simulate plasma / insulating wall interaction, we couple the vacuum field solution in the insulating region to the full MHD solution in the remainder of the domain. We see good agreement between simulation and experiment results. Partly funded by NSERC and MITACS Accelerate.

  17. Super-tough, ultra-stretchable and strongly compressive hydrogels with core-shell latex particles inducing efficient aggregation of hydrophobic chains.

    PubMed

    Ren, Xiuyan; Huang, Chang; Duan, Lijie; Liu, Baijun; Bu, Lvjun; Guan, Shuang; Hou, Jiliang; Zhang, Huixuan; Gao, Guanghui

    2017-05-14

    Toughness, strechability and compressibility for hydrogels were ordinarily balanced for their use as mechanically responsive materials. For example, macromolecular microsphere composite hydrogels with chemical crosslinking exhibited excellent compression strength and strechability, but poor tensile stress. Here, a novel strategy for the preparation of a super-tough, ultra-stretchable and strongly compressive hydrogel was proposed by introducing core-shell latex particles (LPs) as crosslinking centers for inducing efficient aggregation of hydrophobic chains. The core-shell LPs always maintained a spherical shape due to the presence of a hard core even by an external force and the soft shell could interact with hydrophobic chains due to hydrophobic interactions. As a result, the hydrogels reinforced by core-shell LPs exhibited not only a high tensile strength of 1.8 MPa and dramatic elongation of over 20 times, but also an excellent compressive performance of 13.5 MPa at a strain of 90%. The Mullins effect was verified for the validity of core-shell LP-reinforced hydrogels by inducing aggregation of hydrophobic chains. The novel strategy strives to provide a better avenue for designing and developing a new generation of hydrophobic association tough hydrogels with excellent mechanical properties.

  18. The effect of compression and attention allocation on speech intelligibility. II

    NASA Astrophysics Data System (ADS)

    Choi, Sangsook; Carrell, Thomas

    2004-05-01

    Previous investigations of the effects of amplitude compression on measures of speech intelligibility have shown inconsistent results. Recently, a novel paradigm was used to investigate the possibility of more consistent findings with a measure of speech perception that is not based entirely on intelligibility (Choi and Carrell, 2003). That study exploited a dual-task paradigm using a pursuit rotor online visual-motor tracking task (Dlhopolsky, 2000) along with a word repetition task. Intensity-compressed words caused reduced performance on the tracking task as compared to uncompressed words when subjects engaged in a simultaneous word repetition task. This suggested an increased cognitive load when listeners processed compressed words. A stronger result might be obtained if a single resource (linguistic) is required rather than two (linguistic and visual-motor) resources. In the present experiment a visual lexical decision task and an auditory word repetition task were used. The visual stimuli for the lexical decision task were blurred and presented in a noise background. The compressed and uncompressed words for repetition were placed in speech-shaped noise. Participants with normal hearing and vision conducted word repetition and lexical decision tasks both independently and simultaneously. The pattern of results is discussed and compared to the previous study.

  19. Compressive properties of passive skeletal muscle-the impact of precise sample geometry on parameter identification in inverse finite element analysis.

    PubMed

    Böl, Markus; Kruse, Roland; Ehret, Alexander E; Leichsenring, Kay; Siebert, Tobias

    2012-10-11

    Due to the increasing developments in modelling of biological material, adequate parameter identification techniques are urgently needed. The majority of recent contributions on passive muscle tissue identify material parameters solely by comparing characteristic, compressive stress-stretch curves from experiments and simulation. In doing so, different assumptions concerning e.g. the sample geometry or the degree of friction between the sample and the platens are required. In most cases these assumptions are grossly simplified leading to incorrect material parameters. In order to overcome such oversimplifications, in this paper a more reliable parameter identification technique is presented: we use the inverse finite element method (iFEM) to identify the optimal parameter set by comparison of the compressive stress-stretch response including the realistic geometries of the samples and the presence of friction at the compressed sample faces. Moreover, we judge the quality of the parameter identification by comparing the simulated and experimental deformed shapes of the samples. Besides this, the study includes a comprehensive set of compressive stress-stretch data on rabbit soleus muscle and the determination of static friction coefficients between muscle and PTFE. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. On the extraordinary strength of Prince Rupert's drops

    NASA Astrophysics Data System (ADS)

    Aben, H.; Anton, J.; Öis, M.; Viswanathan, K.; Chandrasekar, S.; Chaudhri, M. M.

    2016-12-01

    Prince Rupert's drops (PRDs), also known as Batavian tears, have been in existence since the early 17th century. They are made of a silicate glass of a high thermal expansion coefficient and have the shape of a tadpole. Typically, the diameter of the head of a PRD is in the range of 5-15 mm and that of the tail is 0.5 to 3.0 mm. PRDs have exceptional strength properties: the head of a PRD can withstand impact with a small hammer, or compression between tungsten carbide platens to high loads of ˜15 000 N, but the tail can be broken with just finger pressure leading to catastrophic disintegration of the PRD. We show here that the high strength of a PRD comes from large surface compressive stresses in the range of 400-700 MPa, determined using techniques of integrated photoelasticity. The surface compressive stresses can suppress Hertzian cone cracking during impact with a small hammer or compression between platens. Finally, it is argued that when the compressive force on a PRD is very high, plasticity in the PRD occurs, which leads to its eventual destruction with increasing load.

  1. Test of superplastically formed corrugated aluminum compression specimens with beaded webs

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.; Royster, Dick M.; Bales, Thomas T.; James, William F.; Shinn, Joseph M., Jr.

    1991-01-01

    Corrugated wall sections provide a highly efficient structure for carrying compressive loads in aircraft and spacecraft fuselages. The superplastic forming (SPF) process offers a means to produce complex shells and panels with corrugated wall shapes. A study was made to investigate the feasibility of superplastically forming 7475-T6 aluminum sheet into a corrugated wall configuration and to demonstrate the structural integrity of the construction by testing. The corrugated configuration selected has beaded web segments separating curved-cap segments. Eight test specimens were fabricated. Two specimens were simply a single sheet of aluminum superplastically formed to a beaded-web, curved-cap corrugation configuration. Six specimens were single-sheet corrugations modified by adhesive bonding additional sheet material to selectively reinforce the curved-cap portion of the corrugation. The specimens were tested to failure by crippling in end compression at room temperature.

  2. Tibiotalocalcaneal Arthrodesis Using a Nitinol Intramedullary Hindfoot Nail.

    PubMed

    Hsu, Andrew R; Ellington, J Kent; Adams, Samuel B

    2015-10-01

    Tibiotalocalcaneal (TTC) arthrodesis using an intramedullary hindfoot nail is a common procedure for deformity correction and the treatment of combined tibiotalar and subtalar end-stage arthritis. Nonunion at one or both fusion sites is a difficult complication that can result in reoperation, significant morbidity, and below-knee amputation. There is currently a need for sustained compression across fusion sites using a TTC hindfoot nail with good mechanical stability. The DynaNail TTC Fusion System (MedShape, Inc, Atlanta, GA) uses an internal nitinol compression element to apply sustained compression across the tibiotalar and subtalar joints after surgery. In preliminary clinical cases, we have found that the nail is safe, reliable, and has promising clinical and radiographic results in settings of hindfoot arthritis, complex deformity, Charcot arthropathy, and talar avascular necrosis. Expert opinion, Level V. © 2015 The Author(s).

  3. 3D Multifunctional Ablative Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  4. High-speed real-time image compression based on all-optical discrete cosine transformation

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Chen, Hongwei; Wang, Yuxi; Chen, Minghua; Yang, Sigang; Xie, Shizhong

    2017-02-01

    In this paper, we present a high-speed single-pixel imaging (SPI) system based on all-optical discrete cosine transform (DCT) and demonstrate its capability to enable noninvasive imaging of flowing cells in a microfluidic channel. Through spectral shaping based on photonic time stretch (PTS) and wavelength-to-space conversion, structured illumination patterns are generated at a rate (tens of MHz) which is three orders of magnitude higher than the switching rate of a digital micromirror device (DMD) used in a conventional single-pixel camera. Using this pattern projector, high-speed image compression based on DCT can be achieved in the optical domain. In our proposed system, a high compression ratio (approximately 10:1) and a fast image reconstruction procedure are both achieved, which implicates broad applications in industrial quality control and biomedical imaging.

  5. Using compression calorimetry to characterize powder compaction behavior of pharmaceutical materials.

    PubMed

    Buckner, Ira S; Friedman, Ross A; Wurster, Dale Eric

    2010-02-01

    The process by which pharmaceutical powders are compressed into cohesive compacts or tablets has been studied using a compression calorimeter. Relating the various thermodynamic results to relevant physical processes has been emphasized. Work, heat, and internal energy change values have been determined with the compression calorimeter for common pharmaceutical materials. A framework of equations has been proposed relating the physical processes of friction, reversible deformation, irreversible deformation, and inter-particle bonding to the compression calorimetry values. The results indicate that irreversible deformation dominated many of the thermodynamic values, especially the net internal energy change following the compression-decompression cycle. The relationships between the net work and the net heat from the complete cycle were very clear indicators of predominating deformation mechanisms. Likewise, the ratio of energy stored as internal energy to the initial work input distinguished the materials according to their brittle or plastic deformation tendencies. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  6. Telemedicine + OCT: toward design of optimized algorithms for high-quality compressed images

    NASA Astrophysics Data System (ADS)

    Mousavi, Mahta; Lurie, Kristen; Land, Julian; Javidi, Tara; Ellerbee, Audrey K.

    2014-03-01

    Telemedicine is an emerging technology that aims to provide clinical healthcare at a distance. Among its goals, the transfer of diagnostic images over telecommunication channels has been quite appealing to the medical community. When viewed as an adjunct to biomedical device hardware, one highly important consideration aside from the transfer rate and speed is the accuracy of the reconstructed image at the receiver end. Although optical coherence tomography (OCT) is an established imaging technique that is ripe for telemedicine, the effects of OCT data compression, which may be necessary on certain telemedicine platforms, have not received much attention in the literature. We investigate the performance and efficiency of several lossless and lossy compression techniques for OCT data and characterize their effectiveness with respect to achievable compression ratio, compression rate and preservation of image quality. We examine the effects of compression in the interferogram vs. A-scan domain as assessed with various objective and subjective metrics.

  7. A Parametric Approach to Shape Field-Relevant Blast Wave Profiles in Compressed-Gas-Driven Shock Tube

    PubMed Central

    Sundaramurthy, Aravind; Chandra, Namas

    2014-01-01

    Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1–3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68–1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is compared with the profiles obtained from the shock tube. To conclude, our experimental results demonstrate that a compressed-gas shock tube when designed and operated carefully can replicate the blast time profiles of field explosions accurately. Such a faithful replication is an essential first step when studying the effects of blast induced neurotrauma using animal models. PMID:25520701

  8. Experiment-theory comparison for low frequency BAE modes in the strongly shaped H-1NF stellarator

    DOE PAGES

    Haskey, S. R.; Blackwell, B. D.; Nuhrenberg, C.; ...

    2015-08-12

    Here, recent advances in the modeling, analysis, and measurement of fluctuations have significantly improved the diagnosis and understanding of Alfvén eigenmodes in the strongly shaped H-1NF helical axis stellarator. Experimental measurements, including 3D tomographic inversions of high resolution visible light images, are in close agreement with beta-induced Alfvén eigenmodes (BAEs) calculated using the compressible ideal MHD code, CAS3D. This is despite the low β in H-1NF, providing experimental evidence that these modes can exist due to compression that is induced by the strong shaping in stellarators, in addition to high β, as is the case in tokamaks. This is confirmedmore » using the CONTI and CAS3D codes, which show significant gap structures at lower frequencies which contain BAE and beta-acoustic Alfvén eigenmodes (BAAEs). The BAEs are excited in the absence of a well confined energetic particle source, further confirming previous studies that thermal particles, electrons, or even radiation fluctuations can drive these modes. Datamining of magnetic probe data shows the experimentally measured frequency of these modes has a clear dependence on the rotational transform profile, which is consistent with a frequency dependency due to postulated confinement related temperature variations.« less

  9. Modeling for stress-strain curve of a porous NiTi under compressive loading

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Taya, Minoru

    2005-05-01

    Two models for predicting the stress-strain curve of porous NiTi under compressive loading are presented in this paper. Porous NiTi shape memory alloy is investigated as a composite composed of solid NiTi as matrix and pores as inclusions. Eshelby"s equivalent inclusion method and Mori-Tanaka"s mean-field theory are employed in both models. In the first model, the geometry of the pores is assumed as sphere. The composite is with close-cells. While in the second model, two geometries of the pores, sphere and ellipsoid, are investigated. The pores are interconnected to each other forming an open-cell microstructure. The two adjacent pores connected along equator ring are investigated as a unit. Two pores interact with each other as they are connected. The average eigenstrain of each unit is obtained by taking the average of each pore"s eigenstrain. The stress-strain curves of porous shape memory alloy with spherical pores and ellipsoidal pores are compared, it is found that the shape of the pores has a nonignorable influence on the mechanical property of the porous NiTi. Comparison of the stress-strain curves of the two models shows that introducing of the average eigenstrains in the second model makes the predictions more agreeable to the experimental results.

  10. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method.

    PubMed

    Li, S J; Xu, Q S; Wang, Z; Hou, W T; Hao, Y L; Yang, R; Murr, L E

    2014-10-01

    Ti-6Al-4V reticulated meshes with different elements (cubic, G7 and rhombic dodecahedron) in Materialise software were fabricated by additive manufacturing using the electron beam melting (EBM) method, and the effects of cell shape on the mechanical properties of these samples were studied. The results showed that these cellular structures with porosities of 88-58% had compressive strength and elastic modulus in the range 10-300MPa and 0.5-15GPa, respectively. The compressive strength and deformation behavior of these meshes were determined by the coupling of the buckling and bending deformation of struts. Meshes that were dominated by buckling deformation showed relatively high collapse strength and were prone to exhibit brittle characteristics in their stress-strain curves. For meshes dominated by bending deformation, the elastic deformation corresponded well to the Gibson-Ashby model. By enhancing the effect of bending deformation, the stress-strain curve characteristics can change from brittle to ductile (the smooth plateau area). Therefore, Ti-6Al-4V cellular solids with high strength, low modulus and desirable deformation behavior could be fabricated through the cell shape design using the EBM technique. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  11. Mathematical Identification of Influential Parameters on the Elastic Buckling of Variable Geometry Plate

    PubMed Central

    Tepic, Jovan; Kostelac, Milan

    2013-01-01

    The problem of elastic stability of plates with square, rectangular, and circular holes as well as slotted holes was discussed. The existence of the hole reduces the deformation energy of the plate and it affects the redistribution of stress flow in comparison to a uniform plate which causes a change of the external operation of compressive forces. The distribution of compressive force is defined as the approximate model of plane state of stress. The significant parameters of elastic stability compared to the uniform plate, including the dominant role of the shape, size, and orientation of the hole were identified. Comparative analysis of the shape of the hole was carried out on the data from the literature, which are based on different approaches and methods. Qualitative and quantitative accordance of the results has been found out and it verifies exposed methodology as applicable in the study of the phenomenon of elastic stability. Sensitivity factor is defined that is proportional to the reciprocal value of the buckling coefficient and it is a measure of sensitivity of plate to the existence of the hole. Mechanism of loss of stability is interpreted through the absorption of the external operation, induced by the shape of the hole. PMID:24453821

  12. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers

    PubMed Central

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-01-01

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred. PMID:28773285

  13. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers.

    PubMed

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-03-04

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  14. Reversible TAD Chemistry as a Convenient Tool for the Design of (Re)processable PCL-Based Shape-Memory Materials.

