Trier, Nicole; Izarzugaza, Jose; Chailyan, Anna; Marcatili, Paolo; Houen, Gunnar
2018-01-21
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder of unknown etiology, which is characterized by inflammation in the synovium and joint damage. Although the pathogenesis of RA remains to be determined, a combination of environmental (e.g., viral infections) and genetic factors influence disease onset. Especially genetic factors play a vital role in the onset of disease, as the heritability of RA is 50-60%, with the human leukocyte antigen (HLA) alleles accounting for at least 30% of the overall genetic risk. Some HLA-DR alleles encode a conserved sequence of amino acids, referred to as the shared epitope (SE) structure. By analyzing the structure of a HLA-DR molecule in complex with Epstein-Barr virus (EBV), the SE motif is suggested to play a vital role in the interaction of MHC II with the viral glycoprotein (gp) 42, an essential entry factor for EBV. EBV has been repeatedly linked to RA by several lines of evidence and, based on several findings, we suggest that EBV is able to induce the onset of RA in predisposed SE-positive individuals, by promoting entry of B-cells through direct contact between SE and gp42 in the entry complex.
Trier, Nicole; Izarzugaza, Jose; Chailyan, Anna; Marcatili, Paolo; Houen, Gunnar
2018-01-01
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder of unknown etiology, which is characterized by inflammation in the synovium and joint damage. Although the pathogenesis of RA remains to be determined, a combination of environmental (e.g., viral infections) and genetic factors influence disease onset. Especially genetic factors play a vital role in the onset of disease, as the heritability of RA is 50–60%, with the human leukocyte antigen (HLA) alleles accounting for at least 30% of the overall genetic risk. Some HLA-DR alleles encode a conserved sequence of amino acids, referred to as the shared epitope (SE) structure. By analyzing the structure of a HLA-DR molecule in complex with Epstein-Barr virus (EBV), the SE motif is suggested to play a vital role in the interaction of MHC II with the viral glycoprotein (gp) 42, an essential entry factor for EBV. EBV has been repeatedly linked to RA by several lines of evidence and, based on several findings, we suggest that EBV is able to induce the onset of RA in predisposed SE-positive individuals, by promoting entry of B-cells through direct contact between SE and gp42 in the entry complex. PMID:29361739
PADI4 and the HLA-DRB1 shared epitope in juvenile idiopathic arthritis.
Hisa, Kaori; Yanagimachi, Masakatsu D; Naruto, Takuya; Miyamae, Takako; Kikuchi, Masako; Hara, Rhoki; Imagawa, Tomoyuki; Yokota, Shumpei; Mori, Masaaki
2017-01-01
Both genetic and environmental factors are associated with susceptibility to juvenile idiopathic arthritis (JIA). Many studies have reported that both a 'shared epitope' (SE) encoded by several HLA-DRB1 alleles and the peptidyl arginine deiminase type 4 (PADI4) gene polymorphisms are associated with susceptibility to rheumatoid arthritis (RA). However, it is uncertain whether JIA and RA share the latter genetic risk factor. Therefore, here we investigated relationships between HLA-SE and PADI4 polymorphisms with clinical subtypes of JIA. JIA patients (39 oligoarthritis, 48 RF-positive polyarthritis, 19 RF-negative polyarthritis and 82 systemic) and 188 healthy controls were genotyped for HLA-DRB1 by PCR-sequence-specific oligonucleotide probe methodology. Three PADI4 gene single nucleotide polymorphisms (SNPs), rs2240340, rs2240337 and rs1748033, were genotyped using TaqMan SNP Genotyping Assays. Frequencies of the HLA-SE were higher in RF-positive polyarticular JIA than in healthy controls. RF-positive polyarticular JIA was associated with HLA-SE (OR = 5.3, 95% CI = 2.5-11.9, pc < 0.001). No associations were found between clinical subtypes of JIA and PADI4 allele frequency. Nonetheless, rs2240337 in the PADI4 gene was significantly associated with anti-cyclic citrullinated peptide antibody (ACPA)-positivity in JIA. The A allele at rs2240337 was a significant risk factor for ACPA positivity in JIA (OR = 5.6, 95% CI = 1.71-23.7 pc = 0.03). PADI4 gene polymorphism is associated with ACPA-positivity in JIA. The association of HLA-SE with RF-positive polyarticular JIA as well as RA is confirmed in Japanese. Thus, HLA-SE and PADI4 status both influence JIA clinical manifestations.
Fu, Jiaqi; Nogueira, Sarah V; Drongelen, Vincent van; Coit, Patrick; Ling, Song; Rosloniec, Edward F; Sawalha, Amr H; Holoshitz, Joseph
2018-05-01
The susceptibility to autoimmune diseases is affected by genetic and environmental factors. In rheumatoid arthritis (RA), the shared epitope (SE), a five-amino acid sequence motif encoded by RA-associated HLA-DRB1 alleles, is the single most significant genetic risk factor. The risk conferred by the SE is increased in a multiplicative way by exposure to various environmental pollutants, such as cigarette smoke. The mechanism of this synergistic interaction is unknown. It is worth noting that the SE has recently been found to act as a signal transduction ligand that facilitates differentiation of Th17 cells and osteoclasts in vitro and in vivo. Intriguingly, the aryl hydrocarbon receptor (AhR), a transcription factor that mediates the xenobiotic effects of many pollutants, including tobacco combustion products, has been found to activate similar biologic effects. Prompted by these similarities, we sought to determine whether the SE and AhR signaling pathways interact in autoimmune arthritis. Here we uncovered a nuclear factor kappa B-mediated synergistic interaction between the SE and AhR pathways that leads to markedly enhanced osteoclast differentiation and Th17 polarization in vitro. Administration of AhR pathway agonists to transgenic mice carrying human SE-coding alleles resulted in a robust increase in arthritis severity, bone destruction, overabundance of osteoclasts, and IL17-expressing cells in the inflamed joints and draining lymph nodes of arthritic mice. Thus, this study identifies a previously unrecognized mechanism of gene-environment interaction that could provide insights into the well-described but poorly understood amplification of the genetic risk for RA upon exposure to environmental pollutants. Copyright © 2018 the Author(s). Published by PNAS.
Konda Mohan, Vasanth; Ganesan, Nalini; Gopalakrishnan, Rajasekhar; Venkatesan, Vettriselvi
2017-10-01
To investigate the presence of the 'shared epitope' (SE) in the HLA-DRB1 alleles in patients with RA and to ascertain the frequency of the HLA-DRB1 alleles with autoantibodies (anti-cyclic citrullinated peptide [anti-CCP] rheumatoid factor [RF]) and disease severity. A total of 200 RA patients and 200 apparently healthy subjects participated in the study. HLA-DRB1 were genotyped using polymerase chain reaction with sequence-specific primer (PCR-SSP). Anti-CCP and RF in serum were determined by in vitro quantitative enzyme-linked immunosorbent assay (ELISA) method. Erythrocyte sedimentation rate (ESR) was measured by Westergren method. Disease activity was assessed by using the disease activity score-28 (DAS-28). Chi-square test and Student's t-test were used in the statistical analysis. A significant increase in the frequency of HLA-DRB1*01, *04, *10 and *14 were identified in RA patients and showed a strong association with the disease susceptibility. While the frequencies of HLA-DRB1*03, *07, *11 and *13 were significantly lower in RA patients than in controls. The other HLA-DRB1 alleles *08, *09, *12, *15 and *16 showed no significant difference. The frequency of anti-CCP and RF antibodies did not showed significant difference in SE-positive patients compared with SE-negative patients. DAS-28 values of RA patients showed no significant difference between SE-positive and SE-negative groups. Our results indicate that HLA-DRB1*01, *04, *10 and *14 alleles are related with RA, while HLA-DRB1*03, *07, *11 and *13 protect against RA in our population. On the other hand, we failed to provide evidence for the association of the autoantibodies and DAS-28 with SE-positive RA patients. © 2016 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.
Liu, Li Na; Cui, Jing; Zhang, Xi; Wei, Tong; Jiang, Peng; Wang, Zhong Quan
2013-01-01
Spirometra erinaceieuropaei cysteine protease (SeCP) in sparganum ES proteins recognized by early infection sera was identified by MALDI-TOF/TOF-MS. The aim of this study was to predict the structures and functions of SeCP protein by using the full length cDNA sequence of SeCP gene with online sites and software programs. The SeCP gene sequence was of 1 053 bp length with a 1011 bp biggest ORF encoding 336-amino acid protein with a complete cathepsin propeptide inhibitor domain and a peptidase C1A conserved domain. The predicted molecular weight and isoelectric point of SeCP were 37.87 kDa and 6.47, respectively. The SeCP has a signal peptide site and no transmembrane domain, located outside the membrane. The secondary structure of SeCP contained 8 α-helixes, 7 β-strands, and 20 coils. The SeCP had 15 potential antigenic epitopes and 19 HLA-I restricted epitopes. Based on the phylogenetic analysis of SeCP, S. erinaceieuropaei has the closest evolutionary status with S. mansonoides. SeCP was a kind of proteolytic enzyme with a variety of biological functions and its antigenic epitopes could provide important insights on the diagnostic antigens and target molecular of antisparganum drugs. PMID:24392448
García de Veas Silva, José Luis; González Rodríguez, Concepción; Hernández Cruz, Blanca
2017-11-01
To evaluate the association of shared epitope, smoking and their interaction on the presence of autoantibodies (anti-cyclic citrullinated peptide [CCP] antibodies and rheumatoid factor) in patients with rheumatoid arthritis in our geographical area. A descriptive and cross-sectional study was carried out in a cohort of 106 patients diagnosed with RA. Odds ratios (OR) for antibody development were calculated for shared epitope, tobacco exposure and smoking dose. Statistical analysis was performed with univariate and multivariate statistics using ordinal logistic regression. Odds ratios were calculated with 95% confidence interval (95% CI) and a value of P<.05 was considered significant. In univariate analysis, shared epitope (OR=2.68; 95% CI: 1.11-6.46), tobacco exposure (OR=2.79; 95% CI: 1.12-6.97) and heavy smoker (>20 packs/year) (OR=8.93; 95% CI: 1.95-40.82) were associated with the presence of anti-CCP antibodies. For rheumatoid factor, the association was only significant for tobacco exposure (OR=3.89; 95% CI: 1.06-14.28) and smoking dose (OR=8.33; 95% CI: 1.05-66.22). By ordinal logistic regression analysis, an association with high titers of anti-CCP (>200U/mL) was identified with South American mestizos, patients with homozygous shared epitope, positive FR and heavy smokers. Being a South American mestizo, having a shared epitope, rheumatoid factor positivity and a smoking dose>20 packs/year are independent risk factors for the development of rheumatoid arthritis with a high titer of anti-CCP (>200U/mL). In shared epitope-positive rheumatoid arthritis patients, the intensity of smoking is more strongly associated than tobacco exposure with an increased risk of positive anti-CCP. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.
Sex influences on the penetrance of HLA shared-epitope genotypes for rheumatoid arthritis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, J.M.
The association between rheumatoid arthritis (RA) and HLA DRB1 alleles may arise through linkage disequilibrium with a disease locus or the direct involvement of HLA alleles in RA. In support of the latter possibility, the shared-epitope hypothesis has been postulated, stating that conformationally similar DR{beta} chains encoded by several DRB1 alleles confer disease susceptibility. To examine these alternative hypotheses of marker-disease association and to investigate gender differences in RA susceptibility, we analyzed the distributions of PCR-based DRB1 genotypes of 309 Caucasian RA patients and 283 Caucasian controls. Initially, the marker-association-segregation {chi}{sup 2} method was used to evaluate evidence for linkagemore » disequilibrium and the direct involvement of markers DR4 Dw4, DR4 Dw14, and DR1 in RA susceptibility. Additional shared-epitope models that grouped DRB1 alleles into five classes (*0401, *0404/*0102, *0405/*0408/*0101, *1001, and all others) and postulated relationships between genotypes and RA susceptibility were also fitted to observed genotypic distributions by the method of minimal {chi}{sup 2}. For females, a linkage-disequilibrium model provided a good fit to the data, as did a shared-epitope model with RA most penetrant among individuals with the *0401, *0401 genotype. For males, the best model indicated highest RA penetrance among shared-epitope compound heterozygotes. Clinically, male RA patients had more subcutaneous nodules and greater use of slowly acting antirheumatic drugs, while female RA patients had earlier disease onset. This study therefore suggests that sex-related factors influence the RA penetrance associated with DRB1 shared-epitope genotypes and that DRB1 effects on RA prognosis and pathogenesis should be considered separately for men and women. 67 refs., 7 tabs.« less
PADI4 and the HLA-DRB1 shared epitope in juvenile idiopathic arthritis
Hisa, Kaori; Yanagimachi, Masakatsu D.; Naruto, Takuya; Miyamae, Takako; Kikuchi, Masako; Hara, Rhoki; Imagawa, Tomoyuki; Yokota, Shumpei; Mori, Masaaki
2017-01-01
Objective Both genetic and environmental factors are associated with susceptibility to juvenile idiopathic arthritis (JIA). Many studies have reported that both a ‘shared epitope’ (SE) encoded by several HLA-DRB1 alleles and the peptidyl arginine deiminase type 4 (PADI4) gene polymorphisms are associated with susceptibility to rheumatoid arthritis (RA). However, it is uncertain whether JIA and RA share the latter genetic risk factor. Therefore, here we investigated relationships between HLA-SE and PADI4 polymorphisms with clinical subtypes of JIA. Methods JIA patients (39 oligoarthritis, 48 RF-positive polyarthritis, 19 RF-negative polyarthritis and 82 systemic) and 188 healthy controls were genotyped for HLA-DRB1 by PCR-sequence-specific oligonucleotide probe methodology. Three PADI4 gene single nucleotide polymorphisms (SNPs), rs2240340, rs2240337 and rs1748033, were genotyped using TaqMan SNP Genotyping Assays. Results Frequencies of the HLA-SE were higher in RF-positive polyarticular JIA than in healthy controls. RF-positive polyarticular JIA was associated with HLA-SE (OR = 5.3, 95% CI = 2.5–11.9, pc < 0.001). No associations were found between clinical subtypes of JIA and PADI4 allele frequency. Nonetheless, rs2240337 in the PADI4 gene was significantly associated with anti-cyclic citrullinated peptide antibody (ACPA)-positivity in JIA. The A allele at rs2240337 was a significant risk factor for ACPA positivity in JIA (OR = 5.6, 95% CI = 1.71–23.7 pc = 0.03). Conclusion PADI4 gene polymorphism is associated with ACPA-positivity in JIA. The association of HLA-SE with RF-positive polyarticular JIA as well as RA is confirmed in Japanese. Thus, HLA-SE and PADI4 status both influence JIA clinical manifestations. PMID:28182665
HLA Epitopes: The Targets of Monoclonal and Alloantibodies Defined
Nguyen, Anh
2017-01-01
Sensitization to human leukocyte antigens (HLA) in organ transplant patients causes graft rejection, according to the humoral theory of transplantation. Sensitization is almost ubiquitous as anti-HLA antibodies are found in almost all sera of transplant recipients. Advances in testing assays and amino acid sequencing of HLA along with computer software contributed further to the understanding of antibody-antigen reactivity. It is commonly understood that antibodies bind to HLA antigens. With current knowledge of epitopes, it is more accurate to describe that antibodies bind to their target epitopes on the surface of HLA molecular chains. Epitopes are present on a single HLA (private epitope) or shared by multiple antigens (public epitope). The phenomenon of cross-reactivity in HLA testing, often explained as cross-reactive groups (CREGs) of antigens with antibody, can be clearly explained now by public epitopes. Since 2006, we defined and reported 194 HLA class I unique epitopes, including 56 cryptic epitopes on dissociated HLA class I heavy chains, 83 HLA class II epitopes, 60 epitopes on HLA-DRB1, 15 epitopes on HLA-DQB1, 3 epitopes on HLA-DQA1, 5 epitopes on HLA-DPB1, and 7 MICA epitopes. In this paper, we provide a summary of our findings. PMID:28626773
Molero-Abraham, Magdalena; Glutting, John-Paul; Flower, Darren R; Lafuente, Esther M; Reche, Pedro A
2015-01-01
Concerns that variola viruses might be used as bioweapons have renewed the interest in developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes.
Molero-Abraham, Magdalena; Glutting, John-Paul; Flower, Darren R.; Lafuente, Esther M.; Reche, Pedro A.
2015-01-01
Concerns that variola viruses might be used as bioweapons have renewed the interest in developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes. PMID:26605344
Mesri, E A; Levitus, G; Hontebeyrie-Joskowicz, M; Dighiero, G; Van Regenmortel, M H; Levin, M J
1990-01-01
A Trypanosoma cruzi lambda gt11 cDNA clone, JL5, expressed a recombinant protein which was found to react predominantly with chronic Chagas' heart disease sera. The cloned 35-residue-long peptide was identified as the carboxyl-terminal portion of a T. cruzi ribosomal P protein. The JL5 13 carboxyl-terminal residues shared a high degree of homology with the systemic lupus erythematosus (SLE) ribosomal P protein epitope. Synthetic peptides comprising the 13 (R-13), 10 (R-10), and 7 (R-7) carboxyl-terminal residues of the JL5 protein were used to study, by enzyme-linked immunosorbent assay, the specificity of the Chagas' disease anti-JL5 and SLE anti-P antibodies. The R-13 peptide defined a linear antigenic determinant of the JL5 recombinant protein. As was proved for JL5, R-13 defined antibody specificities which were significantly increased in chronic Chagas' heart disease patients. Only SLE anti-P positive sera were found to react with JL5 and R-13. Fine epitope mapping showed that Chagas' disease anti-JL5 and SLE anti-P antibodies define similar epitopes within the R-13 peptide. The binding of the SLE sera to JL5 was completely blocked by the R-13 peptide, indicating that the shared specificity between anti-JL5 and anti-P autoantibodies was exclusively limited to the conserved linear epitope(s) within the R-13 peptide. The prevalence of high anti-R-13 antibody titers in Chagas' heart disease patients supports the hypothesis that postulates the existence of autoimmune disorders in Chagas' heart disease. PMID:1696282
Adjuvanted multi-epitope vaccines protect HLA-A*1101 transgenic mice against Toxoplasma gondii
USDA-ARS?s Scientific Manuscript database
We created and tested multi-epitope DNA or protein vaccines with TLR4 ligand emulsion adjuvant (gluco glucopyranosyl lipid adjuvant in a stable emulsion (GLA-SE)) for their ability to protect against Toxoplasma gondii in HLA transgenic mice. Our constructs each included five of our best down selecte...
Role of molecular mimicry to HIV-1 peptides in HIV-1–related immunologic thrombocytopenia
Li, Zongdong; Nardi, Michael A.; Karpatkin, Simon
2005-01-01
Patients with early HIV-1 infection develop an autoimmune thrombocytopenia in which antibody is directed against an immunodominant epitope of the β3 (glycoprotein IIIa [GPIIIa]) integrin, GPIIIa49-66. This antibody induces thrombocytopenia by a novel complement-independent mechanism in which platelets are fragmented by antibody-induced generation of H2O2 derived from the interaction of platelet nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and 12-lipoxygenase. To examine whether sharing of epitope between host and parasite may be responsible for this immunodominant epitope, we screened for antibody-reactive peptides capable of inhibiting platelet lysis and oxidation in vitro, using a filamentous phage display 7-mer peptide library. Fourteen of these phage-peptide clones were identified. Five shared close sequence similarity with GPIIIa49-66, as expected. Ten were molecular mimics with close sequence similarity to HIV-1 proteins nef, gag, env, and pol. Seven were synthesized as 10-mers from their known HIV-1 sequence and found to inhibit anti–GPIIIa49-66–induced platelet oxidation/fragmentation in vitro. Three rabbit antibodies raised against these peptides induced platelet oxidation/fragmentation in vitro and thrombocytopenia in vivo when passively transferred into mice. One of the peptides shared a known epitope region with HIV-1 protein nef and was derived from a variant region of the protein. These data provide strong support for molecular mimicry in HIV-1-immunologic thrombocytopenia within polymorphic regions of HIV-1 proteins. A known epitope of nef is particularly incriminated. PMID:15774614
A reciprocal HLA-Disease Association in Rheumatoid Arthritis and Pemphigus Vulgaris
van Drongelen, Vincent; Holoshitz, Joseph
2017-01-01
Human leukocyte antigens (HLA) have been extensively studied as being antigen presenting receptors, but many aspects of their function remain elusive, especially their association with various autoimmune diseases. Here we discuss an illustrative case of the reciprocal relationship between certain HLA-DRB1 alleles and two diseases, rheumatoid arthritis (RA) and pemphigus vulgaris (PV). RA is strongly associated with HLA-DRB1 alleles that encode a five amino acid sequence motif in the 70-74 region of the DRβ chain, called the shared epitope (SE), while PV is associated with the HLA-DRB1*04:02 allele that encodes a different sequence motif in the same region. Interestingly, while HLA-DRB1*04:02 confers susceptibility to PV, this and other alleles that encode the same sequence motif in the 70-74 region of the DRβ chain are protective against RA. Currently, no convincing explanation for this antagonistic effect is present. Here we briefly review the immunology and immunogenetics of both diseases, identify remaining gaps in our understanding of their association with HLA, and propose the possibility that the 70-74 DRβ epitope may contribute to disease risk by mechanisms other than antigen presentation. PMID:27814654
Barre, Annick; Sordet, Camille; Culerrier, Raphaël; Rancé, Fabienne; Didier, Alain; Rougé, Pierre
2008-03-01
Surface-exposed IgE-binding epitopes of close overall conformation were characterized on the molecular surface of three-dimensional models built for the vicilin allergens of peanut (Ara h 1), walnut (Jug r 2), hazelnut (Cor a 11) and cashew nut (Ana o 1). They correspond to linear stretches of conserved amino acid sequences mainly located along the C-terminus of the polypeptide chains. A glyco-epitope corresponding to an exposed N-glycosylation site could also interfere with the IgE-binding epitopes. All these epitopic regions should participate in the IgE-binding cross-reactivity commonly reported between tree nuts or between peanut and some tree nuts in sensitized individuals. Owing to this epitopic community which constitutes a risk of cross-sensitization, the avoidance or a restricted consumption of other tree nuts should be recommended to peanut-sensitized individuals.
Enhancing antibody patent protection using epitope mapping information
Deng, Xiaoxiang; Storz, Ulrich; Doranz, Benjamin J.
2018-01-01
ABSTRACT As the $100B therapeutic monoclonal antibody (mAb) market continues to grow, developers of therapeutic mAbs increasingly face the need to strengthen patent protection of their products and enforce their patents in courts. In view of changes in the patent law landscape, patent applications are strategically using information on the precise binding sites of their mAbs, i.e., the epitopes, to support patent novelty, non-obviousness, subject matter, and a tightened written description requirement for broad genus antibody claims. Epitope data can also allow freedom-to-operate for second-generation mAbs by differentiation from patented first-generation mAbs. Numerous high profile court cases, including Amgen v. Sanofi over rival mAbs that block PCSK9 activity, have been centered on epitope mapping claims, highlighting the importance of epitopes in determining broad mAb patent rights. Based on these cases, epitope mapping claims must describe a sufficiently large number of mAbs that share an epitope, and each epitope must be described at amino acid resolution. Here, we review current best practices for the use of epitope information to overcome the increasing challenges of patenting mAbs, and how the quality, conformation, and resolution of epitope residue data can influence the breadth and strength of mAb patents. PMID:29120697
Panayotatos, N; Radziejewska, E; Acheson, A; Somogyi, R; Thadani, A; Hendrickson, W A; McDonald, N Q
1995-06-09
By rational mutagenesis, receptor-specific functional analysis, and visualization of complex formation in solution, we identified individual amino acid side chains involved specifically in the interaction of ciliary neurotrophic factor (CNTF) with CNTFR alpha and not with the beta-components, gp130 and LIFR. In the crystal structure, the side chains of these residues, which are located in helix A, the AB loop, helix B, and helix D, are surface accessible and are clustered in space, thus constituting an epitope for CNTFR alpha. By the same analysis, a partial epitope for gp130 was also identified on the surface of helix A that faces away from the alpha-epitope. Superposition of the CNTF and growth hormone structures showed that the location of these epitopes on CNTF is analogous to the location of the first and second receptor epitopes on the surface of growth hormone. Further comparison with proposed binding sites for alpha- and beta-receptors on interleukin-6 and leukemia inhibitory factor indicated that this epitope topology is conserved among helical cytokines. In each case, epitope I is utilized by the specificity-conferring component, whereas epitopes II and III are used by accessory components. Thus, in addition to a common fold, helical cytokines share a conserved order of receptor epitopes that is function related.
Suzuki, Taku; Ikari, Katsunori; Yano, Koichiro; Inoue, Eisuke; Toyama, Yoshiaki; Taniguchi, Atsuo; Yamanaka, Hisashi; Momohara, Shigeki
2013-01-01
Rheumatoid arthritis (RA) is a systemic, chronic inflammatory disease influenced by both genetic and environmental factors, leading to joint destruction and functional impairment. Recently, a large-scaled GWAS meta-analysis using more than 37,000 Japanese samples were conducted and 13 RA susceptibility loci were identified. However, it is not clear whether these loci have significant impact on joint destruction or not. This is the first study focused on the 13 loci to investigate independent genetic risk factors for radiographic progression in the first five years from onset of RA. Sharp/van der Heijde score of hands at 5-year disease duration, which represents joint damage, were measured retrospectively and used as an outcome variable in 865 Japanese RA patients. Genetic factors regarded as putative risk factors were RA-susceptible polymorphisms identified by the Japanese GWAS meta-analysis, including HLA-DRB1 (shared epitope, SE), rs2240340 (PADI4), rs2230926 (TNFAIP3), rs3093024 (CCR6), rs11900673 (B3GNT2), rs2867461 (ANXA3), rs657075 (CSF2), rs12529514 (CD83), rs2233434 (NFKBIE), rs10821944 (ARID5B), rs3781913 (PDE2A-ARAP1), rs2841277 (PLD4) and rs2847297 (PTPN2). These putative genetic risk factors were assessed by a stepwise multiple regression analysis adjusted for possible non-genetic risk factors: autoantibody positivity (anti-citrullinated peptide antibody [ACPA] and rheumatoid factor), history of smoking, gender and age at disease onset. The number of SE alleles (P = 0.002) and risk alleles of peptidyl arginine deiminase type IV gene (PADI4, P = 0.04) had significant impact on progressive joint destruction, as well as following non-genetic factors: ACPA positive (P = 0.0006), female sex (P = 0.006) and younger age of onset (P = 0.02). In the present study, we found that PADI4 risk allele and HLA-DRB1 shared epitope are independent genetic risks for radiographic progression in Japanese rheumatoid arthritis patients. The results of this study give important knowledge of the risks on progressive joint damage in RA patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dizier, M.H.; Eliaou, J.F.; Babron, M.C.
In order to investigate the HLA component involved in rheumatoid arthritis (RA), the authors tested genetic models by the marker association-segregation [chi][sup 2] (MASC) method, using the HLA genotypic distribution observed in a sample of 97 RA patients. First they tested models assuming the involvement of a susceptibility gene linked to the DR locus. They showed that the present data are compatible with a simple model assuming the effect of a recessive allele of a biallelic locus linked to the DR locus and without any assumption of synergistic effect. Then they considered models assuming the direct involvement of the DRmore » allele products, and tested the unifying-shared-epitope hypothesis, which has been proposed. Under this hypothesis the DR alleles are assumed to be directly involved in the susceptibility to the disease because of the presence of similar or identical amino acid sequences in position 70-74 of the third hypervariable region of the DRBI molecules, shared by the RA-associated DR alleles DR4Dw4, DR4Dw14, and DR1. This hypothesis was strongly rejected with the present data. In the case of the direct involvement of the DR alleles, hypotheses more complex that the unifying-shared-epitope hypothesis would have to be considered. 28 refs., 2 tabs.« less
A Comparison of Epitope Repertoires Associated with Myasthenia Gravis in Humans and Nonhuman Hosts
Vaughan, Kerrie; Kim, Yohan; Sette, Alessandro
2012-01-01
Here we analyzed the molecular targets associated with myasthenia gravis (MG) immune responses, enabled by an immune epitope database (IEDB) inventory of approximately 600 MG-related epitopes derived from 175 references. The vast majority of epitopes were derived from the α-subunit of human AChR suggesting that other MG-associated autoantigens should be investigated further. Human α-AChR was mostly characterized in humans, whereas reactivity primarily to T. californica AChR was examined in animal models. While the fine specificity of T-cell response was similar in the two systems, substantial antibody reactivity to the C-terminus was detected in the nonhuman system, but not in humans. Further analysis showed that the reactivity of nonhuman hosts to the C-terminus was eliminated when data were restricted to hosts tested in the context of autoimmune disease (spontaneous or induced), demonstrating that the epitopes recognized in humans and animals were shared when disease was present. Finally, we provided data subsets relevant to particular applications, including those associated with HLA typing or restriction, sets of epitopes recognized by monoclonal antibodies, and epitopes associated with modulation of immunity or disease. In conclusion, this analysis highlights gaps, differences, and similarities in the epitope repertoires of humans and animal models. PMID:23243503
Computational elucidation of potential antigenic CTL epitopes in Ebola virus.
Dikhit, Manas R; Kumar, Santosh; Vijaymahantesh; Sahoo, Bikash R; Mansuri, Rani; Amit, Ajay; Yousuf Ansari, Md; Sahoo, Ganesh C; Bimal, Sanjiva; Das, Pradeep
2015-12-01
Cell-mediated immunity is important for the control of Ebola virus infection. We hypothesized that those HLA A0201 and HLA B40 restricted epitopes derived from Ebola virus proteins, would mount a good antigenic response. Here we employed an immunoinformatics approach to identify specific 9mer amino acid which may be capable of inducing a robust cell-mediated immune response in humans. We identified a set of 28 epitopes that had no homologs in humans. Specifically, the epitopes derived from NP, RdRp, GP and VP40 share population coverage of 93.40%, 84.15%, 74.94% and 77.12%, respectively. Based on the other HLA binding specificity and population coverage, seven novel promiscuous epitopes were identified. These 7 promiscuous epitopes from NP, RdRp and GP were found to have world-wide population coverage of more than 95% indicating their potential significance as useful candidates for vaccine design. Epitope conservancy analysis also suggested that most of the peptides are highly conserved (100%) in other virulent Ebola strain (Mayinga-76, Kikwit-95 and Makona-G3816- 2014) and can therefore be further investigated for their immunological relevance and usefulness as vaccine candidates. Copyright © 2015 Elsevier B.V. All rights reserved.
Rheumatoid arthritis and Swine influenza vaccine: a case report.
Basra, Gurjot; Jajoria, Praveen; Gonzalez, Emilio
2012-01-01
Rheumatoid arthritis (RA) is the most common chronic inflammatory joint disease. Multiple scientific articles have documented that vaccinations for influenza, MMR, and HBV, to name a few, could be triggers of RA in genetically predisposed individuals. However, there is limited data regarding the association of swine flu vaccine (H1N1) and RA. We report the case of a Mexican American female who developed RA right after vaccination with H1N1 vaccine. Genetically, RA has consistently been associated with an epitope in the third hypervariable region of the HLA-DR β chains, known as the "shared epitope", which is found primarily in DR4 and DR1 regions. The presence of HLA-DRB1 alleles is associated with susceptibility to RA in Mexican Americans. Hence, certain individuals with the presence of the "shared epitope" may develop RA following specific vaccinations. To our knowledge, this is the first reported case of RA following vaccination with the swine flu vaccine.
Saha, Chayan Kumar; Mahbub Hasan, Md; Saddam Hossain, Md; Asraful Jahan, Md; Azad, Abul Kalam
2017-06-01
To explore a common B- and T-cell epitope-based vaccine that can elicit an immune response against encephalitis causing genus Henipaviruses, Hendra virus (HeV) and Nipah virus (NiV). Membrane proteins F, G and M of HeV and NiV were retrieved from the protein database and subjected to different bioinformatics tools to predict antigenic B-cell epitopes. Best B-cell epitopes were then analyzed to predict their T-cell antigenic potentiality. Antigenic B- and T-cell epitopes that shared maximum identity with HeV and NiV were selected. Stability of the selected epitopes was predicted. Finally, the selected epitopes were subjected to molecular docking simulation with HLA-DR to confirm their antigenic potentiality in silico. One epitope from G proteins, one from M proteins and none from F proteins were selected based on their antigenic potentiality. The epitope from the G proteins was stable whereas that from M was unstable. The M-epitope was made stable by adding flanking dipeptides. The 15-mer G-epitope (VDPLRVQWRNNSVIS) showed at least 66% identity with all NiV and HeV G protein sequences, while the 15-mer M-epitope (GKLEFRRNNAIAFKG) with the dipeptide flanking residues showed 73% identity with all NiV and HeV M protein sequences available in the database. Molecular docking simulation with most frequent MHC class-II (MHC II) and class-I (MHC I) molecules showed that these epitopes could bind within HLA binding grooves to elicit an immune response. Data in our present study revealed the notion that the epitopes from G and M proteins might be the target for peptide-based subunit vaccine design against HeV and NiV. However, the biochemical analysis is necessary to experimentally validate the interaction of epitopes individually with the MHC molecules through elucidation of immunity induction. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Chen, W; Qin, H; Chesebro, B; Cheever, M A
1996-01-01
FBL-3 is a highly immunogenic murine leukemia of C57BL/6 origin induced by Friend murine leukemia virus (MuLV). Immunization of C57BL/6 mice with FBL-3 readily elicits CD8+ cytotoxic T lymphocytes (CTL) capable of lysing FBL-3 as well as syngeneic leukemias induced by Moloney and Rauscher MuLV. The aim of this current study was to identify the immunogenic epitope(s) recognized by the FBL-3-specific CD8+ CTL. A series of FBL-3-specific CD8+ CTL clones were generated from C57BL/6 mice immunized to FBL-3. The majority of CTL clones (32 of 38) were specific for F-MuLV gag-encoded antigen. By using a series of recombinant vaccinia viruses expressing full-length and truncated F-MuLV gag genes, the antigenic epitope recognized by the FBL-3 gag-specific CTL clones, as well as by bulk-cultured CTL from spleens of mice immune to FBL-3, was localized to the leader sequence of gPr80gag protein. The precise amino acid sequence of the CTL epitope in the leader sequence was identified as CCLCLTVFL (positions 85-93) by examining lysis of targets incubated with a series of synthetic leader sequence peptides. No evidence of other CTL epitopes in the gPr80gag or Pr65gag core virion structural polyproteins was found. The identity of CCLCLTVFL as the target peptide was validated by showing that immunization with the peptide elicited CTL that lysed FBL-3. The CTL elicited by the Gag peptide also specifically lysed syngeneic leukemia cells induced by Moloney and Rauscher MuLV (MBL-2 and RBL-5). The transmembrane peptide was shown to be the major gag-encoded antigenic epitope recognized by bulk-cultured CTL derived from C57BL/6 mice immunized to MBL-2 or RBL-5. Thus, the CTL epitope of FBL-3 is localized to the transmembrane anchor domain of the nonstructural Gag polyprotein and is shared by leukemia/lymphoma cell lines induced by Friend, Moloney, and Rauscher MuLV. PMID:8892898
Shared antigenicity between the polar filaments of myxosporeans and other Cnidaria.
Ringuette, Maurice J; Koehler, Anne; Desser, Sherwin S
2011-02-01
Nematocysts containing coiled polar filaments are a distinguishing feature of members of the phylum Cnidaria. As a first step to characterizing the molecular structure of polar filaments, a polyclonal antiserum was raised in rabbits against a cyanogen bromide-resistant protein extract of mature cysts containing spores of Myxobolus pendula. The antiserum reacted only with proteins associated with extruded polar filaments. Western blot and whole-mount immunohistochemical analyses indicated a conservation of polar filament epitopes between M. pendula and 2 related cnidarians, i.e., the anthozoan, Nematostella vectensis, and the hydrozoan, Hydra vulgaris. This conservation of polar filament epitopes lends further support to a shared affinity between Myxozoa and cnidarians.
Associations of cigarette smoking with rheumatoid arthritis in African Americans
Mikuls, Ted R.; Sayles, Harlan; Yu, Fang; LeVan, Tricia; Gould, Karen A.; Thiele, Geoffrey M.; Conn, Doyt; Jonas, Beth L.; Callahan, Leigh F.; Smith, Edwin; Brasington, Richard; Moreland, Larry W.; Reynolds, Richard; Bridges, S. Louis
2010-01-01
Objective To examine the associations of cigarette smoking with rheumatoid arthritis (RA) in African Americans and to determine to whether this association is impacted by HLA-DRB1 shared epitope (SE). Methods Smoking status, cumulative smoking exposure, and SE status were measured in African American patients with RA and in healthy controls. Associations of smoking with RA were examined using age- and gender-adjusted logistic regression. Additive and multiplicative SE-smoking interactions were examined. Results After adjusting for age and gender, ever (OR = 1.45; 95% CI 1.07 to 1.97) and current smoking (OR = 1.56; 95% CI 1.07 to 2.26) were more common in African American RA cases (n = 605) than in controls (n = 255). The association of smoking with RA was limited to those with a cumulative exposure exceeding 10 pack-years, associations that were evident in both autoantibody positive and negative disease. There was evidence of a significant additive interaction between SE status and heavy smoking (≥ 10 pack-years) in RA risk (attributable proportion due to interaction [AP] of 0.58, p = 0.007) with an AP of 0.47 (p = 0.006) between SE status and ever smoking. There was no evidence of multiplicative interactions. Conclusion Among African Americans, cigarette smoking is associated not only with the risk of autoantibody positive RA but also with the risk of autoantibody negative disease. RA risk attributable to smoking is limited to African Americans with more than 10 pack-years of exposure and is more pronounced among individuals positive for HLA-DRB1 SE. PMID:20722010
Human dengue virus serotype 2 neutralizing antibodies target two distinct quaternary epitopes
Gallichotte, Emily N.; Baric, Thomas J.; Widman, Douglas G.; Whitehead, Steve; Baric, Ralph S.; de Silva, Aravinda M.
2018-01-01
Dengue virus (DENV) infection causes dengue fever, dengue hemorrhagic fever and dengue shock syndrome. It is estimated that a third of the world’s population is at risk for infection, with an estimated 390 million infections annually. Dengue virus serotype 2 (DENV2) causes severe epidemics, and the leading tetravalent dengue vaccine has lower efficacy against DENV2 compared to the other 3 serotypes. In natural DENV2 infections, strongly neutralizing type-specific antibodies provide protection against subsequent DENV2 infection. While the epitopes of some human DENV2 type-specific antibodies have been mapped, it is not known if these are representative of the polyclonal antibody response. Using structure-guided immunogen design and reverse genetics, we generated a panel of recombinant viruses containing amino acid alterations and epitope transplants between different serotypes. Using this panel of recombinant viruses in binding, competition, and neutralization assays, we have finely mapped the epitopes of three human DENV2 type-specific monoclonal antibodies, finding shared and distinct epitope regions. Additionally, we used these recombinant viruses and polyclonal sera to dissect the epitope-specific responses following primary DENV2 natural infection and monovalent vaccination. Our results demonstrate that antibodies raised following DENV2 infection or vaccination circulate as separate populations that neutralize by occupying domain III and domain I quaternary epitopes. The fraction of neutralizing antibodies directed to different epitopes differs between individuals. The identification of these epitopes could potentially be harnessed to evaluate epitope-specific antibody responses as correlates of protective immunity, potentially improving vaccine design. PMID:29481552
Jiang, Xia; Frisell, Thomas; Askling, Johan; Karlson, Elizabeth W; Klareskog, Lars; Alfredsson, Lars; Källberg, Henrik
2015-02-01
Family history of rheumatoid arthritis (RA) is one of the strongest risk factors for developing RA, and information on family history is, therefore, routinely collected in clinical practice. However, as more genetic and environmental risk factors shared by relatives are identified, the importance of family history may diminish. The aim of this study was to determine how much of the familial risk of RA can be explained by established genetic and nongenetic risk factors. History of RA among first-degree relatives of individuals in the Epidemiological Investigation of Rheumatoid Arthritis case-control study was assessed through linkage to the Swedish Multigeneration Register and the Swedish Patient Register. We used logistic regression models to investigate the decrease in familial risk after successive adjustment for combinations of nongenetic risk factors (smoking, alcohol intake, parity, silica exposure, body mass index, fatty fish consumption, and education), and genetic risk factors (shared epitope [SE] and 76 single-nucleotide polymorphisms [SNPs]). Established nongenetic risk factors did not explain familial risk of either seropositive or seronegative RA to any significant degree. Genetic risk factors accounted for a limited proportion of the familial risk of seropositive RA (unadjusted odds ratio [OR] 4.10, SE-adjusted OR 3.72, SNP-adjusted OR 3.46, and SE and SNP-adjusted OR 3.35). Established risk factors only provided an explanation for familial risk of RA in minor part, suggesting that many (familial) risk factors remain to be identified, in particular for seronegative RA. Family history of RA therefore remains an important clinical risk factor for RA, the value of which has not yet been superseded by other information. There is thus a need for further etiologic studies of both seropositive and seronegative RA. Copyright © 2015 by the American College of Rheumatology.
Li, Pinghua; Bai, Xingwen; Cao, Yimei; Han, Chenghao; Lu, Zengjun; Sun, Pu; Yin, Hong; Liu, Zaixin
2012-01-01
Foot-and-mouth disease virus (FMDV) is an aphthovirus that belongs to the Picornaviridae family and causes one of the most important animal diseases worldwide. The capacity of other picornaviruses to express foreign antigens has been extensively reported, however, little is known about FMDV. To explore the potential of FMDV as a viral vector, an 11-amino-acid (aa) HSV epitope and an 8 aa FLAG epitope were introduced into the C-terminal different regions of 3A protein of FMDV full-length infectious cDNA clone. Recombinant viruses expressing the HSV or FLAG epitope were successfully rescued after transfection of both modified constructs. Immunofluorescence assay, Western blot and sequence analysis showed that the recombinant viruses stably maintained the foreign epitopes even after 11 serial passages in BHK-21 cells. The 3A-tagged viruses shared similar plaque phenotypes and replication kinetics to those of the parental virus. In addition, mice experimentally infected with the epitope-tagged viruses could induce tag-specific antibodies. Our results demonstrate that FMDV can be used effectively as a viral vector for the delivery of foreign tags. PMID:22848509
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulcahy, B.; Waldron-Lynch, F.; Adams, C.
The major histocompatibility complex class H1 tumor necrosis factor-tymphotoxin (TNF-LT) region (6p21.3) was investigated as a possible susceptibility locus for rheumatoid arthritis (RA). Inheritance of five TNF microsatellite markers was determined in 50 multiplex families. Overall, 47 different haplotypes were observed. One of these, the TNF a6, b5, c1, d3, e3 (H1) haplotype, was present in 35.3% of affected, but in only 20.5% of unaffected, individuals (P < .005). This haplotype accounted for 21.5% of the parental haplotypes transmitted to affected offspring and only 7.3 % not transmitted to affected offspring (P = .0003). The TNF a6 and TNF c1more » alleles were individually associated with RA (P = .0005 and .0008, respectively), as were the HLA-DRB1 {open_quotes}shared epitope{close_quotes} (SE) (P = .0001) and HLA-DRB1*0401 (P = .0018). Both univariate and bivariate conditional logistic regression analysis showed significant effects of TNF c1 and SE in increasing risk to RA (P < .001). Stratification by the presence of SE indicated an independent effect of the TNFc1 allele (P = .0003) and the HLA A1, BS, DR3 extended haplotype (always TNFa2, b3, c1, d1, e3) (P = .0027) in SE heterozygotes, while the H1 haplotype was associated with RA in SE homozygotes (P = .0018). The TNF-LT region appears to influence susceptibility to RA, distinct from HLA-DR. 50 refs., 1 fig., 1 tab.« less
Piñeyro, Pablo E; Kenney, Scott P; Giménez-Lirola, Luis G; Opriessnig, Tanja; Tian, Debin; Heffron, C Lynn; Meng, Xiang-Jin
2016-02-02
We previously demonstrated that the C-terminus of the capsid gene of porcine circovirus type 2 (PCV2) is an immune reactive epitope displayed on the surface of virions. Insertion of foreign epitope tags in the C-terminus produced infectious virions that elicited humoral immune responses against both PCV2 capsid and the inserted epitope tags, whereas mutation in the N terminus impaired viral replication. Since the non-pathogenic porcine circovirus type 1 (PCV1) shares similar genomic organization and significant sequence identity with pathogenic PCV2, in this study we evaluated whether PCV1 can serve as a vaccine delivery virus vector. Four different antigenic determinants of porcine reproductive and respiratory syndrome virus (PRRSV) were inserted in the C-terminus of the PCV1 capsid gene, the infectivity and immunogenicity of the resulting viruses are determined. We showed that an insertion of 12 (PRRSV-GP2 epitope II, PRRSV-GP3 epitope I, and PRRSV-GP5 epitope I), and 14 (PRRSV-GP5 epitope IV) amino acid residues did not affect PCV1 replication. We successfully rescued and characterized four chimeric PCV1 viruses expressing PRRSV linear antigenic determinants (GP2 epitope II: aa 40-51, ASPSHVGWWSFA; GP3 epitope I: aa 61-72, QAAAEAYEPGRS; GP5 epitope I: aa 35-46, SSSNLQLIYNLT; and GP5 epitope IV: aa 187-200, TPVTRVSAEQWGRP). We demonstrated that all chimeric viruses were stable and infectious in vitro and three chimeric viruses were infectious in vivo. An immunogenicity study in pigs revealed that PCV1-VR2385EPI chimeric viruses elicited neutralizing antibodies against PRRSV-VR2385. The results have important implications for further evaluating PCV1 as a potential vaccine delivery vector. Copyright © 2015 Elsevier B.V. All rights reserved.
Rana, Aarti; Thakur, Shweta; Bhardwaj, Nupur; Kumar, Devender; Akhter, Yusuf
2016-12-01
For centuries, Mycobacterium leprae, etiological agent of leprosy, has been afflicting mankind regardless of extensive use of live-attenuated vaccines and antibiotics. Surface-associated and secretory proteins (SASPs) are attractive targets against bacteria. We have integrated biological knowledge with computational approaches and present a proteome-wide identification of SASPs. We also performed computational assignment of immunodominant epitopes as coordinates of prospective antigenic candidates in most important class of SASPs, the outer membrane proteins (OMPs). Exploiting the known protein sequence and structural characteristics shared by the SASPs from bacteria, 17 lipoproteins, 11 secretory and 19 novel OMPs (including 4 essential proteins) were identified in M. leprae As OMPs represent the most exposed antigens on the cell surface, their immunoinformatics analysis showed that the identified 19 OMPs harbor T-cell MHC class I epitopes and class II epitopes against HLA-DR alleles (54), while 15 OMPs present potential T-cell class II epitopes against HLA-DQ alleles (6) and 7 OMPs possess T-cell class II epitopes against HLA-DP alleles (5) of humans. Additionally, 11 M. leprae OMPs were found to have B-cell epitopes and these may be considered as prime candidates for the development of new immunotherapeutics against M. leprae. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bhattacharyya, Tapan; Messenger, Louisa A; Bern, Caryn; Mertens, Pascal; Gilleman, Quentin; Zeippen, Nicolas; Bremer Hinckel, Bruno C; Murphy, Niamh; Gilman, Robert H; Miles, Michael A
2018-02-09
Trypanosoma cruzi causes Chagas disease in the Americas. Outcome of infection ranges from lifelong asymptomatic status to severe disease. Understanding how history of T. cruzi lineage (TcI-TcVI) infection relates to clinical prognosis is challenging. We previously described peptide-based lineage-specific ELISA with Trypomastigote Small Surface Antigen (TSSA). A novel rapid diagnostic test (Chagas Sero K-SeT) incorporating a peptide corresponding to the TSSA-II/V/VI common epitope was developed, and validated by comparison with ELISA. Patients from Bolivia and Peru were then tested by Chagas Sero K-SeT, including individuals with varying cardiac pathology, and matched mothers and neonates. Chagas Sero K-SeT and ELISAs, with a Bolivian subset of cardiac patients, mothers and neonates, were in accord. In adult chronic infections (n = 121), comparison of severity class A (no evidence of Chagas cardiomyopathy) against classes B (ECG suggestive of Chagas cardiomyopathy) and C/D (moderate/severe Chagas cardiomyopathy) revealed statistically significant increase in Chagas Sero K-SeT reactivity with increasing severity (Chi Square for trend 7.39; p = 0.007). In Peru, where TcII/V/VI lineages are rarely reported, Chagas Sero K SeT detected sporadic infections. We develop a novel, low-cost, point-of-care, rapid test and demonstrate that it can replace ELISA for identification of lineage-specific TSSA II/V/VI IgG. Most importantly, we show that response to the TSSA II/V/VI epitope in this RDT is associated with severity of Chagas cardiomyopathy, and thus may have prognostic value. Repeated challenge with T. cruzi infection may both exacerbate disease progression and boost the immune response to the TSSApep-II/V/VI epitope. © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America.
Graph-based optimization of epitope coverage for vaccine antigen design
Theiler, James Patrick; Korber, Bette Tina Marie
2017-01-29
Epigraph is a recently developed algorithm that enables the computationally efficient design of single or multi-antigen vaccines to maximize the potential epitope coverage for a diverse pathogen population. Potential epitopes are defined as short contiguous stretches of proteins, comparable in length to T-cell epitopes. This optimal coverage problem can be formulated in terms of a directed graph, with candidate antigens represented as paths that traverse this graph. Epigraph protein sequences can also be used as the basis for designing peptides for experimental evaluation of immune responses in natural infections to highly variable proteins. The epigraph tool suite also enables rapidmore » characterization of populations of diverse sequences from an immunological perspective. Fundamental distance measures are based on immunologically relevant shared potential epitope frequencies, rather than simple Hamming or phylogenetic distances. Here, we provide a mathematical description of the epigraph algorithm, include a comparison of different heuristics that can be used when graphs are not acyclic, and we describe an additional tool we have added to the web-based epigraph tool suite that provides frequency summaries of all distinct potential epitopes in a population. Lastly, we also show examples of the graphical output and summary tables that can be generated using the epigraph tool suite and explain their content and applications.« less
Graph-based optimization of epitope coverage for vaccine antigen design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theiler, James Patrick; Korber, Bette Tina Marie
Epigraph is a recently developed algorithm that enables the computationally efficient design of single or multi-antigen vaccines to maximize the potential epitope coverage for a diverse pathogen population. Potential epitopes are defined as short contiguous stretches of proteins, comparable in length to T-cell epitopes. This optimal coverage problem can be formulated in terms of a directed graph, with candidate antigens represented as paths that traverse this graph. Epigraph protein sequences can also be used as the basis for designing peptides for experimental evaluation of immune responses in natural infections to highly variable proteins. The epigraph tool suite also enables rapidmore » characterization of populations of diverse sequences from an immunological perspective. Fundamental distance measures are based on immunologically relevant shared potential epitope frequencies, rather than simple Hamming or phylogenetic distances. Here, we provide a mathematical description of the epigraph algorithm, include a comparison of different heuristics that can be used when graphs are not acyclic, and we describe an additional tool we have added to the web-based epigraph tool suite that provides frequency summaries of all distinct potential epitopes in a population. Lastly, we also show examples of the graphical output and summary tables that can be generated using the epigraph tool suite and explain their content and applications.« less
Ana o 1 and Ana o 2 cashew allergens share cross-reactive CD4+ T-cell epitopes with other tree nuts
Archila, Luis Diego; Chow, I-Ting; McGinty, John W.; Renand, Amedee; Jeong, David; Robinson, David; Farrington, Mary L.; Kwok, William.W.
2017-01-01
Background Allergies to cashew are increasing in prevalence, with clinical symptoms ranging from oral pruritus to fatal anaphylactic reaction. Yet, cashew-specific T-cell epitopes and T-cell cross-reactivity amongst cashew and other tree nut allergens in humans remain uncharacterized. Objectives In this study, we characterized cashew specific T-cell responses in cashew allergic subjects and examined cross-reactivity of these cashew specific cells toward other tree nut allergens. Methods CD154 up-regulation assay was used to determine immunodominance hierarchy among cashew major allergens at the T cell level. The phenotype, magnitude and functionality of cashew-specific T-cells was determined by utilizing ex vivo staining with MHC class II tetramers. Dual tetramer staining and proliferation experiments were used to determine cross-reactivity to other tree nuts. Results CD4+ T-cell responses were directed towards cashew allergens Ana o 1 and Ana o 2. Multiple Ana o 1 and Ana o 2 T-cell epitopes were then identified. These epitopes elicited either TH2 or TH2/TH17 responses in allergic subjects, which were either cashew unique epitope or cross-reactive epitopes. For clones that recognized the cross-reactive epitope, T-cell clones responded robustly to cashew, hazelnut and/or pistachio but not to walnut. Conclusions Phylogenetically diverse tree nut allergens can activate cashew reactive T-cells and elicit a TH2 type response at an epitope specific level. Clinical relevance Lack of cross-reactivity between walnut and cashew suggest that cashew peptide immunotherapy approach may not be most effective for walnut. PMID:27129138
Archila, L D; Chow, I-T; McGinty, J W; Renand, A; Jeong, D; Robinson, D; Farrington, M L; Kwok, W W
2016-06-01
Allergies to cashew are increasing in prevalence, with clinical symptoms ranging from oral pruritus to fatal anaphylactic reaction. Yet, cashew-specific T cell epitopes and T cell cross-reactivity amongst cashew and other tree nut allergens in humans remain uncharacterized. In this study, we characterized cashew-specific T cell responses in cashew-allergic subjects and examined cross-reactivity of these cashew-specific cells towards other tree nut allergens. CD154 up-regulation assay was used to determine immunodominance hierarchy among cashew major allergens at the T cell level. The phenotype, magnitude and functionality of cashew-specific T cells were determined by utilizing ex vivo staining with MHC class II tetramers. Dual tetramer staining and proliferation experiments were used to determine cross-reactivity to other tree nuts. CD4(+) T cell responses were directed towards cashew allergens Ana o 1 and Ana o 2. Multiple Ana o 1 and Ana o 2 T cell epitopes were then identified. These epitopes elicited either TH 2 or TH 2/TH 17 responses in allergic subjects, which were either cashew unique epitope or cross-reactive epitopes. For clones that recognized the cross-reactive epitope, T cell clones responded robustly to cashew, hazelnut and/or pistachio but not to walnut. Phylogenetically diverse tree nut allergens can activate cashew-reactive T cells and elicit a TH 2-type response at an epitope-specific level. Lack of cross-reactivity between walnut and cashew suggests that cashew peptide immunotherapy approach may not be most effective for walnut. © 2016 John Wiley & Sons Ltd.
Turunen, S. Pauliina; Kummu, Outi; Harila, Kirsi; Veneskoski, Marja; Soliymani, Rabah; Baumann, Marc; Pussinen, Pirkko J.; Hörkkö, Sohvi
2012-01-01
Objective Increased risk for atherosclerosis is associated with infectious diseases including periodontitis. Natural IgM antibodies recognize pathogen-associated molecular patterns on bacteria, and oxidized lipid and protein epitopes on low-density lipoprotein (LDL) and apoptotic cells. We aimed to identify epitopes on periodontal pathogen Porphyromonas gingivalis recognized by natural IgM binding to malondialdehyde (MDA) modified LDL. Methods and Results Mouse monoclonal IgM (MDmAb) specific for MDA-LDL recognized epitopes on P. gingivalis on flow cytometry and chemiluminescence immunoassays. Immunization of C57BL/6 mice with P. gingivalis induced IgM, but not IgG, immune response to MDA-LDL and apoptotic cells. Immunization of LDLR−/− mice with P. gingivalis induced IgM, but not IgG, immune response to MDA-LDL and diminished aortic lipid deposition. On Western blot MDmAb bound to P. gingivalis fragments identified as arginine-specific gingipain (Rgp) by mass spectrometry. Recombinant domains of Rgp produced in E. coli were devoid of phosphocholine epitopes but contained epitopes recognized by MDmAb and human serum IgM. Serum IgM levels to P. gingivalis were associated with anti-MDA-LDL levels in humans. Conclusion Gingipain of P. gingivalis is recognized by natural IgM and shares molecular identity with epitopes on MDA-LDL. These findings suggest a role for natural antibodies in the pathogenesis of two related inflammatory diseases, atherosclerosis and periodontitis. PMID:22496875
Two Orangutan Species Have Evolved Different KIR Alleles and Haplotypes1
Guethlein, Lisbeth A.; Norman, Paul J.; Heijmans, Corinne M. C.; de Groot, Natasja G.; Hilton, Hugo G.; Babrzadeh, Farbod; Abi-Rached, Laurent; Bontrop, Ronald E.; Parham, Peter
2017-01-01
The immune and reproductive functions of human Natural Killer (NK) cells are regulated by interactions of the C1 and C2 epitopes of HLA-C with C1-specific and C2-specific lineage III killer cell immunoglobulin-like receptors (KIR). This rapidly evolving and diverse system of ligands and receptors is restricted to humans and great apes. In this context, the orangutan has particular relevance because it represents an evolutionary intermediate, one having the C1 epitope and corresponding KIR, but lacking the C2 epitope. Through a combination of direct sequencing, KIR genotyping and data mining from the Great Ape Genome Project (GAGP) we characterized the KIR alleles and haplotypes for panels of ten Bornean orangutans and 19 Sumatran orangutans. The orangutan KIR haplotypes have between five and ten KIR genes. The seven orangutan lineage III KIR genes all locate to the centromeric region of the KIR locus, whereas their human counterparts also populate the telomeric region. One lineage III KIR gene is Bornean-specific, one is Sumatran-specific and five are shared. Of twelve KIR gene-content haplotypes five are Bornean-specific, five are Sumatran-specific and two are shared. The haplotypes have different combinations of genes encoding activating and inhibitory C1 receptors that can be of higher or lower affinity. All haplotypes encode an inhibitory C1 receptor, but only some haplotypes encode an activating C1 receptor. Of 130 KIR alleles, 55 are Bornean-specific, 65 are Sumatran specific and ten are shared. PMID:28264973
Widespread Impact of HLA Restriction on Immune Control and Escape Pathways of HIV-1
Listgarten, Jennifer; Pfeifer, Nico; Tan, Vincent; Kadie, Carl; Walker, Bruce D.; Ndung'u, Thumbi; Shapiro, Roger; Frater, John; Brumme, Zabrina L.; Goulder, Philip J. R.; Heckerman, David
2012-01-01
The promiscuous presentation of epitopes by similar HLA class I alleles holds promise for a universal T-cell-based HIV-1 vaccine. However, in some instances, cytotoxic T lymphocytes (CTL) restricted by HLA alleles with similar or identical binding motifs are known to target epitopes at different frequencies, with different functional avidities and with different apparent clinical outcomes. Such differences may be illuminated by the association of similar HLA alleles with distinctive escape pathways. Using a novel computational method featuring phylogenetically corrected odds ratios, we systematically analyzed differential patterns of immune escape across all optimally defined epitopes in Gag, Pol, and Nef in 2,126 HIV-1 clade C-infected adults. Overall, we identified 301 polymorphisms in 90 epitopes associated with HLA alleles belonging to shared supertypes. We detected differential escape in 37 of 38 epitopes restricted by more than one allele, which included 278 instances of differential escape at the polymorphism level. The majority (66 to 97%) of these resulted from the selection of unique HLA-specific polymorphisms rather than differential epitope targeting rates, as confirmed by gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISPOT) data. Discordant associations between HLA alleles and viral load were frequently observed between allele pairs that selected for differential escape. Furthermore, the total number of associated polymorphisms strongly correlated with average viral load. These studies confirm that differential escape is a widespread phenomenon and may be the norm when two alleles present the same epitope. Given the clinical correlates of immune escape, such heterogeneity suggests that certain epitopes will lead to discordant outcomes if applied universally in a vaccine. PMID:22379086
Guo, Chun-yan; Tang, Yi-gui; Qi, Zong-li; Liu, Yang; Zhao, Xiang-rong; Huo, Xue-ping; Li, Yan; Feng, Qing; Zhao, Peng-hua; Wang, Xin; Li, Yuan; Wang, Hai-fang; Hu, Jun; Zhang, Xin-jian
2015-08-01
To characterize the antigenic epitopes of the hemagglutinin (HA) protein of H1N1 influenza virus, a panel consisting of 84 clones of murine monoclonal antibodies (mAbs) were generated using the HA proteins from the 2009 pandemic H1N1 vaccine lysate and the seasonal influenza H1N1(A1) vaccines. Thirty-three (39%) of the 84 mAbs were found to be strain-specific, and 6 (7%) of the 84 mAbs were subtype-specific. Twenty (24%) of the 84 mAbs recognized the common HA epitopes shared by 2009 pandemic H1N1, seasonal A1 (H1N1), and A3 (H3N2) influenza viruses. Twenty-five of the 84 clones recognized the common HA epitopes shared by the 2009 pandemic H1N1, seasonal A1 (H1N1) and A3 (H3N2) human influenza viruses, and H5N1 and H9N2 avian influenza viruses. We found that of the 16 (19%) clones of the 84 mAbs panel that were cross-reactive with human respiratory pathogens, 15 were made using the HA of the seasonal A1 (H1N1) virus and 1 was made using the HA of the 2009 pandemic H1N1 influenza virus. Immunohistochemical analysis of the tissue microarray (TMA) showed that 4 of the 84 mAb clones cross-reacted with human tissue (brain and pancreas). Our results indicated that the influenza virus HA antigenic epitopes not only induce type-, subtype-, and strain-specific monoclonal antibodies against influenza A virus but also cross-reactive monoclonal antibodies against human tissues. Further investigations of these cross-reactive (heterophilic) epitopes may significantly improve our understanding of viral antigenic variation, epidemics, pathophysiologic mechanisms, and adverse effects of influenza vaccines. Copyright © 2015 Elsevier GmbH. All rights reserved.
Seppo, A E; Savilahti, E M; Berin, M C; Sampson, H A; Järvinen, K M
2017-10-01
We have previously shown that maternal cow's milk (CM) elimination results in downregulation of CM-specific IgA antibody levels in BM, but not in serum, suggesting that an entero-mammary link may exist for food-specific antibody-secreting cells. We sought to investigate whether food-specific IgA epitope profiles differ intra-individually between mother's serum and BM. We also examined how infants' food epitope-specific IgA develops in early infancy and the relationship of IgA epitope recognition with development of cow's milk allergy (CMA). We measured specific IgA to a series of overlapping peptides in major CM allergens (α s1 -, α s2 -, β- and κ-caseins and β-lactoglobulin) in paired maternal and infant serum as well as BM samples in 31 mother-infant dyads within the first 15 post-partum months utilizing peptide microarray. There was significant discordance in epitope specificity between BM and maternal sera ranging from only 13% of sample pairs sharing at least one epitope in α s1 -casein to 73% in κ-casein. Epitope-specific IgA was detectable in infants' sera starting at less than 3 months of age. Sera of mothers with a CMA infant had increased binding of epitope-specific IgA to CM proteins compared to those with a non-CMA infant. These findings support the concept that mother's milk has a distinct antifood antibody repertoire when compared to the antibody repertoire of the peripheral blood. Increased binding of serum epitope-specific IgA to CM in mothers of infants with CMA may reflect inherited systemic immunogenicity of CM proteins in these families, although specific IgA in breast milk was not proportionally up-regulated. © 2017 John Wiley & Sons Ltd.
Robinson, James I; Barrett, Jennifer H; Taylor, John C; Naven, Marc; Corscadden, Diane; Barton, Anne; Wilson, Anthony G; Emery, Paul; Isaacs, John D; Morgan, Ann W
2010-06-01
Genome-wide association studies in rheumatoid arthritis (RA) have failed to examine the FCGR gene cluster because of the confounding effects of segmental duplication. This study aimed to replicate previous candidate gene studies that had identified a significant association between the FCGR3A-158V allele and RA and then sought to estimate specific subgroup effects. FCGR3A-158F/V genotyping was undertaken in a UK Caucasian replication cohort comprising 2049 patients with RA and 1156 controls. Subgroup analyses assessing the magnitude of association according to gender and autoantibody (rheumatoid factor (RF) and cyclic citrullinated peptide (CCP)) status were undertaken in a pooled cohort of 2963 patients with RA and 1731 controls. Logistic regression was used to test for interaction between FCGR3A and HLA-DRB1 shared epitope (SE) alleles. In the combined RA cohort, borderline association with homozygosity was found for the FCGR3A-158V allele (OR 1.2, p=0.05), which was stronger in men (OR 1.7, p=0.01). Stratification by autoantibody status showed an increased risk in RF and CCP positive RA. Analysis of the FCGR3A-158V and HLA-DRB1 SE interaction revealed roles for both genes in susceptibility to autoantibody positive RA, with no evidence of interaction. FCGR3A is a risk factor for the development of autoantibody positive RA, particularly in men, with evidence of a multiplicative effect with HLA-DRB1 SE.
Hulot, Sandrine L; Seaman, Michael S; Sen, Pritha; Autissier, Patrick A; Manuel, Edwin R; Letvin, Norman L
2009-10-01
An ideal human immunodeficiency virus type 1 (HIV-1) vaccine would elicit potent cellular and humoral immune responses that recognize diverse strains of the virus. In the present study, combined methodologies (flow cytometry, Vbeta repertoire analysis, and complementarity-determining region 3 sequencing) were used to determine the clonality of CD8(+) T lymphocytes taking part in the recognition of variant epitope peptides elicited in Mamu-A*01-positive rhesus monkeys immunized with vaccines encoding diverse HIV-1 envelopes (Envs). Monkeys immunized with clade B Envs generated CD8(+) T lymphocytes that cross-recognized both clade B- and clade C-p41A epitope peptides using a large degree of diversity in Vbeta gene usage. However, with two monkeys immunized with clade C Env, one monkey exhibited p41A-specific cytotoxic T-lymphocytes (CTL) with the capacity for cross-recognition of variant epitopes, while the other monkey did not. These studies demonstrate that the cross-reactive potential of variant p41A epitope peptide-specific CTL populations can differ between monkeys that share the same restricting major histocompatibility complex class I molecule and receive the same vaccine immunogens.
Miller, Yury I.; Choi, Soo-Ho; Wiesner, Philipp; Fang, Longhou; Harkewicz, Richard; Hartvigsen, Karsten; Boullier, Agnès; Gonen, Ayelet; Diehl, Cody J.; Que, Xuchu; Montano, Erica; Shaw, Peter X.; Tsimikas, Sotirios; Binder, Christoph J.; Witztum, Joseph L.
2010-01-01
Oxidation reactions are vital parts of metabolism and signal transduction. However, they also produce reactive oxygen species, which damage lipids, proteins and DNA, generating “oxidation-specific” epitopes. In this review, we will discuss the hypothesis that such common oxidation-specific epitopes are a major target of innate immunity, recognized by a variety of “pattern recognition receptors” (PRRs). By analogy with microbial “pathogen associated molecular patterns” (PAMPs), we postulate that host-derived, oxidation-specific epitopes can be considered to represent “danger (or damage) associated molecular patterns” (DAMPs). We also argue that oxidation-specific epitopes present on apoptotic cells and their cellular debris provided the primary evolutionary pressure for the selection of such PRRs. Further, because many PAMPs on microbes share molecular identity and/or mimicry with oxidation-specific epitopes, such PAMPs provided a strong secondary selecting pressure for the same set of oxidation-specific PRRs as well. Because lipid peroxidation is ubiquitous and a major component of the inflammatory state associated with atherosclerosis, the understanding that oxidation-specific epitopes are DAMPs, and thus the target of multiple arcs of innate immunity, provides novel insights into the pathogenesis of atherosclerosis. As examples, we show that both cellular and soluble PRRs, such as CD36, toll-like receptor-4, natural antibodies, and CRP recognize common oxidation-specific DAMPs, such as oxidized phospholipids and oxidized cholesteryl esters, and mediate a variety of immune responses, from expression of proinflammatory genes to excessive intracellular lipoprotein accumulation to atheroprotective humoral immunity. These insights may lead to improved understanding of inflammation and atherogenesis and suggest new approaches to diagnosis and therapy. PMID:21252151
Mikuls, Ted R.; Hughes, Laura B.; Westfall, Andrew O.; Holers, V. Michael; Parrish, Lezlie; van der Heijde, Desiree; van Everdingen, Maaltje; Alarcón, Graciela S.; Conn, Doyt L.; Jonas, Beth; Callahan, Leigh F.; Smith, Edwin A.; Gilkeson, Gary; Howard, George; Moreland, Larry W.; Bridges, S. Louis
2009-01-01
Objective To examine the association of smoking with clinical and serologic features in African Americans with recent-onset rheumatoid arthritis (RA) and to explore whether this association is dependent on the presence of the HLA-DRB1 shared epitope (SE). Methods In African Americans with recent-onset RA (n = 300), we examined the association of cigarette smoking (current vs. past vs. never and pack-years of exposure) with anti-CCP antibody, rheumatoid factor (RF) (-IgM and -IgA), rheumatoid nodules, and baseline radiographic erosions using logistic and cumulative logistic regression (adjusting for SE status). We also examined for evidence of interaction between smoking status and SE for all outcomes. Results Although there was no association with RF-IgA seropositivity, current smokers were approximately twice as likely as never smokers to have higher IgA-RF concentrations (based on tertiles; OR = 1.74; 95% CI 1.05–2.88) and nodules (OR = 2.43; 95% CI 1.13–5.22). These associations were most pronounced in those with more than 20 pack-years of exposure. There was no association of smoking status or cumulative tobacco exposure with anti-CCP antibody, IgM-RF, or radiographic erosions. There was also no evidence of a biologic or statistical SE-smoking interaction for any of the outcomes examined. Conclusion This is the first study to systematically examine the association of cigarette smoking with RA-related features in African Americans. Cigarette smoking is associated with both subcutaneous nodules and higher serum concentrations of IgA-RF in African Americans with RA, associations that may have important implications for long-term outcomes in this population. PMID:18198196
Matsumoto, I; Tsubota, K; Satake, Y; Kita, Y; Matsumura, R; Murata, H; Namekawa, T; Nishioka, K; Iwamoto, I; Saitoh, Y; Sumida, T
1996-01-01
Sjogren's syndrome (SS) is an autoimmune disease characterized by lymphocytic infiltration into lacrimal and salivary glands leading to symptomatic dry eyes and mouth. Immunohistological studies have clarified that the majority of infiltrating lymphocytes around the lacrimal glands and labial salivary glands are CD4 positive alphabeta T cells. To analyze the pathogenesis of T cells infiltrating into lacrimal and labial salivary glands, we examined T cell clonotype of these cells in both glands from four SS patients using PCR-single-strand conformation polymorphism (SSCP) and a sequencing method. SSCP analysis showed that some infiltrating T cells in both glands expand clonally, suggesting that the cells proliferate by antigen-driven stimulation. Intriguingly, six to sixteen identical T cell receptor (TCR) Vbeta genes were commonly found in lacrimal glands and labial salivary glands from individual patients. This indicates that some T cells infiltrating into both glands recognize the shared epitopes on autoantigens. Moreover, highly conserved amino acid sequence motifs were found in the TCR CDR3 region bearing the same TCR Vbeta family gene from four SS patients, supporting the notion that the shared epitopes on antigens are limited. In conclusion, these findings suggest that some autoreactive T cells infiltrating into the lips and eyes recognized restricted epitopes of a common autoantigen in patients with SS. PMID:8621782
Rotunno, Melissa S; Auclair, Jared R; Maniatis, Stephanie; Shaffer, Scott A; Agar, Jeffrey; Bosco, Daryl A
2014-10-10
Mutations and aberrant post-translational modifications within Cu,Zn-superoxide dismutase (SOD1) cause this otherwise protective enzyme to misfold, leading to amyotrophic lateral sclerosis (ALS). The C4F6 antibody selectively binds misfolded SOD1 in spinal cord tissues from postmortem human ALS cases, as well as from an ALS-SOD1 mouse model, suggesting that the C4F6 epitope reports on a pathogenic conformation that is common to misfolded SOD1 variants. To date, the residues and structural elements that comprise this epitope have not been elucidated. Using a chemical cross-linking and mass spectrometry approach, we identified the C4F6 epitope within several ALS-linked SOD1 variants, as well as an oxidized form of WT SOD1, supporting the notion that a similar misfolded conformation is shared among pathological SOD1 proteins. Exposure of the C4F6 epitope was modulated by the SOD1 electrostatic (loop VII) and zinc binding (loop IV) loops and correlated with SOD1-induced toxicity in a primary microglia activation assay. Site-directed mutagenesis revealed Asp(92) and Asp(96) as key residues within the C4F6 epitope required for the SOD1-C4F6 binding interaction. We propose that stabilizing the functional loops within SOD1 and/or obscuring the C4F6 epitope are viable therapeutic strategies for treating SOD1-mediated ALS. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Wang, Xiangyu; Sun, Qi; Ye, Zhonghua; Hua, Ying; Shao, Na; Du, Yanli; Zhang, Qiwei; Wan, Chengsong
2016-10-01
An avian-origin influenza H7N9 virus epidemic occurred in China in 2013-2014, in which >422 infected people suffered from pneumonia, respiratory distress syndrome and septic shock. H7N9 viruses belong to the H7 subtype of avian-origin influenza viruses (AIV-H7). Hemagglutinin (HA) is a vital membrane protein of AIV that has an important role in host recognition and infection. The epitopes of HA are significant determinants of the regularity of epidemic and viral mutation and recombination mechanisms. The present study aimed to predict the conserved B-cell epitopes of AIV-H7 HA using a bioinformatics approach, including the three most effective epitope prediction softwares available online: Artificial Neural Network based B-cell Epitope Prediction (ABCpred), B-cell Epitope Prediction (BepiPred) and Linear B-cell Epitope Prediction (LBtope). A total of 24 strains of Euro-Asiatic AIV-H7 that had been associated with a serious poultry pandemic or had infected humans in the past 30 years were selected to identify the conserved regions of HA. Sequences were obtained from the National Center for Biotechnology Information and Global Initiative on Sharing Avian Influenza Data databases. Using a combination of software prediction and sequence comparisons, the conserved epitopes of AIV-H7 were predicted and clarified. A total of five conserved epitopes [amino acids (aa) 37-52, 131-142, 215-234, 465-484 and 487-505] with a suitable length, high antigenicity and minimal variation were predicted and confirmed. Each obtained a score of >0.80 in ABCpred, 60% in LBtope and a level of 0.35 in Bepipred. In addition, a representative amino acid change (glutamine 235 -to-leucine 235 ) in the HA protein of the 2013 AIV-H7N9 was discovered. The strategy adopted in the present study may have profound implications on the rapid diagnosis and control of infectious disease caused by H7N9 viruses, as well as by other virulent viruses, such as the Ebola virus.
Duvvuri, Venkata R.; Duvvuri, Bhargavi; Alice, Christilda; Wu, Gillian E.; Gubbay, Jonathan B.; Wu, Jianhong
2014-01-01
In 2013, a novel avian influenza H7N9 virus was identified in human in China. The antigenically distinct H7N9 surface glycoproteins raised concerns about lack of cross-protective neutralizing antibodies. Epitope-specific preexisting T-cell immunity was one of the protective mechanisms in pandemic 2009 H1N1 even in the absence of cross-protective antibodies. Hence, the assessment of preexisting CD4+ T-cell immunity to conserved epitopes shared between H7N9 and human influenza A viruses (IAV) is critical. A comparative whole proteome-wide immunoinformatics analysis was performed to predict the CD4+ T-cell epitopes that are commonly conserved within the proteome of H7N9 in reference to IAV subtypes (H1N1, H2N2, and H3N2). The CD4+ T-cell epitopes that are commonly conserved (∼556) were further screened against the Immune Epitope Database (IEDB) to validate their immunogenic potential. This analysis revealed that 45.5% (253 of 556) epitopes are experimentally proven to induce CD4+ T-cell memory responses. In addition, we also found that 23.3% of CD4+ T-cell epitopes have ≥90% of sequence homology with experimentally defined CD8+ T-cell epitopes. We also conducted the population coverage analysis across different ethnicities using commonly conserved CD4+ T-cell epitopes and corresponding HLA-DRB1 alleles. Interestingly, the indigenous populations from Canada, United States, Mexico and Australia exhibited low coverage (28.65% to 45.62%) when compared with other ethnicities (57.77% to 94.84%). In summary, the present analysis demonstrate an evidence on the likely presence of preexisting T-cell immunity in human population and also shed light to understand the potential risk of H7N9 virus among indigenous populations, given their high susceptibility during previous pandemic influenza events. This information is crucial for public health policy, in targeting priority groups for immunization programs. PMID:24609014
Airway Memory CD4(+) T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses.
Zhao, Jincun; Zhao, Jingxian; Mangalam, Ashutosh K; Channappanavar, Rudragouda; Fett, Craig; Meyerholz, David K; Agnihothram, Sudhakar; Baric, Ralph S; David, Chella S; Perlman, Stanley
2016-06-21
Two zoonotic coronaviruses (CoVs)-SARS-CoV and MERS-CoV-have crossed species to cause severe human respiratory disease. Here, we showed that induction of airway memory CD4(+) T cells specific for a conserved epitope shared by SARS-CoV and MERS-CoV is a potential strategy for developing pan-coronavirus vaccines. Airway memory CD4(+) T cells differed phenotypically and functionally from lung-derived cells and were crucial for protection against both CoVs in mice. Protection was dependent on interferon-γ and required early induction of robust innate and virus-specific CD8(+) T cell responses. The conserved epitope was also recognized in SARS-CoV- and MERS-CoV-infected human leukocyte antigen DR2 and DR3 transgenic mice, indicating potential relevance in human populations. Additionally, this epitope was cross-protective between human and bat CoVs, the progenitors for many human CoVs. Vaccine strategies that induce airway memory CD4(+) T cells targeting conserved epitopes might have broad applicability in the context of new CoVs and other respiratory virus outbreaks. Copyright © 2016 Elsevier Inc. All rights reserved.
From HSV infection to erythema multiforme through autoimmune crossreactivity.
Lucchese, Alberta
2018-06-01
Scientific and clinical data indicate that human herpes simplex virus 1 (HSV1) and, at a lesser extent, human herpes simplex virus 2 (HSV2) are factor(s) implicated in the development of erythema multiforme (EM). With a focus on oral EM, the present structured review of proteomic and epitope databases searched for the molecular basis that might link HSV1 and HSV2 infections to EM. It was found that a high number of peptides are shared between the two HSVs and human proteins related to the oral mucosa. Moreover, a great number of the shared peptides are also present in epitopes that have been experimentally validated as immunopositive in the human host. The results suggest the involvement of HSV infections in the induction of oral EM via a mechanism of autoimmune cross-reactivity and, in particular, highlight a potential major role for 180kDa bullous pemphigoid antigen and HSV1 infection in the genesis of crossreactions potentially conducive to EM. Copyright © 2018 Elsevier B.V. All rights reserved.
Anti-citrullinated protein antibodies cause arthritis by cross-reactivity to joint cartilage
Ge, Changrong; Tong, Dongmei; Liang, Bibo; Schneider, Nadine; Viljanen, Johan; Stawikowska, Roma; Fields, Gregg B.; Skogh, Thomas; Kihlberg, Jan; Burkhardt, Harald
2017-01-01
Today, it is known that autoimmune diseases start a long time before clinical symptoms appear. Anti-citrullinated protein antibodies (ACPAs) appear many years before the clinical onset of rheumatoid arthritis (RA). However, it is still unclear if and how ACPAs are arthritogenic. To better understand the molecular basis of pathogenicity of ACPAs, we investigated autoantibodies reactive against the C1 epitope of collagen type II (CII) and its citrullinated variants. We found that these antibodies are commonly occurring in RA. A mAb (ACC1) against citrullinated C1 was found to cross-react with several noncitrullinated epitopes on native CII, causing proteoglycan depletion of cartilage and severe arthritis in mice. Structural studies by X-ray crystallography showed that such recognition is governed by a shared structural motif “RG-TG” within all the epitopes, including electrostatic potential-controlled citrulline specificity. Overall, we have demonstrated a molecular mechanism that explains how ACPAs trigger arthritis. PMID:28679953
Luštrek, Mitja; Lorenz, Peter; Kreutzer, Michael; Qian, Zilliang; Steinbeck, Felix; Wu, Di; Born, Nadine; Ziems, Bjoern; Hecker, Michael; Blank, Miri; Shoenfeld, Yehuda; Cao, Zhiwei; Glocker, Michael O; Li, Yixue; Fuellen, Georg; Thiesen, Hans-Jürgen
2013-01-01
Epitope-antibody-reactivities (EAR) of intravenous immunoglobulins (IVIGs) determined for 75,534 peptides by microarray analysis demonstrate that roughly 9% of peptides derived from 870 different human protein sequences react with antibodies present in IVIG. Computational prediction of linear B cell epitopes was conducted using machine learning with an ensemble of classifiers in combination with position weight matrix (PWM) analysis. Machine learning slightly outperformed PWM with area under the curve (AUC) of 0.884 vs. 0.849. Two different types of epitope-antibody recognition-modes (Type I EAR and Type II EAR) were found. Peptides of Type I EAR are high in tyrosine, tryptophan and phenylalanine, and low in asparagine, glutamine and glutamic acid residues, whereas for peptides of Type II EAR it is the other way around. Representative crystal structures present in the Protein Data Bank (PDB) of Type I EAR are PDB 1TZI and PDB 2DD8, while PDB 2FD6 and 2J4W are typical for Type II EAR. Type I EAR peptides share predicted propensities for being presented by MHC class I and class II complexes. The latter interaction possibly favors T cell-dependent antibody responses including IgG class switching. Peptides of Type II EAR are predicted not to be preferentially presented by MHC complexes, thus implying the involvement of T cell-independent IgG class switch mechanisms. The high extent of IgG immunoglobulin reactivity with human peptides implies that circulating IgG molecules are prone to bind to human protein/peptide structures under non-pathological, non-inflammatory conditions. A webserver for predicting EAR of peptide sequences is available at www.sysmed-immun.eu/EAR.
Avril, Marion; Kulasekara, Bridget R.; Gose, Severin O.; Rowe, Chris; Dahlbäck, Madeleine; Duffy, Patrick E.; Fried, Michal; Salanti, Ali; Misher, Lynda; Narum, David L.; Smith, Joseph D.
2008-01-01
Pregnancy-associated malaria (PAM) is characterized by the placental sequestration of Plasmodium falciparum-infected erythrocytes (IEs) with the ability to bind to chondroitin sulfate A (CSA). VAR2CSA is a leading candidate for a pregnancy malaria vaccine, but its large size (∼350 kDa) and extensive polymorphism may pose a challenge to vaccine development. In this study, rabbits were immunized with individual VAR2CSA Duffy binding-like (DBL) domains expressed in Pichia pastoris or var2csa plasmid DNA and sera were screened on different CSA-binding parasite lines. Rabbit antibodies to three recombinant proteins (DBL1, DBL3, and DBL6) and four plasmid DNAs (DBL1, DBL3, DBL5, and DBL6) reacted with homologous FCR3-CSA IEs. By comparison, antibodies to the DBL4 domain were unable to react with native VAR2CSA protein unless it was first partially proteolyzed with trypsin or chymotrypsin. To investigate the antigenic relationship of geographically diverse CSA-binding isolates, rabbit immune sera were screened on four heterologous CSA-binding lines from different continental origins. Antibodies did not target conserved epitopes exposed in all VAR2CSA alleles; however, antisera to several DBL domains cross-reacted on parasite isolates that had polymorphic loops in common with the homologous immunogen. This study demonstrates that VAR2CSA contains common polymorphic epitopes that are shared between geographically diverse CSA-binding lines. PMID:18250177
Avril, Marion; Kulasekara, Bridget R; Gose, Severin O; Rowe, Chris; Dahlbäck, Madeleine; Duffy, Patrick E; Fried, Michal; Salanti, Ali; Misher, Lynda; Narum, David L; Smith, Joseph D
2008-04-01
Pregnancy-associated malaria (PAM) is characterized by the placental sequestration of Plasmodium falciparum-infected erythrocytes (IEs) with the ability to bind to chondroitin sulfate A (CSA). VAR2CSA is a leading candidate for a pregnancy malaria vaccine, but its large size ( approximately 350 kDa) and extensive polymorphism may pose a challenge to vaccine development. In this study, rabbits were immunized with individual VAR2CSA Duffy binding-like (DBL) domains expressed in Pichia pastoris or var2csa plasmid DNA and sera were screened on different CSA-binding parasite lines. Rabbit antibodies to three recombinant proteins (DBL1, DBL3, and DBL6) and four plasmid DNAs (DBL1, DBL3, DBL5, and DBL6) reacted with homologous FCR3-CSA IEs. By comparison, antibodies to the DBL4 domain were unable to react with native VAR2CSA protein unless it was first partially proteolyzed with trypsin or chymotrypsin. To investigate the antigenic relationship of geographically diverse CSA-binding isolates, rabbit immune sera were screened on four heterologous CSA-binding lines from different continental origins. Antibodies did not target conserved epitopes exposed in all VAR2CSA alleles; however, antisera to several DBL domains cross-reacted on parasite isolates that had polymorphic loops in common with the homologous immunogen. This study demonstrates that VAR2CSA contains common polymorphic epitopes that are shared between geographically diverse CSA-binding lines.
Richert, Ludovic; Humbert, Nicolas; Larquet, Eric; Girerd-Chambaz, Yves; Manin, Catherine; Ronzon, Frédéric; Mély, Yves
2016-10-01
Although the enzyme-linked immunosorbent assay (ELISA) is well established for quantitating epitopes on inactivated virions used as vaccines, it is less suited for detecting potential overlaps between the epitopes recognized by different antibodies raised against the virions. We used fluorescent correlation spectroscopy (FCS) to detect the potential overlaps between 3 monoclonal antibodies (mAbs 4B7-1H8-2E10, 1E3-3G4, 4H8-3A12-2D3) selected for their ability to specifically recognize poliovirus type 3. Competition of the Alexa488-labeled mAbs with non-labeled mAbs revealed that mAbs 4B7-1H8-2E10 and 4H8-3A12-2D3 compete strongly for their binding sites on the virions, suggesting an important overlap of their epitopes. This was confirmed by the cryo-electron microscopy (cryo EM) structure of the poliovirus type 3 complexed with the corresponding antigen-binding fragments (Fabs) of the mAbs, which revealed that Fabs 4B7-1H8-2E10 and 4H8-3A12-2D3 epitopes share common amino acids. In contrast, a less efficient competition between mAb 1E3-3G4 and mAb 4H8-3A12-2D3 was observed by FCS, and there was no competition between mAbs 1E3-3G4 and 4B7-1H8-2E10. The Fab 1E3-3G4 epitope was found by cryoEM to be close to but distinct from the epitopes of both Fabs 4H8-3A12-2D3 and 4B7-1H8-2E10. Therefore, the FCS data additionally suggest that mAbs 4H8-3A12-2D3 and 4B7-1H8-2E10 bind in a different orientation to their epitopes, so that only the former sterically clashes with the mAb 1E3-3G4 bound to its epitope. Our results demonstrate that FCS can be a highly sensitive and useful tool for assessing the potential overlap of mAbs on viral particles.
Genetics of Rheumatoid Arthritis — A Comprehensive Review
Kurkó, Júlia; Besenyei, Timea; Laki, Judit; Glant, Tibor T.; Mikecz, Katalin
2013-01-01
The “Bermuda triangle” of genetics, environment and autoimmunity is involved in the pathogenesis of rheumatoid arthritis (RA). Various aspects of genetic contribution to the etiology, pathogenesis and outcome of RA are discussed in this review. The heritability of RA has been estimated to be about 60 %, while the contribution of HLA to heritability has been estimated to be 11–37 %. Apart from known shared epitope (SE) alleles, such as HLA-DRB1*01 and DRB1*04, other HLA alleles, such as HLA-DRB1*13 and DRB1*15 have been linked to RA susceptibility. A novel SE classification divides SE alleles into S1, S2, S3P and S3D groups, where primarily S2 and S3P groups have been associated with predisposition to seropositive RA. The most relevant non-HLA gene single nucleotide polymorphisms (SNPs) associated with RA include PTPN22, IL23R, TRAF1, CTLA4, IRF5, STAT4, CCR6, PADI4. Large genome-wide association studies (GWAS) have identified more than 30 loci involved in RA pathogenesis. HLA and some non-HLA genes may differentiate between anti-citrullinated protein antibody (ACPA) seropositive and seronegative RA. Genetic susceptibility has also been associated with environmental factors, primarily smoking. Some GWAS studies carried out in rodent models of arthritis have confirmed the role of human genes. For example, in the collagen-induced (CIA) and proteoglycan-induced arthritis (PgIA) models, two important loci — Pgia26/Cia5 and Pgia2/Cia2/Cia3, corresponding the human PTPN22/CD2 and TRAF1/C5 loci, respectively — have been identified. Finally, pharmacogenomics identified SNPs or multiple genetic signatures that may be associated with responses to traditional disease-modifying drugs and biologics. PMID:23288628
Genetics of rheumatoid arthritis - a comprehensive review.
Kurkó, Júlia; Besenyei, Timea; Laki, Judit; Glant, Tibor T; Mikecz, Katalin; Szekanecz, Zoltán
2013-10-01
The "Bermuda triangle" of genetics, environment and autoimmunity is involved in the pathogenesis of rheumatoid arthritis (RA). Various aspects of genetic contribution to the etiology, pathogenesis and outcome of RA are discussed in this review. The heritability of RA has been estimated to be about 60 %, while the contribution of HLA to heritability has been estimated to be 11-37 %. Apart from known shared epitope (SE) alleles, such as HLA-DRB1*01 and DRB1*04, other HLA alleles, such as HLA-DRB1*13 and DRB1*15 have been linked to RA susceptibility. A novel SE classification divides SE alleles into S1, S2, S3P and S3D groups, where primarily S2 and S3P groups have been associated with predisposition to seropositive RA. The most relevant non-HLA gene single nucleotide polymorphisms (SNPs) associated with RA include PTPN22, IL23R, TRAF1, CTLA4, IRF5, STAT4, CCR6, PADI4. Large genome-wide association studies (GWAS) have identified more than 30 loci involved in RA pathogenesis. HLA and some non-HLA genes may differentiate between anti-citrullinated protein antibody (ACPA) seropositive and seronegative RA. Genetic susceptibility has also been associated with environmental factors, primarily smoking. Some GWAS studies carried out in rodent models of arthritis have confirmed the role of human genes. For example, in the collagen-induced (CIA) and proteoglycan-induced arthritis (PgIA) models, two important loci - Pgia26/Cia5 and Pgia2/Cia2/Cia3, corresponding the human PTPN22/CD2 and TRAF1/C5 loci, respectively - have been identified. Finally, pharmacogenomics identified SNPs or multiple genetic signatures that may be associated with responses to traditional disease-modifying drugs and biologics.
Cloning and characterization of 2S albumin, Car i 1, a major allergen in pecan.
Sharma, Girdhari M; Irsigler, Andre; Dhanarajan, Pushparani; Ayuso, Rosalia; Bardina, Luda; Sampson, Hugh A; Roux, Kenneth H; Sathe, Shridhar K
2011-04-27
Although pecans are associated with IgE-mediated food allergies, the allergens responsible remain to be identified and characterized. The 2S albumin gene was amplified from the pecan cDNA library. Dot-blots were used to screen the recombinant protein with pecan allergic patients' serum. The affinity purified native protein was analyzed by Edman sequencing and mass spectrometry/mass spectrometry (MS/MS) analysis. Cross-reactivity with walnut was determined by inhibition enzyme-linked immunosorbent assay (ELISA). Sequential epitopes were determined by probing the overlapping peptides with three different patients' serum pool. The 3-dimensional homology model was generated, and the locations of the pecan epitopes were compared with those of known sequential epitopes on other allergenic tree nut homologues. Of 28 patients tested by dot-blot, 22 (79%) bound to 2S albumin, designated as Car i 1. Edman sequencing and the MS/MS sequencing of native 2S albumin confirmed the identity of recombinant (r) Car i 1. Both pecan and walnut protein extracts inhibited the IgE-binding to rCar i 1. Sequential epitope mapping indicated weak, moderate, and strong reactivity against 12, 7, and 5 peptides, respectively. Of the 11 peptides recognized by all serum pools, 5 peptides were strongly reactive and located in 3 discrete regions of the Car i 1 (amino acids 43-57, 67-78, and 106-120). Three-dimensional modeling revealed IgE-reactive epitopes to be solvent accessible and share significant homology with other tree nuts providing a possible basis for previously observed cross-reactivity.
Nagafuchi, Yasuo; Shoda, Hirofumi; Sumitomo, Shuji; Nakachi, Shinichiro; Kato, Rika; Tsuchida, Yumi; Tsuchiya, Haruka; Sakurai, Keiichi; Hanata, Norio; Tateishi, Shoko; Kanda, Hiroko; Ishigaki, Kazuyoshi; Okada, Yukinori; Suzuki, Akari; Kochi, Yuta; Fujio, Keishi; Yamamoto, Kazuhiko
2016-07-07
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that leads to destructive arthritis. Although the HLA class II locus is the strongest genetic risk factor for rheumatoid arthritis, the relationship between HLA class II alleles and lymphocyte activation remains unclear. We performed immunophenotyping of peripheral blood mononuclear cells on 91 HLA-DRB1-genotyped RA patients and 110 healthy donors. The frequency of memory CXCR4(+)CD4(+) T cells, and not Th1 and Th17 cells, was significantly associated with disease severity by multiple linear regression analysis. RA patients with one or more susceptible HLA-DR haplotypes (shared epitope: SE) displayed a significantly higher frequency of memory CXCR4(+)CD4(+) T cells. Moreover, the frequency of memory CXCR4(+)CD4(+) T cells significantly correlated with the expression level of HLA-DR on B cells, which was elevated in RA patients with SE. In vitro analysis and transcriptomic pathway analysis suggested that the interaction between HLA-DR and T cell receptors is an important regulator of memory CXCR4(+)CD4(+) T cells. Clinically, a higher frequency of memory CXCR4(+)CD4(+) T cells predicted a better response to CTLA4-Ig. Memory CXCR4(+)CD4(+) T cells may serve as a powerful biomarker for unraveling the linkage between HLA-DRB1 genotype and disease activity in RA.
