The human dark side: evolutionary psychology and original sin.
Lee, Joseph; Theol, M
2014-04-01
Human nature has a dark side, something important to religions. Evolutionary psychology has been used to illuminate the human shadow side, although as a discipline it has attracted criticism. This article seeks to examine the evolutionary psychology's understanding of human nature and to propose an unexpected dialog with an enduring account of human evil known as original sin. Two cases are briefly considered: murder and rape. To further the exchange, numerous theoretical and methodological criticisms and replies of evolutionary psychology are explored jointly with original sin. Evolutionary psychology can partner with original sin since they share some theoretical likenesses and together they offer insights into the nature of what it means to be human.
NASA Technical Reports Server (NTRS)
Margulis, L.; Fester, R.
1991-01-01
This conference at the Bellagio Conference Center, Italy, from June 25-30, 1989, provided a unique opportunity for evolutionary theorists and symbiosis biologists to cross the boundaries of their respective disciplines and share ideas. A major task was to address the adequacy of the prevailing neodarwinian concept of evolution with respect to the relative importance of symbiosis in the origin of morphological and evolutionary novelty.
The origins and evolution of leadership.
King, Andrew J; Johnson, Dominic D P; Van Vugt, Mark
2009-10-13
How groups of individuals achieve coordination and collective action is an important topic in the natural sciences, but until recently the role of leadership in this process has been largely overlooked. In contrast, leadership is arguably one of the most important themes in the social sciences, permeating all aspects of human social affairs: the election of Barack Obama, the war in Iraq, and the collapse of the banks are all high-profile events that draw our attention to the fundamental role of leadership and followership. Converging ideas and developments in both the natural and social sciences suggest that leadership and followership share common properties across humans and other animals, pointing to ancient roots and evolutionary origins. Here, we draw upon key insights from the animal and human literature to lay the foundation for a new science of leadership inspired by an evolutionary perspective. Identifying the origins of human leadership and followership, as well as which aspects are shared with other animals and which are unique, offers ways of understanding, predicting, and improving leadership today.
Chanderbali, André S.; Yoo, Mi-Jeong; Zahn, Laura M.; Brockington, Samuel F.; Wall, P. Kerr; Gitzendanner, Matthew A.; Albert, Victor A.; Leebens-Mack, James; Altman, Naomi S.; Ma, Hong; dePamphilis, Claude W.; Soltis, Douglas E.; Soltis, Pamela S.
2010-01-01
The origin and rapid diversification of the angiosperms (Darwin's “Abominable Mystery”) has engaged generations of researchers. Here, we examine the floral genetic programs of phylogenetically pivotal angiosperms (water lily, avocado, California poppy, and Arabidopsis) and a nonflowering seed plant (a cycad) to obtain insight into the origin and subsequent evolution of the flower. Transcriptional cascades with broadly overlapping spatial domains, resembling the hypothesized ancestral gymnosperm program, are deployed across morphologically intergrading organs in water lily and avocado flowers. In contrast, spatially discrete transcriptional programs in distinct floral organs characterize the more recently derived angiosperm lineages represented by California poppy and Arabidopsis. Deep evolutionary conservation in the genetic programs of putatively homologous floral organs traces to those operating in gymnosperm reproductive cones. Female gymnosperm cones and angiosperm carpels share conserved genetic features, which may be associated with the ovule developmental program common to both organs. However, male gymnosperm cones share genetic features with both perianth (sterile attractive and protective) organs and stamens, supporting the evolutionary origin of the floral perianth from the male genetic program of seed plants. PMID:21149731
Chanderbali, André S; Yoo, Mi-Jeong; Zahn, Laura M; Brockington, Samuel F; Wall, P Kerr; Gitzendanner, Matthew A; Albert, Victor A; Leebens-Mack, James; Altman, Naomi S; Ma, Hong; dePamphilis, Claude W; Soltis, Douglas E; Soltis, Pamela S
2010-12-28
The origin and rapid diversification of the angiosperms (Darwin's "Abominable Mystery") has engaged generations of researchers. Here, we examine the floral genetic programs of phylogenetically pivotal angiosperms (water lily, avocado, California poppy, and Arabidopsis) and a nonflowering seed plant (a cycad) to obtain insight into the origin and subsequent evolution of the flower. Transcriptional cascades with broadly overlapping spatial domains, resembling the hypothesized ancestral gymnosperm program, are deployed across morphologically intergrading organs in water lily and avocado flowers. In contrast, spatially discrete transcriptional programs in distinct floral organs characterize the more recently derived angiosperm lineages represented by California poppy and Arabidopsis. Deep evolutionary conservation in the genetic programs of putatively homologous floral organs traces to those operating in gymnosperm reproductive cones. Female gymnosperm cones and angiosperm carpels share conserved genetic features, which may be associated with the ovule developmental program common to both organs. However, male gymnosperm cones share genetic features with both perianth (sterile attractive and protective) organs and stamens, supporting the evolutionary origin of the floral perianth from the male genetic program of seed plants.
Bass, Andrew H.; Chagnaud, Boris P.
2012-01-01
Acoustic signaling behaviors are widespread among bony vertebrates, which include the majority of living fishes and tetrapods. Developmental studies in sound-producing fishes and tetrapods indicate that central pattern generating networks dedicated to vocalization originate from the same caudal hindbrain rhombomere (rh) 8-spinal compartment. Together, the evidence suggests that vocalization and its morphophysiological basis, including mechanisms of vocal–respiratory coupling that are widespread among tetrapods, are ancestral characters for bony vertebrates. Premotor-motor circuitry for pectoral appendages that function in locomotion and acoustic signaling develops in the same rh8-spinal compartment. Hence, vocal and pectoral phenotypes in fishes share both developmental origins and roles in acoustic communication. These findings lead to the proposal that the coupling of more highly derived vocal and pectoral mechanisms among tetrapods, including those adapted for nonvocal acoustic and gestural signaling, originated in fishes. Comparative studies further show that rh8 premotor populations have distinct neurophysiological properties coding for equally distinct behavioral attributes such as call duration. We conclude that neural network innovations in the spatiotemporal patterning of vocal and pectoral mechanisms of social communication, including forelimb gestural signaling, have their evolutionary origins in the caudal hindbrain of fishes. PMID:22723366
Viruses and mobile elements as drivers of evolutionary transitions
2016-01-01
The history of life is punctuated by evolutionary transitions which engender emergence of new levels of biological organization that involves selection acting at increasingly complex ensembles of biological entities. Major evolutionary transitions include the origin of prokaryotic and then eukaryotic cells, multicellular organisms and eusocial animals. All or nearly all cellular life forms are hosts to diverse selfish genetic elements with various levels of autonomy including plasmids, transposons and viruses. I present evidence that, at least up to and including the origin of multicellularity, evolutionary transitions are driven by the coevolution of hosts with these genetic parasites along with sharing of ‘public goods’. Selfish elements drive evolutionary transitions at two distinct levels. First, mathematical modelling of evolutionary processes, such as evolution of primitive replicator populations or unicellular organisms, indicates that only increasing organizational complexity, e.g. emergence of multicellular aggregates, can prevent the collapse of the host–parasite system under the pressure of parasites. Second, comparative genomic analysis reveals numerous cases of recruitment of genes with essential functions in cellular life forms, including those that enable evolutionary transitions. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431520
Viruses and mobile elements as drivers of evolutionary transitions.
Koonin, Eugene V
2016-08-19
The history of life is punctuated by evolutionary transitions which engender emergence of new levels of biological organization that involves selection acting at increasingly complex ensembles of biological entities. Major evolutionary transitions include the origin of prokaryotic and then eukaryotic cells, multicellular organisms and eusocial animals. All or nearly all cellular life forms are hosts to diverse selfish genetic elements with various levels of autonomy including plasmids, transposons and viruses. I present evidence that, at least up to and including the origin of multicellularity, evolutionary transitions are driven by the coevolution of hosts with these genetic parasites along with sharing of 'public goods'. Selfish elements drive evolutionary transitions at two distinct levels. First, mathematical modelling of evolutionary processes, such as evolution of primitive replicator populations or unicellular organisms, indicates that only increasing organizational complexity, e.g. emergence of multicellular aggregates, can prevent the collapse of the host-parasite system under the pressure of parasites. Second, comparative genomic analysis reveals numerous cases of recruitment of genes with essential functions in cellular life forms, including those that enable evolutionary transitions.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Authors.
Governing Tomorrow's Campus. Perspectives and Agendas.
ERIC Educational Resources Information Center
Schuster, Jack H.; And Others
A collection of original essays about who will and should share in governing colleges and universities is presented. Five parts contain 15 chapters as follows: (1) The Context of Contemporary Campus Governance: "Academic Governance: An Evolutionary Perspective," (W. Metzger); (2) New Perspectives on Campus Governance: "Leadership and Followership:…
The Paradox of Isochrony in the Evolution of Human Rhythm
Ravignani, Andrea; Madison, Guy
2017-01-01
Isochrony is crucial to the rhythm of human music. Some neural, behavioral and anatomical traits underlying rhythm perception and production are shared with a broad range of species. These may either have a common evolutionary origin, or have evolved into similar traits under different evolutionary pressures. Other traits underlying rhythm are rare across species, only found in humans and few other animals. Isochrony, or stable periodicity, is common to most human music, but isochronous behaviors are also found in many species. It appears paradoxical that humans are particularly good at producing and perceiving isochronous patterns, although this ability does not conceivably confer any evolutionary advantage to modern humans. This article will attempt to solve this conundrum. To this end, we define the concept of isochrony from the present functional perspective of physiology, cognitive neuroscience, signal processing, and interactive behavior, and review available evidence on isochrony in the signals of humans and other animals. We then attempt to resolve the paradox of isochrony by expanding an evolutionary hypothesis about the function that isochronous behavior may have had in early hominids. Finally, we propose avenues for empirical research to examine this hypothesis and to understand the evolutionary origin of isochrony in general. PMID:29163252
Berruezo, Florencia; de Souza, Flávio S. J.; Picca, Pablo I.; Nemirovsky, Sergio I.; Martínez Tosar, Leandro; Rivero, Mercedes; Mentaberry, Alejandro N.
2017-01-01
MicroRNAs (miRNAs) are short, single stranded RNA molecules that regulate the stability and translation of messenger RNAs in diverse eukaryotic groups. Several miRNA genes are of ancient origin and have been maintained in the genomes of animal and plant taxa for hundreds of millions of years, playing key roles in development and physiology. In the last decade, genome and small RNA (sRNA) sequencing of several plant species have helped unveil the evolutionary history of land plants. Among these, the fern group (monilophytes) occupies a key phylogenetic position, as it represents the closest extant cousin taxon of seed plants, i.e. gymno- and angiosperms. However, in spite of their evolutionary, economic and ecological importance, no fern genome has been sequenced yet and few genomic resources are available for this group. Here, we sequenced the small RNA fraction of an epiphytic South American fern, Pleopeltis minima (Polypodiaceae), and compared it to plant miRNA databases, allowing for the identification of miRNA families that are shared by all land plants, shared by all vascular plants (tracheophytes) or shared by euphyllophytes (ferns and seed plants) only. Using the recently described transcriptome of another fern, Lygodium japonicum, we also estimated the degree of conservation of fern miRNA targets in relation to other plant groups. Our results pinpoint the origin of several miRNA families in the land plant evolutionary tree with more precision and are a resource for future genomic and functional studies of fern miRNAs. PMID:28494025
Berruezo, Florencia; de Souza, Flávio S J; Picca, Pablo I; Nemirovsky, Sergio I; Martínez Tosar, Leandro; Rivero, Mercedes; Mentaberry, Alejandro N; Zelada, Alicia M
2017-01-01
MicroRNAs (miRNAs) are short, single stranded RNA molecules that regulate the stability and translation of messenger RNAs in diverse eukaryotic groups. Several miRNA genes are of ancient origin and have been maintained in the genomes of animal and plant taxa for hundreds of millions of years, playing key roles in development and physiology. In the last decade, genome and small RNA (sRNA) sequencing of several plant species have helped unveil the evolutionary history of land plants. Among these, the fern group (monilophytes) occupies a key phylogenetic position, as it represents the closest extant cousin taxon of seed plants, i.e. gymno- and angiosperms. However, in spite of their evolutionary, economic and ecological importance, no fern genome has been sequenced yet and few genomic resources are available for this group. Here, we sequenced the small RNA fraction of an epiphytic South American fern, Pleopeltis minima (Polypodiaceae), and compared it to plant miRNA databases, allowing for the identification of miRNA families that are shared by all land plants, shared by all vascular plants (tracheophytes) or shared by euphyllophytes (ferns and seed plants) only. Using the recently described transcriptome of another fern, Lygodium japonicum, we also estimated the degree of conservation of fern miRNA targets in relation to other plant groups. Our results pinpoint the origin of several miRNA families in the land plant evolutionary tree with more precision and are a resource for future genomic and functional studies of fern miRNAs.
USDA-ARS?s Scientific Manuscript database
Population genetic and phylogenetic studies showed that P. nodorum is a member of a species-complex that likely shares its center of origin with wheat. We examined the evolutionary history of three known necrotrophic effectors (NEs) produced by Phaeosphaeria nodorum and compared it to neutral loci. ...
ERIC Educational Resources Information Center
Johnston, Angie M.; Holden, Paul C.; Santos, Laurie R.
2017-01-01
When learning from others, human children tend to faithfully copy--or "overimitate"--the actions of a demonstrator, even when these actions are irrelevant for solving the task at hand. We investigate whether domesticated dogs ("Canis familiaris") and dingoes ("Canis dingo") share this tendency to overimitate in three…
Gustavson, Daniel E; Miyake, Akira; Hewitt, John K; Friedman, Naomi P
2014-06-01
Previous research has revealed a moderate and positive correlation between procrastination and impulsivity. However, little is known about why these two constructs are related. In the present study, we used behavior-genetics methodology to test three predictions derived from an evolutionary account that postulates that procrastination arose as a by-product of impulsivity: (a) Procrastination is heritable, (b) the two traits share considerable genetic variation, and (c) goal-management ability is an important component of this shared variation. These predictions were confirmed. First, both procrastination and impulsivity were moderately heritable (46% and 49%, respectively). Second, although the two traits were separable at the phenotypic level (r = .65), they were not separable at the genetic level (r genetic = 1.0). Finally, variation in goal-management ability accounted for much of this shared genetic variation. These results suggest that procrastination and impulsivity are linked primarily through genetic influences on the ability to use high-priority goals to effectively regulate actions. © The Author(s) 2014.
Gustavson, Daniel E.; Miyake, Akira; Hewitt, John K.; Friedman, Naomi P.
2014-01-01
Previous research has revealed a moderate positive correlation between procrastination and impulsivity. However, little is known about why these two constructs are related. This study used behavioral genetic methodology to test three predictions derived from an evolutionary account that postulates that procrastination arose as a by-product of impulsivity (Steel, 2010): (a) Procrastination is heritable; (b) the two traits share considerable genetic variation; and (c) goal-management ability is an important component of this shared variation. These predictions were confirmed. First, both procrastination and impulsivity were moderately heritable (46% and 49%, respectively). Second, although the two traits were separable at the phenotypic level (r=.65), they were not separable at the genetic level (rg=1.0). Finally, variation in goal-management ability accounted for much of this shared genetic variation. These results suggest that procrastination and impulsivity are linked primarily through genetic influences on the ability to use their high-priority goals effectively to regulate their action. PMID:24705635
A solution to the collective action problem in between-group conflict with within-group inequality
Gavrilets, Sergey; Fortunato, Laura
2014-01-01
Conflict with conspecifics from neighbouring groups over territory, mating opportunities and other resources is observed in many social organisms, including humans. Here we investigate the evolutionary origins of social instincts, as shaped by selection resulting from between-group conflict in the presence of a collective action problem. We focus on the effects of the differences between individuals on the evolutionary dynamics. Our theoretical models predict that high-rank individuals, who are able to usurp a disproportional share of resources in within-group interactions, will act seemingly altruistically in between-group conflict, expending more effort and often having lower reproductive success than their low-rank group-mates. Similar behaviour is expected for individuals with higher motivation, higher strengths or lower costs, or for individuals in a leadership position. Our theory also provides an evolutionary foundation for classical equity theory, and it has implications for the origin of coercive leadership and for reproductive skew theory. PMID:24667443
USDA-ARS?s Scientific Manuscript database
Capa and pyrokinin (pk) genes in hexapods share a common evolutionary origin. Using transcriptomics and peptidomics, we analyzed products of these genes in two beetles, the giant mealworm beetle (Zophobas atratus; Tenebrionidae) and the boll weevil (Anthonomus grandis grandis; Curculionidae). Our ...
Kümpers, Britta M. C.; Smith-Unna, Richard D.; Hibberd, Julian M.
2014-01-01
With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ∼50% in tropical and subtropical areas. The extent to which separate lineages of C4 plants use the same genetic networks to maintain C4 photosynthesis is unknown. We developed a new informatics framework to enable deep evolutionary comparison of gene expression in species lacking reference genomes. We exploited this to compare gene expression in species representing two independent C4 lineages (Cleome gynandra and Zea mays) whose last common ancestor diverged ∼140 million years ago. We define a cohort of 3,335 genes that represent conserved components of leaf and photosynthetic development in these species. Furthermore, we show that genes encoding proteins of the C4 cycle are recruited into networks defined by photosynthesis-related genes. Despite the wide evolutionary separation and independent origins of the C4 phenotype, we report that these species use homologous transcription factors to both induce C4 photosynthesis and to maintain the cell specific gene expression required for the pathway to operate. We define a core molecular signature associated with leaf and photosynthetic maturation that is likely shared by angiosperm species derived from the last common ancestor of the monocotyledons and dicotyledons. We show that deep evolutionary comparisons of gene expression can reveal novel insight into the molecular convergence of highly complex phenotypes and that parallel evolution of trans-factors underpins the repeated appearance of C4 photosynthesis. Thus, exploitation of extant natural variation associated with complex traits can be used to identify regulators. Moreover, the transcription factors that are shared by independent C4 lineages are key targets for engineering the C4 pathway into C3 crops such as rice. PMID:24901697
Molluscan engrailed expression, serial organization, and shell evolution
NASA Technical Reports Server (NTRS)
Jacobs, D. K.; Wray, C. G.; Wedeen, C. J.; Kostriken, R.; DeSalle, R.; Staton, J. L.; Gates, R. D.; Lindberg, D. R.
2000-01-01
Whether the serial features found in some molluscs are ancestral or derived is considered controversial. Here, in situ hybridization and antibody studies show iterated engrailed-gene expression in transverse rows of ectodermal cells bounding plate field development and spicule formation in the chiton, Lepidochitona cavema, as well as in cells surrounding the valves and in the early development of the shell hinge in the clam, Transennella tantilla. Ectodermal expression of engrailed is associated with skeletogenesis across a range of bilaterian phyla, suggesting a single evolutionary origin of invertebrate skeletons. The shared ancestry of bilaterian-invertebrate skeletons may help explain the sudden appearance of shelly fossils in the Cambrian. Our interpretation departs from the consideration of canonical metameres or segments as units of evolutionary analysis. In this interpretation, the shared ancestry of engrailed-gene function in the terminal/posterior addition of serially repeated elements during development explains the iterative expression of engrailed genes in a range of metazoan body plans.
Research on Information Sharing Mechanism of Network Organization Based on Evolutionary Game
NASA Astrophysics Data System (ADS)
Wang, Lin; Liu, Gaozhi
2018-02-01
This article first elaborates the concept and effect of network organization, and the ability to share information is analyzed, secondly introduces the evolutionary game theory, network organization for information sharing all kinds of limitations, establishes the evolutionary game model, analyzes the dynamic evolution of network organization of information sharing, through reasoning and evolution. The network information sharing by the initial state and two sides of the game payoff matrix of excess profits and information is the information sharing of cost and risk sharing are the influence of network organization node information sharing decision.
Donkey Orchid Symptomless Virus: A Viral ‘Platypus’ from Australian Terrestrial Orchids
Wylie, Stephen J.; Li, Hua; Jones, Michael G. K.
2013-01-01
Complete and partial genome sequences of two isolates of an unusual new plant virus, designated Donkey orchid symptomless virus (DOSV) were identified using a high-throughput sequencing approach. The virus was identified from asymptomatic plants of Australian terrestrial orchid Diuris longifolia (Common donkey orchid) growing in a remnant forest patch near Perth, western Australia. DOSV was identified from two D. longifolia plants of 264 tested, and from at least one plant of 129 Caladenia latifolia (pink fairy orchid) plants tested. Phylogenetic analysis of the genome revealed open reading frames (ORF) encoding seven putative proteins of apparently disparate origins. A 69-kDa protein (ORF1) that overlapped the replicase shared low identity with MPs of plant tymoviruses (Tymoviridae). A 157-kDa replicase (ORF2) and 22-kDa coat protein (ORF4) shared 32% and 40% amino acid identity, respectively, with homologous proteins encoded by members of the plant virus family Alphaflexiviridae. A 44-kDa protein (ORF3) shared low identity with myosin and an autophagy protein from Squirrelpox virus. A 27-kDa protein (ORF5) shared no identity with described proteins. A 14-kDa protein (ORF6) shared limited sequence identity (26%) over a limited region of the envelope glycoprotein precursor of mammal-infecting Crimea-Congo hemorrhagic fever virus (Bunyaviridae). The putative 25-kDa movement protein (MP) (ORF7) shared limited (27%) identity with 3A-like MPs of members of the plant-infecting Tombusviridae and Virgaviridae. Transmissibility was shown when DOSV systemically infected Nicotiana benthamiana plants. Structure and organization of the domains within the putative replicase of DOSV suggests a common evolutionary origin with ‘potexvirus-like’ replicases of viruses within the Alphaflexiviridae and Tymoviridae, and the CP appears to be ancestral to CPs of allexiviruses (Alphaflexiviridae). The MP shares an evolutionary history with MPs of dianthoviruses, but the other putative proteins are distant from plant viruses. DOSV is not readily classified in current lower order virus taxa. PMID:24223974
The semaphorontic view of homology.
Havstad, Joyce C; Assis, Leandro C S; Rieppel, Olivier
2015-11-01
The relation of homology is generally characterized as an identity relation, or alternatively as a correspondence relation, both of which are transitive. We use the example of the ontogenetic development and evolutionary origin of the gnathostome jaw to discuss identity and transitivity of the homology relation under the transformationist and emergentist paradigms respectively. Token identity and consequent transitivity of homology relations are shown to be requirements that are too strong to allow the origin of genuine evolutionary novelties. We consequently introduce the concept of compositional identity that is grounded in relations prevailing between parts (organs and organ systems) of a whole (organism). We recognize an ontogenetic identity of parts within a whole throughout the sequence of successive developmental stages of those parts: this is an intra-organismal character identity maintained throughout developmental trajectory. Correspondingly, we recognize a phylogenetic identity of homologous parts within two or more organisms of different species: this is an inter-species character identity maintained throughout evolutionary trajectory. These different dimensions of character identity--ontogenetic (through development) and phylogenetic (via shared evolutionary history)--break the transitivity of homology relations. Under the transformationist paradigm, the relation of homology reigns over the entire character (-state) transformation series, and thus encompasses the plesiomorphic as well as the apomorphic condition of form. In contrast, genuine evolutionary novelties originate not through transformation of ancestral characters (-states), but instead through deviating developmental trajectories that result in alternate characters. Under the emergentist paradigm, homology is thus synonymous with synapomorphy. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals, Inc.
The evolutionary history of the development of the pelvic fin/hindlimb
Don, Emily K; Currie, Peter D; Cole, Nicholas J
2013-01-01
The arms and legs of man are evolutionarily derived from the paired fins of primitive jawed fish. Few evolutionary changes have attracted as much attention as the origin of tetrapod limbs from the paired fins of ancestral fish. The hindlimbs of tetrapods are derived from the pelvic fins of ancestral fish. These evolutionary origins can be seen in the examination of shared gene and protein expression patterns during the development of pelvic fins and tetrapod hindlimbs. The pelvic fins of fish express key limb positioning, limb bud induction and limb outgrowth genes in a similar manner to that seen in hindlimb development of higher vertebrates. We are now at a point where many of the key players in the development of pelvic fins and vertebrate hindlimbs have been identified and we can now readily examine and compare mechanisms between species. This is yielding fascinating insights into how the developmental programme has altered during evolution and how that relates to anatomical change. The role of pelvic fins has also drastically changed over evolutionary history, from playing a minor role during swimming to developing into robust weight-bearing limbs. In addition, the pelvic fins/hindlimbs have been lost repeatedly in diverse species over evolutionary time. Here we review the evolution of pelvic fins and hindlimbs within the context of the changes in anatomical structure and the molecular mechanisms involved. PMID:22913749
General survey of hAT transposon superfamily with highlight on hobo element in Drosophila.
Ladevèze, Véronique; Chaminade, Nicole; Lemeunier, Françoise; Periquet, Georges; Aulard, Sylvie
2012-09-01
The hAT transposons, very abundant in all kingdoms, have a common evolutionary origin probably predating the plant-fungi-animal divergence. In this paper we present their general characteristics. Members of this superfamily belong to Class II transposable elements. hAT elements share transposase, short terminal inverted repeats and eight base-pairs duplication of genomic target. We focus on hAT elements in Drosophila, especially hobo. Its distribution, dynamics and impact on genome restructuring in laboratory strains as well as in natural populations are reported. Finally, the evolutionary history of hAT elements, their domestication and use as transgenic tools are discussed.
A relative shift in cloacal location repositions external genitalia in amniote evolution.
Tschopp, Patrick; Sherratt, Emma; Sanger, Thomas J; Groner, Anna C; Aspiras, Ariel C; Hu, Jimmy K; Pourquié, Olivier; Gros, Jérôme; Tabin, Clifford J
2014-12-18
The move of vertebrates to a terrestrial lifestyle required major adaptations in their locomotory apparatus and reproductive organs. While the fin-to-limb transition has received considerable attention, little is known about the developmental and evolutionary origins of external genitalia. Similarities in gene expression have been interpreted as a potential evolutionary link between the limb and genitals; however, no underlying developmental mechanism has been identified. We re-examined this question using micro-computed tomography, lineage tracing in three amniote clades, and RNA-sequencing-based transcriptional profiling. Here we show that the developmental origin of external genitalia has shifted through evolution, and in some taxa limbs and genitals share a common primordium. In squamates, the genitalia develop directly from the budding hindlimbs, or the remnants thereof, whereas in mice the genital tubercle originates from the ventral and tail bud mesenchyme. The recruitment of different cell populations for genital outgrowth follows a change in the relative position of the cloaca, the genitalia organizing centre. Ectopic grafting of the cloaca demonstrates the conserved ability of different mesenchymal cells to respond to these genitalia-inducing signals. Our results support a limb-like developmental origin of external genitalia as the ancestral condition. Moreover, they suggest that a change in the relative position of the cloacal signalling centre during evolution has led to an altered developmental route for external genitalia in mammals, while preserving parts of the ancestral limb molecular circuitry owing to a common evolutionary origin.
Ji, R; Cui, P; Ding, F; Geng, J; Gao, H; Zhang, H; Yu, J; Hu, S; Meng, H
2009-01-01
The evolutionary relationship between the domestic bactrian camel and the extant wild two-humped camel and the factual origin of the domestic bactrian camel remain elusive. We determined the sequence of mitochondrial cytb gene from 21 camel samples, including 18 domestic camels (three Camelus bactrianus xinjiang, three Camelus bactrianus sunite, three Camelus bactrianus alashan, three Camelus bactrianus red, three Camelus bactrianus brown and three Camelus bactrianus normal) and three wild camels (Camelus bactrianus ferus). Our phylogenetic analyses revealed that the extant wild two-humped camel may not share a common ancestor with the domestic bactrian camel and they are not the same subspecies at least in their maternal origins. Molecular clock analysis based on complete mitochondrial genome sequences indicated that the sub-speciation of the two lineages had begun in the early Pleistocene, about 0.7 million years ago. According to the archaeological dating of the earliest known two-humped camel domestication (5000–6000 years ago), we could conclude that the extant wild camel is a separate lineage but not the direct progenitor of the domestic bactrian camel. Further phylogenetic analysis suggested that the bactrian camel appeared monophyletic in evolutionary origin and that the domestic bactrian camel could originate from a single wild population. The data presented here show how conservation strategies should be implemented to protect the critically endangered wild camel, as it is the last extant form of the wild tribe Camelina. PMID:19292708
The semaphorontic view of homology
Assis, Leandro C.S.; Rieppel, Olivier
2015-01-01
ABSTRACT The relation of homology is generally characterized as an identity relation, or alternatively as a correspondence relation, both of which are transitive. We use the example of the ontogenetic development and evolutionary origin of the gnathostome jaw to discuss identity and transitivity of the homology relation under the transformationist and emergentist paradigms respectively. Token identity and consequent transitivity of homology relations are shown to be requirements that are too strong to allow the origin of genuine evolutionary novelties. We consequently introduce the concept of compositional identity that is grounded in relations prevailing between parts (organs and organ systems) of a whole (organism). We recognize an ontogenetic identity of parts within a whole throughout the sequence of successive developmental stages of those parts: this is an intra‐organismal character identity maintained throughout developmental trajectory. Correspondingly, we recognize a phylogenetic identity of homologous parts within two or more organisms of different species: this is an inter‐species character identity maintained throughout evolutionary trajectory. These different dimensions of character identity—ontogenetic (through development) and phylogenetic (via shared evolutionary history)—break the transitivity of homology relations. Under the transformationist paradigm, the relation of homology reigns over the entire character (‐state) transformation series, and thus encompasses the plesiomorphic as well as the apomorphic condition of form. In contrast, genuine evolutionary novelties originate not through transformation of ancestral characters (‐states), but instead through deviating developmental trajectories that result in alternate characters. Under the emergentist paradigm, homology is thus synonymous with synapomorphy. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 578–587, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution published by Wiley Periodicals, Inc. PMID:26175214
Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana
Liénard, Marjorie A; Wang, Hong-Lei; Lassance, Jean-Marc; Löfstedt, Christer
2014-01-01
Although phylogenetically nested within the moths, butterflies have diverged extensively in a number of life history traits. Whereas moths rely greatly on chemical signals, visual advertisement is the hallmark of mate finding in butterflies. In the context of courtship, however, male chemical signals are widespread in both groups although they likely have multiple evolutionary origins. Here, we report that in males of the butterfly Bicyclus anynana, courtship scents are produced de novo via biosynthetic pathways shared with females of many moth species. We show that two of the pheromone components that play a major role in mate choice, namely the (Z)-9-tetradecenol and hexadecanal, are produced through the activity of a fatty acyl Δ11-desaturase and two specialized alcohol-forming fatty acyl reductases. Our study provides the first evidence of conservation and sharing of ancestral genetic modules for the production of FA-derived pheromones over a long evolutionary timeframe thereby reconciling mate communication in moths and butterflies. PMID:24862548
Telomere biology of trypanosomatids: beginning to answer some questions.
Lira, Cristina B B; Giardini, Miriam A; Neto, Jair L Siqueira; Conte, Fábio F; Cano, Maria Isabel N
2007-08-01
Studies of telomere structure and maintenance in trypanosomatids have provided insights into the evolutionary origin and conservation of some telomeric components shared by trypanosomes and vertebrates. For example, trypanosomatid telomeres are maintained by telomerase and consist of the canonical TTAGGG repeats, which in Trypanosoma brucei can form telomeric loops (t-loops). However, the telomeric chromatin of trypanosomatids is composed of organism-specific proteins and other proteins that share little sequence similarity with their vertebrate counterparts. Because telomere maintenance mechanisms are essential for genome stability, we propose that the particular features shown by the trypanosome telomeric chromatin hold the key for the design of antiparasitic drugs.
Randall, Thomas A.; Perera, Lalith; London, Robert E.; Mueller, Geoffrey A.