    PubMed

    Defize, Thomas; Riva, Raphaël; Thomassin, Jean-Michel; Alexandre, Michaël; Herck, Niels Van; Prez, Filip Du; Jérôme, Christine

    2017-01-01

    A chemically cross-linked but remarkably (re)processable shape-memory polymer (SMP) is designed by cross-linking poly(ε-caprolactone) (PCL) stars via the efficient triazolinedione click chemistry, based on the very fast and reversible Alder-ene reaction of 1,2,4-triazoline-3,5-dione (TAD) with indole compounds. Typically, a six-arm star-shaped PCL functionalized by indole moieties at the chain ends is melt-blended with a bisfunctional TAD, directly resulting in a cross-linked PCL-based SMP without the need of post-curing treatment. As demonstrated by the stress relaxation measurement, the labile character of the TAD-indole adducts under stress allows for the solid-state plasticity reprocessing of the permanent shape at will by compression molding of the raw cross-linked material, while keeping excellent shape-memory properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Mechanochemical Polarization of Contiguous Cell Walls Shapes Plant Pavement Cells.

    PubMed

    Majda, Mateusz; Grones, Peter; Sintorn, Ida-Maria; Vain, Thomas; Milani, Pascale; Krupinski, Pawel; Zagórska-Marek, Beata; Viotti, Corrado; Jönsson, Henrik; Mellerowicz, Ewa J; Hamant, Olivier; Robert, Stéphanie

    2017-11-06

    The epidermis of aerial plant organs is thought to be limiting for growth, because it acts as a continuous load-bearing layer, resisting tension. Leaf epidermis contains jigsaw puzzle piece-shaped pavement cells whose shape has been proposed to be a result of subcellular variations in expansion rate that induce local buckling events. Paradoxically, such local compressive buckling should not occur given the tensile stresses across the epidermis. Using computational modeling, we show that the simplest scenario to explain pavement cell shapes within an epidermis under tension must involve mechanical wall heterogeneities across and along the anticlinal pavement cell walls between adjacent cells. Combining genetics, atomic force microscopy, and immunolabeling, we demonstrate that contiguous cell walls indeed exhibit hybrid mechanochemical properties. Such biochemical wall heterogeneities precede wall bending. Altogether, this provides a possible mechanism for the generation of complex plant cell shapes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Soliton quenching NLTL impulse circuit with a pulse forming network at the output

    DOEpatents

    McEwan, Thomas E.; Dallum, Gregory E.

    1998-01-01

    An impulse forming circuit is disclosed which produces a clean impulse from a nonlinear transmission line compressed step function without customary soliton ringing by means of a localized pulse shaping and differentiating network which shunts the nonlinear transmission line output to ground.

  17. Spherical composite particles of rice starch and microcrystalline cellulose: a new coprocessed excipient for direct compression.

    PubMed

    Limwong, Vasinee; Sutanthavibul, Narueporn; Kulvanich, Poj

    2004-03-12

    Composite particles of rice starch (RS) and microcrystalline cellulose were fabricated by spray-drying technique to be used as a directly compressible excipient. Two size fractions of microcrystalline cellulose, sieved (MCS) and jet milled (MCJ), having volumetric mean diameter (D50) of 13.61 and 40.51 microm, respectively, were used to form composite particles with RS in various mixing ratios. The composite particles produced were evaluated for their powder and compression properties. Although an increase in the microcrystalline cellulose proportion imparted greater compressibility of the composite particles, the shape of the particles was typically less spherical with rougher surface resulting in a decrease in the degree of flowability. Compressibility of composite particles made from different size fractions of microcrystalline cellulose was not different; however, using MCJ, which had a particle size range close to the size of RS (D50 = 13.57 microm), provided more spherical particles than using MCS. Spherical composite particles between RS and MCJ in the ratio of 7:3 (RS-MCJ-73) were then evaluated for powder properties and compressibility in comparison with some marketed directly compressible diluents. Compressibility of RS-MCJ-73 was greater than commercial spray-dried RS (Eratab), coprocessed lactose and microcrystalline cellulose (Cellactose), and agglomerated lactose (Tablettose), but, as expected, lower than microcrystalline cellulose (Vivapur 101). Flowability index of RS-MCJ-73 appeared to be slightly lower than Eratab but higher than Vivapur 101, Cellactose, and Tablettose. Tablets of RS-MCJ-73 exhibited low friability and good self-disintegrating property. It was concluded that these developed composite particles could be introduced as a new coprocessed direct compression excipient.

  18. Exploring the Relationship Between Working Memory, Compressor Speed, and Background Noise Characteristics.

    PubMed

    Ohlenforst, Barbara; Souza, Pamela E; MacDonald, Ewen N

    2016-01-01

    Previous work has shown that individuals with lower working memory demonstrate reduced intelligibility for speech processed with fast-acting compression amplification. This relationship has been noted in fluctuating noise, but the extent of noise modulation that must be present to elicit such an effect is unknown. This study expanded on previous study by exploring the effect of background noise modulations in relation to compression speed and working memory ability, using a range of signal to noise ratios. Twenty-six older participants between ages 61 and 90 years were grouped by high or low working memory according to their performance on a reading span test. Speech intelligibility was measured for low-context sentences presented in background noise, where the noise varied in the extent of amplitude modulation. Simulated fast- or slow-acting compression amplification combined with individual frequency-gain shaping was applied to compensate for the individual's hearing loss. Better speech intelligibility scores were observed for participants with high working memory when fast compression was applied than when slow compression was applied. The low working memory group behaved in the opposite way and performed better under slow compression compared with fast compression. There was also a significant effect of the extent of amplitude modulation in the background noise, such that the magnitude of the score difference (fast versus slow compression) depended on the number of talkers in the background noise. The presented signal to noise ratios were not a significant factor on the measured intelligibility performance. In agreement with earlier research, high working memory allowed better speech intelligibility when fast compression was applied in modulated background noise. In the present experiment, that effect was present regardless of the extent of background noise modulation.

  19. Rotator cuff tear shape characterization: a comparison of two-dimensional imaging and three-dimensional magnetic resonance reconstructions.

    PubMed

    Gyftopoulos, Soterios; Beltran, Luis S; Gibbs, Kevin; Jazrawi, Laith; Berman, Phillip; Babb, James; Meislin, Robert

    2016-01-01

    The purpose of this study was to see if 3-dimensional (3D) magnetic resonance imaging (MRI) could improve our understanding of rotator cuff tendon tear shapes. We believed that 3D MRI would be more accurate than two-dimensional (2D) MRI for classifying tear shapes. We performed a retrospective review of MRI studies of patients with arthroscopically proven full-thickness rotator cuff tears. Two orthopedic surgeons reviewed the information for each case, including scope images, and characterized the shape of the cuff tear into crescent, longitudinal, U- or L-shaped longitudinal, and massive type. Two musculoskeletal radiologists reviewed the corresponding MRI studies independently and blind to the arthroscopic findings and characterized the shape on the basis of the tear's retraction and size using 2D MRI. The 3D reconstructions of each cuff tear were reviewed by each radiologist to characterize the shape. Statistical analysis included 95% confidence intervals and intraclass correlation coefficients. The study reviewed 34 patients. The accuracy for differentiating between crescent-shaped, longitudinal, and massive tears using measurements on 2D MRI was 70.6% for reader 1 and 67.6% for reader 2. The accuracy for tear shape characterization into crescent and longitudinal U- or L-shaped using 3D MRI was 97.1% for reader 1 and 82.4% for reader 2. When further characterizing the longitudinal tears as massive or not using 3D MRI, both readers had an accuracy of 76.9% (10 of 13). The overall accuracy of 3D MRI was 82.4% (56 of 68), significantly different (P = .021) from 2D MRI accuracy (64.7%). Our study has demonstrated that 3D MR reconstructions of the rotator cuff improve the accuracy of characterizing rotator cuff tear shapes compared with current 2D MRI-based techniques. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  20. Structural characterization and mechanical performance of calcium phosphate scaffolds and natural bones: a comparative study.

    PubMed

    Fuentes, Elena; Sáenz de Viteri, Virginia; Igartua, Amaya; Martinetti, Roberta; Dolcini, Laura; Barandika, Gotzone

    2010-01-01

    The knowledge of the mechanical response of bones and their substitutes is pertinent to numerous medical problems. Understanding the effects of mechanical influence on the body is the first step toward developing innovative treatment and rehabilitation concepts for orthopedic disorders. This was a comparative study of 5 synthetic scaffolds based on porous calcium phosphates and natural bones, with regard to their microstructural, chemical, and mechanical characterizations. The structural and chemical characterizations of the scaffolds were examined by means of X-ray diffraction, scanning electron microscopy, and X-ray spectroscopy analysis. The mechanical characterization of bones and bone graft biomaterials was carried out through compression tests using samples with noncomplex geometry. Analysis of the chemical composition, surface features, porosity, and compressive strength indicates that hydroxyapatite-based materials and trabecular bone have similar properties.

  1. New experimental platform to study high density laser-compressed matter

    DOE PAGES

    Doppner, T.; LePape, S.; Ma, T.; ...

    2014-09-26

    We have developed a new experimental platform at the Linac Coherent Light Source (LCLS) which combines simultaneous angularly and spectrally resolved x-ray scatteringmeasurements. This technique offers a new insights on the structural and thermodynamic properties of warm dense matter. The < 50 fs temporal duration of the x-ray pulse provides near instantaneous snapshots of the dynamics of the compression. We present a proof of principle experiment for this platform to characterize a shock-compressed plastic foil. We observe the disappearance of the plastic semi-crystal structure and the formation of a compressed liquid ion-ion correlation peak. As a result, the plasma parametersmore » of shock-compressed plastic can be measured as well, but requires an averaging over a few tens of shots.« less

  2. 3D Printing of a Thermoplastic Shape Memory Polymer using FDM

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiyang; Weiss, R. A.; Vogt, Bryan

    Shape memory polymers (SMPs) change from a temporary shape to its permanent shape when exposed to an external stimulus. The shape memory relies on the presence of two independent networks. 3D printing provides a facile method to fabricate complex shapes with high degrees of customizability. The most common consumer 3D printing technology is fused deposition modeling (FDM), which relies on the extrusion of a thermoplastic filament to build-up the part in a layer by layer fashion. The material choices for FDM are limited, but growing. The generation of an SMP that is printable by FDM could open SMPs to many new potential applications. In this work, we demonstrate printing of thermally activated SMP using FDM. Partially neutralized poly(ethylene-co-r-methacrylic acid) ionomers (Surlyn by Dupont) was extruded into filaments and used as a model thermoplastic shape memory material. The properties of the SMP part can be readily tuned by print parameters, such as infill density or infill direction without changing the base material. We discuss the performance and characteristics of 3D printed shapes compared to their compression molded analogs.

  3. A comparison of light spot hydrophone and fiber optic probe hydrophone for lithotripter field characterization.

    PubMed

    Smith, N; Sankin, G N; Simmons, W N; Nanke, R; Fehre, J; Zhong, P

    2012-01-01

    The performance of a newly developed light spot hydrophone (LSHD) in lithotripter field characterization was compared to that of the fiber optic probe hydrophone (FOPH). Pressure waveforms produced by a stable electromagnetic shock wave source were measured by the LSHD and FOPH under identical experimental conditions. In the low energy regime, focus and field acoustic parameters matched well between the two hydrophones. At clinically relevant high energy settings for shock wave lithotripsy, the measured leading compressive pressure waveforms matched closely with each other. However, the LSHD recorded slightly larger |P_| (p < 0.05) and secondary peak compressive pressures (p < 0.01) than the FOPH, leading to about 20% increase in total acoustic pulse energy calculated in a 6 mm radius around the focus (p = 0.06). Tensile pulse durations deviated ~5% (p < 0.01) due to tensile wave shortening from cavitation activity using the LSHD. Intermittent compression spikes and laser light reflection artifacts have been correlated to bubble activity based on simultaneous high-speed imaging analysis. Altogether, both hydrophones are adequate for lithotripter field characterization as specified by the international standard IEC 61846.

  4. Experimental Characterization and Material Modelling of an AZ31 Magnesium Sheet Alloy at Elevated Temperatures under Consideration of the Tension-Compression Asymmetry

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Dykiert, M.

    2017-09-01

    Magnesium sheet alloys have a great potential as a construction material in the aerospace and automotive industry. However, the current state of research regarding temperature dependent material parameters for the description of the plastic behaviour of magnesium sheet alloys is scarce in literature and accurate statements concerning yield criteria and appropriate characterization tests to describe the plastic behaviour of a magnesium sheet alloy at elevated temperatures in deep drawing processes are to define. Hence, in this paper the plastic behaviour of the well-established magnesium sheet alloy AZ31 has been characterized by means of convenient mechanical tests (e. g. tension, compression and biaxial tests) at temperatures between 180 and 230 °C. In this manner, anisotropic and hardening behaviour as well as differences between the tension-compression asymmetry of the yield locus have been estimated. Furthermore, using the evaluated data from the above mentioned tests, two different yield criteria have been parametrized; the commonly used Hill’48 and an orthotropic yield criterion, CPB2006, which was developed especially for materials with hexagonal close packed lattice structure and is able to describe an asymmetrical yielding behaviour regarding tensile and compressive stress states. Numerical simulations have been finally carried out with both yield functions in order to assess the accuracy of the material models.

  5. Highly oriented carbon fiber–polymer composites via additive manufacturing

    DOE PAGES

    Tekinalp, Halil L.; Kunc, Vlastimil; Velez-Garcia, Gregorio M.; ...

    2014-10-16

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructuremore » and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. Furthermore, this phenomena is explained based on the changes in fiber orientation, dispersion and void formation.« less

  6. Geology and Geochemistry of Magmatic Rocks from the Southern Part of the Kyushu-Palau Ridge in the Philippine Sea

    NASA Astrophysics Data System (ADS)

    Lelikov, E. P.; Sedin, V. T.; Pugachev, A. A.

    2018-03-01

    The paper reports the results of a geochemical study of volcanogenic rocks from the southern part of the Kyushu-Palau Ridge. Volcanic structures, such as plateaulike rises, mountain massifs, and single volcanoes, are the major relief-forming elements of the southern part of the Kyushu-Palau Ridge. They are divided into three types according to the features of the relief and geological structure: shield, cone-shaped, and dome-shaped volcanoes. The ridge was formed on oceanic crust in the Late Mesozoic and underwent several stages of evolution with different significance and application of forces (tension and compression). Change in the geodynamic conditions during the geological evolution of the ridge mostly determined the composition of volcanic rocks of deep-mantle nature. Most of the ridge was formed by the Early Paleogene under geodynamic conditions close to the formation of oceanic islands (shield volcanoes) under tension. The island arc formed on the oceanic basement in the compression mode in the Late Eocene-Early Oligocene. Dome-shaped volcanic edifices composed of alkaline volcanic rocks were formed in the Late Oligocene-Early Miocene under tension. Based on the new geochemical data, detailed characteristics of volcanic rocks making up the shield, cone-shape, and dome-shape stratovolcanoes resulting in the features of these volcanic edifices are given for the first time. Continuous volcanism (with an age from the Cretaceous to the Late Miocene and composition from oceanic tholeiite to calc-alkaline volcanites of the island arc type) resulting in growth of the Earth's crust beneath the Kyushu-Palau Ridge was the major factor in the formation this ridge.

  7. Methods and apparatuses for making cathodes for high-temperature, rechargeable batteries

    DOEpatents

    Meinhardt, Kerry D; Sprenkle, Vincent L; Coffey, Gregory W

    2014-05-20

    The approaches for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.

  8. Apparatuses for making cathodes for high-temperature, rechargeable batteries

    DOEpatents

    Meinhardt, Kerry D.; Sprenkle, Vincent L.; Coffey, Gregory W.

    2016-09-13

    The approaches and apparatuses for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.

  9. Experimental study of the seismic performance of L-shaped columns with 500 MPa steel bars.

    PubMed

    Wang, Tiecheng; Liu, Xiao; Zhao, Hailong

    2014-01-01

    Based on tests on six L-shaped RC columns with 500 MPa steel bars, the effect of axial compression ratios and stirrup spacing on failure mode, bearing capacity, displacement, and curvature ductility of the specimens is investigated. Test results show that specimens with lower axial load and large stirrup characteristic value (larger than about 0.35) are better at ductility and seismic performance, while specimens under high axial load or with a small stirrup characteristic value (less than about 0.35) are poorer at ductility; L-shaped columns with 500 MPa steel bars show better bearing capacity and ductility in comparison with specimens with HRB400 steel bars.