2015-01-01
Soluble misfolded Cu/Zn superoxide dismutase (SOD1) is implicated in motor neuron death in amyotrophic lateral sclerosis (ALS); however, the relative toxicities of the various non-native species formed by SOD1 as it misfolds and aggregates are unknown. Here, we demonstrate that early stages of SOD1 aggregation involve the formation of soluble oligomers that contain an epitope specific to disease-relevant misfolded SOD1; this epitope, recognized by the C4F6 antibody, has been proposed as a marker of toxic species. Formation of potentially toxic oligomers is likely to be exacerbated by an oxidizing cellular environment, as evidenced by increased oligomerization propensity and C4F6 reactivity when oxidative modification by glutathione is present at Cys-111. These findings suggest that soluble non-native SOD1 oligomers, rather than native-like dimers or monomers, share structural similarity to pathogenic misfolded species found in ALS patients and therefore represent potential cytotoxic agents and therapeutic targets in ALS. PMID:24660965
USDA-ARS?s Scientific Manuscript database
Triosephosphate isomerase (TIM) is a key enzyme in glycolysis and has been identified as an allergen in saltwater products. In this study, TIM with a molecular mass of 28 kDa was purified from the freshwater crayfish (Procambarus clarkii) muscle. A 90-kDa protein that showed IgG/IgE cross-reactivity...
Anion-Anion Bonding and Topology in Ternary Iridium Seleno-Stannides.
Trump, Benjamin A; Tutmaher, Jake A; McQueen, Tyrel M
2015-12-21
The synthesis and physical properties of two new and one known Ir-Sn-Se compound are reported. Their crystal structures are elucidated with transmission electron microscopy and powder X-ray diffraction. IrSn0.45Se1.55 is a pyrite phase which consists of tilted corner-sharing IrX6 octahedra with randomly distributed (Sn-Se)(4-) and (Se-Se)(2-) dimers. Ir2Sn3Se3 is a known trigonally distorted skutterudite that consists of cooperatively tilted corner-sharing IrSn3Se3 octahedra with ordered (Sn-Se)2(4-) tetramers. Ir2SnSe5 is a layered, distorted β-MnO2 (pyrolusite) structure consisting of a double IrSe6 octrahedral row, corner sharing in the a direction and edge sharing in the b direction. This distorted pyrolusite contains (Se-Se)(2-) dimers and Se(2-) anions, and each double row is "capped" with a (Sn-Se)n polymeric chain. Resistivity, specific heat, and magnetization measurements show that all three have insulating and diamagnetic behavior, indicative of low-spin 5d(6) Ir(3+). Electronic structure calculations on Ir2Sn3Se3 show a single, spherical, nonspin-orbit split valence band and suggest that Ir2Sn3Se3 is topologically nontrivial under tensile strain due to inversion of Ir-d and Se-p states.
Jimenez-Lopez, Jose C.; Rodríguez-García, María I.; Alché, Juan D.
2013-01-01
An extensive polymorphism analysis of pollen profilin, a fundamental regulator of the actin cytoskeleton dynamics, has been performed with a major focus in 3D-folding maintenance, changes in the 2-D structural elements, surface residues involved in ligands-profilin interactions and functionality, and the generation of conformational and lineal B- and T-cell epitopes variability. Our results revealed that while the general fold is conserved among profilins, substantial structural differences were found, particularly affecting the special distribution and length of different 2-D structural elements (i.e. cysteine residues), characteristic loops and coils, and numerous micro-heterogeneities present in fundamental residues directly involved in the interacting motifs, and to some extension these residues nearby to the ligand-interacting areas. Differential changes as result of polymorphism might contribute to generate functional variability among the plethora of profilin isoforms present in the olive pollen from different genetic background (olive cultivars), and between plant species, since biochemical interacting properties and binding affinities to natural ligands may be affected, particularly the interactions with different actin isoforms and phosphoinositides lipids species. Furthermore, conspicuous variability in lineal and conformational epitopes was found between profilins belonging to the same olive cultivar, and among different cultivars as direct implication of sequences polymorphism. The variability of the residues taking part of IgE-binding epitopes might be the final responsible of the differences in cross-reactivity among olive pollen cultivars, among pollen and plant-derived food allergens, as well as between distantly related pollen species, leading to a variable range of allergy reactions among atopic patients. Identification and analysis of commonly shared and specific epitopes in profilin isoforms is essential to gain knowledge about the interacting surface of these epitopes, and for a better understanding of immune responses, helping design and development of rational and effective immunotherapy strategies for the treatment of allergy diseases. PMID:24146818
1995-01-01
Lewis rats are susceptible to several forms of experimental arthritis- induced using heat-killed Mycobacterium tuberculosis (adjuvant arthritis, or AA), streptococcal cell walls, collagen type II, and the lipoidal amine CP20961. Prior immunization with the mycobacterial 65-kD heat shock protein (hsp65) was reported to protect against AA, and other athritis models not using M. tuberculosis, via a T cell-mediated mechanism. Hsp65 shares 48% amino acid identity with mammalian hsp60, which is expressed at elevated levels in inflamed synovia. Several studies have reported cross-reactive T cell recognition of mycobacterial hsp65 and self hsp60 in arthritic and normal individuals. We previously described nine major histocompatibility complex class II- restricted epitopes in mycobacterial hsp65 recognized by Lewis rat T cells. Of these only one, covering the 256-270 sequence, primed for cross-reactive T cell responses to the corresponding region of rat hsp60. Here we have tested each hsp65 epitope for protective activity by immunizing rats with synthetic peptides. A peptide containing the 256-270 epitope, which induced cross-reactive T cells, was the only one able to confer protection against AA. Similarly, administration of a T cell line specific for this epitope protected against AA. Preimmunization with the 256-270 epitope induced T cells that responded to heat-shocked syngeneic antigen-presenting cells, and also protected against CP20961-induced arthritis, indicating that activation of T cells, recognizing an epitope in self hsp60 can protect against arthritis induced without mycobacteria. Therefore, in contrast to the accepted concept that cross-reactive T cell recognition of foreign and self antigens might induce aggressive autoimmune disease, we propose that cross-reactivity between bacterial and self hsp60 might also be used to maintain a protective self-reactive T cell population. This discovery might have important implications for understanding T cell- mediated regulation of inflammation. PMID:7869052
Salvarani, C.; Boiardi, L.; Mantovani, V.; Ranzi, A.; Cantini, F.; Olivieri, I.; Bragliani, M.; Collina, E.; Macchioni, P.
1999-01-01
OBJECTIVE—To examine the association of HLA-DRB1 alleles with polymyalgia rheumatica (PMR) in a Mediterranean country and to explore the role of HLA-DRB1 genes in determining disease severity. METHODS—A five year prospective follow up study of 92 consecutive PMR patients diagnosed by the secondary referral centre of rheumatology of Reggio Emilia, Italy was conducted. HLA-DRB1 alleles were determined in the 92 patients, in 29 DR4 positive rheumatoid arthritis (RA) patients, and in 148 controls from the same geographical area by polymerase chain reaction amplification and oligonucleotide hybridisation. RESULTS—No significant differences were observed in the frequencies of HLA-DRB1 types and in the expression of HLA-DRB 70-74 shared motif between PMR and controls. The frequency of the patients with double dose of epitope was low and not significantly different in PMR and in controls. No significant differences in the distribution of HLA-DR4 subtypes were observed between DR4+ PMR, DR+ RA, and DR4+ controls. Results of the univariate analysis indicated that an erythrocyte sedimentation rate (ESR) at diagnosis > 72 mm 1st h, the presence of HLA-DR1, DR10, rheumatoid epitope, and the type of rheumatoid epitope were significant risk factors associated with relapse/recurrence. Cox proportional hazards modelling identified two variables that independently increased the risk of relapse/recurrence: ESR at diagnosis > 72 mm 1st h (RR=1.5) and type 2 (encoded by a non-DR4 allele) rheumatoid epitope (RR=2.7). CONCLUSION—These data from a Mediterranean country showed no association of rheumatoid epitope with PMR in northern Italian patients. A high ESR at diagnosis and the presence of rheumatoid epitope encoded by a non-DR4 allele are independent valuable markers of disease severity. PMID:10225816
Anion–Anion Bonding and Topology in Ternary Iridium Seleno–Stannides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trump, Benjamin A.; Tutmaher, Jake A.; McQueen, Tyrel M.
2015-12-21
The synthesis and physical properties of two new and one known Ir–Sn–Se compound are reported. Their crystal structures are elucidated with transmission electron microscopy and powder X-ray diffraction. IrSn0.45Se1.55 is a pyrite phase which consists of tilted corner-sharing IrX6 octahedra with randomly distributed (Sn–Se)4– and (Se–Se)2– dimers. Ir2Sn3Se3 is a known trigonally distorted skutterudite that consists of cooperatively tilted corner-sharing IrSn3Se3 octahedra with ordered (Sn–Se)24– tetramers. Ir2SnSe5 is a layered, distorted β-MnO2 (pyrolusite) structure consisting of a double IrSe6 octrahedral row, corner sharing in the a direction and edge sharing in the b direction. This distorted pyrolusite contains (Se–Se)2– dimersmore » and Se2– anions, and each double row is “capped” with a (Sn–Se)n polymeric chain. Resistivity, specific heat, and magnetization measurements show that all three have insulating and diamagnetic behavior, indicative of low-spin 5d6 Ir3+. Electronic structure calculations on Ir2Sn3Se3 show a single, spherical, nonspin–orbit split valence band and suggest that Ir2Sn3Se3 is topologically nontrivial under tensile strain due to inversion of Ir-d and Se-p states.« less
Pathophysiology and immunological profile of myasthenia gravis and its subgroups.
Romi, Fredrik; Hong, Yu; Gilhus, Nils Erik
2017-12-01
Myasthenia gravis (MG) is an autoimmune antibody-mediated disease characterized by muscle weakness and fatigability. It is believed that the initial steps triggering humoral immunity in MG take place inside thymic tissue and thymoma. The immune response against one or several epitopes expressed on thymic tissue cells spills over to neuromuscular junction components sharing the same epitope causing humoral autoimmunity and antibody production. The main cause of MG is acetylcholine receptor antibodies. However, many other neuromuscular junction membrane protein targets, intracellular and extracellular proteins are suggested to participate in MG pathophysiology. MG should be divided into subgroups based on clinical presentation and immunology. This includes onset age, clinical characteristics, thymic pathology and antibody profile. The immunological profile of these subgroups is determined by the antibodies present. Copyright © 2017. Published by Elsevier Ltd.
Martínez-Torrecuadrada, J L; Langeveld, J P; Venteo, A; Sanz, A; Dalsgaard, K; Hamilton, W D; Meloen, R H; Casal, J I
1999-05-10
African horse sickness virus (AHSV) causes a fatal disease in horses. The virus capsid is composed of a double protein layer, the outermost of which is formed by two proteins: VP2 and VP5. VP2 is known to determine the serotype of the virus and to contain the neutralizing epitopes. The biological function of VP5, the other component of the capsid, is unknown. In this report, AHSV VP5, expressed in insect cells alone or together with VP2, was able to induce AHSV-specific neutralizing antibodies. Moreover, two VP5-specific monoclonal antibodies (MAbs) that were able to neutralize the virus in a plaque reduction assay were generated. To dissect the antigenic structure of AHSV VP5, the protein was cloned in Escherichia coli using the pET3 system. The immunoreactivity of both MAbs, and horse and rabbit polyclonal antisera, with 17 overlapping fragments from VP5 was analyzed. The most immunodominant region was found in the N-terminal 330 residues of VP5, defining two antigenic regions, I (residues 151-200) and II (residues 83-120). The epitopes were further defined by PEPSCAN analysis with 12mer peptides, which determined eight antigenic sites in the N-terminal half of the molecule. Neutralizing epitopes were defined at positions 85-92 (PDPLSPGE) for MAb 10AE12 and at 179-185 (EEDLRTR) for MAb 10AC6. Epitope 10AE12 is highly conserved between the different orbiviruses. MAb 10AE12 was able to recognize bluetongue virus VP5 and epizootic hemorrhagic disease virus VP5 by several techniques. These data will be especially useful for vaccine development and diagnostic purposes. Copyright 1999 Academic Press.
Food allergens: molecular and immunological aspects, allergen databases and cross-reactivity.
Lorenz, Anne-Regine; Scheurer, Stephan; Vieths, Stefan
2015-01-01
The currently known food allergens are assigned to a relatively small number of protein families. Food allergens grouped into protein families share common functional and structural features that can be attributed to the allergenic potency and potential cross-reactivity of certain proteins. Molecular data, in terms of structural information, biochemical characteristics and clinical relevance for each known allergen, including isoforms and variants, are mainly compiled into four open-access databases. Allergens are designated according to defined criteria by the World Health Organization and the International Union of Immunological Societies Allergen Nomenclature Sub-committee. Food allergies are caused by primary sensitisation to the disease-eliciting food allergens (class I food allergen), or they can be elicited as a consequence of a primary sensitisation to inhalant allergens and subsequent IgE cross-reaction to homologous proteins in food (class II food allergens). Class I and class II allergens display different clinical significance in children and adults and are characterised by different molecular features. In line with this, high stability when exposed to gastrointestinal digestion and heat treatment is attributed to many class I food allergens that frequently induce severe reactions. The stability of a food allergen is determined by its molecular characteristics and can be influenced by structural (chemical) modifications due to thermal processing. Moreover, the immunogenicity and allergenicity of food allergens further depends on specific T cell and B cell epitopes. Although the T cell epitope pattern can be highly diverse for individual patients, several immuno-prominent T cell epitopes have been identified. Such conserved T cell epitopes and IgE cross-reactive B cell epitopes contribute to cross-reactivity between food allergens of the same family and to clinical cross-reactivity, similar to the birch pollen-food syndrome. © 2015 S. Karger AG, Basel.
USDA-ARS?s Scientific Manuscript database
Prions, or infectious proteins, cause a class of uniformly fatal neurodegenerative diseases. Prions are composed solely of an aberrantly folded isoform(PrPSc)of a normal cellular protein (PrPC). Shared sequence identity of PrPSc with PrPC has limited the detection sensitivity of immunochemical assay...
Association study of ghrelin receptor gene polymorphisms in rheumatoid arthritis.
Robledo, G; Rueda, B; Gonzalez-Gay, M A; Fernández, B; Lamas, J R; Balsa, A; Pascual-Salcedo, D; García, A; Raya, E; Martín, J
2010-01-01
Ghrelin is a newly characterised growth hormone (GH) releasing peptide widely distributed that may play an important role in the regulation of metabolic balance in inflammatory diseases such as rheumatoid arthritis (RA) by decreasing the pro-inflammatory Th1 responses. In this study we investigated the possible contribution of several polymorphisms in the functional Ghrelin receptor to RA susceptibility. A screening of 3 single nucleotide polymorphisms (SNPs) was performed in a total of 950 RA patients and 990 healthy controls of Spanish Caucasian origin. Genotyping of all 3 SNPs was performed by real-time polymerase chain reaction technology, using the TaqMan 5'-allele discrimination assay. We observed no statistically significant deviation between RA patients and controls for the GHSR SNPs analysed. In addition, we performed a haplotype analysis that did not reveal an association with RA susceptibility. The stratification analysis for the presence of shared epitope (SE), rheumatoid factor (RF) or antibodies anti cyclic citrullinated peptide (anti-CCP) did not detect significant association of the GHSR polymorphisms with RA. These findings suggest that the GHSR gene polymorphisms do not appear to play a major role in RA genetic predisposition in our population.
Dutta, Kaushik; Varshney, Avanish K.; Franklin, Matthew C.; Goger, Michael; Wang, Xiaobo; Fries, Bettina C.
2015-01-01
Staphylococcal enterotoxin B (SEB) is a superantigen that cross-links the major histocompatibility complex class II and specific V-β chains of the T-cell receptor, thus forming a ternary complex. Developing neutralizing mAb to disrupt the ternary complex and abrogate the resulting toxicity is a major therapeutic challenge because SEB is effective at very low concentrations. We show that combining two SEB-specific mAbs enhances their efficacy, even though one of the two mAbs by itself has no effect on neutralization. Crystallography was employed for fine-mapping conformational epitopes in binary and ternary complexes between SEB and Fab fragments. NMR spectroscopy was used to validate and identify subtle allosteric changes induced by mAbs binding to SEB. The mapping of epitopes established that a combination of different mAbs can enhance efficacy of mAb-mediated protection from SEB induced lethal shock by two different mechanisms: one mAb mixture promoted clearance of the toxin both in vitro and in vivo by FcR-mediated cross-linking and clearance, whereas the other mAb mixture induced subtle allosteric conformational changes in SEB that perturbed formation of the SEB·T-cell receptor·major histocompatibility complex class II trimer. Finally structural information accurately predicted mAb binding to other superantigens that share conformational epitopes with SEB. Fine mapping of conformational epitopes is a powerful tool to establish the mechanism and optimize the action of synergistic mAb combinations. PMID:25572397
Schmidt, Liesbeth M; Mouton, Laurence; Nong, Guang; Ebert, Dieter; Preston, James F
2008-01-01
Pasteuria penetrans, an obligate endospore-forming parasite of Meloidogyne spp. (root knot nematodes), has been identified as a promising agent for biocontrol of these destructive agricultural crop pests. Pasteuria ramosa, an obligate parasite of water fleas (Daphnia spp.), has been shown to modulate cladoceran populations in natural ecosystems. Selected sporulation genes and an epitope associated with the spore envelope of these related species were compared. The sigE and spoIIAA/spoIIAB genes differentiate the two species to a greater extent than 16S rRNA and may serve as probes to differentiate the species. Single-nucleotide variations were observed in several conserved genes of five distinct populations of P. ramosa, and while most of these variations are silent single-nucleotide polymorphisms, a few result in conservative amino acid substitutions. A monoclonal antibody directed against an adhesin epitope present on P. penetrans P20 endospores, previously determined to be specific for Pasteuria spp. associated with several phytopathogenic nematodes, also detects an epitope associated with P. ramosa endospores. Immunoblotting provided patterns that differentiate P. ramosa from other Pasteuria spp. This monoclonal antibody thus provides a probe with which to detect and discriminate endospores of different Pasteuria spp. The presence of a shared adhesin epitope in two species with such ecologically distant hosts suggests that there is an ancient and ecologically significant recognition process in these endospore-forming bacilli that contributes to the virulence of both species in their respective hosts.
Schmidt, Liesbeth M.; Mouton, Laurence; Nong, Guang; Ebert, Dieter; Preston, James F.
2008-01-01
Pasteuria penetrans, an obligate endospore-forming parasite of Meloidogyne spp. (root knot nematodes), has been identified as a promising agent for biocontrol of these destructive agricultural crop pests. Pasteuria ramosa, an obligate parasite of water fleas (Daphnia spp.), has been shown to modulate cladoceran populations in natural ecosystems. Selected sporulation genes and an epitope associated with the spore envelope of these related species were compared. The sigE and spoIIAA/spoIIAB genes differentiate the two species to a greater extent than 16S rRNA and may serve as probes to differentiate the species. Single-nucleotide variations were observed in several conserved genes of five distinct populations of P. ramosa, and while most of these variations are silent single-nucleotide polymorphisms, a few result in conservative amino acid substitutions. A monoclonal antibody directed against an adhesin epitope present on P. penetrans P20 endospores, previously determined to be specific for Pasteuria spp. associated with several phytopathogenic nematodes, also detects an epitope associated with P. ramosa endospores. Immunoblotting provided patterns that differentiate P. ramosa from other Pasteuria spp. This monoclonal antibody thus provides a probe with which to detect and discriminate endospores of different Pasteuria spp. The presence of a shared adhesin epitope in two species with such ecologically distant hosts suggests that there is an ancient and ecologically significant recognition process in these endospore-forming bacilli that contributes to the virulence of both species in their respective hosts. PMID:17933927
Dutta, Kaushik; Varshney, Avanish K.; Franklin, Matthew C.; ...
2015-01-08
Staphylococcal enterotoxin B (SEB) is a superantigen that cross-links the major histocompatibility complex class II and specific V-β chains of the T-cell receptor, thus forming a ternary complex. Developing neutralizing mAb to disrupt the ternary complex and abrogate the resulting toxicity is a major therapeutic challenge because SEB is effective at very low concentrations. We show that combining two SEB-specific mAbs enhances their efficacy, even though one of the two mAbs by itself has no effect on neutralization. Crystallography was employed for fine-mapping conformational epitopes in binary and ternary complexes between SEB and Fab fragments. NMR spectroscopy was used tomore » validate and identify subtle allosteric changes induced by mAbs binding to SEB. The mapping of epitopes established that a combination of different mAbs can enhance efficacy of mAb-mediated protection from SEB induced lethal shock by two different mechanisms: one mAb mixture promoted clearance of the toxin both in vitro and in vivo by FcR-mediated cross-linking and clearance, whereas the other mAb mixture induced subtle allosteric conformational changes in SEB that perturbed formation of the SEB·T-cell receptor·major histocompatibility complex class II trimer. Lastly structural information accurately predicted mAb binding to other superantigens that share conformational epitopes with SEB. Fine mapping of conformational epitopes is a powerful tool to establish the mechanism and optimize the action of synergistic mAb combinations.« less
Structural analysis of HLA-B40 epitopes.
Kawaguchi, G; Kato, N; Kashiwase, K; Karaki, S; Kohsaka, T; Akaza, T; Kano, K; Takiguchi, M
1993-03-01
Two genes encoding HLA-B60 or HLA-B61 were cloned from Japanese and the exons of their genes were sequenced. One silent mutation was observed at the exon 1 between HLA-B60 (B*40012) and B*40011. Seven nucleotide substitutions were seen at the exon 3 between HLA-B61 (B*4006) and B*4002. Three substitutions at codon 95, CTC in B*4002 to TGG in B*4006, changed Leu in B*4002 to Trp in B*4006, while two substitutions at codon 97, AGC in B*4002 and ACG in B*4006, changed Ser in B*4002 to Thr in B*4006. Since B*4002 shares the epitope of alloantibodies specific for HLA-B61, two HLA-B61 subtypes are discriminated by two amino acid substitutions at residues 95 and 97. B*40012 and B*4006 differ by four amino acid substitutions on the beta sheet and five amino acid substitutions on the alpha 2 helix. Since the residues at the beta sheet seem hardly to affect the binding of alloantibody, it is suspected that the residues on the alpha 2 helix provide epitopes for alloantibodies that discriminate allospecificity between HLA-B60 and HLA-B61.
Monoclonal Antibody Analysis of Keratin Expression in the Central Nervous System
NASA Astrophysics Data System (ADS)
Franko, Maryellen C.; Gibbs, Clarence J.; Rhoades, Dorothy A.; Carleton Gajdusek, D.
1987-05-01
A monoclonal antibody directed against a 65-kDa brain protein demonstrates an epitope found in keratin from human epidermis. By indirect immunofluorescence, the antibody decorates intracytoplasmic filaments in a subclass of astrocytes and Purkinje cells of adult hamster brain. Double-label immunofluorescence study using antibody to glial fibrillary acidic protein and this antibody reveals the 65-kDa protein to be closely associated with glial filaments in astrocytes of fetal mouse brain cultures. Immunoblot analysis of purified human epidermal keratin and hamster brain homogenate confirms the reactivity of this antibody to epidermal keratin polypeptides. All the major epidermal keratins were recognized by this antibody. It did not bind to the remaining major intermediate filament proteins. These findings suggest that monoclonal antibody 34C9 recognizes a cytoskeletal structure connected with intermediate filaments. In addition, the monoclonal antibody demonstrates that epidermal keratins share an epitope not only among themselves but also with a ``neural keratin.''
Shared epitopes of glycoprotein A and protein 4.1 defined by antibody NaM10-3C10.
Rasamoelisolo, M; Czerwinski, M; Willem, C; Blanchard, D
1998-06-01
We have produced the murine monoclonal antibody (MAb) NaM70-3C10 (IgM) from splenocytes of mice immunized with human red blood cells (RBCs). The MAb agglutinated untreated as well as trypsin, chymotrypsin, neuraminidase, or ficin-treated RBCs from controls. In contrast, control RBCs treated with papaine or bromelaine were not agglutinated. On immunoblots, the MAb bound to glycophorin A (GPA) and to a 80 kDa protein identified as protein 4.1. Analysis by agglutination of variant RBCs carrying hybrid glycophorins made of the N-terminus (amino acids 1-58) of GPA and of the C-terminus (amino acids 27-72) of glycophorin B (GPB) and competition-inhibition test using purified GPA and a synthetic peptide corresponding to the amino acid sequence 48-58 of GPA demonstrated that the epitope is located within residues 48-58 of GPA. Epitope analysis with immobilized peptides showed that the MAb recognizes the sequence 53Pro-Pro-Glu-Glu-GIu58 of GPA. A homologous sequence is also present within amino acids 395 to 405 of protein 4.1. Finally, the MAb bound to 16 kDa chymotryptic peptide of protein 4.1, which carries the above amino acid sequence. In conclusion, it may be assumed that NaM70-3C10 specifically recognizes a common epitope on the extracellular domain of GPA and on the intracellular protein 4.1; this specificity explains the persistence of the 80 kDa band on blots when RBCs are treated with papain.
Chaves, Francisco A.; Lee, Alvin H.; Nayak, Jennifer; Richards, Katherine A.; Sant, Andrea J.
2012-01-01
The ability to track CD4 T cells elicited in response to pathogen infection or vaccination is critical because of the role these cells play in protective immunity. Coupled with advances in genome sequencing of pathogenic organisms, there is considerable appeal for implementation of computer-based algorithms to predict peptides that bind to the class II molecules, forming the complex recognized by CD4 T cells. Despite recent progress in this area, there is a paucity of data regarding their success in identifying actual pathogen-derived epitopes. In this study, we sought to rigorously evaluate the performance of multiple web-available algorithms by comparing their predictions and our results using purely empirical methods for epitope discovery in influenza that utilized overlapping peptides and cytokine Elispots, for three independent class II molecules. We analyzed the data in different ways, trying to anticipate how an investigator might use these computational tools for epitope discovery. We come to the conclusion that currently available algorithms can indeed facilitate epitope discovery, but all shared a high degree of false positive and false negative predictions. Therefore, efficiencies were low. We also found dramatic disparities among algorithms and between predicted IC50 values and true dissociation rates of peptide:MHC class II complexes. We suggest that improved success of predictive algorithms will depend less on changes in computational methods or increased data sets and more on changes in parameters used to “train” the algorithms that factor in elements of T cell repertoire and peptide acquisition by class II molecules. PMID:22467652
Migueles, Stephen A; Mendoza, Daniel; Zimmerman, Matthew G; Martins, Kelly M; Toulmin, Sushila A; Kelly, Elizabeth P; Peterson, Bennett A; Johnson, Sarah A; Galson, Eric; Poropatich, Kate O; Patamawenu, Andy; Imamichi, Hiromi; Ober, Alexander; Rehm, Catherine A; Jones, Sara; Hallahan, Claire W; Follmann, Dean A; Connors, Mark
2015-01-01
Understanding natural immunologic control over Human Immunodeficiency Virus (HIV)-1 replication, as occurs in rare long-term nonprogressors/elite controllers (LTNP/EC), should inform the design of efficacious HIV vaccines and immunotherapies. Durable control in LTNP/EC is likely mediated by highly functional virus-specific CD8(+) T-cells. Protective Human Leukocyte Antigen (HLA) class I alleles, like B*27 and B*57, are present in most, but not all LTNP/EC, providing an opportunity to investigate features shared by their HIV-specific immune responses. To better understand the contribution of epitope targeting and conservation to immune control, we compared the CD8(+) T-cell specificity and function of B*27/57(neg) LTNP/EC (n = 23), B*27/57(pos) LTNP/EC (n = 23) and B*27/57(neg) progressors (n = 13). Fine mapping revealed 11 previously unreported immunodominant responses. Although B*27/57(neg) LTNP/EC did not target more highly conserved epitopes, their CD8(+) T-cell cytotoxic capacity was significantly higher than progressors. Similar to B*27/57(pos) LTNP/EC, this superior cytotoxicity was mediated by preferential expansion of immunodominant responses and lysis through the predicted HLA. These findings suggest that increased CD8(+) T-cell cytotoxic capacity is a common mechanism of control in most LTNP/EC regardless of HLA type. They also suggest that potent cytotoxicity can be mediated through various epitopes and HLA molecules and could, in theory, be induced in most people.
Migueles, Stephen A.; Mendoza, Daniel; Zimmerman, Matthew G.; Martins, Kelly M.; Toulmin, Sushila A.; Kelly, Elizabeth P.; Peterson, Bennett A.; Johnson, Sarah A.; Galson, Eric; Poropatich, Kate O.; Patamawenu, Andy; Imamichi, Hiromi; Ober, Alexander; Rehm, Catherine A.; Jones, Sara; Hallahan, Claire W.; Follmann, Dean A.; Connors, Mark
2014-01-01
Understanding natural immunologic control over Human Immunodeficiency Virus (HIV)-1 replication, as occurs in rare long-term nonprogressors/elite controllers (LTNP/EC), should inform the design of efficacious HIV vaccines and immunotherapies. Durable control in LTNP/EC is likely mediated by highly functional virus-specific CD8+ T-cells. Protective Human Leukocyte Antigen (HLA) class I alleles, like B*27 and B*57, are present in most, but not all LTNP/EC, providing an opportunity to investigate features shared by their HIV-specific immune responses. To better understand the contribution of epitope targeting and conservation to immune control, we compared the CD8+ T-cell specificity and function of B*27/57neg LTNP/EC (n = 23), B*27/57pos LTNP/EC (n = 23) and B*27/57neg progressors (n = 13). Fine mapping revealed 11 previously unreported immunodominant responses. Although B*27/57neg LTNP/EC did not target more highly conserved epitopes, their CD8+ T-cell cytotoxic capacity was significantly higher than progressors. Similar to B*27/57pos LTNP/EC, this superior cytotoxicity was mediated by preferential expansion of immunodominant responses and lysis through the predicted HLA. These findings suggest that increased CD8+ T-cell cytotoxic capacity is a common mechanism of control in most LTNP/EC regardless of HLA type. They also suggest that potent cytotoxicity can be mediated through various epitopes and HLA molecules and could, in theory, be induced in most people. PMID:26137533
Cloning and characterization of an 11S legumin, Car i 4, a major allergen in pecan.
Sharma, Girdhari M; Irsigler, Andre; Dhanarajan, Pushparani; Ayuso, Rosalia; Bardina, Luda; Sampson, Hugh A; Roux, Kenneth H; Sathe, Shridhar K
2011-09-14
Among tree nut allergens, pecan allergens remain to be identified and characterized. The objective was to demonstrate the IgE-binding ability of pecan 11S legumin and characterize its sequential IgE-binding epitopes. The 11S legumin gene was amplified from a pecan cDNA library and expressed as a fusion protein in Escherichia coli. The native 11S legumin in pecan extract was identified by mass spectrometry/mass spectrometry (MS/MS). Sequential epitopes were determined by probing the overlapping peptides with three serum pools prepared from different patients' sera. A three-dimensional model was generated using almond legumin as a template and compared with known sequential epitopes on other allergenic tree nut homologues. Of 28 patients tested by dot blot, 16 (57%) bound to 11S legumin, designated Car i 4. MS/MS sequencing of native 11S legumin identified 33 kDa acidic and 20-22 kDa basic subunits. Both pecan and walnut seed protein extracts inhibited IgE binding to recombinant Car i 4, suggesting cross-reactivity with Jug r 4. Sequential epitope mapping results of Car i 4 revealed weak, moderate, and strong reactivity of serum pools against 10, 5, and 4 peptides, respectively. Seven peptides were recognized by all three serum pools, of which two were strongly reactive. The strongly reactive peptides were located in three discrete regions of the Car i 4 acidic subunit sequence (residues 118-132, 208-219, and 238-249). Homology modeling of Car i 4 revealed significant overlapping regions shared in common with other tree nut legumins.
Too, Chun Lai; Muhamad, Nor Asiah; Ilar, Anna; Padyukov, Leonid; Alfredsson, Lars; Klareskog, Lars; Murad, Shahnaz; Bengtsson, Camilla
2016-01-01
Objectives Lung exposures including cigarette smoking and silica exposure are associated with the risk of rheumatoid arthritis (RA). We investigated the association between textile dust exposure and the risk of RA in the Malaysian population, with a focus on women who rarely smoke. Methods Data from the Malaysian Epidemiological Investigation of Rheumatoid Arthritis population-based case–control study involving 910 female early RA cases and 910 female age-matched controls were analysed. Self-reported information on ever/never occupationally exposed to textile dust was used to estimate the risk of developing anti-citrullinated protein antibody (ACPA)-positive and ACPA-negative RA. Interaction between textile dust and the human leucocyte antigen DR β-1 (HLA-DRB1) shared epitope (SE) was evaluated by calculating the attributable proportion due to interaction (AP), with 95% CI. Results Occupational exposure to textile dust was significantly associated with an increased risk of developing RA in the Malaysian female population (OR 2.8, 95% CI 1.6 to 5.2). The association between occupational exposure to textile dust and risk of RA was uniformly observed for the ACPA-positive RA (OR 2.5, 95% CI 1.3 to 4.8) and ACPA-negative RA (OR 3.5, 95% CI 1.7 to 7.0) subsets, respectively. We observed a significant interaction between exposure to occupational textile dust and HLA-DRB1 SE alleles regarding the risk of ACPA-positive RA (OR for double exposed: 39.1, 95% CI 5.1 to 297.5; AP: 0.8, 95% CI 0.5 to 1.2). Conclusions This is the first study demonstrating that textile dust exposure is associated with an increased risk for RA. In addition, a gene–environment interaction between HLA-DRB1 SE and textile dust exposure provides a high risk for ACPA-positive RA. PMID:26681695
Traylor, Matthew; Curtis, Charles; Patel, Hamel; Breen, Gerome; Hyuck Lee, Sang; Xu, Xiaohui; Newhouse, Stephen; Dobson, Richard; Steer, Sophia; Cope, Andrew P.; Markus, Hugh S.; Lewis, Cathryn M.
2017-01-01
Abstract Objectives. To evaluate whether genetic and environmental factors associated with RA in European and Asian ancestry populations are also associated with RA in African ancestry individuals. Methods. A case–control study was undertaken in 197 RA cases and 868 controls of African ancestry (Black African, Black Caribbean or Black British ethnicity) from South London. Smoking and alcohol consumption data at RA diagnosis was captured. Genotyping was undertaken (Multi-Ethnic Genotyping Array) and human leukocyte antigen (HLA) alleles imputed. The following European/Asian RA susceptibility factors were tested: 99 genome-wide loci combined into a genetic risk score; HLA region [20 haplotypes; shared epitope (SE)]; smoking; and alcohol consumption. The SE was tested for its association with radiological erosions. Logistic regression models were used, including ancestry-informative principal components, to control for admixture. Results. European/Asian susceptibility loci were associated with RA in African ancestry individuals. The genetic risk score provided an odds ratio (OR) for RA of 1.53 (95% CI: 1.31, 1.79; P = 1.3 × 10 −7). HLA haplotype ORs in European and African ancestry individuals were highly correlated (r = 0.83, 95% CI: 0.56, 0.94; P = 1.1 × 10 −4). Ever-smoking increased (OR = 2.36, 95% CI: 1.46, 3.82; P = 4.6 × 10 −4) and drinking alcohol reduced (OR = 0.34, 95% CI: 0.20, 0.56; P = 2.7 × 10 −5) RA risk in African ancestry individuals. The SE was associated with erosions (OR = 2.61, 95% CI: 1.36, 5.01; P = 3.9 × 10 −3). Conclusion. Gene–environment RA risk factors identified in European/Asian ancestry populations are relevant in African ancestry individuals. As modern statistical methods facilitate analysing ancestrally diverse populations, future genetic studies should incorporate African ancestry individuals to ensure their implications for precision medicine are universally applicable. PMID:28407095
Traylor, Matthew; Curtis, Charles; Patel, Hamel; Breen, Gerome; Hyuck Lee, Sang; Xu, Xiaohui; Newhouse, Stephen; Dobson, Richard; Steer, Sophia; Cope, Andrew P; Markus, Hugh S; Lewis, Cathryn M; Scott, Ian C
2017-08-01
To evaluate whether genetic and environmental factors associated with RA in European and Asian ancestry populations are also associated with RA in African ancestry individuals. A case-control study was undertaken in 197 RA cases and 868 controls of African ancestry (Black African, Black Caribbean or Black British ethnicity) from South London. Smoking and alcohol consumption data at RA diagnosis was captured. Genotyping was undertaken (Multi-Ethnic Genotyping Array) and human leukocyte antigen (HLA) alleles imputed. The following European/Asian RA susceptibility factors were tested: 99 genome-wide loci combined into a genetic risk score; HLA region [20 haplotypes; shared epitope (SE)]; smoking; and alcohol consumption. The SE was tested for its association with radiological erosions. Logistic regression models were used, including ancestry-informative principal components, to control for admixture. European/Asian susceptibility loci were associated with RA in African ancestry individuals. The genetic risk score provided an odds ratio (OR) for RA of 1.53 (95% CI: 1.31, 1.79; P = 1.3 × 10 - 7 ). HLA haplotype ORs in European and African ancestry individuals were highly correlated ( r = 0.83, 95% CI: 0.56, 0.94; P = 1.1 × 10 - 4 ). Ever-smoking increased (OR = 2.36, 95% CI: 1.46, 3.82; P = 4.6 × 10 - 4 ) and drinking alcohol reduced (OR = 0.34, 95% CI: 0.20, 0.56; P = 2.7 × 10 - 5 ) RA risk in African ancestry individuals. The SE was associated with erosions (OR = 2.61, 95% CI: 1.36, 5.01; P = 3.9 × 10 - 3 ). Gene-environment RA risk factors identified in European/Asian ancestry populations are relevant in African ancestry individuals. As modern statistical methods facilitate analysing ancestrally diverse populations, future genetic studies should incorporate African ancestry individuals to ensure their implications for precision medicine are universally applicable. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology.
Massaguer, A; Engel, P; Pérez-del-Pulgar, S; Bosch, J; Pizcueta, P
2000-08-01
P-selectin (CD62P) is an adhesion molecule expressed on the activated endothelium and activated platelets that is involved in the initial attachment of leukocytes to inflamed vascular endothelium. Blocking monoclonal antibodies (mAbs) and P-selectin-deficient mice have shown that P-selectin is a potential target in anti-inflammatory therapy. Most mAbs against P-selectin do not bind to conserved epitopes, including the ligand-binding region, since P-selectin from mammalian species shares high amino acid sequence homology. The aim of this study was to generate a novel panel of anti-P-selectin mAbs against the conserved epitopes present in several animal species. To produce these mAbs, P-selectin-deficient mice were immunized with a pre-B-cell line transfected with human P-selectin cDNA. Twelve mouse mAbs that recognize human P-selectin were obtained. Individual mAbs that bound to human, rat, mouse, rabbit and pig activated platelets were characterized by flow-cytometry, immunohistochemistry, adhesion assays and immunoprecipitation. Four of these mAbs (P-sel.KO.2.3, P-sel.KO.2.4, P-sel.KO.2.7 and P-sel.KO.2.12) cross-reacted with human, rat and mouse P-selectin. Another three mAbs (P-sel.KO.2.2, P-sel.KO.2.11 and P-sel.KO.2.12) blocked the attachment of HL60 cells to P-selectin-transfected COS cells, demonstrating that these mAbs inhibit P-selectin-mediated adhesion. MAb cross-blocking experiments showed that these three mAbs bind to very close and overlapping epitopes. An ELISA assay using mAbs P-sel.KO.2.3 and P-sel.KO.2.12 was designed to measure soluble rat, mouse and human P-selectin. These anti-P-selectin mAbs are unique since they recognize common epitopes conserved during mammalian evolution and they may be useful for studying P-selectin function in inflammatory models in various species.
Shak, S; Davitz, M A; Wolinsky, M L; Nussenzweig, V; Turner, M J; Gurnett, A
1988-03-15
The variant surface glycoprotein (VSG) of the African trypanosome is anchored in the cell membrane by a complex glycan attached to phosphatidylinositol. The carboxyl terminal portion of VSG contains a cryptic carbohydrate epitope, the cross-reacting determinant (CRD), that is revealed only after removal of the diacylglycerol by phosphatidylinositol-specific phospholipase C (PIPLC) or VSG lipase. Recently, we have shown that after hydrolysis by PIPLC, decay-accelerating factor (DAF)--a mammalian phosphatidylinositol-anchored protein--also contains the CRD epitope. Using a two site immunoradiometric assay in which the capturing antibody is a monoclonal antibody to DAF and the revealing antibody is anti-CRD, we now show that sugar phosphates significantly inhibited the binding of anti-CRD antibody to DAF released by PIPLC. DL-myo-inositol 1,2-cyclic phosphate was the most potent inhibitor of binding (IC50 less than 10(-8) M). Other sugar phosphates, such as alpha-D-glucose-1-phosphate, which also possess adjacent hydroxyl and phosphate moieties in cis also inhibited binding at low concentrations (IC50 = 10(-5) to 10(-4) M). In contrast, sugar phosphates which do not possess adjacent hydroxyl and phosphate moieties in cis and simple sugars weakly inhibited binding (IC50 greater than 10(-3) M). These results suggest that myo-inositol 1,2-cyclic phosphate contributes significantly to the epitope recognized by the anti-CRD antibody and is consistent with analysis of the carboxyl terminus of VSG, which also suggested the presence of the cyclic inositol phosphate. In light of the recent findings that human serum contains a glycan-phosphatidyl-inositol-specific phospholipase D, which converts DAF from a hydrophobic to a hydrophilic form lacking the CRD, the observation that the phosphate is crucial for expression of the epitope may be relevant in understanding the origin of CRD-negative DAF in urine and plasma.
Liu, Mingming; Huang, Rong; Weisman, Adam; Yu, Xiaoyang; Lee, Shih-Hui; Chen, Yalu; Huang, Chao; Hu, Senhua; Chen, Xiuhua; Tan, Wenfeng; Liu, Fan; Chen, Hao; Shea, Kenneth J
2018-05-24
We report a novel strategy for creating abiotic Bacillus thuringiensis ( Bt) protein affinity ligands by biomimicry of the recognition process that takes place between Bt Cry1Ab/Ac proteins and insect receptor cadherin-like Bt-R 1 proteins. Guided by this strategy, a library of synthetic polymer nanoparticles (NPs) was prepared and screened for binding to three epitopes 280 FRGSAQGIEGS 290 , 368 RRPFNIGINNQQ 379 and 436 FRSGFSNSSVSIIR 449 located in loop α8, loop 2 and loop 3 of domain II of Bt Cry1Ab/Ac proteins. A negatively charged and hydrophilic nanoparticle (NP12) was found to have high affinity to one of the epitopes, 368 RRPFNIGINNQQ 379 . This same NP also had specific binding ability to both Bt Cry1Ab and Bt Cry1Ac, proteins that share the same epitope, but very low affinity to Bt Cry2A, Bt Cry1C and Bt Cry1F closely related proteins that lack epitope homology. To locate possible NP- Bt Cry1Ab/Ac interaction sites, NP12 was used as a competitive inhibitor to block the binding of 865 NITIHITDTNNK 876 , a specific recognition site in insect receptor Bt-R 1 , to 368 RRPFNIGINNQQ 379 . The inhibition by NP12 reached as high as 84%, indicating that NP12 binds to Bt Cry1Ab/Ac proteins mainly via 368 RRPFNIGINNQQ 379 . This epitope region was then utilized as a "target" or "bait" for the separation and concentration of Bt Cry1Ac protein from the extract of transgenic Bt cotton leaves by NP12. This strategy, based on the antigen-receptor recognition mechanism, can be extended to other biotoxins and pathogen proteins when designing biomimic alternatives to natural protein affinity ligands.
Perez-Garmendia, Roxanna; Ibarra-Bracamontes, Vanessa; Vasilevko, Vitaly; Luna-Muñoz, Jose; Mena, Raul; Govezensky, Tzipe; Acero, Gonzalo; Manoutcharian, Karen; Cribbs, David H.; Gevorkian, Goar
2010-01-01
N-truncated/modified forms of amyloid beta (Aß) peptide are found in diffused and dense core plaques in Alzheimer's disease (AD) and Down's syndrome patients as well as animal models of AD, and represent highly desirable therapeutic targets. In the present study we have focused on Ntruncated/modified Aβ peptide bearing amino-terminal pyroglutamate at position 11 (AβN11(pE)). We identified two B-cell epitopes recognized by rabbit anti-AβN11(pE) polyclonal antibodies. Interestingly, rabbit anti-AβN11(pE) polyclonal antibodies bound also to full-length Aβ1-42 and N-truncated/modified AβN3(pE), suggesting that the three peptides may share a common B-cell epitope. Importantly, rabbit anti-AβN11(pE) antibodies bound to naturally occurring Aβ aggregates present in brain samples from AD patients. These results are potentially important for developing novel immunogens for targeting N-truncated/modified Aβ aggregates as well, since the most commonly used immunogens in the majority of vaccine studies have been shown to induce antibodies that recognize the N-terminal immunodominant epitope (EFRH) of the full length Aβ, which is absent in N-amino truncated peptides. PMID:20864186
Weiskopf, Daniela; Angelo, Michael A; Sidney, John; Peters, Bjoern; Shresta, Sujan; Sette, Alessandro
2014-10-01
Dengue virus (DENV) is the causative agent of dengue fever (DF). This disease can be caused by any of four DENV serotypes (DENV1 to -4) which share 67 to 75% sequence homology with one another. The effect of subsequent infections with different serotypes on the T cell repertoire is not fully understood. We utilized mice transgenic for human leukocyte antigens (HLA) lacking the alpha/beta interferon (IFN-α/β) receptor to study responses to heterologous DENV infection. First, we defined the primary T cell response to DENV3 in the context of a wide range of HLA molecules. The primary DENV3 immune response recognized epitopes derived from all 10 DENV proteins, with a significant fraction of the response specific for structural proteins. This is in contrast to primary DENV2 infection, in which structural proteins are a minor component of the response, suggesting differential antigen immunodominance as a function of the infecting serotype. We next investigated the effect of secondary heterologous DENV infection on the T cell repertoire. In the case of both DENV2/3 and DENV3/2 heterologous infections, recognition of conserved/cross-reactive epitopes was either constant or expanded compared to that in homologous infection. Furthermore, in heterologous infection, previous infection with a different serotype impaired the development of responses directed to serotype-specific but not conserved epitopes. Thus, a detrimental effect of previous heterotypic responses might not be due to dysfunctional and weakly cross-reactive epitopes dominating the response. Rather, responses to the original serotype might limit the magnitude of responses directed against epitopes that are either cross-reactive to or specific for the most recently infecting serotype. DENV transmission occurs in more than 100 countries and is an increasing public health problem in tropical and subtropical regions. At present, no effective antiviral therapy or licensed vaccine exists, and treatment is largely supportive in nature. Disease can be caused by any of the four DENV serotypes (DENV1 to -4), which share a high degree of sequence homology with one another. In this study, we have addressed the question of how the T cell repertoire changes as a function of infections with different serotypes and of subsequent heterologous secondary infections. This is of particular interest in the field of dengue viruses, in which secondary infections with different DENV serotypes increase the risk of severe disease. Our results on the evolution of the immune response after primary and secondary infections provide new insights into HLA-restricted T cell responses against DENV relevant for the design of a vaccine against DENV. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Schlünssen, Vivi; Kespohl, Sabine; Jacobsen, Gitte; Raulf-Heimsoth, Monika; Schaumburg, Inger; Sigsgaard, Torben
2011-03-01
Wood dust exposure may cause Immunoglobulin E (IgE)-mediated allergic diseases. Our objectives were to estimate pine and beech dust sensitization rates among woodworkers and a reference group, explore the association between exposure and sensitization and between sensitization and respiratory symptoms, and finally investigate the impact of proteinogenic specific IgE (sIgE) epitopes on respiratory symptoms. In a Danish study among 52 furniture factories and 2 reference factories, we evaluated the workers' asthma and rhinitis status using questionnaires and blood samples collected from 1506 woodworkers and 195 references. Workers with asthma symptoms (N=298), a random study sample (N=399) and a random rhinitis sample (N=100) were evaluated for IgE-mediated sensitization to pine and beech dust. The prevalence of pine and beech sensitization among current woodworkers was 1.7 and 3.1%, respectively. No differences in sensitization rates were found between woodworkers and references, but the prevalence of wood dust sensitization was dose-dependently associated with the current level of wood dust exposure. No relation was observed between wood dust sensitization per se and respiratory symptoms. Only symptomatic subjects had proteinogenic IgE epitopes to pine. Increased odds ratios for sIgE based on proteinogenic epitopes to beech and respiratory symptoms were found, although they were not statistically significant. Sensitization rates to pine and beech were the same for woodworkers and references but dependent on the current wood dust exposure level. The importance of beech and pine wood sensitization is limited, but may be of clinical significance for a few workers if the IgE epitopes are proteinogenic.
Enhancing the Breadth and Efficacy of Therapeutic Vaccines for Breast Cancer
2014-10-01
sequence data produced by the Slansky team following their single-cell emulsion RT-PCR technique; however, it can be packaged and shared for use...cell emulsion RT-PCR. Additional modifications were made to our epitope discovery workflow to increase efficacy of transcript and neoantigen candidate...the MiTCR [8] open source software package developed by MiLaboratory. MiTCR is a highly efficient and fast approach to CDR3 extraction, clonotype
USDA-ARS?s Scientific Manuscript database
Within the protective outer membrane fraction of Anaplasma marginale, several vaccine candidates have emerged, including a family of outer membrane proteins (OMPs) 7-9, which share sequence identity with each other and with the single protein OMP7 in the vaccine strain A. marginale subsp. centrale. ...
2004-04-01
spore-forming bacilli such as Clostridium spiroforme (iota-like toxin), Clostridium botulinum (C2 toxin), Bacillus anthracis (lethal and edema toxins...ously (28). Goat C. spiroforme and C. perfringens type C antisera were purchased from TechLab, Inc. (Blacksburg, Va.). Mouse monoclonal antibodies...membrane preparations was specific. Previous studies showed that the binary C. spiroforme toxin shares common epitopes with iota-toxin, and antisera
Hiwa, Ryosuke; Ikari, Katsunori; Ohmura, Koichiro; Nakabo, Shuichiro; Matsuo, Keitaro; Saji, Hiroh; Yurugi, Kimiko; Miura, Yasuo; Maekawa, Taira; Taniguchi, Atsuo; Yamanaka, Hisashi; Matsuda, Fumihiko; Mimori, Tsuneyo; Terao, Chikashi
2018-04-01
HLA-DRB1 is the most important locus associated with rheumatoid arthritis (RA) and anticitrullinated protein antibodies (ACPA). However, fluctuations of rheumatoid factor (RF) over the disease course have made it difficult to define fine subgroups according to consistent RF positivity for the analyses of genetic background and the levels of RF. A total of 2873 patients with RA and 2008 healthy controls were recruited. We genotyped HLA-DRB1 alleles for the participants and collected consecutive data of RF in the case subjects. In addition to RF+ and RF- subsets, we classified the RF+ subjects into group 1 (constant RF+) and group 2 (seroconversion). We compared HLA-DRB1 alleles between the RA subsets and controls and performed linear regression analysis to identify HLA-DRB1 alleles associated with maximal RF levels. Omnibus tests were conducted to assess important amino acid positions. RF positivity was 88%, and 1372 and 970 RF+ subjects were classified into groups 1 and 2, respectively. RF+ and RF- showed similar genetic associations to ACPA+ and ACPA- RA, respectively. We found that shared epitope (SE) was more enriched in group 2 than 1, p = 2.0 × 10 -5 , and that amino acid position 11 showed a significant association between 1 and 2, p = 2.7 × 10 -5 . These associations were independent of ACPA positivity. SE showed a tendency to be negatively correlated with RF titer (p = 0.012). HLA-DRB1*09:01, which reduces ACPA titer, was not associated with RF levels (p = 0.70). The seroconversion group was shown to have distinct genetic characteristics. The genetic architecture of RF levels is different from that of ACPA.
Gonen, Ayelet; Hansen, Lotte F.; Turner, William W.; Montano, Erica N.; Que, Xuchu; Rafia, Apaїs; Chou, Meng-Yun; Wiesner, Philipp; Tsiantoulas, Dimitrios; Corr, Maripat; VanNieuwenhze, Michael S.; Tsimikas, Sotirios; Binder, Christoph J.; Witztum, Joseph L.; Hartvigsen, Karsten
2014-01-01
Immunization with homologous malondialdehyde (MDA)-modified LDL (MDA-LDL) leads to atheroprotection in experimental models supporting the concept that a vaccine to oxidation-specific epitopes (OSEs) of oxidized LDL could limit atherogenesis. However, modification of human LDL with OSE to use as an immunogen would be impractical for generalized use. Furthermore, when MDA is used to modify LDL, a wide variety of related MDA adducts are formed, both simple and more complex. To define the relevant epitopes that would reproduce the atheroprotective effects of immunization with MDA-LDL, we sought to determine the responsible immunodominant and atheroprotective adducts. We now demonstrate that fluorescent adducts of MDA involving the condensation of two or more MDA molecules with lysine to form malondialdehyde-acetaldehyde (MAA)-type adducts generate immunodominant epitopes that lead to atheroprotective responses. We further demonstrate that a T helper (Th) 2-biased hapten-specific humoral and cellular response is sufficient, and thus, MAA-modified homologous albumin is an equally effective immunogen. We further show that such Th2-biased humoral responses per se are not atheroprotective if they do not target relevant antigens. These data demonstrate the feasibility of development of a small-molecule immunogen that could stimulate MAA-specific immune responses, which could be used to develop a vaccine approach to retard or prevent atherogenesis. PMID:25143462
B-Cell Epitopes in GroEL of Francisella tularensis
Lu, Zhaohua; Rynkiewicz, Michael J.; Madico, Guillermo; Li, Sheng; Yang, Chiou-Ying; Perkins, Hillary M.; Sompuram, Seshi R.; Kodela, Vani; Liu, Tong; Morris, Timothy; Wang, Daphne; Roche, Marly I.; Seaton, Barbara A.; Sharon, Jacqueline
2014-01-01
The chaperonin protein GroEL, also known as heat shock protein 60 (Hsp60), is a prominent antigen in the human and mouse antibody response to the facultative intracellular bacterium Francisella tularensis (Ft), the causative agent of tularemia. In addition to its presumed cytoplasmic location, FtGroEL has been reported to be a potential component of the bacterial surface and to be released from the bacteria. In the current study, 13 IgG2a and one IgG3 mouse monoclonal antibodies (mAbs) specific for FtGroEL were classified into eleven unique groups based on shared VH-VL germline genes, and seven crossblocking profiles revealing at least three non-overlapping epitope areas in competition ELISA. In a mouse model of respiratory tularemia with the highly pathogenic Ft type A strain SchuS4, the Ab64 and N200 IgG2a mAbs, which block each other’s binding to and are sensitive to the same two point mutations in FtGroEL, reduced bacterial burden indicating that they target protective GroEL B-cell epitopes. The Ab64 and N200 epitopes, as well as those of three other mAbs with different crossblocking profiles, Ab53, N3, and N30, were mapped by hydrogen/deuterium exchange–mass spectrometry (DXMS) and visualized on a homology model of FtGroEL. This model was further supported by its experimentally-validated computational docking to the X-ray crystal structures of Ab64 and Ab53 Fabs. The structural analysis and DXMS profiles of the Ab64 and N200 mAbs suggest that their protective effects may be due to induction or stabilization of a conformational change in FtGroEL. PMID:24968190
Broadly neutralizing antibody specificities detected in the genital tract of HIV-1 infected women.
Mkhize, Nonhlanhla N; Durgiah, Raveshni; Ashley, Vicki; Archary, Derseree; Garrett, Nigel J; Karim, Quarraisha Abdool; Karim, Salim S Abdool; Moore, Penny L; Yates, Nicole; Passmore, Jo-Ann S; Tomaras, Georgia D; Morris, Lynn
2016-04-24
Broadly neutralizing antibodies (bNAbs) targeting conserved epitopes on the HIV envelope glycoprotein have been identified in blood from HIV-1 infected women. We investigated whether antibodies in the genital tract from these women share similar epitope specificities and functional profiles as those in blood. Immunoglobulin (Ig)G and IgA antibodies were isolated from cervicovaginal lavages or Softcups from 13 HIV-infected women in the CAPRISA cohort using Protein G and Peptide M, respectively. Binding antibodies to envelope antigens were quantified by ELISA and binding antibody multiplex assay. Neutralizing antibody titers and epitope targets were measured using the TZM-bl assay with Env-pseudotyped wild-type and mutated viruses. HIV-specific IgG, but not IgA, was detected in genital secretions and the ratio of total IgG to HIV-specific IgG was similar to plasma. HIV-specific IgG reacted with multiple envelope antigens, including V1V2, gp120, gp140 and gp41. Two women had high plasma titers of HIV-specific IgG3 which was also detected in their genital tract samples. IgG from the genital tract had neutralizing activity against both Tier 1 and Tier 2 primary HIV-isolates. Antibodies targeting well known glycan epitopes and the membrane proximal region of gp41 were detected in genital secretions, and matched specificities in plasma. Women with plasma bNAbs have overlapping specificities in their genital secretions, indicating that these predominantly IgG isotype antibodies may transudate from blood to the genital tract. These data provide evidence that induction of systemic HIV-specific bNAbs can lead to antiviral immunity at the portal of entry.
Barratt, R A; Kao, G; McKenna, W G; Kuang, J; Muschel, R J
1998-06-15
Treatment of cells with agents that cause DNA damage often results in a delay in G2. There is convincing evidence showing that inhibition of p34cdc2 kinase activation is involved in the DNA damage-induced G2 delay. In this study, we have demonstrated the existence of an additional pathway, independent of the p34cdc2 kinase activation pathway, that leads to a G2 arrest in etoposide-treated cells. Both the X-ray-induced and the etoposide-induced G2 arrest were associated with inhibition of the p34cdc2 H1 kinase activation pathway as judged by p34cdc2 H1 kinase activity and phosphorylation of cdc25C. Caffeine treatment restored these activities after either of the treatments. However, the etoposide-treated cells did not resume cycling, revealing the presence of an alternative pathway leading to a G2 arrest. To explore the possibility that this additional pathway involved phosphorylation of the MPM-2 epitope that is shared by a large family of mitotic phosphoproteins, we monitored the phosphorylation status of the MPM-2 epitope after DNA damage and after treatment with caffeine. Phosphorylation of the MPM-2 epitope was depressed in both X-ray and etoposide-treated cells, and the depression was reversed by caffeine in both cases. The results indicate that the pathway affecting MPM-2 epitope phosphorylation is involved in the G2 delay caused by DNA damage. However, it is not part of the caffeine-insensitive pathway leading to a G2 block seen in etoposide-treated cells.
Intraerythrocytic Killing of Malaria Parasites
1989-05-12
immunity (23, 24) and its relevance to human malaria (25). 4. The effect of the B- thalassemia mutation on ralaria-infectcd mice arid the role of the spleen...detected. Thus, Pc96 shares a cross-reactive epitope with these three primate malaria antigens. 4. Effect of B- thalassemia on malaria-infected mice and...B- thalassemia against malaria, rodent malaria parasites were studied in C57BL/6J mice with B- thalassemia , in mice in which the thalassemia had been
Lule, S; Colpak, A I; Balci-Peynircioglu, B; Gursoy-Ozdemir, Y; Peker, S; Kalyoncu, U; Can, A; Tekin, N; Demiralp, D; Dalkara, T
2017-11-01
Autoimmune and dysimmune inflammatory mechanisms on a genetically susceptible background are implicated in the etiology of Behçet's Disease (BD). Heat-shock protein-65 (HSP-65) derived from Streptococcus sanguinis was proposed as a triggering factor based on its homology with human HSP-60. However, none of the autoantigens identified so far in sera from BD share common epitopes with bacterial HSP-65 or has a high prevalence. Here, we report that sera from BD patients are immunoreactive against filamentous neuronal processes in the mouse brain, retina and scrotal skin in great majority of patients. By using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and peptide mass fingerprinting, Western blotting and peptide blocking experiments, we have identified neurofilament medium (NF-M) as the probable antigen for the serologic response observed. Clustal Omega analyses detected significant structural homology between the human NF-M and bacterial HSP-65 corresponding to amino acids 111-126, 213-232 and 304-363 of mycobacterial HSP-65, which were previously identified to induce proliferation of lymphocytes obtained from BD patients. We also found that sera immunoreactive against NF-M cross-reacted with bacterial HSP-65. These findings suggest that NF-M may be involved in autoimmunity in BD due to its molecular mimicry with bacterial HSP-65. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aamelfot, Maria; Weli, Simon C; Dale, Ole B; Koppang, Erling O; Falk, Knut
2013-05-01
Endothelial cells (ECs) line the luminal surfaces of the cardiovascular system and play an important role in cardiovascular functions such as regulation of haemostasis and vasomotor tone. A number of fish and mammalian viruses target these cells in the course of their infection. Infectious salmon anaemia virus (ISAV) attacks ECs and red blood cells (RBCs) of farmed Atlantic salmon (Salmo salar L.), producing the severe disease of infectious salmon anaemia (ISA). The investigation of ISA has up to now been hampered by the lack of a functional marker for ECs in Atlantic salmon in situ. In this study, we report the characterisation and use of a novel monoclonal antibody (MAb) detecting Atlantic salmon ECs (e.g. vessel endothelium, endocardial cells and scavenger ECs) and RBCs. The antibody can be used with immunohistochemistry, IFAT and on Western blots. It appears that the epitope recognised by the antibody is associated with the ISAV cellular receptor. Besides being a tool to identify ECs in situ, it could be useful in further studies of the pathogenicity of ISA. Finally, the detection of an epitope shared by ECs and RBCs agrees with recent findings that these cells share a common origin, thus the MAb can potentially be used to study the ontogeny of these cells in Atlantic salmon. © 2013 Anatomical Society.
Inadequate Reference Datasets Biased toward Short Non-epitopes Confound B-cell Epitope Prediction*
Rahman, Kh. Shamsur; Chowdhury, Erfan Ullah; Sachse, Konrad; Kaltenboeck, Bernhard
2016-01-01
X-ray crystallography has shown that an antibody paratope typically binds 15–22 amino acids (aa) of an epitope, of which 2–5 randomly distributed amino acids contribute most of the binding energy. In contrast, researchers typically choose for B-cell epitope mapping short peptide antigens in antibody binding assays. Furthermore, short 6–11-aa epitopes, and in particular non-epitopes, are over-represented in published B-cell epitope datasets that are commonly used for development of B-cell epitope prediction approaches from protein antigen sequences. We hypothesized that such suboptimal length peptides result in weak antibody binding and cause false-negative results. We tested the influence of peptide antigen length on antibody binding by analyzing data on more than 900 peptides used for B-cell epitope mapping of immunodominant proteins of Chlamydia spp. We demonstrate that short 7–12-aa peptides of B-cell epitopes bind antibodies poorly; thus, epitope mapping with short peptide antigens falsely classifies many B-cell epitopes as non-epitopes. We also show in published datasets of confirmed epitopes and non-epitopes a direct correlation between length of peptide antigens and antibody binding. Elimination of short, ≤11-aa epitope/non-epitope sequences improved datasets for evaluation of in silico B-cell epitope prediction. Achieving up to 86% accuracy, protein disorder tendency is the best indicator of B-cell epitope regions for chlamydial and published datasets. For B-cell epitope prediction, the most effective approach is plotting disorder of protein sequences with the IUPred-L scale, followed by antibody reactivity testing of 16–30-aa peptides from peak regions. This strategy overcomes the well known inaccuracy of in silico B-cell epitope prediction from primary protein sequences. PMID:27189949
Improved Method for Linear B-Cell Epitope Prediction Using Antigen’s Primary Sequence
Raghava, Gajendra P. S.
2013-01-01
One of the major challenges in designing a peptide-based vaccine is the identification of antigenic regions in an antigen that can stimulate B-cell’s response, also called B-cell epitopes. In the past, several methods have been developed for the prediction of conformational and linear (or continuous) B-cell epitopes. However, the existing methods for predicting linear B-cell epitopes are far from perfection. In this study, an attempt has been made to develop an improved method for predicting linear B-cell epitopes. We have retrieved experimentally validated B-cell epitopes as well as non B-cell epitopes from Immune Epitope Database and derived two types of datasets called Lbtope_Variable and Lbtope_Fixed length datasets. The Lbtope_Variable dataset contains 14876 B-cell epitope and 23321 non-epitopes of variable length where as Lbtope_Fixed length dataset contains 12063 B-cell epitopes and 20589 non-epitopes of fixed length. We also evaluated the performance of models on above datasets after removing highly identical peptides from the datasets. In addition, we have derived third dataset Lbtope_Confirm having 1042 epitopes and 1795 non-epitopes where each epitope or non-epitope has been experimentally validated in at least two studies. A number of models have been developed to discriminate epitopes and non-epitopes using different machine-learning techniques like Support Vector Machine, and K-Nearest Neighbor. We achieved accuracy from ∼54% to 86% using diverse s features like binary profile, dipeptide composition, AAP (amino acid pair) profile. In this study, for the first time experimentally validated non B-cell epitopes have been used for developing method for predicting linear B-cell epitopes. In previous studies, random peptides have been used as non B-cell epitopes. In order to provide service to scientific community, a web server LBtope has been developed for predicting and designing B-cell epitopes (http://crdd.osdd.net/raghava/lbtope/). PMID:23667458
Thomas, M C; Longobardo, M V; Carmelo, E; Marañón, C; Planelles, L; Patarroyo, M E; Alonso, C; López, M C
2001-03-01
The high variability among strains and isolates of Trypanosoma cruzi and the existence of shared antigenic determinants with other pathogens, particularly with members of the Leishmania genus make difficult the specific diagnosis of Chagas' disease. The data reported in this paper show that the T. cruzi KMP11 protein is an immunodominant antigen highly recognized by the sera from chagasic and leishmaniasis patients. By the use of amino- and carboxyl-terminal truncated KMP11 recombinant proteins and synthetic peptides, evidence is provided that while the sera from chagasic patients recognize linear peptides the sera from patients with visceral leishmaniasis must be predominantly directed against conformational epitopes. We found that a particular linear determinant, located in the carboxyl-terminal region of the protein, is recognized with high specificity and sensitivity only by sera from Chagas' disease patients, suggesting it could be a good candidate for differential serodiagnosis of Chagas' disease.
Thomas, M C; Longobardo, M V; Carmelo, E; Marañón, C; Planelles, L; Patarroyo, M E; Alonso, C; López, M C
2001-01-01
The high variability among strains and isolates of Trypanosoma cruzi and the existence of shared antigenic determinants with other pathogens, particularly with members of the Leishmania genus make difficult the specific diagnosis of Chagas' disease. The data reported in this paper show that the T. cruzi KMP11 protein is an immunodominant antigen highly recognized by the sera from chagasic and leishmaniasis patients. By the use of amino- and carboxyl-terminal truncated KMP11 recombinant proteins and synthetic peptides, evidence is provided that while the sera from chagasic patients recognize linear peptides the sera from patients with visceral leishmaniasis must be predominantly directed against conformational epitopes. We found that a particular linear determinant, located in the carboxyl-terminal region of the protein, is recognized with high specificity and sensitivity only by sera from Chagas' disease patients, suggesting it could be a good candidate for differential serodiagnosis of Chagas' disease. PMID:11298135
Vita, Randi; Overton, James A; Mungall, Christopher J; Sette, Alessandro
2018-01-01
Abstract The Immune Epitope Database (IEDB), at www.iedb.org, has the mission to make published experimental data relating to the recognition of immune epitopes easily available to the scientific public. By presenting curated data in a searchable database, we have liberated it from the tables and figures of journal articles, making it more accessible and usable by immunologists. Recently, the principles of Findability, Accessibility, Interoperability and Reusability have been formulated as goals that data repositories should meet to enhance the usefulness of their data holdings. We here examine how the IEDB complies with these principles and identify broad areas of success, but also areas for improvement. We describe short-term improvements to the IEDB that are being implemented now, as well as a long-term vision of true ‘machine-actionable interoperability’, which we believe will require community agreement on standardization of knowledge representation that can be built on top of the shared use of ontologies. PMID:29688354
Endemic pemphigus foliaceus in Venezuela: report of two children.
González, Francisco; Sáenz, Ana Maria; Cirocco, Antonietta; Tacaronte, Inés Maria; Fajardo, Javier Enrique; Calebotta, Adriana
2006-01-01
Two native Yanomami children from the Venezuelan Amazonia with erythroderma were hospitalized on our service. Clinical, histologic, and immunofluorescence studies diagnosed endemic pemphigus foliaceous. Human leukocyte antigen class II showed DRB1*04 subtype *0411, which has not been previously associated with this disease. However, it shares a common epitope with all the human leukocyte antigen DRB1 alleles that have been involved in this disease among Brazilian populations. Although this condition is endemic in Brazil, our patients are the first two reported in Venezuela.
Ruwona, Tinashe B.; Giang, Erick; Nieusma, Travis
2014-01-01
ABSTRACT The hepatitis C virus (HCV) envelope glycoprotein E1E2 complex is a candidate vaccine antigen. Previous immunization studies of E1E2 have yielded various results on its ability to induce virus-neutralizing antibodies in animal models and humans. The murine model has become a vital tool for HCV research owing to the development of humanized mice susceptible to HCV infection. In this study, we investigated the antibody responses of mice immunized with E1E2 and a novel soluble form of E1E2 (sE1E2) by a DNA prime and protein boost strategy. The results showed that sE1E2 elicited higher antibody titers and a greater breadth of reactivity than the wild-type cell-associated E1E2. However, immune sera elicited by either immunogen were only weakly neutralizing. In order to understand the contrasting results of binding and serum neutralizing activities, epitopes targeted by the polyclonal antibody responses were mapped and monoclonal antibodies (MAbs) were generated. The results showed that the majority of serum antibodies were directed to the E1 region 211 to 250 and the E2 regions 421 to 469, 512 to 539, 568 to 609, and 638 to 651, instead of the well-known immunodominant E2 hypervariable region 1 (HVR1). Unexpectedly, in MAb analysis, ∼12% of MAbs isolated were specific to the conserved E2 antigenic site 412 to 423, and 85% of them cross-neutralized multiple HCV isolates. The epitopes recognized by these MAbs are similar but distinct from the previously reported HCV1 and AP33 broadly neutralizing epitopes. In conclusion, E1E2 can prime B cells specific to conserved neutralizing epitopes, but the levels of serum neutralizing antibodies elicited are insufficient for effective virus neutralization. The sE1E2 constructs described in this study can be a useful template for rational antigen engineering. IMPORTANCE Hepatitis C virus infects 2 to 3% of the world's population and is a leading cause of liver failures and the need for liver transplantation. The virus envelope glycoprotein complex E1E2 produced by detergent extraction of cells overexpressing the protein was evaluated in a phase I clinical trial but failed to induce neutralizing antibodies in most subjects. In this study, we designed a novel form of E1E2 which is secreted from cells and is soluble and compared it to wild-type E1E2 by DNA immunization of mice. The results showed that this new E1E2 is more immunogenic than wild-type E1E2. Detailed mapping of the antibody responses revealed that antibodies to the conserved E2 antigenic site 412 to 423 were elicited but the serum concentrations were too low to neutralize the virus effectively. This soluble E1E2 provides a new reagent for studying HCV and for rational vaccine design. PMID:24965471
Parida, Rajeshwari; Samanta, Luna
2017-02-01
Leukocytospermia is a physiologic condition defined as human semen with a leukocyte count of >1 x 10 6 cells/ml that is often correlated with male infertility. Moreover, bacteriospermia has been associated with leukocytospermia ultimately leading to male infertility. We have found that semen samples with >1 x 10 6 /ml leukocytes and/or bacteriospermia have oxidative predominance as evidenced by augmented protein carbonyl and lipid peroxidation status of the semen which is implicated in sperm dysfunction. It has been reported that Streptococcus agalactiae is present in bacteriospermic samples. Previous research has shown that human leukocyte antigen beta chain paralog (HLA-DRB) alleles interact best with the infected sperm cells rather than the non-infected cells. Little is known about the interaction of major histocompatibility complex (MHC) present on leukocytes with the sperm upon bacterial infection and how it induces an immunological response which we have addressed by epitope mapping. Therefore, we examined MHC class II derived bacterial peptides which might have human sperm-related functional aspects. Twenty-two S. agalactiae proteins were obtained from PUBMED protein database for our study. Protein sequences with more than two accession numbers were aligned using CLUSTAL Omega to check their conservation pattern. Each protein sequence was then analyzed for T-cell epitope prediction against HLA-DRB alleles using the immune epitope database (IEDB) analysis tool. Out of a plethora of peptides obtained from this analysis, peptides corresponding to proteins of interest such as DNA binding response regulator, hyaluronate lyase and laminin binding protein were screened against the human proteome using Blastp. Interestingly, we have found bacterial peptides sharing homology with human peptides deciphering some of the important sperm functions. Antibodies raised against these probable bacterial antigens of fertility will not only help us understand the mechanism of leukocytospermia/bacteriospermia induced male factor infertility but also open new avenues for immunocontraception. AA: amino acid; ASA: antisperm antibodies; GBS: group B streptococcus; HLA: human leukocyte antigen; HAS3: hyaluronan synthase 3: IEDB: immune epitope database; MAPO2: O 6 -methylguanine-induced apoptosis 2; MHC: major histocompatibility complex; ROS: reactive oxygen species; Rosbin1: round spermatid basic protein 1; S. agalactiae: Streptococcus agalactiae;SA: sperm antigen; SPATA17: spermatogenesis associated protein17; SPNR: spermatid perinuclear RNA binding protein; TEX15: testis-expressed sequence 15 protein; TOPAZ: testis- and ovary-specific PAZ domain-containing protein; TPABP: testis-specific poly-A binding protein; TPAP: testis-specific poly(A) polymerase; WHO: World Health Organization.
Lindesmith, Lisa C; Mallory, Michael L; Debbink, Kari; Donaldson, Eric F; Brewer-Jensen, Paul D; Swann, Excel W; Sheahan, Timothy P; Graham, Rachel L; Beltramello, Martina; Corti, Davide; Lanzavecchia, Antonio; Baric, Ralph S
2018-01-01
Extensive antigenic diversity within the GII.4 genotype of human norovirus is a major driver of pandemic emergence and a significant obstacle to development of cross-protective immunity after natural infection and vaccination. However, human and mouse monoclonal antibody studies indicate that, although rare, antibodies to conserved GII.4 blockade epitopes are generated. The mechanisms by which these epitopes evade immune surveillance are uncertain. Here, we developed a new approach for identifying conserved GII.4 norovirus epitopes. Utilizing a unique set of virus-like particles (VLPs) representing the in vivo -evolved sequence diversity within an immunocompromised person, we identify key residues within epitope F, a conserved GII.4 blockade antibody epitope. The residues critical for antibody binding are proximal to evolving blockade epitope E. Like epitope F, antibody blockade of epitope E was temperature sensitive, indicating that particle conformation regulates antibody access not only to the conserved GII.4 blockade epitope F but also to the evolving epitope E. These data highlight novel GII.4 mechanisms to protect blockade antibody epitopes, map essential residues of a GII.4 conserved epitope, and expand our understanding of how viral particle dynamics may drive antigenicity and antibody-mediated protection by effectively shielding blockade epitopes. Our data support the notion that GII.4 particle breathing may well represent a major mechanism of humoral immune evasion supporting cyclic pandemic virus persistence and spread in human populations. IMPORTANCE In this study, we use norovirus virus-like particles to identify key residues of a conserved GII.4 blockade antibody epitope. Further, we identify an additional GII.4 blockade antibody epitope to be occluded, with antibody access governed by temperature and particle dynamics. These findings provide additional support for particle conformation-based presentation of binding residues mediated by a particle "breathing core." Together, these data suggest that limiting antibody access to blockade antibody epitopes may be a frequent mechanism of immune evasion for GII.4 human noroviruses. Mapping blockade antibody epitopes, the interaction between adjacent epitopes on the particle, and the breathing core that mediates antibody access to epitopes provides greater mechanistic understanding of epitope camouflage strategies utilized by human viral pathogens to evade immunity.
Pathan, A A; Wilkinson, K A; Wilkinson, R J; Latif, M; McShane, H; Pasvol, G; Hill, A V; Lalvani, A
2000-09-01
MHC class I-restricted CD8 cytotoxic T lymphocytes (CTL) are essential for protective immunity to Mycobacterium tuberculosis in animal models but their role in humans remains unclear. We therefore studied subjects who had successfully contained M. tuberculosis infection in vivo, i.e. exposed healthy household contacts and individuals with inactive self-healed pulmonary tuberculosis. Using the ELISPOT assay for IFN-gamma, we screened peptides from ESAT-6, a secreted antigen that is highly specific for M. tuberculosis. We identified a novel nonamer epitope: unstimulated peripheral blood-derived CD8 T cells displayed peptide-specific IFN-gamma release ex vivo while CD8 T cell lines and clones exhibited HLA-A68.02-restricted cytolytic activity and recognized endogenously processed antigen. The frequency of CD8 CTL specific for this single M. tuberculosis epitope, 1/2500 peripheral blood lymphocytes, was equivalent to the combined frequency of all IFN-gamma-secreting purified protein derivative-reactive T cells ex vivo. This highly focused CTL response was maintained in an asymptomatic contact over 2 years and is the most potent antigen-specific antimycobacterial CD8 CTL response hitherto described. Thus, human M. tuberculosis-specific CD8 CTL are not necessarily associated with active disease per se. Rather, our results are consistent with a protective role for these ESAT-6-specific CD8 T cells in the long-term control of M. tuberculosis in vivo in humans.
Dissecting linear and conformational epitopes on the native thyrotropin receptor.
Ando, Takao; Latif, Rauf; Daniel, Samira; Eguchi, Katsumi; Davies, Terry F
2004-11-01
The TSH receptor (TSHR) is the primary antigen in Graves' disease. In this condition, autoantibodies to the TSHR that have intrinsic thyroid-stimulating activity develop. We studied the epitopes on the native TSHR using polyclonal antisera and monoclonal antibodies (mAbs) derived from an Armenian hamster model of Graves' disease. Of 14 hamster mAbs analyzed, five were shown to bind to conformational epitopes including one mAb with potent thyroid-stimulating activity. Overlapping conformational epitopes were determined by cell-binding competition assays using fluorescently labeled mAbs. We identified two distinct conformational epitopes: epitope A for both stimulating and blocking mAbs and epitope B for only blocking mAbs. Examination of an additional three mouse-derived stimulating TSHR-mAbs also showed exclusive binding to epitope A. The remaining nine hamster-derived mAbs were neutral or low-affinity blocking antibodies that recognized linear epitopes within the TSHR cleaved region (residues 316-366) (epitope C). Serum from the immunized hamsters also recognized conformational epitopes A and B but, in addition, also contained high levels of TSHR-Abs interacting within the linear epitope C region. In summary, these studies indicated that the natively conformed TSHR had a restricted set of epitopes recognized by TSHR-mAbs and that the binding site for stimulating TSHR-Abs was highly conserved. However, high-affinity TSHR-blocking antibodies recognized two conformational epitopes, one of which was indistinguishable from the thyroid-stimulating epitope. Hence, TSHR-stimulating and blocking antibodies cannot be distinguished purely on the basis of their conformational epitope recognition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiraiwa, Akikazu; Yamanaka, Katsuo; Kwok, W.W.
Although HLA genes have been shown to be associated with certain diseases, the basis for this association is unknown. Recent studies, however, have documented patterns of nucleotide sequence variation among some HLA genes associated with a particular disease. For rheumatoid arthritis, HLA genes in most patients have a shared nucleotide sequence encoding a key structural element of an HLA class II polypeptide; this sequence element is critical for the interaction of the HLA molecule with antigenic peptides and with responding T cells, suggestive of a direct role for this sequence element in disease susceptibility. The authors describe the serological andmore » cellular immunologic characteristics encoded by this rheumatoid arthritis-associated sequence element. Site-directed mutagenesis of the DRB1 gene was used to define amino acids critical for antibody and T-cell recognition of this structural element, focusing on residues that distinguish the rheumatoid arthritis-associated alleles Dw4 and Dw14 from a closely related allele, Dw10, not associated with disease. Both the gain and loss of rheumatoid arthritis-associated epitopes were highly dependent on three residues within a discrete domain of the HLA-DR molecule. Recognition was most strongly influenced by the following amino acids (in order): 70 > 71 > 67. Some alloreactive T-cell clones were also influenced by amino acid variation in portions of the DR molecule lying outside the shared sequence element.« less
Smith, R; Lehner, T
1989-09-01
Three monoclonal antibodies (MAb) were prepared against a cell surface antigen which cross-react between Streptococcus mutans (serotypes c, e and f) and Streptococcus sobrinus (serotypes d and g). Two of the MAb also recognise a determinant on the surface of Streptococcus cricetus (serotype a). The common antigen shared between S. mutans and S. sobrinus was demonstrated by Western blotting to be about 200 kD in size. This antigen is shared not only by the cell surfaces of serotypes a, c, d, e, f and g, but also by the major cell surface antigen of S. mutans of 185 kD and another of 150 kD. These MAb identify all but one mutans type of streptococci and can be utilised as analytical reagents.
Measles Virus Hemagglutinin Protein Epitopes: The Basis of Antigenic Stability.
Tahara, Maino; Bürckert, Jean-Philippe; Kanou, Kazuhiko; Maenaka, Katsumi; Muller, Claude P; Takeda, Makoto
2016-08-02
Globally eliminating measles using available vaccines is biologically feasible because the measles virus (MV) hemagglutinin (H) protein is antigenically stable. The H protein is responsible for receptor binding, and is the main target of neutralizing antibodies. The immunodominant epitope, known as the hemagglutinating and noose epitope, is located near the receptor-binding site (RBS). The RBS also contains an immunodominant epitope. Loss of receptor binding correlates with an escape from the neutralization by antibodies that target the epitope at RBS. Another neutralizing epitope is located near RBS and is shielded by an N-linked sugar in certain genotype strains. However, human sera from vaccinees and measles patients neutralized all MV strains with similar efficiencies, regardless of the N-linked sugar modification or mutations at these epitopes. Two other major epitopes exist at a distance from RBS. One has an unstructured flexible domain with a linear neutralizing epitope. When MV-H forms a tetramer (dimer of dimers), these epitopes may form the dimer-dimer interface, and one of the two epitopes may also interact with the F protein. The neutralization mechanisms of antibodies that recognize these epitopes may involve inhibiting the H-F interaction or blocking the fusion cascade after MV-H binds to its receptors.
Gierynska, Malgorzata; Szulc-Dabrowska, Lidia; Dzieciatkowski, Tomasz; Golke, Anna; Schollenberger, Ada
2015-12-01
Eradication of smallpox has led to cessation of vaccination programs. This has rendered the human population increasingly susceptible not only to variola virus infection but also to infections with other representatives of Poxviridae family that cause zoonotic variola-like diseases. Thus, new approaches for designing improved vaccine against smallpox are required. Discovering that orthopoxviruses, e.g. variola virus, vaccinia virus, ectromelia virus, share common immunodominant antigen, may result in the development of such a vaccine. In our study, the generation of antigen-specific CD8(+) T cells in mice during the acute and memory phase of the immune response was induced using the vaccinia virus immunodominant TSYKFESV epitope and CpG oligodeoxynucleotides as adjuvants. The role of the generated TSYKFESV-specific CD8(+) T cells was evaluated in mice during ectromelia virus infection using systemic and mucosal model. Moreover, the involvement of dendritic cells subsets in the adaptive immune response stimulation was assessed. Our results indicate that the TSYKFESV epitope/TLR9 agonist approach, delivered systemically or mucosally, generated strong CD8(+) T-cell response when measured 10 days after immunization. Furthermore, the TSYKFESV-specific cell population remained functionally active 2 months post-immunization, and gave cross-protection in virally challenged mice, even though the numbers of detectable antigen-specific T cells decreased. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
da Silva Antunes, Ricardo; Paul, Sinu; Sidney, John; Weiskopf, Daniela; Dan, Jennifer M.; Phillips, Elizabeth; Mallal, Simon; Crotty, Shane; Sette, Alessandro; Lindestam Arlehamn, Cecilia S.
2017-01-01
Despite widespread uses of tetanus toxoid (TT) as a vaccine, model antigen and protein carrier, TT epitopes have been poorly characterized. Herein we defined the human CD4+ T cell epitope repertoire by reevaluation of previously described epitopes and evaluation of those derived from prediction of HLA Class II binding. Forty-seven epitopes were identified following in vitro TT stimulation, with 28 epitopes accounting for 90% of the total response. Despite this diverse range of epitopes, individual responses were associated with only a few immunodominant epitopes, with each donor responding on average to 3 epitopes. For the top 14 epitopes, HLA restriction could be inferred based on HLA typing of the responding donors. HLA binding predictions re-identified the vast majority of known epitopes, and identified 24 additional novel epitopes. With these epitopes, we created a TT epitope pool, which allowed us to characterize TT responses directly ex vivo using a cytokine-independent Activation Induced Marker (AIM) assay. These TT responses were highly Th1 or Th2 polarized, which was dependent upon the original priming vaccine, either the cellular DTwP or acellular DTaP formulation. This polarization remained despite the original priming having occurred decades past and a recent booster immunization with a reduced acellular vaccine formulation. While TT responses following booster vaccination were not durably increased in magnitude, they were associated with a relative expansion of CD4+ effector memory T cells. PMID:28081174
da Silva Antunes, Ricardo; Paul, Sinu; Sidney, John; Weiskopf, Daniela; Dan, Jennifer M; Phillips, Elizabeth; Mallal, Simon; Crotty, Shane; Sette, Alessandro; Lindestam Arlehamn, Cecilia S
2017-01-01
Despite widespread uses of tetanus toxoid (TT) as a vaccine, model antigen and protein carrier, TT epitopes have been poorly characterized. Herein we defined the human CD4+ T cell epitope repertoire by reevaluation of previously described epitopes and evaluation of those derived from prediction of HLA Class II binding. Forty-seven epitopes were identified following in vitro TT stimulation, with 28 epitopes accounting for 90% of the total response. Despite this diverse range of epitopes, individual responses were associated with only a few immunodominant epitopes, with each donor responding on average to 3 epitopes. For the top 14 epitopes, HLA restriction could be inferred based on HLA typing of the responding donors. HLA binding predictions re-identified the vast majority of known epitopes, and identified 24 additional novel epitopes. With these epitopes, we created a TT epitope pool, which allowed us to characterize TT responses directly ex vivo using a cytokine-independent Activation Induced Marker (AIM) assay. These TT responses were highly Th1 or Th2 polarized, which was dependent upon the original priming vaccine, either the cellular DTwP or acellular DTaP formulation. This polarization remained despite the original priming having occurred decades past and a recent booster immunization with a reduced acellular vaccine formulation. While TT responses following booster vaccination were not durably increased in magnitude, they were associated with a relative expansion of CD4+ effector memory T cells.
2010-01-01
Background Epitope vaccines have been suggested as a strategy to counteract viral escape and development of drug resistance. Multiple studies have shown that Cytotoxic T-Lymphocyte (CTL) and T-Helper (Th) epitopes can generate strong immune responses in Human Immunodeficiency Virus (HIV-1). However, not much is known about the relationship among different types of HIV epitopes, particularly those epitopes that can be considered potential candidates for inclusion in the multi-epitope vaccines. Results In this study we used association rule mining to examine relationship between different types of epitopes (CTL, Th and antibody epitopes) from nine protein-coding HIV-1 genes to identify strong associations as potent multi-epitope vaccine candidates. Our results revealed 137 association rules that were consistently present in the majority of reference and non-reference HIV-1 genomes and included epitopes of two different types (CTL and Th) from three different genes (Gag, Pol and Nef). These rules involved 14 non-overlapping epitope regions that frequently co-occurred despite high mutation and recombination rates, including in genomes of circulating recombinant forms. These epitope regions were also highly conserved at both the amino acid and nucleotide levels indicating strong purifying selection driven by functional and/or structural constraints and hence, the diminished likelihood of successful escape mutations. Conclusions Our results provide a comprehensive systematic survey of CTL, Th and Ab epitopes that are both highly conserved and co-occur together among all subtypes of HIV-1, including circulating recombinant forms. Several co-occurring epitope combinations were identified as potent candidates for inclusion in multi-epitope vaccines, including epitopes that are immuno-responsive to different arms of the host immune machinery and can enable stronger and more efficient immune responses, similar to responses achieved with adjuvant therapies. Signature of strong purifying selection acting at the nucleotide level of the associated epitopes indicates that these regions are functionally critical, although the exact reasons behind such sequence conservation remain to be elucidated. PMID:20696039
Izac, Jerilyn R; Oliver, Lee D; Earnhart, Christopher G; Marconi, Richard T
2017-05-31
The lipoprotein OspA is produced by the Lyme disease spirochetes primarily in unfed ticks. OspA production is down-regulated by the blood meal and it is not produced in mammals except for possible transient production during late stage infection in patients with Lyme arthritis. Vaccination with OspA elicits antibody (Ab) that can target spirochetes in the tick midgut during feeding and inhibit transmission to mammals. OspA was the primary component of the human LYMErix™ vaccine. LYMErix™ was available from 1998 to 2002 but then pulled from the market due to declining sales as a result of unsubstantiated concerns about vaccination induced adverse events and poor efficacy. It was postulated that a segment of OspA that shares sequence similarity with a region in human LFA-1 and may trigger putative autoimmune events. While evidence supporting such a link has not been demonstrated, most efforts to move forward with OspA as a vaccine component have sought to eliminate this region of concern. Here we identify an OspA linear epitope localized within OspA amino acid residues 221-240 (OspA 221-240 ) that lacks the OspA region suggested to elicit autoimmunity. A peptide consisting of residues 221-240 was immunogenic in mice. Ab raised against OspA 221-240 peptide surface labeled B. burgdorferi in IFAs and displayed potent Ab mediated-complement dependent bactericidal activity. BLAST analyses identified several variants of OspA 221-240 and a closely related sequence in OspB. It is our hypothesis that integration of the OspA 221-240 epitope into a multivalent-OspC based chimeric epitope based vaccine antigen (chimeritope) could result in a subunit vaccine that protects against Lyme disease through synergistic mechanisms. Copyright © 2017. Published by Elsevier Ltd.
Thobakgale, Christina F; Prendergast, Andrew; Crawford, Hayley; Mkhwanazi, Nompumelelo; Ramduth, Danni; Reddy, Sharon; Molina, Claudia; Mncube, Zenele; Leslie, Alasdair; Prado, Julia; Chonco, Fundi; Mphatshwe, Wendy; Tudor-Williams, Gareth; Jeena, Prakash; Blanckenberg, Natasha; Dong, Krista; Kiepiela, Photini; Coovadia, Hoosen; Ndung'u, Thumbi; Walker, Bruce D; Goulder, Philip J R
2009-10-01
A broad Gag-specific CD8(+) T-cell response is associated with effective control of adult human immunodeficiency virus (HIV) infection. The association of certain HLA class I molecules, such as HLA-B*57, -B*5801, and -B*8101, with immune control is linked to mutations within Gag epitopes presented by these alleles that allow HIV to evade the immune response but that also reduce viral replicative capacity. Transmission of such viruses containing mutations within Gag epitopes results in lower viral loads in adult recipients. In this study of pediatric infection, we tested the hypothesis that children may tend to progress relatively slowly if either they themselves possess one of the protective HLA-B alleles or the mother possesses one of these alleles, thereby transmitting a low-fitness virus to the child. We analyzed HLA type, CD8(+) T-cell responses, and viral sequence changes for 61 mother-child pairs from Durban, South Africa, who were monitored from birth. Slow progression was significantly associated with the mother or child possessing one of the protective HLA-B alleles, and more significantly so when the protective allele was not shared by mother and child (P = 0.007). Slow progressors tended to make CD8(+) T-cell responses to Gag epitopes presented by the protective HLA-B alleles, in contrast to progressors expressing the same alleles (P = 0.07; Fisher's exact test). Mothers expressing the protective alleles were significantly more likely to transmit escape variants within the Gag epitopes presented by those alleles than mothers not expressing those alleles (75% versus 21%; P = 0.001). Reversion of transmitted escape mutations was observed in all slow-progressing children whose mothers possessed protective HLA-B alleles. These data show that HLA class I alleles influence disease progression in pediatric as well as adult infection, both as a result of the CD8(+) T-cell responses generated in the child and through the transmission of low-fitness viruses by the mother.