2013-01-01
The major allergen domain (MA) is widely distributed in insects. The crystal structure of a single Bla g 1 MA revealed a novel protein fold in which the fundamental structure was a duplex of two subsequences (monomers), which had diverged over time. This suggested that the evolutionary origin of the MA structure may have been a homodimer of this smaller subsequence. Using publicly available genomic data, the distribution of the basic unit of this class of proteins was determined to better understand its evolutionary history. The duplication and divergence is examined at three distinct levels of resolution: 1) within the orders Diptera and Hymenoptera, 2) within one genus Drosophila, and 3) within one species Aedes aegypti. Within the family Culicidae, we have found two separate occurrences of monomers as independent genes. The organization of the gene family in A. aegypti shows a common evolutionary origin for its monomer and several closely related MAs. Molecular modeling of the A. aegypti monomer with the unique Bla g 1 fold confirms the distant evolutionary relationship and supports the feasibility of homodimer formation from a single monomer. RNAseq data for A. aegypti confirms that the monomer is expressed in the mosquito similar to other A. aegypti MAs after a blood meal. Together, these data support the contention that the detected monomer shares similar functional characteristics to related MAs in other insects. An extensive search for this domain outside of Insecta confirms that the MAs are restricted to insects. PMID:24253356
Friedman, Matt
2012-01-01
Giant suspension feeders such as mysticete whales, basking and whale sharks, and the extinct (indicated by ‘†’) †pachycormiform teleosts are conspicuous members of modern and fossil marine vertebrate faunas. Whether convergent anatomical features common to these clades arose along similar evolutionary pathways has remained unclear because of a lack of information surrounding the origins of all groups of large-bodied suspension feeders apart from baleen whales. New investigation reveals that the enigmatic ray-finned fish †Ohmdenia, from the Lower Jurassic (Toarcian, 183.0–175.6 Ma) Posidonia Shale Lagerstätte, represents the immediate sister group of edentulous †pachycormiforms, the longest lived radiation of large vertebrate suspension feeders. †Ohmdenia bisects the long morphological branch leading to suspension-feeding †pachycormiforms, providing information on the sequence of anatomical transformations preceding this major ecological shift that can be compared to changes associated with the origin of modern mysticetes. Similarities include initial modifications to jaw geometry associated with the reduction of dentition, followed by the loss of teeth. The evolution of largest body sizes within both radiations occurs only after the apparent onset of microphagy. Comparing the fit of contrasting evolutionary models to functionally relevant morphological measurements for whales and †pachycormiform fishes reveals strong support for a common adaptive peak shared by suspension-feeding members of both clades. PMID:21849314
Smith, Jeramiah J; Kuraku, Shigehiro; Holt, Carson; Sauka-Spengler, Tatjana; Jiang, Ning; Campbell, Michael S; Yandell, Mark D; Manousaki, Tereza; Meyer, Axel; Bloom, Ona E; Morgan, Jennifer R; Buxbaum, Joseph D; Sachidanandam, Ravi; Sims, Carrie; Garruss, Alexander S; Cook, Malcolm; Krumlauf, Robb; Wiedemann, Leanne M; Sower, Stacia A; Decatur, Wayne A; Hall, Jeffrey A; Amemiya, Chris T; Saha, Nil R; Buckley, Katherine M; Rast, Jonathan P; Das, Sabyasachi; Hirano, Masayuki; McCurley, Nathanael; Guo, Peng; Rohner, Nicolas; Tabin, Clifford J; Piccinelli, Paul; Elgar, Greg; Ruffier, Magali; Aken, Bronwen L; Searle, Stephen MJ; Muffato, Matthieu; Pignatelli, Miguel; Herrero, Javier; Jones, Matthew; Brown, C Titus; Chung-Davidson, Yu-Wen; Nanlohy, Kaben G; Libants, Scot V; Yeh, Chu-Yin; McCauley, David W; Langeland, James A; Pancer, Zeev; Fritzsch, Bernd; de Jong, Pieter J; Zhu, Baoli; Fulton, Lucinda L; Theising, Brenda; Flicek, Paul; Bronner, Marianne E; Warren, Wesley C; Clifton, Sandra W; Wilson, Richard K; Li, Weiming
2013-01-01
Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ~500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms. PMID:23435085
Citerne, Hélène L.; Le Guilloux, Martine; Sannier, Julie; Nadot, Sophie; Damerval, Catherine
2013-01-01
TCP ECE genes encode transcription factors which have received much attention for their repeated recruitment in the control of floral symmetry in core eudicots, and more recently in monocots. Major duplications of TCP ECE genes have been described in core eudicots, but the evolutionary history of this gene family is unknown in basal eudicots. Reconstructing the phylogeny of ECE genes in basal eudicots will help set a framework for understanding the functional evolution of these genes. TCP ECE genes were sequenced in all major lineages of basal eudicots and Gunnera which belongs to the sister clade to all other core eudicots. We show that in these lineages they have a complex evolutionary history with repeated duplications. We estimate the timing of the two major duplications already identified in the core eudicots within a timeframe before the divergence of Gunnera and after the divergence of Proteales. We also use a synteny-based approach to examine the extent to which the expansion of TCP ECE genes in diverse eudicot lineages may be due to genome-wide duplications. The three major core-eudicot specific clades share a number of collinear genes, and their common evolutionary history may have originated at the γ event. Genomic comparisons in Arabidopsis thaliana and Solanum lycopersicum highlight their separate polyploid origin, with syntenic fragments with and without TCP ECE genes showing differential gene loss and genomic rearrangements. Comparison between recently available genomes from two basal eudicots Aquilegia coerulea and Nelumbo nucifera suggests that the two TCP ECE paralogs in these species are also derived from large-scale duplications. TCP ECE loci from basal eudicots share many features with the three main core eudicot loci, and allow us to infer the makeup of the ancestral eudicot locus. PMID:24019982
Gehring, Walter J
2014-01-01
In this review, the evolution of vision is retraced from its putative origins in cyanobacteria to humans. Circadian oscillatory clocks, phototropism, and phototaxis require the capability to detect light. Photosensory proteins allow us to reconstruct molecular phylogenetic trees. The evolution of animal eyes leading from an ancestral prototype to highly complex image forming eyes can be deciphered on the basis of evolutionary developmental genetic experiments and comparative genomics. As all bilaterian animals share the same master control gene, Pax6, and the same retinal and pigment cell determination genes, we conclude that the different eye-types originated monophyletically and subsequently diversified by divergent, parallel, or convergent evolution. © 2012 Wiley Periodicals, Inc.
Blackstone, Neil W.
2013-01-01
According to multi-level theory, evolutionary transitions require mediating conflicts between lower-level units in favour of the higher-level unit. By this view, the origin of eukaryotes and the origin of multicellularity would seem largely equivalent. Yet, eukaryotes evolved only once in the history of life, whereas multicellular eukaryotes have evolved many times. Examining conflicts between evolutionary units and mechanisms that mediate these conflicts can illuminate these differences. Energy-converting endosymbionts that allow eukaryotes to transcend surface-to-volume constraints also can allocate energy into their own selfish replication. This principal conflict in the origin of eukaryotes can be mediated by genetic or energetic mechanisms. Genome transfer diminishes the heritable variation of the symbiont, but requires the de novo evolution of the protein-import apparatus and was opposed by selection for selfish symbionts. By contrast, metabolic signalling is a shared primitive feature of all cells. Redox state of the cytosol is an emergent feature that cannot be subverted by an individual symbiont. Hypothetical scenarios illustrate how metabolic regulation may have mediated the conflicts inherent at different stages in the origin of eukaryotes. Aspects of metabolic regulation may have subsequently been coopted from within-cell to between-cell pathways, allowing multicellularity to emerge repeatedly. PMID:23754817
Blackstone, Neil W
2013-07-19
According to multi-level theory, evolutionary transitions require mediating conflicts between lower-level units in favour of the higher-level unit. By this view, the origin of eukaryotes and the origin of multicellularity would seem largely equivalent. Yet, eukaryotes evolved only once in the history of life, whereas multicellular eukaryotes have evolved many times. Examining conflicts between evolutionary units and mechanisms that mediate these conflicts can illuminate these differences. Energy-converting endosymbionts that allow eukaryotes to transcend surface-to-volume constraints also can allocate energy into their own selfish replication. This principal conflict in the origin of eukaryotes can be mediated by genetic or energetic mechanisms. Genome transfer diminishes the heritable variation of the symbiont, but requires the de novo evolution of the protein-import apparatus and was opposed by selection for selfish symbionts. By contrast, metabolic signalling is a shared primitive feature of all cells. Redox state of the cytosol is an emergent feature that cannot be subverted by an individual symbiont. Hypothetical scenarios illustrate how metabolic regulation may have mediated the conflicts inherent at different stages in the origin of eukaryotes. Aspects of metabolic regulation may have subsequently been coopted from within-cell to between-cell pathways, allowing multicellularity to emerge repeatedly.
Analysis of Knowledge-Sharing Evolutionary Game in University Teacher Team
ERIC Educational Resources Information Center
Huo, Mingkui
2013-01-01
The knowledge-sharing activity is a major drive force behind the progress and innovation of university teacher team. Based on the evolutionary game theory, this article analyzes the knowledge-sharing process model of this team, studies the influencing mechanism of various factors such as knowledge aggregate gap, incentive coefficient and risk…
Norman, J A; Christidis, L; Joseph, L; Slikas, B; Alpers, D
2002-10-22
Molecular analysis of two Australo-Papuan rainforest birds exhibiting correlated 'leapfrog' patterns were used to elucidate the evolutionary origin of this unusual pattern of geographical differentiation. In both sooty owls (Tyto) and logrunners (Orthonyx), phenotypically similar populations occupy widely disjunct areas (central-eastern Australia and upland New Guinea) with a third, highly distinctive population, occurring between them in northeastern Queensland. Two mechanisms have been proposed to explain the origin of leapfrog patterns in avian distributions: recent shared ancestry of terminal populations and unequal rates or phenotypic change among populations. As the former should generate correlated patterns of phenotypic and genetic differentiation, we tested for a sister relationship between populations from New Guinea and central-eastern Australia using nuclear and mitochondrial DNA sequences. The resulting phylogenies not only refute recent ancestry as an explanation for the leapfrog pattern, but provide evidence of vastly different spatio-temporal histories for sooty owls and logrunners within the Australo-Papuan rainforests. This incongruence indicates that the evolutionary processes responsible for generating leapfrog patterns in these co-distributed taxa are complex, possibly involving a combination of selection and drift in sooty owls and convergence or retention of ancestral characteristics in logrunners.
Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling
Pardo-Diaz, Carolina; Hanly, Joseph J.; Martin, Simon H.; Mallet, James; Dasmahapatra, Kanchon K.; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W. Owen; Jiggins, Chris D.
2016-01-01
An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation. PMID:26771987
Peyretaillade, E; Broussolle, V; Peyret, P; Méténier, G; Gouy, M; Vivarès, C P
1998-06-01
An intronless gene encoding a protein of 592 amino acid residues with similarity to 70-kDa heat shock proteins (HSP70s) has been cloned and sequenced from the amitochondrial protist Encephalitozoon cuniculi (phylum Microsporidia). Southern blot analyses show the presence of a single gene copy located on chromosome XI. The encoded protein exhibits an N-terminal hydrophobic leader sequence and two motifs shared by proteobacterial and mitochondrially expressed HSP70 homologs. Phylogenetic analysis using maximum likelihood and evolutionary distances place the E. cuniculi sequence in the cluster of mitochondrially expressed HSP70s, with a higher evolutionary rate than those of homologous sequences. Similar results were obtained after cloning a fragment of the homologous gene in the closely related species E. hellem. The presence of a nuclear targeting signal-like sequence supports a role of the Encephalitozoon HSP70 as a molecular chaperone of nuclear proteins. No evidence for cytosolic or endoplasmic reticulum forms of HSP70 was obtained through PCR amplification. These data suggest that Encephalitozoon species have evolved from an ancestor bearing mitochondria, which is in disagreement with the postulated presymbiotic origin of Microsporidia. The specific role and intracellular localization of the mitochondrial HSP70-like protein remain to be elucidated.
Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling.
Wallbank, Richard W R; Baxter, Simon W; Pardo-Diaz, Carolina; Hanly, Joseph J; Martin, Simon H; Mallet, James; Dasmahapatra, Kanchon K; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W Owen; Jiggins, Chris D
2016-01-01
An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation.
Álvarez-Presas, M; Sánchez-Gracia, A; Carbayo, F; Rozas, J; Riutort, M
2014-06-01
The relative importance of the processes that generate and maintain biodiversity is a major and controversial topic in evolutionary biology with large implications for conservation management. The Atlantic Forest of Brazil, one of the world's richest biodiversity hot spots, is severely damaged by human activities. To formulate an efficient conservation policy, a good understanding of spatial and temporal biodiversity patterns and their underlying evolutionary mechanisms is required. With this aim, we performed a comprehensive phylogeographic study using a low-dispersal organism, the land planarian species Cephaloflexa bergi (Platyhelminthes, Tricladida). Analysing multi-locus DNA sequence variation under the Approximate Bayesian Computation framework, we evaluated two scenarios proposed to explain the diversity of Southern Atlantic Forest (SAF) region. We found that most sampled localities harbour high levels of genetic diversity, with lineages sharing common ancestors that predate the Pleistocene. Remarkably, we detected the molecular hallmark of the isolation-by-distance effect and little evidence of a recent colonization of SAF localities; nevertheless, some populations might result from very recent secondary contacts. We conclude that extant SAF biodiversity originated and has been shaped by complex interactions between ancient geological events and more recent evolutionary processes, whereas Pleistocene climate changes had a minor influence in generating present-day diversity. We also demonstrate that land planarians are an advantageous biological model for making phylogeographic and, particularly, fine-scale evolutionary inferences, and propose appropriate conservation policies.
The origins of language and the evolution of music: A comparative perspective
NASA Astrophysics Data System (ADS)
Masataka, Nobuo
2009-03-01
According to Darwin [Darwin, CR. The descent of man, and selection in relation to sex. London: John Murray; 1871], the human musical faculty ‘must be ranked amongst the most mysterious with which he is endowed’. Music is a human cultural universal that serves no obvious adaptive purpose, making its evolution a puzzle for evolutionary biologists. This review examines Darwin's hypothesis of similarities between language and music indicating a shared evolutionary history. In particular, the fact that both are human universals, have phrase structure, and entail learning and cultural transmission, suggests that any theory of the evolution of language will have implications for the evolution of music, and vice versa. The argument starts by describing variable predispositional musical capabilities and the ontogeny of prosodic communication in human infants and young children, presenting comparative data regarding communication systems commonly present in living nonhuman primate species. Like language, the human music faculty is based on a suite of abilities, some of which are shared with other primates and some of which appear to be uniquely human. Each of these subcomponents may have a different evolutionary history, and should be discussed separately. After briefly considering possible functions of human music for language acquisition, the review ends by discussing the phylogenetic history of music. It concludes that many strands of evidence support Darwin's hypothesis of an intermediate stage of human evolutionary history, characterized by a communication system that resembled music more closely than language, but was identical to neither. This pre-linguistic system, which could probably referred to as “prosodic protolanguage”, provided a precursor for both modern language and music.
The evolutionary roots of human decision making.
Santos, Laurie R; Rosati, Alexandra G
2015-01-03
Humans exhibit a suite of biases when making economic decisions. We review recent research on the origins of human decision making by examining whether similar choice biases are seen in nonhuman primates, our closest phylogenetic relatives. We propose that comparative studies can provide insight into four major questions about the nature of human choice biases that cannot be addressed by studies of our species alone. First, research with other primates can address the evolution of human choice biases and identify shared versus human-unique tendencies in decision making. Second, primate studies can constrain hypotheses about the psychological mechanisms underlying such biases. Third, comparisons of closely related species can identify when distinct mechanisms underlie related biases by examining evolutionary dissociations in choice strategies. Finally, comparative work can provide insight into the biological rationality of economically irrational preferences.
The extended evolutionary synthesis: its structure, assumptions and predictions
Laland, Kevin N.; Uller, Tobias; Feldman, Marcus W.; Sterelny, Kim; Müller, Gerd B.; Moczek, Armin; Jablonka, Eva; Odling-Smee, John
2015-01-01
Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the ‘extended evolutionary synthesis' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism–environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology. PMID:26246559
Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes
Kohli, Gurjeet S; John, Uwe; Van Dolah, Frances M; Murray, Shauna A
2016-01-01
Fatty acids, which are essential cell membrane constituents and fuel storage molecules, are thought to share a common evolutionary origin with polyketide toxins in eukaryotes. While fatty acids are primary metabolic products, polyketide toxins are secondary metabolites that are involved in ecologically relevant processes, such as chemical defence, and produce the adverse effects of harmful algal blooms. Selection pressures on such compounds may be different, resulting in differing evolutionary histories. Surprisingly, some studies of dinoflagellates have suggested that the same enzymes may catalyse these processes. Here we show the presence and evolutionary distinctiveness of genes encoding six key enzymes essential for fatty acid production in 13 eukaryotic lineages for which no previous sequence data were available (alveolates: dinoflagellates, Vitrella, Chromera; stramenopiles: bolidophytes, chrysophytes, pelagophytes, raphidophytes, dictyochophytes, pinguiophytes, xanthophytes; Rhizaria: chlorarachniophytes, haplosporida; euglenids) and 8 other lineages (apicomplexans, bacillariophytes, synurophytes, cryptophytes, haptophytes, chlorophyceans, prasinophytes, trebouxiophytes). The phylogeny of fatty acid synthase genes reflects the evolutionary history of the organism, indicating selection to maintain conserved functionality. In contrast, polyketide synthase gene families are highly expanded in dinoflagellates and haptophytes, suggesting relaxed constraints in their evolutionary history, while completely absent from some protist lineages. This demonstrates a vast potential for the production of bioactive polyketide compounds in some lineages of microbial eukaryotes, indicating that the evolution of these compounds may have played an important role in their ecological success. PMID:26784357
Exploration versus exploitation in space, mind, and society
Hills, Thomas T.; Todd, Peter M.; Lazer, David; Redish, A. David; Couzin, Iain D.
2015-01-01
Search is a ubiquitous property of life. Although diverse domains have worked on search problems largely in isolation, recent trends across disciplines indicate that the formal properties of these problems share similar structures and, often, similar solutions. Moreover, internal search (e.g., memory search) shows similar characteristics to external search (e.g., spatial foraging), including shared neural mechanisms consistent with a common evolutionary origin across species. Search problems and their solutions also scale from individuals to societies, underlying and constraining problem solving, memory, information search, and scientific and cultural innovation. In summary, search represents a core feature of cognition, with a vast influence on its evolution and processes across contexts and requiring input from multiple domains to understand its implications and scope. PMID:25487706
The Evolutionary Roots of Human Decision Making
Santos, Laurie R.; Rosati, Alexandra G.
2015-01-01
Humans exhibit a suite of biases when making economic decisions. We review recent research on the origins of human decision making by examining whether similar choice biases are seen in nonhuman primates, our closest phylogenetic relatives. We propose that comparative studies can provide insight into four major questions about the nature of human choice biases that cannot be addressed by studies of our species alone. First, research with other primates can address the evolution of human choice biases and identify shared versus human-unique tendencies in decision making. Second, primate studies can constrain hypotheses about the psychological mechanisms underlying such biases. Third, comparisons of closely related species can identify when distinct mechanisms underlie related biases by examining evolutionary dissociations in choice strategies. Finally, comparative work can provide insight into the biological rationality of economically irrational preferences. PMID:25559115
Zhang, Liangzhi; Jia, Shangang; Plath, Martin; Huang, Yongzhen; Li, Congjun; Lei, Chuzhao; Zhao, Xin; Chen, Hong
2015-01-01
Copy number variation (CNV) is an important component of genomic structural variation and plays a role not only in evolutionary diversification but also in domestication. Chinese cattle were derived from Bos taurus and Bos indicus, and several breeds presumably are of hybrid origin, but the evolution of CNV regions (CNVRs) has not yet been examined in this context. Here, we of CNVRs, mtDNA D-loop sequence variation, and Y-chromosomal single nucleotide polymorphisms to assess the impact of maternal and paternal B. taurus and B. indicus origins on the distribution of CNVRs in 24 Chinese domesticated bulls. We discovered 470 genome-wide CNVRs, only 72 of which were shared by all three Y-lineages (B. taurus: Y1, Y2; B. indicus: Y3), whereas 265 were shared by inferred taurine or indicine paternal lineages, and 228 when considering their maternal taurine or indicine origins. Phylogenetic analysis uncovered eight taurine/indicine hybrids, and principal component analysis on CNVs corroborated genomic exchange during hybridization. The distribution patterns of CNVRs tended to be lineage-specific, and correlation analysis revealed significant positive or negative co-occurrences of CNVRs across lineages. Our study suggests that CNVs in Chinese cattle partly result from selective breeding during domestication, but also from hybridization and introgression. PMID:26260653
The eco-evolutionary responses of a generalist consumer to resource competition.
Abrams, Peter A
2012-10-01
This article explores the combined evolutionary and ecological responses of resource uptake abilities in a generalist consumer to exploitative competition for one resource using a simple 2-resource model. It compares the sizes of ecologically and evolutionarily caused changes in population densities in cases where the original consumer has a strong or a weak trade-off in its abilities to consume the two resources. The analysis also compares the responses of the original species to competition when the competitor's population size is or is not limited by the shared resource. Although divergence in resource use traits in the resident generalist consumer is expected under all scenarios when resources are substitutable, the changes in population densities of the resources and resident consumer frequently differ between scenarios. The population of the original consumer often decreases as a result of its own adaptive divergence, and this decrease is often much greater than the initial ecological decrease. If the evolving consumer has a strong trade-off, the overlapped resource increases in equilibrium population density in response to being consumed by a generalist competitor. Some of these predictions differ qualitatively in alternative scenarios involving sustained variation in population densities or nutritionally essential resources. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Miya, Masaki; Friedman, Matt; Satoh, Takashi P.; Takeshima, Hirohiko; Sado, Tetsuya; Iwasaki, Wataru; Yamanoue, Yusuke; Nakatani, Masanori; Mabuchi, Kohji; Inoue, Jun G.; Poulsen, Jan Yde; Fukunaga, Tsukasa; Sato, Yukuto; Nishida, Mutsumi
2013-01-01
Uncertainties surrounding the evolutionary origin of the epipelagic fish family Scombridae (tunas and mackerels) are symptomatic of the difficulties in resolving suprafamilial relationships within Percomorpha, a hyperdiverse teleost radiation that contains approximately 17,000 species placed in 13 ill-defined orders and 269 families. Here we find that scombrids share a common ancestry with 14 families based on (i) bioinformatic analyses using partial mitochondrial and nuclear gene sequences from all percomorphs deposited in GenBank (10,733 sequences) and (ii) subsequent mitogenomic analysis based on 57 species from those targeted 15 families and 67 outgroup taxa. Morphological heterogeneity among these 15 families is so extraordinary that they have been placed in six different perciform suborders. However, members of the 15 families are either coastal or oceanic pelagic in their ecology with diverse modes of life, suggesting that they represent a previously undetected adaptive radiation in the pelagic realm. Time-calibrated phylogenies imply that scombrids originated from a deep-ocean ancestor and began to radiate after the end-Cretaceous when large predatory epipelagic fishes were selective victims of the Cretaceous-Paleogene mass extinction. We name this clade of open-ocean fishes containing Scombridae “Pelagia” in reference to the common habitat preference that links the 15 families. PMID:24023883
Norman, J A; Christidis, L; Joseph, L; Slikas, B; Alpers, D
2002-01-01
Molecular analysis of two Australo-Papuan rainforest birds exhibiting correlated 'leapfrog' patterns were used to elucidate the evolutionary origin of this unusual pattern of geographical differentiation. In both sooty owls (Tyto) and logrunners (Orthonyx), phenotypically similar populations occupy widely disjunct areas (central-eastern Australia and upland New Guinea) with a third, highly distinctive population, occurring between them in northeastern Queensland. Two mechanisms have been proposed to explain the origin of leapfrog patterns in avian distributions: recent shared ancestry of terminal populations and unequal rates or phenotypic change among populations. As the former should generate correlated patterns of phenotypic and genetic differentiation, we tested for a sister relationship between populations from New Guinea and central-eastern Australia using nuclear and mitochondrial DNA sequences. The resulting phylogenies not only refute recent ancestry as an explanation for the leapfrog pattern, but provide evidence of vastly different spatio-temporal histories for sooty owls and logrunners within the Australo-Papuan rainforests. This incongruence indicates that the evolutionary processes responsible for generating leapfrog patterns in these co-distributed taxa are complex, possibly involving a combination of selection and drift in sooty owls and convergence or retention of ancestral characteristics in logrunners. PMID:12396487
Evolutionary origins of the endosperm in flowering plants
Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli
2002-01-01
The evolutionary origin of double fertilization and the resultant endosperm tissue in flowering plants remains a puzzle, despite over a century of research. The recent resurgence of approaches to evolutionary developmental biology combining comparative biology with phylogenetics provides new understanding of endosperm origins. PMID:12225592
Hedgehog signaling regulates segment formation in the annelid Platynereis.
Dray, Nicolas; Tessmar-Raible, Kristin; Le Gouar, Martine; Vibert, Laura; Christodoulou, Foteini; Schipany, Katharina; Guillou, Aurélien; Zantke, Juliane; Snyman, Heidi; Béhague, Julien; Vervoort, Michel; Arendt, Detlev; Balavoine, Guillaume
2010-07-16
Annelids and arthropods share a similar segmented organization of the body whose evolutionary origin remains unclear. The Hedgehog signaling pathway, prominent in arthropod embryonic segment patterning, has not been shown to have a similar function outside arthropods. We show that the ligand Hedgehog, the receptor Patched, and the transcription factor Gli are all expressed in striped patterns before the morphological appearance of segments in the annelid Platynereis dumerilii. Treatments with small molecules antagonistic to Hedgehog signaling disrupt segment formation. Platynereis Hedgehog is not necessary to establish early segment patterns but is required to maintain them. The molecular similarity of segment patterning functions of the Hedgehog pathway in an annelid and in arthropods supports a common origin of segmentation in protostomes.
The role of public goods in planetary evolution
NASA Astrophysics Data System (ADS)
McInerney, James O.; Erwin, Douglas H.
2017-11-01
Biological public goods are broadly shared within an ecosystem and readily available. They appear to be widespread and may have played important roles in the history of life on Earth. Of particular importance to events in the early history of life are the roles of public goods in the merging of genomes, protein domains and even cells. We suggest that public goods facilitated the origin of the eukaryotic cell, a classic major evolutionary transition. The recognition of genomic public goods challenges advocates of a direct graph view of phylogeny, and those who deny that any useful phylogenetic signal persists in modern genomes. Ecological spillovers generate public goods that provide new ecological opportunities. This article is part of the themed issue 'Reconceptualizing the origins of life'.
Allele Sharing and Evidence for Sexuality in a Mitochondrial Clade of Bdelloid Rotifers
Signorovitch, Ana; Hur, Jae; Gladyshev, Eugene; Meselson, Matthew
2015-01-01
Rotifers of Class Bdelloidea are common freshwater invertebrates of ancient origin whose apparent asexuality has posed a challenge to the view that sexual reproduction is essential for long-term evolutionary success in eukaryotes and to hypotheses for the advantage of sex. The possibility nevertheless exists that bdelloids reproduce sexually under unknown or inadequately investigated conditions. Although certain methods of population genetics offer definitive means for detecting infrequent or atypical sex, they have not previously been applied to bdelloid rotifers. We conducted such a test with bdelloids belonging to a mitochondrial clade of Macrotrachela quadricornifera. This revealed a striking pattern of allele sharing consistent with sexual reproduction and with meiosis of an atypical sort, in which segregation occurs without requiring homologous chromosome pairs. PMID:25977472
Gabrieli, Paolo; Gomulski, Ludvik M.; Bonomi, Angelica; Siciliano, Paolo; Scolari, Francesca; Franz, Gerald; Jessup, Andrew; Malacrida, Anna R.; Gasperi, Giuliano
2011-01-01
Background Diptera have an extraordinary variety of sex determination mechanisms, and Drosophila melanogaster is the paradigm for this group. However, the Drosophila sex determination pathway is only partially conserved and the family Tephritidae affords an interesting example. The tephritid Y chromosome is postulated to be necessary to determine male development. Characterization of Y sequences, apart from elucidating the nature of the male determining factor, is also important to understand the evolutionary history of sex chromosomes within the Tephritidae. We studied the Y sequences from the olive fly, Bactrocera oleae. Its Y chromosome is minute and highly heterochromatic, and displays high heteromorphism with the X chromosome. Methodology/Principal Findings A combined Representational Difference Analysis (RDA) and fluorescence in-situ hybridization (FISH) approach was used to investigate the Y chromosome to derive information on its sequence content. The Y chromosome is strewn with repetitive DNA sequences, the majority of which are also interdispersed in the pericentromeric regions of the autosomes. The Y chromosome appears to have accumulated small and large repetitive interchromosomal duplications. The large interchromosomal duplications harbour an importin-4-like gene fragment. Apart from these importin-4-like sequences, the other Y repetitive sequences are not shared with the X chromosome, suggesting molecular differentiation of these two chromosomes. Moreover, as the identified Y sequences were not detected on the Y chromosomes of closely related tephritids, we can infer divergence in the repetitive nature of their sequence contents. Conclusions/Significance The identification of Y-linked sequences may tell us much about the repetitive nature, the origin and the evolution of Y chromosomes. We hypothesize how these repetitive sequences accumulated and were maintained on the Y chromosome during its evolutionary history. Our data reinforce the idea that the sex chromosomes of the Tephritidae may have distinct evolutionary origins with respect to those of the Drosophilidae and other Dipteran families. PMID:21408187
Evolutionary origins of mechanosensitive ion channels.
Martinac, Boris; Kloda, Anna
2003-01-01
According to the recent revision, the universal phylogenetic tree is composed of three domains: Eukarya (eukaryotes), Bacteria (eubacteria) and Archaea (archaebacteria). Mechanosensitive (MS) ion channels have been documented in cells belonging to all three domains suggesting their very early appearance during evolution of life on Earth. The channels show great diversity in conductance, selectivity and voltage dependence, while sharing the property of being gated by mechanical stimuli exerted on cell membranes. In prokaryotes, MS channels were first documented in Bacteria followed by their discovery in Archaea. The finding of MS channels in archaeal cells helped to recognize and establish the evolutionary relationship between bacterial and archaeal MS channels and to show that this relationship extends to eukaryotic Fungi (Schizosaccharomyces pombe) and Plants (Arabidopsis thaliana). Similar to their bacterial and archaeal homologues, MS channels in eukaryotic cell-walled Fungi and Plants may serve in protecting the cellular plasma membrane from excessive dilation and rupture that may occur during osmotic stress. This review summarizes briefly some of the recent developments in the MS channel research field that may ultimately lead to elucidation of the biophysical and evolutionary principles underlying the mechanosensory transduction in living cells.
Poe, Steven
2005-01-01
The reconstruction of phylogeny requires homologous similarities across species. Characters that have been shown to evolve quickly or convergently in some species are often considered to be poor phylogenetic markers. Here I evaluate the phylogenetic utility of a set of morphological characters that are correlated with ecology and have been shown to evolve convergently in Anolis lizards in the Greater Antilles. Results of randomization tests suggest that these "ecomorph" characters are adequate phylogenetic markers, both for Anolis in general and for the Greater Antillean species for which ecomorphological convergence was originally documented. Explanations for this result include the presence of ecomorphologically similar species within evolutionary radiations within islands, some monophyly of ecomorphs across islands, and the existence of several species that defy ecomorphological characterization but share phylogenetic similarity in some ecomorph characters.
Evolutionary origin of the turtle skull.
Bever, G S; Lyson, Tyler R; Field, Daniel J; Bhullar, Bhart-Anjan S
2015-09-10
Transitional fossils informing the origin of turtles are among the most sought-after discoveries in palaeontology. Despite strong genomic evidence indicating that turtles evolved from within the diapsid radiation (which includes all other living reptiles), evidence of the inferred transformation between an ancestral turtle with an open, diapsid skull to the closed, anapsid condition of modern turtles remains elusive. Here we use high-resolution computed tomography and a novel character/taxon matrix to study the skull of Eunotosaurus africanus, a 260-million-year-old fossil reptile from the Karoo Basin of South Africa, whose distinctive postcranial skeleton shares many unique features with the shelled body plan of turtles. Scepticism regarding the status of Eunotosaurus as the earliest stem turtle arises from the possibility that these shell-related features are the products of evolutionary convergence. Our phylogenetic analyses indicate strong cranial support for Eunotosaurus as a critical transitional form in turtle evolution, thus fortifying a 40-million-year extension to the turtle stem and moving the ecological context of its origin back onto land. Furthermore, we find unexpected evidence that Eunotosaurus is a diapsid reptile in the process of becoming secondarily anapsid. This is important because categorizing the skull based on the number of openings in the complex of dermal bone covering the adductor chamber has long held sway in amniote systematics, and still represents a common organizational scheme for teaching the evolutionary history of the group. These discoveries allow us to articulate a detailed and testable hypothesis of fenestral closure along the turtle stem. Our results suggest that Eunotosaurus represents a crucially important link in a chain that will eventually lead to consilience in reptile systematics, paving the way for synthetic studies of amniote evolution and development.
Trypanosoma rangeli is phylogenetically closer to Old World trypanosomes than to Trypanosoma cruzi.