  10. Processing and characterization of unidirectional thermoplastic nanocomposites

    NASA Astrophysics Data System (ADS)

    Narasimhan, Kameshwaran

    The manufacture of continuous fibre-reinforced thermoplastic nanocomposites is discussed for the case of E-Glass reinforced polypropylene (PP) matrix and for E-Glass reinforced Polyamide-6 (Nylon-6), with and without dispersed nanoclay (montmorillonite) platelets. The E-Glass/PP nanocomposite was manufactured using pultrusion, whereas the E-Glass/Nylon-6 nanocomposite was manufactured using compression molding. Mechanical characterization of nanocomposites were performed and compared with traditional microcomposites. Compressive as well as shear strength of nanocomposites was improved by improving the yield strength of the surrounding matrix through the dispersion of nanoclay. Significant improvements were achieved in compressive strength and shear strength with relatively low nanoclay loadings. Initially, polypropylene with and without nanoclay were melt intercalated using a single-screw extruder and the pultruded nanocomposite was fabricated using extruded pre-impregnated (pre-preg) tapes. Compression tests were performed as mandated by ASTM guidelines. SEM and TEM characterization revealed presence of nanoclay in an intercalated and partially exfoliated morphology. Mechanical tests confirmed significant improvements in compressive strength (˜122% at 10% nanoclay loading) and shear strength (˜60% at 3% nanoclay loading) in modified pultruded E-Glass/PP nanocomposites in comparison with baseline properties. Uniaxial tensile tests showed a small increase in tensile strength (˜3.4%) with 3% nanoclay loading. Subsequently, E-Glass/Nylon-6 nanocomposite panels were manufactured by compression molding. Compression tests were performed according to IITRI guidelines, whereas short beam shear and uni-axial tensile tests were performed according to ASTM standards. Mechanical tests confirmed strength enhancement with nanoclay addition, with a significant improvement in compressive strength (50% at 4% nanoclay loading) and shear strength (˜36% at 4% nanoclay loading) when compared with the baseline E-Glass/Nylon-6. Uni-axial tensile tests resulted in a small increase in tensile strength (˜3.2%) with 4% nanoclay loading. Also, hygrothermal aging (50°C and 100% RH) of baseline and nanoclay modified (4%) E-Glass/Nylon-6 was studied. It was observed that the moisture diffusion process followed Fickian diffusion. E-Glass/Nylon-6 modified with 4% nanoclay loading showed improved barrier performance with a significant reduction (˜30%) in moisture uptake compared to baseline E-Glass/Nylon-6 composites. Significant improvement in mechanical properties was also observed in hygrothermally aged nanocomposite specimens when compared with the aged baseline composite.

  11. Direct 4D printing via active composite materials.

    PubMed

    Ding, Zhen; Yuan, Chao; Peng, Xirui; Wang, Tiejun; Qi, H Jerry; Dunn, Martin L

    2017-04-01

    We describe an approach to print composite polymers in high-resolution three-dimensional (3D) architectures that can be rapidly transformed to a new permanent configuration directly by heating. The permanent shape of a component results from the programmed time evolution of the printed shape upon heating via the design of the architecture and process parameters of a composite consisting of a glassy shape memory polymer and an elastomer that is programmed with a built-in compressive strain during photopolymerization. Upon heating, the shape memory polymer softens, releases the constraint on the strained elastomer, and allows the object to transform into a new permanent shape, which can then be reprogrammed into multiple subsequent shapes. Our key advance, the markedly simplified creation of high-resolution complex 3D reprogrammable structures, promises to enable myriad applications across domains, including medical technology, aerospace, and consumer products, and even suggests a new paradigm in product design, where components are simultaneously designed to inhabit multiple configurations during service.

  12. Direct 4D printing via active composite materials

    PubMed Central

    Ding, Zhen; Yuan, Chao; Peng, Xirui; Wang, Tiejun; Qi, H. Jerry; Dunn, Martin L.

    2017-01-01

    We describe an approach to print composite polymers in high-resolution three-dimensional (3D) architectures that can be rapidly transformed to a new permanent configuration directly by heating. The permanent shape of a component results from the programmed time evolution of the printed shape upon heating via the design of the architecture and process parameters of a composite consisting of a glassy shape memory polymer and an elastomer that is programmed with a built-in compressive strain during photopolymerization. Upon heating, the shape memory polymer softens, releases the constraint on the strained elastomer, and allows the object to transform into a new permanent shape, which can then be reprogrammed into multiple subsequent shapes. Our key advance, the markedly simplified creation of high-resolution complex 3D reprogrammable structures, promises to enable myriad applications across domains, including medical technology, aerospace, and consumer products, and even suggests a new paradigm in product design, where components are simultaneously designed to inhabit multiple configurations during service. PMID:28439560

  13. Langmuir Films of Flexible Polymers Transferred to Aqueous/Liquid Crystal Interfaces Induce Uniform Azimuthal Alignment of the Liquid Crystal

    PubMed Central

    Kinsinger, Michael I.; Buck, Maren E.; Meli, Maria-Victoria; Abbott, Nicholas L.; Lynn, David M.

    2009-01-01

    We reported recently that amphiphilic polymers can be assembled at interfaces created between aqueous phases and thermotropic liquid crystals (LCs) in ways that (i) couple the organization of the polymer to the order of the LC and (ii) respond to changes in the properties of aqueous phases that can be characterized as changes in the optical appearance of the LC. This investigation sought to characterize the behavior of aqueous-LC interfaces decorated with uniaxially compressed thin films of polymers transferred by Langmuir-Schaefer (LS) transfer. Here, we report physicochemical characterization of interfaces created between aqueous phases and the thermotropic LC 4-cyano-4’-pentylbiphenyl (5CB) decorated with Langmuir films of a novel amphiphilic polymer (polymer 1), synthesized by the addition of hydrophobic and hydrophilic side chains to poly(2-vinyl-4,4’-dimethylazlactone). Initial characterization of this system resulted in the unexpected observation of uniform azimuthal alignment of 5CB after LS transfer of the polymer films to aqueous-5CB interfaces. This paper describes characterization of Langmuir films of polymer 1 hosted at aqueous-5CB interfaces as well as the results of our investigations into the origins of the uniform ordering of the LC observed upon LS transfer. Our results, when combined, support the conclusion that uniform azimuthal alignment of 5CB is the result of long-range ordering of polymer chains in the Langmuir films (in a preferred direction orthogonal to the direction of compression) that is generated during uniaxial compression of the films prior to LS transfer. Although past studies of Langmuir films of polymers at aqueous-air interfaces have demonstrated that in-plane alignment of polymer backbones can be induced by uniaxial compression, these past reports have generally made use of polymers with rigid backbones. One important outcome of this current study is thus the observation of anisotropy and long-range order in Langmuir films of a novel flexible polymer. A second important outcome is the observation that the existence, extent, and dynamics of this order can be identified and characterized optically by transfer of the Langmuir film to a thin film of LC. Additional characterization of Langmuir films of two other flexible polymers [poly(methyl methacrylate) and poly(vinyl stearate)] using this method also resulted in uniform azimuthal alignment of 5CB, suggesting that the generation of long-range order in uniaxially compressed Langmuir films of polymers may also occur more generally over a broader range of polymers with flexible backbones. PMID:19836025

  14. Preliminary Airworthiness Evaluation AH-1S Helicopter with OGEE Tip Shape Rotor Blades

    DTIC Science & Technology

    1980-05-01

    ENGINEER PROJECT PILOT HENRY ARNAIZ PROJECT ENGINEER DTIC MAY 1980 ELECTEV SEP 2 I8 Approved for public release; distribution unlimited. A UNITED STATES...compressibility effects between flights. 7. Airspeed and altitude were obtained from a boom-mounted pitot -static probe. Corrections for position error

  15. Soliton quenching NLTL impulse circuit with a pulse forming network at the output

    DOEpatents

    McEwan, T.E.; Dallum, G.E.

    1998-09-08

    An impulse forming circuit is disclosed which produces a clean impulse from a nonlinear transmission line compressed step function without customary soliton ringing by means of a localized pulse shaping and differentiating network which shunts the nonlinear transmission line output to ground. 5 figs.

  16. Optical Measurement Technique for Space Column Characterization

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Watson, Judith J.; Burner, Alpheus W.; Phelps, James E.

    2004-01-01

    A simple optical technique for the structural characterization of lightweight space columns is presented. The technique is useful for determining the coefficient of thermal expansion during cool down as well as the induced strain during tension and compression testing. The technique is based upon object-to-image plane scaling and does not require any photogrammetric calibrations or computations. Examples of the measurement of the coefficient of thermal expansion are presented for several lightweight space columns. Examples of strain measured during tension and compression testing are presented along with comparisons to results obtained with Linear Variable Differential Transformer (LVDT) position transducers.

  17. Nonlinear pulse shaping and polarization dynamics in mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Boscolo, Sonia; Sergeyev, Sergey V.; Mou, Chengbo; Tsatourian, Veronika; Turitsyn, Sergei; Finot, Christophe; Mikhailov, Vitaly; Rabin, Bryan; Westbrook, Paul S.

    2014-03-01

    We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fiber lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new types of vector solitons with processing states of polarization for multi-pulse and tightly bound-state soliton (soliton molecule) operations in a carbon nanotube (CNT) mode-locked fiber laser with anomalous dispersion cavity.

  18. Method of manufacturing an overwrapped pressure vessel

    NASA Technical Reports Server (NTRS)

    Beck, Emory J. (Inventor)

    1976-01-01

    A pressure vessel of the type wherein a metallic liner in the shape of a cylindrical portion with a dome-shaped portion at each end thereof is overwrapped by a plurality of layers of resin coated, single fiberglass filaments. A four-step wrapping technique reinforces the vessel with overwrap material at the most likely areas for vessel failure. Overwrapping of the vessel is followed by a sizing pressurization cycle which induces a compressive prestress into the liner and thereby permits the liner to deform elastically through an increased strain range.

  19. Histomorphometric study and three-dimensional reconstruction of the osteocyte lacuno-canalicular network one hour after applying tensile and compressive forces.

    PubMed

    Bozal, Carola B; Sánchez, Luciana M; Mandalunis, Patricia M; Ubios, Ángela M

    2013-01-01

    The occurrence of very early morphological changes in the osteocyte lacuno-canalicular network following application of tensile and/or compressive forces remains unknown to date. Thus, the aim of this study was to perform a morphological and morphometric evaluation of the changes in the three-dimensional structure of the lacuno-canalicular network and the osteocyte network of alveolar bone that take place very early after applying tensile and compressive forces in vivo, conducting static histomorphometry on bright-field microscopy and confocal laser scanning microscopy images. Our results showed that both the tensile and compressive forces induced early changes in osteocytes and their lacunae, which manifested as an increase in lacunar volume and changes in lacunar shape and orientation. An increase in canalicular width and a decrease in the width and an increase in the length of cytoplasmic processes were also observed. The morphological changes in the lacuno-canalicular and osteocyte networks that occur in vivo very early after application of tensile and compressive forces would be an indication of an increase in permeability within the system. Thus, both compressive and tensile forces would cause fluid displacement very soon after being applied; the latter would in turn rapidly activate alveolar bone osteocytes, enhancing transmission of the signals to the entire osteocyte network and the effector cells located at the bone surface. Copyright © 2013 S. Karger AG, Basel.

  20. Analysis of compressive strength in flatwise and edgewise direction to characterize Al-7000 aluminium foam

    NASA Astrophysics Data System (ADS)

    Sutarno, Soepriyanto, Syoni; Korda, Akhmad A.; Dirgantara, Tatacipta

    2015-09-01

    The physical mechanical properties of Al-7000 aluminium foam product and processing has been evaluated in this study. The characterization through the compressive testing refers to flatwise direction provided more confident result than edgewise direction. This experiment may correlate with formation of side products of calcia alumina and alumina silica that involved in metal mixture of aluminium foam. These compounds are formed from additional calcium carbonate and silica in the mixture. Calcium carbonate (CaCO3) roles as a blowing agent source of carbon dioxide (CO2). The formation of calcia alumina (CaO.Al2O3) may role to strengthen of cell wall of aluminium foam and to improve the viscosity of melting metal. The Al-7000 aluminium foam indicated a decrease of compressive strength probably due to existence of alumina silica (3Al2O3.SiO2) in the metal mixture.

  1. [Compression of the sciatic nerve in uremic tumor calcinosis].

    PubMed

    García, S; Cofán, F; Combalia, A; Casas, A; Campistol, J M; Oppenheimer, F

    1999-02-01

    Tumoral calcinosis is an uncommon and benign condition characterized by the presence of slow-growing calcified periarticular soft tissue masses of varying size. They are usually asymptomatic and nerve compression is rare. We describe the case of a 54-year-old female patient on long-term hemodialysis for chronic renal failure presenting sciatica in the left lower limb secondary to an extensive uremic tumoral calcinosis that affected the hip and thigh. The pathogenesis of uremic tumoral calcinosis as well as the treatment and clinical outcome are analyzed. The uncommon nerve compression due to tumoral calcinosis are reviewed. In conclusion, uremic tumoral calcinosis is a not previously reported infrequent cause of sciatic nerve compression.

  2. Effects of gas sorption-induced swelling/shrinkage on the cleat compressibility of coal under different bedding directions.

    PubMed

    Peng, Shoujian; Fang, Zhiming; Shen, Jian; Xu, Jiang; Wang, Geoff

    2017-10-30

    The cleat compressibility of coal is a key parameter that is extensively used in modeling the coal reservoir permeability for Coal Bed Methane (CBM) recovery. Cleat compressibility is often determined from the permeability measurement made at different confining pressures but with a constant pore pressure. Hence, this parameter ignores the sorption strain effects on the cleat compressibility. By using the transient pulse decay (TPD) technique, this study presents the results from a laboratory characterization program using coal core drilled from different bedding directions to estimate gas permeability and coal cleat compressibility under different pore pressures while maintaining effective stress constant. Cleat compressibility was determined from permeability and sorption strain measurements that are made at different pore pressures under an effective stress constant. Results show that the cleat compressibility of coal increases slightly with the increase of pore pressure. Moreover, the cleat compressibility of Sample P (representing the face cleats in coal) is larger than that of Sample C (representing the butt cleats in coal). This result suggests that cleat compressibility should not be regarded as constant in the modeling of the CBM recovery. Furthermore, the compressibility of face cleats is considerably sensitive to the sorption-induced swelling/shrinkage and offers significant effects on the coal permeability.

  3. Corrected Integral Shape Averaging Applied to Obstructive Sleep Apnea Detection from the Electrocardiogram

    NASA Astrophysics Data System (ADS)

    Boudaoud, S.; Rix, H.; Meste, O.; Heneghan, C.; O'Brien, C.

    2007-12-01

    We present a technique called corrected integral shape averaging (CISA) for quantifying shape and shape differences in a set of signals. CISA can be used to account for signal differences which are purely due to affine time warping (jitter and dilation/compression), and hence provide access to intrinsic shape fluctuations. CISA can also be used to define a distance between shapes which has useful mathematical properties; a mean shape signal for a set of signals can be defined, which minimizes the sum of squared shape distances of the set from the mean. The CISA procedure also allows joint estimation of the affine time parameters. Numerical simulations are presented to support the algorithm for obtaining the CISA mean and parameters. Since CISA provides a well-defined shape distance, it can be used in shape clustering applications based on distance measures such as[InlineEquation not available: see fulltext.]-means. We present an application in which CISA shape clustering is applied to P-waves extracted from the electrocardiogram of subjects suffering from sleep apnea. The resulting shape clustering distinguishes ECG segments recorded during apnea from those recorded during normal breathing with a sensitivity of[InlineEquation not available: see fulltext.] and specificity of[InlineEquation not available: see fulltext.].