Garza, John Anthony; Taylor, Alexander Bryan; Sherwood, Laura Jo; Hart, Peter John; Hayhurst, Andrew
2017-01-01
Marburg virus (MARV) is a highly lethal hemorrhagic fever virus that is increasingly re-emerging in Africa, has been imported to both Europe and the US, and is also a Tier 1 bioterror threat. As a negative sense RNA virus, MARV has error prone replication which can yield progeny capable of evading countermeasures. To evaluate this vulnerability, we sought to determine the epitopes of 4 llama single-domain antibodies (sdAbs or VHH) specific for nucleoprotein (NP), each capable of forming MARV monoclonal affinity reagent sandwich assays. Here, we show that all sdAb bound the C-terminal region of NP, which was produced recombinantly to derive X-ray crystal structures of the three best performing antibody-antigen complexes. The common epitope is a trio of alpha helices that form a novel asymmetric basin-like depression that accommodates each sdAb paratope via substantial complementarity-determining region (CDR) restructuring. Shared core contacts were complemented by unique accessory contacts on the sides and overlooks of the basin yielding very different approach routes for each sdAb to bind the antigen. The C-terminal region of MARV NP was unable to be crystallized alone and required engagement with sdAb to form crystals suggesting the antibodies acted as crystallization chaperones. While gross structural homology is apparent between the two most conserved helices of MARV and Ebolavirus, the positions and morphologies of the resulting basins were markedly different. Naturally occurring amino acid variations occurring in bat and human Marburgvirus strains all mapped to surfaces distant from the predicted sdAb contacts suggesting a vital role for the NP interface in virus replication. As an essential internal structural component potentially interfacing with a partner protein it is likely the C-terminal epitope remains hidden or “cryptic” until virion disruption occurs. Conservation of this epitope over 50 years of Marburgvirus evolution should make these sdAb useful foundations for diagnostics and therapeutics resistant to drift. PMID:29038656
Vaughan, K.; Blythe, M.; Greenbaum, J.; Zhang, Q.; Peters, B.; Doolan, D. L.; Sette, A.
2012-01-01
Summary We present a comprehensive meta-analysis of more than 500 references, describing nearly 5000 unique B cell and T cell epitopes derived from the Plasmodium genus, and detailing thousands of immunological assays. This is the first inventory of epitope data related to malaria-specific immunology, plasmodial pathogenesis, and vaccine performance. The survey included host and pathogen species distribution of epitopes, the number of antibody vs. CD4+ and CD8+ T cell epitopes, the genomic distribution of recognized epitopes, variance among epitopes from different parasite strains, and the characterization of protective epitopes and of epitopes associated with parasite evasion of the host immune response. The results identify knowledge gaps and areas for further investigation. This information has relevance to issues, such as the identification of epitopes and antigens associated with protective immunity, the design and development of candidate malaria vaccines, and characterization of immune response to strain polymorphisms. PMID:19149776
Measles Virus Hemagglutinin Protein Epitopes: The Basis of Antigenic Stability
Tahara, Maino; Bürckert, Jean-Philippe; Kanou, Kazuhiko; Maenaka, Katsumi; Muller, Claude P.; Takeda, Makoto
2016-01-01
Globally eliminating measles using available vaccines is biologically feasible because the measles virus (MV) hemagglutinin (H) protein is antigenically stable. The H protein is responsible for receptor binding, and is the main target of neutralizing antibodies. The immunodominant epitope, known as the hemagglutinating and noose epitope, is located near the receptor-binding site (RBS). The RBS also contains an immunodominant epitope. Loss of receptor binding correlates with an escape from the neutralization by antibodies that target the epitope at RBS. Another neutralizing epitope is located near RBS and is shielded by an N-linked sugar in certain genotype strains. However, human sera from vaccinees and measles patients neutralized all MV strains with similar efficiencies, regardless of the N-linked sugar modification or mutations at these epitopes. Two other major epitopes exist at a distance from RBS. One has an unstructured flexible domain with a linear neutralizing epitope. When MV-H forms a tetramer (dimer of dimers), these epitopes may form the dimer-dimer interface, and one of the two epitopes may also interact with the F protein. The neutralization mechanisms of antibodies that recognize these epitopes may involve inhibiting the H-F interaction or blocking the fusion cascade after MV-H binds to its receptors. PMID:27490564
Epitope mapping: the first step in developing epitope-based vaccines.
Gershoni, Jonathan M; Roitburd-Berman, Anna; Siman-Tov, Dror D; Tarnovitski Freund, Natalia; Weiss, Yael
2007-01-01
Antibodies are an effective line of defense in preventing infectious diseases. Highly potent neutralizing antibodies can intercept a virus before it attaches to its target cell and, thus, inactivate it. This ability is based on the antibodies' specific recognition of epitopes, the sites of the antigen to which antibodies bind. Thus, understanding the antibody/epitope interaction provides a basis for the rational design of preventive vaccines. It is assumed that immunization with the precise epitope, corresponding to an effective neutralizing antibody, would elicit the generation of similarly potent antibodies in the vaccinee. Such a vaccine would be a 'B-cell epitope-based vaccine', the implementation of which requires the ability to backtrack from a desired antibody to its corresponding epitope. In this article we discuss a range of methods that enable epitope discovery based on a specific antibody. Such a reversed immunological approach is the first step in the rational design of an epitope-based vaccine. Undoubtedly, the gold standard for epitope definition is x-ray analyses of crystals of antigen:antibody complexes. This method provides atomic resolution of the epitope; however, it is not readily applicable to many antigens and antibodies, and requires a very high degree of sophistication and expertise. Most other methods rely on the ability to monitor the binding of the antibody to antigen fragments or mutated variations. In mutagenesis of the antigen, loss of binding due to point modification of an amino acid residue is often considered an indication of an epitope component. In addition, computational combinatorial methods for epitope mapping are also useful. These methods rely on the ability of the antibody of interest to affinity isolate specific short peptides from combinatorial phage display peptide libraries. The peptides are then regarded as leads for the definition of the epitope corresponding to the antibody used to screen the peptide library. For epitope mapping, computational algorithms have been developed, such as Mapitope, which has recently been found to be effective in mapping conformational discontinuous epitopes. The pros and cons of various approaches towards epitope mapping are also discussed.
Detection of cross-reactivity for atopic immunoglobulin E against multiple allergens.
Chiou, Yee-Hsuan; Yuo, Chung-Yee; Wang, Lin-Yu; Huang, Shiao-ping
2003-03-01
The existence of specific immunoglobulin E (IgE) allows us to determine the allergens that cause the allergic disease. For the purposes of allergen avoidance and immunotherapy, the measurement of specific IgE is widely applied in clinical laboratories. However, if IgE from the serum of an allergic patient exhibits reactivity to multiple allergens, it would cause a problem. The present study analyzes whether the serum IgE with multiple reactivity is due to the presence of unique IgE against the common epitope shared by different allergens or the presence of multiple IgEs against different epitopes on different allergens. The quantitative-competitive inhibition tests and the immunoblotting were applied to analyze the immunosimilarity among examined allergens. The result shows that the competitive inhibition of IgE binding between shrimp and crab allergens is higher than those between either shrimp and cockroach or between crab and cockroach. Furthermore, the results of immunoblotting are consistent with those of quantitative-competitive inhibition tests. These results allow us to detect the cross-reactivity for atopic IgE against multiple allergens.
Zahroh, Hilyatuz; Ma'rup, Ahmad; Tambunan, Usman Sumo Friend; Parikesit, Arli Aditya
2016-01-01
Meningitis infection is one of the major threats during Hajj season in Mecca. Meningitis vaccines are available, but their uses are limited in some countries due to religious reasons. Furthermore, they only give protection to certain serogroups, not to all types of meningitis-inducing bacteria. Recently, research on epitope-based vaccines has been developed intensively. Such vaccines have potential advantages over conventional vaccines in that they are safer to use and well responded to the antibody. In this study, we developed epitope-based vaccine candidates against various meningitis-inducing bacteria, including Streptococcus pneumoniae , Neisseria meningitidis , and Haemophilus influenzae type b. The epitopes were selected from their protein of polysaccharide capsule. B-cell epitopes were predicted by using BCPred, while T-cell epitope for major histocompatibility complex (MHC) class I was predicted using PAProC, TAPPred, and Immune Epitope Database. Immune Epitope Database was also used to predict T-cell epitope for MHC class II. Population coverage and molecular docking simulation were predicted against previously generated epitope vaccine candidates. The best candidates for MHC class I- and class II-restricted T-cell epitopes were MQYGDKTTF, MKEQNTLEI, ECTEGEPDY, DLSIVVPIY, YPMAMMWRNASNRAI, TLQMTLLGIVPNLNK, ETSLHHIPGISNYFI, and SLLYILEKNAEMEFD, which showed 80% population coverage. The complexes of class I T-cell epitopes-HLA-C*03:03 and class II T-cell epitopes-HLA-DRB1*11:01 showed better affinity than standards as evaluated from their Δ G binding value and the binding interaction between epitopes and HLA molecules. These peptide constructs may further be undergone in vitro and in vivo testings for the development of targeted vaccine against meningitis infection.
Vaughan, Kerrie; Greenbaum, Jason; Kim, Yohan; Vita, Randi; Chung, Jo; Peters, Bjoern; Broide, David; Goodman, Richard; Grey, Howard; Sette, Alessandro
2010-01-01
Adaptive immune responses associated with allergic reactions recognize antigens from a broad spectrum of plants and animals. Herein a meta-analysis was performed on allergy-related data from the immune epitope database (IEDB) to provide a current inventory and highlight knowledge gaps and areas for future work. The analysis identified over 4,500 allergy-related epitopes derived from 270 different allergens. Overall, the distribution of the data followed expectations based on the nature of allergic responses. Namely, the majority of epitopes were defined for B cells/antibodies and IgE-mediated reactivity, and relatively fewer T-cell epitopes, mostly CD4+/class II. Interestingly, the majority of food allergen epitopes were B-cells epitopes whereas a fairly even number of B- and T-cell epitopes were defined for airborne allergens. In addition, epitopes from nonhumans hosts were mostly T-cell epitopes. Overall, coverage of known allergens is sparse with data available for only ~17% of all allergens listed by the IUIS database. Thus, further research would be required to provide a more balanced representation across different allergen categories. Furthermore, inclusion of nonpeptidic epitopes in the IEDB also allows for inventory and analysis of immunological data associated with drug and contact allergen epitopes. Finally, our analysis also underscores that only a handful of epitopes have thus far been investigated for their immunotherapeutic potential. PMID:21403821
Greenbaum, Jason; Blythe, Martin; Peters, Bjoern; Sette, Alessandro
2010-01-01
Abstract A meta-analysis was performed in order to inventory the immune epitope data related to viruses in the genus Flavivirus. Nearly 2000 epitopes were captured from over 130 individual Flavivirus-related references identified from PubMed and reported as of September 2009. This report includes all epitope structures and associated immune reactivity from the past and current literature, including: the epitope distribution among pathogens and related strains, the epitope distribution among different pathogen antigens, the number of epitopes defined in human and animal models of disease, the relationship between epitopes identified in different disease states following natural (or experimental) infection, and data from studies focused on candidate vaccines. We found that the majority of epitopes were defined for dengue virus (DENV) and West Nile virus (WNV). The prominence of DENV and WNV data in the epitope literature is likely a reflection of their overall worldwide impact on human disease, and the lack of vaccines. Conversely, the relatively smaller number of epitopes defined for the other viruses within the genus (yellow fever and Japanese encephalitis virus) most likely reflects the presence of established prophylaxis and/or their more modest impact on morbidity and mortality globally. Through this work we hope to provide useful data to those working in the area of Flavivirus research. PMID:20565291
Yang, Wu-Chen; Chen, Li; Li, Hai-Bo; Li, Bin; Hu, Jian; Zhang, Jin-Yong; Yang, Shi-Ming; Zou, Quan-Ming; Guo, Hong; Wu, Chao
2013-02-06
An epitope-based vaccine is a promising option for treating Helicobacter pylori (H. pylori) infection. Epitope mapping is the first step in designing an epitope-based vaccine. A pivotal role of CD4(+) T cells in protection against H. pylori has been accepted, but few Th epitopes have been identified. In this study, two novel UreB CD4(+) T cell epitopes were identified using PBMCs obtained from two H. pylori infected subjects. We determined the restriction molecules by antibody blocking and used various Epstein-Barr virus-transformed B lymphocyte cell lines (BLCLs) with different HLA alleles as APCs to present peptides to CD4(+) T cells. These epitopes were DRB1*1404-restricted UreB(373-385) and DRB1*0803-restricted UreB(438-452). The T cells specific to these epitopes not only recognized autologous DCs loaded with recombinant UreB but also those pulsed with H. pylori whole cell lysates, suggesting that these epitope peptides are naturally processed. These epitopes have important value for designing an effective H. pylori vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.
Machine learning-based methods for prediction of linear B-cell epitopes.
Wang, Hsin-Wei; Pai, Tun-Wen
2014-01-01
B-cell epitope prediction facilitates immunologists in designing peptide-based vaccine, diagnostic test, disease prevention, treatment, and antibody production. In comparison with T-cell epitope prediction, the performance of variable length B-cell epitope prediction is still yet to be satisfied. Fortunately, due to increasingly available verified epitope databases, bioinformaticians could adopt machine learning-based algorithms on all curated data to design an improved prediction tool for biomedical researchers. Here, we have reviewed related epitope prediction papers, especially those for linear B-cell epitope prediction. It should be noticed that a combination of selected propensity scales and statistics of epitope residues with machine learning-based tools formulated a general way for constructing linear B-cell epitope prediction systems. It is also observed from most of the comparison results that the kernel method of support vector machine (SVM) classifier outperformed other machine learning-based approaches. Hence, in this chapter, except reviewing recently published papers, we have introduced the fundamentals of B-cell epitope and SVM techniques. In addition, an example of linear B-cell prediction system based on physicochemical features and amino acid combinations is illustrated in details.
Sjöblom, I; Glorioso, J C; Sjögren-Jansson, E; Olofsson, S
1992-03-01
A continuous epitope, situated within or in close proximity to antigenic site II of the herpes simplex virus type 1-specified glycoprotein C (gC-1), was identified. The continuous linear nature of the epitope, defined by a monoclonal antibody C2H12, was established by three independent lines of evidence: (i) The epitope was detectable by immunoblot under denaturing and reducing conditions. (ii) The epitope was detectable by RIPA of extracts from TM-treated HSV-infected cells, despite the malfolding caused by this treatment. (iii) The epitope was detected in an approximately 5,000-dalton papain fragment of gC-1. A mapping analysis, primarily based on use of mutant virus, expressing truncated gC-1 molecules, suggested that the mapping position of the epitope was delimited by amino acids 120 and 230. Other epitopes of this region of gC-1 are highly conformation-dependent, and the existence of a linear epitope, accessible on native gC-1, may facilitate the elucidation of the functional anatomy of gC-1.
Paul, Sinu; Piontkivska, Helen
2009-01-01
Background Studies have shown that in the genome of human immunodeficiency virus (HIV-1) regions responsible for interactions with the host's immune system, namely, cytotoxic T-lymphocyte (CTL) epitopes tend to cluster together in relatively conserved regions. On the other hand, "epitope-less" regions or regions with relatively low density of epitopes tend to be more variable. However, very little is known about relationships among epitopes from different genes, in other words, whether particular epitopes from different genes would occur together in the same viral genome. To identify CTL epitopes in different genes that co-occur in HIV genomes, association rule mining was used. Results Using a set of 189 best-defined HIV-1 CTL/CD8+ epitopes from 9 different protein-coding genes, as described by Frahm, Linde & Brander (2007), we examined the complete genomic sequences of 62 reference HIV sequences (including 13 subtypes and sub-subtypes with approximately 4 representative sequences for each subtype or sub-subtype, and 18 circulating recombinant forms). The results showed that despite inclusion of recombinant sequences that would be expected to break-up associations of epitopes in different genes when two different genomes are recombined, there exist particular combinations of epitopes (epitope associations) that occur repeatedly across the world-wide population of HIV-1. For example, Pol epitope LFLDGIDKA is found to be significantly associated with epitopes GHQAAMQML and FLKEKGGL from Gag and Nef, respectively, and this association rule is observed even among circulating recombinant forms. Conclusion We have identified CTL epitope combinations co-occurring in HIV-1 genomes including different subtypes and recombinant forms. Such co-occurrence has important implications for design of complex vaccines (multi-epitope vaccines) and/or drugs that would target multiple HIV-1 regions at once and, thus, may be expected to overcome challenges associated with viral escape. PMID:19580659
Characterization of neutralizing epitopes of varicella-zoster virus glycoprotein H.
Akahori, Yasushi; Suzuki, Kazuhiro; Daikoku, Tohru; Iwai, Masae; Yoshida, Yoshihiro; Asano, Yoshizo; Kurosawa, Yoshikazu; Shiraki, Kimiyasu
2009-02-01
Varicella-zoster virus (VZV) glycoprotein H (gH) is the major neutralization target of VZV, and its neutralizing epitope is conformational. Ten neutralizing human monoclonal antibodies to gH were used to map the epitopes by immunohistochemical analysis and were categorized into seven epitope groups. The combinational neutralization efficacy of two epitope groups was not synergistic. Each epitope was partially or completely resistant to concanavalin A blocking of the glycomoiety of gH, and their antibodies inhibited the cell-to-cell spread of infection. The neutralization epitope comprised at least seven independent protein portions of gH that served as the target to inhibit cell-to-cell spread.
Vaughan, Kerrie; Seymour, Emily; Peters, Bjoern; Sette, Alessandro
2016-01-01
The recent increase in whooping cough in vaccinated populations has been attributed to waning immunity associated with the acellular vaccine. The Immune Epitope Database (IEDB) is a repository of immune epitope data from the published literature and includes T cell and antibody epitopes for human pathogens. The IEDB conducted a review of the epitope literature, which revealed 300 Bordetella pertussis-related epitopes from 39 references. Epitope data are currently available for six virulence factors of B. pertussis: pertussis toxin, pertactin, fimbrial 2, fimbrial 3, adenylate cyclase and filamentous hemagglutinin. The majority of epitopes were defined for antibody reactivity; fewer T cell determinants were reported. Analysis of available protective correlates data revealed a number of candidate epitopes; however few are defined in humans and few have been shown to be protective. Moreover, there are a limited number of studies defining epitopes from natural infection versus whole cell or acellular/subunit vaccines. The relationship between epitope location and structural features, as well as antigenic drift (SNP analysis) was also investigated. We conclude that the cumulative data is yet insufficient to address many fundamental questions related to vaccine failure and this underscores the need for further investigation of B. pertussis immunity at the molecular level. PMID:24530743
Computer-Aided Design of an Epitope-Based Vaccine against Epstein-Barr Virus
Alonso-Padilla, Julio
2017-01-01
Epstein-Barr virus is a very common human virus that infects 90% of human adults. EBV replicates in epithelial and B cells and causes infectious mononucleosis. EBV infection is also linked to various cancers, including Burkitt's lymphoma and nasopharyngeal carcinomas, and autoimmune diseases such as multiple sclerosis. Currently, there are no effective drugs or vaccines to treat or prevent EBV infection. Herein, we applied a computer-aided strategy to design a prophylactic epitope vaccine ensemble from experimentally defined T and B cell epitopes. Such strategy relies on identifying conserved epitopes in conjunction with predictions of HLA presentation for T cell epitope selection and calculations of accessibility and flexibility for B cell epitope selection. The T cell component includes 14 CD8 T cell epitopes from early antigens and 4 CD4 T cell epitopes, targeted during the course of a natural infection and providing a population protection coverage of over 95% and 81.8%, respectively. The B cell component consists of 3 experimentally defined B cell epitopes from gp350 plus 4 predicted B cell epitopes from other EBV envelope glycoproteins, all mapping in flexible and solvent accessible regions. We discuss the rationale for the formulation and possible deployment of this epitope vaccine ensemble. PMID:29119120
Zilkha-Falb, Rina; Yosef-Hemo, Reut; Cohen, Lydia; Ben-Nun, Avraham
2011-01-01
Antigen-induced peripheral tolerance is potentially one of the most efficient and specific therapeutic approaches for autoimmune diseases. Although highly effective in animal models, antigen-based strategies have not yet been translated into practicable human therapy, and several clinical trials using a single antigen or peptidic-epitope in multiple sclerosis (MS) yielded disappointing results. In these clinical trials, however, the apparent complexity and dynamics of the pathogenic autoimmunity associated with MS, which result from the multiplicity of potential target antigens and “epitope spread”, have not been sufficiently considered. Thus, targeting pathogenic T-cells reactive against a single antigen/epitope is unlikely to be sufficient; to be effective, immunospecific therapy to MS should logically neutralize concomitantly T-cells reactive against as many major target antigens/epitopes as possible. We investigated such “multi-epitope-targeting” approach in murine experimental autoimmune encephalomyelitis (EAE) associated with a single (“classical”) or multiple (“complex”) anti-myelin autoreactivities, using cocktail of different encephalitogenic peptides vis-a-vis artificial multi-epitope-protein (designated Y-MSPc) encompassing rationally selected MS-relevant epitopes of five major myelin antigens, as “multi-epitope-targeting” agents. Y-MSPc was superior to peptide(s) in concomitantly downregulating pathogenic T-cells reactive against multiple myelin antigens/epitopes, via inducing more effective, longer lasting peripheral regulatory mechanisms (cytokine shift, anergy, and Foxp3+ CTLA4+ regulatory T-cells). Y-MSPc was also consistently more effective than the disease-inducing single peptide or peptide cocktail, not only in suppressing the development of “classical” or “complex EAE” or ameliorating ongoing disease, but most importantly, in reversing chronic EAE. Overall, our data emphasize that a “multi-epitope-targeting” strategy is required for effective immune-specific therapy of organ-specific autoimmune diseases associated with complex and dynamic pathogenic autoimmunity, such as MS; our data further demonstrate that the “multi-epitope-targeting” approach to therapy is optimized through specifically designed multi-epitope-proteins, rather than myelin peptide cocktails, as “multi-epitope-targeting” agents. Such artificial multi-epitope proteins can be tailored to other organ-specific autoimmune diseases. PMID:22140475
Fanuel, Songwe; Tabesh, Saeideh; Sadroddiny, Esmaeil; Kardar, Gholam Ali
2017-01-01
House dust mite (HDM) allergy is the leading cause of IgE-mediated hypersensitivity. Therefore identifying potential epitopes in the Dermatophagoide pteronyssinus 23 (Der p 23), a major house dust mite allergen will aid in the development of therapeutic vaccines and diagnostic kits for HDM allergy. Experimental methods of epitope discovery have been widely exploited for the mapping of potential allergens. This study sought to use immunoinformatic methods to analyze the structure of Der p 23 for potential immunoreactive B and T-cell epitopes that could be useful for AIT and allergy diagnosis. We retrieved a Der p 23 allergen sequence from Genbank database and then analyzed it using a combination of web-based sequence analysis tools including the Immune Epitope Database (IEDB), Protparam, BCPREDS, ABCpred, BepiPred, Bcepred among others to predict the physiochemical properties and epitope spectra of the Der p 23 allergen. We then built 3D models of the predicted B-cell epitopes, T cell epitopes and Der p 23 for sequence structure homology analysis. Our results identified peptides 'TRWNEDE', 'TVHPTTTEQPDDK', and 'NDDDPTT' as immunogenic linear B-cell epitopes while 'CPSRFGYFADPKDPH' and 'CPGNTRWNEDEETCT' were found to be the most suitable T-cell epitopes that interacted well with a large number of MHC II alleles. Both epitopes had high population coverage as well as showing a 100% conservancy. These five Der p 23 epitopes are useful for AIT vaccines and HDM allergy diagnosis development.
Chen, Zhiyong; Wang, Yan; Kuwana, Masataka; Xu, Xue; Hu, Wei; Feng, Xuebing; Wang, Hong; Kimura, Akinori; Sun, Lingyun
2017-09-01
Patients with polymyositis/dermatomyositis (PM/DM) who express anti-melanoma differentiation associated protein 5 (anti-MDA5) antibodies frequently present with interstitial lung disease (ILD). The aim of this study was to investigate the association of HLA-DRB1 with anti-MDA5 expression in PM/DM. The frequency of DRB1 alleles was compared among 70 patients with PM, 104 patients with DM, and 400 healthy controls in a Han Chinese population. Frequencies of DRB1*04:01 [17.0% vs 1.3%, corrected p value (p c ) = 3.8 × 10 -8 , OR 16.2, 95% CI 6.6-39.7] and *12:02 (42.6% vs 19.3%, p c = 0.008, OR 3.1, 95% CI 1.7-5.7) were significantly higher in anti-MDA5-positive patients with PM/DM compared with the controls. The frequencies of DRB1*04:01 (p = 5.2 × 10 -6 , OR 17.1, 95% CI 5.3-54.9) and *12:02 (p = 3.8 × 10 -4 , OR 3.1, 95% CI 1.7-5.7) in anti-MDA5-positive patients with DM-ILD were higher than in the controls, whereas the frequencies of DRB1*04:01 and *12:02 did not differ between the anti-MDA5-negative patients with DM-ILD and controls. No difference in the frequency of DRB1 alleles, other than *04:01, carrying the "shared epitope" (SE), i.e., *01:01, *01:02, *04:05, and *10:01, was observed between the controls and patients with DM stratified by the presence of anti-MDA5 and ILD. DRB1*04:01 and *12:02 confer susceptibility to anti-MDA5 antibody production in DM, which cannot be explained by the SE hypothesis.
BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes
Jespersen, Martin Closter; Peters, Bjoern
2017-01-01
Abstract Antibodies have become an indispensable tool for many biotechnological and clinical applications. They bind their molecular target (antigen) by recognizing a portion of its structure (epitope) in a highly specific manner. The ability to predict epitopes from antigen sequences alone is a complex task. Despite substantial effort, limited advancement has been achieved over the last decade in the accuracy of epitope prediction methods, especially for those that rely on the sequence of the antigen only. Here, we present BepiPred-2.0 (http://www.cbs.dtu.dk/services/BepiPred/), a web server for predicting B-cell epitopes from antigen sequences. BepiPred-2.0 is based on a random forest algorithm trained on epitopes annotated from antibody-antigen protein structures. This new method was found to outperform other available tools for sequence-based epitope prediction both on epitope data derived from solved 3D structures, and on a large collection of linear epitopes downloaded from the IEDB database. The method displays results in a user-friendly and informative way, both for computer-savvy and non-expert users. We believe that BepiPred-2.0 will be a valuable tool for the bioinformatics and immunology community. PMID:28472356
Goulder, P.J.R.; Sewell, A.K.; Lalloo, D.G.; Price, D.A.; Whelan, J.A.; Evans, J.; Taylor, G.P.; Luzzi, G.; Giangrande, P.; Phillips, R.E.; McMichael, A.J.
1997-01-01
Primary human immunodeficiency virus (HIV) infection is controlled principally by HIV-specific cytotoxic T lymphocytes (CTL) to a steady-state level of virus load, which strongly influences the ultimate rate of progression to disease. Epitope selection by CTL may be an important determinant of the degree of immune control over the virus. This report describes the CTL responses of two HLA-identical hemophiliac brothers who were exposed to identical batches of Factor VIII and became seropositive within 10 wk of one another. Both have HLA-A*0201. The CTL responses of the two siblings were very dissimilar, one donor making strong responses to two epitopes within p17 Gag (HLA-A*0201–restricted SLYNTVATL and HLA-A3–restricted RLRPGGKKK). The sibling responded to neither epitope, but made strong responses to two epitopes presented by HLA-B7. This was not the result of differences in presentation of the epitopes. However, mutations in both immunodominant epitopes of the p17 Gag responder were seen in proviral sequences of the nonresponder. We then documented the CTL responses to two HLA-A*0201–restricted epitopes, in Gag (SLYNTVATL) and Pol (ILKEPVHGV) in 22 other HIV-infected donors with HLA-A*0201. The majority (71%) generated responses to the Gag epitope. In the 29% of donors failing to respond to the Gag epitope in standard assays, there was evidence of low frequency memory CTL responses using peptide stimulation of PBMC, and most of these donors also showed mutations in or around the Gag epitope. We concluded that HLA class I genotype determines epitope selection initially but that mutation in immunodominant epitopes can profoundly alter the pattern of CTL response. PMID:9126923
Saravanan, Vijayakumar; Gautham, Namasivayam
2015-10-01
Proteins embody epitopes that serve as their antigenic determinants. Epitopes occupy a central place in integrative biology, not to mention as targets for novel vaccine, pharmaceutical, and systems diagnostics development. The presence of T-cell and B-cell epitopes has been extensively studied due to their potential in synthetic vaccine design. However, reliable prediction of linear B-cell epitope remains a formidable challenge. Earlier studies have reported discrepancy in amino acid composition between the epitopes and non-epitopes. Hence, this study proposed and developed a novel amino acid composition-based feature descriptor, Dipeptide Deviation from Expected Mean (DDE), to distinguish the linear B-cell epitopes from non-epitopes effectively. In this study, for the first time, only exact linear B-cell epitopes and non-epitopes have been utilized for developing the prediction method, unlike the use of epitope-containing regions in earlier reports. To evaluate the performance of the DDE feature vector, models have been developed with two widely used machine-learning techniques Support Vector Machine and AdaBoost-Random Forest. Five-fold cross-validation performance of the proposed method with error-free dataset and dataset from other studies achieved an overall accuracy between nearly 61% and 73%, with balance between sensitivity and specificity metrics. Performance of the DDE feature vector was better (with accuracy difference of about 2% to 12%), in comparison to other amino acid-derived features on different datasets. This study reflects the efficiency of the DDE feature vector in enhancing the linear B-cell epitope prediction performance, compared to other feature representations. The proposed method is made as a stand-alone tool available freely for researchers, particularly for those interested in vaccine design and novel molecular target development for systems therapeutics and diagnostics: https://github.com/brsaran/LBEEP.
Optimization of a methamphetamine conjugate vaccine for antibody production in mice.
Stevens, Misty W; Gunnell, Melinda G; Tawney, Rachel; Owens, S Michael
2016-06-01
There are still no approved medications for treating patients who abuse methamphetamine. Active vaccines for treating abuse of nicotine and cocaine are in clinical studies, but have not proven effective seemingly due to inadequate anti-drug antibody production. The current studies aimed to optimize the composition, adjuvant and route of administration of a methamphetamine conjugate vaccine, ICKLH-SMO9, in mice with the goal of generating significantly higher antibody levels. A range of hapten epitope densities were compared, as were the adjuvants Alhydrogel and a new Toll-like receptor 4 (TLR4) agonist called GLA-SE. While methamphetamine hapten density did not strongly affect the antibody response, the adjuvant did. Glucopyranosyl lipid A in a stable oil-in-water emulsion (GLA-SE) produced much higher levels of antibody in response to immunization compared with Alhydrogel; immunization with GLA-SE also produced antibodies with higher affinities for methamphetamine. GLA-SE has been used in human studies of vaccines for influenza among others and like some other clinical TLR4 agonists, it is safe and elicits a strong immune response. GLA-SE adjuvanted vaccines are typically administered by intramuscular injection and this also proved effective in these mouse studies. Clinical studies of the ICKLH-SMO9 methamphetamine vaccine adjuvanted with GLA-SE have the potential for demonstrating efficacy by generating much higher levels of antibody than substance abuse vaccines that have unsuccessfully used aluminum-based adjuvants. Copyright © 2016 Elsevier B.V. All rights reserved.
Turbyfill, K R; Joseph, S W; Oaks, E V
1995-01-01
The invasive ability of Shigella spp. is correlated with the expression of several plasmid-encoded proteins, including invasion plasmid antigen C (IpaC). By characterizing the antigenic structure of IpaC with monoclonal antibodies and convalescent-phase sera, it may be possible to determine the physical location of specific epitopes as well as the involvement of epitopes in a protective immune response or the host's susceptibility to disease. By using overlapping octameric synthetic peptides, which together represent the entire IpaC protein, the precise linear sequence of four surface-exposed epitopes was defined for four IpaC monoclonal antibodies. Furthermore, 17 unique peptide epitopes of IpaC were mapped by using 9-day-postinfection serum samples from 13 rhesus monkeys challenged with Shigella flexneri 2a. Each individual recognized a somewhat different array of IpaC peptide epitopes after infection with shigellae. However, the epitopes were clustered within three regions of the protein: region I (between amino acid residues 1 and 61), region II (between amino acid residues 177 and 258), and region III (between amino acid residues 298 and 307). Region II was recognized by 92% of S. flexneri-infected individuals and was considered to be a highly immunogenic region. Animals asymptomatic for shigellosis after challenge with S. flexneri recognized peptide epitopes within all three epitopic regions of IpaC, whereas symptomatic animals recognized peptides in only one or two of the epitopic regions. Antibody from monkeys challenged with S. sonnei recognized IpaC peptide epitopes which fell within and outside the three S. flexneri epitopic regions. While numerous potential epitopes exist on the IpaC protein, the identification of three regions in which epitopes are clustered suggests that these regions are significant with respect to the immune response and to subsequent pathogenesis postinfection. PMID:7558301
Identification of B cell epitopes of alcohol dehydrogenase allergen of Curvularia lunata.
Nair, Smitha; Kukreja, Neetu; Singh, Bhanu Pratap; Arora, Naveen
2011-01-01
Epitope identification assists in developing molecules for clinical applications and is useful in defining molecular features of allergens for understanding structure/function relationship. The present study was aimed to identify the B cell epitopes of alcohol dehydrogenase (ADH) allergen from Curvularia lunata using in-silico methods and immunoassay. B cell epitopes of ADH were predicted by sequence and structure based methods and protein-protein interaction tools while T cell epitopes by inhibitory concentration and binding score methods. The epitopes were superimposed on a three dimensional model of ADH generated by homology modeling and analyzed for antigenic characteristics. Peptides corresponding to predicted epitopes were synthesized and immunoreactivity assessed by ELISA using individual and pooled patients' sera. The homology model showed GroES like catalytic domain joined to Rossmann superfamily domain by an alpha helix. Stereochemical quality was confirmed by Procheck which showed 90% residues in most favorable region of Ramachandran plot while Errat gave a quality score of 92.733%. Six B cell (P1-P6) and four T cell (P7-P10) epitopes were predicted by a combination of methods. Peptide P2 (epitope P2) showed E(X)(2)GGP(X)(3)KKI conserved pattern among allergens of pathogenesis related family. It was predicted as high affinity binder based on electronegativity and low hydrophobicity. The computational methods employed were validated using Bet v 1 and Der p 2 allergens where 67% and 60% of the epitope residues were predicted correctly. Among B cell epitopes, Peptide P2 showed maximum IgE binding with individual and pooled patients' sera (mean OD 0.604±0.059 and 0.506±0.0035, respectively) followed by P1, P4 and P3 epitopes. All T cell epitopes showed lower IgE binding. Four B cell epitopes of C. lunata ADH were identified. Peptide P2 can serve as a potential candidate for diagnosis of allergic diseases.
Huang, C.; Chien, M.S.; Landolt, M.L.; Batts, W.; Winton, J.
1996-01-01
Twelve neutralizing monoclonal antibodies (MAbs) against the fish rhabdovirus, infectious haematopoietic necrosis virus (IHNV), were used to select 20 MAb escape mutants. The nucleotide sequence of the entire glycoprotein (G) gene was determined for six mutants representing differing cross-neutralization patterns and each had a single nucleotide change leading to a single amino acid substitution within one of three regions of the protein. These data were used to design nested PCR primers to amplify portions of the G gene of the 14 remaining mutants. When the PCR products from these mutants were sequenced, they also had single nucleotide substitutions coding for amino acid substitutions at the same, or nearby, locations. Of the 20 mutants for which all or part of the glycoprotein gene was sequenced, two MAbs selected mutants with substitutions at amino acids 230-231 (antigenic site I) and the remaining MAbs selected mutants with substitutions at amino acids 272-276 (antigenic site II). Two MAbs that selected mutants mapping to amino acids 272-276, selected other mutants that mapped to amino acids 78-81, raising the possibility that this portion of the N terminus of the protein was part of a discontinuous epitope defining antigenic site II. CLUSTAL alignment of the glycoproteins of rabies virus, vesicular stomatitis virus and IHNV revealed similarities in the location of the neutralizing epitopes and a high degree of conservation among cysteine residues, indicating that the glycoproteins of three different genera of animal rhabdoviruses may share a similar three-dimensional structure in spite of extensive sequence divergence.
Expitope: a web server for epitope expression.
Haase, Kerstin; Raffegerst, Silke; Schendel, Dolores J; Frishman, Dmitrij
2015-06-01
Adoptive T cell therapies based on introduction of new T cell receptors (TCRs) into patient recipient T cells is a promising new treatment for various kinds of cancers. A major challenge, however, is the choice of target antigens. If an engineered TCR can cross-react with self-antigens in healthy tissue, the side-effects can be devastating. We present the first web server for assessing epitope sharing when designing new potential lead targets. We enable the users to find all known proteins containing their peptide of interest. The web server returns not only exact matches, but also approximate ones, allowing a number of mismatches of the users choice. For the identified candidate proteins the expression values in various healthy tissues, representing all vital human organs, are extracted from RNA Sequencing (RNA-Seq) data as well as from some cancer tissues as control. All results are returned to the user sorted by a score, which is calculated using well-established methods and tools for immunological predictions. It depends on the probability that the epitope is created by proteasomal cleavage and its affinities to the transporter associated with antigen processing and the major histocompatibility complex class I alleles. With this framework, we hope to provide a helpful tool to exclude potential cross-reactivity in the early stage of TCR selection for use in design of adoptive T cell immunotherapy. The Expitope web server can be accessed via http://webclu.bio.wzw.tum.de/expitope. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Poh, Chit Laa; Kirk, Kristin; McBride, William John Hannan; Aaskov, John; Grollo, Lara
2016-01-01
Dengue virus (DENV) is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine. PMID:27223692
Azoitei, M.L.; Ban, Y.A.; Kalyuzhny, O.; Guenaga, J.; Schroeter, A.; Porter, J.; Wyatt, R.; Schief, W.R.
2015-01-01
Rational design of proteins with novel binding specificities and increased affinity is one of the major goals of computational protein design. Epitope-scaffolds are a new class of antigens engineered by transplanting viral epitopes of pre-defined structure to protein scaffolds, or by building protein scaffolds around such epitopes. Epitope-scaffolds are of interest as vaccine components to attempt to elicit neutralizing antibodies targeting the specified epitope. In this study we developed a new computational protocol, MultiGraft Interface, that transplants epitopes but also designs additional scaffold features outside the epitope to enhance antibody-binding specificity and potentially influence the specificity of elicited antibodies. We employed MultiGraft Interface to engineer novel epitope-scaffolds that display the known epitope of HIV-1 neutralizing antibody 2F5 and that also interact with the functionally important CDR H3 antibody loop. MultiGraft Interface generated an epitope-scaffold that bound 2F5 with sub-nanomolar affinity (KD = 400 pM) and that interacted with the antibody CDR H3 loop through computationally designed contacts. Substantial structural modifications were necessary to engineer this antigen, with the 2F5 epitope replacing a helix in the native scaffold and with 15% of the native scaffold sequence being modified in the design stage. This epitope-scaffold represents a successful example of rational protein backbone engineering and protein-protein interface design and could prove useful in the field of HIV vaccine design. MultiGraft Interface can be generally applied to engineer novel binding partners with altered specificity and optimized affinity. PMID:25043744
McMurtrey, Curtis P; Lelic, Alina; Piazza, Paolo; Chakrabarti, Ayan K; Yablonsky, Eric J; Wahl, Angela; Bardet, Wilfried; Eckerd, Annette; Cook, Robert L; Hess, Rachael; Buchli, Rico; Loeb, Mark; Rinaldo, Charles R; Bramson, Jonathan; Hildebrand, William H
2008-02-26
Cytotoxic T lymphocytes (CTL) play an important role in the control and elimination of infection by West Nile virus (WNV), yet the class I human leukocyte antigen (HLA)-presented peptide epitopes that enable CTL recognition of WNV-infected cells remain uncharacterized. The goals of this work were first to discover the peptide epitopes that distinguish the class I HLA of WNV-infected cells and then to test the T cell reactivity of newly discovered WNV epitopes. To discover WNV-immune epitopes, class I HLA was harvested from WNV (NY99 strain)-infected and uninfected HeLa cells. Then peptide epitopes were eluted from affinity-purified HLA, and peptide epitopes from infected and uninfected cells were comparatively mapped by mass spectroscopy. Six virus-derived peptides from five different viral proteins (E, NS2b, NS3, NS4b, and NS5) were discovered as unique to HLA-A*0201 of infected cells, demonstrating that the peptides sampled by class I HLA are distributed widely throughout the WNV proteome. When tested with CTL from infected individuals, one dominant WNV target was apparent, two epitopes were subdominant, and three demonstrated little CTL reactivity. Finally, a sequence comparison of these epitopes with the hundreds of viral isolates shows that HLA-A*0201 presents epitopes derived from conserved regions of the virus. Detection and recovery from WNV infection are therefore functions of the ability of class I HLA molecules to reveal conserved WNV epitopes to an intact cellular immune system that subsequently recognizes infected cells.
A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes.
Davidson, Edgar; Doranz, Benjamin J
2014-09-01
Characterizing the binding sites of monoclonal antibodies (mAbs) on protein targets, their 'epitopes', can aid in the discovery and development of new therapeutics, diagnostics and vaccines. However, the speed of epitope mapping techniques has not kept pace with the increasingly large numbers of mAbs being isolated. Obtaining detailed epitope maps for functionally relevant antibodies can be challenging, particularly for conformational epitopes on structurally complex proteins. To enable rapid epitope mapping, we developed a high-throughput strategy, shotgun mutagenesis, that enables the identification of both linear and conformational epitopes in a fraction of the time required by conventional approaches. Shotgun mutagenesis epitope mapping is based on large-scale mutagenesis and rapid cellular testing of natively folded proteins. Hundreds of mutant plasmids are individually cloned, arrayed in 384-well microplates, expressed within human cells, and tested for mAb reactivity. Residues are identified as a component of a mAb epitope if their mutation (e.g. to alanine) does not support candidate mAb binding but does support that of other conformational mAbs or allows full protein function. Shotgun mutagenesis is particularly suited for studying structurally complex proteins because targets are expressed in their native form directly within human cells. Shotgun mutagenesis has been used to delineate hundreds of epitopes on a variety of proteins, including G protein-coupled receptor and viral envelope proteins. The epitopes mapped on dengue virus prM/E represent one of the largest collections of epitope information for any viral protein, and results are being used to design better vaccines and drugs. © 2014 John Wiley & Sons Ltd.
Immunotherapy for Alzheimer's disease: DNA- and protein-based epitope vaccines.
Davtyan, Hayk; Petrushina, Irina; Ghochikyan, Anahit
2014-01-01
Active immunotherapy for Alzheimer's disease (AD) is aimed to induce antibodies specific to amyloid-beta (Aβ) that are capable to reduce the level of Aβ in the CNS of Alzheimer's disease patients. First clinical trial AN-1792 that was based on vaccination with full-length Aβ42 showed that safe and effective AD vaccine should induce high titers of anti-Aβ antibodies without activation of harmful autoreactive T cells. Replacement of self-T cell epitope with foreign epitope, keeping self-B cell epitope intact, may allow to induce high titers of anti-Aβ antibodies while avoiding the activation of T cells specific to Aβ. Here we describe the protocols for evaluation of AD DNA- or multiple antigenic peptide (MAP)-based epitope vaccines composed of Aβ(1-11) B cell epitope fused to synthetic T cell epitope PADRE (Aβ(1-11)-PADRE). All protocols could be used for testing any epitope vaccine constructed in your lab and composed of other T cell epitopes using the appropriate peptides in tests for evaluation of humoral and cellular immune responses.
Denisova, Galina F; Denisov, Dimitri A; Yeung, Jeffrey; Loeb, Mark B; Diamond, Michael S; Bramson, Jonathan L
2008-11-01
Understanding antibody function is often enhanced by knowledge of the specific binding epitope. Here, we describe a computer algorithm that permits epitope prediction based on a collection of random peptide epitopes (mimotopes) isolated by antibody affinity purification. We applied this methodology to the prediction of epitopes for five monoclonal antibodies against the West Nile virus (WNV) E protein, two of which exhibit therapeutic activity in vivo. This strategy was validated by comparison of our results with existing F(ab)-E protein crystal structures and mutational analysis by yeast surface display. We demonstrate that by combining the results of the mimotope method with our data from mutational analysis, epitopes could be predicted with greater certainty. The two methods displayed great complementarity as the mutational analysis facilitated epitope prediction when the results with the mimotope method were equivocal and the mimotope method revealed a broader number of residues within the epitope than the mutational analysis. Our results demonstrate that the combination of these two prediction strategies provides a robust platform for epitope characterization.
Prediction of linear B-cell epitopes of hepatitis C virus for vaccine development
2015-01-01
Background High genetic heterogeneity in the hepatitis C virus (HCV) is the major challenge of the development of an effective vaccine. Existing studies for developing HCV vaccines have mainly focused on T-cell immune response. However, identification of linear B-cell epitopes that can stimulate B-cell response is one of the major tasks of peptide-based vaccine development. Owing to the variability in B-cell epitope length, the prediction of B-cell epitopes is much more complex than that of T-cell epitopes. Furthermore, the motifs of linear B-cell epitopes in different pathogens are quite different (e. g. HCV and hepatitis B virus). To cope with this challenge, this work aims to propose an HCV-customized sequence-based prediction method to identify B-cell epitopes of HCV. Results This work establishes an experimentally verified dataset comprising the B-cell response of HCV dataset consisting of 774 linear B-cell epitopes and 774 non B-cell epitopes from the Immune Epitope Database. An interpretable rule mining system of B-cell epitopes (IRMS-BE) is proposed to select informative physicochemical properties (PCPs) and then extracts several if-then rule-based knowledge for identifying B-cell epitopes. A web server Bcell-HCV was implemented using an SVM with the 34 informative PCPs, which achieved a training accuracy of 79.7% and test accuracy of 70.7% better than the SVM-based methods for identifying B-cell epitopes of HCV and the two general-purpose methods. This work performs advanced analysis of the 34 informative properties, and the results indicate that the most effective property is the alpha-helix structure of epitopes, which influences the connection between host cells and the E2 proteins of HCV. Furthermore, 12 interpretable rules are acquired from top-five PCPs and achieve a sensitivity of 75.6% and specificity of 71.3%. Finally, a conserved promising vaccine candidate, PDREMVLYQE, is identified for inclusion in a vaccine against HCV. Conclusions This work proposes an interpretable rule mining system IRMS-BE for extracting interpretable rules using informative physicochemical properties and a web server Bcell-HCV for predicting linear B-cell epitopes of HCV. IRMS-BE may also apply to predict B-cell epitopes for other viruses, which benefits the improvement of vaccines development of these viruses without significant modification. Bcell-HCV is useful for identifying B-cell epitopes of HCV antigen to help vaccine development, which is available at http://e045.life.nctu.edu.tw/BcellHCV. PMID:26680271
Scientists at NIH have identified 7 new agonist epitopes of the MUC-1 tumor associated antigen. Compared to their native epitope counterparts, peptides reflecting these agonist epitopes have been shown to enhance the generation of human tumor cells, which in turn have a greater ability to kill human tumor cells endogenously expressing the native MUC-1 epitope.
BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes.
Jespersen, Martin Closter; Peters, Bjoern; Nielsen, Morten; Marcatili, Paolo
2017-07-03
Antibodies have become an indispensable tool for many biotechnological and clinical applications. They bind their molecular target (antigen) by recognizing a portion of its structure (epitope) in a highly specific manner. The ability to predict epitopes from antigen sequences alone is a complex task. Despite substantial effort, limited advancement has been achieved over the last decade in the accuracy of epitope prediction methods, especially for those that rely on the sequence of the antigen only. Here, we present BepiPred-2.0 (http://www.cbs.dtu.dk/services/BepiPred/), a web server for predicting B-cell epitopes from antigen sequences. BepiPred-2.0 is based on a random forest algorithm trained on epitopes annotated from antibody-antigen protein structures. This new method was found to outperform other available tools for sequence-based epitope prediction both on epitope data derived from solved 3D structures, and on a large collection of linear epitopes downloaded from the IEDB database. The method displays results in a user-friendly and informative way, both for computer-savvy and non-expert users. We believe that BepiPred-2.0 will be a valuable tool for the bioinformatics and immunology community. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Diekmann, Jan; Adamopoulou, Eleni; Beck, Olaf; Rauser, Georg; Lurati, Sarah; Tenzer, Stefan; Einsele, Hermann; Rammensee, Hans-Georg; Schild, Hansjörg; Topp, Max S
2009-08-01
The EBV Ag latent membrane protein 1 (LMP1) has been described as a potential target for T cell immunotherapy in EBV-related malignancies. However, only a few CD8(+) T cell epitopes are known, and the benefit of LMP1-specific T cell immunotherapy has not yet been proven. In this work, we studied the processing of the two LMP1 HLA-A02-restricted epitopes, YLLEMLRWL and YLQQNWWTL. We found that target cells endogenously expressing the native LMP1 are not recognized by CTLs specific for these epitopes because the N-terminal part of LMP1 limits the efficiency of epitope generation. We further observed that the proteasome is not required for the generation of both epitopes and that the YLLEMLRWL epitope seems to be destroyed by the proteasome, because blocking of proteasomal activities enhanced specific CTL activation. Activation of LMP1-specific CTLs could be significantly reduced after inhibition of the tripeptidyl peptidase II, suggesting a role for this peptidase in the processing of both epitopes. Taken together, our results demonstrate that the MHC class I-restricted LMP1 epitopes studied in this work are two of very few epitopes known to date to be processed proteasome independently by tripeptidyl peptidase II.
Pan, X-X; Zhao, B-X; Teng, Y-M; Xia, W-Y; Wang, J; Li, X-F; Liao, G-Y; Yang, С; Chen, Y-D
2016-01-01
Rotavirus and poliovirus continue to present significant risks and burden of disease to children in developing countries. Developing a combined vaccine may effectively prevent both illnesses and may be advantageous in terms of maximizing compliance and vaccine coverage at the same visit. Recently, we sought to generate a vaccine vector by incorporating multiple epitopes into the rotavirus group antigenic protein, VP6. In the present study, a foreign epitope presenting a system using VP6 as a vector was created with six sites on the outer surface of the vector that could be used for insertion of foreign epitopes, and three VP6-based PV1 epitope chimeric proteins were constructed. The chimeric proteins were confirmed by immunoblot, immunofluorescence assay, and injected into guinea pigs to analyze the epitope-specific humoral response. Results showed that these chimeric proteins reacted with anti-VP6F and -PV1 antibodies, and elicited antibodies against both proteins in guinea pigs. Antibodies against the chimeric proteins carrying PV1 epitopes neutralized rotavirus Wa and PV1 infection in vitro. Our study contributes to a better understanding of the use of VP6-based vectors as multiple-epitope delivery vehicles and the epitopes displayed in this form could be considered for development of epitope-based vaccines against rotavirus and poliovirus.
Cancer-testis antigen expression is shared between epithelial ovarian cancer tumors.
Garcia-Soto, Arlene E; Schreiber, Taylor; Strbo, Natasa; Ganjei-Azar, Parvin; Miao, Feng; Koru-Sengul, Tulay; Simpkins, Fiona; Nieves-Neira, Wilberto; Lucci, Joseph; Podack, Eckhard R
2017-06-01
Cancer-testis (CT) antigens have been proposed as potential targets for cancer immunotherapy. Our objective was to evaluate the expression of a panel of CT antigens in epithelial ovarian cancer (EOC) tumor specimens, and to determine if antigen sharing occurs between tumors. RNA was isolated from EOC tumor specimens, EOC cell lines and benign ovarian tissue specimens. Real time-PCR analysis was performed to determine the expression level of 20 CT antigens. A total of 62 EOC specimens, 8 ovarian cancer cell lines and 3 benign ovarian tissues were evaluated for CT antigen expression. The majority of the specimens were: high grade (62%), serous (68%) and advanced stage (74%). 58 (95%) of the EOC tumors analyzed expressed at least one of the CT antigens evaluated. The mean number of CT antigen expressed was 4.5 (0-17). The most frequently expressed CT antigen was MAGE A4 (65%). Antigen sharing analysis showed the following: 9 tumors shared only one antigen with 62% of the evaluated specimens, while 37 tumors shared 4 or more antigens with 82%. 5 tumors expressed over 10 CT antigens, which were shared with 90% of the tumor panel. CT antigens are expressed in 95% of EOC tumor specimens. However, not a single antigen was universally expressed across all samples. The degree of antigen sharing between tumors increased with the total number of antigens expressed. These data suggest a multi-epitope approach for development of immunotherapy for ovarian cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
Kroghsbo, Stine; Andersen, Nanna B.; Rasmussen, Tina F.; Madsen, Charlotte B.
2014-01-01
Background Acid hydrolyzed wheat proteins (HWPs) are used in the food and cosmetic industry as emulsifiers. Cases of severe food allergic reactions caused by HWPs have been reported. Recent data suggest that these reactions are caused by HWPs produced by acid hydrolysis. Objectives To examine the sensitizing capacity of gluten proteins per se when altered by acid or enzymatic hydrolysis relative to unmodified gluten in rats naïve to gluten. Methods High IgE-responder Brown Norway (BN) rats bred on a gluten-free diet were sensitized without the use of adjuvant to three different gluten products (unmodified, acid hydrolyzed and enzymatic hydrolyzed). Rats were sensitized by intraperitoneal (i.p.) immunization three times with 200 µg gluten protein/rat or by oral dosing for 35 days with 0.2, 2 or 20 mg gluten protein/rat/day. Sera were analyzed for specific IgG and IgE and IgG-binding capacity by ELISA. IgE functionality was measured by rat basophilic leukemia (RBL) assay. Results Regardless of the route of dosing, all products had sensitizing capacity. When sensitized i.p., all three gluten products induced a strong IgG1 response in all animals. Acid hydrolyzed gluten induced the highest level of specific IgE but with a low functionality. Orally all three gluten products induced specific IgG1 and IgE but with different dose-response relations. Sensitizing rats i.p. or orally with unmodified or enzymatic hydrolyzed gluten induced specific IgG1 responses with similar binding capacity which was different from that of acid hydrolyzed gluten indicating that acid hydrolysis of gluten proteins induces formation of ‘new’ epitopes. Conclusions In rats not tolerant to gluten acid hydrolysis of gluten enhances the sensitizing capacity by the i.p. but not by the oral route. In addition, acid hydrolysis induces formation of new epitopes. This is in contrast to the enzymatic hydrolyzed gluten having an epitope pattern similar to unmodified gluten. PMID:25207551
Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo; Lund, Ole; Buus, Søren; Nielsen, Morten
2017-01-01
Identification of epitopes targeted by antibodies (B cell epitopes) is of critical importance for the development of many diagnostic and therapeutic tools. For clinical usage, such epitopes must be extensively characterized in order to validate specificity and to document potential cross-reactivity. B cell epitopes are typically classified as either linear epitopes, i.e. short consecutive segments from the protein sequence or conformational epitopes adapted through native protein folding. Recent advances in high-density peptide microarrays enable high-throughput, high-resolution identification and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation of the data provided in such large-scale screenings is far from trivial and in most cases it requires advanced computational and statistical skills. Here, we present an online application for automated identification of linear B cell epitopes, allowing the non-expert user to analyse peptide microarray data. The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots. Demonstrating utility, the application was used to identify and address the antibody specificity of 18 linear epitope regions in Human Serum Albumin (HSA), using peptide microarray data consisting of fully substituted peptides spanning the entire sequence of HSA and incubated with polyclonal rabbit anti-HSA (and mouse anti-rabbit-Cy3). The application is made available at: www.cbs.dtu.dk/services/ArrayPitope.
Azoitei, M L; Ban, Y A; Kalyuzhny, O; Guenaga, J; Schroeter, A; Porter, J; Wyatt, R; Schief, William R
2014-10-01
Rational design of proteins with novel binding specificities and increased affinity is one of the major goals of computational protein design. Epitope-scaffolds are a new class of antigens engineered by transplanting viral epitopes of predefined structure to protein scaffolds, or by building protein scaffolds around such epitopes. Epitope-scaffolds are of interest as vaccine components to attempt to elicit neutralizing antibodies targeting the specified epitope. In this study we developed a new computational protocol, MultiGraft Interface, that transplants epitopes but also designs additional scaffold features outside the epitope to enhance antibody-binding specificity and potentially influence the specificity of elicited antibodies. We employed MultiGraft Interface to engineer novel epitope-scaffolds that display the known epitope of human immunodeficiency virus 1 (HIV-1) neutralizing antibody 2F5 and that also interact with the functionally important CDR H3 antibody loop. MultiGraft Interface generated an epitope-scaffold that bound 2F5 with subnanomolar affinity (K(D) = 400 pM) and that interacted with the antibody CDR H3 loop through computationally designed contacts. Substantial structural modifications were necessary to engineer this antigen, with the 2F5 epitope replacing a helix in the native scaffold and with 15% of the native scaffold sequence being modified in the design stage. This epitope-scaffold represents a successful example of rational protein backbone engineering and protein-protein interface design and could prove useful in the field of HIV vaccine design. MultiGraft Interface can be generally applied to engineer novel binding partners with altered specificity and optimized affinity. © 2014 Wiley Periodicals, Inc.
Human Antibodies that Recognize Novel Immunodominant Quaternary Epitopes on the HIV-1 Env Protein
Hicar, Mark D.; Chen, Xuemin; Sulli, Chidananda; Barnes, Trevor; Goodman, Jason; Sojar, Hakimuddin; Briney, Bryan; Willis, Jordan; Chukwuma, Valentine U.; Kalams, Spyros A.; Doranz, Benjamin J.; Spearman, Paul; Crowe, James E.
2016-01-01
Numerous broadly neutralizing antibodies (Abs) target epitopes that are formed or enhanced during mature HIV envelope formation (i.e. quaternary epitopes). Generally, it is thought that Env epitopes that induce broadly neutralizing Abs are difficult to access and poorly immunogenic because of the characteristic oligomerization, conformational flexibility, sequence diversity and extensive glycosylation of Env protein. To enhance for isolation of quaternary epitope-targeting Abs (QtAbs), we previously used HIV virus-like particles (VLPs) to bind B cells from long-term non-progressor subjects to identify a panel of monoclonal Abs. When expressed as recombinant full-length Abs, a subset of these novel Abs exhibited the binding profiles of QtAbs, as they either failed to bind to monomeric Env protein or showed much higher affinity for Env trimers and VLPs. These QtAbs represented a significant proportion of the B-cell response identified with VLPs. The Ab genes of these clones were highly mutated, but they did not neutralize common HIV strains. We sought to further define the epitopes targeted by these QtAbs. Competition-binding and mapping studies revealed these Abs targeted four separate epitopes; they also failed to compete for binding by Abs to known major neutralizing epitopes. Detailed epitope mapping studies revealed that two of the four epitopes were located in the gp41 subunit of Env. These QtAbs bound pre-fusion forms of antigen and showed differential binding kinetics depending on whether oligomers were produced as recombinant gp140 trimers or as full-length Env incorporated into VLPs. Antigenic regions within gp41 present unexpectedly diverse structural epitopes, including these QtAb epitopes, which may be targeted by the naturally occurring Ab response to HIV infection. PMID:27411063
Structural analysis of B-cell epitopes in antibody:protein complexes
Kringelum, Jens Vindahl; Nielsen, Morten; Padkjær, Søren Berg; Lund, Ole
2012-01-01
The binding of antigens to antibodies is one of the key events in an immune response against foreign molecules and is a critical element of several biomedical applications including vaccines and immunotherapeutics. For development of such applications, the identification of antibody binding sites (B-cell epitopes) is essential. However experimental epitope mapping is highly cost-intensive and computer-aided methods do in general have moderate performance. One major reason for this moderate performance is an incomplete understanding of what characterizes an epitope. To fill this gap, we here developed a novel framework for comparing and superimposing B-cell epitopes and applied it on a dataset of 107 non-similar antigen:antibody structures extracted from the PDB database. With the presented framework, we were able to describe the general B-cell epitope as a flat, oblong, oval shaped volume consisting of predominantly hydrophobic amino acids in the center flanked by charged residues. The average epitope was found to be made up of ~15 residues with one linear stretch of 5 or more residues constituting more than half of the epitope size. Furthermore, the epitope area is predominantly constrained to a plane above the antibody tip, in which the epitope is orientated in a −30 to 60 degree angle relative to the light to heavy chain antibody direction. Contrary to previously findings, we did not find a significant deviation between the amino acid composition in epitopes and the composition of equally exposed parts of the antigen surface. Our results, in combination with previously findings, give a detailed picture of the B-cell epitope that may be used in development of improved B-cell prediction methods. PMID:22784991
Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo; Lund, Ole; Buus, Søren
2017-01-01
Identification of epitopes targeted by antibodies (B cell epitopes) is of critical importance for the development of many diagnostic and therapeutic tools. For clinical usage, such epitopes must be extensively characterized in order to validate specificity and to document potential cross-reactivity. B cell epitopes are typically classified as either linear epitopes, i.e. short consecutive segments from the protein sequence or conformational epitopes adapted through native protein folding. Recent advances in high-density peptide microarrays enable high-throughput, high-resolution identification and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation of the data provided in such large-scale screenings is far from trivial and in most cases it requires advanced computational and statistical skills. Here, we present an online application for automated identification of linear B cell epitopes, allowing the non-expert user to analyse peptide microarray data. The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots. Demonstrating utility, the application was used to identify and address the antibody specificity of 18 linear epitope regions in Human Serum Albumin (HSA), using peptide microarray data consisting of fully substituted peptides spanning the entire sequence of HSA and incubated with polyclonal rabbit anti-HSA (and mouse anti-rabbit-Cy3). The application is made available at: www.cbs.dtu.dk/services/ArrayPitope. PMID:28095436
Costa, Juan G; Faccendini, Pablo L; Sferco, Silvano J; Lagier, Claudia M; Marcipar, Iván S
2013-06-01
This work deals with the use of predictors to identify useful B-cell linear epitopes to develop immunoassays. Experimental techniques to meet this goal are quite expensive and time consuming. Therefore, we tested 5 free, online prediction methods (AAPPred, ABCpred, BcePred, BepiPred and Antigenic) widely used for predicting linear epitopes, using the primary structure of the protein as the only input. We chose a set of 65 experimentally well documented epitopes obtained by the most reliable experimental techniques as our true positive set. To compare the quality of the predictor methods we used their positive predictive value (PPV), i.e. the proportion of the predicted epitopes that are true, experimentally confirmed epitopes, in relation to all the epitopes predicted. We conclude that AAPPred and ABCpred yield the best results as compared with the other programs and with a random prediction procedure. Our results also indicate that considering the consensual epitopes predicted by several programs does not improve the PPV.
Hartman, Isamu Z.; Kim, AeRyon; Cotter, Robert J.; Walter, Kimberly; Dalai, Sarat K.; Boronina, Tatiana; Griffith, Wendell; Schwenk, Robert; Lanar, David E.; Krzych, Urszula; Cole, Robert N.; Sadegh-Nasseri, Scheherazade
2010-01-01
Immunodominance is defined as restricted responsiveness of T cells to a few selected epitopes from complex antigens. Strategies currently used for elucidating CD4+ T cell epitopes are inadequate. To understand the mechanism of epitope selection for helper T cells, we established a cell-free antigen processing system composed of defined proteins: MHC class II, cathepsins, and HLA-DM. Our minimalist system successfully identified the physiologically selected immunodominant epitopes of model antigens, HA1 from influenza virus (A/Texas/1/77) and type II collagen. When applied for de novo epitope identification to a malaria antigen, or HA1 from H5N1 virus (Avian Flu), the system selected a single epitope from each protein that were confirmed to be immunodominant by their capacity to activate CD4+ T cells in HLA-DR1 positive human volunteers or transgenic mice immunized with the corresponding proteins. Thus, we provide a powerful new tool for the identification of physiologically relevant helper T cell epitopes from antigens. PMID:21037588
Using a combined computational-experimental approach to predict antibody-specific B cell epitopes.
Sela-Culang, Inbal; Benhnia, Mohammed Rafii-El-Idrissi; Matho, Michael H; Kaever, Thomas; Maybeno, Matt; Schlossman, Andrew; Nimrod, Guy; Li, Sheng; Xiang, Yan; Zajonc, Dirk; Crotty, Shane; Ofran, Yanay; Peters, Bjoern
2014-04-08
Antibody epitope mapping is crucial for understanding B cell-mediated immunity and required for characterizing therapeutic antibodies. In contrast to T cell epitope mapping, no computational tools are in widespread use for prediction of B cell epitopes. Here, we show that, utilizing the sequence of an antibody, it is possible to identify discontinuous epitopes on its cognate antigen. The predictions are based on residue-pairing preferences and other interface characteristics. We combined these antibody-specific predictions with results of cross-blocking experiments that identify groups of antibodies with overlapping epitopes to improve the predictions. We validate the high performance of this approach by mapping the epitopes of a set of antibodies against the previously uncharacterized D8 antigen, using complementary techniques to reduce method-specific biases (X-ray crystallography, peptide ELISA, deuterium exchange, and site-directed mutagenesis). These results suggest that antibody-specific computational predictions and simple cross-blocking experiments allow for accurate prediction of residues in conformational B cell epitopes. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Brian G.; Boucher, Elisabeth N.; Piepenbrink, Kurt H.
Despite recent advances in therapeutic options, hepatitis C virus (HCV) remains a severe global disease burden, and a vaccine can substantially reduce its incidence. Due to its extremely high sequence variability, HCV can readily escape the immune response; thus, an effective vaccine must target conserved, functionally important epitopes. Using the structure of a broadly neutralizing antibody in complex with a conserved linear epitope from the HCV E2 envelope glycoprotein (residues 412 to 423; epitope I), we performed structure-based design of immunogens to induce antibody responses to this epitope. This resulted in epitope-based immunogens based on a cyclic defensin protein, asmore » well as a bivalent immunogen with two copies of the epitope on the E2 surface. We solved the X-ray structure of a cyclic immunogen in complex with the HCV1 antibody and confirmed preservation of the epitope conformation and the HCV1 interface. Mice vaccinated with our designed immunogens produced robust antibody responses to epitope I, and their serum could neutralize HCV. Notably, the cyclic designs induced greater epitope-specific responses and neutralization than the native peptide epitope. Beyond successfully designing several novel HCV immunogens, this study demonstrates the principle that neutralizing anti-HCV antibodies can be induced by epitope-based, engineered vaccines and provides the basis for further efforts in structure-based design of HCV vaccines. IMPORTANCEHepatitis C virus is a leading cause of liver disease and liver cancer, with approximately 3% of the world's population infected. To combat this virus, an effective vaccine would have distinct advantages over current therapeutic options, yet experimental vaccines have not been successful to date, due in part to the virus's high sequence variability leading to immune escape. In this study, we rationally designed several vaccine immunogens based on the structure of a conserved epitope that is the target of broadly neutralizing antibodies.In vivoresults in mice indicated that these antigens elicited epitope-specific neutralizing antibodies, with various degrees of potency and breadth. These promising results suggest that a rational design approach can be used to generate an effective vaccine for this virus.« less
2011-01-01
Background HIV vaccine development must address the genetic diversity and plasticity of the virus that permits the presentation of diverse genetic forms to the immune system and subsequent escape from immune pressure. Assessment of potential HIV strain coverage by candidate T cell-based vaccines (whether natural sequence or computationally optimized products) is now a critical component in interpreting candidate vaccine suitability. Methods We have utilized an N-mer identity algorithm to represent T cell epitopes and explore potential coverage of the global HIV pandemic using natural sequences derived from candidate HIV vaccines. Breadth (the number of T cell epitopes generated) and depth (the variant coverage within a T cell epitope) analyses have been incorporated into the model to explore vaccine coverage requirements in terms of the number of discrete T cell epitopes generated. Results We show that when multiple epitope generation by a vaccine product is considered a far more nuanced appraisal of the potential HIV strain coverage of the vaccine product emerges. By considering epitope breadth and depth several important observations were made: (1) epitope breadth requirements to reach particular levels of vaccine coverage, even for natural sequence-based vaccine products is not necessarily an intractable problem for the immune system; (2) increasing the valency (number of T cell epitope variants present) of vaccine products dramatically decreases the epitope requirements to reach particular coverage levels for any epidemic; (3) considering multiple-hit models (more than one exact epitope match with an incoming HIV strain) places a significantly higher requirement upon epitope breadth in order to reach a given level of coverage, to the point where low valency natural sequence based products would not practically be able to generate sufficient epitopes. Conclusions When HIV vaccine sequences are compared against datasets of potential incoming viruses important metrics such as the minimum epitope count required to reach a desired level of coverage can be easily calculated. We propose that such analyses can be applied early in the planning stages and during the execution phase of a vaccine trial to explore theoretical and empirical suitability of a vaccine product to a particular epidemic setting. PMID:22152192
Yang, Jianke; Yuan, Jian; Gao, Jiguang; Zhu, Xiaolei; Lin, Aiqin
2015-01-01
To predict B cell epitopes of hemagglutinin (HA) of human-infecting H6N1 avian influenza virus and analyze their evolutionary characteristics. The dataset was downloaded from GISAID and GenBank databases. And the linear and conformational B cell epitopes of HA were predicted separately by various bioinformatic software. Furthermore, the conservation, adaptation and other evolutionary characteristics were also analyzed by some bioinformatic means. Four linear epitopes (A, B, C and D) and two conformational epitopes (E and F) were obtained after consideration of multiple factors. And the C epitope and sites ( 41, 157, 186, 187) mutated easily, but the other epitopes were very conservative and the D epitope was the most conservative. Interestingly, the site 157 was identified under positive selection, suggesting that it may be a particularly important site to make the virus evade the attack from the host immune system. The HA of human-infecting H6N1 avian influenza virus has five conservative B cell epitopes (three linear and two conformational) and one site under positive selection. The findings would facilitate the vaccine development, virus control and pathogenesis understanding.
Prediction of common epitopes on hemagglutinin of the influenza A virus (H1 subtype).
Guo, Chunyan; Xie, Xin; Li, Huijin; Zhao, Penghua; Zhao, Xiangrong; Sun, Jingying; Wang, Haifang; Liu, Yang; Li, Yan; Hu, Qiaoxia; Hu, Jun; Li, Yuan
2015-02-01
Influenza A virus infection is a persistent threat to public health worldwide due to hemagglutinin (HA) variation. Current vaccines against influenza A virus provide immunity to viral isolates similar to vaccine strains. Antibodies against common epitopes provide immunity to diverse influenza virus strains and protect against future pandemic influenza. Therefore, it is vital to analyze common HA antigenic epitopes of influenza virus. In this study, 14 strains of monoclonal antibodies with high sensitivity to common epitopes of influenza virus antigens identified in our previous study were selected as the tool to predict common HA epitopes. The common HA antigenic epitopes were divided into four categories by ELISA blocking experiments, and separately, into three categories according to the preliminary results of computer simulation. Comparison between the results of computer simulations and ELISA blocking experiments indicated that at least two classes of common epitopes are present in influenza virus HA. This study provides experimental data for improving the prediction of HA epitopes of influenza virus (H1 subtype) and the development of a potential universal vaccine as well as a novel approach for the prediction of epitopes on other pathogenic microorganisms. Copyright © 2014 Elsevier Inc. All rights reserved.
Hjelm, Barbara; Forsström, Björn; Löfblom, John; Rockberg, Johan; Uhlén, Mathias
2012-01-01
A problem for the generation of polyclonal antibodies is the potential difficulties for obtaining a renewable resource due to batch-to-batch variations when the same antigen is immunized into several separate animals. Here, we have investigated this issue by determining the epitopes of antibodies generated from parallel immunizations of rabbits with recombinant antigens corresponding to ten human protein targets. The epitopes were mapped by both a suspension bead array approach using overlapping synthetic 15-mer peptides and a bacterial display approach using expression of random fragments of the antigen on the surface of bacteria. Both methods determined antibody binding with the aid of fluorescent-based analysis. In addition, one polyclonal antibody was fractionated by peptide-specific affinity capture for in-depth comparison of epitopes. The results show that the same antigen immunized in several rabbits yields polyclonal antibodies with similar epitopes, but with larger differences in the relative amounts of antibodies to the different epitopes. In some cases, unique epitopes were observed for one of the immunizations. The results suggest that polyclonal antibodies generated by repeated immunizations do not display an identical epitope pattern, although many of the epitopes are similar. PMID:23284606
Ebstein, F.; Textoris-Taube, K.; Keller, C.; Golnik, R.; Vigneron, N.; Van den Eynde, B. J.; Schuler-Thurner, B.; Schadendorf, D.; Lorenz, F. K. M.; Uckert, W.; Urban, S.; Lehmann, A.; Albrecht-Koepke, N.; Janek, K.; Henklein, P.; Niewienda, A.; Kloetzel, P. M.; Mishto, M.
2016-01-01
Proteasome-catalyzed peptide splicing represents an additional catalytic activity of proteasomes contributing to the pool of MHC-class I-presented epitopes. We here biochemically and functionally characterized a new melanoma gp100 derived spliced epitope. We demonstrate that the gp100mel47–52/40–42 antigenic peptide is generated in vitro and in cellulo by a not yet described proteasomal condensation reaction. gp100mel47–52/40–42 generation is enhanced in the presence of the β5i/LMP7 proteasome-subunit and elicits a peptide-specific CD8+ T cell response. Importantly, we demonstrate that different gp100mel-derived spliced epitopes are generated and presented to CD8+ T cells with efficacies comparable to non-spliced canonical tumor epitopes and that gp100mel-derived spliced epitopes trigger activation of CD8+ T cells found in peripheral blood of half of the melanoma patients tested. Our data suggest that both transpeptidation and condensation reactions contribute to the frequent generation of spliced epitopes also in vivo and that their immune relevance may be comparable to non-spliced epitopes. PMID:27049119
Papuchon, Jennifer; Pinson, Patricia; Guidicelli, Gwenda-Line; Bellecave, Pantxika; Thomas, Réjean; LeBlanc, Roger; Reigadas, Sandrine; Taupin, Jean-Luc; Baril, Jean Guy; Routy, Jean Pierre; Wainberg, Mark; Fleury, Hervé
2014-01-01
In patients responding successfully to ART, the next therapeutic step is viral cure. An interesting strategy is antiviral vaccination, particularly involving CD8 T cell epitopes. However, attempts at vaccination are dependent on the immunogenetic background of individuals. The Provir/Latitude 45 project aims to investigate which CTL epitopes in proviral HIV-1 will be recognized by the immune system when HLA alleles are taken into consideration. A prior study (Papuchon et al, PLoS ONE 2013) showed that chronically-infected patients under successful ART exhibited variations of proviral CTL epitopes compared to a reference viral strain (HXB2) and that a generic vaccine may not be efficient. Here, we investigated viral and/or proviral CTL epitopes at different time points in recently infected individuals of the Canadian primary HIV infection cohort and assessed the affinity of these epitopes for HLA alleles during the study period. An analysis of the results confirms that it is not possible to fully predict which epitopes will be recognized by the HLA alleles of the patients if the reference sequences and epitopes are taken as the basis of simulation. Epitopes may be seen to vary in circulating RNA and proviral DNA. Despite this confirmation, the overall variability of the epitopes was low in these patients who are temporally close to primary infection.
Papuchon, Jennifer; Pinson, Patricia; Guidicelli, Gwenda-Line; Bellecave, Pantxika; Thomas, Réjean; LeBlanc, Roger; Reigadas, Sandrine; Taupin, Jean-Luc; Baril, Jean Guy; Routy, Jean Pierre; Wainberg, Mark; Fleury, Hervé
2014-01-01
In patients responding successfully to ART, the next therapeutic step is viral cure. An interesting strategy is antiviral vaccination, particularly involving CD8 T cell epitopes. However, attempts at vaccination are dependent on the immunogenetic background of individuals. The Provir/Latitude 45 project aims to investigate which CTL epitopes in proviral HIV-1 will be recognized by the immune system when HLA alleles are taken into consideration. A prior study (Papuchon et al, PLoS ONE 2013) showed that chronically-infected patients under successful ART exhibited variations of proviral CTL epitopes compared to a reference viral strain (HXB2) and that a generic vaccine may not be efficient. Here, we investigated viral and/or proviral CTL epitopes at different time points in recently infected individuals of the Canadian primary HIV infection cohort and assessed the affinity of these epitopes for HLA alleles during the study period. An analysis of the results confirms that it is not possible to fully predict which epitopes will be recognized by the HLA alleles of the patients if the reference sequences and epitopes are taken as the basis of simulation. Epitopes may be seen to vary in circulating RNA and proviral DNA. Despite this confirmation, the overall variability of the epitopes was low in these patients who are temporally close to primary infection. PMID:24964202
Khrustalev, Vladislav Victorovich
2009-01-01
We showed that GC-content of nucleotide sequences coding for linear B-cell epitopes of herpes simplex virus type 1 (HSV1) glycoprotein B (gB) is higher than GC-content of sequences coding for epitope-free regions of this glycoprotein (G + C = 73 and 64%, respectively). Linear B-cell epitopes have been predicted in HSV1 gB by BepiPred algorithm ( www.cbs.dtu.dk/services/BepiPred ). Proline is an acrophilic amino acid residue (it is usually situated on the surface of protein globules, and so included in linear B-cell epitopes). Indeed, the level of proline is much higher in predicted epitopes of gB than in epitope-free regions (17.8% versus 1.8%). This amino acid is coded by GC-rich codons (CCX) that can be produced due to nucleotide substitutions caused by mutational GC-pressure. GC-pressure will also lead to disappearance of acrophobic phenylalanine, isoleucine, methionine and tyrosine coded by GC-poor codons. Results of our "in-silico directed mutagenesis" showed that single nonsynonymous substitutions in AT to GC direction in two long epitope-free regions of gB will cause formation of new linear epitopes or elongation of previously existing epitopes flanking these regions in 25% of 539 possible cases. The calculations of GC-content and amino acid content have been performed by CodonChanges algorithm ( www.barkovsky.hotmail.ru ).
Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs.
Lee, S Hong; Ripke, Stephan; Neale, Benjamin M; Faraone, Stephen V; Purcell, Shaun M; Perlis, Roy H; Mowry, Bryan J; Thapar, Anita; Goddard, Michael E; Witte, John S; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole A; Anjorin, Adebayo; Anney, Richard; Anttila, Verneri; Arking, Dan E; Asherson, Philip; Azevedo, Maria H; Backlund, Lena; Badner, Judith A; Bailey, Anthony J; Banaschewski, Tobias; Barchas, Jack D; Barnes, Michael R; Barrett, Thomas B; Bass, Nicholas; Battaglia, Agatino; Bauer, Michael; Bayés, Mònica; Bellivier, Frank; Bergen, Sarah E; Berrettini, Wade; Betancur, Catalina; Bettecken, Thomas; Biederman, Joseph; Binder, Elisabeth B; Black, Donald W; Blackwood, Douglas H R; Bloss, Cinnamon S; Boehnke, Michael; Boomsma, Dorret I; Breen, Gerome; Breuer, René; Bruggeman, Richard; Cormican, Paul; Buccola, Nancy G; Buitelaar, Jan K; Bunney, William E; Buxbaum, Joseph D; Byerley, William F; Byrne, Enda M; Caesar, Sian; Cahn, Wiepke; Cantor, Rita M; Casas, Miguel; Chakravarti, Aravinda; Chambert, Kimberly; Choudhury, Khalid; Cichon, Sven; Cloninger, C Robert; Collier, David A; Cook, Edwin H; Coon, Hilary; Cormand, Bru; Corvin, Aiden; Coryell, William H; Craig, David W; Craig, Ian W; Crosbie, Jennifer; Cuccaro, Michael L; Curtis, David; Czamara, Darina; Datta, Susmita; Dawson, Geraldine; Day, Richard; De Geus, Eco J; Degenhardt, Franziska; Djurovic, Srdjan; Donohoe, Gary J; Doyle, Alysa E; Duan, Jubao; Dudbridge, Frank; Duketis, Eftichia; Ebstein, Richard P; Edenberg, Howard J; Elia, Josephine; Ennis, Sean; Etain, Bruno; Fanous, Ayman; Farmer, Anne E; Ferrier, I Nicol; Flickinger, Matthew; Fombonne, Eric; Foroud, Tatiana; Frank, Josef; Franke, Barbara; Fraser, Christine; Freedman, Robert; Freimer, Nelson B; Freitag, Christine M; Friedl, Marion; Frisén, Louise; Gallagher, Louise; Gejman, Pablo V; Georgieva, Lyudmila; Gershon, Elliot S; Geschwind, Daniel H; Giegling, Ina; Gill, Michael; Gordon, Scott D; Gordon-Smith, Katherine; Green, Elaine K; Greenwood, Tiffany A; Grice, Dorothy E; Gross, Magdalena; Grozeva, Detelina; Guan, Weihua; Gurling, Hugh; De Haan, Lieuwe; Haines, Jonathan L; Hakonarson, Hakon; Hallmayer, Joachim; Hamilton, Steven P; Hamshere, Marian L; Hansen, Thomas F; Hartmann, Annette M; Hautzinger, Martin; Heath, Andrew C; Henders, Anjali K; Herms, Stefan; Hickie, Ian B; Hipolito, Maria; Hoefels, Susanne; Holmans, Peter A; Holsboer, Florian; Hoogendijk, Witte J; Hottenga, Jouke-Jan; Hultman, Christina M; Hus, Vanessa; Ingason, Andrés; Ising, Marcus; Jamain, Stéphane; Jones, Edward G; Jones, Ian; Jones, Lisa; Tzeng, Jung-Ying; Kähler, Anna K; Kahn, René S; Kandaswamy, Radhika; Keller, Matthew C; Kennedy, James L; Kenny, Elaine; Kent, Lindsey; Kim, Yunjung; Kirov, George K; Klauck, Sabine M; Klei, Lambertus; Knowles, James A; Kohli, Martin A; Koller, Daniel L; Konte, Bettina; Korszun, Ania; Krabbendam, Lydia; Krasucki, Robert; Kuntsi, Jonna; Kwan, Phoenix; Landén, Mikael; Långström, Niklas; Lathrop, Mark; Lawrence, Jacob; Lawson, William B; Leboyer, Marion; Ledbetter, David H; Lee, Phil H; Lencz, Todd; Lesch, Klaus-Peter; Levinson, Douglas F; Lewis, Cathryn M; Li, Jun; Lichtenstein, Paul; Lieberman, Jeffrey A; Lin, Dan-Yu; Linszen, Don H; Liu, Chunyu; Lohoff, Falk W; Loo, Sandra K; Lord, Catherine; Lowe, Jennifer K; Lucae, Susanne; MacIntyre, Donald J; Madden, Pamela A F; Maestrini, Elena; Magnusson, Patrik K E; Mahon, Pamela B; Maier, Wolfgang; Malhotra, Anil K; Mane, Shrikant M; Martin, Christa L; Martin, Nicholas G; Mattheisen, Manuel; Matthews, Keith; Mattingsdal, Morten; McCarroll, Steven A; McGhee, Kevin A; McGough, James J; McGrath, Patrick J; McGuffin, Peter; McInnis, Melvin G; McIntosh, Andrew; McKinney, Rebecca; McLean, Alan W; McMahon, Francis J; McMahon, William M; McQuillin, Andrew; Medeiros, Helena; Medland, Sarah E; Meier, Sandra; Melle, Ingrid; Meng, Fan; Meyer, Jobst; Middeldorp, Christel M; Middleton, Lefkos; Milanova, Vihra; Miranda, Ana; Monaco, Anthony P; Montgomery, Grant W; Moran, Jennifer L; Moreno-De-Luca, Daniel; Morken, Gunnar; Morris, Derek W; Morrow, Eric M; Moskvina, Valentina; Muglia, Pierandrea; Mühleisen, Thomas W; Muir, Walter J; Müller-Myhsok, Bertram; Murtha, Michael; Myers, Richard M; Myin-Germeys, Inez; Neale, Michael C; Nelson, Stan F; Nievergelt, Caroline M; Nikolov, Ivan; Nimgaonkar, Vishwajit; Nolen, Willem A; Nöthen, Markus M; Nurnberger, John I; Nwulia, Evaristus A; Nyholt, Dale R; O'Dushlaine, Colm; Oades, Robert D; Olincy, Ann; Oliveira, Guiomar; Olsen, Line; Ophoff, Roel A; Osby, Urban; Owen, Michael J; Palotie, Aarno; Parr, Jeremy R; Paterson, Andrew D; Pato, Carlos N; Pato, Michele T; Penninx, Brenda W; Pergadia, Michele L; Pericak-Vance, Margaret A; Pickard, Benjamin S; Pimm, Jonathan; Piven, Joseph; Posthuma, Danielle; Potash, James B; Poustka, Fritz; Propping, Peter; Puri, Vinay; Quested, Digby J; Quinn, Emma M; Ramos-Quiroga, Josep Antoni; Rasmussen, Henrik B; Raychaudhuri, Soumya; Rehnström, Karola; Reif, Andreas; Ribasés, Marta; Rice, John P; Rietschel, Marcella; Roeder, Kathryn; Roeyers, Herbert; Rossin, Lizzy; Rothenberger, Aribert; Rouleau, Guy; Ruderfer, Douglas; Rujescu, Dan; Sanders, Alan R; Sanders, Stephan J; Santangelo, Susan L; Sergeant, Joseph A; Schachar, Russell; Schalling, Martin; Schatzberg, Alan F; Scheftner, William A; Schellenberg, Gerard D; Scherer, Stephen W; Schork, Nicholas J; Schulze, Thomas G; Schumacher, Johannes; Schwarz, Markus; Scolnick, Edward; Scott, Laura J; Shi, Jianxin; Shilling, Paul D; Shyn, Stanley I; Silverman, Jeremy M; Slager, Susan L; Smalley, Susan L; Smit, Johannes H; Smith, Erin N; Sonuga-Barke, Edmund J S; St Clair, David; State, Matthew; Steffens, Michael; Steinhausen, Hans-Christoph; Strauss, John S; Strohmaier, Jana; Stroup, T Scott; Sutcliffe, James S; Szatmari, Peter; Szelinger, Szabocls; Thirumalai, Srinivasa; Thompson, Robert C; Todorov, Alexandre A; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J C G; Van Grootheest, Gerard; Van Os, Jim; Vicente, Astrid M; Vieland, Veronica J; Vincent, John B; Visscher, Peter M; Walsh, Christopher A; Wassink, Thomas H; Watson, Stanley J; Weissman, Myrna M; Werge, Thomas; Wienker, Thomas F; Wijsman, Ellen M; Willemsen, Gonneke; Williams, Nigel; Willsey, A Jeremy; Witt, Stephanie H; Xu, Wei; Young, Allan H; Yu, Timothy W; Zammit, Stanley; Zandi, Peter P; Zhang, Peng; Zitman, Frans G; Zöllner, Sebastian; Devlin, Bernie; Kelsoe, John R; Sklar, Pamela; Daly, Mark J; O'Donovan, Michael C; Craddock, Nicholas; Sullivan, Patrick F; Smoller, Jordan W; Kendler, Kenneth S; Wray, Naomi R
2013-09-01
Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.
Sharma, Vidhu; Singh, Bhanu P; Gaur, Shailendra N; Pasha, Santosh; Arora, Naveen
2009-06-01
The knowledge on epitopes of proteins can help in devising new therapeutic modalities for allergic disorders. In the present study, five B (P1-P5) and five T cell (P6-P10) epitopes were predicted in silico based on sequence homology model of Cur l 3, a major allergen of Curvularia lunata. Peptides (epitopes) were synthesized and assessed for biological activity by ELISA, competitive ELISA, lymphoproliferation and cytokine profiling using Curvularia allergic patients' sera. B cell peptides showed higher IgE binding by ELISA than T cell epitopes except P6. Peptides P1-P6 achieved EC(50) at 100 ng, whereas P7-P10 required 10 mug in inhibition assays. Peripheral blood mononuclear cells from Curvularia allergic patients (n = 20) showed higher lymphoproliferation for T cell epitopes than B cell epitopes except P6 confirming the properties of B and T cell prediction. The supernatant from these patients show highest interleukin-4 release on stimulation with P6 followed by B cell peptides. P4 and P6 together identified 35/37 of Curvularia positive patients by skin tests. In summary, experimental analysis confirmed in silico predicted epitopes containing important antigenic regions of Cur l 3. P6, a predicted T cell epitope, showed the presence of a cryptic B cell epitope. Peptides P4 and P6 have potential for clinical application. The approach used here is relevant and may be used to delineate epitopes of other proteins.
Identification of a conserved B-cell epitope on duck hepatitis A type 1 virus VP1 protein.
Wu, Xiaoying; Li, Xiaojun; Zhang, Qingshan; Wulin, Shaozhou; Bai, Xiaofei; Zhang, Tingting; Wang, Yue; Liu, Ming; Zhang, Yun
2015-01-01
The VP1 protein of duck hepatitis A virus (DHAV) is a major structural protein that induces neutralizing antibodies in ducks; however, B-cell epitopes on the VP1 protein of duck hepatitis A genotype 1 virus (DHAV-1) have not been characterized. To characterize B-cell epitopes on VP1, we used the monoclonal antibody (mAb) 2D10 against Escherichia coli-expressed VP1 of DHAV-1. In vitro, mAb 2D10 neutralized DHAV-1 virus. By using an array of overlapping 12-mer peptides, we found that mAb 2D10 recognized phages displaying peptides with the consensus motif LPAPTS. Sequence alignment showed that the epitope 173LPAPTS178 is highly conserved among the DHAV-1 genotypes. Moreover, the six amino acid peptide LPAPTS was proven to be the minimal unit of the epitope with maximal binding activity to mAb 2D10. DHAV-1-positive duck serum reacted with the epitope in dot blotting assay, revealing the importance of the six amino acids of the epitope for antibody-epitope binding. Competitive inhibition assays of mAb 2D10 binding to synthetic LPAPTS peptides and truncated VP1 protein fragments, detected by Western blotting, also verify that LPAPTS was the VP1 epitope. We identified LPAPTS as a VP1-specific linear B-cell epitope recognized by the neutralizing mAb 2D10. Our findings have potential applications in the development of diagnostic techniques and epitope-based marker vaccines against DHAV-1.
Immunogenetic mechanisms for the coexistence of organ-specific and systemic autoimmune diseases.
Fridkis-Hareli, Masha
2008-02-15
Organ-specific autoimmune diseases affect particular targets in the body, whereas systemic diseases engage multiple organs. Both types of autoimmune diseases may coexist in the same patient, either sequentially or concurrently, sustained by the presence of autoantibodies directed against the corresponding autoantigens. Multiple factors, including those of immunological, genetic, endocrine and environmental origin, contribute to the above condition. Due to association of certain autoimmune disorders with HLA alleles, it has been intriguing to examine the immunogenetic basis for autoantigen presentation leading to the production of two or more autoantibodies, each distinctive of an organ-specific or systemic disease. This communication offers the explanation for shared autoimmunity as illustrated by organ-specific blistering diseases and the connective tissue disorders of systemic nature. Several hypothetical mechanisms implicating HLA determinants, autoantigenic peptides, T cells, and B cells have been proposed to elucidate the process by which two autoimmune diseases are induced in the same individual. One of these scenarios, based on the assumption that the patient carries two disease-susceptible HLA genes, arises when a single T cell epitope of each autoantigen recognizes its HLA protein, leading to the generation of two types of autoreactive B cells, which produce autoantibodies. Another mechanism functioning whilst an epitope derived from either autoantigen binds each of the HLA determinants, resulting in the induction of both diseases by cross-presentation. Finally, two discrete epitopes originating from the same autoantigen may interact with each of the HLA specificities, eliciting the production of both types of autoantibodies. Despite the lack of immediate or unequivocal experimental evidence supporting the present hypothesis, several approaches may secure a better understanding of shared autoimmunity. Among these are animal models expressing the transgenes of human disease-associated HLA determinants and T or B cell receptors, as well as in vitro binding studies employing purified HLA proteins, synthetic peptides, and cellular assays with antigen-presenting cells and patient's lymphocytes. Indisputably, a bioinformatics-based search for peptide motifs and the modeling of the conformation of bound autoantigenic peptides associated with their respective HLA alleles will reveal some of these important processes. The elucidation of HLA-restricted immune recognition mechanisms prompting the production of two or more disease-specific autoantibodies holds significant clinical ramifications and implications for the development of more effective treatment protocols.
Boisgerault, F; Khalil, I; Tieng, V; Connan, F; Tabary, T; Cohen, J H; Choppin, J; Charron, D; Toubert, A
1996-01-01
The peptide-binding motif of HLA-A29, the predisposing allele for birdshot retinopathy, was determined after acid-elution of endogenous peptides from purified HLA-A29 molecules. Individual and pooled HPLC fractions were sequenced by Edman degradation. Major anchor residues could be defined as glutamate at the second position of the peptide and as tyrosine at the carboxyl terminus. In vitro binding of polyglycine synthetic peptides to purified HLA-A29 molecules also revealed the need for an auxiliary anchor residue at the third position, preferably phenylalanine. By using this motif, we synthesized six peptides from the retinal soluble antigen, a candidate autoantigen in autoimmune uveoretinitis. Their in vitro binding was tested on HLA-A29 and also on HLA-B44 and HLA-B61, two alleles sharing close peptide-binding motifs. Two peptides derived from the carboxyl-terminal sequence of the human retinal soluble antigen bound efficiently to HLA-A29. This study could contribute to the prediction of T-cell epitopes from retinal autoantigens implicated in birdshot retinopathy. PMID:8622959
2010-08-24
A01/A02 B44/B44 002 A01/A02 B08/B44 005 A01/A02 B08/ B27 008 A02/A03 B27 / B27 012 A01/A03 B44/B58 Low resolution molecular HLA typing permitted...Fourteen 8-10-mer epitopes were predicted to bind to HLA supertypes A01 (3 epitopes), A02 (4 epitopes), B08 (2 epitopes) and B44 (5 epitopes). Nine...of seven HLA alleles. These HLA alleles belong to four HLA supertypes that have a phenotypic frequency between 23% - 100% in different human
Yue, Ling; Pfafferott, Katja J.; Baalwa, Joshua; ...