Espinosa-Álvarez, Oneida; Ortiz, Paola A; Lima, Luciana; Costa-Martins, André G; Serrano, Myrna G; Herder, Stephane; Buck, Gregory A; Camargo, Erney P; Hamilton, Patrick B; Stevens, Jamie R; Teixeira, Marta M G
2018-06-01
Trypanosoma rangeli and Trypanosoma cruzi are generalist trypanosomes sharing a wide range of mammalian hosts; they are transmitted by triatomine bugs, and are the only trypanosomes infecting humans in the Neotropics. Their origins, phylogenetic relationships, and emergence as human parasites have long been subjects of interest. In the present study, taxon-rich analyses (20 trypanosome species from bats and terrestrial mammals) using ssrRNA, glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH), heat shock protein-70 (HSP70) and Spliced Leader RNA sequences, and multilocus phylogenetic analyses using 11 single copy genes from 15 selected trypanosomes, provide increased resolution of relationships between species and clades, strongly supporting two main sister lineages: lineage Schizotrypanum, comprising T. cruzi and bat-restricted trypanosomes, and Tra[Tve-Tco] formed by T. rangeli, Trypanosoma vespertilionis and Trypanosoma conorhini clades. Tve comprises European T. vespertilionis and African T. vespertilionis-like of bats and bat cimicids characterised in the present study and Trypanosoma sp. Hoch reported in monkeys and herein detected in bats. Tco included the triatomine-transmitted tropicopolitan T. conorhini from rats and the African NanDoum1 trypanosome of civet (carnivore). Consistent with their very close relationships, Tra[Tve-Tco] species shared highly similar Spliced Leader RNA structures that were highly divergent from those of Schizotrypanum. In a plausible evolutionary scenario, a bat trypanosome transmitted by cimicids gave origin to the deeply rooted Tra[Tve-Tco] and Schizotrypanum lineages, and bat trypanosomes of diverse genetic backgrounds jumped to new hosts. A long and independent evolutionary history of T. rangeli more related to Old World trypanosomes from bats, rats, monkeys and civets than to Schizotrypanum spp., and the adaptation of these distantly related trypanosomes to different niches of shared mammals and vectors, is consistent with the marked differences in transmission routes, life-cycles and host-parasite interactions, resulting in T. cruzi (but not T. rangeli) being pathogenic to humans. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Klymkowsky, Michael W; Rentsch, Jeremy D; Begovic, Emina; Cooper, Melanie M
2016-01-01
Many introductory biology courses amount to superficial surveys of disconnected topics. Often, foundational observations and the concepts derived from them and students' ability to use these ideas appropriately are overlooked, leading to unrealistic expectations and unrecognized learning obstacles. The result can be a focus on memorization at the expense of the development of a meaningful framework within which to consider biological phenomena. About a decade ago, we began a reconsideration of what an introductory course should present to students and the skills they need to master. The original Web-based course's design presaged many of the recommendations of the Vision and Change report; in particular, a focus on social evolutionary mechanisms, stochastic (evolutionary and molecular) processes, and core ideas (cellular continuity, evolutionary homology, molecular interactions, coupled chemical reactions, and molecular machines). Inspired by insights from the Chemistry, Life, the Universe & Everything general chemistry project, we transformed the original Web version into a (freely available) book with a more unified narrative flow and a set of formative assessments delivered through the beSocratic system. We outline how student responses to course materials are guiding future course modifications, in particular a more concerted effort at helping students to construct logical, empirically based arguments, explanations, and models. © 2016 M. W. Klymkowsky et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Wang, Dan; Zhang, Lin; Hu, JunFeng; Gao, Dianshuai; Liu, Xin; Sha, Yan
2018-04-01
Lipases are physiologically important and ubiquitous enzymes that share a conserved domain and are classified into eight different families based on their amino acid sequences and fundamental biological properties. The Lipase3 family of lipases was reported to possess a canonical fold typical of α/β hydrolases and a typical catalytic triad, suggesting a distinct evolutionary origin for this family. Genes in the Lipase3 family do not have the same functions, but maintain the conserved Lipase3 domain. There have been extensive studies of Lipase3 structures and functions, but little is known about their evolutionary histories. In this study, all lipases within five plant species were identified, and their phylogenetic relationships and genetic properties were analyzed and used to group them into distinct evolutionary families. Each identified lipase family contained at least one dicot and monocot Lipase3 protein, indicating that the gene family was established before the split of dicots and monocots. Similar intron/exon numbers and predicted protein sequence lengths were found within individual groups. Twenty-four tandem Lipase3 gene duplications were identified, implying that the distinctive function of Lipase3 genes appears to be a consequence of translocation and neofunctionalization after gene duplication. The functional genes EDS1, PAD4, and SAG101 that are reportedly involved in pathogen response were all located in the same group. The nucleotide diversity (Dxy) and the ratio of nonsynonymous to synonymous nucleotide substitutions rates (Ka/Ks) of the three genes were significantly greater than the average across the genomes. We further observed evidence for selection maintaining diversity on three genes in the Toll-Interleukin-1 receptor type of nucleotide binding/leucine-rich repeat immune receptor (TIR-NBS LRR) immunity-response signaling pathway, indicating that they could be vulnerable to pathogen effectors.
Tool-assisted rhythmic drumming in palm cockatoos shares key elements of human instrumental music
Heinsohn, Robert; Zdenek, Christina N.; Cunningham, Ross B.; Endler, John A.; Langmore, Naomi E.
2017-01-01
All human societies have music with a rhythmic “beat,” typically produced with percussive instruments such as drums. The set of capacities that allows humans to produce and perceive music appears to be deeply rooted in human biology, but an understanding of its evolutionary origins requires cross-taxa comparisons. We show that drumming by palm cockatoos (Probosciger aterrimus) shares the key rudiments of human instrumental music, including manufacture of a sound tool, performance in a consistent context, regular beat production, repeated components, and individual styles. Over 131 drumming sequences produced by 18 males, the beats occurred at nonrandom, regular intervals, yet individual males differed significantly in the shape parameters describing the distribution of their beat patterns, indicating individual drumming styles. Autocorrelation analyses of the longest drumming sequences further showed that they were highly regular and predictable like human music. These discoveries provide a rare comparative perspective on the evolution of rhythmicity and instrumental music in our own species, and show that a preference for a regular beat can have other origins before being co-opted into group-based music and dance. PMID:28782005
Ota, Tatsuya; Rast, Jonathan P.; Litman, Gary W.; Amemiya, Chris T.
2003-01-01
The lineage leading to lungfishes is one of the few major jawed vertebrate groups in which Ig heavy chain isotype structure has not been investigated at the genetic level. In this study, we have characterized three different Ig heavy chain isotypes of the African lungfish, Protopterus aethiopicus, including an IgM-type heavy chain and short and long forms of non-IgM heavy chains. Northern blot analysis as well as patterns of VH utilization suggest that the IgM and non-IgM isotypes are likely encoded in separate loci. The two non-IgM isotypes identified in Protopterus share structural features with the short and long forms of IgX/W/NARC (referred to hereafter as IgW), which were previously considered to be restricted to the cartilaginous fish. It seems that the IgW isotype has a far broader phylogenetic distribution than considered originally and raises questions with regard to the origin and evolutionary divergence of IgM and IgW. Moreover, its absence in other gnathostome lineages implies paradoxically that the IgW-type genes were lost from teleost and tetrapod lineages. PMID:12606718
Bhattacharya, D; Surek, B; Rüsing, M; Damberger, S; Melkonian, M
1994-01-01
Group I introns are found in organellar genomes, in the genomes of eubacteria and phages, and in nuclear-encoded rRNAs. The origin and distribution of nuclear-encoded rRNA group I introns are not understood. To elucidate their evolutionary relationships, we analyzed diverse nuclear-encoded small-subunit rRNA group I introns including nine sequences from the green-algal order Zygnematales (Charophyceae). Phylogenetic analyses of group I introns and rRNA coding regions suggest that lateral transfers have occurred in the evolutionary history of group I introns and that, after transfer, some of these elements may form stable components of the host-cell nuclear genomes. The Zygnematales introns, which share a common insertion site (position 1506 relative to the Escherichia coli small-subunit rRNA), form one subfamily of group I introns that has, after its origin, been inherited through common ancestry. Since the first Zygnematales appear in the middle Devonian within the fossil record, the "1506" group I intron presumably has been a stable component of the Zygnematales small-subunit rRNA coding region for 350-400 million years. PMID:7937917
Zhang, Liangzhi; Jia, Shangang; Plath, Martin; Huang, Yongzhen; Li, Congjun; Lei, Chuzhao; Zhao, Xin; Chen, Hong
2015-08-10
Copy number variation (CNV) is an important component of genomic structural variation and plays a role not only in evolutionary diversification but also in domestication. Chinese cattle were derived from Bos taurus and Bos indicus, and several breeds presumably are of hybrid origin, but the evolution of CNV regions (CNVRs) has not yet been examined in this context. Here, we of CNVRs, mtDNA D-loop sequence variation, and Y-chromosomal single nucleotide polymorphisms to assess the impact of maternal and paternal B. taurus and B. indicus origins on the distribution of CNVRs in 24 Chinese domesticated bulls. We discovered 470 genome-wide CNVRs, only 72 of which were shared by all three Y-lineages (B. taurus: Y1, Y2; B. indicus: Y3), whereas 265 were shared by inferred taurine or indicine paternal lineages, and 228 when considering their maternal taurine or indicine origins. Phylogenetic analysis uncovered eight taurine/indicine hybrids, and principal component analysis on CNVs corroborated genomic exchange during hybridization. The distribution patterns of CNVRs tended to be lineage-specific, and correlation analysis revealed significant positive or negative co-occurrences of CNVRs across lineages. Our study suggests that CNVs in Chinese cattle partly result from selective breeding during domestication, but also from hybridization and introgression. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Genomic patterns of nucleotide diversity in divergent populations of U.S. weedy rice
2010-01-01
Background Weedy rice (red rice), a conspecific weed of cultivated rice (Oryza sativa L.), is a significant problem throughout the world and an emerging threat in regions where it was previously absent. Despite belonging to the same species complex as domesticated rice and its wild relatives, the evolutionary origins of weedy rice remain unclear. We use genome-wide patterns of single nucleotide polymorphism (SNP) variation in a broad geographic sample of weedy, domesticated, and wild Oryza samples to infer the origin and demographic processes influencing U.S. weedy rice evolution. Results We find greater population structure than has been previously reported for U.S. weedy rice, and that the multiple, genetically divergent populations have separate origins. The two main U.S. weedy rice populations share genetic backgrounds with cultivated O. sativa varietal groups not grown commercially in the U.S., suggesting weed origins from domesticated ancestors. Hybridization between weedy groups and between weedy rice and local crops has also led to the evolution of distinct U.S. weedy rice populations. Demographic simulations indicate differences among the main weedy groups in the impact of bottlenecks on their establishment in the U.S., and in the timing of divergence from their cultivated relatives. Conclusions Unlike prior research, we did not find unambiguous evidence for U.S. weedy rice originating via hybridization between cultivated and wild Oryza species. Our results demonstrate the potential for weedy life-histories to evolve directly from within domesticated lineages. The diverse origins of U.S. weedy rice populations demonstrate the multiplicity of evolutionary forces that can influence the emergence of weeds from a single species complex. PMID:20550656
Allele Sharing and Evidence for Sexuality in a Mitochondrial Clade of Bdelloid Rotifers.
Signorovitch, Ana; Hur, Jae; Gladyshev, Eugene; Meselson, Matthew
2015-06-01
Rotifers of Class Bdelloidea are common freshwater invertebrates of ancient origin whose apparent asexuality has posed a challenge to the view that sexual reproduction is essential for long-term evolutionary success in eukaryotes and to hypotheses for the advantage of sex. The possibility nevertheless exists that bdelloids reproduce sexually under unknown or inadequately investigated conditions. Although certain methods of population genetics offer definitive means for detecting infrequent or atypical sex, they have not previously been applied to bdelloid rotifers. We conducted such a test with bdelloids belonging to a mitochondrial clade of Macrotrachela quadricornifera. This revealed a striking pattern of allele sharing consistent with sexual reproduction and with meiosis of an atypical sort, in which segregation occurs without requiring homologous chromosome pairs. Copyright © 2015 by the Genetics Society of America.
Toward major evolutionary transitions theory 2.0.
Szathmáry, Eörs
2015-08-18
The impressive body of work on the major evolutionary transitions in the last 20 y calls for a reconstruction of the theory although a 2D account (evolution of informational systems and transitions in individuality) remains. Significant advances include the concept of fraternal and egalitarian transitions (lower-level units like and unlike, respectively). Multilevel selection, first without, then with, the collectives in focus is an important explanatory mechanism. Transitions are decomposed into phases of origin, maintenance, and transformation (i.e., further evolution) of the higher level units, which helps reduce the number of transitions in the revised list by two so that it is less top-heavy. After the transition, units show strong cooperation and very limited realized conflict. The origins of cells, the emergence of the genetic code and translation, the evolution of the eukaryotic cell, multicellularity, and the origin of human groups with language are reconsidered in some detail in the light of new data and considerations. Arguments are given why sex is not in the revised list as a separate transition. Some of the transitions can be recursive (e.g., plastids, multicellularity) or limited (transitions that share the usual features of major transitions without a massive phylogenetic impact, such as the micro- and macronuclei in ciliates). During transitions, new units of reproduction emerge, and establishment of such units requires high fidelity of reproduction (as opposed to mere replication).
Deng, Hua; Zhang, Liang-Sheng; Zhang, Guo-Qiang; Zheng, Bao-Qiang; Liu, Zhong-Jian; Wang, Yan
2016-01-01
The phosphoenolpyruvate carboxylase (PEPC) gene is the key enzyme in CAM and C4 photosynthesis. A detailed phylogenetic analysis of the PEPC family was performed using sequences from 60 available published plant genomes, the Phalaenopsis equestris genome and RNA-Seq of 15 additional orchid species. The PEPC family consists of three distinct subfamilies, PPC-1, PPC-2, and PPC-3, all of which share a recent common ancestor in chlorophyte algae. The eudicot PPC-1 lineage separated into two clades due to whole genome duplication (WGD). Similarly, the monocot PPC-1 lineage also divided into PPC-1M1 and PPC-1M2 through an ancient duplication event. The monocot CAM- or C4-related PEPC originated from the clade PPC-1M1. WGD may not be the major driver for the performance of CAM function by PEPC, although it increased the number of copies of the PEPC gene. CAM may have evolved early in monocots, as the CAM-related PEPC of orchids originated from the monocot ancient duplication, and the earliest CAM-related PEPC may have evolved immediately after the diversification of monocots, with CAM developing prior to C4. Our results represent the most complete evolutionary history of PEPC genes in green plants to date and particularly elucidate the origin of PEPC in orchids. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Toward major evolutionary transitions theory 2.0
Szathmáry, Eörs
2015-01-01
The impressive body of work on the major evolutionary transitions in the last 20 y calls for a reconstruction of the theory although a 2D account (evolution of informational systems and transitions in individuality) remains. Significant advances include the concept of fraternal and egalitarian transitions (lower-level units like and unlike, respectively). Multilevel selection, first without, then with, the collectives in focus is an important explanatory mechanism. Transitions are decomposed into phases of origin, maintenance, and transformation (i.e., further evolution) of the higher level units, which helps reduce the number of transitions in the revised list by two so that it is less top-heavy. After the transition, units show strong cooperation and very limited realized conflict. The origins of cells, the emergence of the genetic code and translation, the evolution of the eukaryotic cell, multicellularity, and the origin of human groups with language are reconsidered in some detail in the light of new data and considerations. Arguments are given why sex is not in the revised list as a separate transition. Some of the transitions can be recursive (e.g., plastids, multicellularity) or limited (transitions that share the usual features of major transitions without a massive phylogenetic impact, such as the micro- and macronuclei in ciliates). During transitions, new units of reproduction emerge, and establishment of such units requires high fidelity of reproduction (as opposed to mere replication). PMID:25838283
Central pattern generator for vocalization: is there a vertebrate morphotype?
Bass, Andrew H
2014-10-01
Animals that generate acoustic signals for social communication are faced with two essential tasks: generate a temporally precise signal and inform the auditory system about the occurrence of one's own sonic signal. Recent studies of sound producing fishes delineate a hindbrain network comprised of anatomically distinct compartments coding equally distinct neurophysiological properties that allow an organism to meet these behavioral demands. A set of neural characters comprising a vocal-sonic central pattern generator (CPG) morphotype is proposed for fishes and tetrapods that shares evolutionary developmental origins with pectoral appendage motor systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Central pattern generator for vocalization: Is there a vertebrate morphotype?
Bass, Andrew H.
2014-01-01
Animals that generate acoustic signals for social communication are faced with two essential tasks: generate a temporally precise signal and inform the auditory system about the occurrence of one’s own sonic signal. Recent studies of sound producing fishes delineate a hindbrain network comprised of anatomically distinct compartments coding equally distinct neurophysiological properties that allow an organism to meet these behavioral demands. A set of neural characters comprising a vocal-sonic central pattern generator (CPG) morphotype is proposed for fishes and tetrapods that shares evolutionary developmental origins with pectoral appendage motor systems. PMID:25050813
The C(4) plant lineages of planet Earth.
Sage, Rowan F; Christin, Pascal-Antoine; Edwards, Erika J
2011-05-01
Using isotopic screens, phylogenetic assessments, and 45 years of physiological data, it is now possible to identify most of the evolutionary lineages expressing the C(4) photosynthetic pathway. Here, 62 recognizable lineages of C(4) photosynthesis are listed. Thirty-six lineages (60%) occur in the eudicots. Monocots account for 26 lineages, with a minimum of 18 lineages being present in the grass family and six in the sedge family. Species exhibiting the C(3)-C(4) intermediate type of photosynthesis correspond to 21 lineages. Of these, 9 are not immediately associated with any C(4) lineage, indicating that they did not share common C(3)-C(4) ancestors with C(4) species and are instead an independent line. The geographic centre of origin for 47 of the lineages could be estimated. These centres tend to cluster in areas corresponding to what are now arid to semi-arid regions of southwestern North America, south-central South America, central Asia, northeastern and southern Africa, and inland Australia. With 62 independent lineages, C(4) photosynthesis has to be considered one of the most convergent of the complex evolutionary phenomena on planet Earth, and is thus an outstanding system to study the mechanisms of evolutionary adaptation.
Jakava-Viljanen, Miia; Miia, Jakava-Viljanen; Nokireki, Tiina; Tiina, Nokireki; Sironen, Tarja; Tarja, Sironen; Vapalahti, Olli; Olli, Vapalahti; Sihvonen, Liisa; Liisa, Sihvonen; Huovilainen, Anita; Anita, Huovilainen
2015-06-01
Among other Lyssaviruses, Daubenton's and pond-bat-related European bat lyssavirus type 2 (EBLV-2) can cause human rabies. To investigate the diversity and evolutionary trends of EBLV-2, complete genome sequences of two Finnish isolates were analysed. One originated from a human case in 1985, and the other originated from a bat in 2009. The overall nucleotide and deduced amino acid sequence identity of the two Finnish isolates were high, as well as the similarity to fully sequenced EBLV-2 strains originating from the UK and the Netherlands. In phylogenetic analysis, the EBLV-2 strains formed a monophyletic group that was separate from other bat-type lyssaviruses, with significant support. EBLV-2 shared the most recent common ancestry with Bokeloh bat lyssavirus (BBLV) and Khujan virus (KHUV). EBLV-2 showed limited diversity compared to RABV and appears to be well adapted to its host bat species. The slow tempo of viral evolution was evident in the estimations of divergence times for EBLV-2: the current diversity was estimated to have built up during the last 2000 years, and EBLV-2 diverged from KHUV about 8000 years ago. In a phylogenetic tree of partial N gene sequences, the Finnish EBLV-2 strains clustered with strains from Central Europe, supporting the hypothesis that EBLV-2 circulating in Finland might have a Central European origin. The Finnish EBLV-2 strains and a Swiss strain were estimated to have diverged from other EBLV-2 strains during the last 1000 years, and the two Finnish strains appear to have evolved from a common ancestor during the last 200 years.
Yutin, Natalya; Raoult, Didier; Koonin, Eugene V
2013-05-23
Recent advances of genomics and metagenomics reveal remarkable diversity of viruses and other selfish genetic elements. In particular, giant viruses have been shown to possess their own mobilomes that include virophages, small viruses that parasitize on giant viruses of the Mimiviridae family, and transpovirons, distinct linear plasmids. One of the virophages known as the Mavirus, a parasite of the giant Cafeteria roenbergensis virus, shares several genes with large eukaryotic self-replicating transposon of the Polinton (Maverick) family, and it has been proposed that the polintons evolved from a Mavirus-like ancestor. We performed a comprehensive phylogenomic analysis of the available genomes of virophages and traced the evolutionary connections between the virophages and other selfish genetic elements. The comparison of the gene composition and genome organization of the virophages reveals 6 conserved, core genes that are organized in partially conserved arrays. Phylogenetic analysis of those core virophage genes, for which a sufficient diversity of homologs outside the virophages was detected, including the maturation protease and the packaging ATPase, supports the monophyly of the virophages. The results of this analysis appear incompatible with the origin of polintons from a Mavirus-like agent but rather suggest that Mavirus evolved through recombination between a polinton and an unknown virus. Altogether, virophages, polintons, a distinct Tetrahymena transposable element Tlr1, transpovirons, adenoviruses, and some bacteriophages form a network of evolutionary relationships that is held together by overlapping sets of shared genes and appears to represent a distinct module in the vast total network of viruses and mobile elements. The results of the phylogenomic analysis of the virophages and related genetic elements are compatible with the concept of network-like evolution of the virus world and emphasize multiple evolutionary connections between bona fide viruses and other classes of capsid-less mobile elements.
2013-01-01
Background Recent advances of genomics and metagenomics reveal remarkable diversity of viruses and other selfish genetic elements. In particular, giant viruses have been shown to possess their own mobilomes that include virophages, small viruses that parasitize on giant viruses of the Mimiviridae family, and transpovirons, distinct linear plasmids. One of the virophages known as the Mavirus, a parasite of the giant Cafeteria roenbergensis virus, shares several genes with large eukaryotic self-replicating transposon of the Polinton (Maverick) family, and it has been proposed that the polintons evolved from a Mavirus-like ancestor. Results We performed a comprehensive phylogenomic analysis of the available genomes of virophages and traced the evolutionary connections between the virophages and other selfish genetic elements. The comparison of the gene composition and genome organization of the virophages reveals 6 conserved, core genes that are organized in partially conserved arrays. Phylogenetic analysis of those core virophage genes, for which a sufficient diversity of homologs outside the virophages was detected, including the maturation protease and the packaging ATPase, supports the monophyly of the virophages. The results of this analysis appear incompatible with the origin of polintons from a Mavirus-like agent but rather suggest that Mavirus evolved through recombination between a polinton and an unknownvirus. Altogether, virophages, polintons, a distinct Tetrahymena transposable element Tlr1, transpovirons, adenoviruses, and some bacteriophages form a network of evolutionary relationships that is held together by overlapping sets of shared genes and appears to represent a distinct module in the vast total network of viruses and mobile elements. Conclusions The results of the phylogenomic analysis of the virophages and related genetic elements are compatible with the concept of network-like evolution of the virus world and emphasize multiple evolutionary connections between bona fide viruses and other classes of capsid-less mobile elements. PMID:23701946
Our Origins: How and Why We Do and Do Not Differ from Primates
NASA Astrophysics Data System (ADS)
Kappeler, Peter
Questions about human origins and uniqueness are at the core of unraveling the essential building blocks of human nature. Probably no other single topic has received more attention across the sciences and humanities than the question of what makes us human and how humans differ from other primates and animals. Evolutionary anthropologists can contribute important comparative evidence to this debate because they adopt a broad perspective that considers both the ancestors of the human species as well as its closest living biological relatives. In this chapter, I review some recent insights into human nature based on this perspective. My focus is on social behavior and its underlying adaptations and mechanisms, because this is the realm of man's most salient features. In contrast to many mainstream contributions on this topic, I emphasize shared behavioral similarities between humans and other primates and outline their underlying mechanisms. These behavioral features shared with other primates include much of our homeostatic behavior and many of our emotions and cognitive abilities, so that together they appear to represent the submerged part of an iceberg. I also briefly summarize some of the uniquely human traits forming the tip of the iceberg and outline current attempts to explain their origin. Accordingly, in this context shared intentionality represents a crucial psychological mechanism that may have been reinforced by a switch to a cooperative breeding system in early Homo evolution. In conclusion, this essay contends that the key essential building block defining human nature is like the core of a Russian doll, while all the outer layers represent our vertebrate, mammalian, and primate legacies.
Komiyama, Tomoyoshi; Ikeo, Kazuho; Gojobori, Takashi
2004-05-26
Chickens with exceptionally long crow are often favored all over the world, and connoisseur breeders have bred certain types of chicken exclusively for this trait. In Japan, three chicken varieties have been specifically bred to develop an exceptionally long crow of over 15 s. Although these three long-crowing chickens, Naganakidori, are honored as heritage varieties of Japan, the domestication process and genealogical origin of long-crowing chickens remain unclear. The purpose of this study is to clarify these issues using nucleotide sequences of the mitochondrial DNA D-loop region. Blood samples from a total of nine long-crowing chickens and 74 chickens from 11 Japanese native varieties were collected. DNA sequence data of two Junglefowl species were also collected from the International DNA database (DDBJ /EMBL/GenBank) for use as the outgroup. A phylogenetic tree was then constructed revealing that all three Naganakidori varieties were monophyletic and originated from a fighting cock, a Shamo, for cockfighting. These results suggest that these three long-crowing chickens share a common origin in spite of their conspicuously different characters, and that human cultures favoring long-crowing chickens might have been preceded by a tradition of cockfighting. Moreover, these long-crowing varieties first separated from the fighting cocks of Okinawa, which is geographically closer to Southern China and Indochina than Mainland Japan (Honshu/Kyushu). This implies that Japanese long-crowing chickens were first brought to Mainland Japan as fighting cocks from the surrounding regions of Southern China or Indochina and through Okinawa.
ERIC Educational Resources Information Center
Penke, Lars; Borsboom, Denny; Johnson, Wendy; Kievit, Rogier A.; Ploeger, Annemie; Wicherts, Jelte M.
2011-01-01
This article shares the authors' comments on a record by Kanazawa. Evolutionary psychologists search for human universals, differential psychologists for variation around common human themes. So far, evolutionary psychology and differential psychology seem somewhat disparate and unconnected, although Kanazawa is certainly not the first to attempt…
Miller, Craig T.; Beleza, Sandra; Pollen, Alex A.; Schluter, Dolph; Kittles, Rick A.; Shriver, Mark D.; Kingsley, David M.
2010-01-01
SUMMARY Dramatic pigmentation changes have evolved within most vertebrate groups, including fish and humans. Here we use genetic crosses in sticklebacks to investigate the parallel origin of pigmentation changes in natural populations. High-resolution mapping and expression experiments show that light gills and light ventrums map to a divergent regulatory allele of the Kit ligand (Kitlg) gene. The divergent allele reduces expression in gill and skin tissue, and is shared by multiple derived freshwater populations with reduced pigmentation. In humans, Europeans and East Asians also share derived alleles at the KITLG locus. Strong signatures of selection map to regulatory regions surrounding the gene, and admixture mapping shows that the KITLG genomic region has a significant effect on human skin color. These experiments suggest that regulatory changes in Kitlg contribute to natural variation in vertebrate pigmentation, and that similar genetic mechanisms may underlie rapid evolutionary change in fish and humans. PMID:18083106
Genetic history of an archaic hominin group from Denisova Cave in Siberia
Reich, David; Green, Richard E.; Kircher, Martin; Krause, Johannes; Patterson, Nick; Durand, Eric Y.; Viola, Bence; Briggs, Adrian W.; Stenzel, Udo; Johnson, Philip L. F.; Maricic, Tomislav; Good, Jeffrey M.; Marques-Bonet, Tomas; Alkan, Can; Fu, Qiaomei; Mallick, Swapan; Li, Heng; Meyer, Matthias; Eichler, Evan E.; Stoneking, Mark; Richards, Michael; Talamo, Sahra; Shunkov, Michael V.; Derevianko, Anatoli P.; Hublin, Jean-Jacques; Kelso, Janet; Slatkin, Montgomery; Pääbo, Svante
2015-01-01
Using DNA extracted from a finger bone found in Denisova Cave in southern Siberia, we have sequenced the genome of an archaic hominin to about 1.9-fold coverage. This individual is from a group that shares a common origin with Neanderthals. This population was not involved in the putative gene flow from Neanderthals into Eurasians; however, the data suggest that it contributed 4–6% of its genetic material to the genomes of present-day Melanesians. We designate this hominin population ‘Denisovans’ and suggest that it may have been widespread in Asia during the Late Pleistocene epoch. A tooth found in Denisova Cave carries a mitochondrial genome highly similar to that of the finger bone. This tooth shares no derived morphological features with Neanderthals or modern humans, further indicating that Denisovans have an evolutionary history distinct from Neanderthals and modern humans. PMID:21179161
Neural overlap in processing music and speech.
Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L
2015-03-19
Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Neural overlap in processing music and speech
Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L.
2015-01-01
Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing. PMID:25646513
Prangishvili, David
2016-01-01
ABSTRACT Archaea and particularly hyperthermophilic crenarchaea are hosts to many unusual viruses with diverse virion shapes and distinct gene compositions. As is typical of viruses in general, there are no universal genes in the archaeal virosphere. Therefore, to obtain a comprehensive picture of the evolutionary relationships between viruses, network analysis methods are more productive than traditional phylogenetic approaches. Here we present a comprehensive comparative analysis of genomes and proteomes from all currently known taxonomically classified and unclassified, cultivated and uncultivated archaeal viruses. We constructed a bipartite network of archaeal viruses that includes two classes of nodes, the genomes and gene families that connect them. Dissection of this network using formal community detection methods reveals strong modularity, with 10 distinct modules and 3 putative supermodules. However, compared to similar previously analyzed networks of eukaryotic and bacterial viruses, the archaeal virus network is sparsely connected. With the exception of the tailed viruses related to bacteriophages of the order Caudovirales and the families Turriviridae and Sphaerolipoviridae that are linked to a distinct supermodule of eukaryotic and bacterial viruses, there are few connector genes shared by different archaeal virus modules. In contrast, most of these modules include, in addition to viruses, capsidless mobile elements, emphasizing tight evolutionary connections between the two types of entities in archaea. The relative contributions of distinct evolutionary origins, in particular from nonviral elements, and insufficient sampling to the sparsity of the archaeal virus network remain to be determined by further exploration of the archaeal virosphere. IMPORTANCE Viruses infecting archaea are among the most mysterious denizens of the virosphere. Many of these viruses display no genetic or even morphological relationship to viruses of bacteria and eukaryotes, raising questions regarding their origins and position in the global virosphere. Analysis of 5,740 protein sequences from 116 genomes allowed dissection of the archaeal virus network and showed that most groups of archaeal viruses are evolutionarily connected to capsidless mobile genetic elements, including various plasmids and transposons. This finding could reflect actual independent origins of the distinct groups of archaeal viruses from different nonviral elements, providing important insights into the emergence and evolution of the archaeal virome. PMID:27681128
Reasoning about beliefs: a human specialization?
Povinelli, D J; Giambrone, S
2001-01-01
A recent meta-analysis performed by Wellman, Cross, and Watson clears the air surrounding young children's performance on tests of false belief by showing that it is highly likely that there is some type of conceptual development between 3 and 5 years of age that supports improved task performance. The data concerning the evolutionary origin of these abilities, however, is considerably less clear. Nonetheless, there is some reason to suspect that theory of mind is unique to our species, and that its original function was to provide a more abstract level of describing ancient behavioral patterns (such as deception, reconciliation, and gaze following)-behaviors that humans share in common with many other species. Thus, the initial selective advantage of theory of mind may have been because it increased the flexibility of already-existing behaviors, not because it generated scores of radically new ones.
Sonsthagen, Sarah A.; Wilson, Robert E.; Chesser, Terry; Pons, Jean-Marc; Crochet, Pierre-Andre; Driscoll, Amy; Dove, Carla
2016-01-01
Species complexes that have undergone recent radiations are often characterized by extensive allele sharing due to recent ancestry and (or) introgressive hybridization. This can result in discordant evolutionary histories of genes and heterogeneous genomes, making delineating species limits difficult. Here we examine the phylogenetic relationships among a complex group of birds, the white-headed gulls (Aves: Laridae), which offer a unique window into the speciation process due to their recent evolutionary history and propensity to hybridize. Relationships were examined among 17 species (61 populations) using a multilocus approach, including mitochondrial and nuclear intron DNA sequences and microsatellite genotype information. Analyses of microsatellite and intron data resulted in some species-based groupings, although most species were not represented by a single cluster. Considerable allele and haplotype sharing among white-headed gull species was observed; no locus contained a species-specific clade. Despite this, our multilocus approach provided better resolution among some species than previous studies. Interestingly, most clades appear to correspond to geographic locality: our BEAST analysis recovered strong support for a northern European/Icelandic clade, a southern European/Russian clade, and a western North American/canus clade, with weak evidence for a high latitude clade spanning North America and northwestern Europe. This geographical structuring is concordant with behavioral observations of pervasive hybridization in areas of secondary contact. The extent of allele and haplotype sharing indicates that ecological and sexual selection are likely not strong enough to complete reproductive isolation within several species in the white-headed gull complex. This suggests that just a few genes are driving the speciation process.