  4. Filling-driven Mott transition in SU(N ) Hubbard models

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Sup B.; von Delft, Jan; Weichselbaum, Andreas

    2018-04-01

    We study the filling-driven Mott transition involving the metallic and paramagnetic insulating phases in SU (N ) Fermi-Hubbard models, using the dynamical mean-field theory and the numerical renormalization group as its impurity solver. The compressibility shows a striking temperature dependence: near the critical end-point temperature, it is strongly enhanced in the metallic phase close to the insulating phase. We demonstrate that this compressibility enhancement is associated with the thermal suppression of the quasiparticle peak in the local spectral functions. We also explain that the asymmetric shape of the quasiparticle peak originates from the asymmetry in the dynamics of the generalized doublons and holons.

  5. The ALE Discontinuous Galerkin Method for the Simulatio of Air Flow Through Pulsating Human Vocal Folds

    NASA Astrophysics Data System (ADS)

    Feistauer, Miloslav; Kučera, Václav; Prokopová, Jaroslav; Horáček, Jaromír

    2010-09-01

    The aim of this work is the simulation of viscous compressible flows in human vocal folds during phonation. The computational domain is a bounded subset of IR2, whose geometry mimics the shape of the human larynx. During phonation, parts of the solid impermeable walls are moving in a prescribed manner, thus simulating the opening and closing of the vocal chords. As the governing equations we take the compressible Navier-Stokes equations in ALE form. Space semidiscretization is carried out by the discontinuous Galerkin method combined with a linearized semi-implicit approach. Numerical experiments are performed with the resulting scheme.

  6. Second-order subsonic airfoil theory including edge effects

    NASA Technical Reports Server (NTRS)

    Van Dyke, Milton D

    1956-01-01

    Several recent advances in plane subsonic flow theory are combined into a unified second-order theory for airfoil sections of arbitrary shape. The solution is reached in three steps: the incompressible result is found by integration, it is converted into the corresponding subsonic compressible result by means of the second-order compressibility rule, and it is rendered uniformly valid near stagnation points by further rules. Solutions for a number of airfoils are given and are compared with the results of other theories and of experiment. A straight-forward computing scheme is outlined for calculating the surface velocities and pressures on any airfoil at any angle of attack

  7. Investigations of the emittance and brightness of ion beams from an electron beam ion source of the Dresden EBIS type.

    PubMed

    Silze, Alexandra; Ritter, Erik; Zschornack, Günter; Schwan, Andreas; Ullmann, Falk

    2010-02-01

    We have characterized ion beams extracted from the Dresden EBIS-A, a compact room-temperature electron beam ion source (EBIS) with a permanent magnet system for electron beam compression, using a pepper-pot emittance meter. The EBIS-A is the precursor to the Dresden EBIS-SC in which the permanent magnets have been replaced by superconducting solenoids for the use of the source in high-ion-current applications such as heavy-ion cancer therapy. Beam emittance and brightness values were calculated from data sets acquired for a variety of source parameters, in leaky as well as pulsed ion extraction mode. With box shaped pulses of C(4+) ions at an energy of 39 keV root mean square emittances of 1-4 mm mrad and a brightness of 10 nA mm(-2) mrad(-2) were achieved. The results meet the expectations for high quality ion beams generated by an electron beam ion source.

  8. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    PubMed

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Calculation of compressible boundary layer flow about airfoils by a finite element/finite difference method

    NASA Technical Reports Server (NTRS)

    Strong, Stuart L.; Meade, Andrew J., Jr.

    1992-01-01

    Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.

  10. Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments.

    PubMed

    Guler, N; Volegov, P; Danly, C R; Grim, G P; Merrill, F E; Wilde, C H

    2012-10-01

    Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.

  11. Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacPhee, A. G.; Peterson, J. L.; Casey, D. T.

    Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ∼4× compared to the original design at a convergence ratiomore » of ∼2. Corresponding simulations give a fuel adiabat of ∼1.6, similar to the original goal and consistent with ignition requirements.« less

  12. Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacPhee, A. G.; Peterson, J. L.; Casey, D. T.

    Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Here, using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ~4× compared to the original design at a convergencemore » ratio of ~2. Corresponding simulations give a fuel adiabat of ~1.6, similar to the original goal and consistent with ignition requirements.« less

  13. Real-time filtering and detection of dynamics for compression of HDTV

    NASA Technical Reports Server (NTRS)

    Sauer, Ken D.; Bauer, Peter

    1991-01-01

    The preprocessing of video sequences for data compressing is discussed. The end goal associated with this is a compression system for HDTV capable of transmitting perceptually lossless sequences at under one bit per pixel. Two subtopics were emphasized to prepare the video signal for more efficient coding: (1) nonlinear filtering to remove noise and shape the signal spectrum to take advantage of insensitivities of human viewers; and (2) segmentation of each frame into temporally dynamic/static regions for conditional frame replenishment. The latter technique operates best under the assumption that the sequence can be modelled as a superposition of active foreground and static background. The considerations were restricted to monochrome data, since it was expected to use the standard luminance/chrominance decomposition, which concentrates most of the bandwidth requirements in the luminance. Similar methods may be applied to the two chrominance signals.

  14. Fabrication and evaluation of cold/formed/weldbrazed beta-titanium skin-stiffened compression panels

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Bales, T. T.; Davis, R. C.; Wiant, H. R.

    1983-01-01

    The room temperature and elevated temperature buckling behavior of cold formed beta titanium hat shaped stiffeners joined by weld brazing to alpha-beta titanium skins was determined. A preliminary set of single stiffener compression panels were used to develop a data base for material and panel properties. These panels were tested at room temperature and 316 C (600 F). A final set of multistiffener compression panels were fabricated for room temperature tests by the process developed in making the single stiffener panels. The overall geometrical dimensions for the multistiffener panels were determined by the structural sizing computer code PASCO. The data presented from the panel tests include load shortening curves, local buckling strengths, and failure loads. Experimental buckling loads are compared with the buckling loads predicted by the PASCO code. Material property data obtained from tests of ASTM standard dogbone specimens are also presented.

  15. A new class of sonic composites

    NASA Astrophysics Data System (ADS)

    Munteanu, Ligia; Chiroiu, Veturia; Donescu, Ştefania; Brişan, Cornel

    2014-03-01

    Transformation acoustics opens a new avenue towards the architecture, modeling and simulation of a new class of sonic composites with scatterers made of various materials and having various shapes embedded in an epoxy matrix. The design of acoustic scatterers is based on the property of Helmholtz equations to be invariant under a coordinate transformation, i.e., a specific spatial compression is equivalent to a new material in a new space. In this paper, the noise suppression for a wide full band-gap of frequencies is discussed for spherical shell scatterers made of auxetic materials (materials with negative Poisson's ratio). The original domain consists of spheres made from conventional foams with positive Poisson's ratio. The spatial compression is controlled by the coordinate transformation, and leads to an equivalent domain filled with an auxetic material. The coordinate transformation is strongly supported by the manufacturing of auxetics which is based on the pore size reduction through radial compression molds.

  16. Advances in image compression and automatic target recognition; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Technical Reports Server (NTRS)

    Tescher, Andrew G. (Editor)

    1989-01-01

    Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.

  17. Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive

    DOE PAGES

    MacPhee, A. G.; Peterson, J. L.; Casey, D. T.; ...

    2015-08-01

    Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Here, using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ~4× compared to the original design at a convergencemore » ratio of ~2. Corresponding simulations give a fuel adiabat of ~1.6, similar to the original goal and consistent with ignition requirements.« less

  18. Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes.

    PubMed

    Li, Peixu; Kong, Chuiyan; Shang, Yuanyuan; Shi, Enzheng; Yu, Yuntao; Qian, Weizhong; Wei, Fei; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Cao, Anyuan; Wu, Dehai

    2013-09-21

    Developing flexible and deformable supercapacitor electrodes based on porous materials is of high interest in energy related fields. Here, we show that carbon nanotube sponges, consisting of highly porous conductive networks, can serve as compressible and deformation-tolerant supercapacitor electrodes in aqueous or organic electrolytes. In aqueous electrolytes, the sponges maintain a similar specific capacitance (>90% of the original value) under a predefined compressive strain of 50% (corresponding to a volume reduction of 50%), and retain more than 70% of the original capacitance under 80% strain while the volume normalized capacitance increases by 3-fold. The sponge electrode maintains a stable performance after 1000 large strain compression cycles. A coin-shaped cell assembled with these sponges shows excellent stability over 15,000 charging cycles with negligible degradation after 500 cycles. Our results indicate that carbon nanotube sponges have the potential to fabricate deformable supercapacitor electrodes with stable performance.

  19. About the Transformation Phase Zones of Shape Memory Alloys' Fracture Tests on Single Edge-Cracked Specimen

    NASA Astrophysics Data System (ADS)

    Taillebot, V.; Lexcellent, C.; Vacher, P.

    2012-03-01

    The thermomechanical behavior of shape memory alloys is now well mastered. However, a hindrance to their sustainable use is the lack of knowledge of their fracture behavior. With the aim of filling this partial gap, fracture tests on edge-cracked specimens in NiTi have been made. Particular attention was paid to determine the phase transformation zones in the vicinity of the crack tip. In one hand, experimental kinematic fields are observed using digital image correlation showing strain localization around the crack tip. In the other hand, an analytical prediction, based on a modified equivalent stress criterion and taking into account the asymmetric behavior of shape memory alloys in tension-compression, provides shape and size of transformation outset zones. Experimental results are relatively in agreement with our analytical modeling.

  20. Incorporation of Fiber Bragg Sensors for Shape Memory Polyurethanes Characterization.

    PubMed

    Alberto, Nélia; Fonseca, Maria A; Neto, Victor; Nogueira, Rogério; Oliveira, Mónica; Moreira, Rui

    2017-11-11

    Shape memory polyurethanes (SMPUs) are thermally activated shape memory materials, which can be used as actuators or sensors in applications including aerospace, aeronautics, automobiles or the biomedical industry. The accurate characterization of the memory effect of these materials is therefore mandatory for the technology's success. The shape memory characterization is normally accomplished using mechanical testing coupled with a heat source, where a detailed knowledge of the heat cycle and its influence on the material properties is paramount but difficult to monitor. In this work, fiber Bragg grating (FBG) sensors were embedded into SMPU samples aiming to study and characterize its shape memory effect. The samples were obtained by injection molding, and the entire processing cycle was successfully monitored, providing a process global quality signature. Moreover, the integrity and functionality of the FBG sensors were maintained during and after the embedding process, demonstrating the feasibility of the technology chosen for the purpose envisaged. The results of the shape memory effect characterization demonstrate a good correlation between the reflected FBG peak with the temperature and induced strain, proving that this technology is suitable for this particular application.

  1. Incorporation of Fiber Bragg Sensors for Shape Memory Polyurethanes Characterization

    PubMed Central

    Nogueira, Rogério; Moreira, Rui

    2017-01-01

    Shape memory polyurethanes (SMPUs) are thermally activated shape memory materials, which can be used as actuators or sensors in applications including aerospace, aeronautics, automobiles or the biomedical industry. The accurate characterization of the memory effect of these materials is therefore mandatory for the technology’s success. The shape memory characterization is normally accomplished using mechanical testing coupled with a heat source, where a detailed knowledge of the heat cycle and its influence on the material properties is paramount but difficult to monitor. In this work, fiber Bragg grating (FBG) sensors were embedded into SMPU samples aiming to study and characterize its shape memory effect. The samples were obtained by injection molding, and the entire processing cycle was successfully monitored, providing a process global quality signature. Moreover, the integrity and functionality of the FBG sensors were maintained during and after the embedding process, demonstrating the feasibility of the technology chosen for the purpose envisaged. The results of the shape memory effect characterization demonstrate a good correlation between the reflected FBG peak with the temperature and induced strain, proving that this technology is suitable for this particular application. PMID:29137136

  2. Compression failure mechanisms of single-ply, unidirectional, carbon-fiber composites

    NASA Technical Reports Server (NTRS)

    Ha, Jong-Bae; Nairn, John A.

    1992-01-01

    A single-ply composite compression test was used to study compression failure mechanisms as a function of fiber type, matrix type, and interfacial strength. Composites made with low- and intermediate-modulus fibers (Hercules AS4 and IM7) in either an epoxy (Hercules 3501-6) or a thermoplastic (ULTEM and LARC-TPI) matrix failed by kink banding and out-of-plane slip. The failures proceeded by rapid and catastrophic damage propagation across the specimen width. Composites made with high-modulus fibers (Hercules HMS4/3501-6) had a much lower compression strength. Their failures were characterized by kink banding and longitudinal splitting. The damage propagated slowly across the specimen width. Composites made with fibers treated to give low interfacial strength had low compression strength. These composites typically failed near the specimen ends and had long kink bands.

  3. Compression for the management of venous leg ulcers: which material do we have?

    PubMed

    Partsch, Hugo

    2014-05-01

    Compression therapy is the most important basic treatment modality in venous leg ulcers. The review focusses on the materials which are used: 1. Compression bandages, 2. Compression stockings, 3. Self-adjustable Velcro-devices, 4. Compression pumps, 5. Hybrid devices. Compression bandages, usually applied by trained staff, provide a wide spectrum of materials with different elastic properties. To make bandaging easier, safer and more effective, most modern bandages combine different material components. Self-management of venous ulcers has become feasible by introducing double compression stockings ("ulcer kits") and self-adjustable Velcro devices. Compression pumps can be used as adjunctive measures, especially for patients with restricted mobility. The combination of sustained and intermittent compression ("hybrid device") is a promising new tool. The interface pressure corresponding to the dosage of compression therapy determines the hemodynamic efficacy of each device. In order to reduce ambulatory venous hypertension compression pressures of more than 50 mm Hg in the upright position are desirable. At the same time pressure should be lower in the resting position in order to be tolerated. This prerequisite may be fulfilled by using inelastic, short stretch material including multicomponent bandages and cohesive surfaces, all characterized by high stiffness. Such materials do not give way when calf muscles contract during walking which leads to high peaks of interface pressure ("massaging effect"). © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. SmartShape™ technology. Modifying the shape of the beef cuberoll and the consumer response to shaped scotch fillet steaks.

    PubMed

    Taylor, Johanne; van de Ven, Remy; Hopkins, David L

    2014-03-01

    SmartShape™ is a novel meat processing technology that uses air pressure to compress and elongate whole cold-boned primals and packages them to retain form. A two stage study was conducted. The first stage established the ability of the SmartShape™ treated beef cube roll (m. longissimus lumborum) to retain shape in a commercial setting. Twelve hours chilling time following treatment was found to be adequate for steaks to retain their shape for up to 24h after slicing. Steak shape and size did not change substantially until after cooking, when the steaks looked less formed. In the second stage a survey was conducted of 421 consumers to clarify the response to the shaping of a subset of raw and cooked scotch fillet steaks. There was no difference in preference for shaped or control steaks. A secondary survey found that informed consumers were more amenable to the SmartShape™ scotch fillet steaks presented here, but would not pay a premium for them. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Microstructure characterization of Al matrix composite reinforced with Ti-6Al-4V meshes after compression by scanning electron microscope and transmission electron microscope.