2015-01-08
Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/foundermore » (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of T cell responses to conserved viral epitopes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Ling; Pfafferott, Katja J.; Baalwa, Joshua
Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/foundermore » (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of T cell responses to conserved viral epitopes.« less
Crooks, Ema T.; Tong, Tommy; Chakrabarti, Bimal; Narayan, Kristin; Georgiev, Ivelin S.; Menis, Sergey; Huang, Xiaoxing; Kulp, Daniel; Osawa, Keiko; Muranaka, Janelle; Stewart-Jones, Guillaume; Destefano, Joanne; O’Dell, Sijy; LaBranche, Celia; Robinson, James E.; Montefiori, David C.; McKee, Krisha; Du, Sean X.; Doria-Rose, Nicole; Kwong, Peter D.; Mascola, John R.; Zhu, Ping; Schief, William R.; Wyatt, Richard T.; Whalen, Robert G.; Binley, James M.
2015-01-01
Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs). Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype) rendered 50% or 16.7% (n = 18) of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative “glycan fence” that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine. PMID:26023780
Crooks, Ema T; Tong, Tommy; Chakrabarti, Bimal; Narayan, Kristin; Georgiev, Ivelin S; Menis, Sergey; Huang, Xiaoxing; Kulp, Daniel; Osawa, Keiko; Muranaka, Janelle; Stewart-Jones, Guillaume; Destefano, Joanne; O'Dell, Sijy; LaBranche, Celia; Robinson, James E; Montefiori, David C; McKee, Krisha; Du, Sean X; Doria-Rose, Nicole; Kwong, Peter D; Mascola, John R; Zhu, Ping; Schief, William R; Wyatt, Richard T; Whalen, Robert G; Binley, James M
2015-05-01
Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs). Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype) rendered 50% or 16.7% (n = 18) of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative "glycan fence" that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine.
Proof of principle for epitope-focused vaccine design
Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Christopher; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.
2014-01-01
Summary Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Multiple major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus (RSV), that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for research and development of a human RSV vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets including antigenically highly variable pathogens such as HIV and influenza. PMID:24499818
Long-term adaptation of the influenza A virus by escaping cytotoxic T-cell recognition
NASA Astrophysics Data System (ADS)
Woolthuis, Rutger G.; van Dorp, Christiaan H.; Keşmir, Can; de Boer, Rob J.; van Boven, Michiel
2016-09-01
The evolutionary adaptation of the influenza A virus (IAV) to human antibodies is well characterised. Much less is known about the long-term evolution of cytotoxic T lymphocyte (CTL) epitopes, which are important antigens for clearance of infection. We construct an antigenic map of IAVs of all human subtypes using a compendium of 142 confirmed CTL epitopes, and show that IAV evolved gradually in the period 1932-2015, with infrequent antigenic jumps in the H3N2 subtype. Intriguingly, the number of CTL epitopes per virus decreases with more than one epitope per three years in the H3N2 subtype (from 84 epitopes per virus in 1968 to 64 in 2015), mostly attributed to the loss of HLA-B epitopes. We confirm these observations with epitope predictions. Our findings indicate that selection pressures imposed by CTL immunity shape the long-term evolution of IAV.
Proof of principle for epitope-focused vaccine design
NASA Astrophysics Data System (ADS)
Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Chris; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.
2014-03-01
Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.
Automatic Generation of Validated Specific Epitope Sets.
Carrasco Pro, Sebastian; Sidney, John; Paul, Sinu; Lindestam Arlehamn, Cecilia; Weiskopf, Daniela; Peters, Bjoern; Sette, Alessandro
2015-01-01
Accurate measurement of B and T cell responses is a valuable tool to study autoimmunity, allergies, immunity to pathogens, and host-pathogen interactions and assist in the design and evaluation of T cell vaccines and immunotherapies. In this context, it is desirable to elucidate a method to select validated reference sets of epitopes to allow detection of T and B cells. However, the ever-growing information contained in the Immune Epitope Database (IEDB) and the differences in quality and subjects studied between epitope assays make this task complicated. In this study, we develop a novel method to automatically select reference epitope sets according to a categorization system employed by the IEDB. From the sets generated, three epitope sets (EBV, mycobacteria and dengue) were experimentally validated by detection of T cell reactivity ex vivo from human donors. Furthermore, a web application that will potentially be implemented in the IEDB was created to allow users the capacity to generate customized epitope sets.
Kalaiselvan, Sagadevan; Sankar, Sathish; Ramamurthy, Mageshbabu; Ghosh, Asit Ranjan; Nandagopal, Balaji; Sridharan, Gopalan
2017-08-01
Hantaviruses are emerging viral pathogens that causes hantavirus cardiopulmonary syndrome (HCPS) in the Americas, a severe, sometimes fatal, respiratory disease in humans with a case fatality rate of ≥50%. IgM and IgG-based serological detection methods are the most common approaches used for laboratory diagnosis of hantaviruses. Such emerging viral pathogens emphasizes the need for improved rapid diagnostic devices and vaccines incorporating pan-specific epitopes of genotypes. We predicted linear B-cell epitopes for hantaviruses that are specific to genotypes causing HCPS in humans using in silico prediction servers. We modeled the Andes and Sin Nombre hantavirus nucleocapsid protein to locate the identified epitopes. Based on the mean percent prediction probability score, epitope IMASKSVGS/TAEEKLKKKSAF was identified as the best candidate B-cell epitope specific for hantaviruses causing HCPS. Promiscuous epitopes were identified in the C-terminal of the protein. Our study for the first time has reported pan-specific B-cell epitopes for developing immunoassays in the detection of antibodies to hantaviruses causing HCPS. Identification of epitopes with pan-specific recognition of all genotypes causing HCPS could be valuable for the development of immunodiagnositic tools toward pan-detection of hantavirus antibodies in ELISA. J. Cell. Biochem. 118: 2320-2324, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
He, Linling; Cheng, Yushao; Kong, Leopold; Azadnia, Parisa; Giang, Erick; Kim, Justin; Wood, Malcolm R.; Wilson, Ian A.; Law, Mansun; Zhu, Jiang
2015-08-01
Development of a prophylactic vaccine against hepatitis C virus (HCV) has been hampered by the extraordinary viral diversity and the poor host immune response. Scaffolding, by grafting an epitope onto a heterologous protein scaffold, offers a possible solution to epitope vaccine design. In this study, we designed and characterized epitope vaccine antigens for the antigenic sites of HCV envelope glycoproteins E1 (residues 314-324) and E2 (residues 412-423), for which neutralizing antibody-bound structures are available. We first combined six structural alignment algorithms in a “scaffolding meta-server” to search for diverse scaffolds that can structurally accommodate the HCV epitopes. For each antigenic site, ten scaffolds were selected for computational design, and the resulting epitope scaffolds were analyzed using structure-scoring functions and molecular dynamics simulation. We experimentally confirmed that three E1 and five E2 epitope scaffolds bound to their respective neutralizing antibodies, but with different kinetics. We then investigated a “multivalent scaffolding” approach by displaying 24 copies of an epitope scaffold on a self-assembling nanoparticle, which markedly increased the avidity of antibody binding. Our study thus demonstrates the utility of a multi-scale scaffolding strategy in epitope vaccine design and provides promising HCV immunogens for further assessment in vivo.
Park, Saeyoung; Gerber, Sabina
2014-01-01
Most Staphylococcus aureus isolates produce either a serotype 5 (CP5) or 8 (CP8) capsular polysaccharide, and the CP antigens are targets for vaccine development. Since CP5 and CP8 have similar trisaccharide repeating units, it is important to identify an epitope shared by both CP5 and CP8. To characterize cross-reactivity between CP5 and CP8, the immunogenicity of CP5 and CP8 conjugate vaccines in mice and rabbits was evaluated by serological assays. Immune sera were also tested for functional activity by in vitro opsonophagocytic-killing assays and a murine bacteremia model. Antibodies to the CP5-cross-reactive material 197 (CRM197) conjugate vaccine bound only to purified CP5. In contrast, antibodies to the CP8-CRM conjugate vaccine reacted with CP8 and (to a lesser extent) CP5. De-O-acetylation of CP5 increased its reactivity with CP8 antibodies. Moreover, CP8 antibodies bound to Pseudomonas aeruginosa O11 lipopolysaccharide, which has a trisaccharide repeating unit similar to that of the S. aureus CPs. CP8-CRM antibodies mediated in vitro opsonophagocytic killing of S. aureus expressing CP5 or CP8, whereas CP5-CRM antibodies were serotype specific. Passive immunization with antiserum to CP5-CRM or CP8-CRM protected mice against bacteremia induced by a serotype 5 S. aureus isolate, suggesting that CP8-CRM elicits antibodies cross-reactive to CP5. The identification of epitopes shared by CP5 and CP8 may inform the rational design of a vaccine to protect against infections caused by CP5- or CP8-producing strains of S. aureus. PMID:25245803
Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy.
Jiang, Dong-Bo; Zhang, Jin-Peng; Cheng, Lin-Feng; Zhang, Guan-Wen; Li, Yun; Li, Zi-Chao; Lu, Zhen-Hua; Zhang, Zi-Xin; Lu, Yu-Chen; Zheng, Lian-He; Zhang, Fang-Lin; Yang, Kun
2018-02-01
Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be due to the advantage afforded by lysosomal targeting after exogenous antigen processing initiation and major histocompatibility complex (MHC) class II antigen presentation trafficking. MHC II-restricted antigen recognition effectively primes HTNV-specific CD4 + T-cells, leading to the promotion of significant immune responses and immunological memory. An epitope-spreading phenomenon was observed, which mirrors the previous result from the Gn study, in which the dominant IFN-γ-responsive hot-spot epitopes were shared between HLA-II and H2 d . Importantly, the pan-epitope reaction to Gc indicated that Gc should be with potential for use in further hantavirus DNA vaccine investigations. Copyright © 2017 Elsevier B.V. All rights reserved.
Alves-Silva, Marcus Vinícius; Nico, Dirlei; Morrot, Alexandre; Palatnik, Marcos; Palatnik-de-Sousa, Clarisa B
2017-01-01
The Leishmania donovani nucleoside hydrolase (NH36) and NH A34480 of Leishmania amazonensis share 93% of sequence identity. In mice, the NH36 induced protection against visceral leishmaniasis is mediated by a CD4+ T cell response against its C-terminal domain (F3). Besides this CD4+ Th1 response, prevention and cure of L. amazonensis infection require also additional CD8+ and regulatory T-cell responses to the NH36 N-terminal (F1 domain). We investigated if mice vaccination with F1 and F3 domains cloned in tandem, in a recombinant chimera, with saponin, optimizes the vaccine efficacy against L. amazonensis infection above the levels promoted by the two admixed domains or by each domain independently. The chimera induced the highest IgA, IgG, and IgG2a anti-NH36 antibody, IDR, IFN-γ, and IL-10 responses, while TNF-α was more secreted by mice vaccinated with F3 or all F3-contaning vaccines. Additionally, the chimera and the F1 vaccine also induced the highest proportions of CD4+ and CD8+ T cells secreting IL-2, TNF-α, or IFN-γ alone, TNF-α in combination with IL-2 or IFN-γ, and of CD4+ multifunctional cells secreting IL-2, TNF-α, and IFN-γ. Correlating with the immunological results, the strongest reductions of skin lesions sizes were determined by the admixed domains (80%) and by the chimera (84%), which also promoted the most pronounced and significant reduction of the parasite load (99.8%). Thus, the epitope presentation in a recombinant chimera optimizes immunogenicity and efficacy above the levels induced by the independent or admixed F1 and F3 domains. The multiparameter analysis disclosed that the Th1-CD4+ T helper response induced by the chimera is mainly directed against its FRYPRPKHCHTQVA epitope. Additionally, the YPPEFKTKL epitope of F1 induced the second most important CD4+ T cell response, and, followed by the DVAGIVGVPVAAGCT, FMLQILDFYTKVYE, and ELLAITTVVGNQ sequences, also the most potent CD8+ T cell responses and IL-10 secretion. Remarkably, the YPPEFKTKL epitope shows high amino acid identity with a multipotent PADRE sequence and stimulates simultaneously the CD4+, CD8+ T cell, and a probable T regulatory response. With this approach, we advanced in the design of a NH36 polytope vaccine capable of inducing cross-protection to cutaneous leishmaniasis.
Alves-Silva, Marcus Vinícius; Nico, Dirlei; Morrot, Alexandre; Palatnik, Marcos; Palatnik-de-Sousa, Clarisa B.
2017-01-01
The Leishmania donovani nucleoside hydrolase (NH36) and NH A34480 of Leishmania amazonensis share 93% of sequence identity. In mice, the NH36 induced protection against visceral leishmaniasis is mediated by a CD4+ T cell response against its C-terminal domain (F3). Besides this CD4+ Th1 response, prevention and cure of L. amazonensis infection require also additional CD8+ and regulatory T-cell responses to the NH36 N-terminal (F1 domain). We investigated if mice vaccination with F1 and F3 domains cloned in tandem, in a recombinant chimera, with saponin, optimizes the vaccine efficacy against L. amazonensis infection above the levels promoted by the two admixed domains or by each domain independently. The chimera induced the highest IgA, IgG, and IgG2a anti-NH36 antibody, IDR, IFN-γ, and IL-10 responses, while TNF-α was more secreted by mice vaccinated with F3 or all F3-contaning vaccines. Additionally, the chimera and the F1 vaccine also induced the highest proportions of CD4+ and CD8+ T cells secreting IL-2, TNF-α, or IFN-γ alone, TNF-α in combination with IL-2 or IFN-γ, and of CD4+ multifunctional cells secreting IL-2, TNF-α, and IFN-γ. Correlating with the immunological results, the strongest reductions of skin lesions sizes were determined by the admixed domains (80%) and by the chimera (84%), which also promoted the most pronounced and significant reduction of the parasite load (99.8%). Thus, the epitope presentation in a recombinant chimera optimizes immunogenicity and efficacy above the levels induced by the independent or admixed F1 and F3 domains. The multiparameter analysis disclosed that the Th1-CD4+ T helper response induced by the chimera is mainly directed against its FRYPRPKHCHTQVA epitope. Additionally, the YPPEFKTKL epitope of F1 induced the second most important CD4+ T cell response, and, followed by the DVAGIVGVPVAAGCT, FMLQILDFYTKVYE, and ELLAITTVVGNQ sequences, also the most potent CD8+ T cell responses and IL-10 secretion. Remarkably, the YPPEFKTKL epitope shows high amino acid identity with a multipotent PADRE sequence and stimulates simultaneously the CD4+, CD8+ T cell, and a probable T regulatory response. With this approach, we advanced in the design of a NH36 polytope vaccine capable of inducing cross-protection to cutaneous leishmaniasis. PMID:28280494
Mapping the B cell epitopes within the major capsid protein L1 of human papillomavirus type 16.
Wang, Aiping; Li, Ning; Zhou, Jingming; Chen, Yumei; Jiang, Min; Qi, Yanhua; Liu, Hongliang; Liu, Yankai; Liu, Dongmin; Zhao, Jianguo; Wang, Yanwei; Zhang, Gaiping
2018-06-26
Persistent infection with human papillomavirus type16 (HPV16) has much association with the development of cervical cancer. L1 is the major capsid protein of HPV, it has been well investigated as a potential vaccine candidate. However, B cell epitopes present on L1 have not been well characterized. To identify the potential B-cell antigenic epitopes within HPV16 L1 protein, sixteen serial overlapping truncations (H1-H16) covering the whole region were expressed in E. coli and used in mice immunization. The mice antisera were tested in ELISA binding, IFA and HI assays. Finally, four fragments (H2, H4, H11, H12) were found to contain B cell epitopes of HPV16 L1 protein in ELISA and IFA assays, three fragments (H2, H3, H9) might contain neutralizing epitopes of HPV16 L1 protein in HI assay. Among them, H11 and H12 fragments contain B cell epitopes have never been reported before, and H3 was found as hemagglutination inhibition epitope for the first time. This work provides new insights to B cell epitopes on HPV16 L1 protein. Several new epitopes were identified and may provide some guidance for HPV16 subunit vaccine design. The results of this study might open new perspectives on the antibody-antigen reaction and have important implications for the development of epitopes-based protective HPV16 vaccines. Copyright © 2018. Published by Elsevier B.V.
A novel multi-variant epitope ensemble vaccine against avian leukosis virus subgroup J.
Wang, Xiaoyu; Zhou, Defang; Wang, Guihua; Huang, Libo; Zheng, Qiankun; Li, Chengui; Cheng, Ziqiang
2017-12-04
The hypervariable antigenicity and immunosuppressive features of avian leukosis virus subgroup J (ALV-J) has led to great challenges to develop effective vaccines. Epitope vaccine will be a perspective trend. Previously, we identified a variant antigenic neutralizing epitope in hypervariable region 1 (hr1) of ALV-J, N-LRDFIA/E/TKWKS/GDDL/HLIRPYVNQS-C. BLAST analysis showed that the mutation of A, E, T and H in this epitope cover 79% of all ALV-J strains. Base on this data, we designed a multi-variant epitope ensemble vaccine comprising the four mutation variants linked with glycine and serine. The recombinant multi-variant epitope gene was expressed in Escherichia coli BL21. The expressed protein of the variant multi-variant epitope gene can react with positive sera and monoclonal antibodies of ALV-J, while cannot react with ALV-J negative sera. The multi-variant epitope vaccine that conjugated Freund's adjuvant complete/incomplete showed high immunogenicity that reached the titer of 1:64,000 at 42 days post immunization and maintained the immune period for at least 126 days in SPF chickens. Further, we demonstrated that the antibody induced by the variant multi-variant ensemble epitope vaccine recognized and neutralized different ALV-J strains (NX0101, TA1, WS1, BZ1224 and BZ4). Protection experiment that was evaluated by clinical symptom, viral shedding, weight gain, gross and histopathology showed 100% chickens that inoculated the multi-epitope vaccine were well protected against ALV-J challenge. The result shows a promising multi-variant epitope ensemble vaccine against hypervariable viruses in animals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Localization of non-linear neutralizing B cell epitopes on ricin toxin's enzymatic subunit (RTA).
O'Hara, Joanne M; Kasten-Jolly, Jane C; Reynolds, Claire E; Mantis, Nicholas J
2014-01-01
Efforts to develop a vaccine for ricin toxin are focused on identifying highly immunogenic, safe, and thermostable recombinant derivatives of ricin's enzymatic A subunit (RTA). As a means to guide vaccine design, we have embarked on an effort to generate a comprehensive neutralizing and non-neutralizing B cell epitope map of RTA. In a series of previous studies, we identified three spatially distinct linear (continuous), neutralizing epitopes on RTA, as defined by monoclonal antibodies (mAbs) PB10 (and R70), SyH7, and GD12. In this report we now describe a new collection of 19 toxin-neutralizing mAbs that bind non-linear epitopes on RTA. The most potent toxin-neutralizing mAbs in this new collection, namely WECB2, TB12, PA1, PH12 and IB2 each had nanamolar (or sub-nanomolar) affinities for ricin and were each capable of passively protecting mice against a 5-10xLD50 toxin challenge. Competitive binding assays by surface plasmon resonance revealed that WECB2 binds an epitope that overlaps with PB10 and R70; TB12, PA1, PH12 recognize epitope(s) close to or overlapping with SyH7's epitope; and GD12 and IB2 recognize epitopes that are spatially distinct from all other toxin-neutralizing mAbs. We estimate that we have now accounted for ∼75% of the predicted epitopes on the surface of RTA and that toxin-neutralizing mAbs are directed against a very limited number of these epitopes. Having this information provides a framework for further refinement of RTA mutagenesis and vaccine design. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLellan, Jason S.; Correia, Bruno E.; Chen, Man
2012-06-28
Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in infants, but an effective vaccine has not yet been developed. An ideal vaccine would elicit protective antibodies while avoiding virus-specific T-cell responses, which have been implicated in vaccine-enhanced disease with previous RSV vaccines. We propose that heterologous proteins designed to present RSV-neutralizing antibody epitopes and to elicit cognate antibodies have the potential to fulfill these vaccine requirements, as they can be fashioned to be free of viral T-cell epitopes. Here we present the design and characterization of three epitope-scaffolds that present the epitope of motavizumab, a potentmore » neutralizing antibody that binds to a helix-loop-helix motif in the RSV fusion glycoprotein. Two of the epitope-scaffolds could be purified, and one epitope-scaffold based on a Staphylococcus aureus protein A domain bound motavizumab with kinetic and thermodynamic properties consistent with the free epitope-scaffold being stabilized in a conformation that closely resembled the motavizumab-bound state. This epitope-scaffold was well folded as assessed by circular dichroism and isothermal titration calorimetry, and its crystal structure (determined in complex with motavizumab to 1.9 {angstrom} resolution) was similar to the computationally designed model, with all hydrogen-bond interactions critical for binding to motavizumab preserved. Immunization of mice with this epitope-scaffold failed to elicit neutralizing antibodies but did elicit sera with F binding activity. The elicitation of F binding antibodies suggests that some of the design criteria for eliciting protective antibodies without virus-specific T-cell responses are being met, but additional optimization of these novel immunogens is required.« less
A mathematical framework for the selection of an optimal set of peptides for epitope-based vaccines.
Toussaint, Nora C; Dönnes, Pierre; Kohlbacher, Oliver
2008-12-01
Epitope-based vaccines (EVs) have a wide range of applications: from therapeutic to prophylactic approaches, from infectious diseases to cancer. The development of an EV is based on the knowledge of target-specific antigens from which immunogenic peptides, so-called epitopes, are derived. Such epitopes form the key components of the EV. Due to regulatory, economic, and practical concerns the number of epitopes that can be included in an EV is limited. Furthermore, as the major histocompatibility complex (MHC) binding these epitopes is highly polymorphic, every patient possesses a set of MHC class I and class II molecules of differing specificities. A peptide combination effective for one person can thus be completely ineffective for another. This renders the optimal selection of these epitopes an important and interesting optimization problem. In this work we present a mathematical framework based on integer linear programming (ILP) that allows the formulation of various flavors of the vaccine design problem and the efficient identification of optimal sets of epitopes. Out of a user-defined set of predicted or experimentally determined epitopes, the framework selects the set with the maximum likelihood of eliciting a broad and potent immune response. Our ILP approach allows an elegant and flexible formulation of numerous variants of the EV design problem. In order to demonstrate this, we show how common immunological requirements for a good EV (e.g., coverage of epitopes from each antigen, coverage of all MHC alleles in a set, or avoidance of epitopes with high mutation rates) can be translated into constraints or modifications of the objective function within the ILP framework. An implementation of the algorithm outperforms a simple greedy strategy as well as a previously suggested evolutionary algorithm and has runtimes on the order of seconds for typical problem sizes.
McLellan, Jason S; Correia, Bruno E; Chen, Man; Yang, Yongping; Graham, Barney S; Schief, William R; Kwong, Peter D
2011-06-24
Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in infants, but an effective vaccine has not yet been developed. An ideal vaccine would elicit protective antibodies while avoiding virus-specific T-cell responses, which have been implicated in vaccine-enhanced disease with previous RSV vaccines. We propose that heterologous proteins designed to present RSV-neutralizing antibody epitopes and to elicit cognate antibodies have the potential to fulfill these vaccine requirements, as they can be fashioned to be free of viral T-cell epitopes. Here we present the design and characterization of three epitope-scaffolds that present the epitope of motavizumab, a potent neutralizing antibody that binds to a helix-loop-helix motif in the RSV fusion glycoprotein. Two of the epitope-scaffolds could be purified, and one epitope-scaffold based on a Staphylococcus aureus protein A domain bound motavizumab with kinetic and thermodynamic properties consistent with the free epitope-scaffold being stabilized in a conformation that closely resembled the motavizumab-bound state. This epitope-scaffold was well folded as assessed by circular dichroism and isothermal titration calorimetry, and its crystal structure (determined in complex with motavizumab to 1.9 Å resolution) was similar to the computationally designed model, with all hydrogen-bond interactions critical for binding to motavizumab preserved. Immunization of mice with this epitope-scaffold failed to elicit neutralizing antibodies but did elicit sera with F binding activity. The elicitation of F binding antibodies suggests that some of the design criteria for eliciting protective antibodies without virus-specific T-cell responses are being met, but additional optimization of these novel immunogens is required. Published by Elsevier Ltd.
Li, Yan; Chen, Zhongbiao; Ye, Jianbin; Ning, Lijun; Luo, Jun; Zhang, Lili; Jiang, Yin; Xi, Yue; Ning, Yunshan
2016-06-01
The epitope vaccine is an attractive potential for prophylactic and therapeutic vaccination against Helicobacter pylori (H. pylori) infection. Lpp20 is one of major protective antigens which trigger immune response after H. pylori invades host and has been considered as an excellent vaccine candidate for the control of H. pylori infection. In our previous study, one B-cell epitope and two CD4(+) T-cell epitopes of Lpp20 were identified. In this study, an epitope vaccine composed of mucosal adjuvant cholera toxin B subunit (CTB) and these three identified Lpp20 epitopes were constructed to investigate the efficacy of this epitope vaccine in mice. The epitope vaccine including CTB, one B-cell, and two CD4(+) T-cell epitopes of Lpp20 was constructed and named CTB-Lpp20, which was then expressed in Escherichia coli and used for intraperitoneal immunization in BALB/c mice. The immunogenicity, specificity, and ability to induce antibodies against Lpp20 and cytokine secretion were evaluated. After that, CTB-Lpp20 was intragastrically immunized to investigate the prophylactic and therapeutic efficacy in infected mice. The results indicated that the epitope vaccine CTB-Lpp20 possessed good immunogenicity and immunoreactivity and could elicit specific high level of antibodies against Lpp20 and the cytokine of IFN-γ and IL-17. Additionally, CTB-Lpp20 significantly decreased H. pylori colonization in H. pylori challenging mice, and the protection was correlated with IgG, IgA, and sIgA antibody and Th1-type cytokines. This study will be better for understanding the protective immunity of epitope vaccine, and CTB-Lpp20 may be an alternative strategy for combating H. pylori invasion. © 2015 John Wiley & Sons Ltd.
Lin, Hong-En; Tsai, Wen-Yang; Liu, I-Ju; Li, Pi-Chun; Liao, Mei-Ying; Tsai, Jih-Jin; Wu, Yi-Chieh; Lai, Chih-Yun; Lu, Chih-Hsuan; Huang, Jyh-Hsiung; Chang, Gwong-Jen; Wu, Han-Chung; Wang, Wei-Kung
2012-01-01
Background The envelope (E) protein of dengue virus (DENV) is the major target of neutralizing antibodies and vaccine development. While previous studies on domain III or domain I/II alone have reported several epitopes of monoclonal antibodies (mAbs) against DENV E protein, the possibility of interdomain epitopes and the relationship between epitopes and neutralizing potency remain largely unexplored. Methodology/Principal Findings We developed a dot blot assay by using 67 alanine mutants of predicted surface-exposed E residues as a systematic approach to identify epitopes recognized by mAbs and polyclonal sera, and confirmed our findings using a capture-ELISA assay. Of the 12 mouse mAbs tested, three recognized a novel epitope involving residues (Q211, D215, P217) at the central interface of domain II, and three recognized residues at both domain III and the lateral ridge of domain II, suggesting a more frequent presence of interdomain epitopes than previously appreciated. Compared with mAbs generated by traditional protocols, the potent neutralizing mAbs generated by a new protocol recognized multiple residues in A strand or residues in C strand/CC′ loop of DENV2 and DENV1, and multiple residues in BC loop and residues in DE loop, EF loop/F strand or G strand of DENV1. The predominant epitopes of anti-E antibodies in polyclonal sera were found to include both fusion loop and non-fusion residues in the same or adjacent monomer. Conclusions/Significance Our analyses have implications for epitope-specific diagnostics and epitope-based dengue vaccines. This high throughput method has tremendous application for mapping both intra and interdomain epitopes recognized by human mAbs and polyclonal sera, which would further our understanding of humoral immune responses to DENV at the epitope level. PMID:22235356
Saadi, Mahdiye; Karkhah, Ahmad; Nouri, Hamid Reza
2017-07-01
Current investigations have demonstrated that a multi-epitope peptide vaccine targeting multiple antigens could be considered as an ideal approach for prevention and treatment of brucellosis. According to the latest findings, the most effective immunogenic antigens of brucella to induce immune responses are included Omp31, BP26, BLS, DnaK and L7-L12. Therefore, in the present study, an in silico approach was used to design a novel multi-epitope vaccine to elicit a desirable immune response against brucellosis. First, five novel T-cell epitopes were selected from Omp31, BP26, BLS, DnaK and L7-L12 proteins using different servers. In addition, helper epitopes selected from Tetanus toxin fragment C (TTFrC) were applied to induce CD4+ helper T lymphocytes (HTLs) responses. Selected epitopes were fused together by GPGPG linkers to facilitate the immune processing and epitope presentation. Moreover, cholera toxin B (CTB) was linked to N terminal of vaccine construct as an adjuvant by using EAAAK linker. A multi-epitope vaccine was designed based on predicted epitopes which was 377 amino acid residues in length. Then, the physico-chemical properties, secondary and tertiary structures, stability, intrinsic protein disorder, solubility and allergenicity of this multi-epitope vaccine were assessed using immunoinformatics tools and servers. Based on obtained results, a soluble, and non-allergic protein with 40.59kDa molecular weight was constructed. Expasy ProtParam classified this chimeric protein as a stable protein and also 89.8% residues of constructed vaccine were located in favored regions of the Ramachandran plot. Furthermore, this multi-epitope peptide vaccine was able to strongly induce T cell and B-cell mediated immune responses. In conclusion, immunoinformatics analysis indicated that this multi-epitope peptide vaccine can be effectively expressed and potentially be used for prophylactic or therapeutic usages against brucellosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Brooks, Benjamin D.; Friedman, Harvey M.
2018-01-01
Herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) subunit antigen is included in many preclinical candidate vaccines. The rationale for including gD2 is to produce antibodies that block crucial gD2 epitopes involved in virus entry and cell-to-cell spread. HSV-2 gD2 was the only antigen in the Herpevac Trial for Women that protected against HSV-1 genital infection but not HSV-2. In that trial, a correlation was detected between gD2 ELISA titers and protection against HSV-1, supporting the importance of antibodies. A possible explanation for the lack of protection against HSV-2 was that HSV-2 neutralization titers were low, four-fold lower than to HSV-1. Here, we evaluated neutralization titers and epitope-specific antibody responses to crucial gD2 epitopes involved in virus entry and cell-to-cell spread as correlates of immune protection against genital lesions in immunized guinea pigs. We detected a strong correlation between neutralizing antibodies and protection against genital disease. We used a high throughput biosensor competition assay to measure epitope-specific responses to seven crucial gD2 linear and conformational epitopes involved in virus entry and spread. Some animals produced antibodies to most crucial epitopes while others produced antibodies to few. The number of epitopes recognized by guinea pig immune serum correlated with protection against genital lesions. We confirmed the importance of antibodies to each crucial epitope using monoclonal antibody passive transfer that improved survival and reduced genital disease in mice after HSV-2 genital challenge. We re-evaluated our prior study of epitope-specific antibody responses in women in the Herpevac Trial. Humans produced antibodies that blocked significantly fewer crucial gD2 epitopes than guinea pigs, and antibody responses in humans to some linear epitopes were virtually absent. Neutralizing antibody titers and epitope-specific antibody responses are important immune parameters to evaluate in future Phase I/II prophylactic human vaccine trials that contain gD2 antigen. PMID:29791513
Hook, Lauren M; Cairns, Tina M; Awasthi, Sita; Brooks, Benjamin D; Ditto, Noah T; Eisenberg, Roselyn J; Cohen, Gary H; Friedman, Harvey M
2018-05-01
Herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) subunit antigen is included in many preclinical candidate vaccines. The rationale for including gD2 is to produce antibodies that block crucial gD2 epitopes involved in virus entry and cell-to-cell spread. HSV-2 gD2 was the only antigen in the Herpevac Trial for Women that protected against HSV-1 genital infection but not HSV-2. In that trial, a correlation was detected between gD2 ELISA titers and protection against HSV-1, supporting the importance of antibodies. A possible explanation for the lack of protection against HSV-2 was that HSV-2 neutralization titers were low, four-fold lower than to HSV-1. Here, we evaluated neutralization titers and epitope-specific antibody responses to crucial gD2 epitopes involved in virus entry and cell-to-cell spread as correlates of immune protection against genital lesions in immunized guinea pigs. We detected a strong correlation between neutralizing antibodies and protection against genital disease. We used a high throughput biosensor competition assay to measure epitope-specific responses to seven crucial gD2 linear and conformational epitopes involved in virus entry and spread. Some animals produced antibodies to most crucial epitopes while others produced antibodies to few. The number of epitopes recognized by guinea pig immune serum correlated with protection against genital lesions. We confirmed the importance of antibodies to each crucial epitope using monoclonal antibody passive transfer that improved survival and reduced genital disease in mice after HSV-2 genital challenge. We re-evaluated our prior study of epitope-specific antibody responses in women in the Herpevac Trial. Humans produced antibodies that blocked significantly fewer crucial gD2 epitopes than guinea pigs, and antibody responses in humans to some linear epitopes were virtually absent. Neutralizing antibody titers and epitope-specific antibody responses are important immune parameters to evaluate in future Phase I/II prophylactic human vaccine trials that contain gD2 antigen.
Ashok Kumar, Hassan G; Venkatesh, Yeldur P
2014-02-01
Thaumatin-like proteins (TLPs) belong to the pathogenesis-related family (PR-5) of plant defense proteins. TLPs from only 32 plant genera have been identified as pollen or food allergens. IgE epitopes on allergens play a central role in food allergy by initiating cross-linking of specific IgE on basophils/mast cells. A comparative analysis of pollen- and food-allergenic TLPs is lacking. The main objective of this investigation was to study the structural and allergenicity features of sapodilla (Manilkara zapota) acidic TLP (TLP 1) by in silico methods. The allergenicity prediction of composite sequence of sapodilla TLP 1 (NCBI B3EWX8.1, G5DC91.1) was performed using FARRP, Allermatch and Evaller web tools. A homology model of the protein was generated using banana TLP template (1Z3Q) by HHPRED-MODELLER. B-cell linear epitope prediction was performed using BCpreds and BepiPred. Sapodilla TLP 1 matched significantly with allergenic TLPs from olive, kiwi, bell pepper and banana. IgE epitope prediction as performed using AlgPred indicated the presence of 2 epitopes (epitope 1: residues 36-48; epitope 2: residues 51-63), and a comprehensive analysis of all allergenic TLPs displayed up to 3 additional epitopes on other TLPs. It can be inferred from these analyses that plant allergenic TLPs generally carry 2-3 IgE epitopes. ClustalX alignments of allergenic TLPs indicate that IgE epitopes 1 and 2 are common in food allergenic TLPs, and IgE epitopes 2 and 3 are common in pollen allergenic TLPs; IgE epitope 2 overlaps with a portion of the thaumatin family signature. The secondary structural elements of TLPs vary markedly in regions 1 and 2 which harbor all the predicted IgE epitopes in all food and pollen TLPs in either of the region. Further, based on the number of IgE epitopes, food TLPs are grouped into rosid and non-rosid clades. The number and distribution of the predicted IgE epitopes among the allergenic TLPs may explain the specificity of food or pollen allergy as well as the varied degree of cross-reactivity among plant foods and/or pollens. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mapping HLA-A2, -A3 and -B7 supertype-restricted T-cell epitopes in the ebolavirus proteome.
Lim, Wan Ching; Khan, Asif M
2018-01-19
Ebolavirus (EBOV) is responsible for one of the most fatal diseases encountered by mankind. Cellular T-cell responses have been implicated to be important in providing protection against the virus. Antigenic variation can result in viral escape from immune recognition. Mapping targets of immune responses among the sequence of viral proteins is, thus, an important first step towards understanding the immune responses to viral variants and can aid in the identification of vaccine targets. Herein, we performed a large-scale, proteome-wide mapping and diversity analyses of putative HLA supertype-restricted T-cell epitopes of Zaire ebolavirus (ZEBOV), the most pathogenic species among the EBOV family. All publicly available ZEBOV sequences (14,098) for each of the nine viral proteins were retrieved, removed of irrelevant and duplicate sequences, and aligned. The overall proteome diversity of the non-redundant sequences was studied by use of Shannon's entropy. The sequences were predicted, by use of the NetCTLpan server, for HLA-A2, -A3, and -B7 supertype-restricted epitopes, which are relevant to African and other ethnicities and provide for large (~86%) population coverage. The predicted epitopes were mapped to the alignment of each protein for analyses of antigenic sequence diversity and relevance to structure and function. The putative epitopes were validated by comparison with experimentally confirmed epitopes. ZEBOV proteome was generally conserved, with an average entropy of 0.16. The 185 HLA supertype-restricted T-cell epitopes predicted (82 (A2), 37 (A3) and 66 (B7)) mapped to 125 alignment positions and covered ~24% of the proteome length. Many of the epitopes showed a propensity to co-localize at select positions of the alignment. Thirty (30) of the mapped positions were completely conserved and may be attractive for vaccine design. The remaining (95) positions had one or more epitopes, with or without non-epitope variants. A significant number (24) of the putative epitopes matched reported experimentally validated HLA ligands/T-cell epitopes of A2, A3 and/or B7 supertype representative allele restrictions. The epitopes generally corresponded to functional motifs/domains and there was no correlation to localization on the protein 3D structure. These data and the epitope map provide important insights into the interaction between EBOV and the host immune system.
Upadhyay, Chitra; Mayr, Luzia M.; Zhang, Jing; Kumar, Rajnish; Gorny, Miroslaw K.; Nádas, Arthur; Zolla-Pazner, Susan
2014-01-01
ABSTRACT Broadly neutralizing antibodies targeting the HIV-1 envelope (Env) are key components for protection against HIV-1. However, many cross-reactive epitopes are often occluded. This study investigates the mechanisms contributing to the masking of V2i (variable loop V2 integrin) epitopes compared to the accessibility of V3 epitopes. V2i are conformation-dependent epitopes encompassing the integrin α4β7-binding motif on the V1V2 loop of HIV-1 Env gp120. The V2i monoclonal antibodies (MAbs) display extensive cross-reactivity with gp120 monomers from many subtypes but neutralize only few viruses, indicating V2i's cryptic nature. First, we asked whether CD4-induced Env conformational changes affect V2i epitopes similarly to V3. CD4 treatment of BaL and JRFL pseudoviruses increased their neutralization sensitivity to V3 MAbs but not to the V2i MAbs. Second, the contribution of N-glycans in masking V2i versus V3 epitopes was evaluated by testing the neutralization of pseudoviruses produced in the presence of a glycosidase inhibitor, kifunensine. Viruses grown in kifunensine were more sensitive to neutralization by V3 but not V2i MAbs. Finally, we evaluated the time-dependent dynamics of the V2i and V3 epitopes. Extending the time of virus-MAb interaction to 18 h before adding target cells increased virus neutralization by some V2i MAbs and all V3 MAbs tested. Consistent with this, V2i MAb binding to Env on the surface of transfected cells also increased in a time-dependent manner. Hence, V2i and V3 epitopes are highly dynamic, but distinct factors modulate the antibody accessibility of these epitopes. The study reveals the importance of the structural dynamics of V2i and V3 epitopes in determining HIV-1 neutralization by antibodies targeting these sites. IMPORTANCE Conserved neutralizing epitopes are present in the V1V2 and V3 regions of HIV-1 Env, but these epitopes are often occluded from Abs. This study reveals that distinct mechanisms contribute to the masking of V3 epitopes and V2i epitopes in the V1V2 domain. Importantly, V3 MAbs and some V2i MAbs display greater neutralization against relatively resistant HIV-1 isolates when the MAbs interact with the virus for a prolonged period of time. Given their highly immunogenic nature, V3 and V2i epitopes are valuable targets that would augment the efficacy of HIV vaccines. PMID:25165106
Ostertag, Eric M.; Kacir, Stephen; Thiboutot, Michelle; Gulendran, Gayathri; Zheng, X. Long; Cines, Douglas B.; Siegel, Don L.
2016-01-01
BACKGROUND Acquired thrombotic thrombocytopenia purpura (TTP) is a life-threatening illness caused by autoantibodies that decrease the activity of ADAMTS13, the von Willebrand Factor cleaving protease. Despite efficacy of plasma exchange, mortality remains high and relapse is common. Improved therapies may come from understanding the diversity of pathogenic autoantibodies on a molecular/genetic level. Cloning comprehensive repertoires of patient autoantibodies can provide the necessary tools for studying immunobiology of disease and developing animal models. STUDY DESIGN AND METHODS Anti-ADAMTS13 antibodies were cloned from four patients with acquired TTP using phage display and characterized with respect to genetic origin, inhibition of ADAMTS13 proteolytic activity, and epitope specificity. Anti-idiotypic antisera raised to a subset of autoantibodies enabled comparison of their relatedness to each other and to polyclonal IgG in patient plasma. RESULTS Fifty-one unique antibodies were isolated comprising epitope specificities resembling the diversity found in circulating patient IgG. Antibodies directed to both the amino terminal domains and those requiring the ADAMTS13 cysteine-rich/spacer region for binding inhibited proteolytic activity, while those solely targeting carboxy-terminal domains were non-inhibitory. Anti-idiotypic antisera raised to a subset of antibody clones crossreacted with and reduced the inhibitory activity of polyclonal IgG from a set of unrelated patients. CONCLUSIONS Anti-ADAMTS13 autoantibodies isolated by repertoire cloning display the diversity of epitope specificities found in patient plasma and provide tools for developing animal models of acquired TTP. Shared idiotypes of inhibitory clones with circulating IgG from multiple patients suggest common features of pathogenic autoantibodies that could be exploited for developing more targeted therapies. PMID:27040144
McCarthy, Corinna; Youde, Sarah J; Man, Stephen
2006-05-15
Although human papillomavirus (HPV) types 16 and 18 are the most common types associated with cervical cancer worldwide, other related HPV types such as HPV 35, 45 and 58 have significant prevalence in geographically distinct populations. For development of global prophylactic and therapeutic vaccine strategies, it is important to study immune responses against these viruses and to define the degree of cross-reactivity between related HPV types. To investigate the potential for T cell cross-reactivity after vaccination, HLA-A2/Kb transgenic mice were immunised with DNA plasmid constructs containing HPV18 and 45 E6 and E7. Splenocytes from immunised mice were tested in direct ELIspot assays against overlapping pools of HPV 18 peptides. Immunisation with either HPV18 or HPV45 E6 DNA produced dominant T cell responses against an epitope (KCIDFYSRI) that was shared between HPV18 and HPV45. This peptide was shown to bind to HLA-A*0201 but not Db or Kb molecules on the cell surface. Furthermore this peptide was shown to be immunogenic in vitro to human T cells from 2 out of 3 HLA-A2+ healthy donors. Collectively, these results demonstrate that HPV 18 and 45 E6 DNA vaccines are immunogenic in mice and demonstrate that cross-reactive T cell responses against closely related HPV types can be induced in vivo. The use of the HLA-A2/Kb transgenic mice allowed definition of an HLA-A*0201 binding peptide epitope that would have been rejected on the basis of predicted major histocompatibility complex binding affinity. Copyright (c) 2005 Wiley-Liss, Inc.
Durai, Malarvizhi; Gupta, Radhey S; Moudgil, Kamal D
2004-03-01
Immunization of Lewis rats with heat-killed Mycobacterium tuberculosis H37Ra leads to development of polyarthritis (adjuvant-induced arthritis; AA) that shares several features with human rheumatoid arthritis (RA). Immune response to the 65-kDa mycobacterial heat-shock protein (Bhsp65) is believed to be involved in induction of AA as well as in experimental modulation of this disease. However, the understanding of several critical aspects of the pathogenesis of AA in the Lewis rat has severely been hampered by the lack of information both regarding the level as well as epitope specificity of tolerance to the mammalian self (rat) homologue of Bhsp65, 65-kDa rat heat-shock protein (Rhsp65), and about the functional attributes of the T cell repertoire specific for this self protein. In this study, we established that tolerance to Rhsp65 in the Lewis rat is incomplete, and that the residual T cells primed upon challenge with this self hsp65 are disease regulating in nature. We also have defined the T cell epitopes in the C-terminal region within Rhsp65 that contribute predominantly to the immune reactivity as well as the AA-protective effect of this self protein. Furthermore, the T cells primed by peptides comprising these C-terminal determinants can be efficiently restimulated by the naturally generated epitopes from endogenous Rhsp65, suggesting that self hsp65 might also be involved in natural remission from acute AA. These novel first experimental insights into the self hsp65-directed regulatory T cell repertoire in AA would help develop better immunotherapeutic approaches for autoimmune arthritis.
Porfirio, Berardino; Paganini, Marco; Mazzanti, Benedetta; Bagnoli, Silvia; Bucciantini, Sandra; Ghelli, Elena; Nacmias, Benedetta; Putignano, Anna Laura; Rombolà, Giovanni; Saccardi, Riccardo; Lombardini, Letizia; Di Lorenzo, Nicola; Vannelli, Gabriella B; Gallina, Pasquale
2015-01-01
Fetal grafting in a human diseased brain was thought to be less immunogenic than other solid organ transplants, hence the minor impact on the efficacy of the transplant. How much prophylactic immune protection is required for neural allotransplantation is also debated. High-sensitive anti-HLA antibody screening in this field has never been reported. Sixteen patients with Huntington's disease underwent human fetal striatal transplantation in the frame of an open-label observational trial, which is being carried out at Florence University. All patients had both brain hemispheres grafted in two separate robotic-stereotactic procedures. The trial started in February 2006 with the first graft to the first patient (R1). R16 was given his second graft on March 2011. All patients received triple immunosuppressive treatment. Pre- and posttransplant sera were analyzed for the presence of anti-HLA antibodies using the multiplexed microsphere-based suspension array Luminex xMAP technology. Median follow-up was 38.5 months (range 13-85). Six patients developed anti-HLA antibodies, which turned out to be donor specific. Alloimmunization occurred in a time window of 0-49 months after the first neurosurgical procedure. The immunogenic determinants were non-self-epitopes from mismatched HLA antigens. These determinants were both public epitopes shared by two or more HLA molecules and private epitopes unique to individual HLA molecules. One patient had non-donor-specific anti-HLA antibodies in her pretransplant serum sample, possibly due to previous sensitization events. Although the clinical significance of donor-specific antibodies is far from being established, particularly in the setting of neuronal transplantation, these findings underline the need of careful pre- and posttransplant immunogenetic evaluation of patients with intracerebral grafts.
De Groot, Anne S; Martin, William; Moise, Leonard; Guirakhoo, Farshad; Monath, Thomas
2007-11-19
T-cell epitope variability is associated with viral immune escape and may influence the outcome of vaccination against the highly variable Japanese Encephalitis Virus (JEV). We computationally analyzed the ChimeriVax-JEV vaccine envelope sequence for T helper epitopes that are conserved in 12 circulating JEV strains and discovered 75% conservation among putative epitopes. Among non-identical epitopes, only minor amino acid changes that would not significantly affect HLA-binding were present. Therefore, in most cases, circulating strain epitopes could be restricted by the same HLA and are likely to stimulate a cross-reactive T-cell response. Based on this analysis, we predict no significant abrogation of ChimeriVax-JEV-conferred protection against circulating JEV strains.
Rueda, P; Morón, G; Sarraseca, J; Leclerc, C; Casal, J I
2004-03-01
We have previously developed an antigen-delivery system based on hybrid recombinant porcine parvovirus-like particles (PPV-VLPs) formed by the self-assembly of the VP2 protein of PPV carrying a foreign epitope at its N terminus. In this study, different constructs were made containing a CD8(+) T-cell epitope of chicken ovalbumin (OVA) to analyse the influence of the sequence inserted into VP2 on the correct processing of VLPs by antigen-presenting cells. We analysed the presentation of the OVA epitope inserted without flanking sequences or with either different natural flanking sequences or with the natural flanking sequences of a CD8(+) T-cell epitope from the lymphocytic choriomeningitis virus nucleoprotein, and as a dimer with or without linker sequences. All constructs were studied in terms of level of expression, assembly of VLPs and ability to deliver the inserted epitope into the MHC I pathway. The presentation of the OVA epitope was considerably improved by insertion of short natural flanking sequences, which indicated the relevance of the flanking sequences on the processing of PPV-VLPs. Only PPV-VLPs carrying two copies of the OVA epitope linked by two glycines were able to be properly processed, suggesting that the introduction of flexible residues between the two consecutive OVA epitopes may be necessary for the correct presentation of these dimers by PPV-VLPs. These results provide information to improve the insertion of epitopes into PPV-VLPs to facilitate their processing and presentation by MHC class I molecules.
Ofran, Yanay; Schlessinger, Avner; Rost, Burkhard
2008-11-01
Exact identification of complementarity determining regions (CDRs) is crucial for understanding and manipulating antigenic interactions. One way to do this is by marking residues on the antibody that interact with B cell epitopes on the antigen. This, of course, requires identification of B cell epitopes, which could be done by marking residues on the antigen that bind to CDRs, thus requiring identification of CDRs. To circumvent this vicious circle, existing tools for identifying CDRs are based on sequence analysis or general biophysical principles. Often, these tools, which are based on partial data, fail to agree on the boundaries of the CDRs. Herein we present an automated procedure for identifying CDRs and B cell epitopes using consensus structural regions that interact with the antigens in all known antibody-protein complexes. Consequently, we provide the first comprehensive analysis of all CDR-epitope complexes of known three-dimensional structure. The CDRs we identify only partially overlap with the regions suggested by existing methods. We found that the general physicochemical properties of both CDRs and B cell epitopes are rather peculiar. In particular, only four amino acids account for most of the sequence of CDRs, and several types of amino acids almost never appear in them. The secondary structure content and the conservation of B cell epitopes are found to be different than previously thought. These characteristics of CDRs and epitopes may be instrumental in choosing which residues to mutate in experimental search for epitopes. They may also assist in computational design of antibodies and in predicting B cell epitopes.
Beaver, John E; Bourne, Philip E; Ponomarenko, Julia V
2007-02-21
Structural information about epitopes, particularly the three-dimensional (3D) structures of antigens in complex with immune receptors, presents a valuable source of data for immunology. This information is available in the Protein Data Bank (PDB) and provided in curated form by the Immune Epitope Database and Analysis Resource (IEDB). With continued growth in these data and the importance in understanding molecular level interactions of immunological interest there is a need for new specialized molecular visualization and analysis tools. The EpitopeViewer is a platform-independent Java application for the visualization of the three-dimensional structure and sequence of epitopes and analyses of their interactions with antigen-specific receptors of the immune system (antibodies, T cell receptors and MHC molecules). The viewer renders both 3D views and two-dimensional plots of intermolecular interactions between the antigen and receptor(s) by reading curated data from the IEDB and/or calculated on-the-fly from atom coordinates from the PDB. The 3D views and associated interactions can be saved for future use and publication. The EpitopeViewer can be accessed from the IEDB Web site http://www.immuneepitope.org through the quick link 'Browse Records by 3D Structure.' The EpitopeViewer is designed and been tested for use by immunologists with little or no training in molecular graphics. The EpitopeViewer can be launched from most popular Web browsers without user intervention. A Java Runtime Environment (RJE) 1.4.2 or higher is required.
In Vivo Validation of Predicted and Conserved T Cell Epitopes in a Swine Influenza Model
Gutiérrez, Andres H.; Loving, Crystal; Moise, Leonard; Terry, Frances E.; Brockmeier, Susan L.; Hughes, Holly R.; Martin, William D.; De Groot, Anne S.
2016-01-01
Swine influenza is a highly contagious respiratory viral infection in pigs that is responsible for significant financial losses to pig farmers annually. Current measures to protect herds from infection include: inactivated whole-virus vaccines, subunit vaccines, and alpha replicon-based vaccines. As is true for influenza vaccines for humans, these strategies do not provide broad protection against the diverse strains of influenza A virus (IAV) currently circulating in U.S. swine. Improved approaches to developing swine influenza vaccines are needed. Here, we used immunoinformatics tools to identify class I and II T cell epitopes highly conserved in seven representative strains of IAV in U.S. swine and predicted to bind to Swine Leukocyte Antigen (SLA) alleles prevalent in commercial swine. Epitope-specific interferon-gamma (IFNγ) recall responses to pooled peptides and whole virus were detected in pigs immunized with multi-epitope plasmid DNA vaccines encoding strings of class I and II putative epitopes. In a retrospective analysis of the IFNγ responses to individual peptides compared to predictions specific to the SLA alleles of cohort pigs, we evaluated the predictive performance of PigMatrix and demonstrated its ability to distinguish non-immunogenic from immunogenic peptides and to identify promiscuous class II epitopes. Overall, this study confirms the capacity of PigMatrix to predict immunogenic T cell epitopes and demonstrate its potential for use in the design of epitope-driven vaccines for swine. Additional studies that match the SLA haplotype of animals with the study epitopes will be required to evaluate the degree of immune protection conferred by epitope-driven DNA vaccines in pigs. PMID:27411061
Shmelkov, Evgeny; Krachmarov, Chavdar; Grigoryan, Arsen V.; Pinter, Abraham; Statnikov, Alexander; Cardozo, Timothy
2014-01-01
The extreme diversity of HIV-1 strains presents a formidable challenge for HIV-1 vaccine design. Although antibodies (Abs) can neutralize HIV-1 and potentially protect against infection, antibodies that target the immunogenic viral surface protein gp120 have widely variable and poorly predictable cross-strain reactivity. Here, we developed a novel computational approach, the Method of Dynamic Epitopes, for identification of neutralization epitopes targeted by anti-HIV-1 monoclonal antibodies (mAbs). Our data demonstrate that this approach, based purely on calculated energetics and 3D structural information, accurately predicts the presence of neutralization epitopes targeted by V3-specific mAbs 2219 and 447-52D in any HIV-1 strain. The method was used to calculate the range of conservation of these specific epitopes across all circulating HIV-1 viruses. Accurately identifying an Ab-targeted neutralization epitope in a virus by computational means enables easy prediction of the breadth of reactivity of specific mAbs across the diversity of thousands of different circulating HIV-1 variants and facilitates rational design and selection of immunogens mimicking specific mAb-targeted epitopes in a multivalent HIV-1 vaccine. The defined epitopes can also be used for the purpose of epitope-specific analyses of breakthrough sequences recorded in vaccine clinical trials. Thus, our study is a prototype for a valuable tool for rational HIV-1 vaccine design. PMID:24587168
Freshour, G.; Clay, R. P.; Fuller, M. S.; Albersheim, P.; Darvill, A. G.; Hahn, M. G.
1996-01-01
The plant cell wall is a dynamic structure that plays important roles in growth and development and in the interactions of plants with their environment and other organisms. We have used monoclonal antibodies that recognize different carbohydrate epitopes present in plant cell-wall polysaccharides to locate these epitopes in roots of developing Arabidopsis thaliana seedlings. An epitope in the pectic polysaccharide rhamnogalacturonan I is observed in the walls of epidermal and cortical cells in mature parts of the root. This epitope is inserted into the walls in a developmentally regulated manner. Initially, the epitope is observed in atrichoblasts and later appears in trichoblasts and simultaneously in cortical cells. A terminal [alpha]-fucosyl-containing epitope is present in almost all of the cell walls in the root. An arabinosylated (1->6)-[beta]-galactan epitope is also found in all of the cell walls of the root with the exception of lateral root-cap cell walls. It is striking that these three polysaccharide epitopes are not uniformly distributed (or accessible) within the walls of a given cell, nor are these epitopes distributed equally across the two walls laid down by adjacent cells. Our results further suggest that the biosynthesis and differentiation of primary cell walls in plants are precisely regulated in a temporal, spatial, and developmental manner. PMID:12226270
Gavalas, Nikos G; Gottumukkala, Raju V S R K; Gawkrodger, David J; Watson, Philip F; Weetman, Anthony P; Kemp, E Helen
2009-05-01
The melanin-concentrating hormone receptor 1 (MCHR1) has been identified as a B cell autoantigen in vitiligo with antibodies to the receptor detectable in binding and function-blocking assays. Two epitope domains (amino acids 1-138 and 139-298) have been previously identified. In this study, we aimed to further define the epitope specificity of MCHR1 antibodies using phage-display technology and to identify the epitopes recognised by receptor antibodies detected in MCHR1 function-blocking assays. Antibody reactivity to MCHR1 peptides 51-80, 85-98, 154-158 and 254-260 was identified by phage-display and subsequently confirmed in phage ELISA in 2/12, 5/12, 3/12 and 6/12 of vitiligo patients, respectively. The results suggest that major autoantibody epitopes are localised in the 85-98 and 254-260 amino acid regions of MCHR1 with minor epitopes in amino acid sequences 51-80 and 154-158. Antibodies with MCHR1 function-blocking activity were determined to recognise epitope 254-260, this being the first epitope to be reported as a target site for antibodies that block the function of the receptor.
Zhang, Xiao; Xin, Lu; Li, Shaowei; Fang, Mujin; Zhang, Jun; Xia, Ningshao; Zhao, Qinjian
2015-01-01
Recombinant VLP-based vaccines have been successfully used against 3 diseases caused by viral infections: Hepatitis B, cervical cancer and hepatitis E. The VLP approach is attracting increasing attention in vaccine design and development for human and veterinary use. This review summarizes the clinically relevant epitopes on the VLP antigens in successful human vaccines. These virion-like epitopes, which can be delineated with molecular biology, cryo-electron microscopy and x-ray crystallographic methods, are the prerequisites for these efficacious vaccines to elicit functional antibodies. The critical epitopes and key factors influencing these epitopes are discussed for the HEV, HPV and HBV vaccines. A pentamer (for HPV) or a dimer (for HEV and HBV), rather than a monomer, is the basic building block harboring critical epitopes for the assembly of VLP antigen. The processing and formulation of VLP-based vaccines need to be developed to promote the formation and stabilization of these epitopes in the recombinant antigens. Delineating the critical epitopes is essential for antigen design in the early phase of vaccine development and for critical quality attribute analysis in the commercial phase of vaccine manufacturing. PMID:25751641
Dissecting Antibodies with Regards to Linear and Conformational Epitopes
Forsström, Björn; Bisławska Axnäs, Barbara; Rockberg, Johan; Danielsson, Hanna; Bohlin, Anna; Uhlen, Mathias
2015-01-01
An important issue for the performance and specificity of an antibody is the nature of the binding to its protein target, including if the recognition involves linear or conformational epitopes. Here, we dissect polyclonal sera by creating epitope-specific antibody fractions using a combination of epitope mapping and an affinity capture approach involving both synthesized peptides and recombinant protein fragments. This allowed us to study the relative amounts of antibodies to linear and conformational epitopes in the polyclonal sera as well as the ability of each antibody-fraction to detect its target protein in Western blot assays. The majority of the analyzed polyclonal sera were found to have most of the target-specific antibodies directed towards linear epitopes and these were in many cases giving Western blot bands of correct molecular weight. In contrast, many of the antibodies towards conformational epitopes did not bind their target proteins in the Western blot assays. The results from this work have given us insights regarding the nature of the antibody response generated by immunization with recombinant protein fragments and has demonstrated the advantage of using antibodies recognizing linear epitopes for immunoassay involving wholly or partially denatured protein targets. PMID:25816293
In Silico Analysis of Epitope-Based Vaccine Candidates against Hepatitis B Virus Polymerase Protein
Zheng, Juzeng; Lin, Xianfan; Wang, Xiuyan; Zheng, Liyu; Lan, Songsong; Jin, Sisi; Ou, Zhanfan; Wu, Jinming
2017-01-01
Hepatitis B virus (HBV) infection has persisted as a major public health problem due to the lack of an effective treatment for those chronically infected. Therapeutic vaccination holds promise, and targeting HBV polymerase is pivotal for viral eradication. In this research, a computational approach was employed to predict suitable HBV polymerase targeting multi-peptides for vaccine candidate selection. We then performed in-depth computational analysis to evaluate the predicted epitopes’ immunogenicity, conservation, population coverage, and toxicity. Lastly, molecular docking and MHC-peptide complex stabilization assay were utilized to determine the binding energy and affinity of epitopes to the HLA-A0201 molecule. Criteria-based analysis provided four predicted epitopes, RVTGGVFLV, VSIPWTHKV, YMDDVVLGA and HLYSHPIIL. Assay results indicated the lowest binding energy and high affinity to the HLA-A0201 molecule for epitopes VSIPWTHKV and YMDDVVLGA and epitopes RVTGGVFLV and VSIPWTHKV, respectively. Regions 307 to 320 and 377 to 387 were considered to have the highest probability to be involved in B cell epitopes. The T cell and B cell epitopes identified in this study are promising targets for an epitope-focused, peptide-based HBV vaccine, and provide insight into HBV-induced immune response. PMID:28509875
Gabrielli, Federico; Salvi, Roberto; Garulli, Chiara; Kalogris, Cristina; Arima, Serena; Tardella, Luca; Monaci, Paolo; Pupa, Serenella M.; Tagliabue, Elda; Montani, Maura; Quaglino, Elena; Stramucci, Lorenzo; Curcio, Claudia
2013-01-01
We developed a new phage-display based approach, the Large Fragment Phage Display (LFPD), that can be used for mapping conformational epitopes on target molecules of immunological interest. LFPD uses a simplified and more effective phage-display approach in which only a limited set of larger fragments (about 100 aa in length) are expressed on the phage surface. Using the human HER2 oncoprotein as a target, we identified novel B-cell conformational epitopes. The same homologous epitopes were also detected in rat HER2 and all corresponded to the epitopes predicted by computational analysis (PEPITO software), showing that LFPD gives reproducible and accurate results. Interestingly, these newly identified HER2 epitopes seem to be crucial for an effective immune response against HER2-overexpressing breast cancers and might help discriminating between metastatic breast cancer and early breast cancer patients. Overall, the results obtained in this study demonstrated the utility of LFPD and its potential application to the detection of conformational epitopes on many other molecules of interest, as well as, the development of new and potentially more effective B-cell conformational epitopes based vaccines. PMID:23555577
Rapid Fine Conformational Epitope Mapping Using Comprehensive Mutagenesis and Deep Sequencing*
Kowalsky, Caitlin A.; Faber, Matthew S.; Nath, Aritro; Dann, Hailey E.; Kelly, Vince W.; Liu, Li; Shanker, Purva; Wagner, Ellen K.; Maynard, Jennifer A.; Chan, Christina; Whitehead, Timothy A.
2015-01-01
Knowledge of the fine location of neutralizing and non-neutralizing epitopes on human pathogens affords a better understanding of the structural basis of antibody efficacy, which will expedite rational design of vaccines, prophylactics, and therapeutics. However, full utilization of the wealth of information from single cell techniques and antibody repertoire sequencing awaits the development of a high throughput, inexpensive method to map the conformational epitopes for antibody-antigen interactions. Here we show such an approach that combines comprehensive mutagenesis, cell surface display, and DNA deep sequencing. We develop analytical equations to identify epitope positions and show the method effectiveness by mapping the fine epitope for different antibodies targeting TNF, pertussis toxin, and the cancer target TROP2. In all three cases, the experimentally determined conformational epitope was consistent with previous experimental datasets, confirming the reliability of the experimental pipeline. Once the comprehensive library is generated, fine conformational epitope maps can be prepared at a rate of four per day. PMID:26296891
Clute, Shalyn C.; Naumov, Yuri N.; Watkin, Levi B.; Aslan, Nuray; Sullivan, John L.; Thorley-Lawson, David A.; Luzuriaga, Katherine; Welsh, Raymond M.; Puzone, Roberto; Celada, Franco; Selin, Liisa K.
2013-01-01
Memory T cells cross-reactive with epitopes encoded by related or even unrelated viruses may alter the immune response and pathogenesis of infection by a process known as heterologous immunity. Because a challenge virus epitope may react with only a subset of the T cell repertoire in a cross-reactive epitope-specific memory pool, the vigorous cross-reactive response may be narrowly focused, or oligoclonal. We show here, by examining human T cell cross-reactivity between the HLA-A2-restricted influenza A virus-encoded M158-66 epitope (GILGFVFTL) and the dissimilar Epstein-Barr virus-encoded BMLF1280-288 epitope (GLCTLVAML), that under some conditions heterologous immunity can lead to a significant broadening rather than a narrowing of the T cell receptor repertoire. We suggest that dissimilar cross-reactive epitopes might generate a broad rather than narrow T cell repertoire if there is a lack of dominant high affinity clones, and this hypothesis is supported by computer simulation. PMID:21048112
Pennell, RI; Janniche, L; Kjellbom, P; Scofield, GN; Peart, JM; Roberts, K
1991-01-01
We have identified and characterized the temporal and spatial regulation of a plasma membrane arabinogalactan protein epitope during development of the aerial parts of oilseed rape using the monoclonal antibody JIM8. The JIM8 epitope is expressed by the first cells of the embryo and by certain cells in the sexual organs of flowers. During embryogenesis, the JIM8 epitope ceases to be expressed by the embryo proper but is still found in the suspensor. During differentiation of the stamens and carpels, expression of the JIM8 epitope progresses from one cell type to another, ultimately specifying the endothecium and sperm cells, the nucellar epidermis, synergid cells, and the egg cell. This complex temporal sequence demonstrates rapid turnover of the JIM8 epitope. There is no direct evidence for any cell-inductive process in plant development. However, if cell-cell interactions exist in plants and participate in flower development, the JIM8 epitope may be a marker for one set of them. PMID:12324592
Analysis of epitope information related to Bacillus anthracis and Clostridium botulinum
Zarebski, Laura M; Vaughan, Kerrie; Sidney, John; Peters, Bjoern; Grey, Howard; Janda, Kim D; Casadevall, Arturo
2012-01-01
We have reviewed the information about epitopes of immunological interest from Clostridium botulinum and Bacillus anthracis, by mining the Immune Epitope Database and Analysis Resource. For both pathogens, the vast majority of epitopes reported to date are derived from a single protein: the protective antigen of B. anthracis and the neurotoxin type A of C. botulinum. A detailed analysis of the data was performed to characterize the function, localization and conservancy of epitopes identified as neutralizing and/or protective. In order to broaden the scope of this analysis, we have also included data describing immune responses against defined fragments (over 50 amino acids long) of the relevant antigens. The scarce information on T-cell determinants and on epitopes from other antigens besides the toxins, highlights a gap in our knowledge and identifies areas for future research. Despite this, several distinct structures at the epitope and fragment level are described herein, which could be potential additions to future vaccines or targets of novel immunotherapeutics and diagnostic reagents. PMID:18251694
Wang, Hsin-Wei; Lin, Ya-Chi; Pai, Tun-Wen; Chang, Hao-Teng
2011-01-01
Epitopes are antigenic determinants that are useful because they induce B-cell antibody production and stimulate T-cell activation. Bioinformatics can enable rapid, efficient prediction of potential epitopes. Here, we designed a novel B-cell linear epitope prediction system called LEPS, Linear Epitope Prediction by Propensities and Support Vector Machine, that combined physico-chemical propensity identification and support vector machine (SVM) classification. We tested the LEPS on four datasets: AntiJen, HIV, a newly generated PC, and AHP, a combination of these three datasets. Peptides with globally or locally high physicochemical propensities were first identified as primitive linear epitope (LE) candidates. Then, candidates were classified with the SVM based on the unique features of amino acid segments. This reduced the number of predicted epitopes and enhanced the positive prediction value (PPV). Compared to four other well-known LE prediction systems, the LEPS achieved the highest accuracy (72.52%), specificity (84.22%), PPV (32.07%), and Matthews' correlation coefficient (10.36%).
Short and medium range structures of 80GeSe2–20Ga2Se3 chalcogenide glasses
NASA Astrophysics Data System (ADS)
Petracovschi, Elena; Calvez, Laurent; Cormier, Laurent; Le Coq, David; Du, Jincheng
2018-05-01
The short and medium range structures of 80GeSe2–20Ga2Se3 (or Ge23.5Ga11.8Se64.7) chalcogenide glasses have been studied by combining ab initio molecular dynamics (AIMD) simulations and experimental neutron diffraction studies. The structure factor and total correlation function were calculated from glass structures generated from AIMD simulations and compared with neutron diffraction experiments showing reasonable agreement. The atomic structures of ternary chalcogenide glasses were analyzed in detail, and it was found that gallium atoms are four-fold coordinated by selenium (Se) and form [GaSe4] tetrahedra. Germanium atoms on average also have four-fold coordination, among which Se is 3.5 with the remaining being Ge–Ge homo-nuclear bonds. Ga and Ge tetrahedra link together mainly through corner-sharing and some edge-sharing of Se. No homo-nuclear bonds were observed among Ga atoms or between Ge and Ga. In addition, Se–Se homo-nuclear bonds and Se chains with various lengths were observed. A small fraction of Se atom triclusters that bond to three cations of Ge and Ga were also observed, confirming earlier proposals from 77Se solid state nuclear magnetic resonance studies. Furthermore, the electronic structures of ternary chalcogenide glasses were studied in terms of atomic charge and electronic density of states in order to gain insights into the chemical bonding and electronic properties, as well as to provide an explanation of the observed atomic structures in these ternary chalcogenide glasses.
Walker, Andreas; Skibbe, Kathrin; Steinmann, Eike; Pfaender, Stephanie; Kuntzen, Thomas; Megger, Dominik A; Groten, Svenja; Sitek, Barbara; Lauer, Georg M; Kim, Arthur Y; Pietschmann, Thomas; Allen, Todd M; Timm, Joerg
2016-01-01
Antiviral CD8(+) T cells are a key component of the adaptive immune response against HCV, but their impact on viral control is influenced by preexisting viral variants in important target epitopes and the development of viral escape mutations. Immunodominant epitopes highly conserved across genotypes therefore are attractive for T cell based prophylactic vaccines. Here, we characterized the CD8(+) T cell response against the highly conserved HLA-B*51-restricted epitope IPFYGKAI1373-1380 located in the helicase domain of NS3 in people who inject drugs (PWID) exposed predominantly to HCV genotypes 1a and 3a. Despite this epitope being conserved in both genotypes, the corresponding CD8(+) T cell response was detected only in PWID infected with genotype 3a and HCV-RNA negative PWID, but not in PWID infected with genotype 1a. In genotype 3a, the detection of strong CD8(+) T cell responses was associated with epitope variants in the autologous virus consistent with immune escape. Analysis of viral sequences from multiple cohorts confirmed HLA-B*51-associated escape mutations inside the epitope in genotype 3a, but not in genotype 1a. Here, a distinct substitution in the N-terminal flanking region located 5 residues upstream of the epitope (S1368P; P = 0.00002) was selected in HLA-B*51-positive individuals. Functional assays revealed that the S1368P substitution impaired recognition of target cells presenting the endogenously processed epitope. The results highlight that, despite an epitope being highly conserved between two genotypes, there are major differences in the selected viral escape pathways and the corresponding T cell responses. HCV is able to evolutionary adapt to CD8(+) T cell immune pressure in multiple ways. Beyond selection of mutations inside targeted epitopes, this study demonstrates that HCV inhibits epitope processing by modification of the epitope flanking region under T cell immune pressure. Selection of a substitution five amino acids upstream of the epitope underlines that efficient antigen presentation strongly depends on its larger sequence context and that blocking of the multistep process of antigen processing by mutation is exploited also by HCV. The pathways to mutational escape of HCV are to some extent predictable but are distinct in different genotypes. Importantly, the selected escape pathway of HCV may have consequences for the destiny of antigen-specific CD8(+) T cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
James, D; Varga, A; Croft, H
2007-01-01
The entire genome of peach chlorotic mottle virus (PCMV), originally identified as Prunus persica cv. Agua virus (4N6), was sequenced and analysed. PCMV cross-reacts with antisera to diverse viruses, such as plum pox virus (PPV), genus Potyvirus, family Potyviridae; and apple stem pitting virus (ASPV), genus Foveavirus, family Flexiviridae. The PCMV genome consists of 9005 nucleotides (nts), excluding a poly(A) tail at the 3' end of the genome. Five open reading frames (ORFs) were identified with four untranslated regions (UTR) including a 5', a 3', and two intergenic UTRs. The genome organisation of PCMV is similar to that of ASPV and the two genomes share a nucleotide (nt) sequence identity of 58%. PCMV ORF1 encodes the replication-associated protein complex (Mr 241,503), ORF2-ORF4 code for the triple gene block proteins (TGBp; Mr 24,802, 12,370, and 7320, respectively), and ORF5 encodes the coat protein (CP) (Mr 42,505). Two non-AUG start codons participate in the initiation of translation: 35AUC and 7676AUA initiate translation of ORF1 and ORF5. In vitro expression with subsequent Western blot analysis confirmed ORF5 as the CP-encoding gene and confirmed that the codon AUA is able to initiate translation of the CP. Expression of a truncated CP fragment (Mr 39, 689) was demonstrated, and both proteins are expressed in vivo, since both were observed in Western blot analysis of PCMV-infected peach and Nicotiana occidentalis. The expressed proteins cross-reacted with an antiserum against ASPV. The amino acid sequences of the CPs of PCMV and ASPV CP share only 37% identity, but there are 11 shared peptides 4-8 aa residues long. These may constitute linear epitopes responsible for ASPV antiserum cross reactions. No significant common linear epitopes were associated with PPV. Extensive phylogenetic analysis indicates that PCMV is closely related to ASPV and is a new and distinct member of the genus Foveavirus.
Moghram, Basem Ameen; Nabil, Emad; Badr, Amr
2018-01-01
T-cell epitope structure identification is a significant challenging immunoinformatic problem within epitope-based vaccine design. Epitopes or antigenic peptides are a set of amino acids that bind with the Major Histocompatibility Complex (MHC) molecules. The aim of this process is presented by Antigen Presenting Cells to be inspected by T-cells. MHC-molecule-binding epitopes are responsible for triggering the immune response to antigens. The epitope's three-dimensional (3D) molecular structure (i.e., tertiary structure) reflects its proper function. Therefore, the identification of MHC class-II epitopes structure is a significant step towards epitope-based vaccine design and understanding of the immune system. In this paper, we propose a new technique using a Genetic Algorithm for Predicting the Epitope Structure (GAPES), to predict the structure of MHC class-II epitopes based on their sequence. The proposed Elitist-based genetic algorithm for predicting the epitope's tertiary structure is based on Ab-Initio Empirical Conformational Energy Program for Peptides (ECEPP) Force Field Model. The developed secondary structure prediction technique relies on Ramachandran Plot. We used two alignment algorithms: the ROSS alignment and TM-Score alignment. We applied four different alignment approaches to calculate the similarity scores of the dataset under test. We utilized the support vector machine (SVM) classifier as an evaluation of the prediction performance. The prediction accuracy and the Area Under Receiver Operating Characteristic (ROC) Curve (AUC) were calculated as measures of performance. The calculations are performed on twelve similarity-reduced datasets of the Immune Epitope Data Base (IEDB) and a large dataset of peptide-binding affinities to HLA-DRB1*0101. The results showed that GAPES was reliable and very accurate. We achieved an average prediction accuracy of 93.50% and an average AUC of 0.974 in the IEDB dataset. Also, we achieved an accuracy of 95.125% and an AUC of 0.987 on the HLA-DRB1*0101 allele of the Wang benchmark dataset. The results indicate that the proposed prediction technique "GAPES" is a promising technique that will help researchers and scientists to predict the protein structure and it will assist them in the intelligent design of new epitope-based vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.
Ayuso, Rosalía; Sánchez-Garcia, Silvia; Lin, Jing; Fu, Zhiyan; Ibáñez, María Dolores; Carrillo, Teresa; Blanco, Carlos; Goldis, Marina; Bardina, Ludmila; Sastre, Joaquín; Sampson, Hugh A
2010-06-01
Shellfish allergy is a long-lasting disorder typically affecting adults. Despite its high prevalence, there is limited information about allergenic shrimp proteins and the epitopes implicated in such allergic reactions. We sought to identify the IgE-binding epitopes of the 4 shrimp allergens and to characterize epitope recognition profiles of children and adults with shrimp allergy. Fifty-three subjects, 34 children and 19 adults, were selected with immediate allergic reactions to shrimp, increased shrimp-specific serum IgE levels, and positive immunoblot binding to shrimp. Study subjects and 7 nonatopic control subjects were tested by means of peptide microarray for IgE binding with synthetic overlapping peptides spanning the sequences of Litopenaeus vannamei shrimp tropomyosin, arginine kinase (AK), myosin light chain (MLC), and sarcoplasmic calcium-binding protein (SCP). The Wilcoxon test was used to determine significant differences in z scores between patients and control subjects. The median shrimp IgE level was 4-fold higher in children than in adults (47 vs 12.5 kU(A)/L). The frequency of allergen recognition was higher in children (tropomyosin, 81% [94% for children and 61% for adults]; MLC, 57% [70% for children and 31% for adults]; AK, 51% [67% for children and 21% for adults]; and SCP, 45% [59% for children and 21% for adults]), whereas control subjects showed negligible binding. Seven IgE-binding regions were identified in tropomyosin by means of peptide microarray, confirming previously identified shrimp epitopes. In addition, 3 new epitopes were identified in tropomyosin (epitopes 1, 3, and 5b-c), 5 epitopes were identified in MLC, 3 epitopes were identified in SCP, and 7 epitopes were identified in AK. Interestingly, frequency of individual epitope recognition, as well as intensity of IgE binding, was significantly greater in children than in adults for all 4 proteins. Children with shrimp allergy have greater shrimp-specific IgE antibody levels and show more intense binding to shrimp peptides and greater epitope diversity than adults. Copyright (c) 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Mugyenyi, Cleopatra K.; Elliott, Salenna R.; McCallum, Fiona J.; Anders, Robin F.; Marsh, Kevin; Beeson, James G.
2013-01-01
Background Antibodies to P. falciparum apical membrane protein 1 (AMA1) may contribute to protective immunity against clinical malaria by inhibiting blood stage growth of P. falciparum, and AMA1 is a leading malaria vaccine candidate. Currently, there is limited knowledge of the acquisition of strain-specific and cross-reactive antibodies to AMA1 in humans, or the acquisition of invasion-inhibitory antibodies to AMA1. Methodology/Findings We examined the acquisition of human antibodies to specific polymorphic invasion-inhibitory and non-inhibitory AMA1 epitopes, defined by the monoclonal antibodies 1F9 and 2C5, respectively. Naturally acquired antibodies were measured in cohorts of Kenyan children and adults. Antibodies to the invasion-inhibitory 1F9 epitope and non-inhibitory 2C5 epitope were measured indirectly by competition ELISA. Antibodies to the 1F9 and 2C5 epitopes were acquired by children and correlated with exposure, and higher antibody levels and prevalence were observed with increasing age and with active P. falciparum infection. Of note, the prevalence of antibodies to the inhibitory 1F9 epitope was lower than antibodies to AMA1 or the 2C5 epitope. Antibodies to AMA1 ectodomain, the 1F9 or 2C5 epitopes, or a combination of responses, showed some association with protection from P. falciparum malaria in a prospective longitudinal study. Furthermore, antibodies to the invasion-inhibitory 1F9 epitope were positively correlated with parasite growth-inhibitory activity of serum antibodies. Conclusions/Significance Individuals acquire antibodies to functional, polymorphic epitopes of AMA1 that may contribute to protective immunity, and these findings have implications for AMA1 vaccine development. Measuring antibodies to the 1F9 epitope by competition ELISA may be a valuable approach to assessing human antibodies with invasion-inhibitory activity in studies of acquired immunity and vaccine trials of AMA1. PMID:23861883
Antibody-protein interactions: benchmark datasets and prediction tools evaluation
Ponomarenko, Julia V; Bourne, Philip E
2007-01-01
Background The ability to predict antibody binding sites (aka antigenic determinants or B-cell epitopes) for a given protein is a precursor to new vaccine design and diagnostics. Among the various methods of B-cell epitope identification X-ray crystallography is one of the most reliable methods. Using these experimental data computational methods exist for B-cell epitope prediction. As the number of structures of antibody-protein complexes grows, further interest in prediction methods using 3D structure is anticipated. This work aims to establish a benchmark for 3D structure-based epitope prediction methods. Results Two B-cell epitope benchmark datasets inferred from the 3D structures of antibody-protein complexes were defined. The first is a dataset of 62 representative 3D structures of protein antigens with inferred structural epitopes. The second is a dataset of 82 structures of antibody-protein complexes containing different structural epitopes. Using these datasets, eight web-servers developed for antibody and protein binding sites prediction have been evaluated. In no method did performance exceed a 40% precision and 46% recall. The values of the area under the receiver operating characteristic curve for the evaluated methods were about 0.6 for ConSurf, DiscoTope, and PPI-PRED methods and above 0.65 but not exceeding 0.70 for protein-protein docking methods when the best of the top ten models for the bound docking were considered; the remaining methods performed close to random. The benchmark datasets are included as a supplement to this paper. Conclusion It may be possible to improve epitope prediction methods through training on datasets which include only immune epitopes and through utilizing more features characterizing epitopes, for example, the evolutionary conservation score. Notwithstanding, overall poor performance may reflect the generality of antigenicity and hence the inability to decipher B-cell epitopes as an intrinsic feature of the protein. It is an open question as to whether ultimately discriminatory features can be found. PMID:17910770
Andrade, Daniela V.; Katzelnick, Leah C.; Widman, Doug G.; Balmaseda, Angel; de Silva, Aravinda M.; Baric, Ralph S.
2017-01-01
ABSTRACT The four dengue virus serotypes (DENV1 to 4) cause dengue, a major public health problem worldwide. Individuals exposed to primary DENV infections develop serotype-specific neutralizing antibodies, including strongly neutralizing antibodies targeting quaternary epitopes. To date, no studies have measured the levels and kinetics of serum antibodies directed to such epitopes among populations in regions where dengue is endemic. Here, we use a recombinant DENV4 (rDENV4/3-M14) displaying a major DENV3 type-specific quaternary epitope recognized by human monoclonal antibody 5J7 to measure the proportion, magnitude, and kinetics of DENV3 type-specific neutralizing antibody responses targeting this epitope. Primary DENV3 sera from 30 individuals in a dengue hospital-based study in Nicaragua were studied 3, 6, 12, and 18 months post-infection, alongside samples collected annually 1 to 4 years post-primary DENV3 infection from 10 individuals in a cohort study in Nicaragua. We found substantial individual variation in the proportion of DENV3 type-specific neutralizing antibody titers attributed to the 5J7 epitope (range, 0 to 100%), with the mean significantly increasing from 22.6% to 41.4% from 3 to 18 months. We extended the transplanted DENV3 5J7 epitope on the virion (rDENV4/3-M16), resulting in increased recognition in several individuals, helping define the footprint of the epitope. However, 37% and 13% of the subjects still showed little to no recognition of the 5J7 epitope at 3 and 18 months, respectively, indicating that one or more additional DENV3 type-specific epitopes exist. Overall, this study demonstrates how DENV-immune plasma from populations from areas of endemicity, when coupled with structurally guided recombinant viruses, can help characterize the epitope-specific neutralizing antibody response in natural DENV infections, with direct implications for design and evaluation of dengue vaccines. PMID:28928210
Replication-Competent Foamy Virus Vaccine Vectors as Novel Epitope Scaffolds for Immunotherapy
Lei, Janet; Osen, Wolfram; Gardyan, Adriane; Hotz-Wagenblatt, Agnes; Wei, Guochao; Gissmann, Lutz; Eichmüller, Stefan; Löchelt, Martin
2015-01-01
The use of whole viruses as antigen scaffolds is a recent development in vaccination that improves immunogenicity without the need for additional adjuvants. Previous studies highlighted the potential of foamy viruses (FVs) in prophylactic vaccination and gene therapy. Replication-competent FVs can trigger immune signaling and integrate into the host genome, resulting in persistent antigen expression and a robust immune response. Here, we explored feline foamy virus (FFV) proteins as scaffolds for therapeutic B and T cell epitope delivery in vitro. Infection- and cancer-related B and T cell epitopes were grafted into FFV Gag, Env, or Bet by residue replacement, either at sites of high local sequence homology between the epitope and the host protein or in regions known to tolerate sequence alterations. Modified proviruses were evaluated in vitro for protein steady state levels, particle release, and virus titer in permissive cells. Modification of Gag and Env was mostly detrimental to their function. As anticipated, modification of Bet had no impact on virion release and affected virus titers of only some recombinants. Further evaluation of Bet as an epitope carrier was performed using T cell epitopes from the model antigen chicken ovalbumin (OVA), human tyrosinase-related protein 2 (TRP-2), and oncoprotein E7 of human papillomavirus type 16 (HPV16E7). Transfection of murine cells with constructs encoding Bet-epitope chimeric proteins led to efficient MHC-I-restricted epitope presentation as confirmed by interferon-gamma enzyme-linked immunospot assays using epitope-specific cytotoxic T lymphocyte (CTL) lines. FFV infection-mediated transduction of cells with epitope-carrying Bet also induced T-cell responses, albeit with reduced efficacy, in a process independent from the presence of free peptides. We show that primate FV Bet is also a promising T cell epitope carrier for clinical translation. The data demonstrate the utility of replication-competent and -attenuated FVs as antigen carriers in immunotherapy. PMID:26397953
Metabolic engineering of Agrobacterium sp. strain ATCC 31749 for production of an α-Gal epitope
2010-01-01
Background Oligosaccharides containing a terminal Gal-α1,3-Gal moiety are collectively known as α-Gal epitopes. α-Gal epitopes are integral components of several medical treatments under development, including flu and HIV vaccines as well as cancer treatments. The difficulty associated with synthesizing the α-Gal epitope hinders the development and application of these treatments due to the limited availability and high cost of the α-Gal epitope. This work illustrates the development of a whole-cell biocatalyst for synthesizing the α-Gal epitope, Gal-α1,3-Lac. Results Agrobacterium sp. ATCC 31749 was engineered to produce Gal-α1,3-Lac by the introduction of a UDP-galactose 4'-epimerase:α1,3-galactosyltransferase fusion enzyme. The engineered Agrobacterium synthesized 0.4 g/L of the α-Gal epitope. Additional metabolic engineering efforts addressed the factors limiting α-Gal epitope production, namely the availability of the two substrates, lactose and UDP-glucose. Through expression of a lactose permease, the intracellular lactose concentration increased by 60 to 110%, subsequently leading to an improvement in Gal-α1,3-Lac production. Knockout of the curdlan synthase gene increased UDP-glucose availability by eliminating the consumption of UDP-glucose for synthesis of the curdlan polysaccharide. With these additional engineering efforts, the final engineered strain synthesized approximately 1 g/L of Gal-α1,3-Lac. Conclusions The Agrobacterium biocatalyst developed in this work synthesizes gram-scale quantities of α-Gal epitope and does not require expensive cofactors or permeabilization, making it a useful biocatalyst for industrial production of the α-Gal epitope. Furthermore, the engineered Agrobacterium, with increased lactose uptake and improved UDP-glucose availability, is a promising host for the production of other medically-relevant oligosaccharides. PMID:20067629
Identification of OppA2 Linear Epitopes as Serodiagnostic Markers for Lyme Disease
Signorino, Giacomo; Arnaboldi, Paul M.; Petzke, Mary M.
2014-01-01
Laboratory diagnosis of Lyme disease is based on the serological detection of antibodies against the etiologic agent Borrelia burgdorferi. Current diagnostics are insensitive at detecting early infection, when treatment is most effective. This deficiency results from the limited number of B. burgdorferi antigens expressed in early infection and the use of an insensitive two-tier paradigm, put in place to deal with insufficient specificity associated with the use of whole-protein antigens and/or bacterial lysates as serodiagnostic targets. Whole-protein antigens contain epitopes that are unique to B. burgdorferi as well as cross-reactive epitopes found in other bacteria. One method for overcoming the limitations imposed by cross-reactive epitopes is the use of short peptides containing epitopes unique to B. burgdorferi as antigen targets. This eliminates nonspecific epitopes. Using overlapping peptide libraries, we performed epitope mapping of linear epitopes in oligopeptide permease A2 (OppA2), a member of the oligopeptide permease (Opp) family of peptide transporters, expressed during early B. burgdorferi infection. We identified 9 epitopes, synthesized peptides containing these epitopes, and screened those using panels of blood from patients with early Lyme disease, rheumatoid arthritis (RA), or syphilis or from healthy individuals. Two of the peptides, OppA2 (191-225) (amino acids comprising the peptide are shown in parentheses) and OppA2 (381-400), are highly conserved among the three major pathogenic Borrelia species responsible for most Lyme disease cases in North America and Europe. They detected antibodies in Lyme disease patient sera with sufficient sensitivity and specificity to indicate that they could have value in a serological assay for Lyme disease. PMID:24623628
Maleki, Soheila J.; Teuber, Suzanne S.; Cheng, Hsiaopo; Chen, Deliang; Comstock, Sarah S.; Ruan, Sanbao; Schein, Catherine H.
2011-01-01
Background Cross reactivity between peanuts and tree nuts implies that similar IgE epitopes are present in their proteins. Objective To determine whether walnut sequences similar to known peanut IgE binding sequences, according to the property distance (PD) scale implemented in the Structural Database of Allergenic Proteins (SDAP), react with IgE from sera of patients with allergy to walnut and/or peanut. Methods Patient sera were characterized by Western blotting for IgE-binding to nut protein extracts, and to peptides from walnut and peanut allergens, similar to known peanut epitopes as defined by low PD values, synthesized on membranes. Competitive ELISA was used to show that peanut and predicted walnut epitope sequences compete with purified Ara h 2 for binding to IgE in serum from a cross-reactive patient. Results Sequences from the vicilin walnut allergen Jug r 2 which had low PD values to epitopes of the peanut allergen Ara h 2, a 2s-albumin, bound IgE in sera from five patients who reacted to either walnut, peanut or both. A walnut epitope recognized by 6 patients mapped to a surface-exposed region on a model of the N-terminal pro-region of Jug r 2. A predicted walnut epitope competed for IgE binding to Ara h 2 in serum as well as the known IgE epitope from Ara h 2. Conclusions Sequences with low PD value (<8.5) to known IgE epitopes could contribute to cross-reactivity between allergens. This further validates the PD scoring method for predicting cross-reactive epitopes in allergens. PMID:21883278
Aoshi, Taiki; Suzuki, Mina; Uchijima, Masato; Nagata, Toshi; Koide, Yukio
2005-03-01
Identification of CD8+ T cell epitopes is important because detection of specific CD8+ T cells after infection or immunization requires prior knowledge of epitope specificity. Furthermore, identification of CD8+ T cell epitopes permits the development of specific preventive and therapeutic approaches to both infections and tumors. Thus far, CD8+ T cell epitopes have been identified either using an overlapping peptide library covering an entire protein, or using algorithms designed to identify likely peptides that bind to major histocompatibility complex (MHC) class I molecules. The synthesis of overlapping peptides can be prohibitively expensive, and the algorithm programs used to predict CD8+ T cell epitopes are not always accurate. Here we describe a retroviral expression system that specifically allows longer polypeptides and shorter peptides to be expressed in the cytoplasm, and thereby to be processed onto class I MHC molecules. T cells from mice that were immunized with a DNA vaccine encoding MPT-51 were probed against MHC-compatible cell lines retrovirally transduced with overlapping gene fragments encoding 120-140 amino acids of the MPT-51 molecule. After further testing of shorter peptide sequences, we identified a CD8+ T cell epitope using cell lines expressing a relatively small number of algorithm-predicted candidate epitopes. We found that one of the requirements for cell surface display of the 20-mer peptide was the need for cotranslational ubiquitination. The restriction molecule was identified as Dd following transduction with MHC class I genes followed by transduction with the oligonucleotide encoding the epitope. The retroviral expression system described here is cost-effective, particularly if the target molecule is large, and could be adapted to identifying T cell epitopes recognized in infectious disease and against tumor cell antigens.
Chauhan, Varun; Goyal, Kapil; Singh, Mini P
2018-07-01
Infections due to both HSV-1 and HSV-2 constitute an enormous health burden worldwide. Development of vaccine against herpes infections is a WHO supported public health priority. The viral glycoproteins have always been the major hotspots for vaccine designing. The present study was aimed to identify the conserved T and B cell epitopes in the major glycoproteins of both HSV-1 and HSV-2 via rigorous computational approaches. Identification of promiscuous T cell epitopes is of utmost importance in vaccine designing as such epitopes are capable of binding to several allelic forms of HLA and could generate effective immune response in the host. The criteria designed for identification of T and B cell epitopes was that it should be conserved in both HSV-1 and 2, promiscuous, have high affinity towards HLA alleles, should be located on the surface of glycoproteins and not be present in the glycosylation sites. This study led to the identification of 17 HLA Class II and 26 HLA Class I T cell epitopes, 9 linear and some conformational B cell epitopes. The identified T cell epitopes were further subjected to molecular docking analysis to analyze their binding patterns. Altogether we have identified 4 most promising regions in glycoproteins (2-gB, 1-gD, 1-gH) of HSV-1 and 2 which are promiscuous to HLA Class II alleles and have overlapping HLA Class I and B cell epitopes, which could be very useful in generating both arms of immune response in the host i.e. adaptive as well as humoral immunity. Further the authors propose the cross-validation of the identified epitopes in experimental settings for confirming their immunogenicity to support the present findings. Copyright © 2018 Elsevier B.V. All rights reserved.