Ryan, Joseph F; Burton, Patrick M; Mazza, Maureen E; Kwong, Grace K; Mullikin, James C; Finnerty, John R
2006-01-01
Background Homeodomain transcription factors are key components in the developmental toolkits of animals. While this gene superclass predates the evolutionary split between animals, plants, and fungi, many homeobox genes appear unique to animals. The origin of particular homeobox genes may, therefore, be associated with the evolution of particular animal traits. Here we report the first near-complete set of homeodomains from a basal (diploblastic) animal. Results Phylogenetic analyses were performed on 130 homeodomains from the sequenced genome of the sea anemone Nematostella vectensis along with 228 homeodomains from human and 97 homeodomains from Drosophila. The Nematostella homeodomains appear to be distributed among established homeodomain classes in the following fashion: 72 ANTP class; one HNF class; four LIM class; five POU class; 33 PRD class; five SINE class; and six TALE class. For four of the Nematostella homeodomains, there is disagreement between neighbor-joining and Bayesian trees regarding their class membership. A putative Nematostella CUT class gene is also identified. Conclusion The homeodomain superclass underwent extensive radiations prior to the evolutionary split between Cnidaria and Bilateria. Fifty-six homeodomain families found in human and/or fruit fly are also found in Nematostella, though seventeen families shared by human and fly appear absent in Nematostella. Homeodomain loss is also apparent in the bilaterian taxa: eight homeodomain families shared by Drosophila and Nematostella appear absent from human (CG13424, EMXLX, HOMEOBRAIN, MSXLX, NK7, REPO, ROUGH, and UNC4), and six homeodomain families shared by human and Nematostella appear absent from fruit fly (ALX, DMBX, DUX, HNF, POU1, and VAX). PMID:16867185
Gao, Beile; Gupta, Radhey S
2007-01-01
Background The Archaea are highly diverse in terms of their physiology, metabolism and ecology. Presently, very few molecular characteristics are known that are uniquely shared by either all archaea or the different main groups within archaea. The evolutionary relationships among different groups within the Euryarchaeota branch are also not clearly understood. Results We have carried out comprehensive analyses on each open reading frame (ORFs) in the genomes of 11 archaea (3 Crenarchaeota – Aeropyrum pernix, Pyrobaculum aerophilum and Sulfolobus acidocaldarius; 8 Euryarchaeota – Pyrococcus abyssi, Methanococcus maripaludis, Methanopyrus kandleri, Methanococcoides burtonii, Halobacterium sp. NCR-1, Haloquadratum walsbyi, Thermoplasma acidophilum and Picrophilus torridus) to search for proteins that are unique to either all Archaea or for its main subgroups. These studies have identified 1448 proteins or ORFs that are distinctive characteristics of Archaea and its various subgroups and whose homologues are not found in other organisms. Six of these proteins are unique to all Archaea, 10 others are only missing in Nanoarchaeum equitans and a large number of other proteins are specific for various main groups within the Archaea (e.g. Crenarchaeota, Euryarchaeota, Sulfolobales and Desulfurococcales, Halobacteriales, Thermococci, Thermoplasmata, all methanogenic archaea or particular groups of methanogens). Of particular importance is the observation that 31 proteins are uniquely present in virtually all methanogens (including M. kandleri) and 10 additional proteins are only found in different methanogens as well as A. fulgidus. In contrast, no protein was exclusively shared by various methanogen and any of the Halobacteriales or Thermoplasmatales. These results strongly indicate that all methanogenic archaea form a monophyletic group exclusive of other archaea and that this lineage likely evolved from Archaeoglobus. In addition, 15 proteins that are uniquely shared by M. kandleri and Methanobacteriales suggest a close evolutionary relationship between them. In contrast to the phylogenomics studies, a monophyletic grouping of archaea is not supported by phylogenetic analyses based on protein sequences. Conclusion The identified archaea-specific proteins provide novel molecular markers or signature proteins that are distinctive characteristics of Archaea and all of its major subgroups. The species distributions of these proteins provide novel insights into the evolutionary relationships among different groups within Archaea, particularly regarding the origin of methanogenesis. Most of these proteins are of unknown function and further studies should lead to discovery of novel biochemical and physiological characteristics that are unique to either all archaea or its different subgroups. PMID:17394648
Wolf, Y I; Aravind, L; Grishin, N V; Koonin, E V
1999-08-01
Phylogenetic analysis of aminoacyl-tRNA synthetases (aaRSs) of all 20 specificities from completely sequenced bacterial, archaeal, and eukaryotic genomes reveals a complex evolutionary picture. Detailed examination of the domain architecture of aaRSs using sequence profile searches delineated a network of partially conserved domains that is even more elaborate than previously suspected. Several unexpected evolutionary connections were identified, including the apparent origin of the beta-subunit of bacterial GlyRS from the HD superfamily of hydrolases, a domain shared by bacterial AspRS and the B subunit of archaeal glutamyl-tRNA amidotransferases, and another previously undetected domain that is conserved in a subset of ThrRS, guanosine polyphosphate hydrolases and synthetases, and a family of GTPases. Comparison of domain architectures and multiple alignments resulted in the delineation of synapomorphies-shared derived characters, such as extra domains or inserts-for most of the aaRSs specificities. These synapomorphies partition sets of aaRSs with the same specificity into two or more distinct and apparently monophyletic groups. In conjunction with cluster analysis and a modification of the midpoint-rooting procedure, this partitioning was used to infer the likely root position in phylogenetic trees. The topologies of the resulting rooted trees for most of the aaRSs specificities are compatible with the evolutionary "standard model" whereby the earliest radiation event separated bacteria from the common ancestor of archaea and eukaryotes as opposed to the two other possible evolutionary scenarios for the three major divisions of life. For almost all aaRSs specificities, however, this simple scheme is confounded by displacement of some of the bacterial aaRSs by their eukaryotic or, less frequently, archaeal counterparts. Displacement of ancestral eukaryotic aaRS genes by bacterial ones, presumably of mitochondrial origin, was observed for three aaRSs. In contrast, there was no convincing evidence of displacement of archaeal aaRSs by bacterial ones. Displacement of aaRS genes by eukaryotic counterparts is most common among parasitic and symbiotic bacteria, particularly the spirochaetes, in which 10 of the 19 aaRSs seem to have been displaced by the respective eukaryotic genes and two by the archaeal counterpart. Unlike the primary radiation events between the three main divisions of life, that were readily traceable through the phylogenetic analysis of aaRSs, no consistent large-scale bacterial phylogeny could be established. In part, this may be due to additional gene displacement events among bacterial lineages. Argument is presented that, although lineage-specific gene loss might have contributed to the evolution of some of the aaRSs, this is not a viable alternative to horizontal gene transfer as the principal evolutionary phenomenon in this gene class.
Abrupt deceleration of molecular evolution linked to the origin of arborescence in ferns.
Korall, Petra; Schuettpelz, Eric; Pryer, Kathleen M
2010-09-01
Molecular rate heterogeneity, whereby rates of molecular evolution vary among groups of organisms, is a well-documented phenomenon. Nonetheless, its causes are poorly understood. For animals, generation time is frequently cited because longer-lived species tend to have slower rates of molecular evolution than their shorter-lived counterparts. Although a similar pattern has been uncovered in flowering plants, using proxies such as growth form, the underlying process has remained elusive. Here, we find a deceleration of molecular evolutionary rate to be coupled with the origin of arborescence in ferns. Phylogenetic branch lengths within the “tree fern” clade are considerably shorter than those of closely related lineages, and our analyses demonstrate that this is due to a significant difference in molecular evolutionary rate. Reconstructions reveal that an abrupt rate deceleration coincided with the evolution of the long-lived tree-like habit at the base of the tree fern clade. This suggests that a generation time effect may well be ubiquitous across the green tree of life, and that the search for a responsible mechanism must focus on characteristics shared by all vascular plants. Discriminating among the possibilities will require contributions from various biological disciplines,but will be necessary for a full appreciation of molecular evolution.
Can Chimpanzee Biology Highlight Human Origin and Evolution?
Roffman, Itai; Nevo, Eviatar
2010-01-01
The closest living relatives of humans are their chimpanzee/bonobo (Pan) sister species, members of the same subfamily “Homininae”. This classification is supported by over 50 years of research in the fields of chimpanzee cultural diversity, language competency, genomics, anatomy, high cognition, psychology, society, self-consciousness and relation to others, tool use/production, as well as Homo level emotions, symbolic competency, memory recollection, complex multifaceted problem-solving capabilities, and interspecies communication. Language competence and symbolism can be continuously bridged from chimpanzee to man. Emotions, intercommunity aggression, body language, gestures, facial expressions, and vocalization of intonations seem to parallel between the sister taxa Homo and Pan. The shared suite of traits between Pan and Homo genus demonstrated in this article integrates old and new information on human–chimpanzee evolution, bilateral informational and cross-cultural exchange, promoting the urgent need for Pan cultures in the wild to be protected, as they are part of the cultural heritage of mankind. Also, we suggest that bonobos, Pan paniscus, based on shared traits with Australopithecus, need to be included in Australopithecine’s subgenus, and may even represent living-fossil Australopithecines. Unfolding bonobo and chimpanzee biology highlights our common genetic and cultural evolutionary origins. PMID:23908781
Evolutionary Origins for Social Vocalization in a Vertebrate Hindbrain–Spinal Compartment
Bass, Andrew H.; Gilland, Edwin H.; Baker, Robert
2008-01-01
The macroevolutionary events leading to neural innovations for social communication, such as vocalization, are essentially unexplored. Many fish vocalize during female courtship and territorial defense, as do amphibians, birds, and mammals. Here, we map the neural circuitry for vocalization in larval fish and show that the vocal network develops in a segment-like region across the most caudal hindbrain and rostral spinal cord. Taxonomic analysis demonstrates a highly conserved pattern between fish and all major lineages of vocal tetrapods. We propose that the vocal basis for acoustic communication among vertebrates evolved from an ancestrally shared developmental compartment already present in the early fishes. PMID:18635807
Ontogenetic ritualization of primate gesture as a case study in dyadic brain modeling.
Gasser, Brad; Cartmill, Erica A; Arbib, Michael A
2014-01-01
This paper introduces dyadic brain modeling - the simultaneous, computational modeling of the brains of two interacting agents - to explore ways in which our understanding of macaque brain circuitry can ground new models of brain mechanisms involved in ape interaction. Specifically, we assess a range of data on gestural communication of great apes as the basis for developing an account of the interactions of two primates engaged in ontogenetic ritualization, a proposed learning mechanism through which a functional action may become a communicative gesture over repeated interactions between two individuals (the 'dyad'). The integration of behavioral, neural, and computational data in dyadic (or, more generally, social) brain modeling has broad application to comparative and evolutionary questions, particularly for the evolutionary origins of cognition and language in the human lineage. We relate this work to the neuroinformatics challenges of integrating and sharing data to support collaboration between primatologists, neuroscientists and modelers that will help speed the emergence of what may be called comparative neuro-primatology.
A basal thunnosaurian from Iraq reveals disparate phylogenetic origins for Cretaceous ichthyosaurs
Fischer, Valentin; Appleby, Robert M.; Naish, Darren; Liston, Jeff; Riding, James B.; Brindley, Stephen; Godefroit, Pascal
2013-01-01
Cretaceous ichthyosaurs have typically been considered a small, homogeneous assemblage sharing a common Late Jurassic ancestor. Their low diversity and disparity have been interpreted as indicative of a decline leading to their Cenomanian extinction. We describe the first post-Triassic ichthyosaur from the Middle East, Malawania anachronus gen. et sp. nov. from the Early Cretaceous of Iraq, and re-evaluate the evolutionary history of parvipelvian ichthyosaurs via phylogenetic and cladogenesis rate analyses. Malawania represents a basal grade in thunnosaurian evolution that arose during a major Late Triassic radiation event and was previously thought to have gone extinct during the Early Jurassic. Its pectoral morphology appears surprisingly archaic, retaining a forefin architecture similar to that of its Early Jurassic relatives. After the initial latest Triassic radiation of early thunnosaurians, two subsequent large radiations produced lineages with Cretaceous representatives, but the radiation events themselves are pre-Cretaceous. Cretaceous ichthyosaurs therefore include distantly related lineages, with contrasting evolutionary histories, and appear more diverse and disparate than previously supposed. PMID:23676653
On the role and origin of isochrony in human rhythmic entrainment.
Merker, Bjorn H; Madison, Guy S; Eckerdal, Patricia
2009-01-01
Wherever human beings live, and however they may organise their affairs, they gather from time to time to sing and dance together, often in a ritual setting. In doing so they synchronise their voices and bodily movements to a shared, repeating interval of time, the musical pulse, beat or tactus. We take this capacity to "entrain" to an evenly paced stimulus (isochrony) so much for granted that it may come as a surprise to learn that from a biological point of view such behaviour is exceptional. But it is not altogether unique. There are a number of other species, none of them closely related to humans, that also engage in group synchrony of behaviour through entrainment to an isochronous pulse. Despite their evolutionary distance from us their life circumstances throw an interesting light on the possible origin and nature of our own entrainment capacity. Here we consider this capacity in terms of its possible origin, functional mechanisms, and ontogenetic development.
The Enigmatic Origin of Papillomavirus Protein Domains
Kirsip, Heleri; Gaston, Kevin
2017-01-01
Almost a century has passed since the discovery of papillomaviruses. A few decades of research have given a wealth of information on the molecular biology of papillomaviruses. Several excellent studies have been performed looking at the long- and short-term evolution of these viruses. However, when and how papillomaviruses originate is still a mystery. In this study, we systematically searched the (sequenced) biosphere to find distant homologs of papillomaviral protein domains. Our data show that, even including structural information, which allows us to find deeper evolutionary relationships compared to sequence-only based methods, only half of the protein domains in papillomaviruses have relatives in the rest of the biosphere. We show that the major capsid protein L1 and the replication protein E1 have relatives in several viral families, sharing three protein domains with Polyomaviridae and Parvoviridae. However, only the E1 replication protein has connections with cellular organisms. Most likely, the papillomavirus ancestor is of marine origin, a biotope that is not very well sequenced at the present time. Nevertheless, there is no evidence as to how papillomaviruses originated and how they became vertebrate and epithelium specific. PMID:28832519
The Enigmatic Origin of Papillomavirus Protein Domains.
Puustusmaa, Mikk; Kirsip, Heleri; Gaston, Kevin; Abroi, Aare
2017-08-23
Almost a century has passed since the discovery of papillomaviruses. A few decades of research have given a wealth of information on the molecular biology of papillomaviruses. Several excellent studies have been performed looking at the long- and short-term evolution of these viruses. However, when and how papillomaviruses originate is still a mystery. In this study, we systematically searched the (sequenced) biosphere to find distant homologs of papillomaviral protein domains. Our data show that, even including structural information, which allows us to find deeper evolutionary relationships compared to sequence-only based methods, only half of the protein domains in papillomaviruses have relatives in the rest of the biosphere. We show that the major capsid protein L1 and the replication protein E1 have relatives in several viral families, sharing three protein domains with Polyomaviridae and Parvoviridae . However, only the E1 replication protein has connections with cellular organisms. Most likely, the papillomavirus ancestor is of marine origin, a biotope that is not very well sequenced at the present time. Nevertheless, there is no evidence as to how papillomaviruses originated and how they became vertebrate and epithelium specific.
Human genomic disease variants: a neutral evolutionary explanation.
Dudley, Joel T; Kim, Yuseob; Liu, Li; Markov, Glenn J; Gerold, Kristyn; Chen, Rong; Butte, Atul J; Kumar, Sudhir
2012-08-01
Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease.
Human genomic disease variants: A neutral evolutionary explanation
Dudley, Joel T.; Kim, Yuseob; Liu, Li; Markov, Glenn J.; Gerold, Kristyn; Chen, Rong; Butte, Atul J.; Kumar, Sudhir
2012-01-01
Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease. PMID:22665443
Spatial Structure of Evolutionary Models of Dialects in Contact
Murawaki, Yugo
2015-01-01
Phylogenetic models, originally developed to demonstrate evolutionary biology, have been applied to a wide range of cultural data including natural language lexicons, manuscripts, folktales, material cultures, and religions. A fundamental question regarding the application of phylogenetic inference is whether trees are an appropriate approximation of cultural evolutionary history. Their validity in cultural applications has been scrutinized, particularly with respect to the lexicons of dialects in contact. Phylogenetic models organize evolutionary data into a series of branching events through time. However, branching events are typically not included in dialectological studies to interpret the distributions of lexical terms. Instead, dialectologists have offered spatial interpretations to represent lexical data. For example, new lexical items that emerge in a politico-cultural center are likely to spread to peripheries, but not vice versa. To explore the question of the tree model’s validity, we present a simple simulation model in which dialects form a spatial network and share lexical items through contact rather than through common ancestors. We input several network topologies to the model to generate synthetic data. We then analyze the synthesized data using conventional phylogenetic techniques. We found that a group of dialects can be considered tree-like even if it has not evolved in a temporally tree-like manner but has a temporally invariant, spatially tree-like structure. In addition, the simulation experiments appear to reproduce unnatural results observed in reconstructed trees for real data. These results motivate further investigation into the spatial structure of the evolutionary history of dialect lexicons as well as other cultural characteristics. PMID:26221958
An Evolutionary Framework for Understanding the Origin of Eukaryotes.
Blackstone, Neil W
2016-04-27
Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real-the endosymbiosis that led to the mitochondrion is often described as "non-Darwinian" because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious-all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.
Deciphering the Origin of Dogs: From Fossils to Genomes.
Freedman, Adam H; Wayne, Robert K
2017-02-08
Understanding the timing and geographic context of dog origins is a crucial component for understanding human history, as well as the evolutionary context in which the morphological and behavioral divergence of dogs from wolves occurred. A substantial challenge to understanding domestication is that dogs have experienced a complicated demographic history. An initial severe bottleneck was associated with domestication followed by postdivergence gene flow between dogs and wolves, as well as population expansions, contractions, and replacements. In addition, because the domestication of dogs occurred in the relatively recent past, much of the observed polymorphism may be shared between dogs and wolves, limiting the power to distinguish between alternative models of dog history. Greater insight into the domestication process will require explicit tests of alternative models of domestication through the joint analysis of whole genomes from modern lineages and ancient wolves and dogs from across Eurasia.
Evo-devo models of tooth development and the origin of hominoid molar diversity
Bailey, Shara E.; Schwartz, Gary T.; Skinner, Matthew M.
2018-01-01
The detailed anatomical features that characterize fossil hominin molars figure prominently in the reconstruction of their taxonomy, phylogeny, and paleobiology. Despite the prominence of molar form in human origins research, the underlying developmental mechanisms generating the diversity of tooth crown features remain poorly understood. A model of tooth morphogenesis—the patterning cascade model (PCM)—provides a developmental framework to explore how and why the varying molar morphologies arose throughout human evolution. We generated virtual maps of the inner enamel epithelium—an indelibly preserved record of enamel knot arrangement—in 17 living and fossil hominoid species to investigate whether the PCM explains the expression of all major accessory cusps. We found that most of the variation and evolutionary changes in hominoid molar morphology followed the general developmental rule shared by all mammals, outlined by the PCM. Our results have implications for the accurate interpretation of molar crown configuration in hominoid systematics. PMID:29651459
Diversity and origins of anaerobic metabolism in mitochondria and related organelles
Stairs, Courtney W.; Leger, Michelle M.; Roger, Andrew J.
2015-01-01
Across the diversity of life, organisms have evolved different strategies to thrive in hypoxic environments, and microbial eukaryotes (protists) are no exception. Protists that experience hypoxia often possess metabolically distinct mitochondria called mitochondrion-related organelles (MROs). While there are some common metabolic features shared between the MROs of distantly related protists, these organelles have evolved independently multiple times across the breadth of eukaryotic diversity. Until recently, much of our knowledge regarding the metabolic potential of different MROs was limited to studies in parasitic lineages. Over the past decade, deep-sequencing studies of free-living anaerobic protists have revealed novel configurations of metabolic pathways that have been co-opted for life in low oxygen environments. Here, we provide recent examples of anaerobic metabolism in the MROs of free-living protists and their parasitic relatives. Additionally, we outline evolutionary scenarios to explain the origins of these anaerobic pathways in eukaryotes. PMID:26323757
Wandering tales: evolutionary origins of mental time travel and language
Corballis, Michael C.
2013-01-01
A central component of mind wandering is mental time travel, the calling to mind of remembered past events and of imagined future ones. Mental time travel may also be critical to the evolution of language, which enables us to communicate about the non-present, sharing memories, plans, and ideas. Mental time travel is indexed in humans by hippocampal activity, and studies also suggest that the hippocampus in rats is active when the animals replay or pre play activity in a spatial environment, such as a maze. Mental time travel may have ancient origins, contrary to the view that it is unique to humans. Since mental time travel is also thought to underlie language, these findings suggest that language evolved gradually from pre-existing cognitive capacities, contrary to the view of Chomsky and others that language and symbolic thought emerged abruptly, in a single step, within the past 100,000 years. PMID:23908641
Shirai, Leila T; Saenko, Suzanne V; Keller, Roberto A; Jerónimo, Maria A; Brakefield, Paul M; Descimon, Henri; Wahlberg, Niklas; Beldade, Patrícia
2012-02-15
The origin and modification of novel traits are important aspects of biological diversification. Studies combining concepts and approaches of developmental genetics and evolutionary biology have uncovered many examples of the recruitment, or co-option, of genes conserved across lineages for the formation of novel, lineage-restricted traits. However, little is known about the evolutionary history of the recruitment of those genes, and of the relationship between them -for example, whether the co-option involves whole or parts of existing networks, or whether it occurs by redeployment of individual genes with de novo rewiring. We use a model novel trait, color pattern elements on butterfly wings called eyespots, to explore these questions. Eyespots have greatly diversified under natural and sexual selection, and their formation involves genetic circuitries shared across insects. We investigated the evolutionary history of the recruitment and co-recruitment of four conserved transcription regulators to the larval wing disc region where circular pattern elements develop. The co-localization of Antennapedia, Notch, Distal-less, and Spalt with presumptive (eye)spot organizers was examined in 13 butterfly species, providing the largest comparative dataset available for the system. We found variation between families, between subfamilies, and between tribes. Phylogenetic reconstructions by parsimony and maximum likelihood methods revealed an unambiguous evolutionary history only for Antennapedia, with a resolved single origin of eyespot-associated expression, and many homoplastic events for Notch, Distal-less, and Spalt. The flexibility in the (co-)recruitment of the targeted genes includes cases where different gene combinations are associated with morphologically similar eyespots, as well as cases where identical protein combinations are associated with very different phenotypes. The evolutionary history of gene (co-)recruitment is consistent with both divergence from a recruited putative ancestral network, and with independent co-option of individual genes. The diversity in the combinations of genes expressed in association with eyespot formation does not parallel diversity in characteristics of the adult phenotype. We discuss these results in the context of inferring homology. Our study underscores the importance of widening the representation of phylogenetic, morphological, and genetic diversity in order to establish general principles about the mechanisms behind the evolution of novel traits.
Haplotype Sharing Provides Insights into Fine-Scale Population History and Disease in Finland.
Martin, Alicia R; Karczewski, Konrad J; Kerminen, Sini; Kurki, Mitja I; Sarin, Antti-Pekka; Artomov, Mykyta; Eriksson, Johan G; Esko, Tõnu; Genovese, Giulio; Havulinna, Aki S; Kaprio, Jaakko; Konradi, Alexandra; Korányi, László; Kostareva, Anna; Männikkö, Minna; Metspalu, Andres; Perola, Markus; Prasad, Rashmi B; Raitakari, Olli; Rotar, Oxana; Salomaa, Veikko; Groop, Leif; Palotie, Aarno; Neale, Benjamin M; Ripatti, Samuli; Pirinen, Matti; Daly, Mark J
2018-05-03
Finland provides unique opportunities to investigate population and medical genomics because of its adoption of unified national electronic health records, detailed historical and birth records, and serial population bottlenecks. We assembled a comprehensive view of recent population history (≤100 generations), the timespan during which most rare-disease-causing alleles arose, by comparing pairwise haplotype sharing from 43,254 Finns to that of 16,060 Swedes, Estonians, Russians, and Hungarians from geographically and linguistically adjacent countries with different population histories. We find much more extensive sharing in Finns, with at least one ≥ 5 cM tract on average between pairs of unrelated individuals. By coupling haplotype sharing with fine-scale birth records from more than 25,000 individuals, we find that although haplotype sharing broadly decays with geographical distance, there are pockets of excess haplotype sharing; individuals from northeast Finland typically share several-fold more of their genome in identity-by-descent segments than individuals from southwest regions. We estimate recent effective population-size changes through time across regions of Finland, and we find that there was more continuous gene flow as Finns migrated from southwest to northeast between the early- and late-settlement regions than was dichotomously described previously. Lastly, we show that haplotype sharing is locally enriched by an order of magnitude among pairs of individuals sharing rare alleles and especially among pairs sharing rare disease-causing variants. Our work provides a general framework for using haplotype sharing to reconstruct an integrative view of recent population history and gain insight into the evolutionary origins of rare variants contributing to disease. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Evolutionary history predicts plant defense against an invasive pest.
Desurmont, Gaylord A; Donoghue, Michael J; Clement, Wendy L; Agrawal, Anurag A
2011-04-26
It has long been hypothesized that invasive pests may be facilitated by the evolutionary naïveté of their new hosts, but this prediction has never been examined in a phylogenetic framework. To address the hypothesis, we have been studying the invasive viburnum leaf beetle (Pyrrhalta viburni), which is decimating North American native species of Viburnum, a clade of worldwide importance as understory shrubs and ornamentals. In a phylogenetic field experiment using 16 species of Viburnum, we show that old-world Viburnum species that evolved in the presence of Pyrrhalta beetles mount a massive defensive wound response that crushes eggs of the pest insect; in contrast, naïve North American species that share no evolutionary history with Pyrrhalta beetles show a markedly lower response. This convergent continental difference in the defensive response of Viburnum spp. against insect oviposition contrasts with little difference in the quality of leaves for beetle larvae. Females show strong oviposition preferences that correspond with larval performance regardless of continental origin, which has facilitated colonization of susceptible North American species. Thus, although much attention has been paid to escape from enemies as a factor in the establishment and spread of nonnative organisms, the colonization of undefended resources seems to play a major role in the success of invasive species such as the viburnum leaf beetle.
Tsuboi, M; Lim, A C O; Ooi, B L; Yip, M Y; Chong, V C; Ahnesjö, I; Kolm, N
2017-01-01
Brain size varies greatly at all taxonomic levels. Feeding ecology, life history and sexual selection have been proposed as key components in generating contemporary diversity in brain size across vertebrates. Analyses of brain size evolution have, however, been limited to lineages where males predominantly compete for mating and females choose mates. Here, we present the first original data set of brain sizes in pipefishes and seahorses (Syngnathidae) a group in which intense female mating competition occurs in many species. After controlling for the effect of shared ancestry and overall body size, brain size was positively correlated with relative snout length. Moreover, we found that females, on average, had 4.3% heavier brains than males and that polyandrous species demonstrated more pronounced (11.7%) female-biased brain size dimorphism. Our results suggest that adaptations for feeding on mobile prey items and sexual selection in females are important factors in brain size evolution of pipefishes and seahorses. Most importantly, our study supports the idea that sexual selection plays a major role in brain size evolution, regardless of on which sex sexual selection acts stronger. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Phenotypic Evolution With and Beyond Genome Evolution.
Félix, M-A
2016-01-01
DNA does not make phenotypes on its own. In this volume entitled "Genes and Phenotypic Evolution," the present review draws the attention on the process of phenotype construction-including development of multicellular organisms-and the multiple interactions and feedbacks between DNA, organism, and environment at various levels and timescales in the evolutionary process. First, during the construction of an individual's phenotype, DNA is recruited as a template for building blocks within the cellular context and may in addition be involved in dynamical feedback loops that depend on the environmental and organismal context. Second, in the production of phenotypic variation among individuals, stochastic, environmental, genetic, and parental sources of variation act jointly. While in controlled laboratory settings, various genetic and environmental factors can be tested one at a time or in various combinations, they cannot be separated in natural populations because the environment is not controlled and the genotype can rarely be replicated. Third, along generations, genotype and environment each have specific properties concerning the origin of their variation, the hereditary transmission of this variation, and the evolutionary feedbacks. Natural selection acts as a feedback from phenotype and environment to genotype. This review integrates recent results and concrete examples that illustrate these three points. Although some themes are shared with recent calls and claims to a new conceptual framework in evolutionary biology, the viewpoint presented here only means to add flesh to the standard evolutionary synthesis. © 2016 Elsevier Inc. All rights reserved.
Fairness expectations and altruistic sharing in 15-month-old human infants.
Schmidt, Marco F H; Sommerville, Jessica A
2011-01-01
Human cooperation is a key driving force behind the evolutionary success of our hominin lineage. At the proximate level, biologists and social scientists have identified other-regarding preferences--such as fairness based on egalitarian motives, and altruism--as likely candidates for fostering large-scale cooperation. A critical question concerns the ontogenetic origins of these constituents of cooperative behavior, as well as whether they emerge independently or in an interrelated fashion. The answer to this question will shed light on the interdisciplinary debate regarding the significance of such preferences for explaining how humans become such cooperative beings. We investigated 15-month-old infants' sensitivity to fairness, and their altruistic behavior, assessed via infants' reactions to a third-party resource distribution task, and via a sharing task. Our results challenge current models of the development of fairness and altruism in two ways. First, in contrast to past work suggesting that fairness and altruism may not emerge until early to mid-childhood, 15-month-old infants are sensitive to fairness and can engage in altruistic sharing. Second, infants' degree of sensitivity to fairness as a third-party observer was related to whether they shared toys altruistically or selfishly, indicating that moral evaluations and prosocial behavior are heavily interconnected from early in development. Our results present the first evidence that the roots of a basic sense of fairness and altruism can be found in infancy, and that these other-regarding preferences develop in a parallel and interwoven fashion. These findings support arguments for an evolutionary basis--most likely in dialectical manner including both biological and cultural mechanisms--of human egalitarianism given the rapidly developing nature of other-regarding preferences and their role in the evolution of human-specific forms of cooperation. Future work of this kind will help determine to what extent uniquely human sociality and morality depend on other-regarding preferences emerging early in life.
Komoto, Satoshi; Pongsuwanna, Yaowapa; Tacharoenmuang, Ratana; Guntapong, Ratigorn; Ide, Tomihiko; Higo-Moriguchi, Kyoko; Tsuji, Takao; Yoshikawa, Tetsushi; Taniguchi, Koki
2016-11-15
Bovine group A rotavirus (RVA) is an important cause of acute diarrhea in calves worldwide. In order to obtain precise information on the origin and evolutionary dynamics of bovine RVA strains, we determined and analyzed the complete nucleotide sequences of the whole genomes of six archival bovine RVA strains; four Thai strains (RVA/Cow-tc/THA/A5-10/1988/G8P[1], RVA/Cow-tc/THA/A5-13/1988/G8P[1], RVA/Cow-tc/THA/61A/1989/G10P[5], and RVA/Cow-tc/THA/A44/1989/G10P[11]), one American strain (RVA/Cow-tc/USA/B223/1983/G10P[11]), and one Japanese strain (RVA/Cow-tc/JPN/KK3/1983/G10P[11]). On whole genomic analysis, the 11 gene segments of strains A5-10, A5-13, 61A, A44, B223, and KK3 were found to be considerably genetically diverse, but to share a conserved non-G/P genotype constellation except for the NSP1 gene (I2-R2-C2-M2-(A3/11/13/14)-N2-T6-E2-H3), which is commonly found in RVA strains from artiodactyls such as cattle. Furthermore, phylogenetic analysis revealed that most genes of the six strains were genetically related to bovine and bovine-like strains. Of note is that the VP1, VP3, and NSP2 genes of strains A5-10 and A5-13 exhibited a closer relationship with the cognate genes of human DS-1-like strains than those of other RVA strains. Furthermore, the VP6 genes of strains A5-10 and A5-13 appeared to be equally related to both human DS-1-like and bovine strains. Thus, strains A5-10 and A5-13 were suggested to be derived from the same evolutionary origin as human DS-1-like strains, and were assumed to be examples of bovine RVA strains that provide direct evidence for a close evolutionary relationship between bovine and human DS-1-like strains. Our findings will provide important insights into the origin of bovine RVA strains, and into evolutionary links between bovine and human RVA strains. Copyright © 2016 Elsevier B.V. All rights reserved.
2012-01-01
Background The majority of Haemosporida species infect birds or reptiles, but many important genera, including Plasmodium, infect mammals. Dipteran vectors shared by avian, reptilian and mammalian Haemosporida, suggest multiple invasions of Mammalia during haemosporidian evolution; yet, phylogenetic analyses have detected only a single invasion event. Until now, several important mammal-infecting genera have been absent in these analyses. This study focuses on the evolutionary origin of Polychromophilus, a unique malaria genus that only infects bats (Microchiroptera) and is transmitted by bat flies (Nycteribiidae). Methods Two species of Polychromophilus were obtained from wild bats caught in Switzerland. These were molecularly characterized using four genes (asl, clpc, coI, cytb) from the three different genomes (nucleus, apicoplast, mitochondrion). These data were then combined with data of 60 taxa of Haemosporida available in GenBank. Bayesian inference, maximum likelihood and a range of rooting methods were used to test specific hypotheses concerning the phylogenetic relationships between Polychromophilus and the other haemosporidian genera. Results The Polychromophilus melanipherus and Polychromophilus murinus samples show genetically distinct patterns and group according to species. The Bayesian tree topology suggests that the monophyletic clade of Polychromophilus falls within the avian/saurian clade of Plasmodium and directed hypothesis testing confirms the Plasmodium origin. Conclusion Polychromophilus' ancestor was most likely a bird- or reptile-infecting Plasmodium before it switched to bats. The invasion of mammals as hosts has, therefore, not been a unique event in the evolutionary history of Haemosporida, despite the suspected costs of adapting to a new host. This was, moreover, accompanied by a switch in dipteran host. PMID:22356874
Gradual and contingent evolutionary emergence of leaf mimicry in butterfly wing patterns.
Suzuki, Takao K; Tomita, Shuichiro; Sezutsu, Hideki
2014-11-25
Special resemblance of animals to natural objects such as leaves provides a representative example of evolutionary adaptation. The existence of such sophisticated features challenges our understanding of how complex adaptive phenotypes evolved. Leaf mimicry typically consists of several pattern elements, the spatial arrangement of which generates the leaf venation-like appearance. However, the process by which leaf patterns evolved remains unclear. In this study we show the evolutionary origin and process for the leaf pattern in Kallima (Nymphalidae) butterflies. Using comparative morphological analyses, we reveal that the wing patterns of Kallima and 45 closely related species share the same ground plan, suggesting that the pattern elements of leaf mimicry have been inherited across species with lineage-specific changes of their character states. On the basis of these analyses, phylogenetic comparative methods estimated past states of the pattern elements and enabled reconstruction of the wing patterns of the most recent common ancestor. This analysis shows that the leaf pattern has evolved through several intermediate patterns. Further, we use Bayesian statistical methods to estimate the temporal order of character-state changes in the pattern elements by which leaf mimesis evolved, and show that the pattern elements changed their spatial arrangement (e.g., from a curved line to a straight line) in a stepwise manner and finally establish a close resemblance to a leaf venation-like appearance. Our study provides the first evidence for stepwise and contingent evolution of leaf mimicry. Leaf mimicry patterns evolved in a gradual, rather than a sudden, manner from a non-mimetic ancestor. Through a lineage of Kallima butterflies, the leaf patterns evolutionarily originated through temporal accumulation of orchestrated changes in multiple pattern elements.