    PubMed

    Guo, Q; Sun, D L; Han, X L; Cheng, S R; Chen, G Q; Jiang, L T; Wu, G H

    2012-02-01

    Compressive properties of Al matrix composite reinforced with Ti-6Al-4V meshes (TC4(m)/5A06 Al composite) under the strain rates of 10(-3)S(-1) and 1S(-1) at different temperature were measured and microstructure of composites after compression was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Compressive strength decreased with the test temperature increased and the strain-rate sensitivity (R) of composite increased with the increasing temperature. SEM observations showed that grains of Al matrix were elongated severely along 45° direction (angle between axis direction and fracture surface) and TC4 fibres were sheared into several parts in composite compressed under the strain rate of 10(-3)S(-1) at 25°C and 250°C. Besides, amounts of cracks were produced at the interfacial layer between TC4 fibre and Al matrix and in (Fe, Mn)Al(6) phases. With the compressive temperature increasing to 400°C, there was no damage at the interfacial layer between TC4 fibre and Al matrix and in (Fe, Mn)Al(6) phases, while equiaxed recrystal grains with sizes about 10 μm at the original grain boundaries of Al matrix were observed. However, interface separation of TC4 fibres and Al matrix occurred in composite compressed under the strain rate of 1S(-1) at 250°C and 400°C. With the compressive temperature increasing from 25°C to 100°C under the strain rate of 10(-3) S(-1), TEM microstructure in Al matrix exhibited high density dislocations and slipping bands (25°C), polygonized dislocations and dynamic recovery (100°C), equiaxed recrystals with sizes below 500 μm (250°C) and growth of equiaxed recrystals (400°C), respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Chemical, Physical, and Mechanical Characterization of Isocyanate Cross-linked Amine-Modified Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Katti, Atul; Shimpi, Nilesh; Roy, Samit; Lu, Hongbing; Fabrizio, Eve F.; Dass, Amala; Capadona, Lynn A.; Leventis, Nicholas

    2006-01-01

    We describe a new mechanically strong lightweight porous composite material obtained by encapsulating the skeletal framework of amine-modified silica aerogels with polyurea. The conformal polymer coating preserves the mesoporous structure of the underlying silica framework and the thermal conductivity remains low at 0.041 plus or minus 0.001 W m(sup -1 K(sup -1). The potential of the new cross-linked silica aerogels for load-carrying applications was determined through characterization of their mechanical behavior under compression, three-point bending, and dynamic mechanical analysis (DMA). A primary glass transition temperature of 130 C was identified through DMA. At room temperature, results indicate a hyperfoam behavior where in compression cross-linked aerogels are linearly elastic under small strains (less than 4%) and then exhibit yield behavior (until 40% strain), followed by densification and inelastic hardening. At room temperature the compressive Young's modulus and the Poisson's ratio were determined to be 129 plus or minus 8 MPa and 0.18, respectively, while the strain at ultimate failure is 77% and the average specific compressive stress at ultimate failure is 3.89 x 10(exp 5) N m kg(sup -1). The specific flexural strength is 2.16 x 10(exp 4) N m kg(sup -1). Effects on the compressive behavior of strain rate and low temperature were also evaluated.

  7. HapZipper: sharing HapMap populations just got easier.

    PubMed

    Chanda, Pritam; Elhaik, Eran; Bader, Joel S

    2012-11-01

    The rapidly growing amount of genomic sequence data being generated and made publicly available necessitate the development of new data storage and archiving methods. The vast amount of data being shared and manipulated also create new challenges for network resources. Thus, developing advanced data compression techniques is becoming an integral part of data production and analysis. The HapMap project is one of the largest public resources of human single-nucleotide polymorphisms (SNPs), characterizing over 3 million SNPs genotyped in over 1000 individuals. The standard format and biological properties of HapMap data suggest that a dedicated genetic compression method can outperform generic compression tools. We propose a compression methodology for genetic data by introducing HapZipper, a lossless compression tool tailored to compress HapMap data beyond benchmarks defined by generic tools such as gzip, bzip2 and lzma. We demonstrate the usefulness of HapZipper by compressing HapMap 3 populations to <5% of their original sizes. HapZipper is freely downloadable from https://bitbucket.org/pchanda/hapzipper/downloads/HapZipper.tar.bz2.

  8. Membrane filtration device for studying compression of fouling layers in membrane bioreactors

    PubMed Central

    Bugge, Thomas Vistisen; Larsen, Poul; Nielsen, Per Halkjær; Christensen, Morten Lykkegaard

    2017-01-01

    A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology’s ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation. PMID:28749990

  9. Mathematical investigations of branch length similarity entropy profiles of shapes for various resolutions

    NASA Astrophysics Data System (ADS)

    Jeon, Wonju; Lee, Sang-Hee

    2012-12-01

    In our previous study, we defined the branch length similarity (BLS) entropy for a simple network consisting of a single node and numerous branches. As the first application of this entropy to characterize shapes, the BLS entropy profiles of 20 battle tank shapes were calculated from simple networks created by connecting pixels in the boundary of the shape. The profiles successfully characterized the tank shapes through a comparison of their BLS entropy profiles. Following the application, this entropy was used to characterize human's emotional faces, such as happiness and sad, and to measure the degree of complexity for termite tunnel networks. These applications indirectly indicate that the BLS entropy profile can be a useful tool to characterize networks and shapes. However, the ability of the BLS entropy in the characterization depends on the image resolution because the entropy is determined by the number of nodes for the boundary of a shape. Higher resolution means more nodes. If the entropy is to be widely used in the scientific community, the effect of the resolution on the entropy profile should be understood. In the present study, we mathematically investigated the BLS entropy profile of a shape with infinite resolution and numerically investigated the variation in the pattern of the entropy profile caused by changes in the resolution change in the case of finite resolution.

  10. Density Fluctuations in the Solar Wind Driven by Alfvén Wave Parametric Decay

    NASA Astrophysics Data System (ADS)

    Bowen, Trevor A.; Badman, Samuel; Hellinger, Petr; Bale, Stuart D.

    2018-02-01

    Measurements and simulations of inertial compressive turbulence in the solar wind are characterized by anti-correlated magnetic fluctuations parallel to the mean field and density structures. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures, kinetic ion-acoustic waves, as well as the MHD slow-mode. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggestive of a local driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the Alfvén wave parametric instability. Here, we test the parametric decay process as a source of compressive waves in the solar wind by comparing the collisionless damping rates of compressive fluctuations with growth rates of the parametric decay instability daughter waves. Our results suggest that generation of compressive waves through parametric decay is overdamped at 1 au, but that the presence of slow-mode-like density fluctuations is correlated with the parametric decay of Alfvén waves.

  11. Measurement of compressed breast thickness by optical stereoscopic photogrammetry.

    PubMed

    Tyson, Albert H; Mawdsley, Gordon E; Yaffe, Martin J

    2009-02-01

    The determination of volumetric breast density (VBD) from mammograms requires accurate knowledge of the thickness of the compressed breast. In attempting to accurately determine VBD from images obtained on conventional mammography systems, the authors found that the thickness reported by a number of mammography systems in the field varied by as much as 15 mm when compressing the same breast or phantom. In order to evaluate the behavior of mammographic compression systems and to be able to predict the thickness at different locations in the breast on patients, they have developed a method for measuring the local thickness of the breast at all points of contact with the compression paddle using optical stereoscopic photogrammetry. On both flat (solid) and compressible phantoms, the measurements were accurate to better than 1 mm with a precision of 0.2 mm. In a pilot study, this method was used to measure thickness on 108 volunteers who were undergoing mammography examination. This measurement tool will allow us to characterize paddle surface deformations, deflections and calibration offsets for mammographic units.

  12. Nanometer-scale characterization of laser-driven plasmas, compression, shocks and phase transitions, by coherent small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Kluge, Thomas

    2015-11-01

    Combining ultra-intense short-pulse and high-energy long-pulse lasers, with brilliant coherent hard X-ray FELs, such as the Helmholtz International Beamline for Extreme Fields (HIBEF) under construction at the HED Instrument of European XFEL, or MEC at LCLS, holds the promise to revolutionize our understanding of many High Energy Density Physics phenomena. Examples include the relativistic electron generation, transport, and bulk plasma response, and ionization dynamics and heating in relativistic laser-matter interactions, or the dynamics of laser-driven shocks, quasi-isentropic compression, and the kinetics of phase transitions at high pressure. A particularly promising new technique is the use of coherent X-ray diffraction to characterize electron density correlations, and by resonant scattering to characterize the distribution of specific charge-state ions, either on the ultrafast time scale of the laser interaction, or associated with hydrodynamic motion. As well one can image slight density changes arising from phase transitions inside of shock-compressed high pressure matter. The feasibility of coherent diffraction techniques in laser-driven matter will be discussed. including recent results from demonstration experiments at MEC. Among other things, very sharp density changes from laser-driven compression are observed, having an effective step width of 10 nm or smaller. This compares to a resolution of several hundred nm achievedpreviously with phase contrast imaging. and on behalf of HIBEF User Consortium, for the Helmholtz International Beamline for Extreme Fields at the European XFEL.

  13. Experimental Study of the Seismic Performance of L-Shaped Columns with 500 MPa Steel Bars

    PubMed Central

    Wang, Tiecheng; Liu, Xiao; Zhao, Hailong

    2014-01-01

    Based on tests on six L-shaped RC columns with 500 MPa steel bars, the effect of axial compression ratios and stirrup spacing on failure mode, bearing capacity, displacement, and curvature ductility of the specimens is investigated. Test results show that specimens with lower axial load and large stirrup characteristic value (larger than about 0.35) are better at ductility and seismic performance, while specimens under high axial load or with a small stirrup characteristic value (less than about 0.35) are poorer at ductility; L-shaped columns with 500 MPa steel bars show better bearing capacity and ductility in comparison with specimens with HRB400 steel bars. PMID:24967420

  14. Additive Manufacturing of NiTiHf High Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane; Bigelow, Glen S.; Elahinia, Mohammad; Moghaddam, Narges Shayesteh; Amerinatanzi, Amirhesam; Saedi, Soheil; Toker, Guher Pelin; Karaca, Haluk

    2017-01-01

    Additive manufacturing of a NiTi-20Hf high temperature shape memory alloy (HTSMA) was investigated. A selective laser melting (SLM) process by Phenix3D Systems was used to develop components from NiTiHf powder (of approximately 25-75 m particle fractions), and the thermomechanical response was compared to the conventionally vacuum induction skull melted counterpart. Transformation temperatures of the SLM material were found to be slightly lower due to the additional oxygen pick up from the gas atomization and melting process. The shape memory response in compression was measured for stresses up to 500 MPa, and transformation strains were found to be very comparable (Up to 1.26 for the as-extruded; up to 1.52 for SLM).

  15. Wave energy absorption by a floating air bag

    NASA Astrophysics Data System (ADS)

    Kurniawan, A.; Chaplin, J. R.; Greaves, D. M.; Hann, M.

    2017-02-01

    A floating air bag, ballasted in water, expands and contracts as it heaves under wave action. Connecting the bag to a secondary volume via a turbine transforms the bag into a device capable of generating useful energy from the waves. Small-scale measurements of the device reveal some interesting properties, which are successfully predicted numerically. Owing to its compressibility, the device can have a heave resonance period longer than that of a rigid device of the same shape and size, without any phase control. Furthermore, varying the amount of air in the bag is found to change its shape and hence its dynamic response, while varying the turbine damping or the air volume ratio changes the dynamic response without changing the shape.

  16. From Free Expansion to Abrupt Compression of an Ideal Gas

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Pereira, Mario G.

    2009-01-01

    Using macroscopic thermodynamics, the general law for adiabatic processes carried out by an ideal gas was studied. It was shown that the process reversibility is characterized by the adiabatic reversibility coefficient r, in the range 0 [less than or equal] r [less than or equal] 1 for expansions and r [greater than or equal] 1 for compressions.…

  17. COMPRESSIVE FATIGUE IN TITANIUM DENTAL IMPLANTS SUBMITTED TO FLUORIDE IONS ACTION

    PubMed Central

    Ribeiro, Ana Lúcia Roselino; Noriega, Jorge Roberto; Dametto, Fábio Roberto; Vaz, Luís Geraldo

    2007-01-01

    The aim of this study was to assess the influence of a fluoridated medium on the mechanical properties of an internal hexagon implant-abutment set, by means of compression, mechanical cycling and metallographic characterization by scanning electronic microscopy. Five years of regular use of oral hygiene with a sodium fluoride solution content of 1500 ppm were simulated, immersing the samples in this medium for 184 hours, with the solutions being changed every 12 hours. Data were analyzed at a 95% confidence level with Fisher's exact test. After the action of fluoride ions, a negative influence occurred in the mechanical cycling test performed in a servohydraulic machine (Material Test System-810) set to a frequency of 15 Hz with 100,000 cycles and programmed to 60% of the maximum resistance of static compression test. The sets tended to fracture by compression on the screw, characterized by mixed ruptures with predominance of fragile fracture, as observed by microscopy. An evidence of corrosion by pitting on sample surfaces was found after the fluoride ions action. It may be concluded that prolonged contact with fluoride ions is harmful to the mechanical properties of commercially pure titanium structures. PMID:19089148

  18. Characterization of short-pulse laser-produced x-rays for diagnosing magnetically driven cylindrical isentropic compression

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroshi; Daykin, Tyler; Bauer, Bruno; Beg, Farhat

    2017-10-01

    We have developed an experimental platform to study material properties of magnetically compressed cylinder using a 1 MA pulsed power generator Zebra and a 50 TW subpicosecond short-pulse laser Leopard at the UNR's Nevada Terawatt Facility. According to a MHD simulation, strong magnetic fields generated by 100 ns rise time Zebra current can quasi-isentropically compress a material to the strongly coupled plasma regime. Taking advantage of the cylindrical geometry, a metal rod can be brought to higher pressures than that in the planar geometry. To diagnose the compressed rod with high precision x-ray measurements, an initial laser-only experiment was carried out to characterize laser-produced x-rays. Interaction of a high-intensity, short-pulse laser with solids produces broadband and monochromatic x-rays with photon energies high enough to probe dense metal rods. Bremsstrahlung was measured with Imaging plate-based filter stack spectrometers and monochromatic 8.0 keV Cu K-alpha was recorded with an absolutely calibrated Bragg crystal spectrometer. The broadband x-ray source was applied to radiography of thick metal objects and different filter materials were tested. The experimental results and a design of a coupled experiment will be presented.

  19. Variation in the shape and mechanical performance of the lower jaws in ceratopsid dinosaurs (Ornithischia, Ceratopsia).

    PubMed

    Maiorino, Leonardo; Farke, Andrew A; Kotsakis, Tassos; Teresi, Luciano; Piras, Paolo

    2015-11-01

    Ceratopsidae represents a group of quadrupedal herbivorous dinosaurs that inhabited western North America and eastern Asia during the Late Cretaceous. Although horns and frills of the cranium are highly variable across species, the lower jaw historically has been considered to be relatively conservative in morphology. Here, the lower jaws from 58 specimens representing 21 ceratopsoid taxa were sampled, using geometric morphometrics and 2D finite element analysis (FEA) to explore differences in morphology and mechanical performance across Ceratopsoidea (the clade including Ceratopsidae, Turanoceratops and Zuniceratops). Principal component analyses and non-parametric permuted manovas highlight Triceratopsini as a morphologically distinct clade within the sample. A relatively robust and elongate dentary, a larger and more elongated coronoid process, and a small and dorso-ventrally compressed angular characterize this clade, as well as the absolutely larger size. By contrast, non-triceratopsin chasmosaurines, Centrosaurini and Pachyrhinosaurini have similar morphologies to each other. Zuniceratops and Avaceratops are distinct from other taxa. No differences in size between Pachyrhinosaurini and Centrosaurini are recovered using non-parametric permuted anovas. Structural performance, as evaluated using a 2D FEA, is similar across all groups as measured by overall stress, with the exception of Triceratopsini. Shape, size and stress are phylogenetically constrained. A longer dentary as well as a long coronoid process result in a lower jaw that is reconstructed as relatively much more stressed in triceratopsins. © 2015 Anatomical Society.

  20. Strain Phase Diagram of SrTiO3 Thin Films

    NASA Astrophysics Data System (ADS)

    He, Feizhou; Shapiro, S. M.