Buggert, Marcus; Norström, Melissa M; Salemi, Marco; Hecht, Frederick M; Karlsson, Annika C
2014-01-01
Viral escape from HIV-1-specific CD8+ T cells has been demonstrated in numerous studies previously. However, the qualitative features driving the emergence of mutations within epitopes are still unclear. In this study, we aimed to distinguish whether specific functional characteristics of HLA-B*5701-restricted CD8+ T cells influence the emergence of mutations in high-risk progressors (HRPs) versus low-risk progressors (LRPs). Single genome sequencing was performed to detect viral mutations (variants) within seven HLA-B*5701-restricted epitopes in Gag (n = 4) and Nef (n = 3) in six untreated HLA-B*5701 subjects followed from early infection up to seven years. Several well-characterized effector markers (IFN-γ, IL-2, MIP-1β, TNF, CD107a and perforin) were identified by flow cytometry following autologous (initial and emerging variant/s) epitope stimulations. This study demonstrates that specific functional attributes may facilitate the outgrowth of mutations within HLA-B*5701-restricted epitopes. A significantly lower fraction of IL-2 producing cells and a decrease in functional avidity and polyfunctional sensitivity were evident in emerging epitope variants compared to the initial autologous epitopes. Interestingly, the HRPs mainly drove these differences, while the LRPs maintained a directed and maintained functional response against emerging epitope variants. In addition, LRPs induced improved cell cycle progression and perforin up-regulation after autologous and emerging epitope variant stimulations in contrast to HRPs. The maintained quantitative and qualitative features of the CD8+ T cell responses in LRPs toward emerging epitope variants provide insights into why HLA-B*5701 subjects have different risks of HIV-1 disease progression. PMID:24740510
Use of Prior Vaccinations for the Development of New Vaccines
NASA Astrophysics Data System (ADS)
Etlinger, H. M.; Gillessen, D.; Lahm, H.-W.; Matile, H.; Schonfeld, H.-J.; Trzeciak, A.
1990-07-01
There is currently a need for vaccine development to improve the immunogenicity of protective epitopes, which themselves are often poorly immunogenic. Although the immunogenicity of these epitopes can be enhanced by linking them to highly immunogenic carriers, such carriers derived from current vaccines have not proven to be generally effective. One reason may be related to epitope-specific suppression, in which prior vaccination with a protein can inhibit the antibody response to new epitopes linked to the protein. To circumvent such inhibition, a peptide from tetanus toxoid was identified that, when linked to a B cell epitope and injected into tetanus toxoid-primed recipients, retained sequences for carrier but not suppressor function. The antibody response to the B cell epitope was enhanced. This may be a general method for taking advantage of previous vaccinations in the development of new vaccines.
Mani, Jiju; Wang, Lei; Hückelhoven, Angela G.; Schmitt, Anita; Gedvilaite, Alma; Jin, Nan; Kleist, Christian; Ho, Anthony D; Schmitt, Michael
2017-01-01
Human JC and BK polyomaviruses (JCV/BKV) can establish a latent infection without any clinical symptoms in healthy individuals. In immunocompromised hosts infection or reactivation of JCV and BKV can cause lethal progressive multifocal leukoencephalopathy (PML) and hemorrhagic cystitis, respectively. Vaccination with JCV/BKV derived antigen epitope peptides or adoptive transfer of virus-specific T cells would constitute an elegant approach to clear virus-infected cells. Furthermore, donor leukocyte infusion (DLI) is another therapeutic approach which could be helpful for patients with JCV/BKV infections. So far, only few immunodominant T cell epitopes of JCV and BKV have been described and therefore is a fervent need for the definition of novel epitopes. In this study, we identified novel T cell epitopes by screening libraries of overlapping peptides derived from the major capsid protein VP1 of JCV. Virus like particles (VLPs) were used to confirm naturally processing. Two human leucocyte antigen (HLA)-A*02-restricted epitopes were characterized by fine mapping with overlapping peptides and nonamer peptide sequences were identified. Cytokine release profile of the epitope-specific T cells was analyzed by enzyme-linked immunospot (ELISPOT) assays and by flow cytometry. We demonstrated that T cell responses were of polyfunctional nature with the potential of epitope-specific killing and cross-reactivity between JCV and BKV. These novel epitopes might constitute a new potential tool to design effective diagnostic and therapeutic approaches against both polyomaviruses. PMID:27705933
Mani, Jiju; Wang, Lei; Hückelhoven, Angela G; Schmitt, Anita; Gedvilaite, Alma; Jin, Nan; Kleist, Christian; Ho, Anthony D; Schmitt, Michael
2017-01-10
Human JC and BK polyomaviruses (JCV/BKV) can establish a latent infection without any clinical symptoms in healthy individuals. In immunocompromised hosts infection or reactivation of JCV and BKV can cause lethal progressive multifocal leukoencephalopathy (PML) and hemorrhagic cystitis, respectively. Vaccination with JCV/BKV derived antigen epitope peptides or adoptive transfer of virus-specific T cells would constitute an elegant approach to clear virus-infected cells. Furthermore, donor leukocyte infusion (DLI) is another therapeutic approach which could be helpful for patients with JCV/BKV infections.So far, only few immunodominant T cell epitopes of JCV and BKV have been described and therefore is a fervent need for the definition of novel epitopes. In this study, we identified novel T cell epitopes by screening libraries of overlapping peptides derived from the major capsid protein VP1 of JCV. Virus like particles (VLPs) were used to confirm naturally processing. Two human leucocyte antigen (HLA)-A*02-restricted epitopes were characterized by fine mapping with overlapping peptides and nonamer peptide sequences were identified. Cytokine release profile of the epitope-specific T cells was analyzed by enzyme-linked immunospot (ELISPOT) assays and by flow cytometry. We demonstrated that T cell responses were of polyfunctional nature with the potential of epitope-specific killing and cross-reactivity between JCV and BKV. These novel epitopes might constitute a new potential tool to design effective diagnostic and therapeutic approaches against both polyomaviruses.
Epitope topography controls bioactivity in supramolecular nanofibers
Sur, Shantanu; Tantakitti, Faifan; Matson, John B.; Stupp, Samuel I.
2015-01-01
Incorporating bioactivity into artificial scaffolds using peptide epitopes present in the extracellular matrix (ECM) is a well-known approach. A common strategy has involved epitopes that provide cells with attachment points and external cues through interaction with integrin receptors. Although a variety of bioactive sequences have been identified so far, less is known about their optimal display in a scaffold. We report here on the use of self-assembled peptide amphiphile (PA) nanofiber matrices to investigate the impact of spatial presentation of the fibronectin derived epitope RGDS on cell response. Using one, three, or five glycine residues, RGDS epitopes were systematically spaced out from the surface of the rigid nanofibers. We found that cell morphology was strongly affected by the separation of the epitope from the nanofiber surface, with the longest distance yielding the most cell-spreading, bundling of actin filaments, and a round-to-polygonal transformation of cell shape. Cell response to this type of epitope display was also accompanied with activated integrin-mediated signaling and formation of stronger adhesions between cells and substrate. Interestingly, unlike length, changing the molecular flexibility of the linker had minimal influence on cell behavior on the substrate for reasons that remain poorly understood. The use in this study of high persistence length nanofibers rather than common flexible polymers allows us to conclude that epitope topography at the nanoscale structure of a scaffold influences its bioactive properties independent of epitope density and mechanical properties. PMID:25745558
NASA Astrophysics Data System (ADS)
Stefanescu, Raluca; Born, Rita; Moise, Adrian; Ernst, Beat; Przybylski, Michael
2011-01-01
Recent studies suggest that the H1 subunit of the carbohydrate recognition domain (H1CRD) of the asialoglycoprotein receptor is used as an entry site into hepatocytes by hepatitis A and B viruses and Marburg virus. Thus, molecules binding specifically to the CRD might exert inhibition towards these diseases by blocking the virus entry site. We report here the identification of the epitope structure of H1CRD to a monoclonal antibody by proteolytic epitope excision of the immune complex and high-resolution MALDI-FTICR mass spectrometry. As a prerequisite of the epitope determination, the primary structure of the H1CRD antigen was characterised by ESI-FTICR-MS of the intact protein and by LC-MS/MS of tryptic digest mixtures. Molecular mass determination and proteolytic fragments provided the identification of two intramolecular disulfide bridges (seven Cys residues), and a Cys-mercaptoethanol adduct formed by treatment with β-mercaptoethanol during protein extraction. The H1CRD antigen binds to the monoclonal antibody in both native and Cys-alkylated form. For identification of the epitope, the antibody was immobilized on N-hydroxysuccinimide (NHS)-activated Sepharose. Epitope excision and epitope extraction with trypsin and FTICR-MS of affinity-bound peptides provided the identification of two specific epitope peptides (5-16) and (17-23) that showed high affinity to the antibody. Affinity studies of the synthetic epitope peptides revealed independent binding of each peptide to the antibody.
Zhang, Jian; Zhao, Xiaowei; Sun, Pingping; Gao, Bo; Ma, Zhiqiang
2014-01-01
B-cell epitopes are regions of the antigen surface which can be recognized by certain antibodies and elicit the immune response. Identification of epitopes for a given antigen chain finds vital applications in vaccine and drug research. Experimental prediction of B-cell epitopes is time-consuming and resource intensive, which may benefit from the computational approaches to identify B-cell epitopes. In this paper, a novel cost-sensitive ensemble algorithm is proposed for predicting the antigenic determinant residues and then a spatial clustering algorithm is adopted to identify the potential epitopes. Firstly, we explore various discriminative features from primary sequences. Secondly, cost-sensitive ensemble scheme is introduced to deal with imbalanced learning problem. Thirdly, we adopt spatial algorithm to tell which residues may potentially form the epitopes. Based on the strategies mentioned above, a new predictor, called CBEP (conformational B-cell epitopes prediction), is proposed in this study. CBEP achieves good prediction performance with the mean AUC scores (AUCs) of 0.721 and 0.703 on two benchmark datasets (bound and unbound) using the leave-one-out cross-validation (LOOCV). When compared with previous prediction tools, CBEP produces higher sensitivity and comparable specificity values. A web server named CBEP which implements the proposed method is available for academic use.
Masking of antigenic epitopes by antibodies shapes the humoral immune response to influenza
Zarnitsyna, Veronika I.; Ellebedy, Ali H.; Davis, Carl; Jacob, Joshy; Ahmed, Rafi; Antia, Rustom
2015-01-01
The immune responses to influenza, a virus that exhibits strain variation, show complex dynamics where prior immunity shapes the response to the subsequent infecting strains. Original antigenic sin (OAS) describes the observation that antibodies to the first encountered influenza strain, specifically antibodies to the epitopes on the head of influenza's main surface glycoprotein, haemagglutinin (HA), dominate following infection with new drifted strains. OAS suggests that responses to the original strain are preferentially boosted. Recent studies also show limited boosting of the antibodies to conserved epitopes on the stem of HA, which are attractive targets for a ‘universal vaccine’. We develop multi-epitope models to explore how pre-existing immunity modulates the immune response to new strains following immunization. Our models suggest that the masking of antigenic epitopes by antibodies may play an important role in describing the complex dynamics of OAS and limited boosting of antibodies to the stem of HA. Analysis of recently published data confirms model predictions for how pre-existing antibodies to an epitope on HA decrease the magnitude of boosting of the antibody response to this epitope following immunization. We explore strategies for boosting of antibodies to conserved epitopes and generating broadly protective immunity to multiple strains. PMID:26194761
Cheong, Fei Wen; Fong, Mun Yik; Lau, Yee Ling
2016-02-01
Plasmodium knowlesi can cause potentially life threatening human malaria. The Plasmodium merozoite surface protein-142 (MSP-142) is a potential target for malaria blood stage vaccine, and for diagnosis of malaria. Two epitope mapping techniques were used to identify the potential epitopes within P. knowlesi MSP-142. Nine and 14 potential epitopes were identified using overlapping synthetic peptide library and phage display library, respectively. Two regions on P. knowlesi MSP-142 (amino acid residues 37-95 and residues 240-289) were identified to be the potential dominant epitope regions. Two of the prominent epitopes, P10 (TAKDGMEYYNKMGELYKQ) and P31 (RCLLGFKEVGGKCVPASI), were evaluated using mouse model. P10- and P31-immunized mouse sera reacted with recombinant P. knowlesi MSP-142, with the IgG isotype distribution of IgG2b>IgG1>IgG2a>IgG3. Significant higher level of cytokines interferon-gamma and interleukin-2 was detected in P31-immunized mice. Both P10 and P31 could be the suitable epitope candidates to be used in malaria vaccine designs and immunodiagnostic assays, provided further evaluation is needed to validate the potential uses of these epitopes. Copyright © 2015 Elsevier B.V. All rights reserved.
PepMapper: a collaborative web tool for mapping epitopes from affinity-selected peptides.
Chen, Wenhan; Guo, William W; Huang, Yanxin; Ma, Zhiqiang
2012-01-01
Epitope mapping from affinity-selected peptides has become popular in epitope prediction, and correspondingly many Web-based tools have been developed in recent years. However, the performance of these tools varies in different circumstances. To address this problem, we employed an ensemble approach to incorporate two popular Web tools, MimoPro and Pep-3D-Search, together for taking advantages offered by both methods so as to give users more options for their specific purposes of epitope-peptide mapping. The combined operation of Union finds as many associated peptides as possible from both methods, which increases sensitivity in finding potential epitopic regions on a given antigen surface. The combined operation of Intersection achieves to some extent the mutual verification by the two methods and hence increases the likelihood of locating the genuine epitopic region on a given antigen in relation to the interacting peptides. The Consistency between Intersection and Union is an indirect sufficient condition to assess the likelihood of successful peptide-epitope mapping. On average from 27 tests, the combined operations of PepMapper outperformed either MimoPro or Pep-3D-Search alone. Therefore, PepMapper is another multipurpose mapping tool for epitope prediction from affinity-selected peptides. The Web server can be freely accessed at: http://informatics.nenu.edu.cn/PepMapper/
Akhmanova, Maria; Osidak, Egor; Domogatsky, Sergey; Rodin, Sergey; Domogatskaya, Anna
2015-01-01
Extracellular matrix can influence stem cell choices, such as self-renewal, quiescence, migration, proliferation, phenotype maintenance, differentiation, or apoptosis. Three aspects of extracellular matrix were extensively studied during the last decade: physical properties, spatial presentation of adhesive epitopes, and molecular complexity. Over 15 different parameters have been shown to influence stem cell choices. Physical aspects include stiffness (or elasticity), viscoelasticity, pore size, porosity, amplitude and frequency of static and dynamic deformations applied to the matrix. Spatial aspects include scaffold dimensionality (2D or 3D) and thickness; cell polarity; area, shape, and microscale topography of cell adhesion surface; epitope concentration, epitope clustering characteristics (number of epitopes per cluster, spacing between epitopes within cluster, spacing between separate clusters, cluster patterns, and level of disorder in epitope arrangement), and nanotopography. Biochemical characteristics of natural extracellular matrix molecules regard diversity and structural complexity of matrix molecules, affinity and specificity of epitope interaction with cell receptors, role of non-affinity domains, complexity of supramolecular organization, and co-signaling by growth factors or matrix epitopes. Synergy between several matrix aspects enables stem cells to retain their function in vivo and may be a key to generation of long-term, robust, and effective in vitro stem cell culture systems. PMID:26351461
Prasad, Suchitra; Kohm, Adam P.; McMahon, Jeffrey S.; Luo, Xunrong; Miller, Stephen D.
2012-01-01
Type 1 diabetes (T1D) is mediated by destruction of pancreatic β cells by CD4 and CD8 T cells specific for epitopes on numerous diabetogenic autoantigens resulting in loss of glucose homeostasis. Employing antigen-specific tolerance induced by i.v. administration of syngeneic splenocytes ECDI cross-linked to various diabetogenic antigens/epitopes (Ag-SP), we show that epitope spreading plays a functional role in the pathogenesis of T1D in NOD mice. Specifically, Ag-SP coupled with intact insulin, Ins B9–23 or Ins B15–23, but not GAD65509–528, GAD65524–543 or IGRP206–214, protected 4–6 week-old NOD mice from the eventual development of clinical disease; infiltration of immune cells to the pancreatic islets; and blocked the induction of DTH responses in a Treg-dependent, antigen-specific manner. However, tolerance induction in 19–21 week-old NOD mice was effectively accomplished only by Ins-SP, suggesting Ins B9–23 is a dominant initiating epitope, but autoimmune responses to insulin epitope(s) distinct from Ins B9–23 emerge during disease progression. PMID:22647732
Broadly neutralizing epitopes in the Plasmodium vivax vaccine candidate Duffy Binding Protein
Chen, Edwin; Salinas, Nichole D.; Huang, Yining; ...
2016-05-18
Plasmodium vivax Duffy Binding Protein (PvDBP) is the most promising vaccine candidate for P. vivax malaria. The polymorphic nature of PvDBP induces strain-specific immune responses, however, and the epitopes of broadly neutralizing antibodies are unknown. These features hamper the rational design of potent DBP-based vaccines and necessitate the identification of globally conserved epitopes. Using X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange mass spectrometry, and mutational mapping, we have defined epitopes for three inhibitory mAbs (mAbs 2D10, 2H2, and 2C6) and one noninhibitory mAb (3D10) that engage DBP. These studies expand the currently known inhibitory epitope repertoire by establishing protective motifsmore » in subdomain three outside the receptor-binding and dimerization residues of DBP, and introduce globally conserved protective targets. All of the epitopes are highly conserved among DBP alleles. In conclusion, the identification of broadly conserved epitopes of inhibitory antibodies provides critical motifs that should be retained in the next generation of potent vaccines for P. vivax malaria.« less
NASA Astrophysics Data System (ADS)
Bertoletti, Antonio; Sette, Alessandro; Chisari, Francis V.; Penna, Amalia; Levrero, Massimo; Carli, Marco De; Fiaccadori, Franco; Ferrari, Carlo
1994-06-01
IT has been suggested that mutations within immunodominant cytotoxic T-lymphocyte (CTL) epitopes may be exploited by viruses to evade protective immune responses critical for clearance1-4. Viral escape could originate from passive mechanisms, such as mutations within crucial CTL epitopes, either affecting major histocompatibility complex binding or T-cell antigen receptor (TCR) recognition. Additionally, it has recently been shown that substitutions of TCR contact sites can yield analogue peptides that can still interact with the T-cell receptor but be unable to deliver a full stimulatory signal, thus inducing anergy5 or acting as an antagonist for the TCR6-8. We report here that hepatitis B virus isolates derived from two chronically infected patients display variant epitopes that act as natural TCR antagonists with the capacity to inhibit the CTL response to the wild-type epitope. During natural infection, TCR antagonist mutations of CTL epitopes could contribute to the development of viral persistence, especially if the antiviral CTL response is monospecific or the epitope is strongly immunodominant.
Broadly neutralizing epitopes in the Plasmodium vivax vaccine candidate Duffy Binding Protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Edwin; Salinas, Nichole D.; Huang, Yining
Plasmodium vivax Duffy Binding Protein (PvDBP) is the most promising vaccine candidate for P. vivax malaria. The polymorphic nature of PvDBP induces strain-specific immune responses, however, and the epitopes of broadly neutralizing antibodies are unknown. These features hamper the rational design of potent DBP-based vaccines and necessitate the identification of globally conserved epitopes. Using X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange mass spectrometry, and mutational mapping, we have defined epitopes for three inhibitory mAbs (mAbs 2D10, 2H2, and 2C6) and one noninhibitory mAb (3D10) that engage DBP. These studies expand the currently known inhibitory epitope repertoire by establishing protective motifsmore » in subdomain three outside the receptor-binding and dimerization residues of DBP, and introduce globally conserved protective targets. All of the epitopes are highly conserved among DBP alleles. In conclusion, the identification of broadly conserved epitopes of inhibitory antibodies provides critical motifs that should be retained in the next generation of potent vaccines for P. vivax malaria.« less
Andrade, Daniela V; Katzelnick, Leah C; Widman, Doug G; Balmaseda, Angel; de Silva, Aravinda M; Baric, Ralph S; Harris, Eva
2017-09-19
The four dengue virus serotypes (DENV1 to 4) cause dengue, a major public health problem worldwide. Individuals exposed to primary DENV infections develop serotype-specific neutralizing antibodies, including strongly neutralizing antibodies targeting quaternary epitopes. To date, no studies have measured the levels and kinetics of serum antibodies directed to such epitopes among populations in regions where dengue is endemic. Here, we use a recombinant DENV4 (rDENV4/3-M14) displaying a major DENV3 type-specific quaternary epitope recognized by human monoclonal antibody 5J7 to measure the proportion, magnitude, and kinetics of DENV3 type-specific neutralizing antibody responses targeting this epitope. Primary DENV3 sera from 30 individuals in a dengue hospital-based study in Nicaragua were studied 3, 6, 12, and 18 months post-infection, alongside samples collected annually 1 to 4 years post-primary DENV3 infection from 10 individuals in a cohort study in Nicaragua. We found substantial individual variation in the proportion of DENV3 type-specific neutralizing antibody titers attributed to the 5J7 epitope (range, 0 to 100%), with the mean significantly increasing from 22.6% to 41.4% from 3 to 18 months. We extended the transplanted DENV3 5J7 epitope on the virion (rDENV4/3-M16), resulting in increased recognition in several individuals, helping define the footprint of the epitope. However, 37% and 13% of the subjects still showed little to no recognition of the 5J7 epitope at 3 and 18 months, respectively, indicating that one or more additional DENV3 type-specific epitopes exist. Overall, this study demonstrates how DENV-immune plasma from populations from areas of endemicity, when coupled with structurally guided recombinant viruses, can help characterize the epitope-specific neutralizing antibody response in natural DENV infections, with direct implications for design and evaluation of dengue vaccines. IMPORTANCE The four serotypes of dengue virus cause dengue, a major public health burden worldwide, yet it has been challenging to develop a vaccine that is safe and equally effective against all four serotypes. More in-depth characterization of natural human neutralizing antibody responses is needed to identify determinants of protective antibody responses to all DENV serotypes. Here, we use hospital and cohort studies in a region where dengue is endemic to assess the proportion and kinetics of the DENV3 neutralizing antibody response directed to a quaternary epitope on DENV3 recognized by strongly neutralizing human monoclonal antibody 5J7, which was transplanted into a DENV4 backbone. We show that many individuals recognized the 5J7 epitope, but to various degrees over time, suggesting that additional DENV3-specific epitopes likely exist. Thus, characterization of epitope-specific neutralizing antibody responses in natural DENV infections can help define the footprint and repertoire of antibodies directed to DENV3 type-specific epitopes, with implications for dengue vaccine development. Copyright © 2017 Andrade et al.
A General Synthetic Approach for Designing Epitope Targeted Macrocyclic Peptide Ligands.
Das, Samir; Nag, Arundhati; Liang, JingXin; Bunck, David N; Umeda, Aiko; Farrow, Blake; Coppock, Matthew B; Sarkes, Deborah A; Finch, Amethist S; Agnew, Heather D; Pitram, Suresh; Lai, Bert; Yu, Mary Beth; Museth, A Katrine; Deyle, Kaycie M; Lepe, Bianca; Rodriguez-Rivera, Frances P; McCarthy, Amy; Alvarez-Villalonga, Belen; Chen, Ann; Heath, John; Stratis-Cullum, Dimitra N; Heath, James R
2015-11-02
We describe a general synthetic strategy for developing high-affinity peptide binders against specific epitopes of challenging protein biomarkers. The epitope of interest is synthesized as a polypeptide, with a detection biotin tag and a strategically placed azide (or alkyne) presenting amino acid. This synthetic epitope (SynEp) is incubated with a library of complementary alkyne or azide presenting peptides. Library elements that bind the SynEp in the correct orientation undergo the Huisgen cycloaddition, and are covalently linked to the SynEp. Hit peptides are tested against the full-length protein to identify the best binder. We describe development of epitope-targeted linear or macrocycle peptide ligands against 12 different diagnostic or therapeutic analytes. The general epitope targeting capability for these low molecular weight synthetic ligands enables a range of therapeutic and diagnostic applications, similar to those of monoclonal antibodies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Madhumathi, Jayaprakasam; Prince, Prabhu Rajaiah; Anugraha, Gandhirajan; Kiran, Pote; Rao, Donthamsetty Nageswara; Reddy, Maryada Venkata Rami; Kaliraj, Perumal
2010-07-12
Although multi-epitope vaccines have been evaluated for various diseases, they have not yet been investigated for lymphatic filariasis. Here, we report for the first time identification of two immunodominant B epitopes (TRXP1 and TRXP2) from the antioxidant Brugia malayi thioredoxin by studying their immune responses in mice model and human subjects. TRXP1 was also found to harbor a T epitope recognized by human PBMCs and mice splenocytes. Further, the epitopic peptides were synthesized as a single peptide conjugate (PC1) and their prophylactic efficacy was tested in a murine model of filariasis with L3 larvae. PC1 conferred a significantly high protection (75.14%) (P < 0.0001) compared to control (3.7%) and recombinant TRX (63.03%) (P < 0.018) in experimental filariasis. Our results suggest that multi-epitope vaccines could be a promising strategy in the control of lymphatic filariasis.
Hiemstra, H S; van Veelen, P A; Schloot, N C; Geluk, A; van Meijgaarden, K E; Willemen, S J; Leunissen, J A; Benckhuijsen, W E; Amons, R; de Vries, R R; Roep, B O; Ottenhoff, T H; Drijfhout, J W
1998-10-15
Progress has recently been made in the use of synthetic peptide libraries for the identification of T cell-stimulating ligands. T cell epitopes identified from synthetic libraries are mimics of natural epitopes. Here we show how the mimicry epitopes obtained from synthetic peptide libraries enable unambiguous identification of natural T cell Ags. Synthetic peptide libraries were screened with Mycobacterium tuberculosis-reactive and -autoreactive T cell clones. In two cases, database homology searches with mimicry epitopes isolated from a dedicated synthetic peptide library allowed immediate identification of the natural antigenic protein. In two other cases, an amino acid pattern that reflected the epitope requirements of the T cell was determined by substitution and omission mixture analysis. Subsequently, the natural Ag was identified from databases using this refined pattern. This approach opens new perspectives for rapid and reliable Ag definition, representing a feasible alternative to the biochemical and genetic approaches described thus far.
Lu, Yudong; Li, Zhong; Teng, Huan; Xu, Hongke; Qi, Songnan; He, Jian'an; Gu, Dayong; Chen, Qijun; Ma, Hongwei
2015-08-21
Linear B-cell epitopes are ideal biomarkers for the serodiagnosis of infectious diseases. However, the long-predicted diagnostic value of epitopes has not been realized. Here, we demonstrated a method, diagnostic epitopes in four steps (DEIFS), that delivers a combination of epitopes for the serodiagnosis of infectious diseases with a high success rate. Using DEIFS for malaria, we identified 6 epitopes from 8 peptides and combined them into 3 chimeric peptide constructs. Along with 4 other peptides, we developed a rapid diagnostic test (RDT), which is able to differentiate Plasmodium falciparum (P. falciparum) from Plasmodium vivax (P. vivax) infections with 95.6% overall sensitivity and 99.1% overall specificity. In addition to applications in diagnosis, DEIFS could also be used in the diagnosis of virus and bacterium infections, discovery of vaccine candidates, evaluation of vaccine potency, and study of disease progression.
Lu, Yudong; Li, Zhong; Teng, Huan; Xu, Hongke; Qi, Songnan; He, Jian’an; Gu, Dayong; Chen, Qijun; Ma, Hongwei
2015-01-01
Linear B-cell epitopes are ideal biomarkers for the serodiagnosis of infectious diseases. However, the long-predicted diagnostic value of epitopes has not been realized. Here, we demonstrated a method, diagnostic epitopes in four steps (DEIFS), that delivers a combination of epitopes for the serodiagnosis of infectious diseases with a high success rate. Using DEIFS for malaria, we identified 6 epitopes from 8 peptides and combined them into 3 chimeric peptide constructs. Along with 4 other peptides, we developed a rapid diagnostic test (RDT), which is able to differentiate Plasmodium falciparum (P. falciparum) from Plasmodium vivax (P. vivax) infections with 95.6% overall sensitivity and 99.1% overall specificity. In addition to applications in diagnosis, DEIFS could also be used in the diagnosis of virus and bacterium infections, discovery of vaccine candidates, evaluation of vaccine potency, and study of disease progression. PMID:26293607
Williams, Joshua D.; Bermudez, Yira; Park, Sophia L.; Stratton, Steven P.; Uchida, Koji; Hurst, Craig A.; Wondrak, Georg T.
2014-01-01
Cutaneous exposure to solar ultraviolet radiation (UVR) is a causative factor in photoaging and photocarcinogenesis. In human skin, oxidative stress is widely considered a key mechanism underlying the detrimental effects of acute and chronic UVR exposure. The lipid peroxidation product malondialdehyde (MDA) accumulates in tissue under conditions of increased oxidative stress, and the occurrence of MDA-derived protein epitopes, including dihydropyridine-lysine (DHP), has recently been substantiated in human skin. Here we demonstrate for the first time that acute exposure to sub-apoptogenic doses of solar simulated UV light (SSL) causes the formation of free MDA and protein-bound MDA-derived epitopes in cultured human HaCaT keratinocytes and healthy human skin. Immunohistochemical staining revealed that acute exposure to SSL is sufficient to cause an almost twenty-fold increase in general MDA- and specific DHP-epitope content in human skin. When compared to dose-matched solar simulated UVA, complete SSL was more efficient generating both free MDA and MDA-derived epitopes. Subsequent tissue microarray (TMA) analysis revealed the prevalence of MDA- and DHP-epitopes in nonmelanoma skin cancer (NMSC). In squamous cell carcinoma tissue, both MDA- and DHP-epitopes were increased more than three-fold as compared to adjacent normal tissue. Taken together, these date demonstrate the occurrence of MDA-derived epitopes in both solar UVR-exposed healthy human skin and NMSC TMA tissue; however, the potential utility of these epitopes as novel biomarkers of cutaneous photodamage and a functional role in the process of skin photocarcinogenesis remain to be explored. PMID:24584085
Szczepanek, Steven M; Barrette, Roger W; Rood, Debra; Alejo, Diana; Silbart, Lawrence K
2012-04-01
Many RNA viruses encode error-prone polymerases which introduce mutations into B and T cell epitopes, providing a mechanism for immunological escape. When regions of hypervariability are found within immunodominant epitopes with no known function, they are referred to as "decoy epitopes," which often deceptively imprint the host's immune response. In this work, a decoy epitope was identified in the foot-and-mouth disease virus (FMDV) serotype O VP1 G-H loop after multiple sequence alignment of 118 isolates. A series of chimeric cyclic peptides resembling the type O G-H loop were prepared, each bearing a defined "B cell xenoepitope" from another virus in place of the native decoy epitope. These sequences were derived from porcine respiratory and reproductive syndrome virus (PRRSV), from HIV, or from a presumptively tolerogenic sequence from murine albumin and were subsequently used as immunogens in BALB/c mice. Cross-reactive antibody responses against all peptides were compared to a wild-type peptide and ovalbumin (OVA). A broadened antibody response was generated in animals inoculated with the PRRSV chimeric peptide, in which virus binding of serum antibodies was also observed. A B cell epitope mapping experiment did not reveal recognition of any contiguous linear epitopes, raising the possibility that the refocused response was directed to a conformational epitope. Taken together, these results indicate that xenoepitope substitution is a novel method for immune refocusing against decoy epitopes of RNA viruses such as FMDV as part of the rational design of next-generation vaccines.
Usefulness of the ElliPro epitope predictor program in defining the repertoire of HLA-ABC eplets.
Duquesnoy, Rene J; Marrari, Marilyn
HLA matching at the epitope level offers new opportunities to identify suitable donors for transplant patients. The International HLA Epitope Registry (www.Epregistry.com.br) describes for the various HLA loci, repertoires of eplets including those that correspond to epitopes experimentally verified with specific antibodies. There are also many eplets which have remained as theoretical entities because no informative antibodies have been found. Which of them have immunogenic potential or conversely, might be considered as non-epitopes that cannot elicit specific antibody responses? This question is important for the application of epitope-based HLA matching in clinical transplantation. Correct predictions of B-cell epitopes on antigenic proteins are essential to the effective design of microbial vaccines and the development of specific antibodies used in immunotherapy and immunodiagnostics but prediction programs based on structural and physiochemical properties of amino acid residues are generally ineffective. Recent prediction programs based on three-dimensional structures of antigen-antibody complexes are more promising. One such program is called ElliPro developed by Ponomarenko. This report describes studies demonstrating that ElliPro can predict alloantibody responses to HLA-ABC eplets. Antibody-verified eplets have amino acid residues with much higher ElliPro scores than eplets for which no specific antibodies have been found. The latter group includes residues with very low ElliPro scores; they appear to represent eplets that might be classified as non-epitopes. In conclusion, ElliPro offers a new approach to characterize epitope repertoires that are clinically relevant in HLA matching. Copyright © 2017. Published by Elsevier Inc.
Liu, Kun; Jiang, Deyu; Zhang, Liangyan; Yao, Zhidong; Chen, Zhongwei; Yu, Sanke; Wang, Xiliang
2012-04-19
Herpes simplex virus (HSV) infection is a major health concern worldwide. Evidence obtained from animals and humans indicates that B- and T-cell responses contribute to protective immunity against herpes virus infection. Glycoprotein B is a transmembrane envelope component of HSV-1 and HSV-2, which plays an important role in virion morphogenesis and penetration into host cells, and can induce neutralizing antibodies and protective T-cell response when it is used to immunize humans and animals. However, little is known about gB epitopes that are involved in B- and T-cell activities in vitro and in vivo. Thus, the HSV-2 gB sequence was screened using B- and T-cell epitope prediction systems, and the B-cell regions and the HLA-A*0201-restricted epitopes were identified. These B-cell epitopes elicited high IgG antibody titers in Balb/C mice, with a predominantly IgG1 subclass distribution, which indicated a Th2 bias. Specific IgGs induced by these two epitopes were evaluated as the neutralizing antibodies for virus neutralization. The predicted T-cell epitopes stabilized the HLA-A*0201 molecules on T(2) cells, and stimulate interferon-γ-secreting and cytotoxic CD8(+) T cells. Immunization with the predicted peptides reduced virus shedding and protected against lethal viral challenge in mice. The functional epitopes described herein, both B- and T-cell epitopes, are potentially implicated in vaccine development. Copyright © 2012. Published by Elsevier Ltd.
Sritrakul, Tepyuda; Nitipan, Supachai; Wajjwalku, Worawidh; La-Ard, Anchalee; Suphatpahirapol, Chattip; Petkarnjanapong, Wimol; Ongphiphadhanakul, Boonsong; Prapong, Siriwan
2017-11-01
Leptospirosis is an important zoonotic disease, and the major outbreak of this disease in Thailand in 1999 was due largely to the Leptospira borgpetersenii serovar Sejroe. Identification of the leucine-rich repeat (LRR) LBJ_2271 protein containing immunogenic epitopes and the discovery of the LBJ_2271 ortholog in Leptospira serovar Sejroe, KU_Sej_R21_2271, led to further studies of the antigenic immune properties of KU_Sej_LRR_2271. The recombinant hybrid (rh) protein was created and expressed from a hybrid PCR fragment of KU_Sej_R21_2271 fused with DNA encoding the LBJ_2271 signal sequence for targeting protein as a membrane-anchoring protein. The fusion DNA was cloned into pET160/GW/D-TOPO® to form the pET160_hKU_R21_2271 plasmid. The plasmid was used to express the rhKU_Sej_LRR_2271 protein in Escherichia coli BL21 Star™ (DE3). The expressed protein was immunologically detected by Western blotting and immunoreactivity detection with hyperimmune sera, T cell epitope prediction by HLA allele and epitope peptide binding affinity, and potential T cell reactivity analysis. The immunogenic epitopes of the protein were evaluated and verified by HLA allele and epitope peptide complex structure molecular docking. Among fourteen best allele epitopes of this protein, binding affinity values of 12 allele epitopes remained unchanged compared to LBJ_2271. Two epitopes for alleles HLA-A0202 and -A0301 had higher IC 50 values, while T cell reactivity values of these peptides were better than values from LBJ_2271 epitopes. Eight of twelve epitope peptides had positive T-cell reactivity scores. Although the molecular docking of two epitopes, 3FPLLKEFLV11/47FPLLKEFLV55 and 50KLSTVPEGV58, into an HLA-A0202 model revealed a good fit in the docked structures, 50KLSTVPEGV58 and 94KLSTVPEEV102 are still considered as the proteins' best epitopes for allele HLA-A0202. The results of this study showed that rhKU_Sej_LRR_2271 protein contained natural immunological properties that should be further examined with respect to antigenic immune stimulation for vaccine development to prevent prevalent leptospiral serovar infection in Thailand. Copyright © 2017 Elsevier B.V. All rights reserved.
de Re, Valli; Simula, Maria Paola; Pavan, Alessandro; Garziera, Marica; Marin, Dolores; Dolcetti, Riccardo; de Vita, Salvatore; Sansonno, Domenico; Geremia, Silvano; Toffoli, Giuseppe
2009-09-01
Autoimmune type-II cryoglobulinemia (II-MC) is sustained by hepatitis C virus (HCV) infection and B-cell (oligo)clones. This is the reason why the disease may be considered an "indolent B-cell lymphoma (NHL)." B clones show a restricted use of immunoglobulin variable genes (BCR), in particular in the use of the variable kappa (VK)3-20/15 light chain, and show a homology between their BCR functional regions and those of autoimmune rheumatoid factors. We underlined the BCR unique repertoire with frequent rheumatoid factor activity also observed in other autoimmune disorders associated with NHL. The immunoglobulin idiotype is a clonal B-cell marker and an ideal target for immunotherapy. Five monoclonal antibodies were produced in our laboratory toward the VK3-20 of a subject with HCV infection and a II-MC-associated NHL. Epitope determination was performed using the epitope excision approach. Monoclonal antibody reactivity was tested in vitro in ELISA, Western blot, and cytofluorimetry. Data confirmed that a panel of antibodies, reactive against shared idiotypes, can be produced from patients with HCV-associated B-cell lymphoproliferative diseases, thus obviating the need to produce an anti-idiotype antibody for each patient.
Topology of transmembrane channel-like gene 1 protein.
Labay, Valentina; Weichert, Rachel M; Makishima, Tomoko; Griffith, Andrew J
2010-10-05
Mutations of transmembrane channel-like gene 1 (TMC1) cause hearing loss in humans and mice. TMC1 is the founding member of a family of genes encoding proteins of unknown function that are predicted to contain multiple transmembrane domains. The goal of our study was to define the topology of mouse TMC1 expressed heterologously in tissue culture cells. TMC1 was retained in the endoplasmic reticulum (ER) membrane of five tissue culture cell lines that we tested. We used anti-TMC1 and anti-HA antibodies to probe the topologic orientation of three native epitopes and seven HA epitope tags along full-length TMC1 after selective or complete permeabilization of transfected cells with digitonin or Triton X-100, respectively. TMC1 was present within the ER as an integral membrane protein containing six transmembrane domains and cytosolic N- and C-termini. There is a large cytoplasmic loop, between the fourth and fifth transmembrane domains, with two highly conserved hydrophobic regions that might associate with or penetrate, but do not span, the plasma membrane. Our study is the first to demonstrate that TMC1 is a transmembrane protein. The topologic organization revealed by this study shares some features with that of the shaker-TRP superfamily of ion channels.
Lack of Original Antigenic Sin in Recall CD8+ T Cell Responses
Zehn, Dietmar; Turner, Michael J.; Lefrançois, Leo; Bevan, Michael J.
2010-01-01
In the real world, mice and men are not immunologically naive, having been exposed to numerous antigenic challenges. Prior infections sometimes negatively impact the response to a subsequent infection. This can occur in serial infections with pathogens sharing cross-reactive Ags. At the T cell level it has been proposed that preformed memory T cells, which cross-react with low avidity to epitopes presented in subsequent infections, dampen the response of high-avidity T cells. We investigated this with a series of related MHC class-I restricted Ags expressed by bacterial and viral pathogens. In all cases, we find that high-avidity CD8+ T cell precursors, either naive or memory, massively expand in secondary cross-reactive infections to dominate the response over low-avidity memory T cells. This holds true even when >10% of the CD8+ T cell compartment consists of memory T cells that cross-react weakly with the rechallenge ligand. Occasionally, memory cells generated by low-avidity stimulation in a primary infection recognize a cross-reactive epitope with high avidity and contribute positively to the response to a second infection. Taken together, our data show that the phenomenon of original antigenic sin does not occur in all heterologous infections. PMID:20439913
Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS
Bosco, Daryl A.; Morfini, Gerardo; Karabacak, N. Murat; Song, Yuyu; Gros-Louis, Francois; Pasinelli, Piera; Goolsby, Holly; Fontaine, Benjamin A.; Lemay, Nathan; McKenna-Yasek, Diane; Frosch, Matthew P.; Agar, Jeffery N.; Julien, Jean-Pierre; Brady, Scott T.; Brown, Robert H.
2010-01-01
Many mutations confer upon copper/zinc superoxide dismutase-1 (SOD1) one or more toxic function(s) that impair motor neuron viability and cause familial amyotrophic lateral sclerosis (FALS). Using a conformation-specific antibody that detects misfolded SOD1 (C4F6), we demonstrate that oxidized WT-SOD1 and mutant-SOD1 share a conformational epitope that is not present in normal WT-SOD1. In a subset of human sporadic ALS (SALS) cases, motor neurons in the lumbosacral spinal cord displayed striking C4F6 immunoreactivity, denoting the presence of aberrant WT-SOD1 species. Recombinant, oxidized WT-SOD1 and WT-SOD1 immunopurified from SALS tissues inhibited kinesin-based fast axonal transport in a manner similar to FALS-linked mutant SOD1. Studies here suggest that WT-SOD1 can be pathogenic in SALS and identifies an SOD1-dependent pathogenic mechanism common to FALS and SALS. PMID:20953194
Gorin, Aleksandr M; Du, Yushen; Liu, Franklin Y; Zhang, Tian-Hao; Ng, Hwee L; Hofmann, Christian; Cumberland, William G; Sun, Ren; Yang, Otto O
2017-08-01
Certain Major Histocompatibility-I (MHC-I) types are associated with superior immune containment of HIV-1 infection by CD8+ cytotoxic T lymphocytes (CTLs), but the mechanisms mediating this containment are difficult to elucidate in vivo. Here we provide controlled assessments of fitness landscapes and CTL-imposed constraints for immunodominant epitopes presented by two protective (B*57 and B*27) and one non-protective (A*02) MHC-I types. Libraries of HIV-1 with saturation mutagenesis of CTL epitopes are propagated with and without CTL selective pressure to define the fitness landscapes for epitope mutation and escape from CTLs via deep sequencing. Immunodominant B*57- and B*27- present epitopes are highly limited in options for fit mutations, with most viable variants recognizable by CTLs, whereas an immunodominant A*02 epitope-presented is highly permissive for mutation, with many options for CTL evasion without loss of viability. Generally, options for evasion overlap considerably between CTL clones despite highly distinct T cell receptors. Finally, patterns of variant recognition suggest population-wide CTL selection for the A*02-presented epitope. Overall, these findings indicate that these protective MHC-I types yield CTL targeting of highly constrained epitopes, and underscore the importance of blocking public escape pathways for CTL-based interventions against HIV-1.
Zhai, Yougang; Zhong, Zhenyu; Zariffard, Mohammadreza; Spear, Gregory T.; Qiao, Liang
2013-01-01
Two conserved epitopes, located in the membrane-proximal external region (MPER) of the human immunodeficiency virus type 1 (HIV-1) gp41, are recognized by two HIV-1 broadly neutralizing antibodies 2F5 and 4E10, and are promising targets for vaccine design in efforts to elicit anti-HIV-1 broadly neutralizing antibodies. Since most HIV-1 infections initiate at mucosal surfaces, induction of mucosal neutralizing antibodies is necessary and of utmost importance to counteract HIV-1 infection. Here, we utilized a mucosal vaccine vector, bovine papillomavirus (BPV) virus-like particles (VLPs), as a platform to present HIV-1 neutralizing epitopes by inserting the extended 2F5 or 4E10 epitope or the MPER domain into D-E loop of BPV L1 respectively. The chimeric VLPs presenting MPER domain resembled the HIV-1 natural epitopes better than the chimeric VLPs presenting single epitopes. Oral immunization of mice with the chimeric VLPs displaying the 2F5 epitope or MPER domain elicited epitope-specific serum IgGs and mucosal secretory IgAs. The induced antibodies specifically recognized the native conformation of MPER in the context of HIV-1 envelope protein. The antibodies induced by chimeric VLPs presenting MPER domain are able to partially neutralize HIV-1 viruses from clade B and clade C. PMID:24055348
Kessler, Jan H.; Beekman, Nico J.; Bres-Vloemans, Sandra A.; Verdijk, Pauline; van Veelen, Peter A.; Kloosterman-Joosten, Antoinette M.; Vissers, Debby C.J.; ten Bosch, George J.A.; Kester, Michel G.D.; Sijts, Alice; Drijfhout, Jan Wouter; Ossendorp, Ferry; Offringa, Rienk; Melief, Cornelis J.M.
2001-01-01
We report the efficient identification of four human histocompatibility leukocyte antigen (HLA)-A*0201–presented cytotoxic T lymphocyte (CTL) epitopes in the tumor-associated antigen PRAME using an improved “reverse immunology” strategy. Next to motif-based HLA-A*0201 binding prediction and actual binding and stability assays, analysis of in vitro proteasome-mediated digestions of polypeptides encompassing candidate epitopes was incorporated in the epitope prediction procedure. Proteasome cleavage pattern analysis, in particular determination of correct COOH-terminal cleavage of the putative epitope, allows a far more accurate and selective prediction of CTL epitopes. Only 4 of 19 high affinity HLA-A*0201 binding peptides (21%) were found to be efficiently generated by the proteasome in vitro. This approach avoids laborious CTL response inductions against high affinity binding peptides that are not processed and limits the number of peptides to be assayed for binding. CTL clones induced against the four identified epitopes (VLDGLDVLL, PRA100–108; SLYSFPEPEA, PRA142–151; ALYVDSLFFL, PRA300–309; and SLLQHLIGL, PRA425–433) lysed melanoma, renal cell carcinoma, lung carcinoma, and mammary carcinoma cell lines expressing PRAME and HLA-A*0201. This indicates that these epitopes are expressed on cancer cells of diverse histologic origin, making them attractive targets for immunotherapy of cancer. PMID:11136822
Harbige, James; Eichmann, Martin; Peakman, Mark
2017-11-01
The mechanism by which immune tolerance is breached in autoimmune disease is poorly understood. One possibility is that post-translational modification of self-antigens leads to peripheral recognition of neo-epitopes against which central and peripheral tolerance is inadequate. Accumulating evidence points to multiple mechanisms through which non-germline encoded sequences can give rise to these non-conventional epitopes which in turn engage the immune system as T cell targets. In particular, where these modifications alter the rules of epitope engagement with MHC molecules, such non-conventional epitopes offer a persuasive explanation for associations between specific HLA alleles and autoimmune diseases. In this review article, we discuss current understanding of mechanisms through which non-conventional epitopes may be generated, focusing on several recently described pathways that can transpose germline-encoded sequences. We contextualise these discoveries around type 1 diabetes, the prototypic organ-specific autoimmune disease in which specific HLA-DQ molecules confer high risk. Non-conventional epitopes have the potential to act as tolerance breakers or disease drivers in type 1 diabetes, prompting a timely re-evaluation of models of a etiopathogenesis. Future studies are required to elucidate the disease-relevance of a range of potential non-germline epitopes and their relationship to the natural peptide repertoire. Copyright © 2017 Elsevier Ltd. All rights reserved.
Holst, Peter J; Jensen, Benjamin A H; Ragonnaud, Emeline; Thomsen, Allan R; Christensen, Jan P
2015-01-01
In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes facilitates potent virus-induced T-cell responses against immunodominant epitopes during subsequent challenge with highly invasive virus. In contrast, when an immunodominant epitope was included in the vaccine, the T-cell response associated with viral challenge remained focussed on that epitope. Early after challenge with live virus, the CD8+ T cells specific for vaccine-encoded epitopes, displayed a phenotype typically associated with prolonged/persistent antigenic stimulation marked by high levels of KLRG-1, as compared to T cells reacting to epitopes not included in the vaccine. Notably, this association was lost over time in T cells specific for the dominant T cell epitopes, and these cells were fully capable of expanding in response to a new viral challenge. Overall, our data suggests a potential for broadening of the antiviral CD8+ T-cell response by selecting non-dominant antigens to be targeted by vaccination. In addition, our findings suggest that prior adenoviral vaccination is not likely to negatively impact the long-term and protective immune response induced and maintained by a vaccine-attenuated chronic viral infection.
Wong, Chuan Loo; Yong, Chean Yeah; Muhamad, Azira; Syahir, Amir; Omar, Abdul Rahman; Sieo, Chin Chin; Tan, Wen Siang
2018-05-01
Foot-and-mouth disease (FMD) is a major threat to the livestock industry worldwide. Despite constant surveillance and effective vaccination, the perpetual mutations of the foot-and-mouth disease virus (FMDV) pose a huge challenge to FMD diagnosis. The immunodominant region of the FMDV VP1 protein (residues 131-170) displayed on phage T7 has been used to detect anti-FMDV in bovine sera. In the present study, the functional epitope was further delineated using amino acid sequence alignment, homology modelling and phage display. Two highly conserved regions (VP1 145-152 and VP1 159-170 ) were identified among different FMDV serotypes. The coding regions of these two epitopes were fused separately to the T7 genome and displayed on the phage particles. Interestingly, chimeric phage displaying the VP1 159-170 epitope demonstrated a higher antigenicity than that displaying the VP1 131-170 epitope. By contrast, phage T7 displaying the VP1 145-152 epitope did not react significantly with the anti-FMDV antibodies in vaccinated bovine sera. This study has successfully identified a smaller functional epitope, VP1 159-170 , located at the C-terminal end of the structural VP1 protein. The phage T7 displaying this shorter epitope is a promising diagnostic reagent to detect anti-FMDV antibodies in vaccinated animals.
Leung, Carol S; Haigh, Tracey A; Mackay, Laura K; Rickinson, Alan B; Taylor, Graham S
2010-02-02
Whereas exogenously acquired proteins are the major source of antigens feeding the MHC class II pathway in antigen-presenting cells, some endogenously expressed antigens also access that pathway but the rules governing such access are poorly understood. Here we address this using Epstein-Barr virus (EBV)-coded nuclear antigen EBNA1, a protein naturally expressed in EBV-infected B lymphoblastoid cell lines (LCLs) and a source of multiple CD4(+) T cell epitopes. Using CD4(+) T cell clones against three indicator epitopes, we find that two epitopes are weakly displayed on the LCL surface whereas the third is undetectable, a pattern of limited epitope presentation that is maintained even when nuclear expression of EBNA1 is induced to high supraphysiological levels. Inhibitor and siRNA studies show that, of the two epitopes weakly presented under these conditions, one involves macroautophagy, and the second involves antigen delivery to the MHC II pathway by another endogenous route. In contrast, when EBNA1 is expressed as a cytoplasmic protein, all three CD4 epitopes are processed and presented much more efficiently, and all involve macroautophagy. We conclude that EBNA1's nuclear location limits its accessibility to the macroautophagy pathway and, in consequence, limits the level and range of EBNA1 CD4 epitopes naturally displayed on the infected cell surface.
Starchenka, S; Bell, A J; Mwange, J; Skinner, M A; Heath, M D
2017-01-01
Subcutaneous allergen immunotherapy (SCIT) is a well-documented treatment for allergic disease which involves injections of native allergen or modified (allergoid) extracts. The use of allergoid vaccines is a growing sector of the allergy immunotherapy market, associated with shorter-course therapy. The aim of this study was the structural and immunological characterisation of group 1 (Lol p 1) IgG-binding epitopes within a complex mix grass allergoid formulation containing rye grass. HP-SEC was used to resolve a mix grass allergoid preparation of high molecular weight into several distinct fractions with defined molecular weight and elution profiles. Allergen verification of the HP-SEC allergoid fractions was confirmed by mass spectrometry analysis. IgE and IgG immunoreactivity of the allergoid preparations was explored and Lol p 1 specific IgG-binding epitopes mapped by SPOT synthesis technology (PepSpot™) with structural analysis based on a Lol p 1 homology model. Grass specific IgE reactivity of the mix grass modified extract (allergoid) was diminished in comparison with the mix grass native extract. A difference in IgG profiles was observed between an intact mix grass allergoid preparation and HP-SEC allergoid fractions, which indicated enhancement of accessible reactive IgG epitopes across size distribution profiles of the mix grass allergoid formulation. Detailed analysis of the epitope specificity showed retention of six Lol p 1 IgG-binding epitopes in the mix grass modified extract. The structural and immunological changes which take place following the grass allergen modification process was further unravelled revealing distinct IgG immunological profiles. All epitopes were mapped on the solvent exposed area of Lol p 1 homology model accessible for IgG binding. One of the epitopes was identified as an 'immunodominant' Lol p 1 IgG-binding epitope (62-IFKDGRGCGSCFEIK-76) and classified as a novel epitope. The results from this study support the concept that modification allows shorter-course therapy options as a result of providing an IgG epitope repertoire important for efficacy. Additionally, the work paves the way to help further develop methods for standardising allergoid platforms.
2011-01-01
Background Human herpes simplex virus (HSV) 1 and 2 causes oral, ocular, or genital infections, which remains a significant health problem worldwide. HSV-1 and -2 infections in humans range from localized skin infections of the oral, ocular, and genital regions to severe and often disseminated infections in immunocompromised hosts. Epitope based vaccination is a promising mean to achieve protective immunity and to avoid infections with Human herpes simplex virus type 2 (HSV-2). Methods The twelve selected epitopes, six B cell epitopes from different glycoprotein of HSV-2 (amino acid residues 466-473 (EQDRKPRN) from envelope glycoprotein B, 216-223 (GRTDRPSA) from C, 6-18 (DPSLKMADPNRFR) from D, 483-491 (DPPERPDSP) from E, 572-579 (EPPDDDDS) from G and 286-295 (CRRRYRRPRG) from I glycoprotein of HSV-2), four CD4+ T cell epitopes (amino acid residues 21-28 (NLPVLDQL) from D, 162-177 (KDVTVSQVWFGHRYSQ) from B, 205-224 (KAYQQGVTVDSIGMLPRFIP) from D and 245-259 (KPPYTSTLLPPELSD) from D) and two CD8+ T cell epitopes (amino acid residues 10-20 (KMADPNRFRGK) from D and 268-276 (ALLEDPAGT) from D), are responsible for the elicitation of the neutralizing antibodies and cytotoxic T lymphocytes (CTLs) that impart protective immunity to the host. In this study, all above epitopes were inserted into the extracellular fragment (amino acid residues 1-290) of HSV-2 glycoprotein D to construct multi-epitope assembly peptides (MEAPs) by replacing some non-epitope amino acid sequences. The epitope independency of the MEAPs was predicted by three-dimensional software algorithms. The gene of the selected MEAP was expressed in E.coli BL21(DE3), and its protective efficacy against HSV-2 infection was assessed in BALB/c mice. Results The MEAP, with each inserted epitopes independently displayed on the molecule surface, was selected as candidate proteins. The results showed that the MEAP was highly immunogenic and could elicit high titer neutralizing antibodies and cell-mediated immune responses. Conclusions The MEAP provided complete protection against infection with HSV-2 in mice, which indicates that it might be a potential candidate vaccine against HSV-2. PMID:21575169
Xu, Chunxiang; Zhao, Lu; Pan, Xiao; Šamaj, Jozef
2011-01-01
Background The plant cell walls play an important role in somatic embryogenesis and plant development. Pectins are major chemical components of primary cell walls while homogalacturonan (HG) is the most abundant pectin polysaccharide. Developmental regulation of HG methyl-esterification degree is important for cell adhesion, division and expansion, and in general for proper organ and plant development. Methodology/Principal Findings Developmental localization of pectic homogalacturonan (HG) epitopes and the (1→4)-β-D-galactan epitope of rhamnogalacturonan I (RG-I) and degree of pectin methyl-esterification (DM) were studied during somatic embryogenesis of banana (Musa spp. AAA). Histological analysis documented all major developmental stages including embryogenic cells (ECs), pre-globular, globular, pear-shaped and cotyledonary somatic embryos. Histochemical staining of extracellularly secreted pectins with ruthenium red showed the most intense staining at the surface of pre-globular, globular and pear-shaped somatic embryos. Biochemical analysis revealed developmental regulation of galacturonic acid content and DM in diverse embryogenic stages. Immunodots and immunolabeling on tissue sections revealed developmental regulation of highly methyl-esterified HG epitopes recognized by JIM7 and LM20 antibodies during somatic embryogenesis. Cell walls of pre-globular/globular and late-stage embryos contained both low methyl-esterified HG epitopes as well as partially and highly methyl-esterified ones. Extracellular matrix which covered surface of early developing embryos contained pectin epitopes recognized by 2F4, LM18, JIM5, JIM7 and LM5 antibodies. De-esterification of cell wall pectins by NaOH caused a decrease or an elimination of immunolabeling in the case of highly methyl-esterified HG epitopes. However, immunolabeling of some low methyl-esterified epitopes appeared stronger after this base treatment. Conclusions/Significance These data suggest that both low- and highly-methyl-esterified HG epitopes are developmentally regulated in diverse embryogenic stages during somatic embryogenesis. This study provides new information about pectin composition, HG methyl-esterification and developmental localization of pectin epitopes during somatic embryogenesis of banana. PMID:21826225
Love, Tanzy M T; Thurston, Sally W; Keefer, Michael C; Dewhurst, Stephen; Lee, Ha Youn
2010-06-01
The prominent role of antiviral cytotoxic CD8(+) T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and SIV) has rationalized the development of T-cell-based vaccines. However, the presence of escape mutations in the acute stage of infection has raised a concern that accelerated escape from vaccine-induced CD8-TL responses might undermine vaccine efficacy. We reanalyzed previously published data of 101,822 viral genomes of three CD8-TL epitopes, Nef(103-111)RM9 (RM9), Tat(28-35)SL8 (SL8), and Gag(181-189)CM9 (CM9), sampled by ultradeep pyrosequencing from eight macaques. Multiple epitope variants appeared during the resolution of acute viremia, followed by the predominance of a single mutant epitope. By fitting a mathematical model, we estimated the first acute escape rate as 0.36 day(-1) within escape-prone epitopes, RM9 and SL8, and the chronic escape rate as 0.014 day(-1) within the CM9 epitope. Our estimate of SIV acute escape rates was found to be comparable to very early HIV-1 escape rates. The timing of the first escape was more highly correlated with the timing of the peak CD8-TL response than with the magnitude of the CD8-TL response. The transmitted epitope decayed more than 400 times faster during the acute viral decline stage than predicted by a neutral evolution model. However, the founder epitope persisted as a minor population even at the viral set point; in contrast, the majority of acute escape epitopes were completely cleared. Our results suggest that a reservoir of SIV infection is preferentially formed by virus with the transmitted epitope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korber, Bette; Szinger, James
2009-01-01
T cell based vaccines are based upon the induction of CD8+ T cell memory responses that would be effective in inhibiting infection and subsequent replication of an infecting HIV-1 strain, a process that requires a high probability of matching the epitope induced by vaccination with the infecting viral strain. We compared the frequency and specificity of the CTL epitopes elicited by the replication defective AdS gag/pol/nef vaccine used in the STEP trial with the likelihood of encountering those epitopes among recently sequenced Clade B isolates of HIV-1. On average vaccination elicited only one epitope per gene. Importantly, the highly conservedmore » epitopes in gag, pol, and nef (> 80% of strains in the current collection of the Los Alamos database [www.hiv.lanl.gov]) were rarely elicited by vaccination. Moreover there was a statistically significant skewing of the T cell response to relative variable epitopes of each gene; only 20% of persons possessed > 3 T cell responses to epitopes likely to be found in circulating strains in the CladeB populations in which the Step trial was conducted. This inability to elicit T cell responses likely to be found in circulating viral strains is a likely factor in the lack of efficacy of the vaccine utilized in the STEP trial. Modeling of the epitope specific responses elicited by vaccination, we project that a median of 8-10 CD8+ T cell epitopes are required to provide >80% likelihood of eliciting at least 3 CD8+ T cell epitopes that would be found on a circulating population of viruses. Development of vaccine regimens which elicit either a greater breadth of responses or elicit responses to conserved regions of the HIV-1 genome are needed to fully evaluate the concept of whether induction of T cell immunity can alter HIV-1 in vivo.« less
Nitschke, Katja; Barriga, Alejandro; Schmidt, Julia; Timm, Jörg; Viazov, Sergei; Kuntzen, Thomas; Kim, Arthur Y; Lauer, Georg M; Allen, Todd M; Gaudieri, Silvana; Rauch, Andri; Lange, Christian M; Sarrazin, Christoph; Eiermann, Thomas; Sidney, John; Sette, Alessandro; Thimme, Robert; López, Daniel; Neumann-Haefelin, Christoph
2014-01-01
HLA-B*27 is associated with spontaneous HCV genotype 1 clearance. HLA-B*27-restricted CD8+ T cells target three NS5B epitopes. Two of these epitopes are dominantly targeted in the majority of HLA-B*27+ patients. In chronic infection, viral escape occurs consistently in these two epitopes. The third epitope (NS5B2820) was dominantly targeted in an acutely infected patient. This was in contrast, however, to the lack of recognition and viral escape in the large majority of HLA-B*27+ patients. Here, we set out to determine the host factors contributing to selective targeting of this epitope. Four-digit HLA class I typing and viral sequence analyses were performed in 78 HLA-B*27+ patients with chronic HCV genotype 1 infection. CD8+ T cell analyses were performed in a subset of patients. In addition, HLA/peptide affinity was compared for HLA-B*27:02 and 05. The NS5B2820 epitope is only restricted by the HLA-B*27 subtype HLA-B*27:02 (that is frequent in Mediterranean populations), but not by the prototype HLA-B*27 subtype B*27:05. Indeed, the epitope is very dominant in HLA-B*27:02+ patients and is associated with viral escape mutations at the anchor position for HLA-binding in 12 out of 13 HLA-B*27:02+ chronically infected patients. The NS5B2820 epitope is immunodominant in the context of HLA-B*27:02, but is not restricted by other HLA-B*27 subtypes. This finding suggests an important role of HLA subtypes in the restriction of HCV-specific CD8+ responses. With minor HLA subtypes covering up to 39% of specific populations, these findings may have important implications for the selection of epitopes for global vaccines. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Bohórquez, José Alejandro; Defaus, Sira; Muñoz-González, Sara; Perez-Simó, Marta; Rosell, Rosa; Fraile, Lorenzo; Sobrino, Francisco; Andreu, David; Ganges, Llilianne
2017-06-15
Three dendrimeric peptides were synthesized in order to evaluate their immunogenicity and their potential protection against classical swine fever virus (CSFV) in domestic pigs. Construct 1, an optimized version of a previously used dendrimer, had four copies of a B-cell epitope derived from CSFV E2 glycoprotein connected to an also CSFV-derived T-cell epitope through maleimide instead of thioether linkages. Construct 2 was similarly built but included only two copies of the B-cell epitope, and in also bivalent construct 3 the CSFV T-cell epitope was replaced by a previously described one from the 3A protein of foot-and-mouth disease virus (FMDV). Animals were inoculated twice with a 21-day interval and challenged 15days after the second immunization. Clinical signs were recorded daily and ELISA tests were performed to detect antibodies against specific peptide and E2. The neutralising antibody response was assessed 13days after challenge. Despite the change to maleimide connectivity, only partial protection against CSFV was again observed. The best clinical protection was observed in group 3. Animals inoculated with constructs 2 and 3 showed higher anti-peptide humoral response, suggesting that two copies of the B-cell epitope are sufficient or even better than four copies for swine immune recognition. In addition, for construct 3 higher neutralizing antibody titres against CSFV were detected. Our results support the immunogenicity of the CSFV B-cell epitope and the cooperative role of the FMDV 3A T-cell epitope in inducing a neutralising response against CSFV in domestic pigs. This is also the first time that the FMDV T-cell epitope shows effectivity in improving swine immune response against a different virus. Our findings highlight the relevance of dendrimeric peptides as a powerful tool for epitope characterization and antiviral strategies development. Copyright © 2017 Elsevier B.V. All rights reserved.
Hertz, Tomer; Ahmed, Hasan; Friedrich, David P; Casimiro, Danilo R; Self, Steven G; Corey, Lawrence; McElrath, M Juliana; Buchbinder, Susan; Horton, Helen; Frahm, Nicole; Robertson, Michael N; Graham, Barney S; Gilbert, Peter
2013-01-01
Several recent large clinical trials evaluated HIV vaccine candidates that were based on recombinant adenovirus serotype 5 (rAd-5) vectors expressing HIV-derived antigens. These vaccines primarily elicited T-cell responses, which are known to be critical for controlling HIV infection. In the current study, we present a meta-analysis of epitope mapping data from 177 participants in three clinical trials that tested two different HIV vaccines: MRKAd-5 HIV and VRC-HIVAD014-00VP. We characterized the population-level epitope responses in these trials by generating population-based epitope maps, and also designed such maps using a large cohort of 372 naturally infected individuals. We used these maps to address several questions: (1) Are vaccine-induced responses randomly distributed across vaccine inserts, or do they cluster into immunodominant epitope hotspots? (2) Are the immunodominance patterns observed for these two vaccines in three vaccine trials different from one another? (3) Do vaccine-induced hotspots overlap with epitope hotspots induced by chronic natural infection with HIV-1? (4) Do immunodominant hotspots target evolutionarily conserved regions of the HIV genome? (5) Can epitope prediction methods be used to identify these hotspots? We found that vaccine responses clustered into epitope hotspots in all three vaccine trials and some of these hotspots were not observed in chronic natural infection. We also found significant differences between the immunodominance patterns generated in each trial, even comparing two trials that tested the same vaccine in different populations. Some of the vaccine-induced immunodominant hotspots were located in highly variable regions of the HIV genome, and this was more evident for the MRKAd-5 HIV vaccine. Finally, we found that epitope prediction methods can partially predict the location of vaccine-induced epitope hotspots. Our findings have implications for vaccine design and suggest a framework by which different vaccine candidates can be compared in early phases of evaluation.
Sim, Adrian Chong Nyi; Too, Chien Tei; Oo, Min Zin; Lai, Junyun; Eio, Michelle Yating; Song, Zhenying; Srinivasan, Nalini; Tan, Diane Ai Lin; Pang, Shyue Wei; Gan, Shu Uin; Lee, Kok Onn; Loh, Thomas Kwok Seng; Chen, Jianzhu; Chan, Soh Ha; MacAry, Paul Anthony
2013-01-01
Epstein-Barr virus (EBV) is a gamma herpesvirus that causes a life-long latent infection in human hosts. The latent gene products LMP1, LMP2A and EBNA1 are expressed by EBV-associated tumors and peptide epitopes derived from these can be targeted by CD8 Cytotoxic T-Lymphocyte (CTL) lines. Whilst CTL-based methodologies can be utilized to infer the presence of specific latent epitopes, they do not allow a direct visualization or quantitation of these epitopes. Here, we describe the characterization of three TCR-like monoclonal antibodies (mAbs) targeting the latent epitopes LMP1125–133, LMP2A426–434 or EBNA1562–570 in association with HLA-A0201. These are employed to map the expression hierarchy of endogenously generated EBV epitopes. The dominance of EBNA1562–570 in association with HLA-A0201 was consistently observed in cell lines and EBV-associated tumor biopsies. These data highlight the discordance between MHC-epitope density and frequencies of associated CTL with implications for cell-based immunotherapies and/or vaccines for EBV-associated disease. PMID:24240815
Outchkourov, Nikolay; Vermunt, Adriaan; Jansen, Josephine; Kaan, Anita; Roeffen, Will; Teelen, Karina; Lasonder, Edwin; Braks, Anneke; van de Vegte-Bolmer, Marga; Qiu, Li Yan; Sauerwein, Robert; Stunnenberg, Hendrik G
2007-06-08
Pfs48/45, a member of a Plasmodium-specific protein family, displays conformation-dependent epitopes and is an important target for malaria transmission-blocking (TB) immunity. To design a recombinant Pfs48/45-based TB vaccine, we analyzed the conformational TB epitopes of Pfs48/45. The Pfs48/45 protein was found to consist of a C-terminal six-cysteine module recognized by anti-epitope I antibodies, a middle four-cysteine module recognized by anti-epitopes IIb and III, and an N-terminal module recognized by anti-epitope V antibodies. Refolding assays identified that a fragment of 10 cysteines (10C), comprising the middle four-cysteine and the C-terminal six-cysteine modules, possesses superior refolding capacity. The refolded and partially purified 10C conformer elicited antibodies in mice that targeted at least two of the TB epitopes (I and III). The induced antibodies could block the fertilization of Plasmodium falciparum gametes in vivo in a concentration-dependent manner. Our results provide important insight into the structural organization of the Pfs48/45 protein and experimental support for a Pfs48/45-based subunit vaccine.
Dekhtiarenko, Iryna; Ratts, Robert B; Blatnik, Renata; Lee, Lian N; Fischer, Sonja; Borkner, Lisa; Oduro, Jennifer D; Marandu, Thomas F; Hoppe, Stephanie; Ruzsics, Zsolt; Sonnemann, Julia K; Mansouri, Mandana; Meyer, Christine; Lemmermann, Niels A W; Holtappels, Rafaela; Arens, Ramon; Klenerman, Paul; Früh, Klaus; Reddehase, Matthias J; Riemer, Angelika B; Cicin-Sain, Luka
2016-12-01
Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGIRNASFI to dissect this phenomenon at the molecular level. A recombinant MCMV expressing HGIRNASFI on the C-terminus of M45, in contrast to wild-type MCMV, enabled peptide processing by the constitutive proteasome, direct antigen presentation, and an inflation of antigen-specific effector memory cells. Consequently, our results indicate that constitutive proteasome processing of antigenic epitopes in latently infected cells is required for robust inflationary responses. This insight allows utilizing the epitope positioning in the design of CMV-based vectors as a novel strategy for enhancing their efficacy.
Blatnik, Renata; Lee, Lian N.; Fischer, Sonja; Borkner, Lisa; Oduro, Jennifer D.; Marandu, Thomas F.; Hoppe, Stephanie; Ruzsics, Zsolt; Sonnemann, Julia K.; Meyer, Christine; Holtappels, Rafaela; Arens, Ramon; Früh, Klaus; Reddehase, Matthias J.; Riemer, Angelika B.; Cicin-Sain, Luka
2016-01-01
Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGIRNASFI to dissect this phenomenon at the molecular level. A recombinant MCMV expressing HGIRNASFI on the C-terminus of M45, in contrast to wild-type MCMV, enabled peptide processing by the constitutive proteasome, direct antigen presentation, and an inflation of antigen-specific effector memory cells. Consequently, our results indicate that constitutive proteasome processing of antigenic epitopes in latently infected cells is required for robust inflationary responses. This insight allows utilizing the epitope positioning in the design of CMV-based vectors as a novel strategy for enhancing their efficacy. PMID:27977791
ACPA-Negative RA Consists of Two Genetically Distinct Subsets Based on RF Positivity in Japanese
Terao, Chikashi; Ohmura, Koichiro; Ikari, Katsunori; Kochi, Yuta; Maruya, Etsuko; Katayama, Masaki; Yurugi, Kimiko; Shimada, Kota; Murasawa, Akira; Honjo, Shigeru; Takasugi, Kiyoshi; Matsuo, Keitaro; Tajima, Kazuo; Suzuki, Akari; Yamamoto, Kazuhiko; Momohara, Shigeki; Yamanaka, Hisashi; Yamada, Ryo; Saji, Hiroo; Matsuda, Fumihiko; Mimori, Tsuneyo
2012-01-01
HLA-DRB1, especially the shared epitope (SE), is strongly associated with rheumatoid arthritis (RA). However, recent studies have shown that SE is at most weakly associated with RA without anti-citrullinated peptide/protein antibody (ACPA). We have recently reported that ACPA-negative RA is associated with specific HLA-DRB1 alleles and diplotypes. Here, we attempted to detect genetically different subsets of ACPA-negative RA by classifying ACPA-negative RA patients into two groups based on their positivity for rheumatoid factor (RF). HLA-DRB1 genotyping data for totally 954 ACPA-negative RA patients and 2,008 healthy individuals in two independent sets were used. HLA-DRB1 allele and diplotype frequencies were compared among the ACPA-negative RF-positive RA patients, ACPA-negative RF-negative RA patients, and controls in each set. Combined results were also analyzed. A similar analysis was performed in 685 ACPA-positive RA patients classified according to their RF positivity. As a result, HLA-DRB1*04:05 and *09:01 showed strong associations with ACPA-negative RF-positive RA in the combined analysis (p = 8.8×10−6 and 0.0011, OR: 1.57 (1.28–1.91) and 1.37 (1.13–1.65), respectively). We also found that HLA-DR14 and the HLA-DR8 homozygote were associated with ACPA-negative RF-negative RA (p = 0.00022 and 0.00013, OR: 1.52 (1.21–1.89) and 3.08 (1.68–5.64), respectively). These association tendencies were found in each set. On the contrary, we could not detect any significant differences between ACPA-positive RA subsets. As a conclusion, ACPA-negative RA includes two genetically distinct subsets according to RF positivity in Japan, which display different associations with HLA-DRB1. ACPA-negative RF-positive RA is strongly associated with HLA-DRB1*04:05 and *09:01. ACPA-negative RF-negative RA is associated with DR14 and the HLA-DR8 homozygote. PMID:22792215
Richardson, Carolyn C; McLaughlin, Kerry A; Morgan, Diana; Feltbower, Richard G; Christie, Michael R
2016-02-01
Insulinoma-associated protein 2 (IA-2) is a major target of autoimmunity in type 1 diabetes. When first detected, IA-2-autoantibodies commonly bind epitopes in the juxtamembrane (JM) domain of IA-2 and antibody responses subsequently spread to the tyrosine phosphatase domain. Definition of structures of epitopes in the JM domain, and genetic requirements for autoimmunity to these epitopes, is important for our understanding of initiation and progression of autoimmunity. The aims of this study were to investigate the contribution of individual amino acids in the IA-2 JM domain to antibody binding to these epitopes and the role of HLA genotypes in determining epitope specificity. Regions of the JM domain recognised by autoantibodies were identified by peptide competition and inhibitory effects of alanine substitutions of residues within the JM region. Antibody binding was determined by radioligand binding assays using sera from patients genotyped for HLA-DRB1 and -DQB1 alleles. Patients were categorised into two distinct groups of JM antibody reactivity according to peptide inhibition. Inhibition by substitutions of individual amino acids within the JM domain differed between patients, indicating heterogeneity in epitope recognition. Cluster analysis defined six groups of residues having similar inhibitory effects on antibody binding, with three clusters showing differences in patients affected or unaffected by peptide. One cluster demonstrated significant differences in antibody binding between HLA-DRB1*04 and HLA-DRB1*07 patients and within DRB1*04 individuals; antibody recognition of a second cluster depended on expression of HLA-DQB1*0302. The results identify amino acids contributing to distinct epitopes on IA-2, with both HLA-DR and HLA-DQ alleles influencing epitope specificity.
Mixed Connective Tissue Disease and Epitope Spreading: An Historical Cohort Study.
Escolà-Vergé, Laura; Pinal-Fernandez, Iago; Fernandez-Codina, Andreu; Callejas-Moraga, Eduardo L; Espinosa, Juan; Marin, Ana; Labrador-Horrillo, Moises; Selva-O'Callaghan, Albert
2017-04-01
Mixed connective tissue disease (MCTD) is characterized by the presence of anti-U1-snRNP autoantibodies and a variable set of associated clinical features. Some MCTD patients test positive over time to autoantibodies against Sm, proteins spatially related with U1-snRNP. This situation has been attributed to expanding of the autoimmune response by a phenomenon known as epitope spreading. Our aim was to study the frequency of this phenomenon in MCTD patients and the specific clinical features of those with epitope spreading. All anti-U1-RNP-positive patients (2010-2015) were retrospectively reviewed, and those meeting the MCTD criteria were included in the study. Patients showing epitope spreading were compared with the remainder of the MCTD cohort. In addition, the clinical features of patients with epitope spreading were compared before and after the phenomenon occurred. Among 72 anti-U1-RNP-positive patients, 40 (37 women) were diagnosed with MCTD. Thirteen MCTD patients (43%) presented epitope spreading, mainly during the first 2 years after the diagnosis of the disease (median, 1.4 years). Patients with epitope spreading had a significantly lower prevalence of skin sclerosis (0% vs. 44%, P = 0.004) and a greater prevalence of interstitial lung disease (46% vs. 15%, P = 0.05) than those without. Arthritis (92% vs. 25%, P = 0.02) and muscle involvement (67% vs. 17%, P = 0.02) were less frequent after epitope spreading had occurred. Epitope spreading is common in MCTD, occurring early after the diagnosis. The clinical manifestations in patients with this phenomenon differ from those without, and their clinical features change after the immunological phenomenon has occurred.
1992-01-01
The immunogenicity of a chimeric T/B cell peptide corresponding to antigenically characterized epitopes of the Chlamydia trachomatis major outer membrane protein (MOMP) was studied in mice to further define its potential use in the development of a subunit vaccine in preventing blinding trachoma in humans. The chimeric peptide, designated A8-VDI, corresponds to a conserved MOMP T helper (Th) cell epitope(s) (A8, residues 106-130) and serovar A VDI (residues 66-80), which contains the serovar-specific neutralizing epitope 71VAGLEK76. Mice immunized with peptide A8-VDI produced high-titered polyclonal IgG antibodies which recognized the VAGLEK-neutralizing epitope. Peptide A8-VDI primed A/J mice to produce high-titered serum-neutralizing antibodies in response to a secondary immunization with intact chlamydial elementary bodies (EBs). Peptide A8-VDI, but not peptide VDI alone, was immunogenic in six different inbred strains of mice disparate at H-2, indicating that the Th cell epitope(s) contained in the A8 portion of the chimera was recognized in the context of multiple major histocompatibility complex (MHC) haplotypes. An unexpected finding of this work was that different inbred strains of mice immunized with the chimeric peptide produced antibodies of differing fine specificities to the VDI portion of the chimera. Some mouse strains produced anti-VDI antibodies that did not recognize the VAGLEK-neutralizing epitope. The ability of mice to respond to the VAGLEK-neutralizing site was not dependent on MHC haplotype since mouse strains of the same H-2 haplotype produced anti-VDI antibodies of differing fine specificity. PMID:1370528
Isotypes and antigenic profiles of pemphigus foliaceus and pemphigus vulgaris autoantibodies.
Hacker, Mary K; Janson, Marleen; Fairley, Janet A; Lin, Mong-Shang
2002-10-01
In this study we systematically characterized isotype profiles and antigenic and tissue specificity of antidesmoglein autoantibodies from patients with pemphigus foliaceus (PF) and pemphigus vulgaris (PV) using enzyme-linked immunoabsorbent assays (ELISA), indirect immunofluorescence (IIF) staining, and immunoblotting (IB). In PF, we found that IgG1 antidesmoglein-1 (Dsg1) reacts with a linear epitope(s) on the ectodomain of Dsg1, while its IgG4 counterpart recognizes a conformational epitope(s). These two subclasses of anti-Dsg1 are both capable of recognizing tissues from monkey esophagus and adult human skin, but IgG1 is not able to react with mouse skin, which may explain why this isotype of anti-Dsg1 failed to induce PF-like lesions in the passive transfer animal model. In mucosal PV patients, we found that both IgG1 and IgG4 only recognized monkey esophagus tissue by IIF, except in one patient, indicating that these antibodies react with a unique conformational epitope(s) that is present in mucosal but not skin tissue. In generalized PV, IgG1 anti-Dsg3 autoantibodies appeared to recognize a linear epitope(s) on the Dsg3 ectodomain. In contrast, IgG4 anti-Dsg3 antibodies recognized both linear and conformational epitopes on the Dsg3 molecule. Interestingly, the IgG1 anti-Dsg3 antibodies failed to react with human and mouse skin tissues, suggesting that this subclass of autoantibodies may not play an essential role in the development of PV suprabasilar lesions. In summary, we conclude that this study further elucidates the pathological mechanisms of PF and PV autoantibodies by revealing their distinct isotype and antigenic profiles. This information may help us to better understand the autoimmune mechanisms underlying the development of pemphigus.
In silico design of a DNA-based HIV-1 multi-epitope vaccine for Chinese populations
Yang, Yi; Sun, Weilai; Guo, Jingjing; Zhao, Guangyu; Sun, Shihui; Yu, Hong; Guo, Yan; Li, Jungfeng; Jin, Xia; Du, Lanying; Jiang, Shibo; Kou, Zhihua; Zhou, Yusen
2015-01-01
The development of an HIV-1 vaccine that is capable of inducing effective and broadly cross-reactive humoral and cellular immune responses remains a challenging task because of the extensive diversity of HIV-1, the difference of virus subtypes (clades) in different geographical regions, and the polymorphism of human leukocyte antigens (HLA). We performed an in silico design of 3 DNA vaccines, designated pJW4303-MEG1, pJW4303-MEG2 and pJW4303-MEG3, encoding multi-epitopes that are highly conserved within the HIV-1 subtypes most prevalent in China and can be recognized through HLA alleles dominant in China. The pJW4303-MEG1-encoded protein consisted of one Th epitope in Env, and one, 2, and 6 epitopes in Pol, Env, and Gag proteins, respectively, with a GGGS linker sequence between epitopes. The pJW4303-MEG2-encoded protein contained similar epitopes in a different order, but with the same linker as pJW4303-MEG1. The pJW4303-MEG3-encoded protein contained the same epitopes in the same order as that of pJW4303-MEG2, but with a different linker sequence (AAY). To evaluate immunogenicity, mice were immunized intramuscularly with these DNA vaccines. Both pJW4303-MEG1 and pJW4303-MEG2 vaccines induced equally potent humoral and cellular immune responses in the vaccinated mice, while pJW4303-MEG3 did not induce immune responses. These results indicate that both epitope and linker sequences are important in designing effective epitope-based vaccines against HIV-1 and other viruses. PMID:25839222
Dommaraju, Kalpana; Kijak, Gustavo; Carlson, Jonathan M; Larsen, Brendan B; Tovanabutra, Sodsai; Geraghty, Dan E; Deng, Wenjie; Maust, Brandon S; Edlefsen, Paul T; Sanders-Buell, Eric; Ratto-Kim, Silvia; deSouza, Mark S; Rerks-Ngarm, Supachai; Nitayaphan, Sorachai; Pitisuttihum, Punnee; Kaewkungwal, Jaranit; O'Connell, Robert J; Robb, Merlin L; Michael, Nelson L; Mullins, James I; Kim, Jerome H; Rolland, Morgane
2014-01-01
The modest protection afforded by the RV144 vaccine offers an opportunity to evaluate its mechanisms of protection. Differences between HIV-1 breakthrough viruses from vaccine and placebo recipients can be attributed to the RV144 vaccine as this was a randomized and double-blinded trial. CD8 and CD4 T cell epitope repertoires were predicted in HIV-1 proteomes from 110 RV144 participants. Predicted Gag epitope repertoires were smaller in vaccine than in placebo recipients (p = 0.019). After comparing participant-derived epitopes to corresponding epitopes in the RV144 vaccine, the proportion of epitopes that could be matched differed depending on the protein conservation (only 36% of epitopes in Env vs 84-91% in Gag/Pol/Nef for CD8 predicted epitopes) or on vaccine insert subtype (55% against CRF01_AE vs 7% against subtype B). To compare predicted epitopes to the vaccine, we analyzed predicted binding affinity and evolutionary distance measurements. Comparisons between the vaccine and placebo arm did not reveal robust evidence for a T cell driven sieve effect, although some differences were noted in Env-V2 (0.022≤p-value≤0.231). The paucity of CD8 T cell responses identified following RV144 vaccination, with no evidence for V2 specificity, considered together both with the association of decreased infection risk in RV 144 participants with V-specific antibody responses and a V2 sieve effect, lead us to hypothesize that this sieve effect was not T cell specific. Overall, our results did not reveal a strong differential impact of vaccine-induced T cell responses among breakthrough infections in RV144 participants.
Woods, Katherine; Knights, Ashley J; Anaka, Matthew; Schittenhelm, Ralf B; Purcell, Anthony W; Behren, Andreas; Cebon, Jonathan
2016-01-01
A current focus in cancer treatment is to broaden responses to immunotherapy. One reason these therapies may prove inadequate is that T lymphocytes fail to recognize the tumor due to differences in immunogenic epitopes presented by the cancer cells under inflammatory or non-inflammatory conditions. The antigen processing machinery of the cell, the proteasome, cleaves proteins into peptide epitopes for presentation on MHC complexes. Immunoproteasomes in inflammatory melanomas, and in antigen presenting cells of the immune system, are enzymatically different to standard proteasomes expressed by tumors with no inflammation. This corresponds to alterations in protein cleavage between proteasome subtypes, and a disparate repertoire of MHC-presented epitopes. We assessed steady state and IFNγ-induced immunoproteasome expression in melanoma cells. Using epitope specific T-lymphocyte clones, we studied processing and presentation of three NY-ESO-1 HLA-Cw3 restricted epitopes by melanoma cell lines. Our experimental model allowed comparison of the processing of three distinct epitopes from a single antigen presented on the same HLA complex. We further investigated processing of these epitopes by direct inhibition, or siRNA mediated knockdown, of the immunoproteasome catalytic subunit LMP7. Our data demonstrated a profound difference in the way in which immunogenic T-lymphocyte epitopes are presented by melanoma cells under IFNγ inflammatory versus non-inflammatory conditions. These alterations led to significant changes in the ability of T-lymphocytes to recognize and target melanoma cells. Our results illustrate a little-studied mechanism of immune escape by tumor cells which, with appropriate understanding and treatment, may be reversible. These data have implications for the design of cancer vaccines and adoptive T cell therapies.
Ara h 1 CD4+ T cell epitope-based peptides: candidates for a peanut allergy therapeutic.
Prickett, S R; Voskamp, A L; Phan, T; Dacumos-Hill, A; Mannering, S I; Rolland, J M; O'Hehir, R E
2013-06-01
Peanut allergy is a life-threatening condition; there is currently no cure. While whole allergen extracts are used for specific immunotherapy for many allergies, they can cause severe reactions and even fatalities in peanut allergy. To identify short, HLA-degenerate CD4(+) T cell epitope-based peptides of the major peanut allergen Ara h 1 that target allergen-specific T cells without causing IgE-mediated inflammatory cell activation, as candidates for safe peanut-specific immunotherapy. Ara h 1-specific CD4(+) T cell lines (TCL) were generated from peripheral blood mononuclear cells (PBMC) of peanut-allergic subjects using CFSE-based methodology. T cell epitopes were identified using CFSE and thymidine-based proliferation assays. Epitope HLA-restriction was investigated using blocking antibodies, HLA-genotyping and epitope prediction algorithms. Functional peanut-specific IgE reactivity to peptides was assessed by basophil activation assay. A total of 145 Ara h 1-specific TCL were generated from 18 HLA-diverse peanut-allergic subjects. The TCL recognized 20-mer peptides throughout Ara h 1. Nine 20-mers containing the most frequently recognized epitopes were selected and their recognition confirmed in 18 additional peanut-allergic subjects. Ten core epitopes were mapped within these 20-mers. These were HLA-DQ and/or HLA-DR restricted, with each presented on at least two different HLA-molecules. Seven short (≤ 20 aa) non-basophil-reactive peptides encompassing all core epitopes were designed and validated in peanut-allergic donor PBMC T cell assays. Short CD4(+) T cell epitope-based Ara h 1 peptides were identified as novel candidates for a safe, T cell targeted peanut-specific immunotherapy for HLA-diverse populations. © 2013 John Wiley & Sons Ltd.
Standardization of Epitopes for Human Chorionic Gonadotropin (hCG) Immunoassays.
Berger, Peter; Lapthorn, Adrian J
2016-01-01
hCG and its variants are markers for pregnancy tests, pregnancyrelated complications, trophoblastic diseases, pre-natal screening of Down's syndrome and doping controls. Strong demands are imposed on diagnostic methods by the dynamic changes in the absolute and relative levels of hCG protein backbone variants and glycosylation isoforms in serum and urine during development of pregnancy or the progression/remission of tumors. Observed differences in the results between commercial diagnostic immunoassays reflect the unequal molar recognition of the different metabolic hCG variants, in particular the hCG beta core fragment (hCGβcf), by the diagnostic antibodies (Abs), as their epitopes are not standardized, and the fact that suboptimal hCG standards are used. To rapidly characterize Abs by their epitope recognition and specificity to evaluate their suitability for diagnostic immunoassays a procedure of comparative epitope mapping has been developed using epitope-defined reference Abs. Comparative epitope mapping of diagnostic Abs will provide the basis for the standardization of diagnostic antigenic domains/epitopes and consequently for improved reliability of hCG measurements. Diagnostic first line assays likely consist of pairs of Abs that recognize specific epitopes at the top of the neighboring peptide loops 1 and 3 (Ł1+3) and the cystine knot (ck) of hCGβ, respectively. In future, significant improvements of reliability, robustness and comparability of the results of immunoassays for complex glycoproteins such as hCG will be achieved by the use (i) of standardized diagnostic Abs against welldefined epitopes and (ii) of the new International Standards for hCG and for five hCG variants established by WHO, that are calibrated in molar (SI) units.
Guan, Yongjun; Pazgier, Marzena; Sajadi, Mohammad M.; ...
2012-12-13
The HIV-1 envelope glycoprotein (Env) undergoes conformational transitions consequent to CD4 binding and coreceptor engagement during viral entry. The physical steps in this process are becoming defined, but less is known about their significance as targets of antibodies potentially protective against HIV-1 infection. Here we probe the functional significance of transitional epitope exposure by characterizing 41 human mAbs specific for epitopes exposed on trimeric Env after CD4 engagement. These mAbs recognize three epitope clusters: cluster A, the gp120 face occluded by gp41 in trimeric Env; cluster B, a region proximal to the coreceptor-binding site (CoRBS) and involving the V1/V2 domain;more » and cluster C, the coreceptor-binding site. The mAbs were evaluated functionally by antibody-dependent, cell-mediated cytotoxicity (ADCC) and for neutralization of Tiers 1 and 2 pseudoviruses. All three clusters included mAbs mediating ADCC. However, there was a strong potency bias for cluster A, which harbors at least three potent ADCC epitopes whose cognate mAbs have electropositive paratopes. Cluster A epitopes are functional ADCC targets during viral entry in an assay format using virion-sensitized target cells. In contrast, only cluster C contained epitopes that were recognized by neutralizing mAbs. There was significant diversity in breadth and potency that correlated with epitope fine specificity. In contrast, ADCC potency had no relationship with neutralization potency or breadth for any epitope cluster. In conclusion, Fc-mediated effector function and neutralization coselect with specificity in anti-Env antibody responses, but the nature of selection is distinct for these two antiviral activities.« less
Williams, Joshua D; Bermudez, Yira; Park, Sophia L; Stratton, Steven P; Uchida, Koji; Hurst, Craig A; Wondrak, Georg T
2014-03-05
Cutaneous exposure to solar ultraviolet radiation (UVR) is a causative factor in photoaging and photocarcinogenesis. In human skin, oxidative stress is widely considered a key mechanism underlying the detrimental effects of acute and chronic UVR exposure. The lipid peroxidation product malondialdehyde (MDA) accumulates in tissue under conditions of increased oxidative stress, and the occurrence of MDA-derived protein epitopes, including dihydropyridine-lysine (DHP), has recently been substantiated in human skin. Here we demonstrate for the first time that acute exposure to sub-apoptogenic doses of solar simulated UV light (SSL) causes the formation of free MDA and protein-bound MDA-derived epitopes in cultured human HaCaT keratinocytes and healthy human skin. Immunohistochemical staining revealed that acute exposure to SSL is sufficient to cause an almost twenty-fold increase in general MDA- and specific DHP-epitope content in human skin. When compared to dose-matched solar simulated UVA, complete SSL was more efficient generating both free MDA and MDA-derived epitopes. Subsequent tissue microarray (TMA) analysis revealed the prevalence of MDA- and DHP-epitopes in nonmelanoma skin cancer (NMSC). In squamous cell carcinoma tissue, both MDA- and DHP-epitopes were increased more than threefold as compared to adjacent normal tissue. Taken together, these date demonstrate the occurrence of MDA-derived epitopes in both solar UVR-exposed healthy human skin and NMSC TMA tissue; however, the potential utility of these epitopes as novel biomarkers of cutaneous photodamage and a functional role in the process of skin photocarcinogenesis remain to be explored. Copyright © 2014 Elsevier B.V. All rights reserved.
Setiawan, Laurentia C; Gijsbers, Esther F; van Nuenen, Adrianus C; Kootstra, Neeltje A
2015-08-01
The HLA-B27 allele is over-represented among human immunodeficiency virus type 1-infected long-term non-progressors. In these patients, strong CTL responses targeting HLA-B27-restricted viral epitopes have been associated with long-term asymptomatic survival. Indeed, loss of control of viraemia in HLA-B27 patients has been associated with CTL escape at position 264 in the immunodominant KK10 epitope. This CTL escape mutation in the viral Gag protein has been associated with severe viral attenuation and may require the presence of compensatory mutations before emerging. Here, we studied sequence evolution within HLA-B27-restricted CTL epitopes in the viral Gag protein during the course of infection of seven HLA-B27-positive patients. Longitudinal gag sequences obtained at different time points around the time of AIDS diagnosis were obtained and analysed for the presence of mutations in epitopes restricted by HLA-B27, and for potential compensatory mutations. Sequence variations were observed in the HLA-B27-restricted CTL epitopes IK9 and DR11, and the immunodominant KK10 epitope. However, the presence of sequence variations in the HLA-B27-restricted CTL epitopes could not be associated with an increase in viraemia in the majority of the patients studied. Furthermore, we observed low genetic diversity in the gag region of the viral variants throughout the course of infection, which is indicative of low viral replication and corresponds to the low viral load observed in the HLA-B27-positive patients. These data indicated that control of viral replication can be maintained in HLA-B27-positive patients despite the emergence of viral mutations in HLA-B27-restricted epitopes.