A new scenario of the evolutionary derivation of the mammalian diaphragm from shoulder muscles
Hirasawa, Tatsuya; Kuratani, Shigeru
2013-01-01
The evolutionary origin of the diaphragm remains unclear, due to the lack of a comparable structure in other extant taxa. However, recent researches into the developmental mechanism of this structure have yielded new insights into its origin. Here we summarize current understanding regarding the development of the diaphragm, and present a possible scenario for the evolutionary acquisition of this uniquely mammalian structure. Recent developmental analyses indicate that the diaphragm and forelimb muscles are derived from a shared cell population during embryonic development. Therefore, the embryonic positions of forelimb muscle progenitors, which correspond to the position of the brachial plexus, likely played an important role in the evolution of the diaphragm. We surveyed the literature to reexamine the position of the brachial plexus among living amniotes and confirmed that the cervico-thoracic transition in ribs reflects the brachial plexus position. Using this osteological correlate, we concluded that the anterior borders of the brachial plexuses in the stem synapsids were positioned at the level of the fourth spinal nerve, suggesting that the forelimb buds were laid in close proximity of the infrahyoid muscles. The topology of the phrenic and suprascapular nerves of mammals is similar to that of subscapular and supracoracoid nerves, respectively, of the other amniotes, suggesting that the diaphragm evolved from a muscle positioned medial to the pectoral girdle (cf. subscapular muscle). We hypothesize that the diaphragm was acquired in two steps: first, forelimb muscle cells were incorporated into tissues to form a primitive diaphragm in the stem synapsid grade, and second, the diaphragm in cynodonts became entrapped in the region controlled by pulmonary development. PMID:23448284
Chen, Rubing; Vasilakis, Nikos
2011-01-01
Dengue viruses (DENV) are by far the most important arboviral pathogens in the tropics around the world, putting at risk of infection nearly a third of the global human population. DENV are members of the genus Flavivirus in the Family Flaviviridae and comprise four antigenically distinct serotypes (DENV-1-4). Although they share almost identical epidemiological features, they are genetically distinct. Phylogenetic analyses have revealed valuable insights into the origins, epidemiology and the forces that shape DENV evolution in nature. In this review, we examine the current status of DENV evolution, including but not limited to rates of evolution, selection pressures, population sizes and evolutionary constraints, and we discuss how these factors influence transmission, pathogenesis and emergence. PMID:21994796
The origins of religious disbelief.
Norenzayan, Ara; Gervais, Will M
2013-01-01
Although most people are religious, there are hundreds of millions of religious disbelievers in the world. What is religious disbelief and how does it arise? Recent developments in the scientific study of religious beliefs and behaviors point to the conclusion that religious disbelief arises from multiple interacting pathways, traceable to cognitive, motivational, and cultural learning mechanisms. We identify four such pathways, leading to four distinct forms of atheism, which we term mindblind atheism, apatheism, inCREDulous atheism, and analytic atheism. Religious belief and disbelief share the same underlying pathways and can be explained within a single evolutionary framework that is grounded in both genetic and cultural evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.
An Evolutionary Framework for Understanding the Origin of Eukaryotes
Blackstone, Neil W.
2016-01-01
Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes. PMID:27128953
Food Sharing: An Evolutionary Perspective.
ERIC Educational Resources Information Center
Feinman, Saul
Food altruism and the consumption of food are examined from a sociological perspective which assumes that humans share food as inclusive fitness actors. Inclusive fitness implies the representation of an individual's genes in future generations through his own or others' offspring. The discussion includes characteristics of food sharing among kin…
Evolutionary origins of leadership and followership.
Van Vugt, Mark
2006-01-01
Drawing upon evolutionary logic, leadership is reconceptualized in terms of the outcome of strategic interactions among individuals who are following different, yet complementary, decision rules to solve recurrent coordination problems. This article uses the vast psychological literature on leadership as a database to test several evolutionary hypotheses about the origins of leadership and followership in humans. As expected, leadership correlates with initiative taking, trait measures of intelligence, specific task competencies, and several indicators of generosity. The review finds no link between leadership and dominance. The evolutionary analysis accounts for reliable age, health, and sex differences in leadership emergence. In general, evolutionary theory provides a useful, integrative framework for studying leader-follower relationships and generates various novel research hypotheses.
Regan, C E; Pilkington, J G; Bérénos, C; Pemberton, J M; Smiseth, P T; Wilson, A J
2017-01-01
When estimating heritability in free-living populations, it is common practice to account for common environment effects, because of their potential to generate phenotypic covariance among relatives thereby biasing heritability estimates. In quantitative genetic studies of natural populations, however, philopatry, which results in relatives being clustered in space, is rarely accounted for. The two studies that have been carried out so far suggest absolute declines in heritability estimates of up to 43% when accounting for space sharing by relatives. However, due to methodological limitations these estimates may not be representative. We used data from the St. Kilda Soay sheep population to estimate heritabilities with and without accounting for space sharing for five traits for which there is evidence for additive genetic variance (birthweight, birth date, lamb August weight, and female post-mortem jaw and metacarpal length). We accounted for space sharing by related females by separately incorporating spatial autocorrelation, and a home range similarity matrix. Although these terms accounted for up to 18% of the variance in these traits, heritability estimates were only reduced by up to 7%. Our results suggest that the bias caused by not accounting for space sharing may be lower than previously thought. This suggests that philopatry does not inevitably lead to a large bias if space sharing by relatives is not accounted for. We hope our work stimulates researchers to model shared space when relatives in their study population share space, as doing so will enable us to better understand when bias may be of particular concern. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Kishikawa, Jun-ichi; Ibuki, Tatsuya; Nakamura, Shuichi; Nakanishi, Astuko; Minamino, Tohru; Miyata, Tomoko; Namba, Keiichi; Konno, Hiroki; Ueno, Hiroshi; Imada, Katsumi; Yokoyama, Ken
2013-01-01
The V1- and F1- rotary ATPases contain a rotor that rotates against a catalytic A3B3 or α3β3 stator. The rotor F1-γ or V1-DF is composed of both anti-parallel coiled coil and globular-loop parts. The bacterial flagellar type III export apparatus contains a V1/F1-like ATPase ring structure composed of FliI6 homo-hexamer and FliJ which adopts an anti-parallel coiled coil structure without the globular-loop part. Here we report that FliJ of Salmonella enterica serovar Typhimurium shows a rotor like function in Thermus thermophilus A3B3 based on both biochemical and structural analysis. Single molecular analysis indicates that an anti-parallel coiled-coil structure protein (FliJ structure protein) functions as a rotor in A3B3. A rotary ATPase possessing an F1-γ-like protein generated by fusion of the D and F subunits of V1 rotates, suggesting F1-γ could be the result of a fusion of the genes encoding two separate rotor subunits. Together with sequence comparison among the globular part proteins, the data strongly suggest that the rotor domains of the rotary ATPases and the flagellar export apparatus share a common evolutionary origin. PMID:23724081
Retracing Evolution of Red Fluorescence in GFP-Like Proteins from Faviina Corals
Field, Steven F.; Matz, Mikhail V.
2010-01-01
Proteins of the green fluorescent protein family represent a convenient experimental model to study evolution of novelty at the molecular level. Here, we focus on the origin of Kaede-like red fluorescent proteins characteristic of the corals of the Faviina suborder. We demonstrate, using an original approach involving resurrection and analysis of the library of possible evolutionary intermediates, that it takes on the order of 12 mutations, some of which strongly interact epistatically, to fully recapitulate the evolution of a red fluorescent phenotype from the ancestral green. Five of the identified mutations would not have been found without the help of ancestral reconstruction, because the corresponding site states are shared between extant red and green proteins due to their recent descent from a dual-function common ancestor. Seven of the 12 mutations affect residues that are not in close contact with the chromophore and thus must exert their effect indirectly through adjustments of the overall protein fold; the relevance of these mutations could not have been anticipated from the purely theoretical analysis of the protein's structure. Our results introduce a powerful experimental approach for comparative analysis of functional specificity in protein families even in the cases of pronounced epistasis, provide foundation for the detailed studies of evolutionary trajectories leading to novelty and complexity, and will help rational modification of existing fluorescent labels. PMID:19793832
"Imitation of similar beings": social mimesis as an argument in evolutionary theory around 1900.
Willer, Stefan
2009-01-01
The article analyzes imitation as both a fascinating and irritating phenomenon in "classical" evolutionary theory. Evolutionists situate imitation on the threshold between the natural and the socio-cultural, hence between the animal and the human. This intermediate position can be regarded as a symptom for the unresolved and maybe unresolvable problem of intentionality and teleology in nature. To elaborate this problem, I examine the ways in which imitation was conceived of by the German Africologist Wilhelm Bleek in his treatise On the Origin of Language and by Charles Darwin in The Descent of Man. Bleek and Darwin share a high esteem of imitation, which they see as the mainspring of human mental capacities, including language. But at the same time, imitation for them is the epitome of a low level of consciousness, embodied in the figures of the idiot, the savage, and the ape. Thus, the problem of similarity comes to the fore: similarity produced by imitation, but also being at the basis of every act of imitation. This problem is further evidenced with a side glance on Darwin's remarks about mimicry in The Origin of Species. The article closes with a literary reading of Franz Kafka's Report to an Academy, in which imitation and similarity represent survival strategies and motivate a strange shift from ape to man.
Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception.
Kang, Kyeongjin; Pulver, Stefan R; Panzano, Vincent C; Chang, Elaine C; Griffith, Leslie C; Theobald, Douglas L; Garrity, Paul A
2010-03-25
Chemical nociception, the detection of tissue-damaging chemicals, is important for animal survival and causes human pain and inflammation, but its evolutionary origins are largely unknown. Reactive electrophiles are a class of noxious compounds humans find pungent and irritating, such as allyl isothiocyanate (in wasabi) and acrolein (in cigarette smoke). Diverse animals, from insects to humans, find reactive electrophiles aversive, but whether this reflects conservation of an ancient sensory modality has been unclear. Here we identify the molecular basis of reactive electrophile detection in flies. We demonstrate that Drosophila TRPA1 (Transient receptor potential A1), the Drosophila melanogaster orthologue of the human irritant sensor, acts in gustatory chemosensors to inhibit reactive electrophile ingestion. We show that fly and mosquito TRPA1 orthologues are molecular sensors of electrophiles, using a mechanism conserved with vertebrate TRPA1s. Phylogenetic analyses indicate that invertebrate and vertebrate TRPA1s share a common ancestor that possessed critical characteristics required for electrophile detection. These findings support emergence of TRPA1-based electrophile detection in a common bilaterian ancestor, with widespread conservation throughout vertebrate and invertebrate evolution. Such conservation contrasts with the evolutionary divergence of canonical olfactory and gustatory receptors and may relate to electrophile toxicity. We propose that human pain perception relies on an ancient chemical sensor conserved across approximately 500 million years of animal evolution.
Nwankwo, Norbert
2013-06-01
Two HIV-1 non B isolates, 98US_MSC5007 and 98US_MSC5016, which have been identified amongst the US Army personnel serving abroad, are known to have originated from other nations. Notwithstanding, they are categorized as American strains. This is because their countries of origin are unknown. American isolates are basically B subtype. 98US_MSC5007 belongs to Circulating Recombinant Form (CRF02_AG) while 98US_MSC5016 is of the C clade. Both sub-groups are recognized to have originated from African and Asian continents. It has become necessary to properly determine the countries of origin of microbes and viruses. This is because diversity and cross-subtyping have been found to mitigate the designing and development of vaccine and therapeutic interventions. The aim of this study therefore is to identify the countries of origin of the two American isolates found amongst US Army personnel serving abroad. A Digital Signal Processing-based Bioinformatics technique called Informational Spectrum Method (ISM) has been engaged. ISM entails translating the amino acids sequences of the protein into numerical sequences (signals) by means of one biological parameter (Amino Acids Scale). The signals are then processed using Discrete Fourier Transform (DFT) in order to uncover and present the embedded biological information as Informational Spectra (IS). Spectral Position of Maximum Binding Interaction (SPMBI) is used. Several approaches including Phylogeny have preliminarily been employed in the determination of evolutionary trends of organisms and viruses. SPMBI has preliminarily been used to re-establish the semblance and common originality that exist between human and Chimpanzee, evolutionary roadmaps in the Influenza and HIV viruses. The results disclosed that 98US_MSC5007 shared same semblance and originality with a Nigeria isolate (92NG083) while 98US_MSC5016 with the Zairian isolates (ELI, MAL, and Z2/CDC-34). These results appear to demonstrate that the American soldiers harboring these strains may have been infected by isolates from Nigeria and Zaire, respectively. This is because 98US_MSC5007 and the Nigerian isolate share SPMBI at position 44. Additionally, 98US_MSC5016, which has SPMBI at position 148, may have come from Zaire as it has similar SPMBI with the Zairian isolates at 150. SPMBI is a demonstration of Bio-functionality arising from maximum affinity by the proteins from different sources to a common protein. To help validate the findings, the experiment was further repeated using ISM-based Phylogenetic technique. The outcome appears not to be in complete accord with the results obtained in this study. It is therefore recommended that the countries in which these US Army personnel are deployed be identified and where the findings made and the locations of the Army personnel appropriately correlate, this novel procedure be engaged in the identification of the nations of origins of all other such HIV isolates across all clades and nations.
Evidence for Ancient Origins of Bowman-Birk Inhibitors from Selaginella moellendorffii
James, Amy M.; Jayasena, Achala S.; Zhang, Jingjing; Secco, David; Knott, Gavin J.; Whelan, James
2017-01-01
Bowman-Birk Inhibitors (BBIs) are a well-known family of plant protease inhibitors first described 70 years ago. BBIs are known only in the legume (Fabaceae) and cereal (Poaceae) families, but peptides that mimic their trypsin-inhibitory loops exist in sunflowers (Helianthus annuus) and frogs. The disparate biosynthetic origins and distant phylogenetic distribution implies these loops evolved independently, but their structural similarity suggests a common ancestor. Targeted bioinformatic searches for the BBI inhibitory loop discovered highly divergent BBI-like sequences in the seedless, vascular spikemoss Selaginella moellendorffii. Using de novo transcriptomics, we confirmed expression of five transcripts in S. moellendorffii whose encoded proteins share homology with BBI inhibitory loops. The most highly expressed, BBI3, encodes a protein that inhibits trypsin. We needed to mutate two lysine residues to abolish trypsin inhibition, suggesting BBI3’s mechanism of double-headed inhibition is shared with BBIs from angiosperms. As Selaginella belongs to the lycopod plant lineage, which diverged ∼200 to 230 million years before the common ancestor of angiosperms, its BBI-like proteins imply there was a common ancestor for legume and cereal BBIs. Indeed, we discovered BBI sequences in six angiosperm families outside the Fabaceae and Poaceae. These findings provide the evolutionary missing links between the well-known legume and cereal BBI gene families. PMID:28298518
Iranzo, Jaime; Koonin, Eugene V; Prangishvili, David; Krupovic, Mart
2016-12-15
Archaea and particularly hyperthermophilic crenarchaea are hosts to many unusual viruses with diverse virion shapes and distinct gene compositions. As is typical of viruses in general, there are no universal genes in the archaeal virosphere. Therefore, to obtain a comprehensive picture of the evolutionary relationships between viruses, network analysis methods are more productive than traditional phylogenetic approaches. Here we present a comprehensive comparative analysis of genomes and proteomes from all currently known taxonomically classified and unclassified, cultivated and uncultivated archaeal viruses. We constructed a bipartite network of archaeal viruses that includes two classes of nodes, the genomes and gene families that connect them. Dissection of this network using formal community detection methods reveals strong modularity, with 10 distinct modules and 3 putative supermodules. However, compared to similar previously analyzed networks of eukaryotic and bacterial viruses, the archaeal virus network is sparsely connected. With the exception of the tailed viruses related to bacteriophages of the order Caudovirales and the families Turriviridae and Sphaerolipoviridae that are linked to a distinct supermodule of eukaryotic and bacterial viruses, there are few connector genes shared by different archaeal virus modules. In contrast, most of these modules include, in addition to viruses, capsidless mobile elements, emphasizing tight evolutionary connections between the two types of entities in archaea. The relative contributions of distinct evolutionary origins, in particular from nonviral elements, and insufficient sampling to the sparsity of the archaeal virus network remain to be determined by further exploration of the archaeal virosphere. Viruses infecting archaea are among the most mysterious denizens of the virosphere. Many of these viruses display no genetic or even morphological relationship to viruses of bacteria and eukaryotes, raising questions regarding their origins and position in the global virosphere. Analysis of 5,740 protein sequences from 116 genomes allowed dissection of the archaeal virus network and showed that most groups of archaeal viruses are evolutionarily connected to capsidless mobile genetic elements, including various plasmids and transposons. This finding could reflect actual independent origins of the distinct groups of archaeal viruses from different nonviral elements, providing important insights into the emergence and evolution of the archaeal virome. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
An evolutionary scenario for the origin of flowers.
Frohlich, Michael W
2003-07-01
The Mostly Male theory is the first to use evidence from gene phylogenies, genetics, modern plant morphology and fossils to explain the evolutionary origin of flowers. It proposes that flower organization derives more from the male structures of ancestral gymnosperms than from female structures. The theory arose from a hypothesis-based study. Such studies are the most likely to generate testable evolutionary scenarios, which should be the ultimate goal of evo-devo.
The Mediterranean: the cradle of Anthoxanthum (Poaceae) diploid diversity.
Chumová, Zuzana; Záveská, Eliška; Mandáková, Terezie; Krak, Karol; Trávnícek, Pavel
2017-08-01
Knowledge of diploid phylogeny and ecogeography provide a foundation for understanding plant evolutionary history, diversification patterns and taxonomy. The genus Anthoxanthum (vernal grasses, Poaceae) represents a taxonomically intricate polyploid complex with large phenotypic variation and poorly resolved evolutionary relationships. The aims of the study were to reveal: (1) evolutionary lineages of the diploid taxa and their genetic differentiation; (2) the past distribution of the rediscovered 'Mediterranean diploid'; and (3) possible migration routes of diploids in the Mediterranean. A combined approach involving sequencing of two plastid regions ( trnL-trnF and rpl32-trnL ), nrDNA ITS, rDNA FISH analyses, climatic niche characterization and spatio-temporal modelling was used. Among the examined diploid species, only two well-differentiated evolutionary lineages were recognized: Anthoxanthum gracile and A. alpinum . The other taxa - A. aristatum, A. ovatum, A. maderense and the 'Mediterranean diploid' - form a rather intermixed group based on the examined molecular data. In situ rDNA localization enabled identification of the ancestral Anthoxanthum karyotype, shared by A. gracile and two taxa from the crown group. For the studied taxa, ancestral location probabilities for six discrete geographical regions in the Mediterranean were proposed and likely scenarios of gradual expansion from them were suggested. Modelling past and present distributions shows that the 'Mediterranean diploid' has already been occurring in the same localities for 120 000 years. Highly congruent results were obtained and dated the origin and first diversification of Anthoxanthum to the Miocene. The later divergence probably took place in the Pleistocene and started polyploid evolution within the genus. The most recent diversification event is still occurring, and incomplete lineage sorting prevents full diversification of taxa at the molecular level, despite clear separation based on climatic niches. The 'Mediterranean diploid' is hypothesized to be a possible relic of the most recent common ancestor of Anthoxanthum due to their sharing of ancestral features. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
An improved approximate-Bayesian model-choice method for estimating shared evolutionary history
2014-01-01
Background To understand biological diversification, it is important to account for large-scale processes that affect the evolutionary history of groups of co-distributed populations of organisms. Such events predict temporally clustered divergences times, a pattern that can be estimated using genetic data from co-distributed species. I introduce a new approximate-Bayesian method for comparative phylogeographical model-choice that estimates the temporal distribution of divergences across taxa from multi-locus DNA sequence data. The model is an extension of that implemented in msBayes. Results By reparameterizing the model, introducing more flexible priors on demographic and divergence-time parameters, and implementing a non-parametric Dirichlet-process prior over divergence models, I improved the robustness, accuracy, and power of the method for estimating shared evolutionary history across taxa. Conclusions The results demonstrate the improved performance of the new method is due to (1) more appropriate priors on divergence-time and demographic parameters that avoid prohibitively small marginal likelihoods for models with more divergence events, and (2) the Dirichlet-process providing a flexible prior on divergence histories that does not strongly disfavor models with intermediate numbers of divergence events. The new method yields more robust estimates of posterior uncertainty, and thus greatly reduces the tendency to incorrectly estimate models of shared evolutionary history with strong support. PMID:24992937
Evolutionary Origins of Cancer Driver Genes and Implications for Cancer Prognosis
Chu, Xin-Yi; Zhou, Xiong-Hui; Cui, Ze-Jia; Zhang, Hong-Yu
2017-01-01
The cancer atavistic theory suggests that carcinogenesis is a reverse evolution process. It is thus of great interest to explore the evolutionary origins of cancer driver genes and the relevant mechanisms underlying the carcinogenesis. Moreover, the evolutionary features of cancer driver genes could be helpful in selecting cancer biomarkers from high-throughput data. In this study, through analyzing the cancer endogenous molecular networks, we revealed that the subnetwork originating from eukaryota could control the unlimited proliferation of cancer cells, and the subnetwork originating from eumetazoa could recapitulate the other hallmarks of cancer. In addition, investigations based on multiple datasets revealed that cancer driver genes were enriched in genes originating from eukaryota, opisthokonta, and eumetazoa. These results have important implications for enhancing the robustness of cancer prognosis models through selecting the gene signatures by the gene age information. PMID:28708071
Evolutionary Origins of Cancer Driver Genes and Implications for Cancer Prognosis.
Chu, Xin-Yi; Jiang, Ling-Han; Zhou, Xiong-Hui; Cui, Ze-Jia; Zhang, Hong-Yu
2017-07-14
The cancer atavistic theory suggests that carcinogenesis is a reverse evolution process. It is thus of great interest to explore the evolutionary origins of cancer driver genes and the relevant mechanisms underlying the carcinogenesis. Moreover, the evolutionary features of cancer driver genes could be helpful in selecting cancer biomarkers from high-throughput data. In this study, through analyzing the cancer endogenous molecular networks, we revealed that the subnetwork originating from eukaryota could control the unlimited proliferation of cancer cells, and the subnetwork originating from eumetazoa could recapitulate the other hallmarks of cancer. In addition, investigations based on multiple datasets revealed that cancer driver genes were enriched in genes originating from eukaryota, opisthokonta, and eumetazoa. These results have important implications for enhancing the robustness of cancer prognosis models through selecting the gene signatures by the gene age information.
Evolution of the Fusarium–Euwallacea ambrosia beetle mutualism
USDA-ARS?s Scientific Manuscript database
The Euwallacea – Fusarium mutualistic symbiosis represents one of the independent evolutionary origins of fungus-farming. Diversification time estimates place the evolutionary origin of this mutualism in the early Miocene approximately 21 million years ago. Fusarium is best known as one of the most ...
Structure and evolutionary aspects of matrix metalloproteinases: a brief overview.
Das, Sudip; Mandal, Malay; Chakraborti, Tapati; Mandal, Amritlal; Chakraborti, Sajal
2003-11-01
The matrix metalloproteinases (MMPs) are zinc dependent endopeptidases known for their ability to cleave one or several extracellular matrix (ECM) constituents, as well as non-matrix proteins. They comprise a large family of proteinases that share common structural and functional elements and are products of different genes. All members of this family contain a signal peptide, a propeptide and a catalytic domain. The catalytic domain contains two zinc ions and at least one calcium ion coordinated to various residues. All MMPs, with the exception matrilysin, have a hemopexin/vitronectin-like domain that is connected to the catalytic domain by a hinge or linker region. The hemopexin-like domain influences tissue inhibitor of metalloproteinases (TIMP) binding, the binding of certain substrates, membrane activation, and some proteolytic activities. It has been proposed that the origin of MMPs could be traced to before the emergence of vertebrates from invertebrates. It appears conceivable that the domain assemblies occurred at an early stage of the diversification of different MMPs and that they progressed through the evolutionary process independent of one another, and perhaps parallel to each other.
The evolution of altruistic social preferences in human groups
Silk, Joan B.; House, Bailey R.
2016-01-01
In this paper, we consider three hypotheses to account for the evolution of the extraordinary capacity for large-scale cooperation and altruistic social preferences within human societies. One hypothesis is that human cooperation is built on the same evolutionary foundations as cooperation in other animal societies, and that fundamental elements of the social preferences that shape our species' cooperative behaviour are also shared with other closely related primates. Another hypothesis is that selective pressures favouring cooperative breeding have shaped the capacity for cooperation and the development of social preferences, and produced a common set of behavioural dispositions and social preferences in cooperatively breeding primates and humans. The third hypothesis is that humans have evolved derived capacities for collaboration, group-level cooperation and altruistic social preferences that are linked to our capacity for culture. We draw on naturalistic data to assess differences in the form, scope and scale of cooperation between humans and other primates, experimental data to evaluate the nature of social preferences across primate species, and comparative analyses to evaluate the evolutionary origins of cooperative breeding and related forms of behaviour. PMID:26729936
Assembling networks of microbial genomes using linear programming.
Holloway, Catherine; Beiko, Robert G
2010-11-20
Microbial genomes exhibit complex sets of genetic affinities due to lateral genetic transfer. Assessing the relative contributions of parent-to-offspring inheritance and gene sharing is a vital step in understanding the evolutionary origins and modern-day function of an organism, but recovering and showing these relationships is a challenging problem. We have developed a new approach that uses linear programming to find between-genome relationships, by treating tables of genetic affinities (here, represented by transformed BLAST e-values) as an optimization problem. Validation trials on simulated data demonstrate the effectiveness of the approach in recovering and representing vertical and lateral relationships among genomes. Application of the technique to a set comprising Aquifex aeolicus and 75 other thermophiles showed an important role for large genomes as 'hubs' in the gene sharing network, and suggested that genes are preferentially shared between organisms with similar optimal growth temperatures. We were also able to discover distinct and common genetic contributors to each sequenced representative of genus Pseudomonas. The linear programming approach we have developed can serve as an effective inference tool in its own right, and can be an efficient first step in a more-intensive phylogenomic analysis.
Convergence in Thunniform Anatomy in Lamnid Sharks and Jurassic Ichthyosaurs.
Lingham-Soliar, Theagarten
2016-12-01
Among extinct ichthyosaurs the Jurassic forms Ichthyosaurus and Stenopterygius share a number of anatomical specializations with lamnid sharks, characterized in the white shark, Carcharodon carcharias These features allow their inclusion within the mode of high-speed thunniform swimming to which only two other equally distinctive phylogenetic groups belong, tuna and dolphins-a striking testaments to evolutionary convergence. Jurassic ichthyosaurs evolved from reptiles that had returned to the sea (secondarily adapted) about 250 million years ago (MYA) while lamnid sharks evolved about 50 MYA from early cartilaginous fishes (originating ca. 400 MYA). Their shared independently evolved anatomical characteristics are discussed. These include a deep tear-drop body shape that helped initially define members as thunniform swimmers. Later, other critical structural characteristics were discovered such as the crossed-fiber architecture of the skin, high-speed adapted dorsal and caudal fins, a caudal peduncle and series of ligaments to enable transmission of power from the musculature located anteriorly to the caudal fin. Both groups also share a similar chemistry of the dermal fibers, i.e., the scleroprotein collagen. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Maintaining replication origins in the face of genomic change.
Di Rienzi, Sara C; Lindstrom, Kimberly C; Mann, Tobias; Noble, William S; Raghuraman, M K; Brewer, Bonita J
2012-10-01
Origins of replication present a paradox to evolutionary biologists. As a collection, they are absolutely essential genomic features, but individually are highly redundant and nonessential. It is therefore difficult to predict to what extent and in what regard origins are conserved over evolutionary time. Here, through a comparative genomic analysis of replication origins and chromosomal replication patterns in the budding yeasts Saccharomyces cerevisiae and Lachancea waltii, we assess to what extent replication origins survived genomic change produced from 150 million years of evolution. We find that L. waltii origins exhibit a core consensus sequence and nucleosome occupancy pattern highly similar to those of S. cerevisiae origins. We further observe that the overall progression of chromosomal replication is similar between L. waltii and S. cerevisiae. Nevertheless, few origins show evidence of being conserved in location between the two species. Among the conserved origins are those surrounding centromeres and adjacent to histone genes, suggesting that proximity to an origin may be important for their regulation. We conclude that, over evolutionary time, origins maintain sequence, structure, and regulation, but are continually being created and destroyed, with the result that their locations are generally not conserved.
Maintaining replication origins in the face of genomic change
Di Rienzi, Sara C.; Lindstrom, Kimberly C.; Mann, Tobias; Noble, William S.; Raghuraman, M.K.; Brewer, Bonita J.
2012-01-01
Origins of replication present a paradox to evolutionary biologists. As a collection, they are absolutely essential genomic features, but individually are highly redundant and nonessential. It is therefore difficult to predict to what extent and in what regard origins are conserved over evolutionary time. Here, through a comparative genomic analysis of replication origins and chromosomal replication patterns in the budding yeasts Saccharomyces cerevisiae and Lachancea waltii, we assess to what extent replication origins survived genomic change produced from 150 million years of evolution. We find that L. waltii origins exhibit a core consensus sequence and nucleosome occupancy pattern highly similar to those of S. cerevisiae origins. We further observe that the overall progression of chromosomal replication is similar between L. waltii and S. cerevisiae. Nevertheless, few origins show evidence of being conserved in location between the two species. Among the conserved origins are those surrounding centromeres and adjacent to histone genes, suggesting that proximity to an origin may be important for their regulation. We conclude that, over evolutionary time, origins maintain sequence, structure, and regulation, but are continually being created and destroyed, with the result that their locations are generally not conserved. PMID:22665441
Animal evolution: stiff or squishy notochord origins?
Hejnol, Andreas; Lowe, Christopher J
2014-12-01
The notochord is considered an evolutionary novelty and one of the defining characters of chordates. A new study of an annelid challenges this view and proposes an earlier evolutionary origin in the most recent common ancestor of chordates and annelids. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evolutionary process of deep-sea bathymodiolus mussels.
Miyazaki, Jun-Ichi; de Oliveira Martins, Leonardo; Fujita, Yuko; Matsumoto, Hiroto; Fujiwara, Yoshihiro
2010-04-27
Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4) genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of symbiosis in that nutritional adaptation to the deep sea proceeded from extracellular to intracellular symbiotic states in whale carcasses. The estimated evolutionary time suggests that the mytilid ancestors were able to exploit whales during adaptation to the deep sea.
Phillips, R D; Brown, G R; Dixon, K W; Hayes, C; Linde, C C; Peakall, R
2017-09-01
The mechanism of pollinator attraction is predicted to strongly influence both plant diversification and the extent of pollinator sharing between species. Sexually deceptive orchids rely on mimicry of species-specific sex pheromones to attract their insect pollinators. Given that sex pheromones tend to be conserved among related species, we predicted that in sexually deceptive orchids, (i) pollinator sharing is rare, (ii) closely related orchids use closely related pollinators and (iii) there is strong bias in the wasp lineages exploited by orchids. We focused on species that are pollinated by sexual deception of thynnine wasps in the distantly related genera Caladenia and Drakaea, including new field observations for 45 species of Caladenia. Specialization was extreme with most orchids using a single pollinator species. Unexpectedly, seven cases of pollinator sharing were found, including two between Caladenia and Drakaea, which exhibit strikingly different floral morphology. Phylogenetic analysis of pollinators using four nuclear sequence loci demonstrated that although orchids within major clades primarily use closely related pollinator species, up to 17% of orchids within these clades are pollinated by a member of a phylogenetically distant wasp genus. Further, compared to the total diversity of thynnine wasps within the study region, orchids show a strong bias towards exploiting certain genera. Although these patterns may arise through conservatism in the chemical classes used in sex pheromones, apparent switches between wasp clades suggest unexpected flexibility in floral semiochemical production. Alternatively, wasp sex pheromones within lineages may exhibit greater chemical diversity than currently appreciated. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Multi-level human evolution: ecological patterns in hominin phylogeny.
Parravicini, Andrea; Pievani, Telmo
2016-06-20
Evolution is a process that occurs at many different levels, from genes to ecosystems. Genetic variations and ecological pressures are hence two sides of the same coin; but due both to fragmentary evidence and to the influence of a gene-centered and gradualistic approach to evolutionary phenomena, the field of paleoanthropology has been slow to take the role of macro-evolutionary patterns (i.e. ecological and biogeographical at large scale) seriously. However, several very recent findings in paleoanthropology stress both climate instability and ecological disturbance as key factors affecting the highly branching hominin phylogeny, from the earliest hominins to the appearance of cognitively modern humans. Allopatric speciation due to geographic displacement, turnover-pulses of species, adaptive radiation, mosaic evolution of traits in several coeval species, bursts of behavioral innovation, serial dispersals out of Africa, are just some of the macro-evolutionary patterns emerging from the field. The multilevel approach to evolution proposed by paleontologist Niles Eldredge is adopted here as interpretative tool, and has yielded a larger picture of human evolution that integrates different levels of evolutionary change, from local adaptations in limited ecological niches to dispersal phenotypes able to colonize an unprecedented range of ecosystems. Changes in global climate and Earth's surface most greatly affected human evolution. Precisely because it is cognitively hard for us to appreciate the long-term common destiny we share with the whole biosphere, it is particularly valuable to highlight the accumulating evidence that human evolution has been deeply affected by global ecological changes that transformed our African continent of origin.