    2005-03-01

    SrTiO3 thin films were used as a model system to study the effects of strain and epitaxial constraint on structural phase transitions of oxide films. The basic phenomena revealed will apply to a variety of important structural transitions including the ferroelectric transition. Highly strained, epitaxial films of SrTiO3 were grown on different substrates. The structural phase transition temperature Tc increases from 105 K in bulk STO to 167 K for films under tensile strain and 330 K for films with compressive strain. The measured temperature-strain phase diagram is qualitatively consistent with theory [1], however the increase in Tc is much larger than predicted in all cases. The symmetry of the phases involved in the transition is different from the corresponding bulk structures largely because of epitaxial constraint, the clamping effect. Thus the shape of the STO unit cell is tetragonal at all temperatures. The possibility exists of a very unique low temperature phase with orthorhombic symmetry (Cmcm) but tetragonal unit cell shape. More generally, we have characterized at least three different manifestations of the clamping effect, showing it is much more subtle than usually recognized. This work is supported through NSF DMR-0239667, DMR-0132918, by the Research Corp, and at BNL by the US DOE DE-AC02-98CH10886. [1] N. A. Pertsev, A. K. Tagantsev and N. Setter, Phys. Rev. B61, R825 (2000).

  1. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties.

    PubMed

    Moroni, L; de Wijn, J R; van Blitterswijk, C A

    2006-03-01

    One of the main issues in tissue engineering is the fabrication of scaffolds that closely mimic the biomechanical properties of the tissues to be regenerated. Conventional fabrication techniques are not sufficiently suitable to control scaffold structure to modulate mechanical properties. Within novel scaffold fabrication processes 3D fiber deposition (3DF) showed great potential for tissue engineering applications because of the precision in making reproducible 3D scaffolds, characterized by 100% interconnected pores with different shapes and sizes. Evidently, these features also affect mechanical properties. Therefore, in this study we considered the influence of different structures on dynamic mechanical properties of 3DF scaffolds. Pores were varied in size and shape, by changing fibre diameter, spacing and orientation, and layer thickness. With increasing porosity, dynamic mechanical analysis (DMA) revealed a decrease in elastic properties such as dynamic stiffness and equilibrium modulus, and an increase of the viscous parameters like damping factor and creep unrecovered strain. Furthermore, the Poisson's ratio was measured, and the shear modulus computed from it. Scaffolds showed an adaptable degree of compressibility between sponges and incompressible materials. As comparison, bovine cartilage was tested and its properties fell in the fabricated scaffolds range. This investigation showed that viscoelastic properties of 3DF scaffolds could be modulated to accomplish mechanical requirements for tailored tissue engineered applications.

  2. Regional variations in growth plate chondrocyte deformation as predicted by three-dimensional multi-scale simulations.

    PubMed

    Gao, Jie; Roan, Esra; Williams, John L

    2015-01-01

    The physis, or growth plate, is a complex disc-shaped cartilage structure that is responsible for longitudinal bone growth. In this study, a multi-scale computational approach was undertaken to better understand how physiological loads are experienced by chondrocytes embedded inside chondrons when subjected to moderate strain under instantaneous compressive loading of the growth plate. Models of representative samples of compressed bone/growth-plate/bone from a 0.67 mm thick 4-month old bovine proximal tibial physis were subjected to a prescribed displacement equal to 20% of the growth plate thickness. At the macroscale level, the applied compressive deformation resulted in an overall compressive strain across the proliferative-hypertrophic zone of 17%. The microscale model predicted that chondrocytes sustained compressive height strains of 12% and 6% in the proliferative and hypertrophic zones, respectively, in the interior regions of the plate. This pattern was reversed within the outer 300 μm region at the free surface where cells were compressed by 10% in the proliferative and 26% in the hypertrophic zones, in agreement with experimental observations. This work provides a new approach to study growth plate behavior under compression and illustrates the need for combining computational and experimental methods to better understand the chondrocyte mechanics in the growth plate cartilage. While the current model is relevant to fast dynamic events, such as heel strike in walking, we believe this approach provides new insight into the mechanical factors that regulate bone growth at the cell level and provides a basis for developing models to help interpret experimental results at varying time scales.

  3. Regional Variations in Growth Plate Chondrocyte Deformation as Predicted By Three-Dimensional Multi-Scale Simulations

    PubMed Central

    Gao, Jie; Roan, Esra; Williams, John L.

    2015-01-01

    The physis, or growth plate, is a complex disc-shaped cartilage structure that is responsible for longitudinal bone growth. In this study, a multi-scale computational approach was undertaken to better understand how physiological loads are experienced by chondrocytes embedded inside chondrons when subjected to moderate strain under instantaneous compressive loading of the growth plate. Models of representative samples of compressed bone/growth-plate/bone from a 0.67 mm thick 4-month old bovine proximal tibial physis were subjected to a prescribed displacement equal to 20% of the growth plate thickness. At the macroscale level, the applied compressive deformation resulted in an overall compressive strain across the proliferative-hypertrophic zone of 17%. The microscale model predicted that chondrocytes sustained compressive height strains of 12% and 6% in the proliferative and hypertrophic zones, respectively, in the interior regions of the plate. This pattern was reversed within the outer 300 μm region at the free surface where cells were compressed by 10% in the proliferative and 26% in the hypertrophic zones, in agreement with experimental observations. This work provides a new approach to study growth plate behavior under compression and illustrates the need for combining computational and experimental methods to better understand the chondrocyte mechanics in the growth plate cartilage. While the current model is relevant to fast dynamic events, such as heel strike in walking, we believe this approach provides new insight into the mechanical factors that regulate bone growth at the cell level and provides a basis for developing models to help interpret experimental results at varying time scales. PMID:25885547

  4. Characterization of particle deformation during compression measured by confocal laser scanning microscopy.

    PubMed

    Guo, H X; Heinämäki, J; Yliruusi, J

    1999-09-20

    Direct compression of riboflavin sodium phosphate tablets was studied by confocal laser scanning microscopy (CLSM). The technique is non-invasive and generates three-dimensional (3D) images. Tablets of 1% riboflavin sodium phosphate with two grades of microcrystalline cellulose (MCC) were individually compressed at compression forces of 1.0 and 26.8 kN. The behaviour and deformation of drug particles on the upper and lower surfaces of the tablets were studied under compression forces. Even at the lower compression force, distinct recrystallized areas in the riboflavin sodium phosphate particles were observed in both Avicel PH-101 and Avicel PH-102 tablets. At the higher compression force, the recrystallization of riboflavin sodium phosphate was more extensive on the upper surface of the Avicel PH-102 tablet than the Avicel PH-101 tablet. The plastic deformation properties of both MCC grades reduced the fragmentation of riboflavin sodium phosphate particles. When compressed with MCC, riboflavin sodium phosphate behaved as a plastic material. The riboflavin sodium phosphate particles were more tightly bound on the upper surface of the tablet than on the lower surface, and this could also be clearly distinguished by CLSM. Drug deformation could not be visualized by other techniques. Confocal laser scanning microscopy provides valuable information on the internal mechanisms of direct compression of tablets.

  5. Pneumatic microfluidic cell compression device for high-throughput study of chondrocyte mechanobiology.

    PubMed

    Lee, Donghee; Erickson, Alek; You, Taesun; Dudley, Andrew T; Ryu, Sangjin

    2018-06-13

    Hyaline cartilage is a specialized type of connective tissue that lines many moveable joints (articular cartilage) and contributes to bone growth (growth plate cartilage). Hyaline cartilage is composed of a single cell type, the chondrocyte, which produces a unique hydrated matrix to resist compressive stress. Although compressive stress has profound effects on transcriptional networks and matrix biosynthesis in chondrocytes, mechanistic relationships between strain, signal transduction, cell metabolism, and matrix production remain superficial. Here, we describe development and validation of a polydimethylsiloxane (PDMS)-based pneumatic microfluidic cell compression device which generates multiple compression conditions in a single platform. The device contained an array of PDMS balloons of different sizes which were actuated by pressurized air, and the balloons compressed chondrocytes cells in alginate hydrogel constructs. Our characterization and testing of the device showed that the developed platform could compress chondrocytes with various magnitudes simultaneously with negligible effect on cell viability. Also, the device is compatible with live cell imaging to probe early effects of compressive stress, and it can be rapidly dismantled to facilitate molecular studies of compressive stress on transcriptional networks. Therefore, the proposed device will enhance the productivity of chondrocyte mechanobiology studies, and it can be applied to study mechanobiology of other cell types.

  6. 46 CFR 151.50-22 - Hydrochloric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...), compressed air may be used to discharge hydrochloric acid from gravity type cargo tanks only if the tanks are of cylindrical shape with dished heads, provided the air pressure does not exceed the design pressure...) Hydrochloric acid shall be carried in gravity or pressure type cargo tanks which are independent of the vessel...

  7. 46 CFR 151.50-22 - Hydrochloric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...), compressed air may be used to discharge hydrochloric acid from gravity type cargo tanks only if the tanks are of cylindrical shape with dished heads, provided the air pressure does not exceed the design pressure...) Hydrochloric acid shall be carried in gravity or pressure type cargo tanks which are independent of the vessel...

  8. 46 CFR 151.50-22 - Hydrochloric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...), compressed air may be used to discharge hydrochloric acid from gravity type cargo tanks only if the tanks are of cylindrical shape with dished heads, provided the air pressure does not exceed the design pressure...) Hydrochloric acid shall be carried in gravity or pressure type cargo tanks which are independent of the vessel...

  9. Experiments On Flow In A Coronary Artery

    NASA Technical Reports Server (NTRS)

    Back, Lloyd H.; Kwack, Eug-Yon; Liem, Timothy K.; Crawford, Donald W.

    1993-01-01

    Report describes experiments on simulated flow of blood in atherosclerotic human coronary artery. Experiments performed on polyurethane cast made from S-shaped coronary artery of cadaver. Sucrose solution with viscosity of blood pumped through cast at physiologically realistic rates, and flow made pulsatile by mechanism alternately compressing and releasing elastic tube just upstream of cast.

  10. Mechanical Degradation of Porous NiTi Alloys Under Static and Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyyed Alireza

    2017-12-01

    Pore characteristics and morphology have significant effect on mechanical behavior of porous NiTi specimens. In this research, porous NiTi with different pore sizes, shapes and morphology were produced by powder metallurgy methods using space-holder materials. The effect of the pore characteristics on the mechanical properties was investigated by static and cyclic compression tests at body temperature. The results show that specimens with low porosity and isolated pores exhibit more mechanical strength and recoverable strain. The specimen with 36% porosity produced without space holder could preserve its properties up to 10% strain and its strain recovery was complete after cyclic compression tests. On the other hand, the specimens produced by a urea space holder with more than 60% interconnected porosity show rapid degradation of their scaffolds. The highly porous specimens degraded even below 5% strain due to crack formation and propagation in the thin pore walls. For highly porous specimens produced by a NaCl space holder, the pores are partially interconnected with a cubic shape; nevertheless, their mechanical behavior is close to low-porosity specimens.

  11. Study on axial strength of a channel-shaped pultruded GFRP member

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yukihiro; Satake, Chito; Nisida, Kenji

    2017-10-01

    Fiber reinforced polymers (FRP) are widely used in vehicle and aerospace applications because of their lightweight and high-strength characteristics. Additionally, FRPs are increasingly applied to building structures. However, the elastic modulus of glass fiber reinforced polymers (GFRPs) is lower than that of steel. Hence, the evaluating the buckling strength of GFRP members for design purpose is necessary. The buckling strength is determined by Euler buckling mode as well as local buckling. In this study investigated the compressive strength of GFRP members subjected to axial compression through experiments and theoretical calculations. The adopted GFRP member was a channel-shaped GFRP, which was molded via pultrusion, at various lengths. Although, the mechanical properties as longitudinal elastic modulus and fiber volume fraction and strength of GFRP members subjected, to axial can be easily evaluated, evaluating transverse elastic modulus and shear modulus in typical material tests is difficult in standard section. Therefore the composite law was used in this study. As a result, we confirmed that the axial strength of a GFRP member could be calculated by a theoretical evaluation method utilizing longitudinal elastic modulus and fiber volume fraction.

  12. Calculation of Compressible Flows past Aerodynamic Shapes by Use of the Streamline Curvature

    NASA Technical Reports Server (NTRS)

    Perl, W

    1947-01-01

    A simple approximate method is given for the calculation of isentropic irrotational flows past symmetrical airfoils, including mixed subsonic-supersonic flows. The method is based on the choice of suitable values for the streamline curvature in the flow field and the subsequent integration of the equations of motion. The method yields limiting solutions for potential flow. The effect of circulation is considered. A comparison of derived velocity distributions with existing results that are based on calculation to the third order in the thickness ratio indicated satisfactory agreement. The results are also presented in the form of a set of compressibility correction rules that lie between the Prandtl-Glauert rule and the von Karman-Tsien rule (approximately). The different rules correspond to different values of the local shape parameter square root sign YC sub a, in which Y is the ordinate and C sub a is the curvature at a point on an airfoil. Bodies of revolution, completely supersonic flows, and the significance of the limiting solutions for potential flow are also briefly discussed.

  13. Characterization of the lateral distribution of fluorescent lipid in binary-constituent lipid monolayers by principal component analysis.

    PubMed

    Sugár, István P; Zhai, Xiuhong; Boldyrev, Ivan A; Molotkovsky, Julian G; Brockman, Howard L; Brown, Rhoderick E

    2010-01-01

    Lipid lateral organization in binary-constituent monolayers consisting of fluorescent and nonfluorescent lipids has been investigated by acquiring multiple emission spectra during measurement of each force-area isotherm. The emission spectra reflect BODIPY-labeled lipid surface concentration and lateral mixing with different nonfluorescent lipid species. Using principal component analysis (PCA) each spectrum could be approximated as the linear combination of only two principal vectors. One point on a plane could be associated with each spectrum, where the coordinates of the point are the coefficients of the linear combination. Points belonging to the same lipid constituents and experimental conditions form a curve on the plane, where each point belongs to a different mole fraction. The location and shape of the curve reflects the lateral organization of the fluorescent lipid mixed with a specific nonfluorescent lipid. The method provides massive data compression that preserves and emphasizes key information pertaining to lipid distribution in different lipid monolayer phases. Collectively, the capacity of PCA for handling large spectral data sets, the nanoscale resolution afforded by the fluorescence signal, and the inherent versatility of monolayers for characterization of lipid lateral interactions enable significantly enhanced resolution of lipid lateral organizational changes induced by different lipid compositions.

  14. Esophageal achalasia compressing left atrium diagnosed by echocardiography using a liquid containing carbon dioxide in a 21-year-old woman with Turner syndrome.

    PubMed

    Park, Man Je; Song, Bong Gun; Lee, Hyoun Soo; Kim, Ki Hoon; Ok, Hea Sung; Kim, Byeong Ki; Park, Yong Hwan; Kang, Gu Hyun; Chun, Woo Jung; Oh, Ju Hyeon

    2012-01-01

    Extrinsic compression of the left atrium by the esophagus, the stomach, or both is an uncommon but important cause of hemodynamic compromise. Achalasia is a motility disorder characterized by impaired relaxation of the lower esophageal sphincter and dilatation of the distal two thirds of the esophagus. Echocardiographic imaging after oral ingestion of liquid containing carbon dioxide allowed for differentiation between a compressive vascular structure and the esophagus. We report a rare case of esophageal achalasia compressing the left atrium diagnosed by echocardiography using a liquid containing carbon dioxide in a 21-year-old woman with Turner syndrome. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Filming the invisible - time-resolved visualization of compressible flows

    NASA Astrophysics Data System (ADS)

    Kleine, H.

    2010-04-01

    Essentially all processes in gasdynamics are invisible to the naked eye as they occur in a transparent medium. The task to observe them is further complicated by the fact that most of these processes are also transient, often with characteristic times that are considerably below the threshold of human perception. Both difficulties can be overcome by combining visualization methods that reveal changes in the transparent medium, and high-speed photography techniques that “stop” the motion of the flow. The traditional approach is to reconstruct a transient process from a series of single images, each taken in a different experiment at a different instant. This approach, which is still widely used today, can only be expected to give reliable results when the process is reproducible. Truly time-resolved visualization, which yields a sequence of flow images in a single experiment, has been attempted for more than a century, but many of the developed camera systems were characterized by a high level of complexity and limited quality of the results. Recent advances in digital high-speed photography have changed this situation and have provided the tools to investigate, with relative ease and in sufficient detail, the true development of a transient flow with characteristic time scales down to one microsecond. This paper discusses the potential and the limitations one encounters when using density-sensitive visualization techniques in time-resolved mode. Several examples illustrate how this approach can reveal and explain a number of previously undetected phenomena in a variety of highly transient compressible flows. It is demonstrated that time-resolved visualization offers numerous advantages which normally outweigh its shortcomings, mainly the often-encountered loss in resolution. Apart from the capability to track the location and/or shape of flow features in space and time, adequate time-resolved visualization allows one to observe the development of deliberately introduced near-isentropic perturbation wavelets. This new diagnostic tool can be used to qualitatively and quantitatively determine otherwise inaccessible thermodynamic properties of a compressible flow.