Mallon, Dermot H; Bradley, J Andrew; Winn, Peter J; Taylor, Craig J; Kosmoliaptsis, Vasilis
2015-02-01
We have previously shown that qualitative assessment of surface electrostatic potential of HLA class I molecules helps explain serological patterns of alloantibody binding. We have now used a novel computational approach to quantitate differences in surface electrostatic potential of HLA B-cell epitopes and applied this to explain HLA Bw4 and Bw6 antigenicity. Protein structure models of HLA class I alleles expressing either the Bw4 or Bw6 epitope (defined by sequence motifs at positions 77 to 83) were generated using comparative structure prediction. The electrostatic potential in 3-dimensional space encompassing the Bw4/Bw6 epitope was computed by solving the Poisson-Boltzmann equation and quantitatively compared in a pairwise, all-versus-all fashion to produce distance matrices that cluster epitopes with similar electrostatics properties. Quantitative comparison of surface electrostatic potential at the carboxyl terminal of the α1-helix of HLA class I alleles, corresponding to amino acid sequence motif 77 to 83, produced clustering of HLA molecules in 3 principal groups according to Bw4 or Bw6 epitope expression. Remarkably, quantitative differences in electrostatic potential reflected known patterns of serological reactivity better than Bw4/Bw6 amino acid sequence motifs. Quantitative assessment of epitope electrostatic potential allowed the impact of known amino acid substitutions (HLA-B*07:02 R79G, R82L, G83R) that are critical for antibody binding to be predicted. We describe a novel approach for quantitating differences in HLA B-cell epitope electrostatic potential. Proof of principle is provided that this approach enables better assessment of HLA epitope antigenicity than amino acid sequence data alone, and it may allow prediction of HLA immunogenicity.
El-Diwany, Ramy; Cohen, Valerie J; Mankowski, Madeleine C; Wasilewski, Lisa N; Brady, Jillian K; Snider, Anna E; Osburn, William O; Murrell, Ben; Ray, Stuart C; Bailey, Justin R
2017-02-01
Broadly-neutralizing monoclonal antibodies (bNAbs) may guide vaccine development for highly variable viruses including hepatitis C virus (HCV), since they target conserved viral epitopes that could serve as vaccine antigens. However, HCV resistance to bNAbs could reduce the efficacy of a vaccine. HC33.4 and AR4A are two of the most potent anti-HCV human bNAbs characterized to date, binding to highly conserved epitopes near the amino- and carboxy-terminus of HCV envelope (E2) protein, respectively. Given their distinct epitopes, it was surprising that these bNAbs showed similar neutralization profiles across a panel of natural HCV isolates, suggesting that some viral polymorphisms may confer resistance to both bNAbs. To investigate this resistance, we developed a large, diverse panel of natural HCV envelope variants and a novel computational method to identify bNAb resistance polymorphisms in envelope proteins (E1 and E2). By measuring neutralization of a panel of HCV pseudoparticles by 10 μg/mL of each bNAb, we identified E1E2 variants with resistance to one or both bNAbs, despite 100% conservation of the AR4A binding epitope across the panel. We discovered polymorphisms outside of either binding epitope that modulate resistance to both bNAbs by altering E2 binding to the HCV co-receptor, scavenger receptor B1 (SR-B1). This study is focused on a mode of neutralization escape not addressed by conventional analysis of epitope conservation, highlighting the contribution of extra-epitopic polymorphisms to bNAb resistance and presenting a novel mechanism by which HCV might persist even in the face of an antibody response targeting multiple conserved epitopes.
Construction and characterization of 3A-epitope-tagged foot-and-mouth disease virus.
Ma, Xueqing; Li, Pinghua; Sun, Pu; Bai, Xingwen; Bao, Huifang; Lu, Zengjun; Fu, Yuanfang; Cao, Yimei; Li, Dong; Chen, Yingli; Qiao, Zilin; Liu, Zaixin
2015-04-01
Nonstructural protein 3A of foot-and-mouth disease virus (FMDV) is a partially conserved protein of 153 amino acids (aa) in most FMDVs examined to date. Specific deletion in the FMDV 3A protein has been associated with the inability of FMDV to grow in primary bovine cells and cause disease in cattle. However, the aa residues playing key roles in these processes are poorly understood. In this study, we constructed epitope-tagged FMDVs containing an 8 aa FLAG epitope, a 9 aa haemagglutinin (HA) epitope, and a 10 aa c-Myc epitope to substitute residues 94-101, 93-101, and 93-102 of 3A protein, respectively, using a recently developed O/SEA/Mya-98 FMDV infectious cDNA clone. Immunofluorescence assay (IFA), Western blot and sequence analysis showed that the epitope-tagged viruses stably maintained and expressed the foreign epitopes even after 10 serial passages in BHK-21 cells. The epitope-tagged viruses displayed growth properties and plaque phenotypes similar to those of the parental virus in BHK-21 cells. However, the epitope-tagged viruses exhibited lower growth rates and smaller plaque size phenotypes than those of the parental virus in primary fetal bovine kidney (FBK) cells, but similar growth properties and plaque phenotypes to those of the recombinant viruses harboring 93-102 deletion in 3A. These results demonstrate that the decreased ability of FMDV to replicate in primary bovine cells was not associated with the length of 3A, and the genetic determinant thought to play key role in decreased ability to replicate in primary bovine cells could be reduced from 93-102 residues to 8 aa residues at positions 94-101 in 3A protein. Copyright © 2015 Elsevier B.V. All rights reserved.
Shaddel, Minoo; Ebrahimi, Mansour; Tabandeh, Mohammad Reza
2018-06-01
Toxoplasma gondii , is a causative agent of morbidity and mortality in immunocompromised and congenitally-infected individuals. Attempts to construct DNA vaccines against T. gondii using surface proteins are increasing. The dense granule antigens are highly expressed in the acute and chronic phases of T. gondii infection and considered as suitable DNA vaccine candidates to control toxoplasmosis. In the present study, bioinformatics tools and online software were used to predict, analyze and compare the structural, physical and chemical characters and immunogenicity of the GRA-1, GRA-4, GRA-6 and GRA-7 proteins. Sequence alignment results indicated that the GRA-1, GRA-4, GRA-6 and GRA-7 proteins had low similarity. The secondary structure prediction demonstrated that among the four proteins, GRA-1 and GRA-6 had similar secondary structure except for a little discrepancy. Hydrophilicity/hydrophobicity analysis showed multiple hydrophilic regions and some classical high hydrophilic domains for each protein sequence. Immunogenic epitope prediction results demonstrated that the GRA-1 and GRA-4 epitopes were stable and GRA-4 showed the highest degree of antigenicity. Although the GRA-7 epitope had the highest score of immunogenicity, this epitope was instable and had the lowest degree of antigenicity and half-time in eukaryotic cell. Also, the results indicated that GRA4-GRA7 epitope and GRA6-GRA7 had the highest degree of antigenicity and immunogenicity among multi-hybrid epitopes, respectively. Totally, in the present study, single epitopes showed the highest degree of antigenicity compared with multi-hybrid epitopes. Given the results, it can be concluded that GRA-4 and GRA-7 can be powerful DNA vaccine candidates against T. gondii .
Dey, Antu K.; Burke, Brian; Sun, Yide; Sirokman, Klara; Nandi, Avishek; Hartog, Karin; Lian, Ying; Geonnotti, Anthony R.; Montefiori, David; Franti, Michael; Martin, Grégoire; Carfi, Andrea; Kessler, Pascal; Martin, Loïc; Srivastava, Indresh K.; Barnett, Susan W.
2012-01-01
The identification of HIV-1 envelope glycoprotein (Env) structures that can generate broadly neutralizing antibodies (BNAbs) is pivotal to the development of a successful vaccine against HIV-1 aimed at eliciting effective humoral immune responses. To that end, the production of novel Env structure(s) that might induce BNAbs by presentation of conserved epitopes, which are otherwise occluded, is critical. Here, we focus on a structure that stabilizes Env in a conformation representative of its primary (CD4) receptor-bound state, thereby exposing highly conserved “CD4 induced” (CD4i) epitope(s) known to be important for co-receptor binding and subsequent virus infection. A CD4-mimetic miniprotein, miniCD4 (M64U1-SH), was produced and covalently complexed to recombinant, trimeric gp140 envelope glycoprotein (gp140) using site-specific disulfide linkages. The resulting gp140-miniCD4 (gp140-S-S-M64U1) complex was recognized by CD4i antibodies and the HIV-1 co-receptor, CCR5. The gp140-miniCD4 complex elicited the highest titers of CD4i binding antibodies as well as enhanced neutralizing antibodies against Tier 1 viruses as compared to gp140 protein alone following immunization of rabbits. Neutralization against HIV-27312/V434M and additional serum mapping confirm the specific elicitation of antibodies directed to the CD4i epitope(s). These results demonstrate the utility of structure-based approach in improving immunogenic response against specific region, such as the CD4i epitope(s) here, and its potential role in vaccine application. PMID:22291921
Zaman, Mehfuz; Chandrudu, Saranya; Giddam, Ashwini K; Reiman, Jennifer; Skwarczynski, Mariusz; McPhun, Virginia; Moyle, Peter M; Batzloff, Michael R; Good, Michael F; Toth, Istvan
2014-12-01
Utilize lipopeptide vaccine delivery system to develop a vaccine candidate against Group A Streptococcus. Lipopeptides synthesized by solid-phase peptide synthesis-bearing carboxyl (C)-terminal and amino (N)-terminal Group A Streptococcus peptide epitopes. Nanoparticles formed were evaluated in vivo. Immune responses were induced in mice without additional adjuvant. We demonstrated for the first time that incorporation of the C-terminal epitope significantly enhanced the N-terminal epitope-specific antibody response and correlated with forming smaller nanoparticles. Antigen-presenting cells had increased uptake and maturation by smaller, more immunogenic nanoparticles. Antibodies raised by vaccination recognized isolates. Demonstrated the lipopeptidic nanoparticles to induce an immune response which can be influenced by the combined effect of epitope choice and size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peabody, David S.; Chackerian, Bryce; Ashley, Carlee
The invention relates to virus-like particles of bacteriophage MS2 (MS2 VLPs) displaying peptide epitopes or peptide mimics of epitopes of Nipah Virus envelope glycoprotein that elicit an immune response against Nipah Virus upon vaccination of humans or animals. Affinity selection on Nipah Virus-neutralizing monoclonal antibodies using random sequence peptide libraries on MS2 VLPs selected peptides with sequence similarity to peptide sequences found within the envelope glycoprotein of Nipah itself, thus identifying the epitopes the antibodies recognize. The selected peptide sequences themselves are not necessarily identical in all respects to a sequence within Nipah Virus glycoprotein, and therefore may be referredmore » to as epitope mimics VLPs displaying these epitope mimics can serve as vaccine. On the other hand, display of the corresponding wild-type sequence derived from Nipah Virus and corresponding to the epitope mapped by affinity selection, may also be used as a vaccine.« less
The antigenic evolution of influenza: drift or thrift?
Wikramaratna, Paul S.; Sandeman, Michi; Recker, Mario; Gupta, Sunetra
2013-01-01
It is commonly assumed that antibody responses against the influenza virus are polarized in the following manner: strong antibody responses are directed at highly variable antigenic epitopes, which consequently undergo ‘antigenic drift’, while weak antibody responses develop against conserved epitopes. As the highly variable epitopes are in a constant state of flux, current antibody-based vaccine strategies are focused on the conserved epitopes in the expectation that they will provide some level of clinical protection after appropriate boosting. Here, we use a theoretical model to suggest the existence of epitopes of low variability, which elicit a high degree of both clinical and transmission-blocking immunity. We show that several epidemiological features of influenza and its serological and molecular profiles are consistent with this model of ‘antigenic thrift’, and that identifying the protective epitopes of low variability predicted by this model could offer a more viable alternative to regularly update the influenza vaccine than exploiting responses to weakly immunogenic conserved regions. PMID:23382423
Screening and identification of novel B cell epitopes of Toxoplasma gondii SAG1.
Wang, Yanhua; Wang, Guangxiang; Zhang, Delin; Yin, Hong; Wang, Meng
2013-04-30
The identification of protein epitopes is useful for diagnostic purposes and for the development of peptide vaccines. In this study, the epitopes of Toxoplasma gondii SAG1 were identified using synthetic peptide techniques with the aid of bioinformatics. Eleven peptides derived from T. gondii SAG1 were assessed by ELISA using pig sera from different time points after infection. Four (PS4, PS6, PS10 and PS11), out of the eleven peptides tested were recognized by all sera. Then, shorter peptides that were derived from PS4, PS6, PS10 and PS11 were predicted using bioinformatics and tested by experimentation. Four out of nine shorter peptides were identified successfully (amino acids 106-120, 166-180, 289-300 and 313-332). We have precisely located the epitopes of T. gondii SAG1 using pig sera collected at different time points after infection. The identified epitopes may be useful for the further study of epitope-based vaccines and diagnostic reagents.
Mulder, Gwenn E; Quarles van Ufford, H Linda C; van Ameijde, Jeroen; Brouwer, Arwin J; Kruijtzer, John A W; Liskamp, Rob M J
2013-04-28
A diversity of protein surface discontinuous epitope mimics is now rapidly and efficiently accessible. Despite the important role of protein-protein interactions involving discontinuous epitopes in a wide range of diseases, mimicry of discontinuous epitopes using peptide-based molecules remains a major challenge. Using copper(I) catalyzed azide-alkyne cycloaddition (CuAAC), we have developed a general and efficient method for the synthesis of collections of discontinuous epitope mimics. Up to three different cyclic peptides, representing discontinuous epitopes in HIV-gp120, were conjugated to a selection of scaffold molecules. Variation of the scaffold molecule, optimization of the ring size of the cyclic peptides and screening of the resulting libraries for successful protein mimics led to an HIV gp120 mimic with an IC50 value of 1.7 μM. The approach described here provides rapid and highly reproducible access to clean, smart libraries of very complex bio-molecular constructs representing protein mimics for use as synthetic vaccines and beyond.
Blister-inducing antibodies target multiple epitopes on collagen VII in mice
Csorba, Kinga; Chiriac, Mircea Teodor; Florea, Florina; Ghinia, Miruna Georgiana; Licarete, Emilia; Rados, Andreea; Sas, Alexandra; Vuta, Vlad; Sitaru, Cassian
2014-01-01
Epidermolysis bullosa acquisita (EBA) is an autoimmune subepidermal blistering disease of mucous membranes and the skin caused by autoantibodies against collagen VII. In silico and wet laboratory epitope mapping studies revealed numerous distinct epitopes recognized by EBA patients' autoantibodies within the non-collagenous (NC)1 and NC2 domains of collagen VII. However, the distribution of pathogenic epitopes on collagen VII has not yet been described. In this study, we therefore performed an in vivo functional epitope mapping of pathogenic autoantibodies in experimental EBA. Animals (n = 10/group) immunized against fragments of the NC1 and NC2 domains of collagen VII or injected with antibodies generated against the same fragments developed to different extent experimental EBA. Our results demonstrate that antibodies targeting multiple, distinct epitopes distributed over the entire NC1, but not NC2 domain of collagen VII induce blistering skin disease in vivo. Our present findings have crucial implications for the development of antigen-specific B- and T cell-targeted therapies in EBA. PMID:25091020
Liu, Xiao; Zhu, Ling; Shi, Xiaohong; Xu, Zhiwen; Mei, Miao; Xu, Weiwei; Zhou, Yuancheng; Guo, Wanzhu; Wang, Xiaoyu
2012-12-01
The major epitope region of the glycoprotein B (gB) gene of the porcine cytomegalovirus (PCMV), with a length of 270 bp, was cloned and expressed in Escherichia coli Rosetta (DE3). The major gB epitope was detected using an agar gel precipitation and Western blot analysis with the polyclonal antibodies specific for the major epitope. An indirect-blocking enzyme-linked immunosorbent assay (ELISA) was developed using the expressed major gB epitope as a coating antigen for the detection of PCMV antibodies. The results of the tests show that the indirect-blocking ELISA has 98% specificity and 97.8% sensitivity. No cross-reactions were observed between the major gB epitope and the antibodies against other virus, which indicates that the gB epitope is specific for PCMV antibodies. The indirect-blocking ELISA is a highly specific, sensitive method for detecting anti-PCMV gB antibodies. Copyright © 2012 Elsevier B.V. All rights reserved.
Tai, Dar-Fu; Jhang, Ming-Hong; Chen, Guan-Yu; Wang, Sue-Chen; Lu, Kuo-Hao; Lee, Yu-Der; Liu, Hsin-Tzu
2010-03-15
A molecularly imprinted film was fabricated, in the presence of epitope-peptides, onto a quartz crystal microbalance (QCM) chip. These five peptides are known linear or conformational epitopes of the anthrax protective antigen PA(83). Imprinting resulted in an epitope-cavity with affinity for the corresponding template. With the use of a basic monomer, the binding-effect was further enhanced increasing the affinity to nanomolar levels. The affinities of the peptide to their corresponding molecularly induced polymers (MIPs) were more closely related to the molecular weight of the analyte than to the number of residues. All epitope-cavities differentiated their epitope region on the protective antigen PA(83) as well as the corresponding furin cleavage fragments PA(63) and PA(20). The QCM chip differential response to the protective antigen fragment was observed in the picomolar range, thus demonstrating a method to manipulate protein on the surface with defined orientation.
Capelli, Riccardo; Matterazzo, Elena; Amabili, Marco; Peri, Claudio; Gori, Alessandro; Gagni, Paola; Chiari, Marcella; Lertmemongkolchai, Ganjana; Cretich, Marina; Bolognesi, Martino; Colombo, Giorgio; Gourlay, Louise J
2017-10-13
Structure-based epitope prediction drives the design of diagnostic peptidic probes to reveal specific antibodies elicited in response to infections. We previously identified a highly immunoreactive epitope from the peptidoglycan-associated lipoprotein (Pal) antigen from Burkholderia pseudomallei, which could also diagnose Burkholderia cepacia infections. Here, considering the high phylogenetic conservation within Burkholderia species, we ask whether cross-reactivity can be reciprocally displayed by the synthetic epitope from B. cenocepacia. We perform comparative analyses of the conformational preferences and diagnostic performances of the corresponding epitopes from the two Burkholderia species when presented in the context of the full-length proteins or as isolated peptides. The effects of conformation on the diagnostic potential and cross-reactivity of Pal peptide epitopes are rationalized on the basis of the 1.8 Å crystal structure of B. cenocepacia Pal and through computational analyses. Our results are discussed in the context of designing new diagnostic molecules for the early detection of infectious diseases.
The design and implementation of the immune epitope database and analysis resource
Peters, Bjoern; Sidney, John; Bourne, Phil; Bui, Huynh-Hoa; Buus, Soeren; Doh, Grace; Fleri, Ward; Kronenberg, Mitch; Kubo, Ralph; Lund, Ole; Nemazee, David; Ponomarenko, Julia V.; Sathiamurthy, Muthu; Schoenberger, Stephen P.; Stewart, Scott; Surko, Pamela; Way, Scott; Wilson, Steve; Sette, Alessandro
2016-01-01
Epitopes are defined as parts of antigens interacting with receptors of the immune system. Knowledge about their intrinsic structure and how they affect the immune response is required to continue development of techniques that detect, monitor, and fight diseases. Their scientific importance is reflected in the vast amount of epitope-related information gathered, ranging from interactions between epitopes and major histocompatibility complex molecules determined by X-ray crystallography to clinical studies analyzing correlates of protection for epitope based vaccines. Our goal is to provide a central resource capable of capturing this information, allowing users to access and connect realms of knowledge that are currently separated and difficult to access. Here, we portray a new initiative, “The Immune Epitope Database and Analysis Resource.” We describe how we plan to capture, structure, and store this information, what query interfaces we will make available to the public, and what additional predictive and analytical tools we will provide. PMID:15895191
Andersen, Ditte C; Jensen, Charlotte H; Gregersen, Annemette; Brandt, Jette; Kliem, Anette; Skjødt, Karsten; Koch, Claus; Teisner, Børge
2004-01-01
This report describes an assay for comparison of epitope specificity in groups of monoclonal antibodies against a given antigen. The only prerequisite is the biotin-labeled antigen. One of the monoclonal antibodies is captured onto a plastic surface via a rabbit anti-mouse Ig, and the other preincubated with biotinylated antigen. When the two antibodies react with the same epitope subsequent binding of the biotin-labeled antigen is abolished (inhibition). In the cases where no inhibition was observed, the two antibodies were considered to react with distinct, independent epitopes. The obvious advantages using this assay, are that it can be performed directly on culture supernatants in the early phase of monoclonal antibody production, and also works for antigens with repetitive epitopes. Moreover, the bonus effect, i.e., a signal in excess of the reference signal when sets of monoclonal antibodies with different epitope specificity are compared, gives a relative measure of affinity.
NASA Astrophysics Data System (ADS)
An, Mengting; Zhang, Fengbo; Zhu, Yuejie; Zhao, Xiao; Ding, Jianbing
2018-01-01
Cystic echinococcosis, as a zoonosis, seriously endangers humans and animals, so early diagnosis of this disease is particularly important. Therefore, this study is to predict B-cell epitopes of EgAgB1 and EgAgB3 proteins by bioinformatics software. B-cell epitopes of EgAgB1 and EgAgB3 proteins are predicted using DNAStar and IEDB software. The results suggest that there are two potential B-cell epitopes in EgAgB1, which located in the 8-15 and 31-37 amino acid residue segments. And two potential B-cell epitopes in EgAgB2, located in the 20∼27 and 47∼53 amino acid residue segments. This study predicted the B-cell epitopes of EgAgB1 and EgAgB3 proteins, which laid the foundation for the early diagnosis of Cystic echinococcosis.
Primary structure of Lep d I, the main Lepidoglyphus destructor allergen.
Varela, J; Ventas, P; Carreira, J; Barbas, J A; Gimenez-Gallego, G; Polo, F
1994-10-01
The most relevant allergen of the storage mite Lepidoglyphus destructor (Lep d I) has been characterized. Lep d I is a monomer protein of 13273 Da. The primary structure of Lep d I was determined by N-terminal Edman degradation and partially confirmed by cDNA sequencing. Sequence polymorphism was observed at six positions, with non-conservative substitutions in three of them. No potential N-glycosylation site was revealed by peptide sequencing. The 125-residue sequence of Lep d I shows approximately 40% identity (including the six cysteines) with the overlapping regions of group II allergens from the genus Dermatophagoides, which, however, do not share common allergenic epitopes with Lep d I.
Olson, J C
1993-01-01
Diphtheria toxin (DT) and Pseudomonas aeruginosa exotoxin A have the same molecular mechanism of toxicity; both toxins ADP-ribosylate a modified histidine residue in elongation factor 2. To help identify amino acids involved in this reaction, sequences in DT that share homology with P. aeruginosa exotoxin A were synthesized and examined for a role in the ADP-ribosyltransferase reaction. By using this approach, residues 32 to 54 of DT were found to define an epitope associated with antibody-mediated inhibition of DT enzyme activity. This lends further support to the notion that residues in this region of DT are involved in the enzymatic reaction. PMID:8423159
Sandomenico, Annamaria; Leonardi, Antonio; Berisio, Rita; Sanguigno, Luca; Focà, Giuseppina; Focà, Annalia; Ruggiero, Alessia; Doti, Nunzianna; Muscariello, Livio; Barone, Daniela; Farina, Claudio; Owsianka, Ania; Vitagliano, Luigi
2016-01-01
ABSTRACT The hepatitis C virus (HCV) E2 envelope glycoprotein is crucial for virus entry into hepatocytes. A conserved region of E2 encompassing amino acids 412 to 423 (epitope I) and containing Trp420, a residue critical for virus entry, is recognized by several broadly neutralizing antibodies. Peptides embodying this epitope I sequence adopt a β-hairpin conformation when bound to neutralizing monoclonal antibodies (MAbs) AP33 and HCV1. We therefore generated new mouse MAbs that were able to bind to a cyclic peptide containing E2 residues 412 to 422 (C-epitope I) but not to the linear counterpart. These MAbs bound to purified E2 with affinities of about 50 nM, but they were unable to neutralize virus infection. Structural analysis of the complex between C-epitope I and one of our MAbs (C2) showed that the Trp420 side chain is largely buried in the combining site and that the Asn417 side chain, which is glycosylated in E2 and solvent exposed in other complexes, is slightly buried upon C2 binding. Also, the orientation of the cyclic peptide in the antibody-combining site is rotated by 180° compared to the orientations of the other complexes. All these structural features, however, do not explain the lack of neutralization activity. This is instead ascribed to the high degree of selectivity of the new MAbs for the cyclic epitope and to their inability to interact with the epitope in more flexible and extended conformations, which recent data suggest play a role in the mechanisms of neutralization escape. IMPORTANCE Hepatitis C virus (HCV) remains a major health care burden, affecting almost 3% of the global population. The conserved epitope comprising residues 412 to 423 of the viral E2 glycoprotein is a valid vaccine candidate because antibodies recognizing this region exhibit potent neutralizing activity. This epitope adopts a β-hairpin conformation when bound to neutralizing MAbs. We explored the potential of cyclic peptides mimicking this structure to elicit anti-HCV antibodies. MAbs that specifically recognize a cyclic variant of the epitope bind to soluble E2 with a lower affinity than other blocking antibodies and do not neutralize virus. The structure of the complex between one such MAb and the cyclic epitope, together with new structural data showing the linear peptide bound to neutralizing MAbs in extended conformations, suggests that the epitope displays a conformational flexibility that contributes to neutralization escape. Such features can be of major importance for the design of epitope-based anti-HCV vaccines. PMID:26819303
Scriba, Thomas J; Carpenter, Chelsea; Pro, Sebastian Carrasco; Sidney, John; Musvosvi, Munyaradzi; Rozot, Virginie; Seumois, Grégory; Rosales, Sandy L; Vijayanand, Pandurangan; Goletti, Delia; Makgotlho, Edward; Hanekom, Willem; Hatherill, Mark; Peters, Bjoern; Sette, Alessandro; Arlehamn, Cecilia S Lindestam
2017-09-15
Individuals with a history of tuberculosis (TB) disease are at elevated risk of disease recurrence. The underlying cause is not known, but one explanation is that previous disease results in less-effective immunity against Mycobacterium tuberculosis (Mtb). We hypothesized that the repertoire of Mtb-derived epitopes recognized by T cells from individuals with latent Mtb infection differs as a function of previous diagnosis of active TB disease. T-cell responses to peptide pools in samples collected from an adult screening and an adolescent validation cohort were measured by IFN-γ enzyme-linked immunospot assay or intracellular cytokine staining. We identified a set of "type 2" T-cell epitopes that were recognized at 10-fold-lower levels in Mtb-infected individuals with a history of TB disease less than 6 years ago than in those without previous TB. By contrast, "type 1" epitopes were recognized equally well in individuals with or without previous TB. The differential epitope recognition was not due to differences in HLA class II binding, memory phenotypes, or gene expression in the responding T cells. Instead, "TB disease history-sensitive" type 2 epitopes were significantly (P < 0.0001) more homologous to sequences from bacteria found in the human microbiome than type 1 epitopes. Preferential loss of T-cell reactivity to Mtb epitopes that are homologous to bacteria in the microbiome in persons with previous TB disease may reflect long-term effects of antibiotic TB treatment on the microbiome.
Ma, Yanjie; Cao, Huimin; Li, Zhixin; Fang, Jinzhi; Wei, Xiaomin; Cheng, Peng; Jiao, Rui; Liu, Xiaoran; Li, Ya; Xing, Yun; Tang, Jiali; Jin, Liang; Li, Taiming
2017-10-16
Hyperuricemia (HUA) is related to diabetes. Uric acid-induced inflammation and oxidative stress are risk factors for diabetes and its complications. Human urate transporter 1 (URAT1) regulates the renal tubular reabsorption of uric acid. IA-2(5)-P2-1, a potent immunogenic carrier designed by our laboratory, can induce high-titer specific antibodies when it carries a B cell epitope, such as B cell epitopes of DPP4 (Dipeptidyl peptidase-4), xanthine oxidase. In this report, we describe a novel multi-epitope vaccine composing a peptide of URAT1, an anti-diabetic B epitope of insulinoma antigen-2(IA-2) and a Th2 epitope (P2:IPALDSLTPANED) of P277 peptide in human heat shock protein 60 (HSP60). Immunization with the multi-epitope vaccine in streptozotocin-induced diabetes C57BL/6J mice successfully induced specific anti-URAT1 antibody, which inhibited URAT1 action and uric acid reabsorption, and increased pancreatic insulin level with a lower insulitis incidence. Vaccination with U-IA-2(5)-P2-1 (UIP-1) significantly reduced blood glucose and uric acid level, increased Th2 cytokines interleukin (IL)-10 and IL-4, and regulated immune reactions through a balanced Th1/Th2 ratio. These results demonstrate that the URAT1-based multi-epitope peptide vaccine may be a suitable therapeutic approach for diabetes and its complications.
Ghasemian Safaei, Hajieh; Faghri, Jamshid; Moghim, Sharareh; Nasr Esfahani, Bahram; Fazeli, Hossein; Makvandi, Manoochehr; Adib, Minoo; Rashidi, Niloufar
2015-12-01
Helicobacter pylori infection is highly prevalent in the developing countries. It causes gastritis, peptic ulcer disease, and gastrocarcinoma. Treatment with drugs and antibiotics is problematic due to the following reasons: cost, resistance to antibiotics, prolonged treatment and using multiple drugs. Catalase is highly conserved among the Helicobacter species and is important to the survival of the organism. It is expressed in high amounts and is exposed to the surface of this bacterium; therefore it represents a suitable candidate vaccine antigen. A suitable approach in H. pylori vaccinology is the administration of epitope based vaccines. Therefore the responses of T-cells (IFN-γ and IL-4 production) against the catalase of H. pylori were determined. Then the quality of the immune responses against intact catalase and three epitopes of catalase were compared. In this study, a composition of three epitopes of the H. pylori catalase was selected based on Propred software. The effect of catalase epitopes on T-cells were assayed and immune responses identified. The results of IFN-γ, IL-4 production against antigens, epitopes, and recombinant catalase by T-cells were compared for better understanding of epitope efficiency. The current research demonstrated that epitope sequence stimulates cellular immune responses effectively. In addition, increased safety and potency as well as a reduction in time and cost were advantages of this method. Authors are going to use this sequence as a suitable vaccine candidate for further research on animal models and humans in future.
Artificial-epitope mapping for CK-MB assay.
Tai, Dar-Fu; Ho, Yi-Fang; Wu, Cheng-Hsin; Lin, Tzu-Chieh; Lu, Kuo-Hao; Lin, Kun-Shian
2011-06-07
A quantitative method using artificial antibody to detect creatine kinases was developed. Linear epitope sequences were selected based on an artificial-epitope mapping strategy. Nine different MIPs corresponding to the selected peptides were then fabricated on QCM chips. The subtle conformational changes were also recognized by these chips.
Li, Tingfeng; Steede, N. Kalaya; Nguyen, Hong-Nam P.; Freytag, Lucy C.; McLachlan, James B.; Mettu, Ramgopal R.; Robinson, James E.
2014-01-01
ABSTRACT Helper T-cell epitope dominance in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is not adequately explained by peptide binding to major histocompatibility complex (MHC) proteins. Antigen processing potentially influences epitope dominance, but few, if any, studies have attempted to reconcile the influences of antigen processing and MHC protein binding for all helper T-cell epitopes of an antigen. Epitopes of gp120 identified in both humans and mice occur on the C-terminal flanks of flexible segments that are likely to be proteolytic cleavage sites. In this study, the influence of gp120 conformation on the dominance pattern in gp120 from HIV strain 89.6 was examined in CBA mice, whose MHC class II protein has one of the most well defined peptide-binding preferences. Only one of six dominant epitopes contained the most conserved element of the I-Ak binding motif, an aspartic acid. Destabilization of the gp120 conformation by deletion of single disulfide bonds preferentially enhanced responses to the cryptic I-Ak motif-containing sequences, as reported by T-cell proliferation or cytokine secretion. Conversely, inclusion of CpG in the adjuvant with gp120 enhanced responses to the dominant CD4+ T-cell epitopes. The gp120 destabilization affected secretion of some cytokines more than others, suggesting that antigen conformation could modulate T-cell functions through mechanisms of antigen processing. IMPORTANCE CD4+ helper T cells play an essential role in protection against HIV and other pathogens. Thus, the sites of helper T-cell recognition, the dominant epitopes, are targets for vaccine design; and the corresponding T cells may provide markers for monitoring infection and immunity. However, T-cell epitopes are difficult to identify and predict. It is also unclear whether CD4+ T cells specific for one epitope are more protective than T cells specific for other epitopes. This work shows that the three-dimensional (3D) structure of an HIV protein partially determines which epitopes are dominant, most likely by controlling the breakdown of HIV into peptides. Moreover, some types of signals from CD4+ T cells are affected by the HIV protein 3D structure; and thus the protectiveness of a particular peptide vaccine could be related to its location in the 3D structure. PMID:24920818
Feigon, S A; Waldman, I D; Levy, F; Hay, D A
2001-09-01
We estimated genetic and environmental influences on mother-rated DSM-III-R separation anxiety disorder (SAD) symptoms in 2043 3 to 18-year-old male and female twin pairs and their siblings (348 pairs) recruited from the Australian NH&MRC Twin Registry. Using DeFries and Fulker's (1985) multiple regression analysis, we found that genetic and shared environmental influences both contributed appreciably to variation in SAD symptoms (h2 = .47, SE = .07; c2 = .21, SE = .05) and were significantly moderated by both sex and age. Genetic influences were greater for girls than boys (h2 = .50 and .14, respectively), whereas shared environmental influences were greater for boys than girls (c2 = .51 and .21, respectively). Genetic influences increased with age. whereas shared environmental influences decreased with age. Shared environmental influences were greater in magnitude for twins than for nontwin siblings (c2 = .28 versus .13, respectively). Implications of these findings for theories of the cause of separation anxiety are discussed.
Characterization of Three Novel SINE Families with Unusual Features in Helicoverpa armigera
Wang, Jianjun; Wang, Aina; Han, Zhaojun; Zhang, Zan; Li, Fei; Li, Xianchun
2012-01-01
Although more than 120 families of short interspersed nuclear elements (SINEs) have been isolated from the eukaryotic genomes, little is known about SINEs in insects. Here, we characterize three novel SINEs from the cotton bollworm, Helicoverpa armigera. Two of them, HaSE1 and HaSE2, share similar 5′ -structure including a tRNA-related region immediately followed by conserved central domain. The 3′ -tail of HaSE1 is significantly similar to that of one LINE retrotransposon element, HaRTE1.1, in H. armigera genome. The 3′ -region of HaSE2 showed high identity with one mariner-like element in H. armigera. The third family, termed HaSE3, is a 5S rRNA-derived SINE and shares both body part and 3′-tail with HaSE1, thus may represent the first example of a chimera generated by recombination between 5S rRNA and tRNA-derived SINE in insect species. Further database searches revealed the presence of these SINEs in several other related insect species, but not in the silkworm, Bombyx mori, indicating a relatively narrow distribution of these SINEs in Lepidopterans. Apart from above, we found a copy of HaSE2 in the GenBank EST entry for the cotton aphid, Aphis gossypii, suggesting the occurrence of horizontal transfer. PMID:22319625
Xiong, Jun-Hui; Guo, Qing-Shun; Ge, Sheng-Xiang; Gu, Ying; Chen, Yi-Xin; Miao, Ji; Du, Hai-Lian; Shi, Wei-Guo; Zhang, Jun; Xia, Ning-Shao
2008-06-01
Western blot, capture-PCR, blocking ELISA and synthetic polypeptides were used to systematically study the recognition epitopes on HEV ORF2 of 23 anti-HEV monoclonal antibodies(McAbs) which were previously generated in our laboratory directed against HEV ORF2. Results showed that seven McAbs recognized linear epitopes that located at aa408-458 of HEV ORF2 and 16 conformation-dependent McAbs, most of which recognized the surface epitopes of native HEV, located at aa459-606 of HEV ORF2. The systematical study of the recognition epitopes of anti-HEV McAbs on HEV ORF2 provides important information for the investigation of virus receptor and HEV infection mechanism, as well as its vaccine and diagnostics development.
Identification of Novel Avian Influenza Virus Derived CD8+ T-Cell Epitopes
Reemers, Sylvia S. N.; van Haarlem, Daphne A.; Sijts, Alice J. A. M.; Vervelde, Lonneke; Jansen, Christine A.
2012-01-01
Avian influenza virus (AIV) infection is a continuing threat to both humans and poultry. Influenza virus specific CD8+ T cells are associated with protection against homologous and heterologous influenza strains. In contrast to what has been described for humans and mice, knowledge on epitope-specific CD8+ T cells in chickens is limited. Therefore, we set out to identify AIV-specific CD8+ T-cell epitopes. Epitope predictions based on anchor residues resulted in 33 candidate epitopes. MHC I inbred chickens were infected with a low pathogenic AIV strain and sacrificed at 5, 7, 10 and 14 days post infection (dpi). Lymphocytes isolated from lung, spleen and blood were stimulated ex vivo with AIV-specific pooled or individual peptides and the production of IFNγ was determined by ELIspot. This resulted in the identification of 12 MHC B12-restricted, 3 B4-restricted and 1 B19-restricted AIV- specific CD8+ T-cell epitopes. In conclusion, we have identified novel AIV-derived CD8+ T-cell epitopes for several inbred chicken strains. This knowledge can be used to study the role of CD8+ T cells against AIV infection in a natural host for influenza, and may be important for vaccine development. PMID:22384112
Malondialdehyde epitopes as targets of immunity and the implications for atherosclerosis
Binder, Christoph J.
2018-01-01
Accumulating evidence suggests that oxidation-specific epitopes (OSEs) constitute a novel class of damage-associated molecular patterns (DAMPs) generated during high oxidative stress but also in the physiological process of apoptosis. To deal with the potentially harmful consequences of such epitopes, the immune system has developed several mechanisms to protect from OSEs and to orchestrate their clearance, including IgM natural antibodies and both cellular and membrane-bound receptors. Here, we focus on malondialdehyde (MDA) epitopes as prominent examples of OSEs that trigger both innate and adaptive immune responses. First, we review the mechanism of MDA generation, the different types of adducts on various biomolecules and provide relevant examples for physiological carriers of MDA such as apoptotic cells, microvesicles (MV) or oxidized low-density lipoproteins (LDL). Based on recent insights, we argue that MDA epitopes contribute to the maintenance of homeostatic functions by acting as markers of elevated oxidative stress and tissue damage. We discuss multiple lines of evidence that MDA epitopes are pro-inflammatory and thus important targets of innate and adaptive immune responses. Finally, we illustrate the relevance of MDA epitopes in human pathologies by describing their capacity to drive inflammatory processes in atherosclerosis and highlighting protective mechanisms of immunity that could be exploited for therapeutic purposes. PMID:27235680
Kumar, Vikram; Damodharan, S; Pandaranayaka, Eswari P J; Madathiparambil, Madanan G; Tennyson, Jebasingh
2016-01-01
Expression of Cardamom mosaic virus (CdMV) coat protein (CP) in E. coli forms virus-like particles. In this study, the structure of CdMV CP was predicted and used as a platform to display epitopes of the most abundant surface-associated protein, LipL32 of Leptospira at C, N, and both the termini of CdMV CP. In silico, we have mapped sequential and conformational B-cell epitopes from the crystal structure of LipL32 of Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130 using IEDB Elipro, ABCpred, BCPRED, and VaxiJen servers. Our results show that the epitopes displayed at the N-terminus of CdMV CP are promising vaccine candidates as compared to those displayed at the C-terminus or at both the termini. LipL32 epitopes, EP2, EP3, EP4, and EP6 are found to be promising B-cell epitopes for vaccine development. Based on the type of amino acids, length, surface accessibility, and docking energy with CdMV CP model, the order of antigenicity of the LipL32 epitopes was found to be EP4 > EP3 > EP2 > EP6.
Dørum, Siri; Steinsbø, Øyvind; Bergseng, Elin; Arntzen, Magnus Ø; de Souza, Gustavo A; Sollid, Ludvig M
2016-05-05
This study aimed to identify proteolytic fragments of gluten proteins recognized by recombinant IgG1 monoclonal antibodies generated from single IgA plasma cells of celiac disease lesions. Peptides bound by monoclonal antibodies in complex gut-enzyme digests of gluten treated with the deamidating enzyme transglutaminase 2, were identified by mass spectrometry after antibody pull-down with protein G beads. The antibody bound peptides were long deamidated peptide fragments that contained the substrate recognition sequence of transglutaminase 2. Characteristically, the fragments contained epitopes with the sequence QPEQPFP and variants thereof in multiple copies, and they typically also harbored many different gluten T-cell epitopes. In the pull-down setting where antibodies were immobilized on a solid phase, peptide fragments with multivalent display of epitopes were targeted. This scenario resembles the situation of the B-cell receptor on the surface of B cells. Conceivably, B cells of celiac disease patients select gluten epitopes that are repeated multiple times in long peptide fragments generated by gut digestive enzymes. As the fragments also contain many different T-cell epitopes, this will lead to generation of strong antibody responses by effective presentation of several distinct T-cell epitopes and establishment of T-cell help to B cells.
Dørum, Siri; Steinsbø, Øyvind; Bergseng, Elin; Arntzen, Magnus Ø.; de Souza, Gustavo A.; Sollid, Ludvig M.
2016-01-01
This study aimed to identify proteolytic fragments of gluten proteins recognized by recombinant IgG1 monoclonal antibodies generated from single IgA plasma cells of celiac disease lesions. Peptides bound by monoclonal antibodies in complex gut-enzyme digests of gluten treated with the deamidating enzyme transglutaminase 2, were identified by mass spectrometry after antibody pull-down with protein G beads. The antibody bound peptides were long deamidated peptide fragments that contained the substrate recognition sequence of transglutaminase 2. Characteristically, the fragments contained epitopes with the sequence QPEQPFP and variants thereof in multiple copies, and they typically also harbored many different gluten T-cell epitopes. In the pull-down setting where antibodies were immobilized on a solid phase, peptide fragments with multivalent display of epitopes were targeted. This scenario resembles the situation of the B-cell receptor on the surface of B cells. Conceivably, B cells of celiac disease patients select gluten epitopes that are repeated multiple times in long peptide fragments generated by gut digestive enzymes. As the fragments also contain many different T-cell epitopes, this will lead to generation of strong antibody responses by effective presentation of several distinct T-cell epitopes and establishment of T-cell help to B cells. PMID:27146306
Jaume, J C; Burek, C L; Hoffman, W H; Rose, N R; McLachlan, S M; Rapoport, B
1996-04-01
In Hashimoto's thyroiditis, the humoral component is manifest by autoantibodies to thyroid peroxidase (TPO). Epitopic 'fingerprinting' of polyclonal serum TPO autoantibodies has been facilitated by the molecular cloning and expression as Fab of a repertoire of human TPO autoantibody genes. To investigate whether TPO autoantibody fingerprints are (i) stable over long periods of time (approximately 15 years), and (ii) inherited, we studied a cohort of nine patients with juvenile Hashimoto's thyroiditis and 21 first degree relatives of four of these patients. Fingerprints were determined by competition between four selected FAB and serum autoantibodies for binding to 125I-TPO. Regardless of titre, the TPO epitopic profile was stable in 10/12 individuals whose TPO autoantibody levels were sufficient for analysis on two or three occasions over 12-15 years. Although the TPO epitopic fingerprint profiles in two families raised the possibility of inheritance, overall the data from all four families did not reveal an obvious pattern of genetic control. In no family was the TPO epitopic fingerprint associated with HLA A, B or DR. In conclusion, TPO autoantibody epitopic fingerprints are frequently conserved over many years. Studies on additional families are necessary to establish whether or not the epitopic profiles of TPO autoantibodies are inherited.
Identification of a conserved B-cell epitope on the GapC protein of Streptococcus dysgalactiae.
Zhang, Limeng; Zhou, Xue; Fan, Ziyao; Tang, Wei; Chen, Liang; Dai, Jian; Wei, Yuhua; Zhang, Jianxin; Yang, Xuan; Yang, Xijing; Liu, Daolong; Yu, Liquan; Zhang, Hua; Wu, Zhijun; Yu, Yongzhong; Sun, Hunan; Cui, Yudong
2015-01-01
Streptococcus dysgalactiae (S. dysgalactia) GapC is a highly conserved surface dehydrogenase among the streptococcus spp., which is responsible for inducing protective antibody immune responses in animals. However, the B-cell epitope of S. dysgalactia GapC have not been well characterized. In this study, a monoclonal antibody 1F2 (mAb1F2) against S. dysgalactiae GapC was generated by the hybridoma technique and used to screen a phage-displayed 12-mer random peptide library (Ph.D.-12) for mapping the linear B-cell epitope. The mAb1F2 recognized phages displaying peptides with the consensus motif TRINDLT. Amino acid sequence of the motif exactly matched (30)TRINDLT(36) of the S. dysgalactia GapC. Subsequently, site-directed mutagenic analysis further demonstrated that residues R31, I32, N33, D34 and L35 formed the core of (30)TRINDLT(36), and this core motif was the minimal determinant of the B-cell epitope recognized by the mAb1F2. The epitope (30)TRINDLT(36) showed high homology among different streptococcus species. Overall, our findings characterized a conserved B-cell epitope, which will be useful for the further study of epitope-based vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.
Guo, Le; Yang, Hua; Tang, Feng; Yin, Runting; Liu, Hongpeng; Gong, Xiaojuan; Wei, Jun; Zhang, Ying; Xu, Guangxian; Liu, Kunmei
2017-01-01
Epitope-based vaccine is a promising strategy for therapeutic vaccination against Helicobacter pylori ( H. pylori ) infection. A multivalent subunit vaccine containing various antigens from H. pylori is superior to a univalent subunit vaccine. However, whether a multivalent epitope-based vaccine is superior to a univalent epitope-based vaccine in therapeutic vaccination against H. pylori , remains unclear. In this study, a multivalent epitope-based vaccine named CWAE against H. pylori urease, neutrophil-activating protein (NAP), heat shock protein 60 (HSP60) and H. pylori adhesin A (HpaA) was constructed based on mucosal adjuvant cholera toxin B subunit (CTB), Th1-type adjuvant NAP, multiple copies of selected B and Th cell epitopes (UreA 27-53 , UreA 183-203 , HpaA 132-141 , and HSP60 189-203 ), and also the epitope-rich regions of urease B subunit (UreB 158-251 and UreB 321-385 ) predicted by bioinformatics. Immunological properties of CWAE vaccine were characterized in BALB/c mice model. Its therapeutic effect was evaluated in H. pylori -infected Mongolian gerbil model by comparing with a univalent epitope-based vaccine CTB-UE against H. pylori urease that was constructed in our previous studies. Both CWAE and CTB-UE could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect of H. pylori urease activity. However, only CWAE could induce high levels of specific antibodies to NAP, HSP60, HpaA, and also the synthetic peptides epitopes (UreB 158-172 , UreB 181-195 , UreB 211-225 , UreB 349-363 , HpaA 132-141 , and HSP60 189-203 ). In addition, oral therapeutic immunization with CWAE significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils, compared with oral immunization using CTB-UE or H. pylori urease. The protection of CWAE was associated with higher levels of mixed CD4 + T cell (Th cell) response, IgG, and secretory IgA (sIgA) antibodies to H. pylori . These results indic ate that a multivalent epitope-based vaccine including Th and B cell epitopes from various H. pylori antigens could be a promising candidate against H. pylori infection.
Guo, Le; Yang, Hua; Tang, Feng; Yin, Runting; Liu, Hongpeng; Gong, Xiaojuan; Wei, Jun; Zhang, Ying; Xu, Guangxian; Liu, Kunmei
2017-01-01
Epitope-based vaccine is a promising strategy for therapeutic vaccination against Helicobacter pylori (H. pylori) infection. A multivalent subunit vaccine containing various antigens from H. pylori is superior to a univalent subunit vaccine. However, whether a multivalent epitope-based vaccine is superior to a univalent epitope-based vaccine in therapeutic vaccination against H. pylori, remains unclear. In this study, a multivalent epitope-based vaccine named CWAE against H. pylori urease, neutrophil-activating protein (NAP), heat shock protein 60 (HSP60) and H. pylori adhesin A (HpaA) was constructed based on mucosal adjuvant cholera toxin B subunit (CTB), Th1-type adjuvant NAP, multiple copies of selected B and Th cell epitopes (UreA27–53, UreA183–203, HpaA132–141, and HSP60189–203), and also the epitope-rich regions of urease B subunit (UreB158–251 and UreB321–385) predicted by bioinformatics. Immunological properties of CWAE vaccine were characterized in BALB/c mice model. Its therapeutic effect was evaluated in H. pylori-infected Mongolian gerbil model by comparing with a univalent epitope-based vaccine CTB-UE against H. pylori urease that was constructed in our previous studies. Both CWAE and CTB-UE could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect of H. pylori urease activity. However, only CWAE could induce high levels of specific antibodies to NAP, HSP60, HpaA, and also the synthetic peptides epitopes (UreB158–172, UreB181–195, UreB211–225, UreB349–363, HpaA132–141, and HSP60189–203). In addition, oral therapeutic immunization with CWAE significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils, compared with oral immunization using CTB-UE or H. pylori urease. The protection of CWAE was associated with higher levels of mixed CD4+ T cell (Th cell) response, IgG, and secretory IgA (sIgA) antibodies to H. pylori. These results indic ate that a multivalent epitope-based vaccine including Th and B cell epitopes from various H. pylori antigens could be a promising candidate against H. pylori infection. PMID:28824883
Dubois, Benjamin; Bertin, Pierre; Muhovski, Yordan; Escarnot, Emmanuelle; Mingeot, Dominique
2017-01-01
Celiac disease (CD) is caused by specific sequences of gluten proteins found in cereals such as bread wheat ( Triticum aestivum ssp. aestivum ) and spelt ( T. aestivum ssp. spelta ). Among them, the α-gliadins display the highest immunogenicity, with four T-cell stimulatory epitopes. The toxicity of each epitope sequence can be reduced or even suppressed according to the allelic form of each sequence. One way to address the CD problem would be to make use of this allelic variability in breeding programs to develop safe varieties, but tools to track the presence of toxic epitopes are required. The objective of this study was to develop a tool to accurately detect and quantify the immunogenic content of expressed α-gliadins of spelt and bread wheat. Four TaqMan probes that only hybridize to the canonical-i.e. toxic-form of each of the four epitopes were developed and their specificity was demonstrated. Six TaqMan probes targeting stable reference genes were also developed and constitute a tool to normalize qPCR data. The probes were used to measure the epitope expression levels of 11 contrasted spelt accessions and three ancestral diploid accessions of bread wheat and spelt. A high expression variability was highlighted among epitopes and among accessions, especially in Asian spelts, which showed lower epitope expression levels than the other spelts. Some discrepancies were identified between the canonical epitope expression level and the global amount of expressed α-gliadins, which makes the designed TaqMan probes a useful tool to quantify the immunogenic potential independently of the global amount of expressed α-gliadins. The results obtained in this study provide useful tools to study the immunogenic potential of expressed α-gliadin sequences from Triticeae accessions such as spelt and bread wheat. The application of the designed probes to contrasted spelt accessions revealed a high variability and interesting low canonical epitope expression levels in the Asian spelt accessions studied.
Piñeyro, Pablo E; Kenney, Scott P; Giménez-Lirola, Luis G; Heffron, C Lynn; Matzinger, Shannon R; Opriessnig, Tanja; Meng, Xiang-Jin
2015-12-02
Co-infection of pigs in the field with porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) is common and poses a major concern in effective control of PCV2 and PRRSV. We previously demonstrated that insertion of foreign epitope tags in the C-terminus of PCV2 ORF2 produced infectious virions that elicited humoral immune responses against both PCV2 capsid and inserted epitope tags. In this study, we aimed to determine whether the non-pathogenic chimeric virus PCV1-2a, which is the basis for the licensed PCV2 vaccine Fostera PCV, can express PRRSV antigenic epitopes, thus generating dual immunity as a potential bivalent vaccine against both PCV2 and PPRSV. Four different linear B-cell antigenic epitopes of PRRSV were inserted into the C-terminus of the capsid gene of the PCV1-2a vaccine virus. We showed that insertion of 12 (PRRSV-GP2 epitope II, PRRSV-GP3 epitope I, and PRRSV-GP5 epitope I), and 14 (PRRSV-GP5 epitope IV) amino acid residues did not impair the replication of the resulting PCV1-2a-PRRSVEPI chimeric viruses in vitro. The four chimeric PCV1-2a viruses expressing PRRSV B-cell linear epitopes were successfully rescued and characterized. An immunogenicity study in pigs revealed that two of the four chimeric viruses, PCV1-2a-PRRSVEPIGP3IG and PCV1-2a-PRRSVEPIEPIGP5IV, elicited neutralizing antibodies against PRRSV VR2385 as well as PCV2 (strains PCV2a, PCV2b, and mPCV2b). The results have important implications for exploring the potential use of PCV1-2a vaccine virus as a live virus vector to develop bivalent MLVs against both PCV2 and PRRSV. Copyright © 2015 Elsevier B.V. All rights reserved.
Abdiche, Yasmina Noubia; Miles, Adam; Eckman, Josh; Foletti, Davide; Van Blarcom, Thomas J.; Yeung, Yik Andy; Pons, Jaume; Rajpal, Arvind
2014-01-01
Here, we demonstrate how array-based label-free biosensors can be applied to the multiplexed interaction analysis of large panels of analyte/ligand pairs, such as the epitope binning of monoclonal antibodies (mAbs). In this application, the larger the number of mAbs that are analyzed for cross-blocking in a pairwise and combinatorial manner against their specific antigen, the higher the probability of discriminating their epitopes. Since cross-blocking of two mAbs is necessary but not sufficient for them to bind an identical epitope, high-resolution epitope binning analysis determined by high-throughput experiments can enable the identification of mAbs with similar but unique epitopes. We demonstrate that a mAb's epitope and functional activity are correlated, thereby strengthening the relevance of epitope binning data to the discovery of therapeutic mAbs. We evaluated two state-of-the-art label-free biosensors that enable the parallel analysis of 96 unique analyte/ligand interactions and nearly ten thousand total interactions per unattended run. The IBIS-MX96 is a microarray-based surface plasmon resonance imager (SPRi) integrated with continuous flow microspotting technology whereas the Octet-HTX is equipped with disposable fiber optic sensors that use biolayer interferometry (BLI) detection. We compared their throughput, versatility, ease of sample preparation, and sample consumption in the context of epitope binning assays. We conclude that the main advantages of the SPRi technology are its exceptionally low sample consumption, facile sample preparation, and unparalleled unattended throughput. In contrast, the BLI technology is highly flexible because it allows for the simultaneous interaction analysis of 96 independent analyte/ligand pairs, ad hoc sensor replacement and on-line reloading of an analyte- or ligand-array. Thus, the complementary use of these two platforms can expedite applications that are relevant to the discovery of therapeutic mAbs, depending upon the sample availability, and the number and diversity of the interactions being studied. PMID:24651868
The Influence of Organizational Socialization in Preservice Teachers' Delivery of Sport Education
ERIC Educational Resources Information Center
Deenihan, Jeremiah T.; MacPhail, Ann
2017-01-01
Research investigating teachers' and preservice teachers' (PSTs) experiences delivering Sport Education (SE) necessitates further attention (Glotova & Hastie, 2014). Research that has been conducted to date has shared varied findings, with some teachers finding it difficult to teach SE in its entirety (Curtner-Smith, Hastie, & Kinchin,…
Entry kinetics and mouse virulence of Ross River virus mutants altered in neutralization epitopes.
Vrati, S; Kerr, P J; Weir, R C; Dalgarno, L
1996-03-01
Previously we identified the locations of three neutralization epitopes (a, b1 and b2) of Ross River virus (RRV) by sequencing a number of variants resistant to monoclonal antibody neutralization which were found to have single amino acid substitutions in the E2 protein (S. Vrati, C.A. Fernon, L. Dalgarno, and R.C. Weir, Virology 162:346-353, 1988). We have now studied the biological properties of these variants in BHK cells and their virulence in mice. While variants altered in epitopes a and/or b1 showed no difference, variants altered in epitope b2, including a triple variant altered in epitopes a, b1, and b2, showed rapid penetration but retarded kinetics of growth and RNA and protein synthesis in BHK cells compared with RRV T48, the parent virus. Variants altered in epitopes a and/or b1 showed no change in mouse virulence. However, two of the six epitope b2 variants examined had attenuated mouse virulence. They had a four- to fivefold-higher 50% lethal dose (LD50), although no change in the average survival time of infected mice was observed. These variants grew to titers in mouse tissues similar to those of RRV T48. The ID50 of the triple variant was unchanged, but infected mice had an increased average survival time. This variant produced lower levels of viremia in infected mice. On the basis of these findings we propose that both the receptor binding site and neutralization epitopes of RRV are nearby or in the same domain of the E2 protein.
Thullier, Philippe; Avril, Arnaud; Mathieu, Jacques; Behrens, Christian K; Pellequer, Jean-Luc; Pelat, Thibaut
2013-01-01
The lethal toxin (LT) of Bacillus anthracis, composed of the protective antigen (PA) and the lethal factor (LF), plays an essential role in anthrax pathogenesis. PA also interacts with the edema factor (EF, 20% identity with LF) to form the edema toxin (ET), which has a lesser role in anthrax pathogenesis. The first recombinant antibody fragment directed against LF was scFv 2LF; it neutralizes LT by blocking the interaction between PA and LF. Here, we report that scFv 2LF cross-reacts with EF and cross-neutralizes ET, and we present an in silico method taking advantage of this cross-reactivity to map the epitope of scFv 2LF on both LF and EF. This method identified five epitope candidates on LF, constituted of a total of 32 residues, which were tested experimentally by mutating the residues to alanine. This combined approach precisely identified the epitope of scFv 2LF on LF as five residues (H229, R230, Q234, L235 and Y236), of which three were missed by the consensus epitope candidate identified by pre-existing in silico methods. The homolog of this epitope on EF (H253, R254, E258, L259 and Y260) was experimentally confirmed to constitute the epitope of scFv 2LF on EF. Other inhibitors, including synthetic molecules, could be used to target these epitopes for therapeutic purposes. The in silico method presented here may be of more general interest.
CD18 activation epitopes induced by leukocyte activation.
Beals, C R; Edwards, A C; Gottschalk, R J; Kuijpers, T W; Staunton, D E
2001-12-01
The cell surface adhesion molecule LFA-1 coordinates leukocyte trafficking and is a costimulatory molecule for T cell activation. We developed a panel of mAbs that recognize activation epitopes on the CD18 subunit, and show that stimulation of T lymphocytes appears to be accompanied by a conformational change in a subpopulation of LFA-1 that does not require ligand binding. Activation epitope up-regulation requires divalent cations, is sensitive to cellular signal transduction events, and correlates with cell adhesion. In addition, the stimulated appearance of these activation epitopes is absent in cell lines from patients with leukocyte adhesion deficiency-1/variant that has previously been shown to be defective in LFA-1 activation. Thus, these activation epitope Abs can be used to dissect signal transmission to CD18. Evidence suggests that these CD18 activation epitopes are induced early in cellular activation and are independent of actin rearrangement necessary for avid adhesion. We have also determined that function-blocking CD18 Abs inhibit the induction of activation epitopes. One activation epitope Ab binds to a site on CD18 distinct from that of the blocking Abs, indicating that the blocking Abs suppress a conformational change in LFA-1. We also find that these neoepitopes are present on rLFA-1 with high affinity for ICAM-1 and their binding is modulated in parallel with the affinity of LFA-1 for ICAM-1. Collectively, these neoepitope Abs identify a subpopulation of LFA-1 most likely with high affinity for ICAM-1 and necessary for LFA-1 function.
NASA Technical Reports Server (NTRS)
Chen, F.; Haber, E.; Matsueda, G. R.
1992-01-01
The binding of radiolabeled monoclonal antifibrin antibody 59D8 (specific for fibrin but not fibrinogen) to a series of degraded fibrin clots showed that the availability of the B beta(15-21) epitope (against which 59D8 had been raised) was inversely proportional to the extent of clot lysis. Examination of digest supernatants revealed that the B beta(15-21) epitope was released from clots as a high molecular weight degradation product in the presence of calcium ions but that the generation of low molecular weight peptides occurred in the absence of calcium ions. To address the question of epitope accessibility, we compared levels of fibrin clot binding among four radioactively labeled antibodies: antifibrin monoclonal antibody 59D8, two antifibrinogen monoclonal antibodies that cross-reacted with fibrin, and an affinity-purified polyclonal antifibrinogen antibody. We expected that the antifibrinogen antibodies would show enhanced binding to clots in comparison with the antifibrin antibody. However, the epitope accessibility experiments showed that all four antibody preparations bound fibrin clots at comparable levels. Taken together, these studies demonstrated that one fibrin-specific epitope, B beta(15-21), remains available on clots as they undergo degradation by plasmin and, importantly, that the epitope is not solubilized at a rate faster than the rate at which the clot is itself solubilized. The availability of the B beta(15-21) epitope during the course of plasminolysis assures the potential utility of antifibrin antibodies such as 59D8 for detecting thrombi and targeting plasminogen activators.
Mesenas, Steven J; Chow, Wan C; Zhao, Yi; Lim, Gek K; Oon, Chong J; Ng, Han S
2002-02-01
This study aims to examine the genomic variants of the 'a' epitope in chronic hepatitis B virus (HBV) carriers positive for both hepatitis B surface antigen (HBsAg) and antibody to HBsAg (anti-HBs). Eighteen HBV carriers were studied. Hepatitis B virus (HBV) DNA was extracted and the 'a' epitope region was amplified and sequenced. Eighteen Chinese asymptomatic HBV carriers were studied. There were 13 patients who were positive for both HBsAg and anti-HBs. Of these, one patient had only wild-type HBV, three had a viral mixture, and five had only 'a' epitope variant HBV. Of the three patients with a viral mixture, all had variants in the less conserved region (123-137). Of the five patients with pure HBsAg mutants, three had variants in the less conserved region while two had variants in the highly conserved region. In this study with a limited number of patients, the serum alanine aminotransferase (ALT) levels were higher in patients with wild-type HBV, compared with those with either 'a' epitope variants or a viral mixture consisting of wild type and variants. Eight of the nine (89%) patients positive for both HBsAg and anti-HBs harbored an 'a' epitope variant. The lower ALT levels seen in patients who had either pure 'a' epitope variant or a mixture of wild type and mutants suggest that a closer monitoring of these 'a' epitope variants should be required, as patients carrying these infectious viral strains may remain asymptomatic.
BEST: Improved Prediction of B-Cell Epitopes from Antigen Sequences
Gao, Jianzhao; Faraggi, Eshel; Zhou, Yaoqi; Ruan, Jishou; Kurgan, Lukasz
2012-01-01
Accurate identification of immunogenic regions in a given antigen chain is a difficult and actively pursued problem. Although accurate predictors for T-cell epitopes are already in place, the prediction of the B-cell epitopes requires further research. We overview the available approaches for the prediction of B-cell epitopes and propose a novel and accurate sequence-based solution. Our BEST (B-cell Epitope prediction using Support vector machine Tool) method predicts epitopes from antigen sequences, in contrast to some method that predict only from short sequence fragments, using a new architecture based on averaging selected scores generated from sliding 20-mers by a Support Vector Machine (SVM). The SVM predictor utilizes a comprehensive and custom designed set of inputs generated by combining information derived from the chain, sequence conservation, similarity to known (training) epitopes, and predicted secondary structure and relative solvent accessibility. Empirical evaluation on benchmark datasets demonstrates that BEST outperforms several modern sequence-based B-cell epitope predictors including ABCPred, method by Chen et al. (2007), BCPred, COBEpro, BayesB, and CBTOPE, when considering the predictions from antigen chains and from the chain fragments. Our method obtains a cross-validated area under the receiver operating characteristic curve (AUC) for the fragment-based prediction at 0.81 and 0.85, depending on the dataset. The AUCs of BEST on the benchmark sets of full antigen chains equal 0.57 and 0.6, which is significantly and slightly better than the next best method we tested. We also present case studies to contrast the propensity profiles generated by BEST and several other methods. PMID:22761950
Secreted Immunodominant Mycobacterium tuberculosis Antigens Are Processed by the Cytosolic Pathway
Grotzke, Jeff E.; Siler, Anne C.; Lewinsohn, Deborah A.; Lewinsohn, David M.
2010-01-01
Exposure to Mycobacterium tuberculosis can result in lifelong but asymptomatic infection in most individuals. Although CD8+ T cells are elicited at high frequencies over the course of infection in both humans and mice, how phagosomal M. tuberculosis Ags are processed and presented by MHC class I molecules is poorly understood. Broadly, both cytosolic and noncytosolic pathways have been described. We have previously characterized the presentation of three HLA-I epitopes from M. tuberculosis and shown that these Ags are processed in the cytosol, whereas others have demonstrated noncytosolic presentation of the 19-kDa lipoprotein as well as apoptotic bodies from M. tuberculosis-infected cells. In this paper, we now characterize the processing pathway in an additional six M. tuberculosis epitopes from four proteins in human dendritic cells. Addition of the endoplasmic reticulum-Golgi trafficking inhibitor, brefeldin A, resulted in complete abrogation of Ag processing consistent with cytosolic presentation. However, although addition of the proteasome inhibitor epoxomicin blocked the presentation of two epitopes, presentation of four epitopes was enhanced. To further examine the requirement for proteasomal processing of an epoxomicin-enhanced epitope, an in vitro proteasome digestion assay was established. We find that the proteasome does indeed generate the epitope and that epitope generation is enhanced in the presence of epoxomicin. To further confirm that both the epoxomicin-inhibited and epoxomicin-enhanced epitopes are processed cytosolically, we demonstrate that TAP transport and new protein synthesis are required for presentation. Taken together, these data demonstrate that immunodominant M. tuberculosis CD8+ Ags are processed and presented using a cytosolic pathway. PMID:20802151
Ghasemian Safaei, Hajieh; Faghri, Jamshid; Moghim, Sharareh; Nasr Esfahani, Bahram; Fazeli, Hossein; Makvandi, Manoochehr; Adib, Minoo; Rashidi, Niloufar
2015-01-01
Background: Helicobacter pylori infection is highly prevalent in the developing countries. It causes gastritis, peptic ulcer disease, and gastrocarcinoma. Treatment with drugs and antibiotics is problematic due to the following reasons: cost, resistance to antibiotics, prolonged treatment and using multiple drugs. Catalase is highly conserved among the Helicobacter species and is important to the survival of the organism. It is expressed in high amounts and is exposed to the surface of this bacterium; therefore it represents a suitable candidate vaccine antigen. Objectives: A suitable approach in H. pylori vaccinology is the administration of epitope based vaccines. Therefore the responses of T-cells (IFN-γ and IL-4 production) against the catalase of H. pylori were determined. Then the quality of the immune responses against intact catalase and three epitopes of catalase were compared. Materials and Methods: In this study, a composition of three epitopes of the H. pylori catalase was selected based on Propred software. The effect of catalase epitopes on T-cells were assayed and immune responses identified. Results: The results of IFN-γ, IL-4 production against antigens, epitopes, and recombinant catalase by T-cells were compared for better understanding of epitope efficiency. Conclusions: The current research demonstrated that epitope sequence stimulates cellular immune responses effectively. In addition, increased safety and potency as well as a reduction in time and cost were advantages of this method. Authors are going to use this sequence as a suitable vaccine candidate for further research on animal models and humans in future. PMID:26862387
Kerkar, Nanda; Choudhuri, Kaushik; Ma, Yun; Mahmoud, Ayman; Bogdanos, Dimitrios P; Muratori, Luigi; Bianchi, Francesco; Williams, Roger; Mieli-Vergani, Giorgina; Vergani, Diego
2003-02-01
Cytochrome P4502D6 (CYP2D6), target of liver kidney microsomal autoantibody type 1 (LKM1), characterizes autoimmune hepatitis type 2 (AIH2) but is also found in patients with chronic hepatitis C virus (HCV) infection. To provide a complete linear epitope B cell map of CYP2D6, we tested peptides spanning the entire sequence of CYP2D6. In addition to confirming previously described antigenic sites, we identified four new epitopes (193-212, 238-257, 268-287, and 478-497). CYP2D6(193-212) is immunodominant and was the target of 12 of 13 (93%) patients with AIH2 and 5 of 10 (50%) HCV/LKM1-positive patients. Because LKM1 is present in both AIH2 and a viral infection, we tested whether Abs to CYP2D6(193-212) arise through cross-reactive immunity between virus and self. We identified a hexameric sequence "RLLDLA" sharing 5 of 6 aa with "RLLDLS" of HCV(2985-2990) and all 6 aa with CMV(130-135). Of 17 CYP2D6(193-212)-reactive sera, 11 (7 AIH and 4 HCV) reacted by ELISA with the HCV homologue, 8 (5 AIH and 3 HCV) with the CMV homologue, and 8 (5 AIH and 3 HCV) showed double reactivity. Autoantibody binding to CYP2D6(193-212) was inhibited by preincubation with HCV(2977-2996) or CMV(121-140). Recombinant HCV-nonstructural protein 5 and CMV-UL98 proteins also inhibited Ab binding to CYP2D6(193-212). Affinity-purified CYP2D6(193-212)-specific Ab inhibited the metabolic activity of CYP2D6. The demonstrated similarity and cross-reactivity between CYP2D6(193-212) and two unrelated viruses suggests that multiple exposure to viruses mimicking self may represent an important pathway to the development of autoimmunity.
López-Marín, L M; Gautier, N; Lanéelle, M A; Silve, G; Daffé, M
1994-05-01
Mycobacterium abscessus and Mycobacterium chelonae, two members of the Mycobacterium fortuitum complex, contain five major glycolipids. A combination of NMR spectroscopy, fast atom bombardment mass spectrometry and chemical degradation was used to elucidate their structures. All the compounds belong to the family of glycopeptidolipids. A 6-deoxy-alpha-L-talosyl unit, which may bear one or two acetyl groups, invariably occupies the site of glycosylation on the threonine residue in the various compounds. A 3,4-di-O-methyl- or 2,3,4-tri-O-methyl-alpha-L-rhamnosyl unit modifies the alaninol end of the diglycosylated molecules. Both species also contain a multiglycosylated compound consisting of alpha-L-rhamnosyl-(1-->2)-3,4-di-O-methyl-alpha-L-rhamnosyl linked to alaninol, which belongs to the class of new variants of glycopeptidolipids recently described. Using an ELISA, the latter glycolipid as well as the diglycosylated ones (not previously reported to be antigenic), were shown to react with the serum raised against the whole lipid antigens of M. chelonae. A comparative serologic study of the native and chemically modified glycopeptidolipid antigens allowed the identification of their epitope as the 3,4-di-O-methyl-alpha-L-rhamnosyl residue. Similar experiments conducted on the glycopeptidolipids isolated from the serologically cross-reacting species M. peregrinum led to the conclusion that the epitope identified in M. chelonae and M. abscessus was involved in the cross-reactions and demonstrated the existence of a second haptenic moiety in the glycolipids of M. peregrinum, the 3-O-methyl-alpha-L-rhamnosyl unit. In addition to this latter non-shared epitope, the recently described sulfated glycopeptidolipid antigen of M. peregrinum did not react with the M. chelonae serum, thus further explaining the difference in the seroreactivity within the complex.
Winckelmann, Anni; Morcilla, Vincent; Shao, Wei; Schleimann, Mariane H; Højen, Jesper F; Schlub, Timothy E; Denton, Paul W; Østergaard, Lars; Søgaard, Ole S; Tolstrup, Martin; Palmer, Sarah
2018-05-11
Therapeutic HIV-1 immunization followed by latency reversal has been suggested as a strategy to eradicate HIV-1. Here we investigate the phylogenetic composition of the HIV-1 regions targeted by the therapeutic HIV-1 peptide vaccine Vacc-4x in participants in a clinical trial. Seventeen participants on suppressive antiretroviral therapy were vaccinated with six doses of Vacc-4x followed by three doses of romidepsin. Seven study participants were selected for sequencing analysis. All participants underwent an analytical treatment interruption. Single-genome/proviral sequencing of the p24-RT region was performed to genetically characterize proviral DNA, cell-associated (CA) RNA and outgrowth viruses during therapy as well as plasma HIV-1 RNA during an analytical treatment interruption. There were no changes in CA HIV-1 RNA (P = 0.83) and DNA (P = 0.09) diversity over the course of the study and no difference between CA HIV-1 RNA and DNA diversity (P = 0.32). Only one participant showed signs of potential vaccine-related selection in the rebounding plasma virus. In five of seven participants, we identified HLA-specific CTL epitopes containing non-silent mutations in 100% of the sequences. We detected no evidence of selective immune pressure reflected in proviral diversity or by occurrence of specific mutation in the vaccine-targeted epitopes. Pre-existing CTL epitope mutations may affect the potency of this therapeutic vaccine. This highlights the challenges of developing effective HIV-1 therapeutic vaccines.This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0.
Conservation and variability of West Nile virus proteins.
Koo, Qi Ying; Khan, Asif M; Jung, Keun-Ok; Ramdas, Shweta; Miotto, Olivo; Tan, Tin Wee; Brusic, Vladimir; Salmon, Jerome; August, J Thomas
2009-01-01
West Nile virus (WNV) has emerged globally as an increasingly important pathogen for humans and domestic animals. Studies of the evolutionary diversity of the virus over its known history will help to elucidate conserved sites, and characterize their correspondence to other pathogens and their relevance to the immune system. We describe a large-scale analysis of the entire WNV proteome, aimed at identifying and characterizing evolutionarily conserved amino acid sequences. This study, which used 2,746 WNV protein sequences collected from the NCBI GenPept database, focused on analysis of peptides of length 9 amino acids or more, which are immunologically relevant as potential T-cell epitopes. Entropy-based analysis of the diversity of WNV sequences, revealed the presence of numerous evolutionarily stable nonamer positions across the proteome (entropy value of < or = 1). The representation (frequency) of nonamers variant to the predominant peptide at these stable positions was, generally, low (< or = 10% of the WNV sequences analyzed). Eighty-eight fragments of length 9-29 amino acids, representing approximately 34% of the WNV polyprotein length, were identified to be identical and evolutionarily stable in all analyzed WNV sequences. Of the 88 completely conserved sequences, 67 are also present in other flaviviruses, and several have been associated with the functional and structural properties of viral proteins. Immunoinformatic analysis revealed that the majority (78/88) of conserved sequences are potentially immunogenic, while 44 contained experimentally confirmed human T-cell epitopes. This study identified a comprehensive catalogue of completely conserved WNV sequences, many of which are shared by other flaviviruses, and majority are potential epitopes. The complete conservation of these immunologically relevant sequences through the entire recorded WNV history suggests they will be valuable as components of peptide-specific vaccines or other therapeutic applications, for sequence-specific diagnosis of a wide-range of Flavivirus infections, and for studies of homologous sequences among other flaviviruses.
Gohain, Neelakshi; Tolbert, William D; Acharya, Priyamvada; Yu, Lei; Liu, Tongyun; Zhao, Pingsen; Orlandi, Chiara; Visciano, Maria L; Kamin-Lewis, Roberta; Sajadi, Mohammad M; Martin, Loïc; Robinson, James E; Kwong, Peter D; DeVico, Anthony L; Ray, Krishanu; Lewis, George K; Pazgier, Marzena
2015-09-01
Accumulating evidence indicates a role for Fc receptor (FcR)-mediated effector functions of antibodies, including antibody-dependent cell-mediated cytotoxicity (ADCC), in prevention of human immunodeficiency virus type 1 (HIV-1) acquisition and in postinfection control of viremia. Consequently, an understanding of the molecular basis for Env epitopes that constitute effective ADCC targets is of fundamental interest for humoral anti-HIV-1 immunity and for HIV-1 vaccine design. A substantial portion of FcR effector function of potentially protective anti-HIV-1 antibodies is directed toward nonneutralizing, transitional, CD4-inducible (CD4i) epitopes associated with the gp41-reactive region of gp120 (cluster A epitopes). Our previous studies defined the A32-like epitope within the cluster A region and mapped it to the highly conserved and mobile layers 1 and 2 of the gp120 inner domain within the C1-C2 regions of gp120. Here, we elucidate additional cluster A epitope structures, including an A32-like epitope, recognized by human monoclonal antibody (MAb) N60-i3, and a hybrid A32-C11-like epitope, recognized by rhesus macaque MAb JR4. These studies define for the first time a hybrid A32-C11-like epitope and map it to elements of both the A32-like subregion and the seven-layered β-sheet of the gp41-interactive region of gp120. These studies provide additional evidence that effective antibody-dependent effector function in the cluster A region depends on precise epitope targeting--a combination of epitope footprint and mode of antibody attachment. All together these findings help further an understanding of how cluster A epitopes are targeted by humoral responses. HIV/AIDS has claimed the lives of over 30 million people. Although antiretroviral drugs can control viral replication, no vaccine has yet been developed to prevent the spread of the disease. Studies of natural HIV-1 infection, simian immunodeficiency virus (SIV)- or simian-human immunodeficiency virus (SHIV)-infected nonhuman primates (NHPs), and HIV-1-infected humanized mouse models, passive transfer studies in infants born to HIV-infected mothers, and the RV144 clinical trial have linked FcR-mediated effector functions of anti-HIV-1 antibodies with postinfection control of viremia and/or blocking viral acquisition. With this report we provide additional definition of the molecular determinants for Env antigen engagement which lead to effective antibody-dependent effector function directed to the nonneutralizing CD4-dependent epitopes in the gp41-reactive region of gp120. These findings have important implications for the development of an effective HIV-1 vaccine. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Rani, Pittu Sandhya; Babajan, Banaganapalli; Tulsian, Nikhil K; Begum, Mahabubunnisa; Kumar, Ashutosh; Ahmed, Niyaz
2013-11-01
Diabetes mellitus is a multifactorial disease and its incidence is increasing worldwide. Among the two types of diabetes, type-2 accounts for about 90% of all diabetic cases, whereas type-1 or juvenile diabetes is less prevalent and presents with humoral immune responses against some of the autoantigens. We attempted to test whether the sera of type-1 diabetes patients cross-react with mycobacterial heat shock protein 65 (Hsp65) due to postulated epitope homologies between mycobacterial Hsp65 and an important autoantigen of type-1 diabetes, glutamic acid decarboxylase-65 (GAD65). In our study, we used either recombinant mycobacterial Hsp65 protein or synthetic peptides corresponding to some of the potential epitopes of mycobacterial Hsp65 that are shared with GAD65 or human Hsp60, and a control peptide sourced from mycobacterial Hsp65 which is not shared with GAD65, Hsp60 and other autoantigens of type-1 diabetes. The indirect ELISA results indicated that both type-1 diabetes and type-2 diabetes sera cross-react with conserved mycobacterial Hsp65 peptides and recombinant mycobacterial Hsp65 protein but do not do so with the control peptide. Our results suggest that cross-reactivity of mycobacterial Hsp65 with autoantibodies of diabetes sera could be due to the presence of significantly conserved peptides between mycobacterial Hsp65 and human Hsp60 rather than between mycobacterial Hsp65 and GAD65. The treatment of human peripheral blood mononuclear cells (PBMCs) with recombinant mycobacterial Hsp65 protein or the synthetic peptides resulted in a significant increase in the secretion of cytokines such as IL-1β, IL-8, IL-6, TNF-α and IL-10. Taken together, these findings point towards a dual role for mycobacterial Hsp65: in inducing autoimmunity and in inflammation, the two cardinal features of diabetes mellitus.
Sparks, Jeffrey A.; Chang, Shun-Chiao; Deane, Kevin D.; Gan, Ryan W.; Demoruelle, M. Kristen; Feser, Marie L.; Moss, LauraKay; Buckner, Jane H.; Keating, Richard M.; Costenbader, Karen H.; Gregersen, Peter K.; Weisman, Michael H.; Mikuls, Ted R.; O’Dell, James R.; Holers, V. Michael; Norris, Jill M.; Karlson, Elizabeth W.
2016-01-01
Objective To examine whether genetic, environmental, and serologic rheumatoid arthritis (RA) risk factors are associated with inflammatory joint signs (IJS) in a cohort of RA first-degree relatives (FDRs). Methods We evaluated RA risk factors and IJS in a prospective cohort of FDRs without RA in the Studies of the Etiology of RA. Genetic factors included five HLA-DRB1 shared epitope alleles and 45 RA-associated single nucleotide polymorphisms; loci were combined using genetic risk scores (GRS) weighted by RA risk. Environmental factors (smoking, body mass index, education, and parity) and RA-related autoantibodies were assessed at baseline. Physical examination at baseline and two-year follow-up by observers blinded to autoantibody status assessed IJS as tender or swollen joints at sites typical for RA. Logistic regression was performed to evaluate associations of genetic, environmental, and serologic factors with IJS. Results We analyzed 966 non-Hispanic white FDRs at baseline and 262 at two-year follow-up after excluding those with IJS at baseline. Mean age was 47.2 years (SD 15.5), 71% were female, and 55% were shared epitope-positive. Smoking >10 pack-years was associated with IJS at baseline (OR 1.59, 95%CI 1.09–2.32) and at 2 years (OR 2.66, 95%CI 1.01–7.03), compared to never smokers. Smoking and age significantly interacted for risk of IJS (p=0.02). FDRs aged <50 years with >10 pack-years had the highest risk of IJS (OR 4.39, 95%CI 2.22–8.66) compared to never smokers aged <50 years). Conclusion In a high-risk cohort of FDRs, smoking and age were associated with both prevalent and incident IJS at sites typical for RA. Further prospective investigations of the factors affecting the transitions between pre-clinical RA phases are warranted. PMID:26866831
Screening and identification of novel B cell epitopes of Toxoplasma gondii SAG1
2013-01-01
Background The identification of protein epitopes is useful for diagnostic purposes and for the development of peptide vaccines. In this study, the epitopes of Toxoplasma gondii SAG1 were identified using synthetic peptide techniques with the aid of bioinformatics. Findings Eleven peptides derived from T. gondii SAG1 were assessed by ELISA using pig sera from different time points after infection. Four (PS4, PS6, PS10 and PS11), out of the eleven peptides tested were recognized by all sera. Then, shorter peptides that were derived from PS4, PS6, PS10 and PS11 were predicted using bioinformatics and tested by experimentation. Four out of nine shorter peptides were identified successfully (amino acids 106–120, 166–180, 289–300 and 313–332). Conclusions We have precisely located the epitopes of T. gondii SAG1 using pig sera collected at different time points after infection. The identified epitopes may be useful for the further study of epitope-based vaccines and diagnostic reagents. PMID:23631709
Confirmation of a new conserved linear epitope of Lyssavirus nucleoprotein.
Xinjun, Lv; Xuejun, Ma; Lihua, Wang; Hao, Li; Xinxin, Shen; Pengcheng, Yu; Qing, Tang; Guodong, Liang
2012-05-01
Bioinformatics analysis was used to predict potential epitopes of Lyssavirus nucleoprotein and highlighted some distinct differences in the quantity and localization of the epitopes disclosed by epitope analysis of monoclonal antibodies against Lyssavirus nucleoprotein. Bioinformatics analysis showed that the domain containing residues 152-164 of Lyssavirus nucleoprotein was a conserved linear epitope that had not been reported previously. Immunization of two rabbits with the corresponding synthetic peptide conjugated to the Keyhole Limpe hemocyanin (KLH) macromolecule resulted in a titer of anti-peptide antibody above 1:200,000 in rabbit sera as detected by indirect enzyme-linked immunosorbent assay (ELISA). Western blot analysis demonstrated that the anti-peptide antibody recognized denatured Lyssavirus nucleoprotein in sodium dodecylsulfonate-polyacrylate gel electrophoresis (SDS-PAGE). Affinity chromatography purification and FITC-labeling of the anti-peptide antibody in rabbit sera was performed. FITC-labeled anti-peptide antibody could recognize Lyssavirus nucleoprotein in BSR cells and canine brain tissues even at a 1:200 dilution. Residues 152-164 of Lyssavirus nucleoprotein were verified as a conserved linear epitope in Lyssavirus. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Hua; Jiang Lifang; Fang Danyun
Antibodies to SARS-Coronavirus (SARS-CoV)-specific B cell epitopes might recognize the pathogen and interrupt its adherence to and penetration of host cells. Hence, these epitopes could be useful for diagnosis and as vaccine constituents. Using the phage-displayed peptide library screening method and purified Fab fragments of immunoglobulin G (IgG Fab) from normal human sera and convalescent sera from SARS-CoV-infected patients as targets, 11 B cell epitopes of SARS-CoV spike glycoprotein (S protein) and membrane protein (M protein) were screened. After a bioinformatics tool was used to analyze these epitopes, four epitope-based S protein dodecapeptides corresponding to the predominant epitopes were chosenmore » for synthesis. Their antigenic specificities and immunogenicities were studied in vitro and in vivo. Flow cytometry and ELISPOT analysis of lymphocytes as well as a serologic analysis of antibody showed that these peptides could trigger a rapid, highly effective, and relatively safe immune response in BALB/c mice. These findings might aid development of SARS diagnostics and vaccines. Moreover, the role of S and M proteins as important surface antigens is confirmed.« less
Pouyanfard, Somayeh; Bamdad, Taravat; Hashemi, Hamidreza; Bandehpour, Mojgan; Kazemi, Bahram
2012-01-01
We report here the development of multivalent T7 bacteriophage nanoparticles displaying an immunodominant H-2k(d)-restricted CTL epitope derived from the rat HER2/neu oncoprotein. The immunotherapeutic potential of the chimeric T7 nanoparticles as anti-cancer vaccine was investigated in BALB/c mice in an implantable breast tumor model. The results showed that T7 phage nanoparticles confer a high immunogenicity to the HER-2-derived minimal CTL epitope, as shown by inducing robust CTL responses. Furthermore, the chimeric nanoparticles protected mice against HER-2-positive tumor challenge in both prophylactic and therapeutic setting. In conclusion, these results suggest that CTL epitope-carrying T7 phage nanoparticles might be a promising approach for development of T cell epitope-based cancer vaccines.
Pouyanfard, Somayeh; Bamdad, Taravat; Hashemi, Hamidreza; Bandehpour, Mojgan; Kazemi, Bahram
2012-01-01
We report here the development of multivalent T7 bacteriophage nanoparticles displaying an immunodominant H-2kd-restricted CTL epitope derived from the rat HER2/neu oncoprotein. The immunotherapeutic potential of the chimeric T7 nanoparticles as anti-cancer vaccine was investigated in BALB/c mice in an implantable breast tumor model. The results showed that T7 phage nanoparticles confer a high immunogenicity to the HER-2-derived minimal CTL epitope, as shown by inducing robust CTL responses. Furthermore, the chimeric nanoparticles protected mice against HER-2-positive tumor challenge in both prophylactic and therapeutic setting. In conclusion, these results suggest that CTL epitope-carrying T7 phage nanoparticles might be a promising approach for development of T cell epitope-based cancer vaccines. PMID:23166703
Tumiotto, Camille; Riviere, Lionel; Bellecave, Pantxika; Recordon-Pinson, Patricia; Vilain-Parce, Alice; Guidicelli, Gwenda-Line; Fleury, Hervé
2017-01-01
One of the strategies for curing viral HIV-1 is a therapeutic vaccine involving the stimulation of cytotoxic CD8-positive T cells (CTL) that are Human Leucocyte Antigen (HLA)-restricted. The lack of efficiency of previous vaccination strategies may have been due to the immunogenic peptides used, which could be different from a patient's virus epitopes and lead to a poor CTL response. To counteract this lack of specificity, conserved epitopes must be targeted. One alternative is to gather as many data as possible from a large number of patients on their HIV-1 proviral archived epitope variants, taking into account their genetic background to select the best presented CTL epitopes. In order to process big data generated by Next-Generation Sequencing (NGS) of the DNA of HIV-infected patients, we have developed a software package called TutuGenetics. This tool combines an alignment derived either from Sanger or NGS files, HLA typing, target gene and a CTL epitope list as input files. It allows automatic translation after correction of the alignment obtained between the HxB2 reference and the reads, followed by automatic calculation of the MHC IC50 value for each epitope variant and the HLA allele of the patient by using NetMHCpan 3.0, resulting in a csv file as output result. We validated this new tool by comparing Sanger and NGS (454, Roche) sequences obtained from the proviral DNA of patients at success of ART included in the Provir Latitude 45 study and showed a 90% correlation between the quantitative results of NGS and Sanger. This automated analysis combined with complementary samples should yield more data regarding the archived CTL epitopes according to the patients' HLA alleles and will be useful for screening epitopes that in theory are presented efficiently to the HLA groove, thus constituting promising immunogenic peptides for a therapeutic vaccine.
P. falciparum and P. vivax Epitope-Focused VLPs Elicit Sterile Immunity to Blood Stage Infections.
Whitacre, David C; Espinosa, Diego A; Peters, Cory J; Jones, Joyce E; Tucker, Amy E; Peterson, Darrell L; Zavala, Fidel P; Milich, David R
2015-01-01
In order to design P. falciparum preerythrocytic vaccine candidates, a library of circumsporozoite (CS) T and B cell epitopes displayed on the woodchuck hepatitis virus core antigen (WHcAg) VLP platform was produced. To test the protective efficacy of the WHcAg-CS VLPs, hybrid CS P. berghei/P. falciparum (Pb/Pf) sporozoites were used to challenge immunized mice. VLPs carrying 1 or 2 different CS repeat B cell epitopes and 3 VLPs carrying different CS non-repeat B cell epitopes elicited high levels of anti-insert antibodies (Abs). Whereas, VLPs carrying CS repeat B cell epitopes conferred 98% protection of the liver against a 10,000 Pb/Pf sporozoite challenge, VLPs carrying the CS non-repeat B cell eptiopes were minimally-to-non-protective. One-to-three CS-specific CD4/CD8 T cell sites were also fused to VLPs, which primed CS-specific as well as WHcAg-specific T cells. However, a VLP carrying only the 3 T cell domains failed to protect against a sporozoite challenge, indicating a requirement for anti-CS repeat Abs. A VLP carrying 2 CS repeat B cell epitopes and 3 CS T cell sites in alum adjuvant elicited high titer anti-CS Abs (endpoint dilution titer >1x10(6)) and provided 80-100% protection against blood stage malaria. Using a similar strategy, VLPs were constructed carrying P. vivax CS repeat B cell epitopes (WHc-Pv-78), which elicited high levels of anti-CS Abs and conferred 99% protection of the liver against a 10,000 Pb/Pv sporozoite challenge and elicited sterile immunity to blood stage infection. These results indicate that immunization with epitope-focused VLPs carrying selected B and T cell epitopes from the P. falciparum and P. vivax CS proteins can elicit sterile immunity against blood stage malaria. Hybrid WHcAg-CS VLPs could provide the basis for a bivalent P. falciparum/P. vivax malaria vaccine.
Grant, Emma J; Josephs, Tracy M; Valkenburg, Sophie A; Wooldridge, Linda; Hellard, Margaret; Rossjohn, Jamie; Bharadwaj, Mandvi; Kedzierska, Katherine; Gras, Stephanie
2016-11-18
αβT cell receptor (TCR) genetic diversity is outnumbered by the quantity of pathogenic epitopes to be recognized. To provide efficient protective anti-viral immunity, a single TCR ideally needs to cross-react with a multitude of pathogenic epitopes. However, the frequency, extent, and mechanisms of TCR cross-reactivity remain unclear, with conflicting results on anti-viral T cell cross-reactivity observed in humans. Namely, both the presence and lack of T cell cross-reactivity have been reported with HLA-A*02:01-restricted epitopes from the Epstein-Barr and influenza viruses (BMLF-1 and M1 58 , respectively) or with the hepatitis C and influenza viruses (NS3 1073 and NA 231 , respectively). Given the high sequence similarity of these paired viral epitopes (56 and 88%, respectively), the ubiquitous nature of the three viruses, and the high frequency of the HLA-A*02:01 allele, we selected these epitopes to establish the extent of T cell cross-reactivity. We combined ex vivo and in vitro functional assays, single-cell αβTCR repertoire sequencing, and structural analysis of these four epitopes in complex with HLA-A*02:01 to determine whether they could lead to heterologous T cell cross-reactivity. Our data show that sequence similarity does not translate to structural mimicry of the paired epitopes in complexes with HLA-A*02:01, resulting in induction of distinct αβTCR repertoires. The differences in epitope architecture might be an obstacle for TCR recognition, explaining the lack of T cell cross-reactivity observed. In conclusion, sequence similarity does not necessarily result in structural mimicry, and despite the need for cross-reactivity, antigen-specific TCR repertoires can remain highly specific. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Li, Chenxi; Liu, Hongyu; Li, Jinzhe; Liu, Dafei; Meng, Runze; Zhang, Qingshan; Shaozhou, Wulin; Bai, Xiaofei; Zhang, Tingting; Liu, Ming; Zhang, Yun
2016-01-01
Waterfowl parvovirus (WPV) infection causes high mortality and morbidity in both geese (Anser anser) and Muscovy ducks (Cairina moschata), resulting in significant losses to the waterfowl industries. The VP3 protein of WPV is a major structural protein that induces neutralizing antibodies in the waterfowl. However, B-cell epitopes on the VP3 protein of WPV have not been characterized. To understand the antigenic determinants of the VP3 protein, we used the monoclonal antibody (mAb) 4A6 to screen a set of eight partially expressed overlapping peptides spanning VP3. Using western blotting and an enzyme-linked immunosorbent assay (ELISA), we localized the VP3 epitope between amino acids (aa) 57 and 112. To identify the essential epitope residues, a phage library displaying 12-mer random peptides was screened with mAb 4A6. Phage clone peptides displayed a consensus sequence of YxRFHxH that mimicked the sequence 82Y/FNRFHCH88, which corresponded to amino acid residues 82 to 88 of VP3 protein of WPVs. mAb 4A6 binding to biotinylated fragments corresponding to amino acid residues 82 to 88 of the VP3 protein verified that the 82FxRFHxH88 was the VP3 epitope and that amino acids 82F is necessary to retain maximal binding to mAb 4A6. Parvovirus-positive goose and duck sera reacted with the epitope peptide by dot blotting assay, revealing the importance of these amino acids of the epitope in antibody-epitope binding reactivity. We identified the motif FxRFHxH as a VP3-specific B-cell epitope that is recognized by the neutralizing mAb 4A6. This finding might be valuable in understanding of the antigenic topology of VP3 of WPV.