Origin and evolution of TNF and TNF receptor superfamilies
USDA-ARS?s Scientific Manuscript database
The tumor necrosis factor superfamily (TNFSF) and the TNF receptor superfamily (TNFRSF) have an ancient evolutionary origin that can be traced back to single copy genes within Arthropods. In humans, 18 TNFSF and 29 TNFRSF genes have been identified. Evolutionary models account for the increase in g...
[The Evolutionary Origin of Placodes and Neural Crest Cells
NASA Technical Reports Server (NTRS)
Bronner-Fraser, Marianne
2003-01-01
The long-term goal of this NASA-supported research is to understand the evolutionary origin of placodes and neural crest cells, with particular reference to evolution of the inner ear, and their evolutionary and developmental relationships. The cephalochordcate amphioxus, the closest living invertebrate relative of the vertebrates is used as a stand-in for the ancestral vertebrate. The research, which has supported one graduate student, Jr-Kai Yu, has resulted in ten publications by the Holland laboratory in peer-reviewed journals.
An integrative approach to understanding bird origins.
Xu, Xing; Zhou, Zhonghe; Dudley, Robert; Mackem, Susan; Chuong, Cheng-Ming; Erickson, Gregory M; Varricchio, David J
2014-12-12
Recent discoveries of spectacular dinosaur fossils overwhelmingly support the hypothesis that birds are descended from maniraptoran theropod dinosaurs, and furthermore, demonstrate that distinctive bird characteristics such as feathers, flight, endothermic physiology, unique strategies for reproduction and growth, and a novel pulmonary system originated among Mesozoic terrestrial dinosaurs. The transition from ground-living to flight-capable theropod dinosaurs now probably represents one of the best-documented major evolutionary transitions in life history. Recent studies in developmental biology and other disciplines provide additional insights into how bird characteristics originated and evolved. The iconic features of extant birds for the most part evolved in a gradual and stepwise fashion throughout archosaur evolution. However, new data also highlight occasional bursts of morphological novelty at certain stages particularly close to the origin of birds and an unavoidable complex, mosaic evolutionary distribution of major bird characteristics on the theropod tree. Research into bird origins provides a premier example of how paleontological and neontological data can interact to reveal the complexity of major innovations, to answer key evolutionary questions, and to lead to new research directions. A better understanding of bird origins requires multifaceted and integrative approaches, yet fossils necessarily provide the final test of any evolutionary model. Copyright © 2014, American Association for the Advancement of Science.
Using Evolutionary Theory to Guide Mental Health Research.
Durisko, Zachary; Mulsant, Benoit H; McKenzie, Kwame; Andrews, Paul W
2016-03-01
Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating "normally" (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. © The Author(s) 2016.
Using Evolutionary Theory to Guide Mental Health Research
Mulsant, Benoit H.; McKenzie, Kwame; Andrews, Paul W.
2016-01-01
Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating “normally” (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. PMID:27254091
Transmission Genetics of Allorecognition in Hydractinia Symbiolongicarpus (Cnidaria: Hydrozoa)
Mokady, O.; Buss, L. W.
1996-01-01
Allorecognition is ubiquitous, or nearly so, amongst colonial invertebrates. Despite the prominent role that such phenomena have played both in evolutionary theory and in speculations on the origin of the vertebrate immune system, unambiguous data on the transmission genetics of fusibility (i.e., the ability of two individuals to fuse upon tissue contact) is lacking for any metazoan outside of the phylum Chordata. We have developed lines of the hydroid Hydractinia symbiolongicarpus (Phylum Cnidaria) inbred for fusibility and here report results of breeding experiments establishing that fusibility segregates as expected for a single locus with codominantly expressed alleles, with one shared allele producing a fusible phenotype. Surveys of fusibility in field populations and additional breeding experiments indicate the presence of an extensive allele series. PMID:8725230
A Coevolutionary Arms Race: Understanding Plant-Herbivore Interactions
ERIC Educational Resources Information Center
Becklin, Katie M.
2008-01-01
Plants and insects share a long evolutionary history characterized by relationships that affect individual, population, and community dynamics. Plant-herbivore interactions are a prominent feature of this evolutionary history; it is by plant-herbivore interactions that energy is transferred from primary producers to the rest of the food web. Not…
Sex Differences in Social Behavior: Are the Social Role and Evolutionary Explanations Compatible?
ERIC Educational Resources Information Center
Archer, John
1996-01-01
Examines competing claims of two explanations of sex differences in social behavior, social role theory, and evolutionary psychology. Findings associated with social role theory are weighed against evolutionary explanations. It is suggested that evolutionary theory better accounts for the overall pattern of sex differences and for their origins.…
Chen, Chong; Uematsu, Katsuyuki; Linse, Katrin; Sigwart, Julia D
2017-03-01
Extreme environments prompt the evolution of characteristic adaptations. Yet questions remain about whether radiations in extreme environments originate from a single lineage that masters a key adaptive pathway, or if the same features can arise in parallel through convergence. Species endemic to deep-sea hydrothermal vents must accommodate high temperature and low pH. The most successful vent species share a constrained pathway to successful energy exploitation: hosting symbionts. The vent-endemic gastropod genus Gigantopelta, from the Southern and Indian Oceans, shares unusual features with a co-occurring peltospirid, the 'scaly-foot gastropod' Chrysomallon squamiferum. Both are unusually large for the clade and share other adaptive features such as a prominent enlarged trophosome-like oesophageal gland, not found in any other vent molluscs. Transmission electron microscopy confirmed endosymbiont bacteria in the oesophageal gland of Gigantopelta, as also seen in Chrysomallon. They are the only known members of their phylum in vent ecosystems hosting internal endosymbionts; other vent molluscs host endosymbionts in or on their gills, or in the mantle cavity. A five-gene phylogenetic reconstruction demonstrated that Gigantopelta and Chrysomallon are not phylogenetically sister-taxa, despite their superficial similarity. Both genera have specialist adaptations to accommodate internalised endosymbionts, but with anatomical differences that indicate separate evolutionary origins. Hosting endosymbionts in an internal organ within the host means that all resources required by the bacteria must be supplied by the animal, rather than directly by the vent fluid. Unlike Chrysomallon, which has an enlarged oesophageal gland throughout post-settlement life, the oesophageal gland in Gigantopelta is proportionally much smaller in juveniles and the animals likely undergo a trophic shift during ontogeny. The circulatory system is hypertrophied in both but the overall size is smaller in Gigantopelta. In contrast with Chrysomallon, Gigantopelta possesses true ganglia and is gonochoristic. Key anatomical differences between Gigantopelta and Chrysomallon demonstrate these two genera acquired a similar way of life through independent and convergent adaptive pathways. What appear to be the holobiont's adaptations to an extreme environment, are driven by optimising bacteria's access to vent nutrients. By comparing Gigantopelta and Chrysomallon, we show that metazoans are capable of rapidly and repeatedly evolving equivalent anatomical adaptations and close-knit relationships with chemoautotrophic bacteria, achieving the same end-product through parallel evolutionary trajectories.
The Origin and Evolutionary Biology of Pinnipeds: Seals, Sea Lions, and Walruses
NASA Astrophysics Data System (ADS)
Berta, Annalisa; Churchill, Morgan; Boessenecker, Robert W.
2018-05-01
The oldest definitive pinniped fossils date from approximately 30.6–23 million years ago (Ma) in the North Pacific. Pinniped monophyly is consistently supported; the group shares a common ancestry with arctoid carnivorans, either ursids or musteloids. Crown pinnipeds comprise the Otariidae (fur seals and sea lions), Odobenidae (walruses), and Phocidae (seals), with paraphyletic “enaliarctines” falling outside the crown group. The position of extinct Desmatophocidae is debated; they are considered to be closely related to both otariids and odobenids or, alternatively, to phocids. Both otariids and odobenids are known from the North Pacific, diverging approximately 19 Ma, with phocids originating in the North Atlantic or Paratethys region 19–14 Ma. Our understanding of pinniped paleobiology has been enriched by studies that incorporate anatomical and behavioral data into a phylogenetic framework. There is now evidence for sexual dimorphism in the earliest pinnipeds, heralding polygynous breeding systems, followed by increased body sizes, diving capabilities, and diverse feeding strategies in later-diverging phocid and otarioid lineages.
NASA Astrophysics Data System (ADS)
Zhou, Hao; Pei, Fu-Ping; Zhang, Ying; Zhou, Zhong-Biao; Xu, Wen-Liang; Wang, Zhi-Wei; Cao, Hua-Hua; Yang, Chuan
2017-12-01
The origin and tectonic evolution of the early Paleozoic arc terranes abutting the northern margin of the North China Craton (NCC) are widely debated. This paper presents detrital zircon U-Pb and Hf isotopic data of early Paleozoic strata in the Zhangjiatun arc terrane of central Jilin Province, northeast (NE) China, and compares them with the Bainaimiao and Jiangyu arc terranes abutting the northern margin of the NCC. Detrital zircons from early Paleozoic strata in three arc terranes exhibit comparable age groupings of 539-430, 1250-577, and 2800-1600 Ma. The Paleoproterozoic to Neoarchean ages and Hf isotopic composition of the detrital zircons imply the existence of the Precambrian fragments beneath the arc terranes. Given the evidences from geology, igneous rocks, and detrital zircons, we proposed that the early Paleozoic arc terranes abutting the northern margin of the NCC are a united arc terrane including the exotic Precambrian fragments, and these fragments shared a common evolutionary history from Neoproterozoic to early-middle Paleozoic.
Approaches to Macroevolution: 1. General Concepts and Origin of Variation.
Jablonski, David
2017-01-01
Approaches to macroevolution require integration of its two fundamental components, i.e. the origin and the sorting of variation, in a hierarchical framework. Macroevolution occurs in multiple currencies that are only loosely correlated, notably taxonomic diversity, morphological disparity, and functional variety. The origin of variation within this conceptual framework is increasingly understood in developmental terms, with the semi-hierarchical structure of gene regulatory networks (GRNs, used here in a broad sense incorporating not just the genetic circuitry per se but the factors controlling the timing and location of gene expression and repression), the non-linear relation between magnitude of genetic change and the phenotypic results, the evolutionary potential of co-opting existing GRNs, and developmental responsiveness to nongenetic signals (i.e. epigenetics and plasticity), all requiring modification of standard microevolutionary models, and rendering difficult any simple definition of evolutionary novelty. The developmental factors underlying macroevolution create anisotropic probabilities-i.e., an uneven density distribution-of evolutionary change around any given phenotypic starting point, and the potential for coordinated changes among traits that can accommodate change via epigenetic mechanisms. From this standpoint, "punctuated equilibrium" and "phyletic gradualism" simply represent two cells in a matrix of evolutionary models of phenotypic change, and the origin of trends and evolutionary novelty are not simply functions of ecological opportunity. Over long timescales, contingency becomes especially important, and can be viewed in terms of macroevolutionary lags (the temporal separation between the origin of a trait or clade and subsequent diversification); such lags can arise by several mechanisms: as geological or phylogenetic artifacts, or when diversifications require synergistic interactions among traits, or between traits and external events. The temporal and spatial patterns of the origins of evolutionary novelties are a challenge to macroevolutionary theory; individual events can be described retrospectively, but a general model relating development, genetics, and ecology is needed. An accompanying paper (Jablonski in Evol Biol 2017) reviews diversity dynamics and the sorting of variation, with some general conclusions.
An open future for ecological and evolutionary data?
Kenall, Amye; Harold, Simon; Foote, Christopher
2014-04-02
As part of BioMed Central's open science mission, we are pleased to announce that two of our journals have integrated with the open data repository Dryad. Authors submitting their research to either BMC Ecology or BMC Evolutionary Biology will now have the opportunity to deposit their data directly into the Dryad archive and will receive a permanent, citable link to their dataset. Although this does not affect any of our current data deposition policies at these journals, we hope to encourage a more widespread adoption of open data sharing in the fields of ecology and evolutionary biology by facilitating this process for our authors. We also take this opportunity to discuss some of the wider issues that may concern researchers when making their data openly available. Although we offer a number of positive examples from different fields of biology, we also recognise that reticence to data sharing still exists, and that change must be driven from within research communities in order to create future science that is fit for purpose in the digital age. This editorial was published jointly in both BMC Ecology and BMC Evolutionary Biology.
MetaSINEs: Broad Distribution of a Novel SINE Superfamily in Animals
Nishihara, Hidenori; Plazzi, Federico; Passamonti, Marco; Okada, Norihiro
2016-01-01
SINEs (short interspersed elements) are transposable elements that typically originate independently in each taxonomic clade (order/family). However, some SINE families share a highly similar central sequence and are thus categorized as a SINE superfamily. Although only four SINE superfamilies (CORE-SINEs, V-SINEs, DeuSINEs, and Ceph-SINEs) have been reported so far, it is expected that new SINE superfamilies would be discovered by deep exploration of new SINEs in metazoan genomes. Here we describe 15 SINEs, among which 13 are novel, that have a similar 66-bp central region and therefore constitute a new SINE superfamily, MetaSINEs. MetaSINEs are distributed from fish to cnidarians, suggesting their common evolutionary origin at least 640 Ma. Because the 3′ tails of MetaSINEs are variable, these SINEs most likely survived by changing their partner long interspersed elements for retrotransposition during evolution. Furthermore, we examined the presence of members of other SINE superfamilies in bivalve genomes and characterized eight new SINEs belonging to the CORE-SINEs, V-SINEs, and DeuSINEs, in addition to the MetaSINEs. The broad distribution of bivalve SINEs suggests that at least three SINEs originated in the common ancestor of Bivalvia. Our comparative analysis of the central domains of the SINEs revealed that, in each superfamily, only a restricted region is shared among all of its members. Because the functions of the central domains of the SINE superfamilies remain unknown, such structural information of SINE superfamilies will be useful for future experimental and comparative analyses to reveal why they have been retained in metazoan genomes during evolution. PMID:26872770
Influence of host diet and phylogeny on parasite sharing by fish in a diverse tropical floodplain.
Lima, L B; Bellay, S; Giacomini, H C; Isaac, A; Lima-Junior, D P
2016-03-01
The patterns of parasite sharing among hosts have important implications for ecosystem structure and functioning, and are influenced by several ecological and evolutionary factors associated with both hosts and parasites. Here we evaluated the influence of fish diet and phylogenetic relatedness on the pattern of infection by parasites with contrasting life history strategies in a freshwater ecosystem of key ecological importance in South America. The studied network of interactions included 52 fish species, which consumed 58 food types and were infected with 303 parasite taxa. Our results show that both diet and evolutionary history of hosts significantly explained parasite sharing; phylogenetically close fish species and/or species sharing food types tend to share more parasites. However, the effect of diet was observed only for endoparasites in contrast to ectoparasites. These results are consistent with the different life history strategies and selective pressures imposed on these groups: endoparasites are in general acquired via ingestion by their intermediate hosts, whereas ectoparasites actively seek and attach to the gills, body surface or nostrils of its sole host, thus not depending directly on its feeding habits.
The New York City Urban Search and Rescue Team (NY-TF1): A Case Study of Interagency Effectiveness
2011-03-01
seismic shift in relationships required to leverage shared awareness to foster self -synchronization and achieve dramatic improvements in mission...conceptual evolutionary scale used to evaluate an entity; be it an individual or collective. Edge entities are said to be self -synchronized when they are...Information sharing improves both the quality of information and shared awareness. Shared awareness 34 enables self -synchronization [ADR] and
Tuci, Elio
2009-09-01
How does communication originates in a population of originally non-communicating individuals? Providing an answer to this question from a neo-Darwinian epistemological perspective is not a trivial task. The reason is that, for non-communicating agents, the capabilities of emitting signals and responding to them are both adaptively neutral traits if they are not simultaneously present. Research studies based on rather general and theoretically oriented evolutionary simulation models have, so far, demonstrated that at least two different processes can account for the origin of communication. On the one hand, communicative behaviour may first evolve in a non-communicative context and only subsequently acquire its adaptive function.On the other hand, communication may originate thanks to cognitive constraints; that is, communication may originate thanks to the existence of neural substrates that are common to the signalling and categorising capabilities. This article provides a proof-of-concept demonstration of the origin of communication in a novel-simulated scenario in which groups of two homogeneous (i.e. genetically identical) agents exploit reciprocal communication to develop common perceptual categories nd to perform a collective task. In particular, in circumstances in which communication is evolutionarily advantageous, simulated agents evolve from scratch social behaviour through acoustic interactions.We look into the phylogeny of successful communication protocol, and we describe the evolutionary phenomena that, in early evolutionary stages, paved the way for the subsequent development of reciprocal communication, categorisation capabilities and successful cooperative strategies.
Wang, Yunsheng; Zhou, Lijuan; Li, Dazhi; Dai, Liangying; Lawton-Rauh, Amy; Srimani, Pradip K.; Duan, Yongping; Luo, Feng
2015-01-01
In this study, we identified and compared nucleotide-binding site (NBS) domain-containing genes from three Citrus genomes (C. clementina, C. sinensis from USA and C. sinensis from China). Phylogenetic analysis of all Citrus NBS genes across these three genomes revealed that there are three approximately evenly numbered groups: one group contains the Toll-Interleukin receptor (TIR) domain and two different Non-TIR groups in which most of proteins contain the Coiled Coil (CC) domain. Motif analysis confirmed that the two groups of CC-containing NBS genes are from different evolutionary origins. We partitioned NBS genes into clades using NBS domain sequence distances and found most clades include NBS genes from all three Citrus genomes. This suggests that three Citrus genomes have similar numbers and types of NBS genes. We also mapped the re-sequenced reads of three pomelo and three mandarin genomes onto the C. sinensis genome. We found that most NBS genes of the hybrid C. sinensis genome have corresponding homologous genes in both pomelo and mandarin genomes. The homologous NBS genes in pomelo and mandarin suggest that the parental species of C. sinensis may contain similar types of NBS genes. This explains why the hybrid C. sinensis and original C. clementina have similar types of NBS genes in this study. Furthermore, we found that sequence variation amongst Citrus NBS genes were shaped by multiple independent and shared accelerated mutation accumulation events among different groups of NBS genes and in different Citrus genomes. Our comparative analyses yield valuable insight into the structure, organization and evolution of NBS genes in Citrus genomes. Furthermore, our comprehensive analysis showed that the non-TIR NBS genes can be divided into two groups that come from different evolutionary origins. This provides new insights into non-TIR genes, which have not received much attention. PMID:25811466
Wang, Yunsheng; Zhou, Lijuan; Li, Dazhi; Dai, Liangying; Lawton-Rauh, Amy; Srimani, Pradip K; Duan, Yongping; Luo, Feng
2015-01-01
In this study, we identified and compared nucleotide-binding site (NBS) domain-containing genes from three Citrus genomes (C. clementina, C. sinensis from USA and C. sinensis from China). Phylogenetic analysis of all Citrus NBS genes across these three genomes revealed that there are three approximately evenly numbered groups: one group contains the Toll-Interleukin receptor (TIR) domain and two different Non-TIR groups in which most of proteins contain the Coiled Coil (CC) domain. Motif analysis confirmed that the two groups of CC-containing NBS genes are from different evolutionary origins. We partitioned NBS genes into clades using NBS domain sequence distances and found most clades include NBS genes from all three Citrus genomes. This suggests that three Citrus genomes have similar numbers and types of NBS genes. We also mapped the re-sequenced reads of three pomelo and three mandarin genomes onto the C. sinensis genome. We found that most NBS genes of the hybrid C. sinensis genome have corresponding homologous genes in both pomelo and mandarin genomes. The homologous NBS genes in pomelo and mandarin suggest that the parental species of C. sinensis may contain similar types of NBS genes. This explains why the hybrid C. sinensis and original C. clementina have similar types of NBS genes in this study. Furthermore, we found that sequence variation amongst Citrus NBS genes were shaped by multiple independent and shared accelerated mutation accumulation events among different groups of NBS genes and in different Citrus genomes. Our comparative analyses yield valuable insight into the structure, organization and evolution of NBS genes in Citrus genomes. Furthermore, our comprehensive analysis showed that the non-TIR NBS genes can be divided into two groups that come from different evolutionary origins. This provides new insights into non-TIR genes, which have not received much attention.
The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants.
Bewick, Adam J; Niederhuth, Chad E; Ji, Lexiang; Rohr, Nicholas A; Griffin, Patrick T; Leebens-Mack, Jim; Schmitz, Robert J
2017-05-01
The evolution of gene body methylation (gbM), its origins, and its functional consequences are poorly understood. By pairing the largest collection of transcriptomes (>1000) and methylomes (77) across Viridiplantae, we provide novel insights into the evolution of gbM and its relationship to CHROMOMETHYLASE (CMT) proteins. CMTs are evolutionary conserved DNA methyltransferases in Viridiplantae. Duplication events gave rise to what are now referred to as CMT1, 2 and 3. Independent losses of CMT1, 2, and 3 in eudicots, CMT2 and ZMET in monocots and monocots/commelinids, variation in copy number, and non-neutral evolution suggests overlapping or fluid functional evolution of this gene family. DNA methylation within genes is widespread and is found in all major taxonomic groups of Viridiplantae investigated. Genes enriched with methylated CGs (mCG) were also identified in species sister to angiosperms. The proportion of genes and DNA methylation patterns associated with gbM are restricted to angiosperms with a functional CMT3 or ortholog. However, mCG-enriched genes in the gymnosperm Pinus taeda shared some similarities with gbM genes in Amborella trichopoda. Additionally, gymnosperms and ferns share a CMT homolog closely related to CMT2 and 3. Hence, the dependency of gbM on a CMT most likely extends to all angiosperms and possibly gymnosperms and ferns. The resulting gene family phylogeny of CMT transcripts from the most diverse sampling of plants to date redefines our understanding of CMT evolution and its evolutionary consequences on DNA methylation. Future, functional tests of homologous and paralogous CMTs will uncover novel roles and consequences to the epigenome.
Martinson, Holly M; Bergmann, Erik J; Venugopal, P Dilip; Riley, Christopher B; Shrewsbury, Paula M; Raupp, Michael J
2016-09-01
With the introduction and establishment of exotic species, most ecosystems now contain both native and exotic plants and herbivores. Recent research identifies several factors that govern how specialist herbivores switch host plants upon introduction. Predicting the feeding ecology and impacts of introduced generalist species, however, remains difficult. Here, we examine how plant geographic origin, an indicator of shared co-evolutionary history, influences patterns of host use by a generalist, invasive herbivore, while accounting for variation in plant availability. The brown marmorated stink bug, Halyomorpha halys, is a highly polyphagous Asian herbivore and an economically important invasive pest in North America and Europe. In visual surveys of 220 plant taxa in commercial nurseries in Maryland, USA, H. halys was more abundant on non-Asian plants and selected these over Asian plants. The relationship between the relative use of plants and their availability was strongly positive but depended also on plant origin at two of our three sites, where the higher relative use of non-Asian plants was greatest for highly abundant taxa. These results highlight the importance of considering both plant origin and relative abundance in understanding the selection of host plants by invasive generalist herbivores in diverse, natural and urban forests.
Despotism, democracy, and the evolutionary dynamics of leadership and followership.
Van Vugt, Mark
2009-01-01
Responds to comments made by George B. Graen and Stephen J. Guastello on the current author's article Leadership, followership, and evolution: Some lessons from the past by Van Vugt, Hogan, and Kaiser. In the original article my co-authors and I proposed a new way of thinking about leadership, informed by evolutionary (neo-Darwinian) theory. In the first commentary, Graen noted that we ignored a number of recently developed psychological theories of leadership that take into account the leader-follower relationship, most notably LMX theory. LMX theory asserts that leadership effectiveness and team performance are affected by the quality of working relationships between superior and subordinates. Because the original article primarily dealt with questions about the origins of leadership--the phylogenetic and evolutionary causes--we had to be concise in our review of proximate psychological theories of leadership. In the second commentary, Guastello concurred with the importance of an evolutionary game analysis for studying leadership but disagreed with certain details of our analysis. (PsycINFO Database Record (c) 2009 APA, all rights reserved).
Looking for unity in diversity: human cooperative childcare in comparative perspective
van Schaik, Carel
2017-01-01
Humans engage in cooperative childcare, which includes some elements not found in other animals, such as the presence of post-reproductive helpers, extensive food sharing among adults and a pervasive sexual division of labour. In animals, cooperative offspring care has typically been studied in two different contexts. The first mainly involves helpers contributing care in cooperatively breeding family groups; the second context is allomaternal care in species usually not categorized as cooperative breeders (e.g. plural and communal breeders, often without male care). Comparative analyses suggest that cooperative breeding and allomaternal care in plural and communal breeders have distinct evolutionary origins, with humans fitting neither pathway entirely. Nevertheless, some critical proximate mechanisms of helping, including hormonal regulators, are likely to be shared across species. Other mechanisms may vary among species, such as social tolerance, proactive prosociality or conditional mother–infant bonding. These are presumably associated with specific details of the care system, such as whether all group members contribute, or whether mothers can potentially raise offspring alone. Thus, cooperative offspring care is seen in different contexts across animal lineages, but may nonetheless share several important psychological characteristics. We end by discussing how work on humans may play a unifying role in studying cooperative offspring care. PMID:29237848
Looking for unity in diversity: human cooperative childcare in comparative perspective.
Burkart, Judith M; van Schaik, Carel; Griesser, Michael
2017-12-20
Humans engage in cooperative childcare, which includes some elements not found in other animals, such as the presence of post-reproductive helpers, extensive food sharing among adults and a pervasive sexual division of labour. In animals, cooperative offspring care has typically been studied in two different contexts. The first mainly involves helpers contributing care in cooperatively breeding family groups; the second context is allomaternal care in species usually not categorized as cooperative breeders (e.g. plural and communal breeders, often without male care). Comparative analyses suggest that cooperative breeding and allomaternal care in plural and communal breeders have distinct evolutionary origins, with humans fitting neither pathway entirely. Nevertheless, some critical proximate mechanisms of helping, including hormonal regulators, are likely to be shared across species. Other mechanisms may vary among species, such as social tolerance, proactive prosociality or conditional mother-infant bonding. These are presumably associated with specific details of the care system, such as whether all group members contribute, or whether mothers can potentially raise offspring alone. Thus, cooperative offspring care is seen in different contexts across animal lineages, but may nonetheless share several important psychological characteristics. We end by discussing how work on humans may play a unifying role in studying cooperative offspring care. © 2017 The Author(s).
The evolutionary origins of Syngnathidae: pipefishes and seahorses.
Wilson, A B; Orr, J W
2011-06-01
Despite their importance as evolutionary and ecological model systems, the phylogenetic relationships among gasterosteiforms remain poorly understood, complicating efforts to understand the evolutionary origins of the exceptional morphological and behavioural diversity of this group. The present review summarizes current knowledge on the origin and evolution of syngnathids, a gasterosteiform family with a highly developed form of male parental care, combining inferences based on morphological and molecular data with paleontological evidence documenting the evolutionary history of the group. Molecular methods have provided new tools for the study of syngnathid relationships and have played an important role in recent conservation efforts. Despite recent insights into syngnathid evolution, however, a survey of the literature reveals a strong taxonomic bias towards studies on the species-rich genera Hippocampus and Syngnathus, with a lack of data for many morphologically unique members of the family. The study of the evolutionary pressures responsible for generating the high diversity of syngnathids would benefit from a wider perspective, providing a comparative framework in which to investigate the evolution of the genetic, morphological and behavioural traits of the group as a whole. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
Musser, Jacob M; Wagner, Günter P
2015-11-01
We elaborate a framework for investigating the evolutionary history of morphological characters. We argue that morphological character trees generated by phylogenetic analysis of transcriptomes provide a useful tool for identifying causal gene expression differences underlying the development and evolution of morphological characters. They also enable rigorous testing of different models of morphological character evolution and origination, including the hypothesis that characters originate via divergence of repeated ancestral characters. Finally, morphological character trees provide evidence that character transcriptomes undergo concerted evolution. We argue that concerted evolution of transcriptomes can explain the so-called "species signal" found in several recent comparative transcriptome studies. The species signal is the phenomenon that transcriptomes cluster by species rather than character type, even though the characters are older than the respective species. We suggest the species signal is a natural consequence of concerted gene expression evolution resulting from mutations that alter gene regulatory network interactions shared by the characters under comparison. Thus, character trees generated from transcriptomes allow us to investigate the variational independence, or individuation, of morphological characters at the level of genetic programs. © 2015 Wiley Periodicals, Inc.
Social calls provide novel insights into the evolution of vocal learning
Sewall, Kendra B.; Young, Anna M.; Wright, Timothy F.
2016-01-01
Learned song is among the best-studied models of animal communication. In oscine songbirds, where learned song is most prevalent, it is used primarily for intrasexual selection and mate attraction. Learning of a different class of vocal signals, known as contact calls, is found in a diverse array of species, where they are used to mediate social interactions among individuals. We argue that call learning provides a taxonomically rich system for studying testable hypotheses for the evolutionary origins of vocal learning. We describe and critically evaluate four nonmutually exclusive hypotheses for the origin and current function of vocal learning of calls, which propose that call learning (1) improves auditory detection and recognition, (2) signals local knowledge, (3) signals group membership, or (4) allows for the encoding of more complex social information. We propose approaches to testing these four hypotheses but emphasize that all of them share the idea that social living, not sexual selection, is a central driver of vocal learning. Finally, we identify future areas for research on call learning that could provide new perspectives on the origins and mechanisms of vocal learning in both animals and humans. PMID:28163325
Awan, Ali R; Manfredo, Amanda; Pleiss, Jeffrey A
2013-07-30
Alternative splicing is a potent regulator of gene expression that vastly increases proteomic diversity in multicellular eukaryotes and is associated with organismal complexity. Although alternative splicing is widespread in vertebrates, little is known about the evolutionary origins of this process, in part because of the absence of phylogenetically conserved events that cross major eukaryotic clades. Here we describe a lariat-sequencing approach, which offers high sensitivity for detecting splicing events, and its application to the unicellular fungus, Schizosaccharomyces pombe, an organism that shares many of the hallmarks of alternative splicing in mammalian systems but for which no previous examples of exon-skipping had been demonstrated. Over 200 previously unannotated splicing events were identified, including examples of regulated alternative splicing. Remarkably, an evolutionary analysis of four of the exons identified here as subject to skipping in S. pombe reveals high sequence conservation and perfect length conservation with their homologs in scores of plants, animals, and fungi. Moreover, alternative splicing of two of these exons have been documented in multiple vertebrate organisms, making these the first demonstrations of identical alternative-splicing patterns in species that are separated by over 1 billion y of evolution.
Comparative genetics of hybrid incompatibility: sterility in two Solanum species crosses.
Moyle, Leonie C; Nakazato, Takuya
2008-07-01
The genetic basis of hybrid sterility can provide insight into the genetic and evolutionary origins of species barriers. We examine the genetics of hybrid incompatibility between two diploid plant species in the plant clade Solanum sect. Lycopersicon. Using a set of near-isogenic lines (NILs) representing the wild species Solanum pennellii (formerly Lycopersicon pennellii) in the genetic background of the cultivated tomato S. lycopersicum (formerly L. esculentum), we found that hybrid pollen and seed infertility are each based on a modest number of loci, male (pollen) and other (seed) incompatibility factors are roughly comparable in number, and seed-infertility QTL act additively or recessively. These findings are remarkably consistent with our previous analysis in a different species pair, S. lycopersicum x S. habrochaites. Data from both studies contrast strongly with data from Drosophila. Finally, QTL for pollen and seed sterility from the two Solanum studies were chromosomally colocalized, indicating a shared evolutionary history for these QTL, a nonrandom genomic distribution of loci causing sterility, and/or a proclivity of certain genes to be involved in hybrid sterility. We show that comparative mapping data can delimit the probable timing of evolution of detected QTL and discern which sterility loci likely evolved earliest among species.
Conservation of native Pacific trout diversity in western North America
Penaluna, Brooke E.; Abadía-Cardoso, Alicia; Dunham, Jason B.; García de León, Francisco J; Gresswell, Robert E.; Luna, Arturo Ruiz; Taylor, Eric B.; Shepard, Bradley B.; Al-Chokhachy, Robert K.; Muhlfeld, Clint C.; Bestgen, Kevin R.; Rogers, Kevin H.; Escalante, Marco A; Keeley, Ernest R; Temple, Gabriel; Williams, Jack E.; Matthews, Kathleen; Pierce, Ron; Mayden, Richard L.; Kovach, Ryan; Garza, John Carlos; Fausch, Kurt D.
2016-01-01
Pacific trout Oncorhynchus spp. in western North America are strongly valued in ecological, socioeconomic, and cultural views, and have been the subject of substantial research and conservation efforts. Despite this, the understanding of their evolutionary histories, overall diversity, and challenges to their conservation is incomplete. We review the state of knowledge on these important issues, focusing on Pacific trout in the genus Oncorhynchus. Although most research on salmonid fishes emphasizes Pacific salmon, we focus on Pacific trout because they share a common evolutionary history, and many taxa in western North America have not been formally described, particularly in the southern extent of their ranges. Research in recent decades has led to the revision of many hypotheses concerning the origin and diversification of Pacific trout throughout their range. Although there has been significant success at addressing past threats to Pacific trout, contemporary and future threats represented by nonnative species, land and water use activities, and climate change pose challenges and uncertainties. Ultimately, conservation of Pacific trout depends on how well these issues are understood and addressed, and on solutions that allow these species to coexist with a growing scope of human influences.