  16. Transparent layered YAG ceramics with structured Yb doping produced via tape casting

    NASA Astrophysics Data System (ADS)

    Hostaša, Jan; Piancastelli, Andreana; Toci, Guido; Vannini, Matteo; Biasini, Valentina

    2017-03-01

    The flexibility of the ceramic production process, in particular in terms of shaping and spatial control of distribution of active ions, is one of the strong points in favor of transparent ceramics. In high power lasers in particular, where thermal management is a critical issue, the finely controlled design of spatial distribution of the doping ions within the laser gain media can reduce undesired thermally induced effects and large temperature gradients, and thus enhance the efficiency and laser beam quality especially under increased thermal load. In the present work transparent structured YAG ceramics with Yb doping were produced by tape casting followed by thermal compression of assembled tapes and sintered under high vacuum. The thermal compression of variously doped tape cast layers is a very promising method because it allows a high precision and good control over dopant distribution in the sintered material. After sintering, the distribution of Yb across the layers was characterized by SEM-EDX and the thickness of Yb diffusion zones between the layers with different Yb content was measured. Optical homogeneity was assessed by means of optical transmittance mapping of the samples and by 2D scanning of laser output. The effect of structured dopant distribution on laser performance was measured in quasi-CW and CW regime with different duty factors. Slope efficiency values higher than 50% were measured both in quasi-CW and in CW lasing conditions. The results are in good agreement with previously calculated predictions, confirming the beneficial effect of structured doping on laser performances and enlightening the impact of the residual scattering losses. Compared to other processing methods, such as the pressing of granulated powders, tape casting followed by thermal compression leads to straight and narrow interfaces between layers with different composition and allows to build structures composed of extremely thin layers with defined dopant content.

  17. Elevated Temperature, Residual Compressive Strength of Impact-Damaged Sandwich Structure Manufactured Out-of-Autoclave

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Sutter, James K.; Burke, Eric R.; Dixon, Genevieve D.; Gyekenyesi, Thomas G.; Smeltzer, Stanley S.

    2012-01-01

    Several 1/16th-scale curved sandwich composite panel sections of a 10 m diameter barrel were fabricated to demonstrate the manufacturability of large-scale curved sections using minimum gauge, [+60/-60/0]s, toughened epoxy composite facesheets co-cured with low density (50 kilograms per cubic meters) aluminum honeycomb core. One of these panels was fabricated out of autoclave (OoA) by the vacuum bag oven (VBO) process using Cycom(Registered Trademark) T40-800b/5320-1 prepreg system while another panel with the same lay-up and dimensions was fabricated using the autoclave-cure, toughened epoxy prepreg system Cycom(Registered Trademark) IM7/977-3. The resulting 2.44 m x 2 m curved panels were investigated by non-destructive evaluation (NDE) at NASA Langley Research Center (NASA LaRC) to determine initial fabrication quality and then cut into smaller coupons for elevated temperature wet (ETW) mechanical property characterization. Mechanical property characterization of the sandwich coupons was conducted including edge-wise compression (EWC), and compression-after-impact (CAI) at conditions ranging from 25 C/dry to 150 C/wet. The details and results of this characterization effort are presented in this paper.

  18. Studies Of Coherent Synchrotron Radiation And Longitudinal Space Charge In The Jefferson Lab FEL Driver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tennant, Christopher D.; Douglas, David R.; Li, Rui

    2014-12-01

    The Jefferson Laboratory IR FEL Driver provides an ideal test bed for studying a variety of beam dynamical effects. Recent studies focused on characterizing the impact of coherent synchrotron radiation (CSR) with the goal of benchmarking measurements with simulation. Following measurements to characterize the beam, we quantitatively characterized energy extraction via CSR by measuring beam position at a dispersed location as a function of bunch compression. In addition to operating with the beam on the rising part of the linac RF waveform, measurements were also made while accelerating on the falling part. For each, the full compression point was movedmore » along the backleg of the machine and the response of the beam (distribution, extracted energy) measured. Initial results of start-to-end simulations using a 1D CSR algorithm show remarkably good agreement with measurements. A subsequent experiment established lasing with the beam accelerated on the falling side of the RF waveform in conjunction with positive momentum compaction (R56) to compress the bunch. The success of this experiment motivated the design of a modified CEBAF-style arc with control of CSR and microbunching effects.« less

  19. Powder metallurgy technology of NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, J. M.; Maziarz, W.; Czeppe, T.; Lityńska, L.; Nowacki, W. K.; Gadaj, S. P.; Luckner, J.; Pieczyska, E. A.

    2008-05-01

    Powder metallurgy technology was elaborated for consolidation of shape memory NiTi powders. The shape memory alloy was compacted from the prealloyed powder delivered by Memry SA. The powder shows Ms = 10°C and As = -34°C as results from DSC measurements. The samples were hot pressed in the as delivered spherical particle's state. The hot compaction was performed in a specially constructed vacuum press, at temperature of 680°C and pressure of 400 MPa. The alloy powder was encapsulated in copper capsules prior to hot pressing to avoid oxidation or carbides formation. The alloy after hot vacuum compaction at 680°C (i.e. within the B2 NiTi stability range) has shown similar transformation range as the powder. The porosity of samples compacted in the as delivered state was only 1%. The samples tested in compression up to ɛ = 0.06 have shown partial superelastic effect due to martensitic reversible transform- ation which started at the stress above 300 MPa and returned back to ɛ = 0.015 after unloading. They have shown also a high ultimate compression strength of 1600 MPa. Measurements of the samples temperature changes during the process allowed to detect the temperature increase above 12°C for the strain rate 10-2 s-1 accompanied the exothermic martensite transformation during loading and the temperature decrease related to the reverse endothermic transformation during unloading.

  20. The influence of hand positions on biomechanical injury risk factors at the wrist joint during the round-off skills in female gymnastics.

    PubMed

    Farana, Roman; Jandacka, Daniel; Uchytil, Jaroslav; Zahradnik, David; Irwin, Gareth

    2017-01-01

    The aim of this study was to examine the biomechanical injury risk factors at the wrist, including joint kinetics, kinematics and stiffness in the first and second contact limb for parallel and T-shape round-off (RO) techniques. Seven international-level female gymnasts performed 10 trials of the RO to back handspring with parallel and T-shape hand positions. Synchronised kinematic (3D motion analysis system; 247 Hz) and kinetic (two force plates; 1235 Hz) data were collected for each trial. A two-way repeated measure analysis of variance (ANOVA) assessed differences in the kinematic and kinetic parameters between the techniques for each contact limb. The main findings highlighted that in both the RO techniques, the second contact limb wrist joint is exposed to higher mechanical loads than the first contact limb demonstrated by increased axial compression force and loading rate. In the parallel technique, the second contact limb wrist joint is exposed to higher axial compression load. Differences between wrist joint kinetics highlight that the T-shape technique may potentially lead to reducing these bio-physical loads and consequently protect the second contact limb wrist joint from overload and biological failure. Highlighting the biomechanical risk factors facilitates the process of technique selection making more objective and safe.

  1. Self-Deploying Trusses Containing Shape-Memory Polymers

    NASA Technical Reports Server (NTRS)

    Schueler, Robert M.

    2008-01-01

    Composite truss structures are being developed that can be compacted for stowage and later deploy themselves to full size and shape. In the target applications, these smart structures will precisely self-deploy and support a large, lightweight space-based antenna. Self-deploying trusses offer a simple, light, and affordable alternative to articulated mechanisms or inflatable structures. The trusses may also be useful in such terrestrial applications as variable-geometry aircraft components or shelters that can be compacted, transported, and deployed quickly in hostile environments. The truss technology uses high-performance shape-memory-polymer (SMP) thermoset resin reinforced with fibers to form a helical composite structure. At normal operating temperatures, the truss material has the structural properties of a conventional composite. This enables truss designs with required torsion, bending, and compression stiffness. However, when heated to its designed glass transition temperature (Tg), the SMP matrix acquires the flexibility of an elastomer. In this state, the truss can be compressed telescopically to a configuration encompassing a fraction of its original volume. When cooled below Tg, the SMP reverts to a rigid state and holds the truss in the stowed configuration without external constraint. Heating the materials above Tg activates truss deployment as the composite material releases strain energy, driving the truss to its original memorized configuration without the need for further actuation. Laboratory prototype trusses have demonstrated repeatable self-deployment cycles following linear compaction exceeding an 11:1 ratio (see figure).

  2. Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slough, John

    To take advantage of the smaller scale, higher density regime of fusion an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. What is proposed is a more flexible metallic liner compression scheme that minimizes the kinetic energy required to reach fusion. It is believed that it is possible to accomplish this at sub-megajoule energies. This however will require operation at very small scale. To have a realistic hope of inexpensive, repetitive operation, it is essential to have the liner kinetic energy under a megajoule which allows for the survivability of the vacuummore » and power systems. At small scale the implosion speed must be reasonably fast to maintain the magnetized plasma (FRC) equilibrium during compression. For limited liner kinetic energy, it becomes clear that the thinnest liner imploded to the smallest radius consistent with the requirements for FRC equilibrium lifetime is desired. The proposed work is directed toward accomplishing this goal. Typically an axial (Z) current is employed for liner compression. There are however several advantages to using a θ-pinch coil. With the θ-pinch the liner currents are inductively driven which greatly simplifies the apparatus and vacuum system, and avoids difficulties with the post implosion vacuum integrity. With fractional flux leakage, the foil liner automatically provides for the seed axial compression field. To achieve it with optimal switching techniques, and at an accelerated pace however will require additional funding. This extra expense is well justified as the compression technique that will be enabled by this funding is unique in the ability to implode individual segments of the liner at different times. This is highly advantageous as the liner can be imploded in a manner that maximizes the energy transfer to the FRC. Production of shaped liner implosions for additional axial compression can thus be readily accomplished with the modified power modules. The additional energy and switching capability proposed will thus provide for optimal utilization of the liner energy. The following tasks were outlined for the three year effort: (1) Design and assemble the foil liner compression test structure and chamber including the compression bank and test foils [Year 1]. (2) Perform foil liner compression experiments and obtain performance data over a range on liner dimensions and bank parameters [Year 2]. (3) Carry out compression experiments of the FRC plasma to Megagauss fields and measure key fusion parameters [Year 3]. (4) Develop numerical codes and analyze experimental results, and determine the physics and scaling for future work [Year 1-3]. The principle task of the project was to design and assemble the foil liner FRC formation chamber, the full compression test structure and chamber including the compression bank. This task was completed successfully. The second task was to test foils in the test facility constructed in year one and characterize the performance obtained from liner compression. These experimental measurements were then compared with analytical predictions, and numerical code results. The liner testing was completed and compared with both the analytical results as well as the code work performed with the 3D structural dynamics package of ANSYS Metaphysics®. This code is capable of modeling the dynamic behavior of materials well into the non-linear regime (e.g. a bullet hit plate glass). The liner dynamic behavior was found to be remarkably close to that predicted by the 3D structural dynamics results. Incorporating a code that can also include the magnetics and plasma physics has also made significant progress at the UW. The remaining test bed construction and assembly task is was completed, and the FRC formation and merging experiments were carried out as planned. The liner compression of the FRC to Megagauss fields was not performed due to not obtaining a sufficiently long lived FRC during the final year of the grant. Modifications planned to correct this deficiency included a larger FRC source as well as a much larger liner driver energy storage system. Due to discontinuation of the grant neither of these improvements were carried out.« less

  3. Investigation of the Radial Compression of Carbon Nanotubes with a Scanning Probe Microscope

    NASA Astrophysics Data System (ADS)

    Shen, Weidian; Jiang, Bin; Han, Bao Shan; Xie, Si-Shen

    2001-03-01

    Carbon nanotubes have attracted great interest since they were first synthesized. The tubes have substantial promise in a variety of applications due to their unique properties. Efforts have been made to characterize the mechanical properties of the tubes. However, previous work has concentrated on the tubes’ longitudinal properties, and studies of their radial properties lag behind. We have operated a scanning probe microscope, NanoScopeTM IIIa, in the indentation/scratching mode to carry out a nanoindentation test on the top of multiwalled carbon nanotubes. We measured the correlation between the radial stress and the tube compression, and thereby determined the radial compressive elastic modulus at different compressive forces. The measurements also allowed us to estimate the radial compressive strength of the tubes. Support of this work by an Eastern Michigan University Faculty Research Fellowship and by the K. C. Wong Education Foundation, Hong Kong is gratefully acknowledged.

  4. Anisotropy of demineralized bone matrix under compressive load.

    PubMed

    Trębacz, Hanna; Zdunek, Artur

    2011-01-01

    Two groups of cubic specimens from diaphysis of bovine femur, intact and completely demineralized, were axially compressed. One half of the samples from each group were loaded along the axis of the femur (L) and the other - perpendicularly (T). Intact samples were characterized in terms of elastic modulus; for demineralized samples secant modulus of elasticity was calculated. During compression an acoustic emission (AE) signal was recorded and AE events and energy were analyzed. Samples of intact bone did not reveal any anisotropy under compression at the stress of 80 MPa. However, AE signal indicated an initiation of failure in samples loaded in T direction. Demineralized samples were anisotropic under compression. Both secant modulus of elasticity and AE parameters were significantly higher in T direction than in L direction, which is attributed to shifting and separation of lamellae of collagen fibrils and lamellae in bone matrix.

  5. Characterization of compression behaviors of fully covered biodegradable polydioxanone biliary stent for human body: A numerical approach by finite element model.

    PubMed

    Liu, Yanhui; Zhang, Peihua

    2016-09-01

    This paper presents a study of the compression behaviors of fully covered biodegradable polydioxanone biliary stents (FCBPBs) developed for human body by finite element method. To investigate the relationship between the compression force and structure parameter (monofilament diameter and braid-pin number), nine numerical models based on actual biliary stent were established, the simulation and experimental results are in good agreement with each other when calculating the compression force derived from both experiment and simulation results, indicating that the simulation results can be provided a useful reference to the investigation of biliary stents. The stress distribution on FCBPBSs was studied to optimize the structure of FCBPBSs. In addition, the plastic dissipation analysis and plastic strain of FCBPBSs were obtained via the compression simulation, revealing the structure parameter effect on the tolerance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. New single-layer compression bandage system for chronic venous leg ulcers.

    PubMed

    Lee, Gillian; Rajendran, Subbiyan; Anand, Subhash

    A new single-layer bandage system for the treatment of venous leg ulcers has been designed and developed at the University of Bolton. This three-dimensional (3D) knitted spacer fabric structure has been designed by making use of mathematical modelling and Laplace's law. The sustained graduated compression of the developed 3D knitted spacer bandages were tested and characterized, and compared with that of commercially available compression bandages. It was observed that the developed 3D single-layer bandage meets the ideal criteria stipulated for compression therapy. The laboratory results were verified by carrying out a pilot user study incorporating volunteers from different age groups. This article examines the insight into the design and development of the new 3D knitted spacer bandage, along with briefly discussing the issues of compression therapy systems intended for the treatment of venous leg ulcers.

  7. Computational modeling of joint U.S.-Russian experiments relevant to magnetic compression/magnetized target fusion (MAGO/MTF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheehey, P.T.; Faehl, R.J.; Kirkpatrick, R.C.