Yuan, Han-Chih; Wu, Keh-Gong; Chen, Chun-Jen; Su, Song-Nan; Shen, Horng-Der; Chen, Yann-Jang; Peng, Ho-Jen
2012-01-01
Bermuda grass pollen (BGP) is an important seasonal aeroallergen worldwide which induces allergic disorders such as allergic rhinitis, conjunctivitis and asthma. Cyn d 1 is the major allergen of BGP. This study is aimed to map human IgE and IgG(4) antibody-binding sequential epitopes on Cyn d 1 by dot immunoblotting. Synthetic peptides (10-mers; 5 overlapping residues) spanning the full length of Cyn d 1 were used for dot immunoblotting to map human IgE and IgG(1-4) antibody-binding regions with sera from BGP-allergic patients. Synthetic peptides with more overlapping residues were used for further mapping. Essential amino acids in each epitope were examined by single amino acid substitution with alanine. Peptides with sequence polymorphism of epitopes of Cyn d 1 were also synthesized to extrapolate their differences in binding capability. Four major IgE-binding epitopes (peptides 15(-1), 21, 33(-2) and 35(+1), corresponding to amino acids 70-79, 101-110, 159-167 and 172-181) and 5 major IgG(4)-binding epitopes (peptides 15(-1), 30(-2), 33(-2), 35(+1) and 39, corresponding to amino acids 70-79, 144-153, 159-167, 172-181 and 192-200) were identified. They are all located on the surface of the simulated Cyn d 1 molecule, and three of them are major epitopes for both IgE and IgG(4). Their critical amino acids were all characterized. Major epitopes for human IgG(1) to IgG(4) are almost identical. This is the first study to map the sequential epitopes for human IgE and IgG(4) subclasses in Cyn d 1. It will be helpful for future development in immunotherapy and diagnosis. Copyright © 2011 S. Karger AG, Basel.
Application of phage peptide display technology for the study of food allergen epitopes.
Chen, Xueni; Dreskin, Stephen C
2017-06-01
Phage peptide display technology has been used to identify IgE-binding mimotopes (mimics of natural epitopes) that mimic conformational epitopes. This approach is effective in the characterization of those epitopes that are important for eliciting IgE-mediated allergic responses by food allergens and those that are responsible for cross-reactivity among allergenic food proteins. Application of this technology will increase our understanding of the mechanisms whereby food allergens elicit allergic reactions, will facilitate the discovery of diagnostic reagents and may lead to mimotope-based immunotherapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Depigmented allergoids reveal new epitopes with capacity to induce IgG blocking antibodies.
López-Matas, M Angeles; Gallego, Mayte; Iraola, Víctor; Robinson, Douglas; Carnés, Jerónimo
2013-01-01
The synthesis of allergen-specific blocking IgGs that interact with IgE after allergen immunotherapy (SIT) has been related to clinical efficacy. The objectives were to investigate the epitope specificity of IgG-antibodies induced by depigmented-polymerized (Dpg-Pol) allergoids and unmodified allergen extracts, and examine IgE-blocking activity of induced IgG-antibodies. Rabbits were immunized with native and Dpg-Pol extracts of birch pollen, and serum samples were obtained. Recognition of linear IgG-epitopes of Bet v 1 and Bet v 2 and the capacity of these IgG-antibodies to block binding of human-IgE was determined. Serum from rabbits immunized with native extracts recognised 11 linear epitopes from Bet v 1, while that from Dpg-Pol-immunized animals recognised 8. For Bet v 2, 8 epitopes were recognized by IgG from native immunized animals, and 9 from Dpg-Pol immunized one. Dpg-Pol and native immunized serum did not always recognise the same epitopes, but specific-IgG from both could block human-IgE binding sites for native extract. Depigmented-polymerized birch extract stimulates the synthesis of specific IgG-antibodies which recognize common but also novel epitopes compared with native extracts. IgG-antibodies induced by Dpg-Pol effectively inhibit human-IgE binding to allergens which may be part of the mechanism of action of SIT.
Identification of an immunodominant region of Fel d 1 and characterization of constituent epitopes.
Bateman, E A L; Ardern-Jones, M R; Ogg, G S
2008-11-01
Characterization of T cell epitopes restricted by common HLA alleles is a powerful tool in the understanding of the immune responses to allergens and for the identification of potential peptides for future peptide immunotherapy (PIT). One important requirement is the identification and use of peptides that will bind to HLA molecules covering a large proportion of the population. To identify commonly recognized CD4(+) T cell epitopes in Fel d 1, restricted through frequently expressed HLA molecules for potential future use in PIT. HLA matched antigen presenting cells, HLA blocking antibodies, and peptide truncations were used in ELISpot assays to establish HLA-restricted T cell epitopes. Cytokine responses were measured by ex vivo and cultured IFN-gamma, IL-4, and IL-10 ELISpots. Responses to an immunodominant region of chain 2 were identified in the majority of atopic individuals and epitopes restricted by HLA-DQB1(*)06 and -DPB1(*)0401 were characterized in detail. Significantly higher ex vivo IL-4 and lower IFN-gamma responses were observed to both epitopes in individuals with atopic dermatitis (AD) compared with those without disease. IL-10 responses were significantly lower in those with AD in the individuals with HLA-DPB1(*)0401. We have identified an immunodominant region of Fel d 1 which is frequently recognized by CD4(+) T cells from atopic individuals and contains epitopes that are restricted by very common HLA alleles.
Geng, Shuang; Yu, Yang; Kang, Youmin; Pavlakis, George; Jin, Huali; Li, Jinyao; Hu, Yanxin; Hu, Weibin; Wang, Shuang; Wang, Bin
2011-05-05
We previously showed that co-immunization with a protein antigen and a DNA vaccine coding for the same antigen induces CD40 low IL-10 high tolerogenic DCs, which in turn stimulates the expansion of antigen-specific CD4+CD25-Foxp3+ regulatory T cells (CD25- iTreg). However, it was unclear how to choose the antigen sequence to maximize tolerogenic antigen presentation and, consequently, CD25- iTreg induction. In the present study, we demonstrated the requirement of highly antigenic epitopes for CD25- iTreg induction. Firstly, we showed that the induction of CD25- iTreg by tolerogenic DC can be blocked by anti-MHC-II antibody. Next, both the number and the suppressive activity of CD25- iTreg correlated positively with the overt antigenicity of an epitope to activate T cells. Finally, in a mouse model of dermatitis, highly antigenic epitopes derived from a flea allergen not only induced more CD25- iTreg, but also more effectively prevented allergenic reaction to the allergen than did weakly antigenic epitopes. Our data thus indicate that efficient induction of CD25- iTreg requires highly antigenic peptide epitopes. This finding suggests that highly antigenic epitopes should be used for efficient induction of CD25- iTreg for clinical applications such as flea allergic dermatitis.
Muñoz-Medina, José Esteban; Sánchez-Vallejo, Carlos Javier; Méndez-Tenorio, Alfonso; Monroy-Muñoz, Irma Eloísa; Angeles-Martínez, Javier; Santos Coy-Arechavaleta, Andrea; Santacruz-Tinoco, Clara Esperanza; González-Ibarra, Joaquín; Anguiano-Hernández, Yu-Mei; González-Bonilla, César Raúl; Ramón-Gallegos, Eva; Díaz-Quiñonez, José Alberto
2015-01-01
The unpredictable, evolutionary nature of the influenza A virus (IAV) is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2) in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2) and in one of the main aviary subtypes responsible for zoonosis (H5N1). For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB) and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years) and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques. PMID:26346523
Wherry, E John; Golovina, Tatiana N; Morrison, Susan E; Sinnathamby, Gomathinayagam; McElhaugh, Michael J; Shockey, David C; Eisenlohr, Laurence C
2006-02-15
The proteasome is primarily responsible for the generation of MHC class I-restricted CTL epitopes. However, some epitopes, such as NP(147-155) of the influenza nucleoprotein (NP), are presented efficiently in the presence of proteasome inhibitors. The pathways used to generate such apparently "proteasome-independent" epitopes remain poorly defined. We have examined the generation of NP(147-155) and a second proteasome-dependent NP epitope, NP(50-57), using cells adapted to growth in the presence of proteasome inhibitors and also through protease overexpression. We observed that: 1) Ag processing and presentation proceeds in proteasome-inhibitor adapted cells but may become more dependent, at least in part, on nonproteasomal protease(s), 2) tripeptidyl peptidase II does not substitute for the proteasome in the generation of NP(147-155), 3) overexpression of leucine aminopeptidase, thymet oligopeptidase, puromycin-sensitive aminopeptidase, and bleomycin hydrolase, has little impact on the processing and presentation of NP(50-57) or NP(147-155), and 4) proteasome-inhibitor treatment altered the specificity of substrate cleavage by the proteasome using cell-free digests favoring NP(147-155) epitope preservation. Based on these results, we propose a central role for the proteasome in epitope generation even in the presence of proteasome inhibitors, although such inhibitors will likely alter cleavage patterns and may increase the dependence of the processing pathway on postproteasomal enzymes.
Sharmin, Refat; Islam, Abul B M M K
2016-01-01
MERS-CoV is a newly emerged human coronavirus reported closely related with HKU4 and HKU5 Bat coronaviruses. Bat and MERS corona-viruses are structurally related. Therefore, it is of interest to estimate the degree of conserved antigenic sites among them. It is of importance to elucidate the shared antigenic-sites and extent of conservation between them to understand the evolutionary dynamics of MERS-CoV. Multiple sequence alignment of the spike (S), membrane (M), enveloped (E) and nucleocapsid (N) proteins was employed to identify the sequence conservation among MERS and Bat (HKU4, HKU5) coronaviruses. We used various in silico tools to predict the conserved antigenic sites. We found that MERS-CoV shared 30 % of its S protein antigenic sites with HKU4 and 70 % with HKU5 bat-CoV. Whereas 100 % of its E, M and N protein's antigenic sites are found to be conserved with those in HKU4 and HKU5. This sharing suggests that in case of pathogenicity MERS-CoV is more closely related to HKU5 bat-CoV than HKU4 bat-CoV. The conserved epitopes indicates their evolutionary relationship and ancestry of pathogenicity.
The Influence of Social and Nonsocial Variables on the Simon Effect.
Mussi, Davide R; Marino, Barbara F M; Riggio, Lucia
2015-01-01
Recently, the Simon effect (SE) has been observed in social contexts when two individuals share a two-choice task. This joint SE (JSE) has been interpreted as evidence that people co-represent their actions. However, it is still not clear if the JSE is driven by social factors or low-level mechanisms. To address this question, we applied a common paradigm to a joint Simon task (Experiments 1 and 4), a standard Simon task (Experiment 2), and a go/no-go task (Experiment 3). The results showed that both the JSE and the SE were modulated by the repetition/non-repetition of task features. Moreover, the JSE was differently modulated by the gender composition of the two individuals involved in the shared task and by their interpersonal relationship. Taken together, our results do not support a pure social explanation of the JSE, nevertheless, they show the independent role of different social factors in modulating the effect.
NASA Astrophysics Data System (ADS)
Mao, Alvin W.
Chalcogenide glasses exhibit unique optical properties such as infrared transparency owing to the low-phonon energies, optical non-linearity, and photo-induced effects that have important consequences for a wide range of technological applications. However, to fully utilize these properties, it is necessary to better understand the atomic-scale structure and structure-property relationships in this important class of materials. Of particular interest in this regard are glasses in the stoichiometric system Na2Se/BaSe--Ga 2Se3--GeSe2 as they are isoelectronic with the well-studied, oxide glasses of the type M2O(M'O)--Al 2O3--SiO2 (M = alkali, M' = alkaline earth). This dissertation investigates the structure of stoichiometric Na 2Se/BaSe--Ga2Se3--GeSe2 and off-stoichiometric BaSe--Ga2Se3--GeSe 2+/-Se glasses using a combination of Fourier-transform Raman and solid state nuclear magnetic resonance (NMR) spectroscopies. The spectroscopic data is then compared to composition-dependent trends in physical properties such as density, optical band gap, glass transition temperature, and melt fragility to develop predictive structural models of the short- and intermediate-range order in the glass network. These models significantly improve our current understanding of the effects of modifier addition on the structure and properties of chalcogenide glasses, and thus enable a more efficient engineering of these highly functional materials for applications as solid electrolytes in batteries or as optical components in infrared photonics. In general, the underlying stoichiometric Ga2Se3--GeSe 2 network consists primarily of corner-sharing (Ga/Ge)Se4 tetrahedra, where the coordination numbers of Ga, Ge, and Se are 4, 4, and 2, respectively. Some edge-sharing exists, but this configuration is relatively unstable and its concentration tends to decrease with any deviation from the GeSe2 composition. Due to the tetrahedral coordination of Ga, the initial addition of Se-deficient Ga2Se3 to GeSe 2 results in the preferential formation of Ge-Ge bonds, which are distributed such that the clustering of ethane-like (Se3)Ge-Ge(Se3) units is avoided to the maximum extent. This behavior is entirely consistent with the continuously-alloyed structural scenario of chalcogenide glasses. However, for contents of Ga2Se3 greater than about 25--30 mol%, the avoidance of Ga-Ga and mixed Ga-Ge bonds results in the appearance of three-coordinated Se as an alternate mechanism to accommodate the Se deficiency. The addition of either Na2Se or BaSe to Ga2Se 3--GeSe2 glasses introduces an ionic bonding character to an otherwise largely covalently bonded network. As a result, the structure responds by adopting characteristics of the charge-compensated structural scenario of oxide glasses. In the stoichiometric Na2Se/BaSe--Ga 2Se3--GeSe2 glasses, the ratio of Na 2Se/BaSe:Ga2Se3 = 1 serves as a chemical threshold, where the network consists predominantly of corner-sharing (Ga/Ge)e4 tetrahedra, and the charge on the Na(Ba) cations is balanced by the GaSe4- tetrahedra. For glasses with Na 2Se/BaSe:Ga2Se3 < 1, the addition of Se-deficient Ga2Se3 induces the formation of Ge-Ge bonds. However, for glasses with Na2Se/BaSe:Ga2Se3 > 1, the addition of Na2Se/BaSe results in the formation of non-bridging Se atoms, which break up the connectivity of the glassy network. The major difference between the modifying elements Na and Ba is that the high field strength of the Ba cation induces a higher degree of chemical disorder in the glass network. This conclusion is evidenced by the presence of some Ge-Ge bonds in BaSe--Ga2Se3--GeSe2 glasses even at the chemical threshold composition of BaSe:Ga2Se3 = 1. The structural duality of the Na2Se/BaSe--Ga2Se 3--GeSe2 system is best observed in the off-stoichiometric BaSe--Ga2Se3--GeSe2+/-Se glasses. Here, the removal of Se from a stoichiometric glass with BaSe:Ga2Se 3 > 1 results in Ge-Ge bonds, while its addition in excess of stoichiometry forms Se-Se bonds. Although such behavior is consistent with the continuously-alloyed structural model, it should be contrasted with the response of the network to the removal or addition of BaSe. In the latter case especially, the network responds with the formation of non-bridging Se atoms, which is reminiscent of the charge-compensated structural scenario. The aforementioned structural conclusions are supported by trends in physical properties. Of all the properties measured, the glass transition temperature Tg responds most predictably to changes in glass structure in the sense that the removal of heteropolar (Ga/Ge)-Se bonds from the glassy network consistently results in a decrease in Tg. Indeed, Tg is observed to be maximized around chemical threshold compositions that are expected to have a fully-connected network of (Ga/Ge)Se¬4 tetrahedra. The formation of homopolar Ge-Ge bonds causes Tg to drop by ~40--80 °C, while the formation of Se-Se and/or non-bridging Se causes Tg to decrease by at least 120 °C. Trends in density reflect both the packing efficiency of the structural units within the glassy network as well as the masses of the constituent elements, and are generally observed to increase or decrease monotonically. As a result, an increase in density is associated with: 1) the removal of inefficiently packed structural units such as edge-sharing tetrahedra, 2) the formation of efficiently packed units such as three-coordinated Se atoms, 3) the removal of lighter elements like Na, and 4) the addition of heavier elements like Ba. Optical band gap is related to the bonding character within the glassy network, and tends to decrease as the bonding character becomes increasingly metallic. Therefore, a decrease in optical band gap is observed with the formation of homopolar Ge-Ge bonds when Ga2Se3 is added to GeSe2. However, the stoichiometric BaSe--Ga2Se 3--GeSe2 glasses show an anomaly in this regard because optical band gap decreases with the addition of BaSe, and consequently the removal of Ge-Ge bonds. This observation was ascribed instead to the formation of Ba-Se bonds, which are associated with a lower bandgap compared to the (Ga/Ge)-Se bonds that they replace. Finally, there is no straightforward structural explanation for trends in fragility, because it is related to the number of structural configurations dynamically available to the supercooled liquid. In the binary Ga2Se3--GeSe2 glasses, the fragility tends to increase with the formation of homopolar Ge-Ge bonds, which is consistent with other chalcogenide systems in which fragility increases with the removal of heteropolar bonds within corner-sharing tetrahedra and pyramids. In the stoichiometric BaSe--Ga2Se3--GeSe2 glasses on the other hand, a shift in trend near the compositions where BaSe:Ga 2Se3 = 1 coincides with a structural shift between the formation of Ge-Ge bonds and Se-Se/non-bridging Se.
Araujo, Ricardo Nascimento; Franco, Paula Ferreira; Rodrigues, Henrique; Santos, Luiza C B; McKay, Craig S; Sanhueza, Carlos A; Brito, Carlos Ramon Nascimento; Azevedo, Maíra Araújo; Venuto, Ana Paula; Cowan, Peter J; Almeida, Igor C; Finn, M G; Marques, Alexandre F
2016-03-01
The anaphylaxis response is frequently associated with food allergies, representing a significant public health hazard. Recently, exposure to tick bites and production of specific IgE against α-galactosyl (α-Gal)-containing epitopes has been correlated to red meat allergy. However, this association and the source of terminal, non-reducing α-Gal-containing epitopes have not previously been established in Brazil. Here, we employed the α-1,3-galactosyltransferase knockout mouse (α1,3-GalT-KO) model and bacteriophage Qβ-virus like particles (Qβ-VLPs) displaying Galα1,3Galβ1,4GlcNAc (Galα3LN) epitopes to investigate the presence of α-Gal-containing epitopes in the saliva of Amblyomma sculptum, a species of the Amblyomma cajennense complex, which represents the main tick that infests humans in Brazil. We confirmed that the α-1,3-galactosyltransferase knockout animals produce significant levels of anti-α-Gal antibodies against the Galα1,3Galβ1,4GlcNAc epitopes displayed on Qβ-virus like particles. The injection of A. sculptum saliva or exposure to feeding ticks was also found to induce both IgG and IgE anti-α-Gal antibodies in α-1,3-galactosyltransferase knockout mice, thus indicating the presence of α-Gal-containing epitopes in the tick saliva. The presence of α-Gal-containing epitopes was confirmed by ELISA and immunoblotting following removal of terminal α-Gal epitopes by α-galactosidase treatment. These results suggest for the first known time that bites from the A. sculptum tick may be associated with the unknown etiology of allergic reactions to red meat in Brazil. Copyright © 2016 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Galili, Uri
2015-01-01
The α1,3-galactosyltransferase (α1,3GT or GGTA1) gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The α1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the α1,3GT enzyme that synthesizes a carbohydrate antigen called "α-gal epitope." The α-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The α1,3GT gene was inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack α-gal epitopes and naturally produce an antibody called the "anti-Gal antibody" which binds specifically to α-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the α1,3GT gene in ancestral Old World primates could have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the α-gal epitope. Once the α-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope. This assumption is supported by the fossil record demonstrating an almost complete extinction of apes in the late Miocene and failure of Old World monkeys to radiate into multiple species before that period. A present outcome of this evolutionary event is the anti-Gal-mediated rejection of mammalian xenografts expressing α-gal epitopes in humans, apes, and Old World monkeys.
Thyrotropin Receptor Epitope and Human Leukocyte Antigen in Graves’ Disease
Inaba, Hidefumi; De Groot, Leslie J.; Akamizu, Takashi
2016-01-01
Graves’ disease (GD) is an organ-specific autoimmune disease, and thyrotropin (TSH) receptor (TSHR) is a major autoantigen in this condition. Since the extracellular domain of human TSHR (TSHR-ECD) is shed into the circulation, TSHR-ECD is a preferentially immunogenic portion of TSHR. Both genetic factors and environmental factors contribute to development of GD. Inheritance of human leukocyte antigen (HLA) genes, especially HLA-DR3, is associated with GD. TSHR-ECD protein is endocytosed into antigen-presenting cells (APCs), and processed to TSHR-ECD peptides. These peptide epitopes bind to HLA-class II molecules, and subsequently the complex of HLA-class II and TSHR-ECD epitope is presented to CD4+ T cells. The activated CD4+ T cells secrete cytokines/chemokines that stimulate B-cells to produce TSAb, and in turn hyperthyroidism occurs. Numerous studies have been done to identify T- and B-cell epitopes in TSHR-ECD, including (1) in silico, (2) in vitro, (3) in vivo, and (4) clinical experiments. Murine models of GD and HLA-transgenic mice have played a pivotal role in elucidating the immunological mechanisms. To date, linear or conformational epitopes of TSHR-ECD, as well as the molecular structure of the epitope-binding groove in HLA-DR, were reported to be related to the pathogenesis in GD. Dysfunction of central tolerance in the thymus, or in peripheral tolerance, such as regulatory T cells, could allow development of GD. Novel treatments using TSHR antagonists or mutated TSHR peptides have been reported to be effective. We review and update the role of immunogenic TSHR epitopes and HLA in GD, and offer perspectives on TSHR epitope specific treatments. PMID:27602020
Emergence of a Norovirus GII.4 Strain Correlates with Changes in Evolving Blockade Epitopes
Lindesmith, Lisa C.; Costantini, Verónica; Swanstrom, Jesica; Debbink, Kari; Donaldson, Eric F.; Vinjé, Jan
2013-01-01
The major capsid protein of norovirus GII.4 strains is evolving rapidly, resulting in epidemic strains with altered antigenicity. GII.4.2006 Minerva strains circulated at pandemic levels in 2006 and persisted at lower levels until 2009. In 2009, a new GII.4 variant, GII.4.2009 New Orleans, emerged and since then has become the predominant strain circulating in human populations. To determine whether changes in evolving blockade epitopes correlate with the emergence of the GII.4.2009 New Orleans strains, we compared the antibody reactivity of a panel of mouse monoclonal antibodies (MAbs) against GII.4.2006 and GII.4.2009 virus-like particles (VLPs). Both anti-GII.4.2006 and GII.4.2009 MAbs effectively differentiated the two strains by VLP-carbohydrate ligand blockade assay. Most of the GII.4.2006 MAbs preferentially blocked GII.4.2006, while all of the GII.4.2009 MAbs preferentially blocked GII.4.2009, although 8 of 12 tested blockade MAbs blocked both VLPs. Using mutant VLPs designed to alter predicted antigenic epitopes, binding of seven of the blockade MAbs was impacted by alterations in epitope A, identifying residues 294, 296, 297, 298, 368, and 372 as important antigenic sites in these strains. Convalescent-phase serum collected from a GII.4.2009 outbreak confirmed the immunodominance of epitope A, since alterations of epitope A affected serum reactivity by 40%. These data indicate that the GII.4.2009 New Orleans variant has evolved a key blockade epitope, possibly allowing for at least partial escape from protective herd immunity and provide epidemiological support for the utility of monitoring changes in epitope A in emergent strain surveillance. PMID:23269783
Prabakaran, Mookkan; Ho, Hui-Ting; Prabhu, Nayana; Velumani, Sumathy; Szyporta, Milene; He, Fang; Chan, Kwai-Peng; Chen, Li-Mei; Matsuoka, Yumiko; Donis, Ruben O; Kwang, Jimmy
2009-01-01
Human infections with highly pathogenic H5N1 avian influenza viruses have generally been confirmed by molecular amplification or culture-based methods. Serologic surveillance has potential advantages which have not been realized because rapid and specific serologic tests to detect H5N1 infection are not widely available. Here we describe an epitope-blocking ELISA to detect specific antibodies to H5N1 viruses in human or animal sera. The assay relies on a novel monoclonal antibody (5F8) that binds to an epitope comprising amino acid residues 274-281 (CNTKCQTP) in the HA1 region of H5 hemagglutinin. Database search analysis of publicly available sequences revealed that this epitope is conserved in 100% of the 163 H5N1 viruses isolated from humans. The sensitivity and specificity of the epitope-blocking ELISA for H5N1 were evaluated using chicken antisera to multiple virus clades and other influenza subtypes as well as serum samples from individuals naturally infected with H5N1 or seasonal influenza viruses. The epitope-blocking ELISA results were compared to those of hemagglutinin inhibition (HI) and microneutralization assays. Antibodies to H5N1 were readily detected in immunized animals or convalescent human sera by the epitope-blocking ELISA whereas specimens with antibodies to other influenza subtypes yielded negative results. The assay showed higher sensitivity and specificity as compared to HI and microneutralization. The epitope-blocking ELISA based on a unique 5F8 mAb provided highly sensitive and 100% specific detection of antibodies to H5N1 influenza viruses in human sera.
Alonso-Urmeneta, B.; Marín, C.; Aragón, V.; Blasco, J. M.; Díaz, R.; Moriyón, I.
1998-01-01
Brucella abortus and Brucella melitensis have surface lipopolysaccharides and polysaccharides carrying B. melitensis-type (M) and B. abortus-type (A) epitopes as well as common (C) epitopes present in all smooth Brucella biotypes. Crude lipopolysaccharides, hydrolytic O polysaccharides, and native hapten polysaccharides of MC or AC specificity were evaluated in indirect enzyme-linked immunosorbent assays with polyclonal, monoclonal, or protein G conjugates by using sera from cattle, sheep, and goats infected with AC, MC, or AMC Brucella biotypes. Regardless of the antigen, the levels of antibodies were lower in goats than in sheep and highest in cattle. The diagnostic performance of the assay was not affected by the absence of lipid A-core epitopes, the presence of contaminating outer membrane proteins, the AC or MC epitopic structure of the absorbed antigen, or the conjugate used. Moreover, with sera from cattle vaccinated with B. abortus S19 (AC) or from sheep and goats vaccinated with B. melitensis Rev 1 (MC), AC and MC antigens showed similar levels of reactivity. The results show that antibodies to the C epitopes largely dominate in infection, and this is consistent with the existence of multiple overlapping C epitopes (V. Weynants, D. Gilson, A. Cloeckaert, A. Tibor, P. A. Denoel, F. Godfroid, J. N. Limet, and J.-J. Letesson, Infect. Immun. 65:1939–1943, 1997) rather than with one or two C epitopes. It is concluded that, by adaptation to the corresponding antibody levels, brucellosis in cattle, sheep, and goats can be diagnosed by immunosorbent assay with a single combination of conjugate and antigen. PMID:9801329
Epitope enhancement for immunohistochemical demonstration of tartrate-resistant acid phosphatase.
Janckila, A J; Lear, S C; Martin, A W; Yam, L T
1996-03-01
We have developed a monoclonal antibody (9C5) for immunohistochemical localization of tartrate-resistant acid phosphatase (TRAcP). This antibody reacts with a denatured epitope of TRAcP and requires enhancement methods to promote antigenicity in paraffin-embedded tissues. We used this antibody to systematically examine proteolytic digestion and heat denaturation conditions for epitope enhancement in both paraffin sections and fixed smears. The goal was to increase the sensitivity of the immunohistochemical stain for TRAcP. Optimal conditions for proteolytic digestion were established. Denaturation in a conventional boiling water bath was compared to microwave irradiation in several commonly used solutions. Immunohistochemistry was compared directly to TRAcP cytochemistry in fixed smears from hairy cell leukemia specimens to gauge the level of sensitivity of our improved method. Attempts were made to "retrieve" the 9C5 epitope from overfixed tissues and aged smears. Maximal immunoreactivity of TRAcP was achieved by microwave irradiation in a citrate or Tris buffer of pH 6.0-8.0 without the need for a subsequent protease digestion step. With this method of epitope enhancement, immunohistochemistry with antibody 9C5 was as sensitive as direct cytochemical staining of TRAcP activity. However, once a tissue specimen had been overfixed or a smear stored for a year or more, the 9C5 epitope was no longer retrievable. The key element in epitope enhancement for 9C5 immunohistochemistry is heat denaturation of the target epitope. Immunohistochemistry of TRAcP in paraffin sections would be a great asset to the study of specialized forms of the monocyte/macrophage lineage and to the process of macrophage activation. It would also provide another means for more precise evaluation of residual disease in bone marrow of patients treated for hairy cell leukemia.
Ames, Jacquelyn J.; Contois, Liangru; Caron, Jennifer M.; Tweedie, Eric; Yang, Xuehui; Friesel, Robert; Vary, Calvin; Brooks, Peter C.
2016-01-01
Extracellular matrix (ECM) remodeling regulates angiogenesis. However, the precise mechanisms by which structural changes in ECM proteins contribute to angiogenesis are not fully understood. Integrins are molecules with the ability to detect compositional and structural changes within the ECM and integrate this information into a network of signaling circuits that coordinate context-dependent cell behavior. The role of integrin αvβ3 in angiogenesis is complex, as evidence exists for both positive and negative functions. The precise downstream signaling events initiated by αvβ3 may depend on the molecular characteristics of its ligands. Here, we identified an RGD-containing cryptic collagen epitope that is generated in vivo. Surprisingly, rather than inhibiting αvβ3 signaling, this collagen epitope promoted αvβ3 activation and stimulated angiogenesis and inflammation. An antibody directed to this RGDKGE epitope but not other RGD collagen epitopes inhibited angiogenesis and inflammation in vivo. The selective ability of this RGD epitope to promote angiogenesis and inflammation depends in part on its flanking KGE motif. Interestingly, a subset of macrophages may represent a physiologically relevant source of this collagen epitope. Here, we define an endothelial cell mechano-signaling pathway in which a cryptic collagen epitope activates αvβ3 leading to an Src and p38 MAPK-dependent cascade that leads to nuclear accumulation of Yes-associated protein (YAP) and stimulation of endothelial cell growth. Collectively, our findings not only provide evidence for a novel mechano-signaling pathway, but also define a possible therapeutic strategy to control αvβ3 signaling by targeting a pro-angiogenic and inflammatory ligand of αvβ3 rather than the receptor itself. PMID:26668310
Provenzano, Maurizio; Selleri, Silvia; Jin, Ping; Wang, Ena; Werden, Rosemary; Slezak, Stephanie; Adams, Sharon D; Panelli, Monica C; Leitman, Susan F; Stroncek, David F; Marincola, Francesco M
2007-07-01
Latent membrane protein (LMP)-2 is one of the Epstein-Barr virus (EBV)-encoded proteins consistently expressed by nasopharyngeal carcinoma (NPC). EBV-transformed lymphoblastoid cell lines (LCL) have been used in patients with NPC to induce LMP-2-recognizing T cell lines which have been in turn utilized for protein-wide mapping of T cell epitopes. However, comprehensive mapping of naturally recognized LMP-2 epitopes in non tumor-bearing individuals has not been reported. Here, we applied a low sensitivity epitope-defining technique for the identification of LMP-2 CTL responses detectable ex vivo in EBV-experienced individuals. This screening tool has been previously validated by analyzing memory CTL responses to Flu, cytomegalovirus (CMV), and the melanoma associated antigen gp100/Mel17. Peripheral blood monocytes (PBMC) from ten Caucasian and ten Chinese individuals were stimulated ex vivo with pools of nonamer (9-mer) peptides overlapping in a stepwise fashion each single amino acid of the LMP-2 sequence. No obvious differences were observed between the immune response of the two ethnic groups save for those related to the divergence in the ethnic prevalence of HLA haplotypes. Several novel and known LMP-2 epitopes were identified. Reactivity toward at least one LMP-2 epitope was detected in 18 of the 20 donors but no prevalent human leukocyte antigen (HLA)/epitope combination was observed confirming that LMP-2 reactivity in the context of common HLA alleles is more pleiotropic than that of FLU and CMV. We believe that the usefulness of these epitopes occurring naturally in non-cancer bearing patients as reagents for the immunization of patients with early or advanced stage NPC deserves further evaluation.
Yasmin, T; Nabi, A H M Nurun
2016-05-01
Ebola virus (EBV) has become a serious threat to public health. Different approaches were applied to predict continuous and discontinuous B cell epitopes as well as T cell epitopes from the sequence-based and available three-dimensional structural analyses of each protein of EBV. Peptides '(79) VPSATKRWGFRSGVPP(94) ' from GP1 and '(515) LHYWTTQDEGAAIGLA(530) ' from GP2 of Ebola were found to be the consensus peptidic sequences predicted as linear B cell epitope of which the latter contains a region (519) TTQDEG(524) that fulfilled all the criteria of accessibility, hydrophilicity, flexibility and beta turn region for becoming an ideal B cell epitope. Different nonamers as T cell epitopes were obtained that interacted with different numbers of MHC class I and class II alleles with a binding affinity of <100 nm. Interestingly, these alleles also bound to the MHC class I alleles mostly prevalent in African and South Asian regions. Of these, 'LANETTQAL' and 'FLYDRLAST' nonamers were predicted to be the most potent T cell epitopes and they, respectively, interacted with eight and twelve class I alleles that covered 63.79% and 54.16% of world population, respectively. These nonamers were found to be the core sequences of 15mer peptides that interacted with the most common class II allele, HLA-DRB1*01:01. They were further validated for their binding to specific class I alleles using docking technique. Thus, these predicted epitopes may be used as vaccine targets against EBV and can be validated in model hosts to verify their efficacy as vaccine. © 2016 The Foundation for the Scandinavian Journal of Immunology.
Rahman, K Shamsur; Chowdhury, Erfan U; Poudel, Anil; Ruettger, Anke; Sachse, Konrad; Kaltenboeck, Bernhard
2015-05-01
Urgently needed species-specific enzyme-linked immunosorbent assays (ELISAs) for the detection of antibodies against Chlamydia spp. have been elusive due to high cross-reactivity of chlamydial antigens. To identify Chlamydia species-specific B cell epitopes for such assays, we ranked the potential epitopes of immunodominant chlamydial proteins that are polymorphic among all Chlamydia species. High-scoring peptides were synthesized with N-terminal biotin, followed by a serine-glycine-serine-glycine spacer, immobilized onto streptavidin-coated microtiter plates, and tested with mono-specific mouse hyperimmune sera against each Chlamydia species in chemiluminescent ELISAs. For each of nine Chlamydia species, three to nine dominant polymorphic B cell epitope regions were identified on OmpA, CT618, PmpD, IncA, CT529, CT442, IncG, Omp2, TarP, and IncE proteins. Peptides corresponding to 16- to 40-amino-acid species-specific sequences of these epitopes reacted highly and with absolute specificity with homologous, but not heterologous, Chlamydia monospecies-specific sera. Host-independent reactivity of such epitopes was confirmed by testing of six C. pecorum-specific peptides from five proteins with C. pecorum-reactive sera from cattle, the natural host of C. pecorum. The probability of cross-reactivity of peptide antigens from closely related chlamydial species or strains correlated with percent sequence identity and declined to zero at <50% sequence identity. Thus, phylograms of B cell epitope regions predict the specificity of peptide antigens for rational use in the genus-, species-, or serovar-specific molecular serology of Chlamydia spp. We anticipate that these peptide antigens will improve chlamydial serology by providing easily accessible assays to nonspecialist laboratories. Our approach also lends itself to the identification of relevant epitopes of other microbial pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Defining Species-Specific Immunodominant B Cell Epitopes for Molecular Serology of Chlamydia Species
Rahman, K. Shamsur; Chowdhury, Erfan U.; Poudel, Anil; Ruettger, Anke; Sachse, Konrad
2015-01-01
Urgently needed species-specific enzyme-linked immunosorbent assays (ELISAs) for the detection of antibodies against Chlamydia spp. have been elusive due to high cross-reactivity of chlamydial antigens. To identify Chlamydia species-specific B cell epitopes for such assays, we ranked the potential epitopes of immunodominant chlamydial proteins that are polymorphic among all Chlamydia species. High-scoring peptides were synthesized with N-terminal biotin, followed by a serine-glycine-serine-glycine spacer, immobilized onto streptavidin-coated microtiter plates, and tested with mono-specific mouse hyperimmune sera against each Chlamydia species in chemiluminescent ELISAs. For each of nine Chlamydia species, three to nine dominant polymorphic B cell epitope regions were identified on OmpA, CT618, PmpD, IncA, CT529, CT442, IncG, Omp2, TarP, and IncE proteins. Peptides corresponding to 16- to 40-amino-acid species-specific sequences of these epitopes reacted highly and with absolute specificity with homologous, but not heterologous, Chlamydia monospecies-specific sera. Host-independent reactivity of such epitopes was confirmed by testing of six C. pecorum-specific peptides from five proteins with C. pecorum-reactive sera from cattle, the natural host of C. pecorum. The probability of cross-reactivity of peptide antigens from closely related chlamydial species or strains correlated with percent sequence identity and declined to zero at <50% sequence identity. Thus, phylograms of B cell epitope regions predict the specificity of peptide antigens for rational use in the genus-, species-, or serovar-specific molecular serology of Chlamydia spp. We anticipate that these peptide antigens will improve chlamydial serology by providing easily accessible assays to nonspecialist laboratories. Our approach also lends itself to the identification of relevant epitopes of other microbial pathogens. PMID:25761461
HIV-1 subtype A gag variability and epitope evolution.
Abidi, Syed Hani; Kalish, Marcia L; Abbas, Farhat; Rowland-Jones, Sarah; Ali, Syed
2014-01-01
The aim of this study was to examine the course of time-dependent evolution of HIV-1 subtype A on a global level, especially with respect to the dynamics of immunogenic HIV gag epitopes. We used a total of 1,893 HIV-1 subtype A gag sequences representing a timeline from 1985 through 2010, and 19 different countries in Africa, Europe and Asia. The phylogenetic relationship of subtype A gag and its epidemic dynamics was analysed through a Maximum Likelihood tree and Bayesian Skyline plot, genomic variability was measured in terms of G → A substitutions and Shannon entropy, and the time-dependent evolution of HIV subtype A gag epitopes was examined. Finally, to confirm observations on globally reported HIV subtype A sequences, we analysed the gag epitope data from our Kenyan, Pakistani, and Afghan cohorts, where both cohort-specific gene epitope variability and HLA restriction profiles of gag epitopes were examined. The most recent common ancestor of the HIV subtype A epidemic was estimated to be 1956 ± 1. A period of exponential growth began about 1980 and lasted for approximately 7 years, stabilized for 15 years, declined for 2-3 years, then stabilized again from about 2004. During the course of evolution, a gradual increase in genomic variability was observed that peaked in 2005-2010. We observed that the number of point mutations and novel epitopes in gag also peaked concurrently during 2005-2010. It appears that as the HIV subtype A epidemic spread globally, changing population immunogenetic pressures may have played a role in steering immune-evolution of this subtype in new directions. This trend is apparent in the genomic variability and epitope diversity of HIV-1 subtype A gag sequences.
Experimental validation of the RATE tool for inferring HLA restrictions of T cell epitopes.
Paul, Sinu; Arlehamn, Cecilia S Lindestam; Schulten, Veronique; Westernberg, Luise; Sidney, John; Peters, Bjoern; Sette, Alessandro
2017-06-21
The RATE tool was recently developed to computationally infer the HLA restriction of given epitopes from immune response data of HLA typed subjects without additional cumbersome experimentation. Here, RATE was validated using experimentally defined restriction data from a set of 191 tuberculosis-derived epitopes and 63 healthy individuals with MTB infection from the Western Cape Region of South Africa. Using this experimental dataset, the parameters utilized by the RATE tool to infer restriction were optimized, which included relative frequency (RF) of the subjects responding to a given epitope and expressing a given allele as compared to the general test population and the associated p-value in a Fisher's exact test. We also examined the potential for further optimization based on the predicted binding affinity of epitopes to potential restricting HLA alleles, and the absolute number of individuals expressing a given allele and responding to the specific epitope. Different statistical measures, including Matthew's correlation coefficient, accuracy, sensitivity and specificity were used to evaluate performance of RATE as a function of these criteria. Based on our results we recommend selection of HLA restrictions with cutoffs of p-value < 0.01 and RF ≥ 1.3. The usefulness of the tool was demonstrated by inferring new HLA restrictions for epitope sets where restrictions could not be experimentally determined due to lack of necessary cell lines and for an additional data set related to recognition of pollen derived epitopes from allergic patients. Experimental data sets were used to validate RATE tool and the parameters used by the RATE tool to infer restriction were optimized. New HLA restrictions were identified using the optimized RATE tool.
Stenger, Rachel M.; Meiring, Hugo D.; Kuipers, Betsy; Poelen, Martien; van Gaans-van den Brink, Jacqueline A. M.; Boog, Claire J. P.; de Jong, Ad P. J. M.
2014-01-01
Knowledge of naturally processed Bordetella pertussis-specific T cell epitopes may help to increase our understanding of the basis of cell-mediated immune mechanisms to control this reemerging pathogen. Here, we elucidate for the first time the dominant major histocompatibility complex (MHC) class II-presented B. pertussis CD4+ T cell epitopes, expressed on human monocyte-derived dendritic cells (MDDC) after the processing of whole bacterial cells by use of a platform of immunoproteomics technology. Pertussis epitopes identified in the context of HLA-DR molecules were derived from two envelope proteins, i.e., putative periplasmic protein (PPP) and putative peptidoglycan-associated lipoprotein (PAL), and from two cytosolic proteins, i.e., 10-kDa chaperonin groES protein (groES) and adenylosuccinate synthetase (ASS). No epitopes were detectable from known virulence factors. CD4+ T cell responsiveness in healthy adults against peptide pools representing epitope regions or full proteins confirmed the immunogenicity of PAL, PPP, groES, and ASS. Elevated lymphoproliferative activity to PPP, groES, and ASS in subjects within a year after the diagnosis of symptomatic pertussis suggested immunogenic exposure to these proteins during clinical infection. The PAL-, PPP-, groES-, and ASS-specific responses were associated with secretion of functional Th1 (tumor necrosis factor alpha [TNF-α] and gamma interferon [IFN-γ]) and Th2 (interleukin 5 [IL-5] and IL-13) cytokines. Relative paucity in the natural B. pertussis epitope display of MDDC, not dominated by epitopes from known protective antigens, can interfere with the effectiveness of immune recognition of B. pertussis. A more complete understanding of hallmarks in B. pertussis-specific immunity may advance the design of novel immunological assays and prevention strategies. PMID:24599530
Stenger, Rachel M; Meiring, Hugo D; Kuipers, Betsy; Poelen, Martien; van Gaans-van den Brink, Jacqueline A M; Boog, Claire J P; de Jong, Ad P J M; van Els, Cécile A C M
2014-05-01
Knowledge of naturally processed Bordetella pertussis-specific T cell epitopes may help to increase our understanding of the basis of cell-mediated immune mechanisms to control this reemerging pathogen. Here, we elucidate for the first time the dominant major histocompatibility complex (MHC) class II-presented B. pertussis CD4(+) T cell epitopes, expressed on human monocyte-derived dendritic cells (MDDC) after the processing of whole bacterial cells by use of a platform of immunoproteomics technology. Pertussis epitopes identified in the context of HLA-DR molecules were derived from two envelope proteins, i.e., putative periplasmic protein (PPP) and putative peptidoglycan-associated lipoprotein (PAL), and from two cytosolic proteins, i.e., 10-kDa chaperonin groES protein (groES) and adenylosuccinate synthetase (ASS). No epitopes were detectable from known virulence factors. CD4(+) T cell responsiveness in healthy adults against peptide pools representing epitope regions or full proteins confirmed the immunogenicity of PAL, PPP, groES, and ASS. Elevated lymphoproliferative activity to PPP, groES, and ASS in subjects within a year after the diagnosis of symptomatic pertussis suggested immunogenic exposure to these proteins during clinical infection. The PAL-, PPP-, groES-, and ASS-specific responses were associated with secretion of functional Th1 (tumor necrosis factor alpha [TNF-α] and gamma interferon [IFN-γ]) and Th2 (interleukin 5 [IL-5] and IL-13) cytokines. Relative paucity in the natural B. pertussis epitope display of MDDC, not dominated by epitopes from known protective antigens, can interfere with the effectiveness of immune recognition of B. pertussis. A more complete understanding of hallmarks in B. pertussis-specific immunity may advance the design of novel immunological assays and prevention strategies.
Enterovirus 71 viral capsid protein linear epitopes: Identification and characterization
2012-01-01
Background To characterize the human humoral immune response against enterovirus 71 (EV71) infection and map human epitopes on the viral capsid proteins. Methods A series of 256 peptides spanning the capsid proteins (VP1, VP2, VP3) of BJ08 strain (genomic C4) were synthesized. An indirect enzyme-linked immunosorbent assay (ELISA) was carried out to detect anti-EV71 IgM and IgG in sera of infected children in acute or recovery phase. The partially overlapped peptides contained 12 amino acids and were coated in the plate as antigen (0.1 μg/μl). Sera from rabbits immunized with inactivated BJ08 virus were also used to screen the peptide panel. Results A total of 10 human anti-EV71 IgM epitopes (vp1-14 in VP1; vp2-6, 21, 40 and 50 in VP2 and vp3-10, 12, 15, 24 and 75 in VP3) were identified in acute phase sera. In contrast, only one anti-EV71 IgG epitope in VP1 (vp1-15) was identified in sera of recovery stage. Four rabbit anti-EV71 IgG epitopes (vp1-14, 31, 54 and 71) were identified and mapped to VP1. Conclusion These data suggested that human IgM epitopes were mainly mapped to VP2 and VP3 with multi-epitope responses occurred at acute infection, while the only IgG epitope located on protein VP1 was activated in recovery phase sera. The dynamic changes of humoral immune response at different stages of infection may have public health significance in evaluation of EV71 vaccine immunogenicity and the clinical application of diagnostic reagents. PMID:22264266
Mukherjee, Sumanta; Bhattacharyya, Chiranjib; Chandra, Nagasuma
2016-08-01
T-cell epitopes serve as molecular keys to initiate adaptive immune responses. Identification of T-cell epitopes is also a key step in rational vaccine design. Most available methods are driven by informatics and are critically dependent on experimentally obtained training data. Analysis of a training set from Immune Epitope Database (IEDB) for several alleles indicates that the sampling of the peptide space is extremely sparse covering a tiny fraction of the possible nonamer space, and also heavily skewed, thus restricting the range of epitope prediction. We present a new epitope prediction method that has four distinct computational modules: (i) structural modelling, estimating statistical pair-potentials and constraint derivation, (ii) implicit modelling and interaction profiling, (iii) feature representation and binding affinity prediction and (iv) use of graphical models to extract peptide sequence signatures to predict epitopes for HLA class I alleles. HLaffy is a novel and efficient epitope prediction method that predicts epitopes for any Class-1 HLA allele, by estimating the binding strengths of peptide-HLA complexes which is achieved through learning pair-potentials important for peptide binding. It relies on the strength of the mechanistic understanding of peptide-HLA recognition and provides an estimate of the total ligand space for each allele. The performance of HLaffy is seen to be superior to the currently available methods. The method is made accessible through a webserver http://proline.biochem.iisc.ernet.in/HLaffy : nchandra@biochem.iisc.ernet.in Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Araujo, Ricardo Nascimento; Franco, Paula Ferreira; Rodrigues, Henrique; Santos, Luiza C.B.; McKay, Craig S.; Sanhueza, Carlos A.; Brito, Carlos Ramon Nascimento; Azevedo, Maíra Araújo; Venuto, Ana Paula; Cowan, Peter J.; Almeida, Igor C.; Finn, M.G.; Marques, Alexandre F.
2017-01-01
The anaphylaxis response is frequently associated with food allergies, representing a significant public health hazard. Recently, exposure to tick bites and production of specific IgE against α-galactosyl (α-Gal)-containing epitopes has been correlated to red meat allergy. However, this association and the source of terminal, non-reducing α-Gal-containing epitopes have not previously been established in Brazil. Here, we employed the α-1,3-galactosyltransferase knockout mouse (α1,3-GalT-KO) model and bacteriophage Qβ-virus like particles (Qβ-VLPs) displaying Galα1,3Galβ1,4GlcNAc (Galα3LN) epitopes to investigate the presence of α-Gal-containing epitopes in the saliva of Amblyomma sculptum, a species of the Amblyomma cajennense complex, which represents the main tick that infests humans in Brazil. We confirmed that the α-1,3-galactosyltransferase knockout animals produce significant levels of anti-α-Gal antibodies against the Galα1,3Galβ1,4GlcNAc epitopes displayed on Qβ-virus like particles. The injection of A. sculptum saliva or exposure to feeding ticks was also found to induce both IgG and IgE anti-α-Gal antibodies in α-1,3-galactosyltransferase knockout mice, thus indicating the presence of α-Gal-containing epitopes in the tick saliva. The presence of α-Gal-containing epitopes was confirmed by ELISA and immunoblotting following removal of terminal α-Gal epitopes by α-galactosidase treatment. These results suggest for the first known time that bites from the A. sculptum tick may be associated with the unknown etiology of allergic reactions to red meat in Brazil. PMID:26812026
Gurung, Ratna B.; Purdie, Auriol C.; Begg, Douglas J.
2012-01-01
Johne's disease in ruminants is caused by Mycobacterium avium subsp. paratuberculosis. Diagnosis of M. avium subsp. paratuberculosis infection is difficult, especially in the early stages. To date, ideal antigen candidates are not available for efficient immunization or immunodiagnosis. This study reports the in silico selection and subsequent analysis of epitopes of M. avium subsp. paratuberculosis proteins that were found to be upregulated under stress conditions as a means to identify immunogenic candidate proteins. Previous studies have reported differential regulation of proteins when M. avium subsp. paratuberculosis is exposed to stressors which induce a response similar to dormancy. Dormancy may be involved in evading host defense mechanisms, and the host may also mount an immune response against these proteins. Twenty-five M. avium subsp. paratuberculosis proteins that were previously identified as being upregulated under in vitro stress conditions were analyzed for B and T cell epitopes by use of the prediction tools at the Immune Epitope Database and Analysis Resource. Major histocompatibility complex class I T cell epitopes were predicted using an artificial neural network method, and class II T cell epitopes were predicted using the consensus method. Conformational B cell epitopes were predicted from the relevant three-dimensional structure template for each protein. Based on the greatest number of predicted epitopes, eight proteins (MAP2698c [encoded by desA2], MAP2312c [encoded by fadE19], MAP3651c [encoded by fadE3_2], MAP2872c [encoded by fabG5_2], MAP3523c [encoded by oxcA], MAP0187c [encoded by sodA], and the hypothetical proteins MAP3567 and MAP1168c) were identified as potential candidates for study of antibody- and cell-mediated immune responses within infected hosts. PMID:22496492
1996-01-01
An increasing amount of evidence has shown that epitopes restricted to MHC class I molecules and recognized by CTL need not be encoded in a primary open reading frame (ORF). Such epitopes have been demonstrated after stop codons, in alternative reading frames (RF) and within introns. We have used a series of frameshifts (FS) introduced into the Influenza A/PR/8 /34 nucleoprotein (NP) gene to confirm the previous in vitro observations of cryptic epitope expression, and show that they are sufficiently expressed to prime immune responses in vivo. This presentation is not due to sub-dominant epitopes, transcription from cryptic promoters beyond the point of the FS, or internal initiation of translation. By introducing additional mutations to the construct exhibiting the most potent presentation, we have identified initiation codon readthrough (termed scanthrough here, where the scanning ribosome bypasses the conventional initiation codon, initiating translation further downstream) as the likely mechanism of epitope production. Further mutational analysis demonstrated that, while it should operate during the expression of wild-type (WT) protein, scanthrough does not provide a major source of processing substrate in our system. These findings suggest (i) that the full array of self- and pathogen-derived epitopes available during thymic selection and infection has not been fully appreciated and (ii) that cryptic epitope expression should be considered when the specificity of a CTL response cannot be identified or in therapeutic situations when conventional CTL targets are limited, as may be the case with latent viral infections and transformed cells. Finally, initiation codon readthrough provides a plausible explanation for the presentation of exocytic proteins by MHC class I molecules. PMID:8879204
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusim, Karina; Korber, Bette Tina Marie; Barouch, Dan
HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2014 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and binding sites within each protein, moving from left to right through themore » coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as crossreactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins are provided.« less
Genetic characteristics of mumps viruses isolated in Korea from 2007 to 2012.
Kim, Seung Tae; Kim, You-Jin; Yang, Jeong-Sun; Nam, Jeong-Gu; Kim, Kisoon; Kim, Sung Soon; Kang, Hae Ji
2016-09-01
Mumps is a vaccine-preventable viral disease. Despite vaccine coverage of >95%, the incidence of mumps has increased in Korea since 2007. This study aimed to genetically characterize mumps virus (MuV) strains that circulated in Korea between 2007 and 2012 to determine the factors underlying mumps outbreaks. MuV was isolated from 175 clinical specimens between 2007 and 2012 in Korea. Upon analysis of the SH gene in Korean mumps virus isolates, three different genotypes were identified: I, H, and F. The MuV genotypes I and H co-circulated in Korea, and eight isolates of Korean genotype F were found within the same time period in 2008. An analysis of HN amino-acid sequence data showed that Korean isolates had no changes in their glycosylation sites. At putative neutralizing epitope sites, the Jeryl-Lynn strain showed 4-5 different amino acid sequences from those observed in Korean isolates. Korean isolates of genotypes I and H shared distinctive point mutations on putative neutralizing epitope positions in each genotype. This report describes the genetic characteristics of MuV strains circulating in Korea and provides information on endemic mumps infections. This information may be important to help prevent mumps and control outbreaks of mumps in Korea. J. Med. Virol. 88:1479-1486, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Estorninho, Megan; Gibson, Vivienne B; Kronenberg-Versteeg, Deborah; Liu, Yuk-Fun; Ni, Chester; Cerosaletti, Karen; Peakman, Mark
2013-12-01
Extensive diversity in the human repertoire of TCRs for Ag is both a cornerstone of effective adaptive immunity that enables host protection against a multiplicity of pathogens and a weakness that gives rise to potential pathological self-reactivity. The complexity arising from diversity makes detection and tracking of single Ag-specific CD4 T cells (ASTs) involved in these immune responses challenging. We report a tandem, multistep process to quantify rare TCRβ-chain variable sequences of ASTs in large polyclonal populations. The approach combines deep high-throughput sequencing (HTS) within functional CD4 T cell compartments, such as naive/memory cells, with shallow, multiple identifier-based HTS of ASTs identified by activation marker upregulation after short-term Ag stimulation in vitro. We find that clonotypes recognizing HLA class II-restricted epitopes of both pathogen-derived Ags and self-Ags are oligoclonal and typically private. Clonotype tracking within an individual reveals private AST clonotypes resident in the memory population, as would be expected, representing clonal expansions (identical nucleotide sequence; "ultraprivate"). Other AST clonotypes share CDR3β amino acid sequences through convergent recombination and are found in memory populations of multiple individuals. Tandem HTS-based clonotyping will facilitate studying AST dynamics, epitope spreading, and repertoire changes that arise postvaccination and following Ag-specific immunotherapies for cancer and autoimmune disease.
CYTOMEGALOVIRUS VECTORS VIOLATE CD8+ T CELL EPITOPE RECOGNITION PARADIGMS
Hansen, Scott G.; Sacha, Jonah B.; Hughes, Colette M.; Ford, Julia C.; Burwitz, Benjamin J.; Scholz, Isabel; Gilbride, Roxanne M.; Lewis, Matthew S.; Gilliam, Awbrey N.; Ventura, Abigail B.; Malouli, Daniel; Xu, Guangwu; Richards, Rebecca; Whizin, Nathan; Reed, Jason S.; Hammond, Katherine B.; Fischer, Miranda; Turner, John M.; Legasse, Alfred W.; Axthelm, Michael K.; Edlefsen, Paul T.; Nelson, Jay A.; Lifson, Jeffrey D.; Früh, Klaus; Picker, Louis J.
2013-01-01
CD8+ T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of anti-pathogen immunity. We found that simian immunodeficiency virus (SIV) protein-expressing Rhesus Cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8+ T cells that recognize unusual, diverse and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibility complex (MHC) molecules. Induction of canonical SIV epitope-specific CD8+ T cell responses is suppressed by the RhCMV-encoded Rh189 (US11) gene, and the promiscuous MHC class I- and class II-restricted CD8+ T cell responses only occur in the absence of the Rh157.4-.6 (UL128-131) genes. Thus, CMV vectors can be genetically programmed to achieve distinct patterns of CD8+ T cell epitope recognition. PMID:23704576
Zhao, Chunqing; Feng, Xiaoyun; Tang, Tao; Qiu, Lihong
2015-01-01
Cytochrome P450 monooxygenases (CYPs), as an enzyme superfamily, is widely distributed in organisms and plays a vital function in the metabolism of exogenous and endogenous compounds by interacting with its obligatory redox partner, CYP reductase (CPR). A novel CYP gene (CYP9A11) and CPR gene from the agricultural pest insect Spodoptera exigua were cloned and characterized. The complete cDNA sequences of SeCYP9A11 and SeCPR are 1,931 and 3,919 bp in length, respectively, and contain open reading frames of 1,593 and 2,070 nucleotides, respectively. Analysis of the putative protein sequences indicated that SeCYP9A11 contains a heme-binding domain and the unique characteristic sequence (SRFALCE) of the CYP9 family, in addition to a signal peptide and transmembrane segment at the N-terminal. Alignment analysis revealed that SeCYP9A11 shares the highest sequence similarity with CYP9A13 from Mamestra brassicae, which is 66.54%. The putative protein sequence of SeCPR has all of the classical CPR features, such as an N-terminal membrane anchor; three conserved domain flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and nicotinamide adenine dinucleotide phosphate (NADPH) domain; and characteristic binding motifs. Phylogenetic analysis revealed that SeCPR shares the highest identity with HaCPR, which is 95.21%. The SeCYP9A11 and SeCPR genes were detected in the midgut, fat body, and cuticle tissues, and throughout all of the developmental stages of S. exigua. The mRNA levels of SeCYP9A11 and SeCPR decreased remarkably after exposure to plant secondary metabolites quercetin and tannin. The results regarding SeCYP9A11 and SeCPR genes in the current study provide foundation for the further study of S. exigua P450 system. PMID:26320261
Multi-Center Implementation of NPR 7123.1A: A Collaborative Effort
NASA Technical Reports Server (NTRS)
Hall, Phillip B.; McNelis, Nancy B.
2011-01-01
Collaboration efforts between MSFC and GRC Engineering Directorates to implement the NASA Systems Engineering (SE) Engine have expanded over the past year to include other NASA Centers. Sharing information on designing, developing, and deploying SE processes has sparked further interest based on the realization that there is relative consistency in implementing SE processes at the institutional level. This presentation will provide a status on the ongoing multi-center collaboration and provide insight into how these NPR 7123.1A SE-aligned directives are being implemented and managed to better support the needs of NASA programs and projects. NPR 7123.1A, NASA Systems Engineering Processes and Requirements, was released on March 26, 2007 to clearly articulate and establish the requirements on the implementing organization for performing, supporting, and evaluating SE activities. In early 2009, MSFC and GRC Engineering Directorates undertook a collaborative opportunity to share their research and work associated with developing, updating and revising their SE process policy to comply and align with NPR 7123.1A. The goal is to develop instructions, checklists, templates, and procedures for each of the 17 SE process requirements so that systems engineers will be a position to define work that is process-driven. Greater efficiency and more effective technical management will be achieved due to consistency and repeatability of SE process implementation across and throughout each of the NASA centers. An added benefit will be to encourage NASA centers to pursue and collaborate on joint projects as a result of using common or similar processes, methods, tools, and techniques.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
... ``Pseudomonas Exotoxin A with Less Immunogenic B Cell Epitopes'' [HHS Ref. E-263-2011/0-US-01], US Patent application 61/495,085 entitled ``Pseudomonas Exotoxin A with Less Immunogenic T Cell Epitopes'' [HHS Ref. E... Immunotoxin in Which All B-Cell Epitopes Have Been Removed and Which Has High Cytotoxic Activity'' [HHS Ref. E...
High Throughput T Epitope Mapping and Vaccine Development
Li Pira, Giuseppina; Ivaldi, Federico; Moretti, Paolo; Manca, Fabrizio
2010-01-01
Mapping of antigenic peptide sequences from proteins of relevant pathogens recognized by T helper (Th) and by cytolytic T lymphocytes (CTL) is crucial for vaccine development. In fact, mapping of T-cell epitopes provides useful information for the design of peptide-based vaccines and of peptide libraries to monitor specific cellular immunity in protected individuals, patients and vaccinees. Nevertheless, epitope mapping is a challenging task. In fact, large panels of overlapping peptides need to be tested with lymphocytes to identify the sequences that induce a T-cell response. Since numerous peptide panels from antigenic proteins are to be screened, lymphocytes available from human subjects are a limiting factor. To overcome this limitation, high throughput (HTP) approaches based on miniaturization and automation of T-cell assays are needed. Here we consider the most recent applications of the HTP approach to T epitope mapping. The alternative or complementary use of in silico prediction and experimental epitope definition is discussed in the context of the recent literature. The currently used methods are described with special reference to the possibility of applying the HTP concept to make epitope mapping an easier procedure in terms of time, workload, reagents, cells and overall cost. PMID:20617148
Altfeld, M A; Trocha, A; Eldridge, R L; Rosenberg, E S; Phillips, M N; Addo, M M; Sekaly, R P; Kalams, S A; Burchett, S A; McIntosh, K; Walker, B D; Goulder, P J
2000-09-01
Human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T-lymphocyte (CTL) responses play a major role in the antiviral immune response, but the relative contribution of CTL responses restricted by different HLA class I molecules is less well defined. HLA-B60 or the related allele B61 is expressed in 10 to 20% of Caucasoid populations and is even more highly prevalent in Asian populations, but yet no CTL epitopes restricted by these alleles have been defined. Here we report the definition of five novel HLA-B60-restricted HIV-1-specific CTL epitopes, using peripheral blood mononuclear cells in enzyme-linked immunospot (Elispot) assays and using CTL clones and lines in cytolytic assays. The dominant HLA-B60-restricted epitope, Nef peptide KEKGGLEGL, was targeted by all eight subjects with B60 and also by both subjects with B61 studied. This study additionally establishes the utility of the Elispot assay as a more rapid and efficient method of defining novel CTL epitopes. This approach will help to define new CTL epitopes that may play an important role in the immune control of HIV-1.
Usman Mirza, Muhammad; Rafique, Shazia; Ali, Amjad; Munir, Mobeen; Ikram, Nazia; Manan, Abdul; Salo-Ahen, Outi M H; Idrees, Muhammad
2016-12-09
The recent outbreak of Zika virus (ZIKV) infection in Brazil has developed to a global health concern due to its likely association with birth defects (primary microcephaly) and neurological complications. Consequently, there is an urgent need to develop a vaccine to prevent or a medicine to treat the infection. In this study, immunoinformatics approach was employed to predict antigenic epitopes of Zika viral proteins to aid in development of a peptide vaccine against ZIKV. Both linear and conformational B-cell epitopes as well as cytotoxic T-lymphocyte (CTL) epitopes were predicted for ZIKV Envelope (E), NS3 and NS5 proteins. We further investigated the binding interactions of altogether 15 antigenic CTL epitopes with three class I major histocompatibility complex (MHC I) proteins after docking the peptides to the binding groove of the MHC I proteins. The stability of the resulting peptide-MHC I complexes was further studied by molecular dynamics simulations. The simulation results highlight the limits of rigid-body docking methods. Some of the antigenic epitopes predicted and analyzed in this work might present a preliminary set of peptides for future vaccine development against ZIKV.
Kumar, Shantanu; Ochoa, Wendy; Singh, Pratik; Hsu, Catherine; Schneemann, Anette; Manchester, Marianne; Olson, Mark; Reddy, Vijay
2009-05-25
Viruses-like particles (VLPs) are frequently being used as platforms for polyvalent display of foreign epitopes of interest on their capsid surface to improve their presentation enhancing the antigenicity and host immune response. In the present study, we used the VLPs of Tomato bushy stunt virus (TBSV), an icosahedral plant virus, as a platform to display 180 copies of 16 amino acid epitopes of ricin toxin fused to the C-terminal end of a modified TBSV capsid protein (NDelta52). Expression of the chimeric recombinant protein in insect cells resulted in spontaneous assembly of VLPs displaying the ricin epitope. Cryo-electron microscopy and image reconstruction of the chimeric VLPs at 22 A resolution revealed the locations and orientation of the ricin epitope exposed on the TBSV capsid surface. Furthermore, injection of chimeric VLPs into mice generated antisera that detected the native ricin toxin. The ease of fusing of short peptides of 15-20 residues and their ability to form two kinds (T=1, T=3) of bio-nanoparticles that result in the display of 60 or 180 copies of less constrained and highly exposed antigenic epitopes makes TBSV an attractive and versatile display platform for vaccine design.
Wang, Heng; Liu, Rongchang; Zhang, Weidong; Sun, Lingshuang; Ning, Zhangyong; Ji, Fangxiao; Cui, Jin; Zhang, Guihong
2017-08-01
Nonstructural protein 7 (nsp7) of porcine reproductive and respiratory syndrome virus (PRRSV) is considered to be a suitable reagent for the development of serological diagnostic assays. It can be expressed as a soluble recombinant protein in Escherichia coli, and its antibody response may continue up to 202 days post-infection. Furthermore, the region encoded by nsp7 is highly homologous among various strains within the genotype, and the results of nsp7-based enzyme-linked immunosorbent assay (ELISA) showed high agreement with previous Idexx ELISA results. All these evidences suggest the existence of important epitopes on nsp7, though the characteristics of these epitopes remain unclear. In the present study, we prepared three monoclonal antibodies against nsp7 protein and used them to screen the epitope-distribution characteristics of PRRSV nsp7 protein by phage-display technology. We identified a linear epitope NAWGDEDRLN at amino acids 153-162 type II PRRSV nsp7β subunit. This newly defined epitope showed excellent reactivity with PRSSV-positive serum samples. These results further our understanding of the antigenic structure of nsp7 protein, and provide efficient reagents for PRRSV serological tests.
Campbell, John D.; Buckland, Karen F.; McMillan, Sarah J.; Kearley, Jennifer; Oldfield, William L.G.; Stern, Lawrence J.; Grönlund, Hans; van Hage, Marianne; Reynolds, Catherine J.; Boyton, Rosemary J.; Cobbold, Stephen P.; Kay, A. Barry; Altmann, Daniel M.; Larché, Mark
2009-01-01
Treatment of patients with allergic asthma using low doses of peptides containing T cell epitopes from Fel d 1, the major cat allergen, reduces allergic sensitization and improves surrogate markers of disease. Here, we demonstrate a key immunological mechanism, linked epitope suppression, associated with this therapeutic effect. Treatment with selected epitopes from a single allergen resulted in suppression of responses to other (“linked”) epitopes within the same molecule. This phenomenon was induced after peptide immunotherapy in human asthmatic subjects and in a novel HLA-DR1 transgenic mouse model of asthma. Tracking of allergen-specific T cells using DR1 tetramers determined that suppression was associated with the induction of interleukin (IL)-10+ T cells that were more abundant than T cells specific for the single-treatment peptide and was reversed by anti–IL-10 receptor administration. Resolution of airway pathophysiology in this model was associated with reduced recruitment, proliferation, and effector function of allergen-specific Th2 cells. Our results provide, for the first time, in vivo evidence of linked epitope suppression and IL-10 induction in both human allergic disease and a mouse model designed to closely mimic peptide therapy in humans. PMID:19528258
Kamthania, Mohit; Sharma, D K
2015-12-01
Identification of Nipah virus (NiV) T-cell-specific antigen is urgently needed for appropriate diagnostic and vaccination. In the present study, prediction and modeling of T-cell epitopes of Nipah virus antigenic proteins nucleocapsid, phosphoprotein, matrix, fusion, glycoprotein, L protein, W protein, V protein and C protein followed by the binding simulation studies of predicted highest binding scorers with their corresponding MHC class I alleles were done. Immunoinformatic tool ProPred1 was used to predict the promiscuous MHC class I epitopes of viral antigenic proteins. The molecular modelings of the epitopes were done by PEPstr server. And alleles structure were predicted by MODELLER 9.10. Molecular dynamics (MD) simulation studies were performed through the NAMD graphical user interface embedded in visual molecular dynamics. Epitopes VPATNSPEL, NPTAVPFTL and LLFVFGPNL of Nucleocapsid, V protein and Fusion protein have considerable binding energy and score with HLA-B7, HLA-B*2705 and HLA-A2MHC class I allele, respectively. These three predicted peptides are highly potential to induce T-cell-mediated immune response and are expected to be useful in designing epitope-based vaccines against Nipah virus after further testing by wet laboratory studies.
Zhang, Limeng; Zhang, Hua; Fan, Ziyao; Zhou, Xue; Yu, Liquan; Sun, Hunan; Wu, Zhijun; Yu, Yongzhong; Song, Baifen; Ma, Jinzhu; Tong, Chunyu; Zhu, Zhanbo; Cui, Yudong
2015-02-01
Streptococcus dysgalactiae (S. dysgalactiae) GapC protein is a protective antigen that induces partial immunity against S. dysgalactiae infection in animals. To identify the conserved B-cell epitope of S. dysgalactiae GapC, a mouse monoclonal antibody 1E11 (mAb1E11) against GapC was generated and used to screen a phage-displayed 12-mer random peptide library (Ph.D.-12). Eleven positive clones recognized by mAb1E11 were identified, most of which matched the consensus motif TGFFAKK. Sequence of the motif exactly matched amino acids 97-103 of the S. dysgalactiae GapC. In addition, the epitope (97)TGFFAKK(103) showed high homology among different streptococcus species. Site-directed mutagenic analysis further confirmed that residues G98, F99, F100 and K103 formed the core of (97)TGFFAKK(103), and this core motif was the minimal determinant of the B-cell epitope recognized by the mAb1E11. Collectively, the identification of conserved B-cell epitope within S. dysgalactiae GapC highlights the possibility of developing the epitope-based vaccine. Copyright © 2014 Elsevier Ltd. All rights reserved.
Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans
Chou, Meng-Yun; Fogelstrand, Linda; Hartvigsen, Karsten; Hansen, Lotte F.; Woelkers, Douglas; Shaw, Peter X.; Choi, Jeomil; Perkmann, Thomas; Bäckhed, Fredrik; Miller, Yury I.; Hörkkö, Sohvi; Corr, Maripat; Witztum, Joseph L.; Binder, Christoph J.
2009-01-01
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of oxidized lipoproteins and apoptotic cells. Adaptive immune responses to various oxidation-specific epitopes play an important role in atherogenesis. However, accumulating evidence suggests that these epitopes are also recognized by innate receptors, such as scavenger receptors on macrophages, and plasma proteins, such as C-reactive protein (CRP). Here, we provide multiple lines of evidence that oxidation-specific epitopes constitute a dominant, previously unrecognized target of natural Abs (NAbs) in both mice and humans. Using reconstituted mice expressing solely IgM NAbs, we have shown that approximately 30% of all NAbs bound to model oxidation-specific epitopes, as well as to atherosclerotic lesions and apoptotic cells. Because oxidative processes are ubiquitous, we hypothesized that these epitopes exert selective pressure to expand NAbs, which in turn play an important role in mediating homeostatic functions consequent to inflammation and cell death, as demonstrated by their ability to facilitate apoptotic cell clearance. These findings provide novel insights into the functions of NAbs in mediating host homeostasis and into their roles in health and diseases, such as chronic inflammatory diseases and atherosclerosis. PMID:19363291
Trojnár, Eszter; Józsi, Mihály; Uray, Katalin; Csuka, Dorottya; Szilágyi, Ágnes; Milosevic, Danko; Stojanović, Vesna D; Spasojević, Brankica; Rusai, Krisztina; Müller, Thomas; Arbeiter, Klaus; Kelen, Kata; Szabó, Attila J; Reusz, György S; Hyvärinen, Satu; Jokiranta, T Sakari; Prohászka, Zoltán
2017-01-01
In autoimmune atypical hemolytic uremic syndrome (aHUS), the complement regulator factor H (FH) is blocked by FH autoantibodies, while 90% of the patients carry a homozygous deletion of its homolog complement FH-related protein 1 (CFHR1). The functional consequence of FH-blockade is widely established; however, the molecular basis of autoantibody binding and the role of CFHR1 deficiency in disease pathogenesis are still unknown. We performed epitope mapping of FH to provide structural insight in the autoantibody recruitment on FH and potentially CFHR1. Eight anti-FH positive aHUS patients were enrolled in this study. With overlapping synthetic FH and CFHR1 peptides, we located the amino acids (aa) involved in binding of acute and convalescence stage autoantibodies. We confirmed the location of the mapped epitopes using recombinant FH domains 19-20 that carried single-aa substitutions at the suspected antibody binding sites in three of our patients. Location of the linear epitopes and the introduced point mutations was visualized using crystal structures of the corresponding domains of FH and CFHR1. We identified three linear epitopes on FH (aa1157-1171; aa1177-1191; and aa1207-1226) and one on CFHR1 (aa276-290) that are recognized both in the acute and convalescence stages of aHUS. We observed a similar extent of autoantibody binding to the aHUS-specific epitope aa1177-1191 on FH and aa276-290 on CFHR1, despite seven of our patients being deficient for CFHR1. Epitope mapping with the domain constructs validated the location of the linear epitopes on FH with a distinct autoantibody binding motif within aa1183-1198 in line with published observations. According to the results, the linear epitopes we identified are located close to each other on the crystal structure of FH domains 19-20. This tertiary configuration contains the amino acids reported to be involved in C3b and sialic acid binding on the regulator, which may explain the functional deficiency of FH in the presence of autoantibodies. The data we provide identify the exact structures involved in autoantibody recruitment on FH and confirm the presence of an autoantibody binding epitope on CFHR1.
Ganeshan, Harini; Kusi, Kwadwo A; Anum, Dorothy; Hollingdale, Michael R; Peters, Bjoern; Kim, Yohan; Tetteh, John K A; Ofori, Michael F; Gyan, Ben A; Koram, Kwadwo A; Huang, Jun; Belmonte, Maria; Banania, Jo Glenna; Dodoo, Daniel; Villasante, Eileen; Sedegah, Martha
2016-02-01
Malaria eradication requires a concerted approach involving all available control tools, and an effective vaccine would complement these efforts. An effective malaria vaccine should be able to induce protective immune responses in a genetically diverse population. Identification of immunodominant T cell epitopes will assist in determining if candidate vaccines will be immunogenic in malaria-endemic areas. This study therefore investigated whether class I-restricted T cell epitopes of two leading malaria vaccine antigens, Plasmodium falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1), could recall T cell interferon-γ responses from naturally exposed subjects using ex vivo ELISpot assays. Thirty-five subjects aged between 24 and 43 years were recruited from a malaria-endemic urban community of Ghana in 2011, and their peripheral blood mononuclear cells (PBMCs) were tested in ELISpot IFN-γ assays against overlapping 15mer peptide pools spanning the entire CSP and AMA1 antigens, and 9-10mer peptide epitope mixtures that included previously identified and/or predicted human leukocyte antigen (HLA) class 1-restricted epitopes from same two antigens. For CSP, 26 % of subjects responded to at least one of the nine 15mer peptide pools whilst 17 % responded to at least one of the five 9-10mer HLA-restricted epitope mixtures. For AMA1, 63 % of subjects responded to at least one of the 12 AMA1 15mer peptide pools and 51 % responded to at least one of the six 9-10mer HLA-restricted epitope mixtures. Following analysis of data from the two sets of peptide pools, along with bioinformatics predictions of class I-restricted epitopes and the HLA supertypes expressed by a subset of study subjects, peptide pools that may contain epitopes recognized by multiple HLA supertypes were identified. Collectively, these results suggest that natural transmission elicits ELISpot IFN-γ activities to class 1-restricted epitopes that are largely HLA-promiscuous. These results generally demonstrate that CSP and AMA1 peptides recalled ELISpot IFN-γ responses from naturally exposed individuals and that both CSP and AMA1 contain diverse class 1-restricted epitopes that are HLA-promiscuous and are widely recognized in this population.
Groh, N; von Loetzen, C S; Subbarayal, B; Möbs, C; Vogel, L; Hoffmann, A; Fötisch, K; Koutsouridou, A; Randow, S; Völker, E; Seutter von Loetzen, A; Rösch, P; Vieths, S; Pfützner, W; Bohle, B; Schiller, D
2017-05-01
Allergen-specific immunotherapy (AIT) with birch pollen generates Bet v 1-specific immunoglobulin (Ig)G 4 which blocks IgE-mediated hypersensitivity mechanisms. Whether IgG 4 specific for Bet v 1a competes with IgE for identical epitopes or whether novel epitope specificities of IgG 4 antibodies are developed is under debate. We sought to analyze the epitope specificities of IgE and IgG 4 antibodies from sera of patients who received AIT. 15 sera of patients (13/15 received AIT) with Bet v 1a-specific IgE and IgG 4 were analyzed. The structural arrangements of recombinant (r)Bet v 1a and rBet v 1a _11x , modified in five potential epitopes, were analyzed by circular dichroism and nuclear magnetic resonance spectroscopy. IgE binding to Bet v 1 was assessed by ELISA and mediator release assays. Competitive binding of monoclonal antibodies specific for Bet v 1a and serum IgE/IgG 4 to rBet v 1a and serum antibody binding to a non-allergenic Bet v 1-type model protein presenting an individual epitope for IgE was analyzed in ELISA and western blot. rBet v 1a _11x had a Bet v 1a - similar secondary and tertiary structure. Monomeric dispersion of rBet v 1a _11x was concentration and buffer-dependent. Up to 1500-fold increase in the EC 50 for IgE-mediated mediator release induced by rBet v 1a _11x was determined. The reduction of IgE and IgG 4 binding to rBet v 1a _11x was comparable in 67% (10/15) of sera. Bet v 1a-specific monoclonal antibodies inhibited binding of serum IgE and IgG 4 to 66.1% and 64.9%, respectively. Serum IgE and IgG 4 bound specifically to an individual epitope presented by our model protein in 33% (5/15) of sera. Patients receiving AIT develop Bet v 1a-specific IgG 4 which competes with IgE for partly identical or largely overlapping epitopes. The similarities of epitopes for IgE and IgG 4 might stimulate the development of epitope-specific diagnostics and therapeutics. © 2016 John Wiley & Sons Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-19
... Aktiengesellschaft, Munich, Germany, a German corporation; Allianz of America, Inc., Novato, California, a Delaware corporation; Allianz Finanzbeteiligungs GMBH, Munich, Germany, a German limited liability company; and Allianz SE, Munich, Germany, a German corporation, to acquire voting shares of ECB Bancorp, Inc., and thereby...
The HIV hide and seek game: an immunogenomic analysis of the HIV epitope repertoire.
Vider-Shalit, Tal; Almani, Michal; Sarid, Ronit; Louzoun, Yoram
2009-07-17
Viruses employ various means to evade immune detection. One common evasion strategy is the removal of CD8 cytotoxic T-lymphocyte (CTL) epitopes. Here, we use bioinformatic tools to compute the HIV CTL epitope repertoire presented by over 8000 HIV sequences in multiple Human Leukocyte Antigen alleles. We define the 'Size of Immune Repertoire' (SIR) score, which represents the ratio between the number of the predicted epitopes within a protein and their expected number within a scrambled version of the same protein. We show that HIV proteins present less epitopes than expected and that the number of epitopes gradually decreases from SIV to recent HIV sequences. The decrease of the SIR score of HIV is accompanied by a high frequency of replacement mutations within epitopes. The SIR score of the different HIV proteins is not uniform. The regulatory proteins, Tat and Rev, expressed early during cellular infection have a low SIR score, whereas virion-associated genes that are expressed later, such as Env, Pol and Gag, have a higher SIR score. Actually, the SIR score of Gag keeps increasing over time. We hypothesize that our results reflect an HIV immune evasion strategy. This involves the targeting of the CTL immune response to viral structural and enzyme proteins, allowing the virus a time interval to propagate before its host cells are destroyed by CTLs. An efficient anti-HIV CTL response against HIV should thus also target the regulatory genes that HIV seeks to hide from the immune system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serangeli, Celine; Bicanic, Oliver; Scheible, Michael H.
2010-02-20
Human adenovirus (HAdV) is a cause of significant morbidity and mortality in immunocompromised patients, especially after stem cell transplantation (SCT). Viral clearance has been attributed to CD4{sup +} T-cell responses against the Hexon-protein, but the frequency of specific T{sub HELPER} cells is extremely low or not detectable ex vivo and preference for different CD4{sup +} T-cell epitopes is variable among individuals. We therefore analyzed 44 healthy donors and 6 SCT-recipients for Hexon-specific CD4{sup +}-responses ex vivo, to identify epitopes which would be broadly applicable. We selected 19 candidate epitopes with predicted restriction to HLA-DR1/DR3/DR4/DR7; 16 were located within the highlymore » conserved regions, indicating cross-reactivity of T cells among HAdV-subspecies. Ten epitopes induced CD4{sup +}-proliferation in >50% of individuals, confirmed by intracellular IFN-gamma detection. Three SCT recipients who recovered from an infection with HAdV displayed reactivity towards only a single hexon epitope, whereas healthy individuals were responsive to two to eight epitopes (median 3). The ex vivo detection of Hexon-specific CD4{sup +} T-cells, without any long-term culture in vitro, enables the detection and generation of HAdV-specific CD4{sup +} T cells for adoptive T-cell transfer against HAdV-infection post SCT.« less
Depigmented Allergoids Reveal New Epitopes with Capacity to Induce IgG Blocking Antibodies
López-Matas, M. Angeles; Gallego, Mayte; Iraola, Víctor; Robinson, Douglas; Carnés, Jerónimo
2013-01-01
Background. The synthesis of allergen-specific blocking IgGs that interact with IgE after allergen immunotherapy (SIT) has been related to clinical efficacy. The objectives were to investigate the epitope specificity of IgG-antibodies induced by depigmented-polymerized (Dpg-Pol) allergoids and unmodified allergen extracts, and examine IgE-blocking activity of induced IgG-antibodies. Methods. Rabbits were immunized with native and Dpg-Pol extracts of birch pollen, and serum samples were obtained. Recognition of linear IgG-epitopes of Bet v 1 and Bet v 2 and the capacity of these IgG-antibodies to block binding of human-IgE was determined. Results. Serum from rabbits immunized with native extracts recognised 11 linear epitopes from Bet v 1, while that from Dpg-Pol-immunized animals recognised 8. For Bet v 2, 8 epitopes were recognized by IgG from native immunized animals, and 9 from Dpg-Pol immunized one. Dpg-Pol and native immunized serum did not always recognise the same epitopes, but specific-IgG from both could block human-IgE binding sites for native extract. Conclusions. Depigmented-polymerized birch extract stimulates the synthesis of specific IgG-antibodies which recognize common but also novel epitopes compared with native extracts. IgG-antibodies induced by Dpg-Pol effectively inhibit human-IgE binding to allergens which may be part of the mechanism of action of SIT. PMID:24222901
Ichikawa, Kosuke; Kagamu, Hiroshi; Koyama, Kenichi; Miyabayashi, Takao; Koshio, Jun; Miura, Satoru; Watanabe, Satoshi; Yoshizawa, Hirohisa; Narita, Ichiei
2012-09-21
MHC class I-restricted peptide-based vaccination therapies have been conducted to treat cancer patients, because CD8⁺ CTL can efficiently induce apoptosis of tumor cells in an MHC class I-restricted epitope-specific manner. Interestingly, clinical responders are known to demonstrate reactivity to epitopes other than those used for vaccination; however, the mechanism underlying how antitumor T cells with diverse specificity are induced is unclear. In this study, we demonstrated that dendritic cells (DCs) that engulfed apoptotic tumor cells in the presence of non-tumor MHC class II-restricted epitope peptides, OVA(323-339), efficiently presented tumor-associated antigens upon effector-dominant CD4⁺ T cell balance against regulatory T cells (Treg) for the OVA(323-339) epitope. Th1 and Th17 induced tumor-associated antigens presentation of DC, while Th2 ameliorated tumor-antigen presentation for CD8⁺ T cells. Blocking experiments with anti-IL-23p19 antibody and anti-IL-23 receptor indicated that an autocrine mechanism of IL-23 likely mediated the diverted tumor-associated antigens presentation of DC. Tumor-associated antigens presentation of DC induced by OVA(323-339) epitope-specific CD4⁺ T cells resulted in facilitated antitumor immunity in both priming and effector phase in vivo. Notably, this immunotherapy did not require pretreatment to reduce Treg induced by tumor. This strategy may have clinical implications for designing effective antitumor immunotherapies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ashraf, Naeem Mahmood; Bilal, Muhammad; Mahmood, Malik Siddique; Hussain, Aadil; Mehboob, Muhammad Zubair
2016-09-01
Mounting burden of HCV-infected individuals and soaring cost of treatment is a serious source of unease for developing countries. Numbers of various approaches have been anticipated to develop a vaccine against HCV but the majority of them proved ineffective. Development of vaccine by considering geographical distribution of HCV genotypes and host genetics shows potential. In this research article, we have tried to predict most putative HCV epitopes which are efficiently restricted by most common HLA alleles in Pakistani population through different computational algorithms. Thirteen selected, experimentally identified epitopes sequences were used to derived consensus sequences in all genotypes of HCV. Obtained consensus sequences were used to predict their binding affinities with most prevalent HLA alleles in Pakistani population. Two Class-I epitopes from NS4B region, one from Class-I epitope from NS5A and one Class-II epitope from NS3 region showed effective binding and proved to be highly putative to boost immune response. A cocktail of these four have been checked for population coverage and they gave 75.53% for Pakistani Asian and 70.77% for Pakistani Mixed populations with no allergenic response. Computational algorithms are robust way to shortlist potential candidate epitopes for vaccine development but further, in vivo and in-vitro studies are required to confirm their immunogenic properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Epitope design of L1 protein for vaccine production against Human Papilloma Virus types 16 and 18
Baidya, Sunanda; Das, Rasel; Kabir, Md. Golam; Arifuzzaman, Md.
2017-01-01
Cervical cancer accounts for about two-thirds of all cancer cases linked etiologically to Human Papilloma Virus (HPV). 15 oncogenic HPV types can cause cervical cancer, of which HPV16 and HPV18 combinedly account for about 70% of it. So, effective epitope design for the clinically relevant HPV types 16 and 18 would be of major medical benefit. Here, a comprehensive analysis is carried out to predict the epitopes against HPV types 16 and 18 through “reverse vaccinology” approach. We attempted to identify the evolutionarily conserved regions of major capsid protein (L1) as well as minor capsid protein (L2) of HPV and designed epitopes within these regions. In this study, we analyzed about 49 and 27 sequences of HPV L2 and L1 proteins respectively. Since we found that the intertype variability of L2 is higher than for L1 proteins, our analysis was emphasized on epitopes of L1 of HPV types 16 and 18. We had selected HLA-A*0201, DRB1*1501, DQB1*0602, DRB1*0401 and DQB1*0301 alleles for the prediction of T cell epitopes of L1 of HPV 16 and 18. Finally, we reported that predicted epitope sequences EEYDLQFIFQLCKITLTA, and RHGEEYDLQFIFQLCKITLTA of L1 protein of HPV 16, and LPDPNKF, PETQRLVWAC, PVPGQYDA, YNPETQRLVWAC, DTGYGAMD, PVPGQYDATK, KQDIPKVSAYQYRVFRV, RDNVSVDYKQTQLCI and YSRHVEEYDLQFIF of L1 protein of HPV 18 could be therapeutic tools for vaccine design against HPV. PMID:28584449
Epitope design of L1 protein for vaccine production against Human Papilloma Virus types 16 and 18.
Baidya, Sunanda; Das, Rasel; Kabir, Md Golam; Arifuzzaman, Md
2017-01-01
Cervical cancer accounts for about two-thirds of all cancer cases linked etiologically to Human Papilloma Virus (HPV). 15 oncogenic HPV types can cause cervical cancer, of which HPV16 and HPV18 combinedly account for about 70% of it. So, effective epitope design for the clinically relevant HPV types 16 and 18 would be of major medical benefit. Here, a comprehensive analysis is carried out to predict the epitopes against HPV types 16 and 18 through "reverse vaccinology" approach. We attempted to identify the evolutionarily conserved regions of major capsid protein (L1) as well as minor capsid protein (L2) of HPV and designed epitopes within these regions. In this study, we analyzed about 49 and 27 sequences of HPV L2 and L1 proteins respectively. Since we found that the intertype variability of L2 is higher than for L1 proteins, our analysis was emphasized on epitopes of L1 of HPV types 16 and 18. We had selected HLA-A*0201, DRB1*1501, DQB1*0602, DRB1*0401 and DQB1*0301 alleles for the prediction of T cell epitopes of L1 of HPV 16 and 18. Finally, we reported that predicted epitope sequences EEYDLQFIFQLCKITLTA, and RHGEEYDLQFIFQLCKITLTA of L1 protein of HPV 16, and LPDPNKF, PETQRLVWAC, PVPGQYDA, YNPETQRLVWAC, DTGYGAMD, PVPGQYDATK, KQDIPKVSAYQYRVFRV, RDNVSVDYKQTQLCI and YSRHVEEYDLQFIF of L1 protein of HPV 18 could be therapeutic tools for vaccine design against HPV.
Oyarzún, Patricio; Kobe, Bostjan
2016-03-03
Novel vaccination approaches based on rational design of B- and T-cell epitopes - epitope-based vaccines - are making progress in the clinical trial pipeline. The epitope-focused recombinant protein-based malaria vaccine (termed RTS,S) is a next-generation approach that successfully reached phase-III trials, and will potentially become the first commercial vaccine against a human parasitic disease. Progress made on methods such as recombinant DNA technology, advanced cell-culture techniques, immunoinformatics and rational design of immunogens are driving the development of these novel concepts. Synthetic recombinant proteins comprising both B- and T-cell epitopes can be efficiently produced through modern biotechnology and bioprocessing methods, and can enable the induction of large repertoires of immune specificities. In particular, the inclusion of appropriate CD4+ T-cell epitopes is increasingly considered a key vaccine component to elicit robust immune responses, as suggested by results coming from HIV-1 clinical trials. In silico strategies for vaccine design are under active development to address genetic variation in pathogens and several broadly protective "universal" influenza and HIV-1 vaccines are currently at different stages of clinical trials. Other methods focus on improving population coverage in target populations by rationally considering specificity and prevalence of the HLA proteins, though a proof-of-concept in humans has not been demonstrated yet. Overall, we expect immunoinformatics and bioprocessing methods to become a central part of the next-generation epitope-based vaccine development and production process.
Okano, M; Nagano, T; Nakada, M; Masuda, Y; Kino, K; Yasueda, H; Nose, Y; Nishimura, Y; Ohta, N
1996-01-01
T-cell epitopes of Der p II, a major allergen of Dermatophagoides pteronyssinus, were analyzed by using human T-cell clones. We tested 38 cloned T cells from two Japanese patients with allergic rhinitis, and identified at least two peptides (K33-T47 and I58-C73) as helper T-cell epitopes. The former epitope was shown to be restricted by HLA-DRB1*1502, and the latter by HLA-DRB1*0405, both of which are typical Japanese HLA-DR alleles, suggesting that those T-cell epitopes might be important for the onset of house-dust mite allergy in the Japanese population. We prepared 15 analog peptides of the HLA- DRB1*1502-restricted 15-mer peptide. Of those 15 residues, five (F35, L37, A39, F41, and E42) were critical for the epitope activity, and three residues (F35, A39, and E42) seemed to be included in anchor motifs for HLA-DRB1*1502. The epitope peptide was also recognized by HLA-DRB1*1502-positive healthy donors; however, only allergic T cells showed Th2 functions. Antigen-presenting cells of nonallergic donors were able to activate allergic T cells to express Th2 function. This seemed to suggest that antigen recognition of T cells, as well as additional unknown factors which promote Th2, rather than Th1, responses, might be important for the onset of house-dust mite allergy.
Determinants of public T cell responses.
Li, Hanjie; Ye, Congting; Ji, Guoli; Han, Jiahuai
2012-01-01
Historically, sharing T cell receptors (TCRs) between individuals has been speculated to be impossible, considering the dramatic discrepancy between the potential enormity of the TCR repertoire and the limited number of T cells generated in each individual. However, public T cell response, in which multiple individuals share identical TCRs in responding to a same antigenic epitope, has been extensively observed in a variety of immune responses across many species. Public T cell responses enable individuals within a population to generate similar antigen-specific TCRs against certain ubiquitous pathogens, leading to favorable biological outcomes. However, the relatively concentrated feature of TCR repertoire may limit T cell response in a population to some other pathogens. It could be a great benefit for human health if public T cell responses can be manipulated. Therefore, the mechanistic insight of public TCR generation is important to know. Recently, high-throughput DNA sequencing has revolutionized the study of immune receptor repertoires, which allows a much better understanding of the factors that determine the overlap of TCR repertoire among individuals. Here, we summarize the current knowledge on public T-cell response and discuss future challenges in this field.