Spliced DNA Sequences in the Paramecium Germline: Their Properties and Evolutionary Potential
Catania, Francesco; McGrath, Casey L.; Doak, Thomas G.; Lynch, Michael
2013-01-01
Despite playing a crucial role in germline-soma differentiation, the evolutionary significance of developmentally regulated genome rearrangements (DRGRs) has received scant attention. An example of DRGR is DNA splicing, a process that removes segments of DNA interrupting genic and/or intergenic sequences. Perhaps, best known for shaping immune-system genes in vertebrates, DNA splicing plays a central role in the life of ciliated protozoa, where thousands of germline DNA segments are eliminated after sexual reproduction to regenerate a functional somatic genome. Here, we identify and chronicle the properties of 5,286 sequences that putatively undergo DNA splicing (i.e., internal eliminated sequences [IESs]) across the genomes of three closely related species of the ciliate Paramecium (P. tetraurelia, P. biaurelia, and P. sexaurelia). The study reveals that these putative IESs share several physical characteristics. Although our results are consistent with excision events being largely conserved between species, episodes of differential IES retention/excision occur, may have a recent origin, and frequently involve coding regions. Our findings indicate interconversion between somatic—often coding—DNA sequences and noncoding IESs, and provide insights into the role of DNA splicing in creating potentially functional genetic innovation. PMID:23737328
Ševčíková, Tereza; Horák, Aleš; Klimeš, Vladimír; Zbránková, Veronika; Demir-Hilton, Elif; Sudek, Sebastian; Jenkins, Jerry; Schmutz, Jeremy; Přibyl, Pavel; Fousek, Jan; Vlček, Čestmír; Lang, B Franz; Oborník, Miroslav; Worden, Alexandra Z; Eliáš, Marek
2015-05-28
Algae with secondary plastids of a red algal origin, such as ochrophytes (photosynthetic stramenopiles), are diverse and ecologically important, yet their evolutionary history remains controversial. We sequenced plastid genomes of two ochrophytes, Ochromonas sp. CCMP1393 (Chrysophyceae) and Trachydiscus minutus (Eustigmatophyceae). A shared split of the clpC gene as well as phylogenomic analyses of concatenated protein sequences demonstrated that chrysophytes and eustigmatophytes form a clade, the Limnista, exhibiting an unexpectedly elevated rate of plastid gene evolution. Our analyses also indicate that the root of the ochrophyte phylogeny falls between the recently redefined Khakista and Phaeista assemblages. Taking advantage of the expanded sampling of plastid genome sequences, we revisited the phylogenetic position of the plastid of Vitrella brassicaformis, a member of Alveolata with the least derived plastid genome known for the whole group. The results varied depending on the dataset and phylogenetic method employed, but suggested that the Vitrella plastids emerged from a deep ochrophyte lineage rather than being derived vertically from a hypothetical plastid-bearing common ancestor of alveolates and stramenopiles. Thus, we hypothesize that the plastid in Vitrella, and potentially in other alveolates, may have been acquired by an endosymbiosis of an early ochrophyte.
Host jumps shaped the diversity of extant rust fungi (Pucciniales).
McTaggart, Alistair R; Shivas, Roger G; van der Nest, Magriet A; Roux, Jolanda; Wingfield, Brenda D; Wingfield, Michael J
2016-02-01
The aim of this study was to determine the evolutionary time line for rust fungi and date key speciation events using a molecular clock. Evidence is provided that supports a contemporary view for a recent origin of rust fungi, with a common ancestor on a flowering plant. Divergence times for > 20 genera of rust fungi were studied with Bayesian evolutionary analyses. A relaxed molecular clock was applied to ribosomal and mitochondrial genes, calibrated against estimated divergence times for the hosts of rust fungi, such as Acacia (Fabaceae), angiosperms and the cupressophytes. Results showed that rust fungi shared a most recent common ancestor with a mean age between 113 and 115 million yr. This dates rust fungi to the Cretaceous period, which is much younger than previous estimations. Host jumps, whether taxonomically large or between host genera in the same family, most probably shaped the diversity of rust genera. Likewise, species diversified by host shifts (through coevolution) or via subsequent host jumps. This is in contrast to strict coevolution with their hosts. Puccinia psidii was recovered in Sphaerophragmiaceae, a family distinct from Raveneliaceae, which were regarded as confamilial in previous studies. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
A neuropsychological perspective on the link between language and praxis in modern humans
Roby-Brami, Agnes; Hermsdörfer, Joachim; Roy, Alice C.; Jacobs, Stéphane
2012-01-01
Hypotheses about the emergence of human cognitive abilities postulate strong evolutionary links between language and praxis, including the possibility that language was originally gestural. The present review considers functional and neuroanatomical links between language and praxis in brain-damaged patients with aphasia and/or apraxia. The neural systems supporting these functions are predominantly located in the left hemisphere. There are many parallels between action and language for recognition, imitation and gestural communication suggesting that they rely partially on large, common networks, differentially recruited depending on the nature of the task. However, this relationship is not unequivocal and the production and understanding of gestural communication are dependent on the context in apraxic patients and remains to be clarified in aphasic patients. The phonological, semantic and syntactic levels of language seem to share some common cognitive resources with the praxic system. In conclusion, neuropsychological observations do not allow support or rejection of the hypothesis that gestural communication may have constituted an evolutionary link between tool use and language. Rather they suggest that the complexity of human behaviour is based on large interconnected networks and on the evolution of specific properties within strategic areas of the left cerebral hemisphere. PMID:22106433
Bermingham, E; Martin, A P
1998-04-01
Historical biogeography seeks to explain contemporary distributions of taxa in the context of intrinsic biological and extrinsic geological and climatic factors. To decipher the relative importance of biological characteristics vs. environmental conditions, it is necessary to ask whether groups of taxa with similar distributions share the same history of diversification. Because all of the taxa will have shared the same climatic and geological history, evidence of shared history across multiple species provides an estimate of the role of extrinsic factors in shaping contemporary biogeographic patterns. Similarly, differences in the records of evolutionary history across species will probably be signatures of biological differences. In this study, we focus on inferring the evolutionary history for geographical populations and closely related species representing three genera of primary freshwater fishes that are widely distributed in lower Central America (LCA) and northwestern Colombia. Analysis of mitochondrial gene trees provides the opportunity for robust tests of shared history across taxa. Moreover, because mtDNA permits inference of the temporal scale of diversification we can test hypotheses regarding the chronological development of the Isthmian corridor linking North and South America. We have focused attention on two issues. First, we show that many of the distinct populations of LCA fishes diverged in a relatively brief period of time thus limiting the phylogenetic signal available for tests of shared history. Second, our results provide reduced evidence of shared history when all drainages are included in the analysis because of inferred dispersion events that obscure the evolutionary history among drainage basins. When we restrict the analysis to areas that harbour endemic mitochondrial lineages, there is evidence of shared history across taxa. We hypothesize that there were two to three distinct waves of invasion into LCA from putative source populations in northwestern Colombia. The first probably happened in the late Miocene, prior to the final emergence of the Isthmus in the mid-Pliocene; the second was probably coincident with the rise of the Isthmus in the mid-Pliocene, and the third event occurred more recently, perhaps in the Pleistocene. In each case the geographical scale of the dispersion of lineages was progressively more limited, a pattern we attribute to the continuing development of the landscape due to orogeny and the consequent increase in the insularization of drainage basins. Thus, the fisheye view of LCA suggests a complex biogeographic history of overlaid cycles of colonization, diversification, sorting and extinction of lineages.
ERIC Educational Resources Information Center
LeClair, Elizabeth E.
2008-01-01
A major finding of comparative genomics and developmental genetics is that metazoans share certain conserved, embryonically deployed signaling pathways that instruct cells as to their ultimate fate. Because the DNA encoding these pathways predates the evolutionary split of most animal groups, it should in principle be possible to clone…
Overcoming obstacles to interspecies hybridization of ash
Jennifer L. Koch; David W. Carey; Mary E. Mason; M. Nurul Islam-Faridi
2010-01-01
Tree species that share a long co-evolutionary history with insects and pathogens are likely to have developed mechanisms of resistance that allow them to coexist. When insects and pathogens are introduced to different parts of the world, high levels of susceptibility can be observed, presumably in part due to the lack of co-evolutionary history between the insect (or...
Symbiosis in eukaryotic evolution.
López-García, Purificación; Eme, Laura; Moreira, David
2017-12-07
Fifty years ago, Lynn Margulis, inspiring in early twentieth-century ideas that put forward a symbiotic origin for some eukaryotic organelles, proposed a unified theory for the origin of the eukaryotic cell based on symbiosis as evolutionary mechanism. Margulis was profoundly aware of the importance of symbiosis in the natural microbial world and anticipated the evolutionary significance that integrated cooperative interactions might have as mechanism to increase cellular complexity. Today, we have started fully appreciating the vast extent of microbial diversity and the importance of syntrophic metabolic cooperation in natural ecosystems, especially in sediments and microbial mats. Also, not only the symbiogenetic origin of mitochondria and chloroplasts has been clearly demonstrated, but improvement in phylogenomic methods combined with recent discoveries of archaeal lineages more closely related to eukaryotes further support the symbiogenetic origin of the eukaryotic cell. Margulis left us in legacy the idea of 'eukaryogenesis by symbiogenesis'. Although this has been largely verified, when, where, and specifically how eukaryotic cells evolved are yet unclear. Here, we shortly review current knowledge about symbiotic interactions in the microbial world and their evolutionary impact, the status of eukaryogenetic models and the current challenges and perspectives ahead to reconstruct the evolutionary path to eukaryotes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biology Needs Evolutionary Software Tools: Let’s Build Them Right
Team, Galaxy; Goecks, Jeremy; Taylor, James
2018-01-01
Abstract Research in population genetics and evolutionary biology has always provided a computational backbone for life sciences as a whole. Today evolutionary and population biology reasoning are essential for interpretation of large complex datasets that are characteristic of all domains of today’s life sciences ranging from cancer biology to microbial ecology. This situation makes algorithms and software tools developed by our community more important than ever before. This means that we, developers of software tool for molecular evolutionary analyses, now have a shared responsibility to make these tools accessible using modern technological developments as well as provide adequate documentation and training. PMID:29688462
Evolutionary and Political Economic Influences on Biological Diversity in African Americans.
ERIC Educational Resources Information Center
Jackson, Fatimah Linda Collier
1993-01-01
Examines existing data on biological diversity among Americans of African descent within the contexts of their evolutionary backgrounds and political and economic realities. Explores the origins of the diversity, and provides an evolutionary and political economy synthesis for evaluating the biological distinctions apparent among African…
Begum, Tina; Ghosh, Tapash Chandra
2014-10-05
To date, numerous studies have been attempted to determine the extent of variation in evolutionary rates between human disease and nondisease (ND) genes. In our present study, we have considered human autosomal monogenic (Mendelian) disease genes, which were classified into two groups according to the number of phenotypic defects, that is, specific disease (SPD) gene (one gene: one defect) and shared disease (SHD) gene (one gene: multiple defects). Here, we have compared the evolutionary rates of these two groups of genes, that is, SPD genes and SHD genes with respect to ND genes. We observed that the average evolutionary rates are slow in SHD group, intermediate in SPD group, and fast in ND group. Group-to-group evolutionary rate differences remain statistically significant regardless of their gene expression levels and number of defects. We demonstrated that disease genes are under strong selective constraint if they emerge through edgetic perturbation or drug-induced perturbation of the interactome network, show tissue-restricted expression, and are involved in transmembrane transport. Among all the factors, our regression analyses interestingly suggest the independent effects of 1) drug-induced perturbation and 2) the interaction term of expression breadth and transmembrane transport on protein evolutionary rates. We reasoned that the drug-induced network disruption is a combination of several edgetic perturbations and, thus, has more severe effect on gene phenotypes. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Chang, Matthew T; Penson, Alexander; Desai, Neil B; Socci, Nicholas D; Shen, Ronglai; Seshan, Venkatraman E; Kundra, Ritika; Abeshouse, Adam; Viale, Agnes; Cha, Eugene K; Hao, Xueli; Reuter, Victor E; Rudin, Charles M; Bochner, Bernard H; Rosenberg, Jonathan E; Bajorin, Dean F; Schultz, Nikolaus; Berger, Michael F; Iyer, Gopa; Solit, David B; Al-Ahmadie, Hikmat A; Taylor, Barry S
2018-04-15
Purpose: Small-cell carcinoma of the bladder (SCCB) is a rare and aggressive neuroendocrine tumor with a dismal prognosis and limited treatment options. As SCCB is histologically indistinguishable from small-cell lung cancer, a shared pathogenesis and cell of origin has been proposed. The aim of this study is to determine whether SCCBs arise from a preexisting urothelial carcinoma or share a molecular pathogenesis in common with small-cell lung cancer. Experimental Design: We performed an integrative analysis of 61 SCCB tumors to identify histology- and organ-specific similarities and differences. Results: SCCB has a high somatic mutational burden driven predominantly by an APOBEC-mediated mutational process. TP53, RB1 , and TERT promoter mutations were present in nearly all samples. Although these events appeared to arise early in all affected tumors and likely reflect an evolutionary branch point that may have driven small-cell lineage differentiation, they were unlikely the founding transforming event, as they were often preceded by diverse and less common driver mutations, many of which are common in bladder urothelial cancers, but not small-cell lung tumors. Most patient tumors (72%) also underwent genome doubling (GD). Although arising at different chronologic points in the evolution of the disease, GD was often preceded by biallelic mutations in TP53 with retention of two intact copies. Conclusions: Our findings indicate that small-cell cancers of the bladder and lung have a convergent but distinct pathogenesis, with SCCBs arising from a cell of origin shared with urothelial bladder cancer. Clin Cancer Res; 24(8); 1965-73. ©2017 AACR See related commentary by Oser and Jänne, p. 1775 . ©2017 American Association for Cancer Research.
The Emergence of Life as a First-Order Phase Transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathis, Cole; Bhattacharya, Tanmoy; Walker, Sara Imari
It is well known that life on Earth alters its environment over evolutionary and geological timescales. An important open question is whether this is a result of evolutionary optimization or a universal feature of life. In the latter case, the origin of life would be coincident with a shift in environmental conditions. Here in this paper we present a model for the emergence of life in which replicators are explicitly coupled to their environment through the recycling of a finite supply of resources. The model exhibits a dynamic, first-order phase transition from nonlife to life, where the life phase ismore » distinguished by selection on replicators. We show that environmental coupling plays an important role in the dynamics of the transition. The transition corresponds to a redistribution of matter in replicators and their environment, driven by selection on replicators, exhibiting an explosive growth in diversity as replicators are selected. The transition is accurately tracked by the mutual information shared between replicators and their environment. In the absence of successfully repartitioning system resources, the transition fails to complete, leading to the possibility of many frustrated trials before life first emerges. Often, the replicators that initiate the transition are not those that are ultimately selected. The results are consistent with the view that life's propensity to shape its environment is indeed a universal feature of replicators, characteristic of the transition from nonlife to life. We discuss the implications of these results for understanding life's emergence and evolutionary transitions more broadly.« less
The Emergence of Life as a First-Order Phase Transition
Mathis, Cole; Bhattacharya, Tanmoy; Walker, Sara Imari
2017-03-01
It is well known that life on Earth alters its environment over evolutionary and geological timescales. An important open question is whether this is a result of evolutionary optimization or a universal feature of life. In the latter case, the origin of life would be coincident with a shift in environmental conditions. Here in this paper we present a model for the emergence of life in which replicators are explicitly coupled to their environment through the recycling of a finite supply of resources. The model exhibits a dynamic, first-order phase transition from nonlife to life, where the life phase ismore » distinguished by selection on replicators. We show that environmental coupling plays an important role in the dynamics of the transition. The transition corresponds to a redistribution of matter in replicators and their environment, driven by selection on replicators, exhibiting an explosive growth in diversity as replicators are selected. The transition is accurately tracked by the mutual information shared between replicators and their environment. In the absence of successfully repartitioning system resources, the transition fails to complete, leading to the possibility of many frustrated trials before life first emerges. Often, the replicators that initiate the transition are not those that are ultimately selected. The results are consistent with the view that life's propensity to shape its environment is indeed a universal feature of replicators, characteristic of the transition from nonlife to life. We discuss the implications of these results for understanding life's emergence and evolutionary transitions more broadly.« less
The Emergence of Life as a First-Order Phase Transition
NASA Astrophysics Data System (ADS)
Mathis, Cole; Bhattacharya, Tanmoy; Imari Walker, Sara
2017-03-01
It is well known that life on Earth alters its environment over evolutionary and geological timescales. An important open question is whether this is a result of evolutionary optimization or a universal feature of life. In the latter case, the origin of life would be coincident with a shift in environmental conditions. Here we present a model for the emergence of life in which replicators are explicitly coupled to their environment through the recycling of a finite supply of resources. The model exhibits a dynamic, first-order phase transition from nonlife to life, where the life phase is distinguished by selection on replicators. We show that environmental coupling plays an important role in the dynamics of the transition. The transition corresponds to a redistribution of matter in replicators and their environment, driven by selection on replicators, exhibiting an explosive growth in diversity as replicators are selected. The transition is accurately tracked by the mutual information shared between replicators and their environment. In the absence of successfully repartitioning system resources, the transition fails to complete, leading to the possibility of many frustrated trials before life first emerges. Often, the replicators that initiate the transition are not those that are ultimately selected. The results are consistent with the view that life's propensity to shape its environment is indeed a universal feature of replicators, characteristic of the transition from nonlife to life. We discuss the implications of these results for understanding life's emergence and evolutionary transitions more broadly.
Evolutionary origin of the Asteraceae capitulum: Insights from Calyceraceae.
Pozner, Raúl; Zanotti, Christian; Johnson, Leigh A
2012-01-01
Phylogenies based on molecular data are revealing that generalizations about complex morphological structures often obscure variation and developmental patterns important for understanding the evolution of forms, as is the case for inflorescence morphology within the well-supported MGCA clade (Menyanthaceae + Goodeniaceae + Calyceraceae + Asteraceae). While the basal families share a basic thyrsic/thyrsoid structure of their inflorescences, Asteraceae possesses a capitulum that is widely interpreted as a racemose, condensed inflorescence. Elucidating the poorly known inflorescence structure of Calyceraceae, sister to Asteraceae, should help clarify how the Asteraceae capitulum evolved from thyrsic/thyrsoid inflorescences. The early development and structure of the inflorescence of eight species (five genera) of Calyceraceae were studied by SEM, and patterns of evolutionary change were interpreted via phylogenetic character mapping. The basic inflorescence structure of Calyceraceae is a cephalioid (a very condensed botryoid/thyrsoid). Optimization of inflorescence characters on a DNA sequence-derived tree suggests that the Asteraceae capitulum derives from a simple cephalioid through two morphological changes: loss of the terminal flower and suppression of the cymose branching pattern in the peripheral branches. Widely understood as a condensed raceme, the Asteraceae capitulum is the evolutionary result of a very reduced, condensed thyrsoid. Starting from that point, evolution worked separately only on the racemose developmental control/pattern within Asteraceae and mainly on the cymose developmental control/pattern within Calyceraceae, producing head-like inflorescences in both groups but with very different diversification potential. We also discuss possible remnants of the ancestral cephalioid structure in some Asteraceae.
Evolutionary genomics of dog domestication.
Wayne, Robert K; vonHoldt, Bridgett M
2012-02-01
We review the underlying principles and tools used in genomic studies of domestic dogs aimed at understanding the genetic changes that have occurred during domestication. We show that there are two principle modes of evolution within dogs. One primary mode that accounts for much of the remarkable diversity of dog breeds is the fixation of discrete mutations of large effect in individual lineages that are then crossed to various breed groupings. This transfer of mutations across the dog evolutionary tree leads to the appearance of high phenotypic diversity that in actuality reflects a small number of major genes. A second mechanism causing diversification involves the selective breeding of dogs within distinct phenotypic or functional groups, which enhances specific group attributes such as heading or tracking. Such progressive selection leads to a distinct genetic structure in evolutionary trees such that functional and phenotypic groups cluster genetically. We trace the origin of the nuclear genome in dogs based on haplotype-sharing analyses between dogs and gray wolves and show that contrary to previous mtDNA analyses, the nuclear genome of dogs derives primarily from Middle Eastern or European wolves, a result more consistent with the archeological record. Sequencing analysis of the IGF1 gene, which has been the target of size selection in small breeds, further supports this conclusion. Finally, we discuss how a black coat color mutation that evolved in dogs has transformed North American gray wolf populations, providing a first example of a mutation that appeared under domestication and selectively swept through a wild relative.
Lymphatic regulation in nonmammalian vertebrates.
Hedrick, Michael S; Hillman, Stanley S; Drewes, Robert C; Withers, Philip C
2013-08-01
All vertebrate animals share in common the production of lymph through net capillary filtration from their closed circulatory system into their tissues. The balance of forces responsible for net capillary filtration and lymph formation is described by the Starling equation, but additional factors such as vascular and interstitial compliance, which vary markedly among vertebrates, also have a significant impact on rates of lymph formation. Why vertebrates show extreme variability in rates of lymph formation and how nonmammalian vertebrates maintain plasma volume homeostasis is unclear. This gap hampers our understanding of the evolution of the lymphatic system and its interaction with the cardiovascular system. The evolutionary origin of the vertebrate lymphatic system is not clear, but recent advances suggest common developmental factors for lymphangiogenesis in teleost fishes, amphibians, and mammals with some significant changes in the water-land transition. The lymphatic system of anuran amphibians is characterized by large lymphatic sacs and two pairs of lymph hearts that return lymph into the venous circulation but no lymph vessels per se. The lymphatic systems of reptiles and some birds have lymph hearts, and both groups have extensive lymph vessels, but their functional role in both lymph movement and plasma volume homeostasis is almost completely unknown. The purpose of this review is to present an evolutionary perspective in how different vertebrates have solved the common problem of the inevitable formation of lymph from their closed circulatory systems and to point out the many gaps in our knowledge of this evolutionary progression.
Parker, G A; Ball, M A; Chubb, J C
2015-02-01
Links between parasites and food webs are evolutionarily ancient but dynamic: life history theory provides insights into helminth complex life cycle origins. Most adult helminths benefit by sexual reproduction in vertebrates, often high up food chains, but direct infection is commonly constrained by a trophic vacuum between free-living propagules and definitive hosts. Intermediate hosts fill this vacuum, facilitating transmission to definitive hosts. The central question concerns why sexual reproduction, and sometimes even larval growth, is suppressed in intermediate hosts, favouring growth arrest at larval maturity in intermediate hosts and reproductive suppression until transmission to definitive hosts? Increased longevity and higher growth in definitive hosts can generate selection for larger parasite body size and higher fecundity at sexual maturity. Life cycle length is increased by two evolutionary mechanisms, upward and downward incorporation, allowing simple (one-host) cycles to become complex (multihost). In downward incorporation, an intermediate host is added below the definitive host: models suggest that downward incorporation probably evolves only after ecological or evolutionary perturbations create a trophic vacuum. In upward incorporation, a new definitive host is added above the original definitive host, which subsequently becomes an intermediate host, again maintained by the trophic vacuum: theory suggests that this is plausible even under constant ecological/evolutionary conditions. The final cycle is similar irrespective of its origin (upward or downward). Insights about host incorporation are best gained by linking comparative phylogenetic analyses (describing evolutionary history) with evolutionary models (examining selective forces). Ascent of host trophic levels and evolution of optimal host taxa ranges are discussed. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
The evolutionary origin and diversification of feathers.
Prum, Richard O; Brush, Alan H
2002-09-01
Progress on the evolutionary origin and diversification of feathers has been hampered by conceptual problems and by the lack of plesiomorphic feather fossils. Recently, both of these limitations have been overcome by the proposal of the developmental theory of the origin of feathers, and the discovery of primitive feather fossils on nonavian theropod dinosaurs. The conceptual problems of previous theories of the origin of feathers are reviewed, and the alternative developmental theory is presented and discussed. The developmental theory proposes that feathers evolved through a series of evolutionary novelties in developmental mechanisms of the follicle and feather germ. The discovery of primitive and derived fossil feathers on a diversity of coelurosaurian theropod dinosaurs documents that feathers evolved and diversified in nonavian theropods before the origin of birds and before the origin of flight. The morphologies of these primitive feathers are congruent with the predictions of the developmental theory. Alternatives to the theropod origin of feathers are critique and rejected. Hypotheses for the initial function of feathers are reviewed. The aerodynamic theory of feather origins is falsified, but many other functions remain developmentally and phylogenetically plausible. Whatever their function, feathers evolved by selection for a follicle that would grow an emergent tubular appendage. Feathers are inherently tubular structures. The homology of feathers and scales is weakly supported. Feathers are composed of a suite of evolutionary novelties that evolved by the duplication, hierarchical organization, interaction, dissociation, and differentiation of morphological modules. The unique capacity for modular subdivision of the tubular feather follicle and germ has fostered the evolution of numerous innovations that characterize feathers. The evolution of feather keratin and the molecular basis of feather development are also discussed.
Controlled recovery of phylogenetic communities from an evolutionary model using a network approach
NASA Astrophysics Data System (ADS)
Sousa, Arthur M. Y. R.; Vieira, André P.; Prado, Carmen P. C.; Andrade, Roberto F. S.
2016-04-01
This works reports the use of a complex network approach to produce a phylogenetic classification tree of a simple evolutionary model. This approach has already been used to treat proteomic data of actual extant organisms, but an investigation of its reliability to retrieve a traceable evolutionary history is missing. The used evolutionary model includes key ingredients for the emergence of groups of related organisms by differentiation through random mutations and population growth, but purposefully omits other realistic ingredients that are not strictly necessary to originate an evolutionary history. This choice causes the model to depend only on a small set of parameters, controlling the mutation probability and the population of different species. Our results indicate that for a set of parameter values, the phylogenetic classification produced by the used framework reproduces the actual evolutionary history with a very high average degree of accuracy. This includes parameter values where the species originated by the evolutionary dynamics have modular structures. In the more general context of community identification in complex networks, our model offers a simple setting for evaluating the effects, on the efficiency of community formation and identification, of the underlying dynamics generating the network itself.
Evolutionary relationships between miRNA genes and their activity.
Zhu, Yan; Skogerbø, Geir; Ning, Qianqian; Wang, Zhen; Li, Biqing; Yang, Shuang; Sun, Hong; Li, Yixue
2012-12-22
The emergence of vertebrates is characterized by a strong increase in miRNA families. MicroRNAs interact broadly with many transcripts, and the evolution of such a system is intriguing. However, evolutionary questions concerning the origin of miRNA genes and their subsequent evolution remain unexplained. In order to systematically understand the evolutionary relationship between miRNAs gene and their function, we classified human known miRNAs into eight groups based on their evolutionary ages estimated by maximum parsimony method. New miRNA genes with new functional sequences accumulated more dynamically in vertebrates than that observed in Drosophila. Different levels of evolutionary selection were observed over miRNA gene sequences with different time of origin. Most genic miRNAs differ from their host genes in time of origin, there is no particular relationship between the age of a miRNA and the age of its host genes, genic miRNAs are mostly younger than the corresponding host genes. MicroRNAs originated over different time-scales are often predicted/verified to target the same or overlapping sets of genes, opening the possibility of substantial functional redundancy among miRNAs of different ages. Higher degree of tissue specificity and lower expression level was found in young miRNAs. Our data showed that compared with protein coding genes, miRNA genes are more dynamic in terms of emergence and decay. Evolution patterns are quite different between miRNAs of different ages. MicroRNAs activity is under tight control with well-regulated expression increased and targeting decreased over time. Our work calls attention to the study of miRNA activity with a consideration of their origin time.
NASA Technical Reports Server (NTRS)
Foote, M.; Hunter, J. P.; Janis, C. M.; Sepkoski, J. J. Jr
1999-01-01
Some molecular clock estimates of divergence times of taxonomic groups undergoing evolutionary radiation are much older than the groups' first observed fossil record. Mathematical models of branching evolution are used to estimate the maximal rate of fossil preservation consistent with a postulated missing history, given the sum of species durations implied by early origins under a range of species origination and extinction rates. The plausibility of postulated divergence times depends on origination, extinction, and preservation rates estimated from the fossil record. For eutherian mammals, this approach suggests that it is unlikely that many modern orders arose much earlier than their oldest fossil records.
de Oliveira Carneiro, Ianei; Sander, Anna-Lena; Silva, Namá; Moreira-Soto, Andres; Normann, Andrea; Flehmig, Bertram; Lukashev, Alexander N; Dotzauer, Andreas; Wieseke, Nicolas; Franke, Carlos Roberto; Drexler, Jan Felix
2018-04-25
The discovery of nonprimate hepatoviruses illuminated the evolutionary origins of hepatitis A virus (HAV) in small mammals. Marsupials are ancient mammals that diverged during the Jurassic from other Eutheria. Viruses from marsupials may thus provide important insight into virus evolution. To investigate Hepatovirus macroevolutionary patterns, we sampled 112 opossums in northeastern Brazil. A novel marsupial HAV (MHAV) was detected in a Brazilian Common Opossum ( Didelphis aurita ) by nested RT-PCR. MHAV concentration in liver was high at 2.5x10 9 RNA copies/gram and about 1000-fold higher than in other solid organs, suggesting hepatotropism. Hepatovirus seroprevalence in D. aurita was 26.6% using an ELISA. End-point titers in confirmatory immunofluorescence assays were high and marsupial antibodies co-localized with anti-HAV control sera, suggesting specificity of serological detection. MHAV showed all genomic hallmarks defining hepatoviruses, including late domain motifs likely involved in quasi-envelope acquisition, a predicted C-terminal pX extension of VP1, strong avoidance of CpG dinucleotides and a type 3 internal ribosomal entry site. Translated polyprotein gene sequence distances of at least 23.7% to other hepatoviruses suggested MHAV represents a novel Hepatovirus species. Conserved predicted cleavage sites suggested similarities in polyprotein processing between HAV and MHAV. MHAV was nested within rodent hepatoviruses in phylogenetic reconstructions, suggesting an ancestral hepatovirus host switch from rodents into marsupials. Co-phylogenetic reconciliations of host and hepatovirus phylogenies confirmed that host-independent macroevolutionary patterns shaped the phylogenetic relationships of extant hepatoviruses. Although Marsupials are synanthropic and consumed as wild game in Brazil, HAV community protective immunity may limit the zoonotic potential of MHAV. IMPORTANCE The hepatitis A virus (HAV) is an ubiquitous cause of acute hepatitis in humans. Recent findings revealed the evolutionary origins of HAV and the genus Hepatovirus defined by HAV in small mammals. The factors shaping the genealogy of extant hepatoviruses are unclear. We sampled marsupials, one of the most ancient mammalian lineages and identified a novel marsupial HAV (MHAV). The novel MHAV shared specific features with HAV, including hepatotropism, genome structure and a common ancestor in phylogenetic reconstructions. Co-evolutionary analyses revealed that host-independent evolutionary patterns contributed most to the current phylogeny of hepatoviruses and that MHAV was the most drastic example of a cross-order host switch of any hepatovirus observed so far. The divergence of marsupials from other mammals offers unique opportunities to investigate HAV species barriers and whether mechanisms of HAV immune control are evolutionarily conserved. Copyright © 2018 Carneiro et al.
Global priorities for conserving the evolutionary history of sharks, rays and chimaeras.
Stein, R William; Mull, Christopher G; Kuhn, Tyler S; Aschliman, Neil C; Davidson, Lindsay N K; Joy, Jeffrey B; Smith, Gordon J; Dulvy, Nicholas K; Mooers, Arne O
2018-02-01
In an era of accelerated biodiversity loss and limited conservation resources, systematic prioritization of species and places is essential. In terrestrial vertebrates, evolutionary distinctness has been used to identify species and locations that embody the greatest share of evolutionary history. We estimate evolutionary distinctness for a large marine vertebrate radiation on a dated taxon-complete tree for all 1,192 chondrichthyan fishes (sharks, rays and chimaeras) by augmenting a new 610-species molecular phylogeny using taxonomic constraints. Chondrichthyans are by far the most evolutionarily distinct of all major radiations of jawed vertebrates-the average species embodies 26 million years of unique evolutionary history. With this metric, we identify 21 countries with the highest richness, endemism and evolutionary distinctness of threatened species as targets for conservation prioritization. On average, threatened chondrichthyans are more evolutionarily distinct-further motivating improved conservation, fisheries management and trade regulation to avoid significant pruning of the chondrichthyan tree of life.
Akagi, Takashi; Henry, Isabelle M; Morimoto, Takuya; Tao, Ryutaro
2016-06-01
Self-incompatibility (SI) is an important plant reproduction mechanism that facilitates the maintenance of genetic diversity within species. Three plant families, the Solanaceae, Rosaceae and Plantaginaceae, share an S-RNase-based gametophytic SI (GSI) system that involves a single S-RNase as the pistil S determinant and several F-box genes as pollen S determinants that act via non-self-recognition. Previous evidence has suggested a specific self-recognition mechanism in Prunus (Rosaceae), raising questions about the generality of the S-RNase-based GSI system. We investigated the evolution of the pollen S determinant by comparing the sequences of the Prunus S haplotype-specific F-box gene (SFB) with those of its orthologs in other angiosperm genomes. Our results indicate that the Prunus SFB does not cluster with the pollen S of other plants and diverged early after the establishment of the Eudicots. Our results further indicate multiple F-box gene duplication events, specifically in the Rosaceae family, and suggest that the Prunus SFB gene originated in a recent Prunus-specific gene duplication event. Transcriptomic and evolutionary analyses of the Prunus S paralogs are consistent with the establishment of a Prunus-specific SI system, and the possibility of subfunctionalization differentiating the newly generated SFB from the original pollen S determinant. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Evolution of Air Breathing: Oxygen Homeostasis and the Transitions from Water to Land and Sky
Hsia, Connie C. W.; Schmitz, Anke; Lambertz, Markus; Perry, Steven F.; Maina, John N.
2014-01-01
Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the “oxygen cascade”—step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated. PMID:23720333
Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky.