    1997-12-31

    Magnetized Target Fusion (MTF) experiments, in which a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions, present some challenging computational modeling problems. Recently, joint experiments relevant to MTF (Russian acronym MAGO, for Magnitnoye Obzhatiye, or magnetic compression) have been performed by Los Alamos National Laboratory and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). Modeling of target plasmas must accurately predict plasma densities, temperatures, fields, and lifetime; dense plasma interactions with wall materials must be characterized. Modeling of magnetically driven imploding solid liners, for compression of target plasmas, must address issues such as Rayleigh-Taylor instability growthmore » in the presence of material strength, and glide plane-liner interactions. Proposed experiments involving liner-on-plasma compressions to fusion conditions will require integrated target plasma and liner calculations. Detailed comparison of the modeling results with experiment will be presented.« less

  8. Numerical estimation of deformation energy of selected bulk oilseeds in compression loading

    NASA Astrophysics Data System (ADS)

    Demirel, C.; Kabutey, A.; Herak, D.; Gurdil, G. A. K.

    2017-09-01

    This paper aimed at the determination of the deformation energy of some bulk oilseeds or kernels namely oil palm, sunflower, rape and flax in linear pressing applying the trapezoidal rule which is characterized by the area under the force and deformation curve.The bulk samples were measured at the initial pressing height of 60 mm with the vessel diameter of 60 mm where they were compressed under the universal compression machine at a maximum force of 200 kN and speed of 5 mm/min.Based on the compression test, the optimal deformation energy for recovering the oil was observed at a force of 163 kN where there was no seed/kernel cake ejection in comparison to the initial maximum force used particularly for rape and flax bulk oilseeds.This information is needed for analyzing the energy efficiency of the non-linear compression process involving a mechanical screw press or expeller.

  9. Mechanical properties of a biodegradable bone regeneration scaffold

    NASA Technical Reports Server (NTRS)

    Porter, B. D.; Oldham, J. B.; He, S. L.; Zobitz, M. E.; Payne, R. G.; An, K. N.; Currier, B. L.; Mikos, A. G.; Yaszemski, M. J.

    2000-01-01

    Poly (Propylene Fumarate) (PPF), a novel, bulk erosion, biodegradable polymer, has been shown to have osteoconductive effects in vivo when used as a bone regeneration scaffold (Peter, S. J., Suggs, L. J., Yaszemski, M. J., Engel, P. S., and Mikos, A. J., 1999, J. Biomater. Sci. Polym. Ed., 10, pp. 363-373). The material properties of the polymer allow it to be injected into irregularly shaped voids in vivo and provide mechanical stability as well as function as a bone regeneration scaffold. We fabricated a series of biomaterial composites, comprised of varying quantities of PPF, NaCl and beta-tricalcium phosphate (beta-TCP), into the shape of right circular cylinders and tested the mechanical properties in four-point bending and compression. The mean modulus of elasticity in compression (Ec) was 1204.2 MPa (SD 32.2) and the mean modulus of elasticity in bending (Eb) was 1274.7 MPa (SD 125.7). All of the moduli were on the order of magnitude of trabecular bone. Changing the level of NaCl from 20 to 40 percent, by mass, did not decrease Ec and Eb significantly, but did decrease bending and compressive strength significantly. Increasing the beta-TCP from 0.25 g/g PPF to 0.5 g/g PPF increased all of the measured mechanical properties of PPF/NVP composites. These results indicate that this biodegradable polymer composite is an attractive candidate for use as a replacement scaffold for trabecular bone.

  10. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression

    PubMed Central

    Qian, Suxin; Wang, Yi; Pillsbury, Thomas E.; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-01-01

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s−1 (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hysteresis at each strain were compared. The stress at the maximum recoverable strain of 4.0% for CuAlMn was 120 MPa, which is 70% smaller than that of CuAlZn. A smaller hysteresis for the CuAlMn alloy was also obtained, about 70% less compared with the CuAlZn alloy. The latent heat, determined by differential scanning calorimetry, was 4.3 J g−1 for the CuAlZn alloy and 5.0 J g−1 for the CuAlMn alloy. Potential coefficients of performance (COPmat) for these two alloys were calculated based on their physical properties of measured latent heat and hysteresis, and a COPmat of approximately 13.3 for CuAlMn was obtained. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402936

  11. Method for fabricating ceramic filaments and high density tape casting method

    NASA Technical Reports Server (NTRS)

    Collins, Jr., Earl R. (Inventor)

    1990-01-01

    An apparatus and method is disclosed for fabricating mats of ceramic material comprising preparing a slurry of ceramic particles in a binder/solvent, charging the slurry into a vessel, forcing the slurry from the vessel into spinneret nozzles, discharging the slurry from the nozzles into the path of airjets to enhance the sinuous character of the slurry exudate and to dry it, collecting the filaments on a moving belt so that the filaments overlap each other thereby forming a mat, curing the binder therein, compressing and sintering the mat to form a sintered mat, and crushing the sintered mat to produce filament shaped fragments. A process is also disclosed for producing a tape of densely packed, bonded ceramic particles comprising forming a slurry of ceramic particles and a binder/solvent, applying the slurry to a rotating internal molding surface, applying a large centrifugal force to the slurry to compress it and force excess binder/solvent from the particles, evaporating solvent and curing the binder thereby forming layers of bonded ceramic particles and cured binder, and separating the binder layer from the layer of particles. Multilayers of ceramic particles are cast in an analogous manner on top of previously formed layers. When all of the desired layers have been cast the tape is fired to produce a sintered tape. For example, a three-layer tape is produced having outer layers of highly compressed filament shaped fragments of strontium doped lanthanum (LSM) particles and a center layer of yttria stabilized zicronia (YSZ) particles.

  12. A Metric on Phylogenetic Tree Shapes

    PubMed Central

    Plazzotta, G.

    2018-01-01

    Abstract The shapes of evolutionary trees are influenced by the nature of the evolutionary process but comparisons of trees from different processes are hindered by the challenge of completely describing tree shape. We present a full characterization of the shapes of rooted branching trees in a form that lends itself to natural tree comparisons. We use this characterization to define a metric, in the sense of a true distance function, on tree shapes. The metric distinguishes trees from random models known to produce different tree shapes. It separates trees derived from tropical versus USA influenza A sequences, which reflect the differing epidemiology of tropical and seasonal flu. We describe several metrics based on the same core characterization, and illustrate how to extend the metric to incorporate trees’ branch lengths or other features such as overall imbalance. Our approach allows us to construct addition and multiplication on trees, and to create a convex metric on tree shapes which formally allows computation of average tree shapes. PMID:28472435

  13. Microsecond ramp compression of a metallic liner driven by a 5 MA current on the SPHINX machine using a dynamic load current multiplier pulse shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Almeida, T.; Lassalle, F.; Morell, A.

    SPHINX is a 6 MA, 1-μs Linear Transformer Driver (LTD) operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being evaluated to improve the generator performances are an upgrade to a 20 MA, 1-μs LTD machine and various power amplification schemes, including a compact Dynamic Load Current Multiplier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse in order to obtain the desired load current profile. In this paper,more » we discuss the overall configuration that was selected for these experiments, including the choice of a coaxial cylindrical geometry for the load and its return current electrode. We present both 3-D Magneto-hydrodynamic and 1D Lagrangian hydrodynamic simulations which helped guide the design of the experimental configuration. Initial results obtained over a set of experiments on an aluminium cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented and analyzed. Details of the electrical and laser Doppler interferometer setups used to monitor and diagnose the ramp compression experiments are provided. In particular, the configuration used to field both homodyne and heterodyne velocimetry diagnostics in the reduced access available within the liner's interior is described. Current profiles measured at various critical locations across the system, particularly the load current, enabled a comprehensive tracking of the current circulation and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements obtained from the heterodyne velocimeter agree with the hydrocode results obtained using the measured load current as the input. An extensive hydrodynamic analysis is carried out to examine information such as pressure and particle velocity history profiles or magnetic diffusion across the liner. The potential of the technique in terms of applications and achievable ramp pressure levels lies in the prospects for improving the DLCM efficiency through the use of a closing switch (currently under development), reducing the load dimensions and optimizing the diagnostics.« less

  14. Cell shape characterization and classification with discrete Fourier transforms and self-organizing maps.

    PubMed

    Kriegel, Fabian L; Köhler, Ralf; Bayat-Sarmadi, Jannike; Bayerl, Simon; Hauser, Anja E; Niesner, Raluca; Luch, Andreas; Cseresnyes, Zoltan

    2018-03-01

    Cells in their natural environment often exhibit complex kinetic behavior and radical adjustments of their shapes. This enables them to accommodate to short- and long-term changes in their surroundings under physiological and pathological conditions. Intravital multi-photon microscopy is a powerful tool to record this complex behavior. Traditionally, cell behavior is characterized by tracking the cells' movements, which yields numerous parameters describing the spatiotemporal characteristics of cells. Cells can be classified according to their tracking behavior using all or a subset of these kinetic parameters. This categorization can be supported by the a priori knowledge of experts. While such an approach provides an excellent starting point for analyzing complex intravital imaging data, faster methods are required for automated and unbiased characterization. In addition to their kinetic behavior, the 3D shape of these cells also provide essential clues about the cells' status and functionality. New approaches that include the study of cell shapes as well may also allow the discovery of correlations amongst the track- and shape-describing parameters. In the current study, we examine the applicability of a set of Fourier components produced by Discrete Fourier Transform (DFT) as a tool for more efficient and less biased classification of complex cell shapes. By carrying out a number of 3D-to-2D projections of surface-rendered cells, the applied method reduces the more complex 3D shape characterization to a series of 2D DFTs. The resulting shape factors are used to train a Self-Organizing Map (SOM), which provides an unbiased estimate for the best clustering of the data, thereby characterizing groups of cells according to their shape. We propose and demonstrate that such shape characterization is a powerful addition to, or a replacement for kinetic analysis. This would make it especially useful in situations where live kinetic imaging is less practical or not possible at all. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  15. Measurements of ionic structure in shock compressed lithium hydride from ultrafast x-ray Thomson scattering.

    PubMed

    Kritcher, A L; Neumayer, P; Brown, C R D; Davis, P; Döppner, T; Falcone, R W; Gericke, D O; Gregori, G; Holst, B; Landen, O L; Lee, H J; Morse, E C; Pelka, A; Redmer, R; Roth, M; Vorberger, J; Wünsch, K; Glenzer, S H

    2009-12-11

    We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.

  16. BEM for wave equation with boundary in arbitrary motion and applications to compressible potential aerodynamics of airplanes and helicopters

    NASA Technical Reports Server (NTRS)

    Morino, Luigi; Bharadvaj, Bala K.; Freedman, Marvin I.; Tseng, Kadin

    1988-01-01

    The wave equation for an object in arbitrary motion is investigated analytically using a BEM approach, and practical applications to potential flows of compressible fluids around aircraft wings and helicopter rotors are considered. The treatment accounts for arbitrary combined rotational and translational motion of the reference frame and for the wake motion. The numerical implementation as a computer algorithm is demonstrated on problems with prescribed and free wakes, the former in compressible flows and the latter for incompressible flows; results are presented graphically and briefly characterized.

  17. Toughening of PMR composites by gradient semi-interpenetrating networks

    NASA Technical Reports Server (NTRS)

    Johnston, N. J.; Srinivasan, K.; Peter, R. H.

    1992-01-01

    The toughening of the PMR-15 and LARC RP-46 high temperature thermosetting polyimides is presently attempted through the construction of a semiinterpenetrating network at ply interfaces through the use of the Matrimid 5218 thermoplastic polyimide powder, whose 315-320 glass transition temperature is compatible with the PMR matrices. The 60 vol pct fiber composites thus prepared for the two resins, with and without toughening, were comprehensively characterized in flexure, tension, intralaminar and short beam shear, compression and quasi-isotropic short-block compression, as well as modes I and II interlaminar fracture toughness and compression after impact.

  18. Compression response of tri-axially braided textile composites

    NASA Astrophysics Data System (ADS)

    Song, Shunjun

    2007-12-01

    This thesis is concerned with characterizing the compression stiffness and compression strength of 2D tri-axially braided textile composites (2DTBC). Two types of 2DTBC are considered differing only on the resin type, while the textile fiber architecture is kept the same with bias tows at 45 degrees to the axial tows. Experimental, analytical and computational methods are described based on the results generated in this study. Since these composites are manufactured using resin transfer molding, the intended and as manufactured composite samples differ in their microstructure due to consolidation and thermal history effects in the manufacturing cycle. These imperfections are measured and the effect of these imperfections on the compression stiffness and strength are characterized. Since the matrix is a polymer material, the nonuniform thermal history undergone by the polymer at manufacturing (within the composite and in the presence of fibers) renders its properties to be non-homogenous. The effects of these non-homogeneities are captured through the definition of an equivalent in-situ matrix material. A method to characterize the mechanical properties of the in-situ matrix is also described. Fiber tow buckling, fiber tow kinking and matrix microcracking are all observed in the experiments. These failure mechanisms are captured through a computational model that uses the finite element (FE) technique to discretize the structure. The FE equations are solved using the commercial software ABAQUS version 6.5. The fiber tows are modeled as transversely isotropic elastic-plastic solids and the matrix is modeled as an isotropic elastic-plastic solid with and without microcracking damage. Because the 2DTBC is periodic, the question of how many repeat units are necessary to model the compression stiffness and strength are examined. Based on the computational results, the correct representative unit cell for this class of materials is identified. The computational models and results presented in the thesis provide a means to assess the compressive strength of 2DTBC and its dependence on various microstructural parameters. The essential features (for example, fiber kinking) of 2DTBC under compressive loading are captured accurately and the results are validated by the compression experiments. Due to the requirement of large computational resources for the unit cell studies, simplified models that use less computer resources but sacrifice some accuracy are presented for use in engineering design. A combination of the simplified models is shown to provide a good prediction of the salient features (peak strength and plateau strength) of these materials under compression loading. The incorporation of matrix strain rate effects, a study of the effect of the bias tow angle and the inclusion of viscoelastic/viscoplastic behavior for the study of fatigue are suggested as extensions to this work.

  19. Modeling and optimization of shape memory-superelastic antagonistic beam assembly

    NASA Astrophysics Data System (ADS)

    Tabesh, Majid; Elahinia, Mohammad H.

    2010-04-01

    Superelasticity (SE), shape memory effect (SM), high damping capacity, corrosion resistance, and biocompatibility are the properties of NiTi that makes the alloy ideal for biomedical devices. In this work, the 1D model developed by Brinson was modified to capture the shape memory effect, superelasticity and hysteresis behavior, as well as partial transformation in both positive and negative directions. This model was combined with the Euler beam equation which, by approximation, considers 1D compression and tension stress-strain relationships in different layers of a 3D beam assembly cross-section. A shape memory-superelastic NiTi antagonistic beam assembly was simulated with this model. This wire-tube assembly is designed to enhance the performance of the pedicle screws in osteoporotic bones. For the purpose of this study, an objective design is pursued aiming at optimizing the dimensions and initial configurations of the SMA wire-tube assembly.

  20. Catastrophic depolymerization of microtubules driven by subunit shape change

    DOE PAGES

    Bollinger, Jonathan A.; Stevens, Mark J.

    2018-01-17

    We report that microtubules exhibit a dynamic instability between growth and catastrophic depolymerization. GTP-tubulin (αβ-dimer bound to GTP) self-assembles, but dephosphorylation of GTP- to GDP-tubulin within the tubule results in destabilization. While the mechanical basis for destabilization is not fully understood, one hypothesis is that dephosphorylation causes tubulin to change shape, frustrating bonds and generating stress. To test this idea, we perform molecular dynamics simulations of microtubules built from coarse-grained models of tubulin, incorporating a small compression of α-subunits associated with dephosphorylation in experiments. We find that this shape change induces depolymerization of otherwise stable systems via unpeeling “ram's horns”more » characteristic of microtubules. Depolymerization can be averted by caps with uncompressed α-subunits, i.e., GTP-rich end regions. Thus, the shape change is sufficient to yield microtubule behavior.« less

Top