Al Kindi, Mahmood A; Colella, Alex D; Chataway, Tim K; Jackson, Michael W; Wang, Jing J; Gordon, Tom P
2016-04-01
The structures of epitopes bound by autoantibodies against RNA-protein complexes have been well-defined over several decades, but little is known of the clonality, immunoglobulin (Ig) variable (V) gene usage and mutational status of the autoantibodies themselves at the level of the secreted (serum) proteome. A novel proteomic workflow is presented based on affinity purification of specific Igs from serum, high-resolution two-dimensional gel electrophoresis, and de novo and database-driven sequencing of V-region proteins by mass spectrometry. Analysis of anti-Ro52/Ro60/La proteomes in primary Sjögren's syndrome (SS) and anti-Sm and anti-ribosomal P proteomes in systemic lupus erythematosus (SLE) has revealed that these antibody responses are dominated by restricted sets of public (shared) clonotypes, consistent with common pathways of production across unrelated individuals. The discovery of shared sets of specific V-region peptides can be exploited for diagnostic biomarkers in targeted mass spectrometry platforms and for tracking and removal of pathogenic clones. Copyright © 2016 Elsevier B.V. All rights reserved.
Perelle, S; Scalzo, S; Kochi, S; Mock, M; Popoff, M R
1997-01-01
Clostridium perfringens iota and C. spiroforme toxins consist of two separate proteins. One is the binding component and the other the enzymatic component. The two toxins secreted by Bacillus anthracis are composed of binary combinations of three proteins: protective antigen, lethal factor, and edema factor. As shown by Western blotting and ELISA, the binding component of anthrax toxin shares common epitopes with that of iota toxin and C. spiroforme toxin which are closely related immunologically. However, no functional complementation was observed between iota toxin and anthrax toxin components. The binding components can form toxins active on macrophages only in combination with their respective enzymatic components. Agents which prevent acidification of endosomes do not have the same effects on anthrax toxin activity as they do on iota and C. spiroforme toxins. Therefore, the mechanisms of entry into the cells are presumably different. Since the binding components of anthrax toxins and iota toxin share a conserved putative translocation domain, these binding components could have a common mode of insertion into the cell membranes.
Zeng, Yanni; Navarro, Pau; Xia, Charley; Amador, Carmen; Fernandez-Pujals, Ana M; Thomson, Pippa A; Campbell, Archie; Nagy, Reka; Clarke, Toni-Kim; Hafferty, Jonathan D; Smith, Blair H; Hocking, Lynne J; Padmanabhan, Sandosh; Hayward, Caroline; MacIntyre, Donald J; Porteous, David J; Haley, Chris S; McIntosh, Andrew M
2016-12-01
Both genetic and environmental factors contribute to risk of depression, but estimates of their relative contributions are limited. Commonalities between clinically-assessed major depressive disorder (MDD) and self-declared depression (SDD) are also unclear. Using data from a large Scottish family-based cohort (GS:SFHS, N=19,994), we estimated the genetic and environmental variance components for MDD and SDD. The components representing the genetic effect associated with genome-wide common genetic variants (SNP heritability), the additional pedigree-associated genetic effect and non-genetic effects associated with common environments were estimated in a linear mixed model (LMM). Both MDD and SDD had significant contributions from components representing the effect from common genetic variants, the additional genetic effect associated with the pedigree and the common environmental effect shared by couples. The estimate of correlation between SDD and MDD was high (r=1.00, se=0.20) for common-variant-associated genetic effect and lower for the additional genetic effect from the pedigree (r=0.57, se=0.08) and the couple-shared environmental effect (r=0.53, se=0.22). Both genetics and couple-shared environmental effects were major factors influencing liability to depression. SDD may provide a scalable alternative to MDD in studies seeking to identify common risk variants. Rarer variants and environmental effects may however differ substantially according to different definitions of depression. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Qiu, Hongling; Li, Xiao; Tian, Xingui; Zhou, Zhichao; Xing, Ke; Li, Haitao; Tang, Ni; Liu, Wenkuan; Bai, Peisheng
2012-01-01
Human adenovirus types 3 and 7 (HAdV-3 and HAdV-7) occur epidemically and contribute greatly to respiratory diseases, but there is no currently available licensed recombinant HAdV-3/HAdV-7 bivalent vaccine. Identification of serotype-specific neutralizing antibody (NAb) epitopes for HAdV-3 and HAdV-7 will be beneficial for development of recombinant HAdV-3/HAdV-7 bivalent vaccines. In this study, four NAb epitopes within hexon hypervariable regions (HVRs) were predicted for HAdV-3 and HAdV-7, respectively, by using bioinformatics. Eight hexon chimeric adenovirus vectors with the alternation of only one predicted neutralizing epitope were constructed. Further in vitro and in vivo neutralization assays indicated that E2 (residing in HVR2) and E3 (residing in HVR5) are NAb epitopes for HAdV-7, and E3 plays a more important role in generating NAb responses. Cross-neutralization assays indicated that all four predicted epitopes, R1 to R4, are NAb epitopes for HAdV-3, and R1 (residing in HVR1) plays the most important role in generating NAb responses. Humoral immune responses elicited by the recombinant rAdH7R1 (containing the R1 epitope) were significantly and durably suppressed by HAdV-3-specific NAbs. Surprisingly, the rAdΔE3GFP-specific neutralizing epitope responses induced by rAdMHE3 (R3 replaced by E3) and rAdMHE4 (R4 replaced by E4) were weaker than those of rAdMHE1 (R1 replaced by E1) or rAdMHE2 (R2 relaced by E2) in vitro and in vivo. Furthermore, rAdMHE4 replicated more slowly in HEp-2 cells, and the final yield was about 10-fold lower than that of rAdΔE3GFP. The current findings contribute not only to the development of new adenovirus vaccine candidates, but also to the construction of new gene delivery vectors. PMID:22623776
Kunwar, Pratima; Hawkins, Natalie; Dinges, Warren L.; Liu, Yi; Gabriel, Erin E.; Swan, David A.; Stevens, Claire E.; Maenza, Janine; Collier, Ann C.; Mullins, James I.; Hertz, Tomer; Yu, Xuesong; Horton, Helen
2013-01-01
A successful HIV vaccine will likely induce both humoral and cell-mediated immunity, however, the enormous diversity of HIV has hampered the development of a vaccine that effectively elicits both arms of the adaptive immune response. To tackle the problem of viral diversity, T cell-based vaccine approaches have focused on two main strategies (i) increasing the breadth of vaccine-induced responses or (ii) increasing vaccine-induced responses targeting only conserved regions of the virus. The relative extent to which set-point viremia is impacted by epitope-conservation of CD8+ T cell responses elicited during early HIV-infection is unknown but has important implications for vaccine design. To address this question, we comprehensively mapped HIV-1 CD8+ T cell epitope-specificities in 23 ART-naïve individuals during early infection and computed their conservation score (CS) by three different methods (prevalence, entropy and conseq) on clade-B and group-M sequence alignments. The majority of CD8+ T cell responses were directed against variable epitopes (p<0.01). Interestingly, increasing breadth of CD8+ T cell responses specifically recognizing conserved epitopes was associated with lower set-point viremia (r = - 0.65, p = 0.009). Moreover, subjects possessing CD8+ T cells recognizing at least one conserved epitope had 1.4 log10 lower set-point viremia compared to those recognizing only variable epitopes (p = 0.021). The association between viral control and the breadth of conserved CD8+ T cell responses may be influenced by the method of CS definition and sequences used to determine conservation levels. Strikingly, targeting variable versus conserved epitopes was independent of HLA type (p = 0.215). The associations with viral control were independent of functional avidity of CD8+ T cell responses elicited during early infection. Taken together, these data suggest that the next-generation of T-cell based HIV-1 vaccines should focus on strategies that can elicit CD8+ T cell responses to multiple conserved epitopes of HIV-1. PMID:23741326
Nithichanon, Arnone; Rinchai, Darawan; Buddhisa, Surachat; Saenmuang, Pornpun; Kewcharoenwong, Chidchamai; Kessler, Bianca; Khaenam, Prasong; Chetchotisakd, Ploenchan; Maillere, Bernard; Robinson, John; Reynolds, Catherine J.; Boyton, Rosemary J.; Altmann, Daniel M.; Lertmemongkolchai, Ganjana
2018-01-01
Burkholderia pseudomallei (Bp) is an environmental bacterial pathogen that causes potentially lethal sepsis in susceptible individuals and is considered a Category B, Tier-1 biothreat agent. As such, it is crucial to gain an improved understanding of protective immunity and potential vaccine candidates. The nature of immune correlates dictating why most exposed individuals in endemic regions undergo asymptomatic seroconversion while others succumb to life-threatening sepsis is largely uncharted. Bp seroreactive, immunogenic proteins have previously been identified by antigen microarray. We here set out to conduct an analysis of T-cell recognition of the Bp immunome using serodominant antigens represented in the original antigen microarray, examining immune correlates of disease in healthy seropositive individuals and those with acute disease or in convalescence. By screening a library of 739 overlapping peptides representing the sequences of 20 different Bp antigens, we aimed to define immune correlates of protection at the level of immunoprevalent T-cell epitopes. Responses to a large number of epitopes were common in healthy seropositive individuals: we found remarkably broad responsiveness to Bp epitopes, with 235 of 739 peptides recognized by ≥80% of all tested donors. The cumulative response to Bp epitopes in healthy, seropositive, donors from this endemic region were of the order of thousands of spot forming cells per million cells, making Bp recognition a significant component of the T-cell repertoire. Noteworthy among our findings, analysis revealed 10 highly immunoprevalent T-cell epitopes, able to induce Bp-specific IFNγ responses that were high in responding T-cell frequency within the repertoire, and also common across individuals with different human leukocyte antigen types. Acute melioidosis patients showed poor T-cell responses to the immunoprevalent epitopes, but acquired responsiveness following recovery from infection. Our findings suggest that a large repertoire of CD4 T cells, high in frequency and with broad coverage of antigens and epitopes, is important in controlling Bp infection. This offers an attractive potential strategy for subunit or epitope-based vaccines. PMID:29616023
Inaba, Hidefumi; Martin, William; Ardito, Matt; De Groot, Anne Searls; De Groot, Leslie J
2010-06-01
Development of Graves' disease (GD) is related to HLA-DRB1*0301 (DR3),and more specifically to arginine at position 74 of the DRB1 molecule. The extracellular domain (ECD) of human TSH receptor (hTSH-R) contains the target antigen. We analyzed the relation between hTSH-R-ECD peptides and DR molecules to determine whether aspartic acid (D) or glutamic acid (E) at position four in the binding motif influenced selection of functional epitopes. Peptide epitopes from TSH-R-ECD with D or E in position four (D/E+) had higher affinity for binding to DR3 than peptides without D/E (D/E-) (IC(50) 29.3 vs. 61.4, P = 0.0024). HLA-DR7, negatively correlated with GD, and DRB1*0302 (HLA-DR18), not associated with GD, had different profiles of epitope binding. Toxic GD patients who are DR3+ had higher responses to D/E+ peptides than D/E- peptides (stimulation index 1.42 vs. 1.22, P = 0.028). All DR3+ GD patients (toxic + euthyroid) had higher responses, with borderline significance (Sl; 1.32 vs. 1.18, P = 0.051). Splenocytes of DR3 transgenic mice immunized to TSH-R-ECD responded to D/E+ peptides more than D/E- peptides (stimulation index 1.95 vs. 1.69, P = 0.036). Seven of nine hTSH-R-ECD peptide epitopes reported to be reactive with GD patients' peripheral blood mononuclear cells contain binding motifs with D/E at position four. TSH-R-ECD epitopes with D/E in position four of the binding motif bind more strongly to DRB1*0301 than epitopes that are D/E- and are more stimulatory to GD patients' peripheral blood mononuclear cells and to splenocytes from mice immunized to hTSH-R. These epitopes appear important in immunogenicity to TSH-R due to their favored binding to HLA-DR3, thus increasing presentation to T cells.
Dervillez, Xavier; Qureshi, Huma; Chentoufi, Aziz A.; Khan, Arif A.; Kritzer, Elizabeth; Yu, David C.; Diaz, Oscar R.; Gottimukkala, Chetan; Kalantari, Mina; Villacres, Maria C.; Scarfone, Vanessa M.; McKinney, Denise M.; Sidney, John; Sette, Alessandro; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir
2014-01-01
Evidence from C57BL/6 mice suggests that CD8+ T cells, specific to the immunodominant HSV-1 glycoprotein B (gB) H-2b–restricted epitope (gB498–505), protect against ocular herpes infection and disease. However, the possible role of CD8+ T cells, specific to HLA-restricted gB epitopes, in protective immunity seen in HSV-1–seropositive asymptomatic (ASYMP) healthy individuals (who have never had clinical herpes) remains to be determined. In this study, we used multiple prediction algorithms to identify 10 potential HLA-A*02:01–restricted CD8+ T cell epitopes from the HSV-1 gB amino acid sequence. Six of these epitopes exhibited high-affinity binding to HLA-A*02:01 molecules. In 10 sequentially studied HLA-A*02:01–positive, HSV-1–seropositive ASYMP individuals, the most frequent, robust, and polyfunctional CD8+ T cell responses, as assessed by a combination of tetramer, IFN-γ-ELISPOT, CFSE proliferation, CD107a/b cytotoxic degranulation, and multiplex cytokine assays, were directed mainly against epitopes gB342–350 and gB561–569. In contrast, in 10 HLA-A*02:01–positive, HSV-1–seropositive symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent clinical herpes disease) frequent, but less robust, CD8+ T cell responses were directed mainly against nonoverlapping epitopes (gB183–191 and gB441–449). ASYMP individuals had a significantly higher proportion of HSV-gB–specific CD8+ T cells expressing CD107a/b degranulation marker and producing effector cytokines IL-2, IFN-γ, and TNF-α than did SYMP individuals. Moreover, immunization of a novel herpes-susceptible HLA-A*02:01 transgenic mouse model with ASYMP epitopes, but not with SYMP epitopes, induced strong CD8+ T cell–dependent protective immunity against ocular herpes infection and disease. These findings should guide the development of a safe and effective T cell–based herpes vaccine. PMID:24101547
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusim, Karina; Korber, Bette Tina; Brander, Christian
The scope and purpose of the HIV molecular immunology database: HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2015 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/ content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and bindingmore » sites within each protein, moving from left to right through the coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as cross-reactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins are provided. Alignments of CTL, helper T-cell, and antibody epitopes are available through the search interface on our web site at http:// www.hiv.lanl.gov/content/immunology.« less
Recke, Andreas; Regensburger, Ann-Katrin; Weigold, Florian; Müller, Antje; Heidecke, Harald; Marschner, Gabriele; Hammers, Christoph M; Ludwig, Ralf J; Riemekasten, Gabriela
2018-01-01
Systemic sclerosis (SSc) is a severe chronic autoimmune disease with high morbidity and mortality. Sera of patients with SSc contain a large variety of autoantibody (aab) reactivities. Among these are functionally active aab that bind to G protein-coupled receptors (GPCR) such as C-X-C motif chemokine receptor 3 (CXCR3) and 4 (CXCR4). Aab binding to the N-terminal portion of these two GPCRs have been shown to be associated with slower disease progression in SSc, especially deterioration of lung function. Aabs binding to GPCRs exhibit functional activities by stimulating or inhibiting GPCR signaling. The specific functional activity of aabs crucially depends on the epitopes they bind to. To identify the location of important epitopes on CXCR3 recognized by aabs from SSc patients, we applied an array of 36 overlapping 18-20mer peptides covering the entire CXCR3 sequence, comparing epitope specificity of SSc patient sera ( N = 32, with positive reactivity with CXCR3) to healthy controls ( N = 30). Binding of SSc patient and control sera to these peptides was determined by ELISA. Using a Bayesian model approach, we found increased binding of SSc patient sera to peptides corresponding to intracellular epitopes within CXCR3, while the binding signal to extracellular portions of CXCR3 was found to be reduced. Experimentally determined epitopes showed a good correspondence to those predicted by the ABCpred tool. To verify these results and to translate them into a novel diagnostic ELISA, we combined the peptides that represent SSc-associated epitopes into a single ELISA and evaluated its potential to discriminate SSc patients ( N = 31) from normal healthy controls ( N = 47). This ELISA had a sensitivity of 0.61 and a specificity of 0.85. Our data reveals that SSc sera preferentially bind intracellular epitopes of CXCR3, while an extracellular epitope in the N-terminal domain that appears to be target of aabs in healthy individuals is not bound by SSc sera. Based upon our results, we could devise a novel ELISA concept that may be helpful for monitoring of SSc patients.
Recke, Andreas; Regensburger, Ann-Katrin; Weigold, Florian; Müller, Antje; Heidecke, Harald; Marschner, Gabriele; Hammers, Christoph M.; Ludwig, Ralf J.; Riemekasten, Gabriela
2018-01-01
Systemic sclerosis (SSc) is a severe chronic autoimmune disease with high morbidity and mortality. Sera of patients with SSc contain a large variety of autoantibody (aab) reactivities. Among these are functionally active aab that bind to G protein-coupled receptors (GPCR) such as C-X-C motif chemokine receptor 3 (CXCR3) and 4 (CXCR4). Aab binding to the N-terminal portion of these two GPCRs have been shown to be associated with slower disease progression in SSc, especially deterioration of lung function. Aabs binding to GPCRs exhibit functional activities by stimulating or inhibiting GPCR signaling. The specific functional activity of aabs crucially depends on the epitopes they bind to. To identify the location of important epitopes on CXCR3 recognized by aabs from SSc patients, we applied an array of 36 overlapping 18-20mer peptides covering the entire CXCR3 sequence, comparing epitope specificity of SSc patient sera (N = 32, with positive reactivity with CXCR3) to healthy controls (N = 30). Binding of SSc patient and control sera to these peptides was determined by ELISA. Using a Bayesian model approach, we found increased binding of SSc patient sera to peptides corresponding to intracellular epitopes within CXCR3, while the binding signal to extracellular portions of CXCR3 was found to be reduced. Experimentally determined epitopes showed a good correspondence to those predicted by the ABCpred tool. To verify these results and to translate them into a novel diagnostic ELISA, we combined the peptides that represent SSc-associated epitopes into a single ELISA and evaluated its potential to discriminate SSc patients (N = 31) from normal healthy controls (N = 47). This ELISA had a sensitivity of 0.61 and a specificity of 0.85. Our data reveals that SSc sera preferentially bind intracellular epitopes of CXCR3, while an extracellular epitope in the N-terminal domain that appears to be target of aabs in healthy individuals is not bound by SSc sera. Based upon our results, we could devise a novel ELISA concept that may be helpful for monitoring of SSc patients. PMID:29623076
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komornicka, Dorota; Wolcyrz, Marek, E-mail: m.wolcyrz@int.pan.wroc.pl; Pietraszko, Adam
2012-08-15
Local structure of dirubidium tetralithium tris(selenate(VI)) dihydrate - Rb{sub 2}Li{sub 4}(SeO{sub 4}){sub 3}{center_dot} 2H{sub 2}O has been determined basing on the modeling of X-ray diffuse scattering. The origin of observed structured diffuse streaks is SeO{sub 4} tetrahedra switching between two alternative positions in two quasi-planar layers existing in each unit cell and formation of domains with specific SeO{sub 4} tetrahedra configuration locally fulfilling condition for C-centering in the 2a Multiplication-Sign 2b Multiplication-Sign c superstructure cell. The local structure solution is characterized by a uniform distribution of rather large domains (ca. thousand of unit cells) in two layers, but also monodomainsmore » can be taken into account. Inside a single domain SeO{sub 4} tetrahedra are ordered along ab-diagonal forming two-string ribbons. Inside the ribbons SeO{sub 4} and LiO{sub 4} tetrahedra share the oxygen corners, whereas ribbons are bound to each other by a net of hydrogen bonds and fastened by corner sharing SeO{sub 4} tetrahedra of the neighboring layers. - Graphical abstract: Experimental sections of the reciprocal space showing diffraction effects observed for RLSO. Bragg spots are visible on sections with integer indices (1 kl section - on the left), streaks - on sections with fractional ones (1.5 kl section - on the right). At the center: resulting local structure of the A package modeled as a microdomain: two-string ribbons of ordered oxygen-corners-sharing SeO{sub 4} and LiO{sub 4} terahedra extended along ab-diagonal are seen; ribbons are bound by hydrogen bonds (shown in pink); the multiplied 2a Multiplication-Sign 2b unit cell is shown. Highlights: Black-Right-Pointing-Pointer X-ray diffuse scattering in RLSO was registered and modeled. Black-Right-Pointing-Pointer The origin of diffuse streaks is SeO{sub 4} tetrahedra switching in two structure layers. Black-Right-Pointing-Pointer The local structure is characterized by a uniform distribution of microdomains. Black-Right-Pointing-Pointer Inside a single domain SeO{sub 4} tetrahedra are ordered along ab-diagonal forming ribbons. Black-Right-Pointing-Pointer The ribbons are bound to each other by a net of hydrogen bonds.« less
van der Gracht, Anouk M F; de Geus, Mark A R; Camps, Marcel G M; Ruckwardt, Tracy J; Sarris, Alexi J C; Bremmers, Jessica; Maurits, Elmer; Pawlak, Joanna B; Posthoorn, Michelle M; Bonger, Kimberly M; Filippov, Dmitri V; Overkleeft, Herman S; Robillard, Marc S; Ossendorp, Ferry; van Kasteren, Sander I
2018-06-15
Activation of a cytotoxic T-cell is a complex multistep process, and tools to study the molecular events and their dynamics that result in T-cell activation in situ and in vivo are scarce. Here, we report the design and use of conditional epitopes for time-controlled T-cell activation in vivo. We show that trans-cyclooctene-protected SIINFEKL (with the lysine amine masked) is unable to elicit the T-cell response characteristic for the free SIINFEKL epitope. Epitope uncaging by means of an inverse-electron demand Diels-Alder (IEDDA) event restored T-cell activation and provided temporal control of T-cell proliferation in vivo.
Vaughan, Kerrie; Peters, Bjoern; O'Connor, Kevin C.; Martin, Roland; Sette, Alessandro
2016-01-01
An analysis to inventory all immune epitope data related to multiple sclerosis (MS) was performed using the Immune Epitope Database (IEDB). The analysis revealed that MS related data represent >20% of all autoimmune data, and that studies of EAE predominate; only 22% of the references describe human data. To date, >5800 unique peptides, analogs, mimotopes, and/or non-protein epitopes have been reported from 861 references, including data describing myelin-containing, as well as non-myelin antigens. This work provides a reference point for the scientific community of the universe of available data for MS-related adaptive immunity in the context of EAE and human disease. PMID:24365494
Pep19 drives epitope spreading in periodontitis and periodontitis-associated autoimmune diseases.
Kwon, E-Y; Cha, G S; Jeong, E; Lee, J-Y; Kim, S-J; Surh, C D; Choi, J
2016-06-01
Epitope spreading is one of valid mechanisms operating in immunopathological processes of infection-induced autoimmune diseases. We hypothesized that the peptide 19 from Porphyromonas gingivalis heat shock protein (HSP) 60 (Pep19) may be the dominant epitope from which epitope-specific immune response to subdominant epitopes may diversify sequentially into autoimmune responses directed at human neoepitopes in P. gingivalis-induced periodontitis and autoimmune diseases. However, the exact feature and mechanism on how Pep19 may drive epitope spreading into human autoantigens in chronic periodontitis or P. gingivalis-induced experimental periodontitis has not been clarified. The present study was performed with the following specific aims: (i) to delineate retrospectively the features of epitope spreading by human cross-sectional analysis; (ii) to demonstrate prospectively the epitope spreading into new antigenic determinants in an ordered, predictable and sequential manner in experimental periodontitis; and (iii) to clarify the mechanism on how immunization with Pep19 may mobilize helper T cells or elicit B-cell responses to human autoantigens and neoantigen. The study was devised for two independent investigations - a cross-sectional analysis on clinical subjects and a prospective analysis on experimental periodontitis - each being subdivided further into two additional independent observations. Cross-sectional dot immunoblot pattern against a panel of peptides of P. gingivalis HSP60 and human HSP60 was performed among age-dependent healthy subjects and between healthy subjects, patients with chronic periodontitis and patients with autoimmune disease, to identify epitope spreading. A peptide-specific T-cell line was established for phenotype analysis and for proliferation assay to an array of identical peptides. An identical prospective analysis was performed in P. gingivalis-induced experimental periodontitis or in Pep19-immunized mice. Cross-reactivity of anti-Pep19 monoclonal antibody was also investigated. A dominant immune response exclusively to Pep19 prevailed in healthy human subjects (before the age of 40) and mice that persisted in chronic periodontitis and autoimmune diseases without being replaced further by subsequent subdominant epitopes. A sequential epitope spreading provoked by Pep19 to subdominant autoantigen peptide 19 from human HSP60 (Hu19) in most healthy human subjects and mice, and to autoantigen peptide 9 from human HSP60 (Hu9) and neoantigen oxidized low-density lipoprotein (ox-LDL) in P. gingivalis-induced chronic periodontitis and autoimmune diseases could be demonstrated in a reproducible and predictable manner. T-cell proliferative activity to multiple autoantigens Hu19, Hu9 and ox-LDL, and cross-reactivity of anti-Pep19 monoclonal antibody to these epitopes may be proposed as cellular and molecular mechanisms responsible for the phenomenon. Moreover, the predictive value of Pep19 for Hu9 increased remarkably in the disease group when compared with that of the healthy group. Taken together, epitope spreading to Hu19, Hu9 and ox-LDL provoked by Pep19 could be proposed as a solid phenomenon observed in P. gingivalis-induced chronic periodontitis and infection-induced autoimmune diseases in a reproducible and predictable manner. T-cell proliferative activity to these peptides and cross-reactivity of anti-Pep19 antibodies to multiple human autoantigens could be proposed as cellular and molecular mechanisms responsible for this phenomenon. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Epitope mapping of botulinum neurotoxins light chains
Zdanovsky, Alexey; Zdanovsky, Denis; Zdanovskaia, Maria
2012-01-01
Botulinum neurotoxins (BoNTs) are listed among the most potent biothreat agents. Simultaneously, two out of seven known serotypes of these toxins are used in medicine and cosmetics. This situation calls for development of detailed epitope maps of these toxins. Such maps will help to develop new ways for decreasing damage caused by these toxins if they were to be used as weapons while retaining the therapeutic effect of these toxins used as medicine. Here, we used a library of random fragments of DNA encoding the catalytic domain of botulinum neurotoxin serotype A to identify short epitope-forming sequences. We demonstrated that knowledge of such sequences in a BoNT of one serotype can be used for identification of epitope-forming sequences in other serotypes of BoNTs. We also demonstrated a serodiagnostic value of identified sequences and their ability to retain epitope-specific structures and trigger production of corresponding antibodies, even when they are transferred into a background of a completely alien carrier protein. PMID:22922018
Identification of novel HLA-A(*)0201-restricted CTL epitopes from Pokemon.
Yuan, Bangqing; Zhao, Lin; Xian, Ronghua; Zhao, Gang
2012-01-01
Pokemon is a member of the POK family of transcriptional repressors and aberrant overexpressed in various human cancers. Therefore, the related peptide epitopes derived from Pokemon is essential for the development of specific immunotherapy of malignant tumors. In this study, we predicted and identified HLA-A(*)0201-restricted cytotoxic T lymphocyte (CTL) epitopes derived from Pokemon with computer-based epitope prediction, peptide-binding assay and testing of the induced CTLs toward different kinds of carcinoma cells. The results demonstrated that effectors induced by peptides of Pokemon containing residues 32-40, 61-69, 87-95, and 319-327 could specifically secrete IFN-γ and lyse tumor cell lines of Pokemon-positive and HLA-A2-matched. The results suggest that Pokemon32, Pokemon61, Pokemon87, and Pokemon319 peptides are novel HLA-A(*)0201-restricted restricted CTL epitopes, and could be utilized in the cancer immunotherapy against a broad spectrum of tumors. Copyright © 2012 Elsevier Inc. All rights reserved.
Maciel, Milton; Kellathur, Srinivasan N; Chikhlikar, Pryia; Dhalia, Rafael; Sidney, John; Sette, Alessandro; August, Thomas J; Marques, Ernesto T A
2008-08-15
Immunomics research uses in silico epitope prediction, as well as in vivo and in vitro approaches. We inoculated BALB/c (H2d) mice with 17DD yellow fever vaccine to investigate the correlations between approaches used for epitope discovery: ELISPOT assays, binding assays, and prediction software. Our results showed a good agreement between ELISPOT and binding assays, which seemed to correlate with the protein immunogenicity. PREDBALB/c prediction software partially agreed with the ELISPOT and binding assay results, but presented low specificity. The use of prediction software to exclude peptides containing no epitopes, followed by high throughput screening of the remaining peptides by ELISPOT, and the use of MHC-biding assays to characterize the MHC restrictions demonstrated to be an efficient strategy. The results allowed the characterization of 2 MHC class I and 17 class II epitopes in the envelope protein of the YF virus in BALB/c (H2d) mice.
Ribeiro, Miguel; Nunes, Fernando M.; Guedes, Sofia; Domingues, Pedro; Silva, Amélia M.; Carrillo, Jose Maria; Rodriguez-Quijano, Marta; Branlard, Gérard; Igrejas, Gilberto
2015-01-01
Protein engineering of gluten, the exogenous effector in celiac disease, seeking its detoxification by selective chemical modification of toxic epitopes is a very attractive strategy and promising technology when compared to pharmacological treatment or genetic engineering of wheat. Here we present a simple and efficient chemo-enzymatic methodology that decreases celiac disease toxic epitopes of gluten proteins improving its technological value through microbial transglutaminase-mediated transamidation of glutamine with n-butylamine under reducing conditions. First, we found that using low concentrations of amine-nucleophile under non-reducing conditions, the decrease in toxic epitopes is mainly due to transglutaminase-mediated cross-linking. Second, using high amine nucleophile concentrations protein cross-linking is substantially reduced. Third, reducing conditions increase 7-fold the transamidation reaction further decreasing toxic epitopes amount. Fourth, using n-butylamine improves gluten hydrophobicity that strengthens the gluten network. These results open the possibility of tailoring gluten for producing hypoallergenic flours while still taking advantage of the unique viscoelastic properties of gluten. PMID:26691232
Luzar, J; Štrukelj, B; Lunder, M
2016-11-01
Identification of allergen epitopes is a key component in proper understanding of the pathogenesis of type I allergies, for understanding cross-reactivity and for the development of mimotope immunotherapeutics. Phage particles have garnered recognition in the field of molecular allergology due to their value not only in competitive immunoscreening of peptide libraries but also as immunogenic carriers of allergen mimotopes. They integrate epitope discovery technology and immunization functions into a single platform. This article provides an overview of allergen mimotopes identified through the phage display technique. We discuss the contribution of phage display peptide libraries in determining dominant B-cell epitopes of allergens, in developing mimotope immunotherapy, in understanding cross-reactivity, and in determining IgE epitope profiles of individual patients to improve diagnostics and individualize immunotherapy. We also discuss the advantages and pitfalls of the methodology used to identify and validate the mimotopes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A Synthetic Glycan Microarray Enables Epitope Mapping of Plant Cell Wall Glycan-Directed Antibodies.
Ruprecht, Colin; Bartetzko, Max P; Senf, Deborah; Dallabernadina, Pietro; Boos, Irene; Andersen, Mathias C F; Kotake, Toshihisa; Knox, J Paul; Hahn, Michael G; Clausen, Mads H; Pfrengle, Fabian
2017-11-01
In the last three decades, more than 200 monoclonal antibodies have been raised against most classes of plant cell wall polysaccharides by different laboratories worldwide. These antibodies are widely used to identify differences in plant cell wall components in mutants, organ and tissue types, and developmental stages. Despite their importance and broad use, the precise binding epitope has been determined for only a few of these antibodies. Here, we use a plant glycan microarray equipped with 88 synthetic oligosaccharides to comprehensively map the epitopes of plant cell wall glycan-directed antibodies. Our results reveal the binding epitopes for 78 arabinogalactan-, rhamnogalacturonan-, xylan-, and xyloglucan-directed antibodies. We demonstrate that, with knowledge of the exact epitopes recognized by individual antibodies, specific glycosyl hydrolases can be implemented into immunological cell wall analyses, providing a framework to obtain structural information on plant cell wall glycans with unprecedented molecular precision. © 2017 American Society of Plant Biologists. All Rights Reserved.
An overview of bioinformatics tools for epitope prediction: implications on vaccine development.
Soria-Guerra, Ruth E; Nieto-Gomez, Ricardo; Govea-Alonso, Dania O; Rosales-Mendoza, Sergio
2015-02-01
Exploitation of recombinant DNA and sequencing technologies has led to a new concept in vaccination in which isolated epitopes, capable of stimulating a specific immune response, have been identified and used to achieve advanced vaccine formulations; replacing those constituted by whole pathogen-formulations. In this context, bioinformatics approaches play a critical role on analyzing multiple genomes to select the protective epitopes in silico. It is conceived that cocktails of defined epitopes or chimeric protein arrangements, including the target epitopes, may provide a rationale design capable to elicit convenient humoral or cellular immune responses. This review presents a comprehensive compilation of the most advantageous online immunological software and searchable, in order to facilitate the design and development of vaccines. An outlook on how these tools are supporting vaccine development is presented. HIV and influenza have been taken as examples of promising developments on vaccination against hypervariable viruses. Perspectives in this field are also envisioned. Copyright © 2014 Elsevier Inc. All rights reserved.
Chuang, Gwo-Yu; Liou, David; Kwong, Peter D.; Georgiev, Ivelin S.
2014-01-01
Delineation of the antigenic site, or epitope, recognized by an antibody can provide clues about functional vulnerabilities and resistance mechanisms, and can therefore guide antibody optimization and epitope-based vaccine design. Previously, we developed an algorithm for antibody-epitope prediction based on antibody neutralization of viral strains with diverse sequences and validated the algorithm on a set of broadly neutralizing HIV-1 antibodies. Here we describe the implementation of this algorithm, NEP (Neutralization-based Epitope Prediction), as a web-based server. The users must supply as input: (i) an alignment of antigen sequences of diverse viral strains; (ii) neutralization data for the antibody of interest against the same set of antigen sequences; and (iii) (optional) a structure of the unbound antigen, for enhanced prediction accuracy. The prediction results can be downloaded or viewed interactively on the antigen structure (if supplied) from the web browser using a JSmol applet. Since neutralization experiments are typically performed as one of the first steps in the characterization of an antibody to determine its breadth and potency, the NEP server can be used to predict antibody-epitope information at no additional experimental costs. NEP can be accessed on the internet at http://exon.niaid.nih.gov/nep. PMID:24782517
Kashi, Venkatesh P; Jacob, Rajesh A; Shamanna, Raghavendra A; Menon, Malini; Balasiddaiah, Anangi; Varghese, Rebu K; Bachu, Mahesh; Ranga, Udaykumar
2014-01-01
Extracellular Tat (eTat) plays an important role in HIV-1 pathogenesis. The presence of anti-Tat antibodies is negatively correlated with disease progression, hence making Tat a potential vaccine candidate. The cytotoxicity and moderate immunogenicity of Tat however remain impediments for developing Tat-based vaccines. Here, we report a novel strategy to concurrently enhance the immunogenicity and safety profile of Tat. The grafting of universal helper T-lymphocyte (HTL) epitopes, Pan DR Epitope (PADRE) and Pol711 into the cysteine rich domain (CRD) and the basic domain (BD) abolished the transactivation potential of the Tat protein. The HTL-Tat proteins elicited a significantly higher titer of antibodies as compared to the wild-type Tat in BALB/c mice. While the N-terminal epitope remained immunodominant in HTL-Tat immunizations, an additional epitope in exon-2 was recognized with comparable magnitude suggesting a broader immune recognition. Additionally, the HTL-Tat proteins induced cross-reactive antibodies of high avidity that efficiently neutralized exogenous Tat, thus blocking the activation of a Tat-defective provirus. With advantages such as presentation of multiple B-cell epitopes, enhanced antibody response and importantly, transactivation-deficient Tat protein, this approach has potential application for the generation of Tat-based HIV/AIDS vaccines.
McComb, Ryan C; Ho, Chi-Lee; Bradley, Kenneth A; Grill, Laurence K; Martchenko, Mikhail
2015-11-27
The current anthrax vaccine requires improvements for rapidly invoking longer-lasting neutralizing antibody responses with fewer doses from a well-defined formulation. Designing antigens that target neutralizing antibody epitopes of anthrax protective antigen, a component of anthrax toxin, may offer a solution for achieving a vaccine that can induce strong and long lasting antibody responses with fewer boosters. Here we report implementation of a strategy for developing epitope focused virus nanoparticle vaccines against anthrax by using immunogenic virus particles to present peptides derived from anthrax toxin previously identified in (1) neutralizing antibody epitope mapping studies, (2) toxin crystal structure analyses to identify functional regions, and (3) toxin mutational analyses. We successfully expressed two of three peptide epitopes from anthrax toxin that, in previous reports, bound antibodies that were partially neutralizing against toxin activity, discovered cross-reactivity between vaccine constructs and toxin specific antibodies raised in goats against native toxin and showed that antibodies induced by our vaccine constructs also cross-react with native toxin. While protection against intoxication in cellular and animal studies were not as effective as in previous studies, partial toxin neutralization was observed in animals, demonstrating the feasibility of using plant-virus nanoparticles as a platform for epitope defined anthrax vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.
Altfeld, Marcus A.; Trocha, Alicja; Eldridge, Robert L.; Rosenberg, Eric S.; Phillips, Mary N.; Addo, Marylyn M.; Sekaly, Rafick P.; Kalams, Spyros A.; Burchett, Sandra A.; McIntosh, Kenneth; Walker, Bruce D.; Goulder, Philip J. R.
2000-01-01
Human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T-lymphocyte (CTL) responses play a major role in the antiviral immune response, but the relative contribution of CTL responses restricted by different HLA class I molecules is less well defined. HLA-B60 or the related allele B61 is expressed in 10 to 20% of Caucasoid populations and is even more highly prevalent in Asian populations, but yet no CTL epitopes restricted by these alleles have been defined. Here we report the definition of five novel HLA-B60-restricted HIV-1-specific CTL epitopes, using peripheral blood mononuclear cells in enzyme-linked immunospot (Elispot) assays and using CTL clones and lines in cytolytic assays. The dominant HLA-B60-restricted epitope, Nef peptide KEKGGLEGL, was targeted by all eight subjects with B60 and also by both subjects with B61 studied. This study additionally establishes the utility of the Elispot assay as a more rapid and efficient method of defining novel CTL epitopes. This approach will help to define new CTL epitopes that may play an important role in the immune control of HIV-1. PMID:10954555
Cytotoxic T Lymphocyte Epitopes of HIV-1 Nef
Lucchiari-Hartz, Maria; van Endert, Peter M.; Lauvau, Grégoire; Maier, Reinhard; Meyerhans, Andreas; Mann, Derek; Eichmann, Klaus; Niedermann, Gabriele
2000-01-01
Although a pivotal role of proteasomes in the proteolytic generation of epitopes for major histocompatibility complex (MHC) class I presentation is undisputed, their precise function is currently the subject of an active debate: do proteasomes generate many epitopes in definitive form, or do they merely generate the COOH termini, whereas the definitive NH2 termini are cleaved by aminopeptidases? We determined five naturally processed MHC class I ligands derived from HIV-1 Nef. Unexpectedly, the five ligands correspond to only three cytotoxic T lymphocyte (CTL) epitopes, two of which occur in two COOH-terminal length variants. Parallel analyses of proteasomal digests of a Nef fragment encompassing the epitopes revealed that all five ligands are direct products of proteasomes. Moreover, in four of the five ligands, the NH2 termini correspond to major proteasome cleavage sites, and putative NH2-terminally extended precursor fragments were detected for only one of the five ligands. All ligands are transported by the transporter associated with antigen processing (TAP). The combined results from these five ligands provide strong evidence that many definitive MHC class I ligands are precisely cleaved at both ends by proteasomes. Additional evidence supporting this conclusion is discussed, along with contrasting results of others who propose a strong role for NH2-terminal trimming with direct proteasomal epitope generation being a rare event. PMID:10637269
Brander, Christian; Yang, Otto O.; Jones, Norman G.; Lee, Yun; Goulder, Philip; Johnson, R. Paul; Trocha, Alicja; Colbert, David; Hay, Christine; Buchbinder, Susan; Bergmann, Cornelia C.; Zweerink, Hans J.; Wolinsky, Steven; Blattner, William A.; Kalams, Spyros A.; Walker, Bruce D.
1999-01-01
Immune escape from cytotoxic T-lymphocyte (CTL) responses has been shown to occur not only by changes within the targeted epitope but also by changes in the flanking sequences which interfere with the processing of the immunogenic peptide. However, the frequency of such an escape mechanism has not been determined. To investigate whether naturally occurring variations in the flanking sequences of an immunodominant human immunodeficiency virus type 1 (HIV-1) Gag CTL epitope prevent antigen processing, cells infected with HIV-1 or vaccinia virus constructs encoding different patient-derived Gag sequences were tested for recognition by HLA-A*0201-restricted, p17-specific CTL. We found that the immunodominant p17 epitope (SL9) and its variants were efficiently processed from minigene expressing vectors and from six HIV-1 Gag variants expressed by recombinant vaccinia virus constructs. Furthermore, SL9-specific CTL clones derived from multiple donors efficiently inhibited virus replication when added to HLA-A*0201-bearing cells infected with primary or laboratory-adapted strains of virus, despite the variability in the SL9 flanking sequences. These data suggest that escape from this immunodominant CTL response is not frequently accomplished by changes in the epitope flanking sequences. PMID:10559335
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Shantanu; Ochoa, Wendy; Singh, Pratik
2009-05-25
Viruses-like particles (VLPs) are frequently being used as platforms for polyvalent display of foreign epitopes of interest on their capsid surface to improve their presentation enhancing the antigenicity and host immune response. In the present study, we used the VLPs of Tomato bushy stunt virus (TBSV), an icosahedral plant virus, as a platform to display 180 copies of 16 amino acid epitopes of ricin toxin fused to the C-terminal end of a modified TBSV capsid protein (NDELTA52). Expression of the chimeric recombinant protein in insect cells resulted in spontaneous assembly of VLPs displaying the ricin epitope. Cryo-electron microscopy and imagemore » reconstruction of the chimeric VLPs at 22 A resolution revealed the locations and orientation of the ricin epitope exposed on the TBSV capsid surface. Furthermore, injection of chimeric VLPs into mice generated antisera that detected the native ricin toxin. The ease of fusing of short peptides of 15-20 residues and their ability to form two kinds (T = 1, T = 3) of bio-nanoparticles that result in the display of 60 or 180 copies of less constrained and highly exposed antigenic epitopes makes TBSV an attractive and versatile display platform for vaccine design.« less
Identification of a serotype-independent linear epitope of foot-and-mouth disease virus.
Yang, Baolin; Wang, Mingxia; Liu, Wenming; Xu, Zhiqiang; Wang, Haiwei; Yang, Decheng; Ma, Wenge; Zhou, Guohui; Yu, Li
2017-12-01
Foot-and-mouth disease (FMD), caused by foot-and-mouth disease virus (FMDV), is a highly contagious infectious disease that affects domestic and wild cloven-hoofed animals worldwide. VP2 is a structural protein of FMDV. In this study, an FMDV serotype-independent monoclonal antibody (MAb), 10B10, against the viral capsid protein VP2 was generated, and a series of GST fusion proteins expressing a truncated peptide of VP2 was subjected to Western blot analysis using MAb 10B10. Their results indicated that the peptide 8 TLLEDRILT 16 of VP2 is the minimal requirement of the epitope recognized by MAb 10B10. Importantly, this linear epitope was highly conserved among all seven serotypes of FMDV in a sequence alignment analysis. Subsequent alanine-scanning mutagenesis analysis revealed that the residues Thr 8 and Asp 12 of the epitope were crucial for MAb-10B10 binding. Furthermore, Western blot analysis also revealed that the MAb 10B10-directed epitope could be recognized by positive sera from FMDV-infected cattle. The discovery that MAb 10B10 recognizes a serotype-independent linear epitope of FMDV suggests potential applications for this MAb in the development of serotype-independent tests for FMDV.
Structure of a protective epitope of group B Streptococcus type III capsular polysaccharide.
Carboni, Filippo; Adamo, Roberto; Fabbrini, Monica; De Ricco, Riccardo; Cattaneo, Vittorio; Brogioni, Barbara; Veggi, Daniele; Pinto, Vittoria; Passalacqua, Irene; Oldrini, Davide; Rappuoli, Rino; Malito, Enrico; Margarit, Immaculada Y Ros; Berti, Francesco
2017-05-09
Despite substantial progress in the prevention of group B Streptococcus (GBS) disease with the introduction of intrapartum antibiotic prophylaxis, this pathogen remains a leading cause of neonatal infection. Capsular polysaccharide conjugate vaccines have been tested in phase I/II clinical studies, showing promise for further development. Mapping of epitopes recognized by protective antibodies is crucial for understanding the mechanism of action of vaccines and for enabling antigen design. In this study, we report the structure of the epitope recognized by a monoclonal antibody with opsonophagocytic activity and representative of the protective response against type III GBS polysaccharide. The structure and the atomic-level interactions were determined by saturation transfer difference (STD)-NMR and X-ray crystallography using oligosaccharides obtained by synthetic and depolymerization procedures. The GBS PSIII epitope is made by six sugars. Four of them derive from two adjacent repeating units of the PSIII backbone and two of them from the branched galactose-sialic acid disaccharide contained in this sequence. The sialic acid residue establishes direct binding interactions with the functional antibody. The crystal structure provides insight into the molecular basis of antibody-carbohydrate interactions and confirms that the conformational epitope is not required for antigen recognition. Understanding the structural basis of immune recognition of capsular polysaccharide epitopes can aid in the design of novel glycoconjugate vaccines.
Mahdavi, Manijeh; Keyhanfar, Mehrnaz; Jafarian, Abbas; Mohabatkar, Hassan; Rabbani, Mohammad
2014-12-01
Because of direct stimulating immune system against disease, vaccination or active immunotherapy is preferable compared to passive immunotherapy. For this purpose, a newly designed chimeric peptide containing epitopes for both B and T cells from HER2 ECD subdomain III was proposed. To evaluate the effects of the active immunization, a discontinuous B cell epitope peptide was selected based on average antigenicity by bioinformatics analysis. The selected peptide was collinearly synthesized as a chimera with a T helper epitope from the protein sequence of measles virus fusion (208-302) using the GPSL linker. Three mice were immunized with the chimeric peptide. Reactive antibodies with HER2 protein in ELISA and immunofluorescence assays with no cross-reactivity were generated. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay indicated that the anti-peptide sera had inhibitory effects on proliferation of SK-BR-3 cells. Hence, the newly designed, discontinuous chimeric peptide representing B and T cell epitopes from subdomain III of HER2-ECD can form the basis for future vaccines design, where these data can be applied for monoclonal antibody production targeting the distinct epitope of HER2 receptor compared to the two broadly used anti-HER2 monoclonal antibodies, Herceptin and pertuzumab.
GPS-MBA: Computational Analysis of MHC Class II Epitopes in Type 1 Diabetes
Ren, Jian; Ma, Chuang; Gao, Tianshun; Zhou, Yanhong; Yang, Qing; Xue, Yu
2012-01-01
As a severe chronic metabolic disease and autoimmune disorder, type 1 diabetes (T1D) affects millions of people world-wide. Recent advances in antigen-based immunotherapy have provided a great opportunity for further treating T1D with a high degree of selectivity. It is reported that MHC class II I-Ag7 in the non-obese diabetic (NOD) mouse and human HLA-DQ8 are strongly linked to susceptibility to T1D. Thus, the identification of new I-Ag7 and HLA-DQ8 epitopes would be of great help to further experimental and biomedical manipulation efforts. In this study, a novel GPS-MBA (MHC Binding Analyzer) software package was developed for the prediction of I-Ag7 and HLA-DQ8 epitopes. Using experimentally identified epitopes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted and improved. By extensive evaluation and comparison, the GPS-MBA performance was found to be much better than other tools of this type. With this powerful tool, we predicted a number of potentially new I-Ag7 and HLA-DQ8 epitopes. Furthermore, we designed a T1D epitope database (TEDB) for all of the experimentally identified and predicted T1D-associated epitopes. Taken together, this computational prediction result and analysis provides a starting point for further experimental considerations, and GPS-MBA is demonstrated to be a useful tool for generating starting information for experimentalists. The GPS-MBA is freely accessible for academic researchers at: http://mba.biocuckoo.org. PMID:22479466
Khedive, A; Norouzi, M; Ramezani, F; Karimzadeh, H; Alavian, S M; Malekzadeh, R; Montazeri, G; Nejatizadeh, A; Ziaee, M; Abedi, F; Ataei, B; Yaran, M; Sayad, B; Somi, M H; Sarizadeh, G; Sanei-Moghaddam, I; Mansour-Ghanaei, F; Rafatpanah, H; Pourhosseingholi, M A; Keyvani, H; Kalantari, E; Saberifiroozi, M; Judaki, M A; Ghamari, S; Daram, M; Mahabadi, M; Fazeli, Z; Goodarzi, Z; Poortahmasebi, V; Jazayeri, S M
2013-07-01
Mutations within the coding region of hepatitis B surface antigen (HBsAg) have been found naturally in chronic carriers. To characterize the mutations of HBsAg from Iranian chronic carriers who were vaccine and/or medication naive. The surface genes from 360 patients were amplified and directly sequenced. The distribution of amino acid substitutions was classified according to different immune epitopes of the surface protein. All isolates belonged to genotype D. 222 (61.6%) of 360 patients contained at least one amino acid substitution. 404 (74.5%) of 542 amino acid changes occurred in different immune epitopes of HBsAg, of which 112 (27.7%) in 32 residues of B-cell epitopes (62 in the 'a' determinant); 111 (27.4%) in 32 residues of T helper; and 197 (48.7%) in 32 residues inside cytotoxic T lymphocyte (CTL) epitopes. One Th (186-197) and two CTL (28-51 and 206-215) epitopes were found to be hotspot motifs for the occurrence of 213 (52.7%) substitutions. 20 stop codons were identified in different epitopes. There was a significant association between amino acid substitutions and anti-HBe seropositivity; however, the correlation between such changes with viral load and ALT levels was not significant. In chronic hepatitis B virus(HBV) carriers, positive selection in particular outside the 'a' determinant appeared to exert influence on the surface proteins. These changes could be immune escape mutations naturally occurring due to the host immune surveillance especially at the T-cell level. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Sanna, Pietro Paolo; Williamson, R. Anthony; de Logu, Alessandro; Bloom, Floyd E.; Burton, Dennis R.
1995-07-01
Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.
Mapping of epitopes and structural analysis of antigenic sites in the nucleoprotein of rabies virus.
Goto, H; Minamoto, N; Ito, H; Ito, N; Sugiyama, M; Kinjo, T; Kawai, A
2000-01-01
Linear epitopes on the rabies virus nucleoprotein (N) recognized by six MAbs raised against antigenic sites I (MAbs 6-4, 12-2 and 13-27) and IV (MAbs 6-9, 7-12 and 8-1) were investigated. Based on our previous studies on sites I and IV, 24 consecutively overlapping octapeptides and N- and C-terminal-deleted mutant N proteins were prepared. Results showed that all three site I epitopes studied and two site IV epitopes (for MAbs 8-1 and 6-9) mapped to aa 358-367, and that the other site IV epitope of MAb 7-12 mapped to aa 375-383. Tests using chimeric and truncated proteins showed that MAb 8-1 also requires the N-terminal sequence of the N protein to recognize its binding region more efficiently. Immunofluorescence studies demonstrated that all three site I-specific MAbs and one site IV-specific MAb (7-12) stained the N antigen that was diffusely distributed in the whole cytoplasm; the other two site IV-specific MAbs (6-9 and 8-1) detected only the N antigen in the cytoplasmic inclusion bodies (CIB). An antigenic site II-specific MAb (6-17) also detected CIB-associated N antigen alone. Furthermore, the level of diffuse N antigens decreased after treatment of infected cells with cycloheximide. These results suggest that epitopes at site I are expressed on the immature form of the N protein, but epitope structures of site IV MAbs 6-9 and 8-1 are created and/or exposed only after maturation of the N protein.
Rosendahl Huber, S. K.; Camps, M. G. M.; Jacobi, R. H. J.; Mouthaan, J.; van Dijken, H.; van Beek, J.; Ossendorp, F.; de Jonge, J.
2015-01-01
Currently licensed influenza vaccines mainly induce antibodies against highly variable epitopes. Due to antigenic drift, protection is subtype or strain-specific and regular vaccine updates are required. In case of antigenic shifts, which have caused several pandemics in the past, completely new vaccines need to be developed. We set out to develop a vaccine that provides protection against a broad range of influenza viruses. Therefore, highly conserved parts of the influenza A virus (IAV) were selected of which we constructed antibody and T cell inducing peptide-based vaccines. The B epitope vaccine consists of the highly conserved HA2 fusion peptide and M2e peptide coupled to a CD4 helper epitope. The T epitope vaccine comprises 25 overlapping synthetic long peptides of 26-34 amino acids, thereby avoiding restriction for a certain MHC haplotype. These peptides are derived from nucleoprotein (NP), polymerase basic protein 1 (PB1) and matrix protein 1 (M1). C57BL/6 mice, BALB/c mice, and ferrets were vaccinated with the B epitopes, 25 SLP or a combination of both. Vaccine-specific antibodies were detected in sera of mice and ferrets and vaccine-specific cellular responses were measured in mice. Following challenge, both mice and ferrets showed a reduction of virus titers in the lungs in response to vaccination. Summarizing, a peptide-based vaccine directed against conserved parts of influenza virus containing B and T cell epitopes shows promising results for further development. Such a vaccine may reduce disease burden and virus transmission during pandemic outbreaks. PMID:26046664
Khrustalev, Vladislav Victorovich
2010-01-01
We used a DiscoTope 1.2 (http://www.cbs.dtu.dk/services/DiscoTope/), Epitopia (http://epitopia.tau.ac.il/) and EPCES (http://www.t38.physik.tu-muenchen.de/programs.htm) algorithms to map discontinuous B-cell epitopes in HIV1 gp120. The most mutable nucleotides in HIV genes are guanine (because of G to A hypermutagenesis) and cytosine (because of C to U and C to A mutations). The higher is the level of guanine and cytosine usage in third (neutral) codon positions and the lower is their level in first and second codon positions of the coding region, the more stable should be an epitope encoded by this region. We compared guanine and cytosine usage in regions coding for five predicted 3D B-cell epitopes of gp120. To make this comparison we used GenBank resource: 385 sequences of env gene obtained from ten HIV1-infected individuals were studied (http://www.barkovsky.hotmail.ru/Data/Seqgp120.htm). The most protected from nonsynonymous nucleotide mutations of guanine and cytosine 3D B-cell epitope is situated in the first conserved region of gp120 (it is mapped from 66th to 86th amino acid residue). We applied a test of variability to confirm this finding. Indeed, the less mutable predicted B-cell epitope is the less variable one. MEGA4 (standard PAM matrix) was used for the alignments and "VVK Consensus" algorithm (http://www.barkovsky.hotmail.ru) was used for the calculations.
Brito, J A; Preston, J F; Dickson, D W; Giblin-Davis, R M; Williams, D S; Aldrich, H C; Rice, J D
2003-09-01
The synthesis and localization of an endospore surface epitope associated with the development of Pasteuria penetrans was determined using a monoclonal antibody (MAb) as a probe. Nematodes, uninfected or infected with P. penetrans, were harvested at 12, 16, 24, and 38 days after inoculation (DAI) and then examined to determine the developmental stage of the bacterium. Vegetative growth of P. penetrans was observed only in infected nematodes harvested at 12 and 16 DAI, whereas cells at different stages of sporulation and mature endospores were observed at 24 and 38 DAI. ELISA and immunoblot analysis revealed that the adhesin-associated epitope was first detected at 24 DAI, and increased in the later stages of sporogenesis. These results indicate that the synthesis of adhesin-related proteins occurred at a certain developmental stage relative to the sporulation process, and was associated with endospore maturation. Immunofluorescence microscopy indicated that the distribution of the epitope is nearly uniform on the periphery of each spore, as defined by parasporal fibers. Immunocytochemistry at the ultrastructural level indicated a distribution of the epitope over the parasporal fibers. The epitope also was detected over other structures such as sporangium and exosporium during the sporogenesis process, but it was not observed over the cortex, inner-spore coat, outer-spore coat, or protoplasm. The appearance of the adhesin epitope first at stage III of sporogenesis and its presence on the parasporal fibers are consistent with an adhesin-related role in the attachment of the mature endospore to the cuticle of the nematode host.
Qin, Ya-Ping; Wang, Hai-Yan; He, Xi-Wen; Li, Wen-You; Zhang, Yu-Kui
2018-08-01
A novel dual-template epitope imprinting polymer coated on magnetic carbon nanotubes (MCNTs@D-EMIP) was successfully prepared for specific recognition of porcine serum albumin (PSA) via dual-template epitope imprinting, metal chelation imprinting and distillation-precipitation polymerization (DPP). C-terminal peptides and N-terminal peptides of PSA were selected as templates simultaneously, and zinc acrylate and ethylene glycol dimethacrylate (EGDMA) were used as functional monomer and cross-linker, respectively. The epitope templates were immobilized by metal chelation and six-membered ring formed with zinc acrylate. Finally, MCNTs@D-EMIP was synthesized by DPP in only 30 min, which was much shorter than those of other polymerization methods. The prepared MCNTs@D-EMIP displayed specific recognition ability toward PSA and its adsorption amount and imprinting factor were 45.05 mg g -1 and 4.50, which were much higher than those of single template epitope imprinting polymers. Besides, high-performance liquid chromatography (HPLC) analysis of PSA in porcine blood serum real sample indicated that the specificity was not affected by other competitive proteins, which forcefully stated that the MCNTs@D-EMIP had potential to be applied in bio-separation area. In addition, the results of cross-reactivity experiment proved that this strategy had generality to prepare dual-template epitope imprinting polymer for recognition of target protein. In summary, this study provided an efficient protocol to recognize target protein in complex sample via dual-template epitope imprinting approach, metal chelation imprinting and distillation-precipitation polymerization. Copyright © 2018 Elsevier B.V. All rights reserved.
DRREP: deep ridge regressed epitope predictor.
Sher, Gene; Zhi, Degui; Zhang, Shaojie
2017-10-03
The ability to predict epitopes plays an enormous role in vaccine development in terms of our ability to zero in on where to do a more thorough in-vivo analysis of the protein in question. Though for the past decade there have been numerous advancements and improvements in epitope prediction, on average the best benchmark prediction accuracies are still only around 60%. New machine learning algorithms have arisen within the domain of deep learning, text mining, and convolutional networks. This paper presents a novel analytically trained and string kernel using deep neural network, which is tailored for continuous epitope prediction, called: Deep Ridge Regressed Epitope Predictor (DRREP). DRREP was tested on long protein sequences from the following datasets: SARS, Pellequer, HIV, AntiJen, and SEQ194. DRREP was compared to numerous state of the art epitope predictors, including the most recently published predictors called LBtope and DMNLBE. Using area under ROC curve (AUC), DRREP achieved a performance improvement over the best performing predictors on SARS (13.7%), HIV (8.9%), Pellequer (1.5%), and SEQ194 (3.1%), with its performance being matched only on the AntiJen dataset, by the LBtope predictor, where both DRREP and LBtope achieved an AUC of 0.702. DRREP is an analytically trained deep neural network, thus capable of learning in a single step through regression. By combining the features of deep learning, string kernels, and convolutional networks, the system is able to perform residue-by-residue prediction of continues epitopes with higher accuracy than the current state of the art predictors.
Khan, M A; Hossain, M U; Rakib-Uz-Zaman, S M; Morshed, M N
2015-07-01
Ebola viruses (EBOVs) have been identified as an emerging threat in recent year as it causes severe haemorrhagic fever in human. Epitope-based vaccine design for EBOVs remains a top priority because a mere progress has been made in this regard. Another reason is the lack of antiviral drug and licensed vaccine although there is a severe outbreak in Central Africa. In this study, we aimed to design an epitope-based vaccine that can trigger a significant immune response as well as to prognosticate inhibitor that can bind with potential drug target sites using various immunoinformatics and docking simulation tools. The capacity to induce both humoral and cell-mediated immunity by T cell and B cell was checked for the selected protein. The peptide region spanning 9 amino acids from 42 to 50 and the sequence TLASIGTAF were found as the most potential B and T cell epitopes, respectively. This peptide could interact with 12 HLAs and showed high population coverage up to 80.99%. Using molecular docking, the epitope was further appraised for binding against HLA molecules to verify the binding cleft interaction. In addition with this, the allergenicity of the epitopes was also evaluated. In the post-therapeutic strategy, docking study of predicted 3D structure identified suitable therapeutic inhibitor against targeted protein. However, this computational epitope-based peptide vaccine designing and target site prediction against EBOVs open up a new horizon which may be the prospective way in Ebola viruses research; the results require validation by in vitro and in vivo experiments. © 2015 John Wiley & Sons Ltd.
Reliable B Cell Epitope Predictions: Impacts of Method Development and Improved Benchmarking
Kringelum, Jens Vindahl; Lundegaard, Claus; Lund, Ole; Nielsen, Morten
2012-01-01
The interaction between antibodies and antigens is one of the most important immune system mechanisms for clearing infectious organisms from the host. Antibodies bind to antigens at sites referred to as B-cell epitopes. Identification of the exact location of B-cell epitopes is essential in several biomedical applications such as; rational vaccine design, development of disease diagnostics and immunotherapeutics. However, experimental mapping of epitopes is resource intensive making in silico methods an appealing complementary approach. To date, the reported performance of methods for in silico mapping of B-cell epitopes has been moderate. Several issues regarding the evaluation data sets may however have led to the performance values being underestimated: Rarely, all potential epitopes have been mapped on an antigen, and antibodies are generally raised against the antigen in a given biological context not against the antigen monomer. Improper dealing with these aspects leads to many artificial false positive predictions and hence to incorrect low performance values. To demonstrate the impact of proper benchmark definitions, we here present an updated version of the DiscoTope method incorporating a novel spatial neighborhood definition and half-sphere exposure as surface measure. Compared to other state-of-the-art prediction methods, Discotope-2.0 displayed improved performance both in cross-validation and in independent evaluations. Using DiscoTope-2.0, we assessed the impact on performance when using proper benchmark definitions. For 13 proteins in the training data set where sufficient biological information was available to make a proper benchmark redefinition, the average AUC performance was improved from 0.791 to 0.824. Similarly, the average AUC performance on an independent evaluation data set improved from 0.712 to 0.727. Our results thus demonstrate that given proper benchmark definitions, B-cell epitope prediction methods achieve highly significant predictive performances suggesting these tools to be a powerful asset in rational epitope discovery. The updated version of DiscoTope is available at www.cbs.dtu.dk/services/DiscoTope-2.0. PMID:23300419
Wei, Ying; Donate, Fernando; Juarez, Jose; Parry, Graham; Chen, Liqing; Meehan, Edward J.; Ahn, Richard W.; Ugolkov, Andrey; Dubrovskyi, Oleksii; O'Halloran, Thomas V.; Huang, Mingdong; Mazar, Andrew P.
2014-01-01
The urokinase plasminogen activator receptor (uPAR) plays a role in tumor progression and has been proposed as a target for the treatment of cancer. We recently described the development of a novel humanized monoclonal antibody that targets uPAR and has anti-tumor activity in multiple xenograft animal tumor models. This antibody, ATN-658, does not inhibit ligand binding (i.e. uPA and vitronectin) to uPAR and its mechanism of action remains unclear. As a first step in understanding the anti-tumor activity of ATN-658, we set out to identify the epitope on uPAR to which ATN-658 binds. Guided by comparisons between primate and human uPAR, epitope mapping studies were performed using several orthogonal techniques. Systematic site directed and alanine scanning mutagenesis identified the region of aa 268–275 of uPAR as the epitope for ATN-658. No known function has previously been attributed to this epitope Structural insights into epitope recognition were obtained from structural studies of the Fab fragment of ATN-658 bound to uPAR. The structure shows that the ATN-658 binds to the DIII domain of uPAR, close to the C-terminus of the receptor, corroborating the epitope mapping results. Intriguingly, when bound to uPAR, the complementarity determining region (CDR) regions of ATN-658 closely mimic the binding regions of the integrin CD11b (αM), a previously identified uPAR ligand thought to be involved in leukocyte rolling, migration and complement fixation with no known role in tumor progression of solid tumors. These studies reveal a new functional epitope on uPAR involved in tumor progression and demonstrate a previously unrecognized strategy for the therapeutic targeting of uPAR. PMID:24465541
Eickhoff, Christopher S; Zhang, Xiuli; Vasconcelos, Jose R; Motz, R Geoffrey; Sullivan, Nicole L; O'Shea, Kelly; Pozzi, Nicola; Gohara, David W; Blase, Jennifer R; Di Cera, Enrico; Hoft, Daniel F
2016-09-01
Trypanosoma cruzi infection is controlled but not eliminated by host immunity. The T. cruzi trans-sialidase (TS) gene superfamily encodes immunodominant protective antigens, but expression of altered peptide ligands by different TS genes has been hypothesized to promote immunoevasion. We molecularly defined TS epitopes to determine their importance for protection versus parasite persistence. Peptide-pulsed dendritic cell vaccination experiments demonstrated that one pair of immunodominant CD4+ and CD8+ TS peptides alone can induce protective immunity (100% survival post-lethal parasite challenge). TS DNA vaccines have been shown by us (and others) to protect BALB/c mice against T. cruzi challenge. We generated a new TS vaccine in which the immunodominant TS CD8+ epitope MHC anchoring positions were mutated, rendering the mutant TS vaccine incapable of inducing immunity to the immunodominant CD8 epitope. Immunization of mice with wild type (WT) and mutant TS vaccines demonstrated that vaccines encoding enzymatically active protein and the immunodominant CD8+ T cell epitope enhance subdominant pathogen-specific CD8+ T cell responses. More specifically, CD8+ T cells from WT TS DNA vaccinated mice were responsive to 14 predicted CD8+ TS epitopes, while T cells from mutant TS DNA vaccinated mice were responsive to just one of these 14 predicted TS epitopes. Molecular and structural biology studies revealed that this novel costimulatory mechanism involves CD45 signaling triggered by enzymatically active TS. This enhancing effect on subdominant T cells negatively regulates protective immunity. Using peptide-pulsed DC vaccination experiments, we have shown that vaccines inducing both immunodominant and subdominant epitope responses were significantly less protective than vaccines inducing only immunodominant-specific responses. These results have important implications for T. cruzi vaccine development. Of broader significance, we demonstrate that increasing breadth of T cell epitope responses induced by vaccination is not always advantageous for host immunity.
Prickett, Sara R; Voskamp, Astrid L; Dacumos-Hill, April; Symons, Karen; Rolland, Jennifer M; O'Hehir, Robyn E
2011-03-01
Peanut allergy is a life-threatening condition; there is currently no cure. Although whole allergen extracts are used for specific immunotherapy for many allergies, they can cause severe reactions, and even fatalities, in peanut allergy. This study aimed to identify short, T-cell epitope-based peptides that target allergen-specific CD4(+) T cells but do not bind IgE as candidates for safe peanut-specific immunotherapy. Multiple CD4(+) T-cell lines specific for the major peanut allergen Ara h 2 were generated from PBMCs of 16 HLA-diverse subjects with peanut allergy by using 5,6-carboxyfluorescein diacetate succinimidylester-based methodology. Proliferation and ELISPOT assays were used to identify dominant epitopes recognized by T-cell lines and to confirm recognition by peripheral blood T cells of epitope-based peptides modified for therapeutic production. HLA restriction of core epitope recognition was investigated by using anti-HLA blocking antibodies and HLA genotyping. Serum-IgE peptide-binding was assessed by dot-blot. Five dominant CD4(+) T-cell epitopes were identified in Ara h 2. In combination, these were presented by HLA-DR, HLA-DP, and HLA-DQ molecules and recognized by T cells from all 16 subjects. Three short peptide variants containing these T-cell epitopes were designed with cysteine-to-serine substitutions to facilitate stability and therapeutic production. Variant peptides showed HLA-binding degeneracy, did not bind peanut-specific serum IgE, and could directly target T(H)2-type T cells in peripheral blood of subjects with allergy. Short CD4(+) T-cell epitope-based Ara h 2 peptides were identified as novel candidates for a T-cell-targeted peanut-specific immunotherapy for an HLA-diverse population. Copyright © 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Mengistu, Meron; Ray, Krishanu; Lewis, George K; DeVico, Anthony L
2015-03-01
The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step. The elucidation of these epitope exposure patterns during viral entry will help clarify antibody-mediated inhibition of HIV-1 as it is measured in vitro and in vivo.
Song, Yanhua; Wang, Fang; Fan, Zhiyu; Hu, Bo; Liu, Xing; Wei, Houjun; Xue, Jiabin; Xu, Weizhong; Qiu, Rulong
2016-02-01
Rabbit haemorrhagic disease, caused by rabbit hemorrhagic disease virus (RHDV), results in the death of millions of adult rabbits worldwide, with a mortality rate that exceeds 90%. The sole capsid protein, VP60, is divided into shell (S) and protruding (P) domains, and the more exposed P domain likely contains determinants for cell attachment and antigenic diversity. Nine mAbs against VP60 were screened and identified. To map antigenic epitopes, a set of partially overlapping and consecutive truncated proteins spanning VP60 were expressed. The minimal determinants of the linear B-cell epitopes of VP60 in the P domain, N(326)PISQV(331), D(338)MSFV(342) and K(562)STLVFNL(569), were recognized by one (5H3), four (1B8, 3D11, 4C2 and 4G2) and four mAbs (1D4, 3F7, 5G2 and 6B2), respectively. Sequence alignment showed epitope D(338)MSFV(342) was conserved among all RHDV isolates. Epitopes N(326)PISQV(331) and K(562)STLVFNL(569) were highly conserved among RHDV G1-G6 and variable in RHDV2 strains. Previous studies demonstrated that native viral particles and virus-like particles (VLPs) of RHDV specifically bound to synthetic blood group H type 2 oligosaccharides. We established an oligosaccharide-based assay to analyse the binding of VP60 and epitopes to histo-blood group antigens (HBGAs). Results showed VP60 and its epitopes (aa 326-331 and 338-342) in the P2 subdomain could significantly bind to blood group H type 2. Furthermore, mAbs 1B8 and 5H3 could block RHDV VLP binding to synthetic H type 2. Collectively, these two epitopes might play a key role in the antigenic structure of VP60 and interaction of RHDV and HBGA.
He, Yuxian; Li, Jingjing; Du, Lanying; Yan, Xuxia; Hu, Guangan; Zhou, Yusen; Jiang, Shibo
2006-06-29
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is considered as a major antigen for vaccine design. We previously demonstrated that the receptor-binding domain (RBD: residues 318-510) of S protein contains multiple conformation-dependent neutralizing epitopes (Conf I to VI) and serves as a major target of SARS-CoV neutralization. Here, we further characterized the antigenic structure in the RBD by a panel of novel mAbs isolated from the mice immunized with an inactivated SARS-CoV vaccine. Ten of the RBD-specific mAbs were mapped to four distinct groups of conformational epitopes (designated Group A to D), and all of which had potent neutralizing activity against S protein-pseudotyped SARS viruses. Group A, B, C mAbs target the epitopes that may overlap with the previously characterized Conf I, III, and VI respectively, but they display different capacity to block the receptor binding. Group D mAb (S25) was directed against a unique epitope by its competitive binding. Two anti-RBD mAbs recognizing the linear epitopes (Group E) were mapped to the RBD residues 335-352 and 442-458, respectively, and none of them inhibited the receptor binding and virus entry. Surprisingly, most neutralizing epitopes (Groups A to C) could be completely disrupted by single amino acid substitutions (e.g., D429A, R441A or D454A) or by deletions of several amino acids at the N-terminal or C-terminal region of the RBD; however, the Group D epitope was not sensitive to the mutations, highlighting its importance for vaccine development. These data provide important information for understanding the antigenicity and immunogenicity of SARS-CoV, and this panel of novel mAbs can be used as tools for studying the structure of S protein and for guiding SARS vaccine design.
Gazarian, Karlen G; Palacios-Rodríguez, Yadira; Gazarian, Tatiana G; Huerta, Leonor
2013-06-01
The crown region of the V3 loop in HIV-1 that contains the conserved amino acid sequence GPGR/G is known as the principal neutralizing determinant due to the extraordinary ability of antibodies to this region to neutralize the virus. To complement the existing peptide models of this epitope, we describe a family of 18 phage-displayed peptides, which include linear 12mer and constrained 7mer peptides that was selected by screening random libraries with serum from HIV-1 subtype B-infected patients. The 7mer constrained peptides presented two conserved amino acid sequences: PR-L in N-terminus and GPG in the C-terminus. On the basis of these peptides we propose a mimotope model of the V3 crown epitope in which the PR-L and GPG sequences represent the two known epitope binding sites. The GPG, has the same function as the V3 crown GPGR sequence but without the involvement of the "R" despite its being considered as the signature of the epitope in B-subtype viruses. The PR-L contains a proline not existing in the epitope that is postulated to induce kinks in the backbones of all peptides and create a spatial element mimicking the N-terminal conformationally variable binding site. Rabbit serum to these mimotopes recognized the V3 peptides and moderately decreased the fusion between HIV-1 Env- and CD4-expressing Jurkat cells. This study proposes the efficient generation by means of patient sera of V3 epitope mimics validated by interaction with the antibodies to contemporary viruses induced in patients. The serum antibody-selectable mimotopes are sources of novel information on the fine structure-function properties of HIV-1 principal neutralizing domain and candidate anti-HIV-1 immunogens. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pusic, Kae M.; Hashimoto, Caryn N.; Lehrer, Axel; Aniya, Charmaine; Clements, David E.; Hui, George S.
2011-01-01
The C-terminal 42 kDa fragments of the P. falciparum Merozoite Surface Protein 1, MSP1-42 is a leading malaria vaccine candidate. MSP1-33, the N-terminal processed fragment of MSP1-42, is rich in T cell epitopes and it is hypothesized that they enhance antibody response toward MSP1-19. Here, we gave in vivo evidence that T cell epitope regions of MSP1-33 provide functional help in inducing anti-MSP1-19 antibodies. Eleven truncated MSP1-33 segments were expressed in tandem with MSP1-19, and immunogenicity was evaluated in Swiss Webster mice and New Zealand White rabbits. Analyses of anti-MSP1-19 antibody responses revealed striking differences in these segments' helper function despite that they all possess T cell epitopes. Only a few fragments induced a generalized response (100%) in outbred mice. These were comparable to or surpassed the responses observed with the full length MSP1-42. In rabbits, only a subset of truncated antigens induced potent parasite growth inhibitory antibodies. Notably, two constructs were more efficacious than MSP1-42, with one containing only conserved T cell epitopes. Moreover, another T cell epitope region induced high titers of non-inhibitory antibodies and they interfered with the inhibitory activities of anti-MSP1-42 antibodies. In mice, this region also induced a skewed TH2 cellular response. This is the first demonstration that T cell epitope regions of MSP1-33 positively or negatively influenced antibody responses. Differential recognition of these regions by humans may play critical roles in vaccine induced and/or natural immunity to MSP1-42. This study provides the rational basis to re-engineer more efficacious MSP1-42 vaccines by selective inclusion and exclusion of MSP1-33 specific T cell epitopes. PMID:21931852
Oliva, Harold; Moltedo, Bruno; De Ioannes, Pablo; Faunes, Fernando; De Ioannes, Alfredo E; Becker, María Inés
2002-10-01
We studied the reactivity of mouse monoclonal antibodies (MAbs) against the hemocyanin from the Chilean marine gastropod Concholepas concholepas (CCH). This protein has been successfully used as a carrier to produce antibodies to haptens and peptides. All MAbs (13) belonging to IgG subclass exhibit dissociation constants (K(d)) from 1 x 10(-7) M to 1 x 10(-9) M. MAbs were characterized by enzyme-linked immunosorbant assay (ELISA) using CCH treated with different procedures, including dissociation into CCH-A and CCH-B subunits, Western blot, enzymatic digestion, chemical deglycosylation, and thermal denaturation. MAbs were classified into three categories, according to subunit specificity by ELISA. The epitope distribution shows that CCH subunits display common epitopes (group I, 5 MAbs, 1H5, 2A8, 3A5, 3B3, and 3E3), as well as specific epitopes for CCH-A subunits (group II, 3 MAbs, 1B8, 4D8, and 8E5) and for CCH-B subunits (group III, 5 MAbs, 1A4, 1E4, 2H10, 3B7, and 7B4). The results can be summarized as follows: (1). six antibodies react with thermal denatured CCH, suggesting that they recognize linear epitopes, whereas seven recognize conformational epitopes; (2). oxidation of carbohydrate moieties does not affect the binding of the MAbs; (3). enzymatic digestion of CCH decreases the reactivity of all antibodies irrespective of the protease used (elastase or trypsin); (4). bringing together the above data, in addition to epitopic complementarity analysis, we identified 12 different epitopes on the CCH molecule recognized by these MAbs. The anti-CCH MAbs presented here can be useful tools to understand the subunit organization of the CCH and its complex structure, which can explain its immunogenic and immunostimulating properties in mammals.
Däumer, Martin P; Schneider, Beate; Giesen, Doris M; Aziz, Sheriff; Kaiser, Rolf; Kupfer, Bernd; Schneweis, Karl E; Schneider-Mergener, Jens; Reineke, Ulrich; Matz, Bertfried; Eis-Hübinger, Anna M
2011-05-01
Monoclonal antibody (MAb) 2c, specific for glycoprotein B of herpes simplex virus (HSV), had been shown to mediate clearance of infection from the mucous membranes of mice, thereby completely inhibiting mucocutaneous inflammation and lethality, even in mice depleted of both CD4(+) and CD8(+) cells. Additionally, ganglionic infection was highly restricted. In vitro, MAb 2c exhibits a potent complement-independent neutralising activity against HSV type 1 and 2, completely inhibits the viral cell-to-cell spread as well as the syncytium formation induced by syncytial HSV strains (Eis-Hübinger et al. in Intervirology 32:351-360, 1991; Eis-Hübinger et al. in J Gen Virol 74:379-385, 1993). Here, we describe the mapping of the epitope for MAb 2c. The antibody was found to recognise a discontinuous epitope comprised of the HSV type 1 glycoprotein B residues 299 to 305 and one or more additional discontinuous regions that can be mimicked by the sequence FEDF. Identification of the epitope was confirmed by loss of antibody binding to mutated glycoprotein B with replacement of the epitopic key residues, expressed in COS-1 cells. Similarly, MAb 2c was not able to neutralise HSV mutants with altered key residues, and MAb 2c was ineffective in mice inoculated with such mutants. Interestingly, identification and fine-mapping of the discontinuous epitope was not achieved by binding studies with truncated glycoprotein B variants expressed in COS cells but by peptide scanning with synthetic overlapping peptides and peptide key motif analysis. Reactivity of MAb 2c was immensely increased towards a peptide composed of the glycoprotein B residues 299 to 305, a glycine linker, and a C-terminal FEDF motif. If it could be demonstrated that antibodies of the specificity and bioactivity of MAb 2c can be induced by the epitope or a peptide mimicking the epitope, strategies for active immunisation might be conceivable.
Sookrung, Nitat; Khetsuphan, Thanyathon; Chaisri, Urai; Indrawattana, Nitaya; Reamtong, Onrapak; Chaicumpa, Wanpen; Tungtrongchitr, Anchalee
2014-07-01
Cockroach (CR) is a common source of indoor allergens, and Per a 1 is a major American CR (Periplaneta americana) allergen; however, several attributes of this protein remain unknown. This study identifies a novel specific B cell epitope and anatomical locations of Per a 1.0105. Recombinant Per a 1.0105 (rPer a 1.0105) was used as BALB/c mouse immunogen for the production of monoclonal antibodies (MAb). The MAb specific B cell epitope was identified by determining phage mimotopic peptides and pair-wise alignment of the peptides with the rPer a 1.0105 amino acid sequence. Locations of the Per a 1.0105 in P. americana were investigated by immunohistochemical staining. The rPer a 1.0105 (~13 kDa) had 100%, 98% and ≥90% identity to Per a 1.0105, Per a 1.0101, and Cr-PII, respectively. The B-cell epitope of the Per a 1.0105 specific-MAb was located at residues(99) QDLLLQLRDKGV(110) contained in all 5 Per a 1.01 isoforms and Per a 1.02. The epitope was analogous to the Bla g 1.02 epitope; however, this B-cell epitope was not an IgE inducer. Per a 1.0105 was found in the midgut and intestinal content of American CR but not in the other organs. The amount of the Per a 1 was ~544 ℃g per gram of feces. The novel Per a 1 B-cell epitope described in this study is a useful target for allergen quantification in samples; however, the specific MAb can be used as an allergen detection reagent. The MAb based-affinity resin can be made for allergen purification, and the so-purified protein can serve as a standard and diagnostic allergen as well as a therapeutic vaccine component. The finding that the Per a 1 is contained in the midgut and feces is useful to increase yield and purity when preparing this allergen.
2014-01-01
Background Recent efforts in HIV-1 vaccine design have focused on immunogens that evoke potent neutralizing antibody responses to a broad spectrum of viruses circulating worldwide. However, the development of effective vaccines will depend on the identification and characterization of the neutralizing antibodies and their epitopes. We developed bioinformatics methods to predict epitope networks and antigenic determinants using structural information, as well as corresponding genotypes and phenotypes generated by a highly sensitive and reproducible neutralization assay. 282 clonal envelope sequences from a multiclade panel of HIV-1 viruses were tested in viral neutralization assays with an array of broadly neutralizing monoclonal antibodies (mAbs: b12, PG9,16, PGT121 - 128, PGT130 - 131, PGT135 - 137, PGT141 - 145, and PGV04). We correlated IC50 titers with the envelope sequences, and used this information to predict antibody epitope networks. Structural patches were defined as amino acid groups based on solvent-accessibility, radius, atomic depth, and interaction networks within 3D envelope models. We applied a boosted algorithm consisting of multiple machine-learning and statistical models to evaluate these patches as possible antibody epitope regions, evidenced by strong correlations with the neutralization response for each antibody. Results We identified patch clusters with significant correlation to IC50 titers as sites that impact neutralization sensitivity and therefore are potentially part of the antibody binding sites. Predicted epitope networks were mostly located within the variable loops of the envelope glycoprotein (gp120), particularly in V1/V2. Site-directed mutagenesis experiments involving residues identified as epitope networks across multiple mAbs confirmed association of these residues with loss or gain of neutralization sensitivity. Conclusions Computational methods were implemented to rapidly survey protein structures and predict epitope networks associated with response to individual monoclonal antibodies, which resulted in the identification and deeper understanding of immunological hotspots targeted by broadly neutralizing HIV-1 antibodies. PMID:24646213
Clinical Control of HIV-1 by Cytotoxic T Cells Specific for Multiple Conserved Epitopes.
Murakoshi, Hayato; Akahoshi, Tomohiro; Koyanagi, Madoka; Chikata, Takayuki; Naruto, Takuya; Maruyama, Rie; Tamura, Yoshiko; Ishizuka, Naoki; Gatanaga, Hiroyuki; Oka, Shinichi; Takiguchi, Masafumi
2015-05-01
Identification and characterization of CD8(+) T cells effectively controlling HIV-1 variants are necessary for the development of AIDS vaccines and for studies of AIDS pathogenesis, although such CD8(+) T cells have been only partially identified. In this study, we sought to identify CD8(+) T cells controlling HIV-1 variants in 401 Japanese individuals chronically infected with HIV-1 subtype B, in which protective alleles HLA-B*57 and HLA-B*27 are very rare, by using comprehensive and exhaustive methods. We identified 13 epitope-specific CD8(+) T cells controlling HIV-1 in Japanese individuals, though 9 of these epitopes were not previously reported. The breadths of the T cell responses to the 13 epitopes were inversely associated with plasma viral load (P = 2.2 × 10(-11)) and positively associated with CD4 count (P = 1.2 × 10(-11)), indicating strong synergistic effects of these T cells on HIV-1 control in vivo. Nine of these epitopes were conserved among HIV-1 subtype B-infected individuals, whereas three out of four nonconserved epitopes were cross-recognized by the specific T cells. These findings indicate that these 12 epitopes are strong candidates for antigens for an AIDS vaccine. The present study highlighted a strategy to identify CD8(+) T cells controlling HIV-1 and demonstrated effective control of HIV-1 by those specific for 12 conserved or cross-reactive epitopes. HLA-B*27-restricted and HLA-B*57-restricted cytotoxic T lymphocytes (CTLs) play a key role in controlling HIV-1 in Caucasians and Africans, whereas it is unclear which CTLs control HIV-1 in Asian countries, where HLA-B*57 and HLA-B*27 are very rare. A recent study showed that HLA-B*67:01 and HLA-B*52:01-C*12:02 haplotypes were protective alleles in Japanese individuals, but it is unknown whether CTLs restricted by these alleles control HIV-1. In this study, we identified 13 CTLs controlling HIV-1 in Japan by using comprehensive and exhaustive methods. They included 5 HLA-B*52:01-restricted and 3 HLA-B*67:01-restricted CTLs, suggesting that these CTLs play a predominant role in HIV-1 control. The 13 CTLs showed synergistic effects on HIV-1 control. Twelve out of these 13 epitopes were recognized as conserved or cross-recognized ones. These findings strongly suggest that these 12 epitopes are candidates for antigens for AIDS vaccines. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Clinical Control of HIV-1 by Cytotoxic T Cells Specific for Multiple Conserved Epitopes
Murakoshi, Hayato; Akahoshi, Tomohiro; Koyanagi, Madoka; Chikata, Takayuki; Naruto, Takuya; Maruyama, Rie; Tamura, Yoshiko; Ishizuka, Naoki; Gatanaga, Hiroyuki; Oka, Shinichi
2015-01-01
ABSTRACT Identification and characterization of CD8+ T cells effectively controlling HIV-1 variants are necessary for the development of AIDS vaccines and for studies of AIDS pathogenesis, although such CD8+ T cells have been only partially identified. In this study, we sought to identify CD8+ T cells controlling HIV-1 variants in 401 Japanese individuals chronically infected with HIV-1 subtype B, in which protective alleles HLA-B*57 and HLA-B*27 are very rare, by using comprehensive and exhaustive methods. We identified 13 epitope-specific CD8+ T cells controlling HIV-1 in Japanese individuals, though 9 of these epitopes were not previously reported. The breadths of the T cell responses to the 13 epitopes were inversely associated with plasma viral load (P = 2.2 × 10−11) and positively associated with CD4 count (P = 1.2 × 10−11), indicating strong synergistic effects of these T cells on HIV-1 control in vivo. Nine of these epitopes were conserved among HIV-1 subtype B-infected individuals, whereas three out of four nonconserved epitopes were cross-recognized by the specific T cells. These findings indicate that these 12 epitopes are strong candidates for antigens for an AIDS vaccine. The present study highlighted a strategy to identify CD8+ T cells controlling HIV-1 and demonstrated effective control of HIV-1 by those specific for 12 conserved or cross-reactive epitopes. IMPORTANCE HLA-B*27-restricted and HLA-B*57-restricted cytotoxic T lymphocytes (CTLs) play a key role in controlling HIV-1 in Caucasians and Africans, whereas it is unclear which CTLs control HIV-1 in Asian countries, where HLA-B*57 and HLA-B*27 are very rare. A recent study showed that HLA-B*67:01 and HLA-B*52:01-C*12:02 haplotypes were protective alleles in Japanese individuals, but it is unknown whether CTLs restricted by these alleles control HIV-1. In this study, we identified 13 CTLs controlling HIV-1 in Japan by using comprehensive and exhaustive methods. They included 5 HLA-B*52:01-restricted and 3 HLA-B*67:01-restricted CTLs, suggesting that these CTLs play a predominant role in HIV-1 control. The 13 CTLs showed synergistic effects on HIV-1 control. Twelve out of these 13 epitopes were recognized as conserved or cross-recognized ones. These findings strongly suggest that these 12 epitopes are candidates for antigens for AIDS vaccines. PMID:25741000
Machkovech, Heather M.; Bedford, Trevor; Suchard, Marc A.
2015-01-01
ABSTRACT Numerous experimental studies have demonstrated that CD8+ T cells contribute to immunity against influenza by limiting viral replication. It is therefore surprising that rigorous statistical tests have failed to find evidence of positive selection in the epitopes targeted by CD8+ T cells. Here we use a novel computational approach to test for selection in CD8+ T-cell epitopes. We define all epitopes in the nucleoprotein (NP) and matrix protein (M1) with experimentally identified human CD8+ T-cell responses and then compare the evolution of these epitopes in parallel lineages of human and swine influenza viruses that have been diverging since roughly 1918. We find a significant enrichment of substitutions that alter human CD8+ T-cell epitopes in NP of human versus swine influenza virus, consistent with the idea that these epitopes are under positive selection. Furthermore, we show that epitope-altering substitutions in human influenza virus NP are enriched on the trunk versus the branches of the phylogenetic tree, indicating that viruses that acquire these mutations have a selective advantage. However, even in human influenza virus NP, sites in T-cell epitopes evolve more slowly than do nonepitope sites, presumably because these epitopes are under stronger inherent functional constraint. Overall, our work demonstrates that there is clear selection from CD8+ T cells in human influenza virus NP and illustrates how comparative analyses of viral lineages from different hosts can identify positive selection that is otherwise obscured by strong functional constraint. IMPORTANCE There is a strong interest in correlates of anti-influenza immunity that are protective against diverse virus strains. CD8+ T cells provide such broad immunity, since they target conserved viral proteins. An important question is whether T-cell immunity is sufficiently strong to drive influenza virus evolution. Although many studies have shown that T cells limit viral replication in animal models and are associated with decreased symptoms in humans, no studies have proven with statistical significance that influenza virus evolves under positive selection to escape T cells. Here we use comparisons of human and swine influenza viruses to rigorously demonstrate that human influenza virus evolves under pressure to fix mutations in the nucleoprotein that promote escape from T cells. We further show that viruses with these mutations have a selective advantage since they are preferentially located on the “trunk” of the phylogenetic tree. Overall, our results show that CD8+ T cells targeting nucleoprotein play an important role in shaping influenza virus evolution. PMID:26311880
Surface display of Salmonella epitopes in Escherichia coli and Staphylococcus carnosus.
Nhan, Nguyen Thanh; Gonzalez de Valdivia, Ernesto; Gustavsson, Martin; Hai, Truong Nam; Larsson, Gen
2011-04-11
Salmonella enterica serotype Enteritidis (SE) is considered to be one of the most potent pathogenic Salmonella serotypes causing food-borne disease in humans. Since a live bacterial vaccine based on surface display of antigens has many advantages over traditional vaccines, we have studied the surface display of the SE antigenic proteins, H:gm and SefA in Escherichia coli by the β-autotransporter system, AIDA. This procedure was compared to protein translocation in Staphylococcus carnosus, using a staphylococci hybrid vector earlier developed for surface display of other vaccine epitopes. Both SefA and H:gm were translocated to the outer membrane in Escherichia coli. SefA was expressed to full length but H:gm was shorter than expected, probably due to a proteolytic cleavage of the N-terminal during passage either through the periplasm or over the membrane. FACS analysis confirmed that SefA was facing the extracellular environment, but this could not be conclusively established for H:gm since the N-terminal detection tag (His6) was cleaved off. Polyclonal salmonella antibodies confirmed the sustained antibody-antigen binding towards both proteins. The surface expression data from Staphylococcus carnosus suggested that the H:gm and SefA proteins were transported to the cell wall since the detection marker was displayed by FACS analysis. Apart from the accumulated knowledge and the existence of a wealth of equipment and techniques, the results indicate the selection of E. coli for further studies for surface expression of salmonella antigens. Surface expression of the full length protein facing the cell environment was positively proven by standard analysis, and the FACS signal comparison to expression in Staphylococcus carnosus shows that the distribution of the surface protein on each cell was comparatively very narrow in E. coli, the E. coli outer membrane molecules can serve as an adjuvant for the surface antigenic proteins and multimeric forms of the SefA protein were detected which would probably be positive for the realisation of a strong antigenic property. The detection of specific and similar proteolytic cleavage patterns for both the proteins provides a further starting point for the investigation and development of the Escherichia coli AIDA autotransporter efficiency.
HLA-B*35-Restricted CD8+-T-Cell Epitope in Mycobacterium tuberculosis Rv2903c
Klein, Michèl R.; Hammond, Abdulrahman S.; Smith, Steve M.; Jaye, Assan; Lukey, Pauline T.; McAdam, Keith P. W. J.
2002-01-01
Few human CD8+ T-cell epitopes in mycobacterial antigens have been described to date. Here we have identified a novel HLA-B*35-restricted CD8+ T-cell epitope in Mycobacterium tuberculosis Rv2903c based on a reverse immunogenetics approach. Peptide-specific CD8 T cells were able to kill M. tuberculosis-infected macrophages and produce gamma interferon and tumor necrosis factor alpha. PMID:11796635
Characterization of CTL Recognized Epitopes on Human Breast Tumors
1996-09-01
maturation and effector function of cellular immune cytotoxic effectors such as CTL (11). (c) The epitopes defined on tumor Ag are self-peptides of...have been reported to be expressed in breast and ovarian cancer cells (18), and they apparently function by maintaining the undifferentiated state...Body of the Report The purpose of the present work continues to be the characterization of the functional significance of the CTL epitopes as potential