Hsia, Connie C W; Schmitz, Anke; Lambertz, Markus; Perry, Steven F; Maina, John N
2013-04-01
Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the "oxygen cascade"-step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated.
Substrate-Driven Mapping of the Degradome by Comparison of Sequence Logos
Fuchs, Julian E.; von Grafenstein, Susanne; Huber, Roland G.; Kramer, Christian; Liedl, Klaus R.
2013-01-01
Sequence logos are frequently used to illustrate substrate preferences and specificity of proteases. Here, we employed the compiled substrates of the MEROPS database to introduce a novel metric for comparison of protease substrate preferences. The constructed similarity matrix of 62 proteases can be used to intuitively visualize similarities in protease substrate readout via principal component analysis and construction of protease specificity trees. Since our new metric is solely based on substrate data, we can engraft the protease tree including proteolytic enzymes of different evolutionary origin. Thereby, our analyses confirm pronounced overlaps in substrate recognition not only between proteases closely related on sequence basis but also between proteolytic enzymes of different evolutionary origin and catalytic type. To illustrate the applicability of our approach we analyze the distribution of targets of small molecules from the ChEMBL database in our substrate-based protease specificity trees. We observe a striking clustering of annotated targets in tree branches even though these grouped targets do not necessarily share similarity on protein sequence level. This highlights the value and applicability of knowledge acquired from peptide substrates in drug design of small molecules, e.g., for the prediction of off-target effects or drug repurposing. Consequently, our similarity metric allows to map the degradome and its associated drug target network via comparison of known substrate peptides. The substrate-driven view of protein-protein interfaces is not limited to the field of proteases but can be applied to any target class where a sufficient amount of known substrate data is available. PMID:24244149
Evolution of Chemical Diversity in Echinocandin Lipopeptide Antifungal Metabolites
Yue, Qun; Chen, Li; Zhang, Xiaoling; Li, Kuan; Sun, Jingzu; Liu, Xingzhong
2015-01-01
The echinocandins are a class of antifungal drugs that includes caspofungin, micafungin, and anidulafungin. Gene clusters encoding most of the structural complexity of the echinocandins provided a framework for hypotheses about the evolutionary history and chemical logic of echinocandin biosynthesis. Gene orthologs among echinocandin-producing fungi were identified. Pathway genes, including the nonribosomal peptide synthetases (NRPSs), were analyzed phylogenetically to address the hypothesis that these pathways represent descent from a common ancestor. The clusters share cooperative gene contents and linkages among the different strains. Individual pathway genes analyzed in the context of similar genes formed unique echinocandin-exclusive phylogenetic lineages. The echinocandin NRPSs, along with the NRPS from the inp gene cluster in Aspergillus nidulans and its orthologs, comprise a novel lineage among fungal NRPSs. NRPS adenylation domains from different species exhibited a one-to-one correspondence between modules and amino acid specificity that is consistent with models of tandem duplication and subfunctionalization. Pathway gene trees and Ascomycota phylogenies are congruent and consistent with the hypothesis that the echinocandin gene clusters have a common origin. The disjunct Eurotiomycete-Leotiomycete distribution appears to be consistent with a scenario of vertical descent accompanied by incomplete lineage sorting and loss of the clusters from most lineages of the Ascomycota. We present evidence for a single evolutionary origin of the echinocandin family of gene clusters and a progression of structural diversification in two fungal classes that diverged approximately 290 to 390 million years ago. Lineage-specific gene cluster evolution driven by selection of new chemotypes contributed to diversification of the molecular functionalities. PMID:26024901
MetaSINEs: Broad Distribution of a Novel SINE Superfamily in Animals.
Nishihara, Hidenori; Plazzi, Federico; Passamonti, Marco; Okada, Norihiro
2016-02-12
SINEs (short interspersed elements) are transposable elements that typically originate independently in each taxonomic clade (order/family). However, some SINE families share a highly similar central sequence and are thus categorized as a SINE superfamily. Although only four SINE superfamilies (CORE-SINEs, V-SINEs, DeuSINEs, and Ceph-SINEs) have been reported so far, it is expected that new SINE superfamilies would be discovered by deep exploration of new SINEs in metazoan genomes. Here we describe 15 SINEs, among which 13 are novel, that have a similar 66-bp central region and therefore constitute a new SINE superfamily, MetaSINEs. MetaSINEs are distributed from fish to cnidarians, suggesting their common evolutionary origin at least 640 Ma. Because the 3' tails of MetaSINEs are variable, these SINEs most likely survived by changing their partner long interspersed elements for retrotransposition during evolution. Furthermore, we examined the presence of members of other SINE superfamilies in bivalve genomes and characterized eight new SINEs belonging to the CORE-SINEs, V-SINEs, and DeuSINEs, in addition to the MetaSINEs. The broad distribution of bivalve SINEs suggests that at least three SINEs originated in the common ancestor of Bivalvia. Our comparative analysis of the central domains of the SINEs revealed that, in each superfamily, only a restricted region is shared among all of its members. Because the functions of the central domains of the SINE superfamilies remain unknown, such structural information of SINE superfamilies will be useful for future experimental and comparative analyses to reveal why they have been retained in metazoan genomes during evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Elliott, Paul
2003-03-01
The significance of Herbert Spencer's evolutionary philosophy has been generally recognized for over a century, as the familiarity of his phrase "survival of the fittest" indicates, yet accounts of the origins of his system still tend to follow too closely his own description, written many decades later. This essay argues that Spencer's own interpretation of his intellectual development gives an inadequate impression of the debt he owed to provincial scientific culture and its institutions. Most important, it shows that his evolutionism was originally stimulated by his association with the Derby philosophical community, for it was through this group--of which his father, who also appears to have espoused a deistic evolutionary theory, was a member--that he was first exposed to progressive Englightenment social and educational philosophies and to the evolutionary worldview of Erasmus Darwin, the first president of the Derby Philosophical Society. Darwin's scheme was the first to incorporate biological evolution, associationist psychology, evolutionary geology, and cosmological developmentalism. Spencer's own implicit denials of the link with Darwin are shown to be implausible in the face of Darwin's continuing influence on the Derby savants, the product of insecurity in his later years when he feared for his reputation as Lamarckism became increasingly untenable.
Yong, Luok Wen; Yu, Jr-Kai
2016-08-01
Vertebrate mineralized skeletal tissues are widely considered as an evolutionary novelty. Despite the importance of these tissues to the adaptation and radiation of vertebrate animals, the evolutionary origin of vertebrate skeletal tissues remains largely unclear. Cephalochordates (Amphioxus) occupy a key phylogenetic position and can serve as a valuable model for studying the evolution of vertebrate skeletal tissues. Here we summarize recent advances in amphioxus developmental biology and comparative genomics that can help to elucidate the evolutionary origins of the vertebrate skeletal tissues and their underlying developmental gene regulatory networks (GRN). By making comparisons to the developmental studies in vertebrate models and recent discoveries in paleontology and genomics, it becomes evident that the collagen matrix-based connective tissues secreted by the somite-derived cells in amphioxus likely represent the rudimentary skeletal tissues in chordates. We propose that upon the foundation of this collagenous precursor, novel tissue mineralization genes that arose from gene duplications were incorporated into an ancestral mesodermal GRN that makes connective and supporting tissues, leading to the emergence of highly-mineralized skeletal tissues in early vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Big cat phylogenies, consensus trees, and computational thinking.
Sul, Seung-Jin; Williams, Tiffani L
2011-07-01
Phylogenetics seeks to deduce the pattern of relatedness between organisms by using a phylogeny or evolutionary tree. For a given set of organisms or taxa, there may be many evolutionary trees depicting how these organisms evolved from a common ancestor. As a result, consensus trees are a popular approach for summarizing the shared evolutionary relationships in a group of trees. We examine these consensus techniques by studying how the pantherine lineage of cats (clouded leopard, jaguar, leopard, lion, snow leopard, and tiger) evolved, which is hotly debated. While there are many phylogenetic resources that describe consensus trees, there is very little information, written for biologists, regarding the underlying computational techniques for building them. The pantherine cats provide us with a small, relevant example to explore the computational techniques (such as sorting numbers, hashing functions, and traversing trees) for constructing consensus trees. Our hope is that life scientists enjoy peeking under the computational hood of consensus tree construction and share their positive experiences with others in their community.
Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites.
Kaczanowski, Szymon; Sajid, Mohammed; Reece, Sarah E
2011-03-25
Apoptosis-like programmed cell death (PCD) has recently been described in multiple taxa of unicellular protists, including the protozoan parasites Plasmodium, Trypanosoma and Leishmania. Apoptosis-like PCD in protozoan parasites shares a number of morphological features with programmed cell death in multicellular organisms. However, both the evolutionary explanations and mechanisms involved in parasite PCD are poorly understood. Explaining why unicellular organisms appear to undergo 'suicide' is a challenge for evolutionary biology and uncovering death executors and pathways is a challenge for molecular and cell biology. Bioinformatics has the potential to integrate these approaches by revealing homologies in the PCD machinery of diverse taxa and evaluating their evolutionary trajectories. As the molecular mechanisms of apoptosis in model organisms are well characterised, and recent data suggest similar mechanisms operate in protozoan parasites, key questions can now be addressed. These questions include: which elements of apoptosis machinery appear to be shared between protozoan parasites and multicellular taxa and, have these mechanisms arisen through convergent or divergent evolution? We use bioinformatics to address these questions and our analyses suggest that apoptosis mechanisms in protozoan parasites and other taxa have diverged during their evolution, that some apoptosis factors are shared across taxa whilst others have been replaced by proteins with similar biochemical activities.
Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites
2011-01-01
Apoptosis-like programmed cell death (PCD) has recently been described in multiple taxa of unicellular protists, including the protozoan parasites Plasmodium, Trypanosoma and Leishmania. Apoptosis-like PCD in protozoan parasites shares a number of morphological features with programmed cell death in multicellular organisms. However, both the evolutionary explanations and mechanisms involved in parasite PCD are poorly understood. Explaining why unicellular organisms appear to undergo 'suicide' is a challenge for evolutionary biology and uncovering death executors and pathways is a challenge for molecular and cell biology. Bioinformatics has the potential to integrate these approaches by revealing homologies in the PCD machinery of diverse taxa and evaluating their evolutionary trajectories. As the molecular mechanisms of apoptosis in model organisms are well characterised, and recent data suggest similar mechanisms operate in protozoan parasites, key questions can now be addressed. These questions include: which elements of apoptosis machinery appear to be shared between protozoan parasites and multicellular taxa and, have these mechanisms arisen through convergent or divergent evolution? We use bioinformatics to address these questions and our analyses suggest that apoptosis mechanisms in protozoan parasites and other taxa have diverged during their evolution, that some apoptosis factors are shared across taxa whilst others have been replaced by proteins with similar biochemical activities. PMID:21439063
Schmidt, Daniel J.; Ponniah, Mark; Carini, Giovannella; Blair, David; Hughes, Jane M.
2014-01-01
Comparative phylogeography of commensal species may show congruent patterns where the species involved share a common history. Temnosewellia is a genus of flatworms, members of which live in commensal relationships with host freshwater crustaceans. By constructing phylogenetic trees based on mitochondrial COI and 28S nuclear ribosomal gene sequences, this study investigated how evolutionary history has shaped patterns of intraspecific molecular variation in two such freshwater commensals. This study concentrates on the flatworm Temnosewellia albata and its critically endangered crayfish host Euastacus robertsi, which have a narrow climatically-restricted distribution on three mountaintops. The genetic data expands upon previous studies of Euastacus that suggested several vicariance events have led to the population subdivision of Euastacus robertsi. Further, our study compared historical phylogeographic patterning of these species. Our results showed that phylogeographic patterns shared among these commensals were largely congruent, featuring a shared history of limited dispersal between the mountaintops. Several hypotheses were proposed to explain the phylogeographic points of differences between the species. This study contributes significantly to understanding evolutionary relationships of commensal freshwater taxa. PMID:25279257
Govindarajulu, Rajanikanth; Hughes, Colin E; Alexander, Patrick J; Bailey, C Donovan
2011-12-01
The evolutionary history of Leucaena has been impacted by polyploidy, hybridization, and divergent allopatric species diversification, suggesting that this is an ideal group to investigate the evolutionary tempo of polyploidy and the complexities of reticulation and divergence in plant diversification. Parsimony- and ML-based phylogenetic approaches were applied to 105 accessions sequenced for six sequence characterized amplified region-based nuclear encoded loci, nrDNA ITS, and four cpDNA regions. Hypotheses for the origin of tetraploid species were inferred using results derived from a novel species tree and established gene tree methods and from data on genome sizes and geographic distributions. The combination of comprehensively sampled multilocus DNA sequence data sets and a novel methodology provide strong resolution and support for the origins of all five tetraploid species. A minimum of four allopolyploidization events are required to explain the origins of these species. The origin(s) of one tetraploid pair (L. involucrata/L. pallida) can be equally explained by two unique allopolyploidizations or a single event followed by divergent speciation. Alongside other recent findings, a comprehensive picture of the complex evolutionary dynamics of polyploidy in Leucaena is emerging that includes paleotetraploidization, diploidization of the last common ancestor to Leucaena, allopatric divergence among diploids, and recent allopolyploid origins for tetraploid species likely associated with human translocation of seed. These results provide insights into the role of divergence and reticulation in a well-characterized angiosperm lineage and into traits of diploid parents and derived tetraploids (particularly self-compatibility and year-round flowering) favoring the formation and establishment of novel tetraploids combinations.
EvoluCode: Evolutionary Barcodes as a Unifying Framework for Multilevel Evolutionary Data.
Linard, Benjamin; Nguyen, Ngoc Hoan; Prosdocimi, Francisco; Poch, Olivier; Thompson, Julie D
2012-01-01
Evolutionary systems biology aims to uncover the general trends and principles governing the evolution of biological networks. An essential part of this process is the reconstruction and analysis of the evolutionary histories of these complex, dynamic networks. Unfortunately, the methodologies for representing and exploiting such complex evolutionary histories in large scale studies are currently limited. Here, we propose a new formalism, called EvoluCode (Evolutionary barCode), which allows the integration of different evolutionary parameters (eg, sequence conservation, orthology, synteny …) in a unifying format and facilitates the multilevel analysis and visualization of complex evolutionary histories at the genome scale. The advantages of the approach are demonstrated by constructing barcodes representing the evolution of the complete human proteome. Two large-scale studies are then described: (i) the mapping and visualization of the barcodes on the human chromosomes and (ii) automatic clustering of the barcodes to highlight protein subsets sharing similar evolutionary histories and their functional analysis. The methodologies developed here open the way to the efficient application of other data mining and knowledge extraction techniques in evolutionary systems biology studies. A database containing all EvoluCode data is available at: http://lbgi.igbmc.fr/barcodes.
Monogamy, strongly bonded groups, and the evolution of human social structure.
Chapais, Bernard
2013-01-01
Human social evolution has most often been treated in a piecemeal fashion, with studies focusing on the evolution of specific components of human society such as pair-bonding, cooperative hunting, male provisioning, grandmothering, cooperative breeding, food sharing, male competition, male violence, sexual coercion, territoriality, and between-group conflicts. Evolutionary models about any one of those components are usually concerned with two categories of questions, one relating to the origins of the component and the other to its impact on the evolution of human cognition and social life. Remarkably few studies have been concerned with the evolution of the entity that integrates all components, the human social system itself. That social system has as its core feature human social structure, which I define here as the common denominator of all human societies in terms of group composition, mating system, residence patterns, and kinship structures. The paucity of information on the evolution of human social structure poses substantial problems because that information is useful, if not essential, to assess both the origins and impact of any particular aspect of human society. Copyright © 2013 Wiley Periodicals, Inc.
Discovery of a Novel Hepatovirus (Phopivirus of Seals) Related to Human Hepatitis A Virus.
Anthony, S J; St Leger, J A; Liang, E; Hicks, A L; Sanchez-Leon, M D; Jain, K; Lefkowitch, J H; Navarrete-Macias, I; Knowles, N; Goldstein, T; Pugliares, K; Ip, H S; Rowles, T; Lipkin, W I
2015-08-25
Describing the viral diversity of wildlife can provide interesting and useful insights into the natural history of established human pathogens. In this study, we describe a previously unknown picornavirus in harbor seals (tentatively named phopivirus) that is related to human hepatitis A virus (HAV). We show that phopivirus shares several genetic and phenotypic characteristics with HAV, including phylogenetic relatedness across the genome, a specific and seemingly quiescent tropism for hepatocytes, structural conservation in a key functional region of the type III internal ribosomal entry site (IRES), and a codon usage bias consistent with that of HAV. Hepatitis A virus (HAV) is an important viral hepatitis in humans because of the substantial number of cases each year in regions with low socioeconomic status. The origin of HAV is unknown, and no nonprimate HAV-like viruses have been described. Here, we describe the discovery of an HAV-like virus in seals. This finding suggests that the diversity and evolutionary history of these viruses might be far greater than previously thought and may provide insight into the origin and pathogenicity of HAV. Copyright © 2015 Anthony et al.
Why do mammals hop? Understanding the ecology, biomechanics and evolution of bipedal hopping.
McGowan, Craig P; Collins, Clint E
2018-06-15
Bipedal hopping is a specialized mode of locomotion that has arisen independently in at least five groups of mammals. We review the evolutionary origins of these groups, examine three of the most prominent hypotheses for why bipedal hopping may have arisen, and discuss how this unique mode of locomotion influences the behavior and ecology of modern species. While all bipedal hoppers share generally similar body plans, differences in underlying musculoskeletal anatomy influence what performance benefits each group may derive from this mode of locomotion. Based on a review of the literature, we conclude that the most likely reason that bipedal hopping evolved is associated with predator avoidance by relatively small species in forested environments. Yet, the morphological specializations associated with this mode of locomotion have facilitated the secondary acquisition of performance characteristics that enable these species to be highly successful in ecologically demanding environments such as deserts. We refute many long-held misunderstandings about the origins of bipedal hopping and identify potential areas of research that would advance the understanding of this mode of locomotion. © 2018. Published by The Company of Biologists Ltd.
Heterogeneous conservation of Dlx paralog co-expression in jawed vertebrates.
Debiais-Thibaud, Mélanie; Metcalfe, Cushla J; Pollack, Jacob; Germon, Isabelle; Ekker, Marc; Depew, Michael; Laurenti, Patrick; Borday-Birraux, Véronique; Casane, Didier
2013-01-01
The Dlx gene family encodes transcription factors involved in the development of a wide variety of morphological innovations that first evolved at the origins of vertebrates or of the jawed vertebrates. This gene family expanded with the two rounds of genome duplications that occurred before jawed vertebrates diversified. It includes at least three bigene pairs sharing conserved regulatory sequences in tetrapods and teleost fish, but has been only partially characterized in chondrichthyans, the third major group of jawed vertebrates. Here we take advantage of developmental and molecular tools applied to the shark Scyliorhinus canicula to fill in the gap and provide an overview of the evolution of the Dlx family in the jawed vertebrates. These results are analyzed in the theoretical framework of the DDC (Duplication-Degeneration-Complementation) model. The genomic organisation of the catshark Dlx genes is similar to that previously described for tetrapods. Conserved non-coding elements identified in bony fish were also identified in catshark Dlx clusters and showed regulatory activity in transgenic zebrafish. Gene expression patterns in the catshark showed that there are some expression sites with high conservation of the expressed paralog(s) and other expression sites with events of paralog sub-functionalization during jawed vertebrate diversification, resulting in a wide variety of evolutionary scenarios within this gene family. Dlx gene expression patterns in the catshark show that there has been little neo-functionalization in Dlx genes over gnathostome evolution. In most cases, one tandem duplication and two rounds of vertebrate genome duplication have led to at least six Dlx coding sequences with redundant expression patterns followed by some instances of paralog sub-functionalization. Regulatory constraints such as shared enhancers, and functional constraints including gene pleiotropy, may have contributed to the evolutionary inertia leading to high redundancy between gene expression patterns.
Pose-Méndez, Sol; Candal, Eva; Adrio, Fátima; Rodríguez-Moldes, Isabel
2014-01-01
The cerebellum is recognized as an evolutionary innovation of jawed vertebrates, whose most primitive group is represented by the chondrichthyans, or cartilaginous fishes. A comprehensive knowledge of cerebellar connections in these fishes might shed light on the basal organization of the cerebellar system. Although the organization of the precerebellar system is known in adults, developmental studies are essential for understanding the origin and evolution of precerebellar nuclei. In the present work we performed a developmental study of cerebellar connections in embryos and juveniles of an advanced shark species, Scyliorhinus canicula, by application of tract tracing in combination with immunohistochemical techniques. Main precerebellar cell populations were located in the diencephalon (pretectum and thalamus), mesencephalon (reticular formation and nucleus ruber), rhombencephalon (cerebellar nucleus, reticular formation, and inferior olive), and spinal cord (ventral horn). The order of arrival of cerebellar afferent projections throughout development revealed a common pattern with other jawed vertebrates, which was helpful for comparison of stages of cerebellar development. The neurochemical study of the inferior olive and other precerebellar nuclei revealed many shared features with other gnathostomes. Furthermore, because many precerebellar nuclei originate from rhombic lips, the first analysis of neuronal migrations from these lips was performed with markers of neuroblasts. The shared features of development and organization of precerebellar connections observed between sharks and amniotes suggest that their basic pattern was established early in gnathostome evolution. Copyright © 2013 Wiley Periodicals, Inc.
The neuroethology of friendship.
Brent, Lauren J N; Chang, Steve W C; Gariépy, Jean-François; Platt, Michael L
2014-05-01
Friendship pervades the human social landscape. These bonds are so important that disrupting them leads to health problems, and difficulties forming or maintaining friendships attend neuropsychiatric disorders like autism and depression. Other animals also have friends, suggesting that friendship is not solely a human invention but is instead an evolved trait. A neuroethological approach applies behavioral, neurobiological, and molecular techniques to explain friendship with reference to its underlying mechanisms, development, evolutionary origins, and biological function. Recent studies implicate a shared suite of neural circuits and neuromodulatory pathways in the formation, maintenance, and manipulation of friendships across humans and other animals. Health consequences and reproductive advantages in mammals additionally suggest that friendship has adaptive benefits. We argue that understanding the neuroethology of friendship in humans and other animals brings us closer to knowing fully what it means to be human. © 2013 New York Academy of Sciences.
The neuroethology of friendship
Brent, Lauren J.N.; Chang, Steve W.C.; Gariépy, Jean-François; Platt, Michael L.
2014-01-01
Friendship pervades the human social landscape. These bonds are so important that disrupting them leads to health problems, and difficulties forming or maintaining friendships attend neuropsychiatric disorders like autism and depression. Other animals also have friends, suggesting that friendship is not solely a human invention but is instead an evolved trait. A neuroethological approach applies behavioral, neurobiological, and molecular techniques to explain friendship in terms of its underlying mechanisms, development, evolutionary origins, and biological function. Recent studies implicate a shared suite of neural circuits and neuromodulatory pathways in the formation, maintenance, and manipulation of friendships across humans and other animals. Health consequences and reproductive advantages in mammals additionally suggest that friendship has adaptive benefits. We argue that understanding the neuroethology of friendship in humans and other animals brings us closer to knowing fully what it means to be human. PMID:24329760
Scientific cousins: the relationship between Charles Darwin and Francis Galton.
Fancher, Raymond E
2009-01-01
This article traces the personal as well as the intellectual and scientific relationship between Charles Darwin and his younger half-cousin Francis Galton. Although they had been on friendly terms as young men, and Darwin had in some ways been a role model for Galton, the two did not share major scientific interests until after the publication of Darwin's On the Origin of Species in 1859. That work precipitated a religious and philosophical crisis in Galton, which he gradually resolved after conceiving and developing the basic ideas of "hereditary genius" and eugenics. More mathematically inclined than Darwin, he subsequently contributed to the Darwinian evolutionary discussion, and to the future science of psychology, by proposing the basic concept of the nature-nurture dichotomy, the conceptual and statistical foundations for behavior genetics, and the idea for intelligence testing. 2009 APA, all rights reserved
Genetic characterization of canine parvovirus from dogs in Pakistan.
Shabbir, M Z; Sohail, M U; Chaudhary, U N; Yaqub, W; Rashid, I; Saleem, M H; Munir, M
Canine parvoviruses (CPV) exist as antigenic variants with varying frequencies and genetic variabilities across the globe. Given the endemicity and high prevalence in Pakistan, we characterized the CPVs originating from dogs-population to elucidate viral diversity and evolution. Fecal samples from clinically diseased pups (n = 17) of different breeds and age (2-6 months) were processed for hemagglutination assay (HA), and later for partial amplification of VP2 gene sequence and amino acid analysis. A total of 11 samples (64.71%) were found positive both in hemagglutination and PCR assays. Phylogenetic and evolutionary analysis demonstrated higher genetic heterogeneity in studied strains and constituted seven clusters within the CPV-2a group, however, they shared high level of identity with Chinese strains. Further studies are necessary to elucidate genetic analysis and epidemiology of CPV variants across a wide geographical area of the country.
From Darwin's Origin of Species toward a theory of natural history.
Boero, Ferdinando
2015-01-01
Darwin is the father of evolutionary theory because he identified evolutionary patterns and, with Natural Selection, he ascertained the exquisitely ecological ultimate processes that lead to evolution. The proximate processes of evolution he proposed, however, predated the discovery of genetics, the backbone of modern evolutionary theory. The later discovery of the laws of inheritance by Mendel and the rediscovery of Mendel in the early 20th century led to two reforms of Darwinism: Neo-Darwinism and the Modern Synthesis (and subsequent refinements). If Darwin's evolutionary thought required much refinement, his ecological insight is still very modern. In the first edition of The Origin of Species, Darwin did not use either the word "evolution" or the word "ecology". "Ecology" was not coined until after the publication of the Origin. Evolution, for him, was the origin of varieties, then species, which he referred to as well-marked varieties, whereas, instead of using ecology, he used "the economy of nature". The Origin contains a high proportion of currently accepted ecological principles. Darwin labelled himself a naturalist. His discipline (natural history) was a blend of ecology and evolution in which he investigated both the patterns and the processes that determine the organization of life. Reductionist approaches, however, often keep the two disciplines separated from each other, undermining a full understanding of natural phenomena that might be favored by blending ecology and evolution through the development of a modern Theory of Natural History based on Darwin's vision of the study of life.
On the Origin of Complex Adaptive Traits: Progress Since the Darwin Versus Mivart Debate.
Suzuki, Takao K
2017-06-01
The evolutionary origin of complex adaptive traits has been a controversial topic in the history of evolutionary biology. Although Darwin argued for the gradual origins of complex adaptive traits within the theory of natural selection, Mivart insisted that natural selection could not account for the incipient stages of complex traits. The debate starting from Darwin and Mivart eventually engendered two opposite views: gradualism and saltationism. Although this has been a long-standing debate, the issue remains unresolved. However, recent studies have interrogated classic examples of complex traits, such as the asymmetrical eyes of flatfishes and leaf mimicry of butterfly wings, whose origins were debated by Darwin and Mivart. Here, I review recent findings as a starting point to provide a modern picture of the evolution of complex adaptive traits. First, I summarize the empirical evidence that unveils the evolutionary steps toward complex traits. I then argue that the evolution of complex traits could be understood within the concept of "reducible complexity." Through these discussions, I propose a conceptual framework for the formation of complex traits, named as reducible-composable multicomponent systems, that satisfy two major characteristics: reducibility into a sum of subcomponents and composability to construct traits from various additional and combinatorial arrangements of the subcomponents. This conceptual framework provides an analytical foundation for exploring evolutionary pathways to build up complex traits. This review provides certain essential avenues for deciphering the origin of complex adaptive traits. © 2017 Wiley Periodicals, Inc.
Sarovich, Derek S; Garin, Benoit; De Smet, Birgit; Kaestli, Mirjam; Mayo, Mark; Vandamme, Peter; Jacobs, Jan; Lompo, Palpouguini; Tahita, Marc C; Tinto, Halidou; Djaomalaza, Innocente; Currie, Bart J; Price, Erin P
2016-01-01
Burkholderia pseudomallei, an environmental bacterium that causes the deadly disease melioidosis, is endemic in northern Australia and Southeast Asia. An increasing number of melioidosis cases are being reported in other tropical regions, including Africa and the Indian Ocean islands. B. pseudomallei first emerged in Australia, with subsequent rare dissemination event(s) to Southeast Asia; however, its dispersal to other regions is not yet well understood. We used large-scale comparative genomics to investigate the origins of three B. pseudomallei isolates from Madagascar and two from Burkina Faso. Phylogenomic reconstruction demonstrates that these African B. pseudomallei isolates group into a single novel clade that resides within the more ancestral Asian clade. Intriguingly, South American strains reside within the African clade, suggesting more recent dissemination from West Africa to the Americas. Anthropogenic factors likely assisted in B. pseudomallei dissemination to Africa, possibly during migration of the Austronesian peoples from Indonesian Borneo to Madagascar ~2,000 years ago, with subsequent genetic diversity driven by mutation and recombination. Our study provides new insights into global patterns of B. pseudomallei dissemination and adds to the growing body of evidence of melioidosis endemicity in Africa. Our findings have important implications for melioidosis diagnosis and management in Africa. IMPORTANCE Sporadic melioidosis cases have been reported in the African mainland and Indian Ocean islands, but until recently, these regions were not considered areas where B. pseudomallei is endemic. Given the high mortality rate of melioidosis, it is crucial that this disease be recognized and suspected in all regions of endemicity. Previous work has shown that B. pseudomallei originated in Australia, with subsequent introduction into Asia; however, the precise origin of B. pseudomallei in other tropical regions remains poorly understood. Using whole-genome sequencing, we characterized B. pseudomallei isolates from Madagascar and Burkina Faso. Next, we compared these strains to a global collection of B. pseudomallei isolates to identify their evolutionary origins. We found that African B. pseudomallei strains likely originated from Asia and were closely related to South American strains, reflecting a relatively recent shared evolutionary history. We also identified substantial genetic diversity among African strains, suggesting long-term B. pseudomallei endemicity in this region.
Markov, A V
2009-01-01
In his main work, "On the origin of species", Darwin has refrained from discusion of the origin of man; be only mentioned that his theory would "throw light" on this problem. This famous Darwin's phrase turned out to be one of the most succesful scientific predictions. In the present paper some of the most important recent adavnces in paleoanthroplogy, comparative genetics and evolutionary psychology are reviewed. These three disciplines currently contribute most to our knowledge of anthropogenesis. The review demonstrates that Darwin's ideas not only "threw light" on human origin and evolution; they provided a comprehensive framework for a great variety of studies concerning different aspects of anthropogenesis.
Celeste, Silvestri María; Ortiz, Alejandra Marcela; Robledo, Germán Ariel; Valls, José Francisco Montenegro; Lavia, Graciela Inés
2017-01-01
The genus Arachis Linnaeus, 1753 comprises four species with x = 9, three belong to the section Arachis: Arachis praecox (Krapov. W.C. Greg. & Valls, 1994), Arachis palustris (Krapov. W.C. Greg. & Valls, 1994) and Arachis decora (Krapov. W.C. Greg. & Valls, 1994) and only one belongs to the section Erectoides: Arachis porphyrocalyx (Valls & C.E. Simpson, 2005). Recently, the x = 9 species of section Arachis have been assigned to G genome, the latest described so far. The genomic relationship of Arachis porphyrocalyx with these species is controversial. In the present work, we carried out a karyotypic characterisation of Arachis porphyrocalyx to evaluate its genomic structure and analyse the origin of all x = 9 Arachis species. Arachis porphyrocalyx showed a karyotype formula of 14m+4st, one pair of A chromosomes, satellited chromosomes type 8, one pair of 45S rDNA sites in the SAT chromosomes, one pair of 5S rDNA sites and pericentromeric C-DAPI+ bands in all chromosomes. Karyotype structure indicates that Arachis porphyrocalyx does not share the same genome type with the other three x = 9 species and neither with the remaining Erectoides species. Taking into account the geographic distribution, morphological and cytogenetic features, the origin of species with x = 9 of the genus Arachis cannot be unique; instead, they originated at least twice in the evolutionary history of the genus.
Divergence of gastropod life history in contrasting thermal environments in a geothermal lake.
Johansson, M P; Ermold, F; Kristjánsson, B K; Laurila, A
2016-10-01
Experiments using natural populations have provided mixed support for thermal adaptation models, probably because the conditions are often confounded with additional environmental factors like seasonality. The contrasting geothermal environments within Lake Mývatn, northern Iceland, provide a unique opportunity to evaluate thermal adaptation models using closely located natural populations. We conducted laboratory common garden and field reciprocal transplant experiments to investigate how thermal origin influences the life history of Radix balthica snails originating from stable cold (6 °C), stable warm (23 °C) thermal environments or from areas with seasonal temperature variation. Supporting thermal optimality models, warm-origin snails survived poorly at 6 °C in the common garden experiment and better than cold-origin and seasonal-origin snails in the warm habitat in the reciprocal transplant experiment. Contrary to thermal adaptation models, growth rate in both experiments was highest in the warm populations irrespective of temperature, indicating cogradient variation. The optimal temperatures for growth and reproduction were similar irrespective of origin, but cold-origin snails always had the lowest performance, and seasonal-origin snails often performed at an intermediate level compared to snails originating in either stable environment. Our results indicate that central life-history traits can differ in their mode of evolution, with survival following the predictions of thermal optimality models, whereas ecological constraints have shaped the evolution of growth rates in local populations. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
The Radiata and the evolutionary origins of the bilaterian body plan
NASA Technical Reports Server (NTRS)
Martindale, Mark Q.; Finnerty, John R.; Henry, Jonathan Q.
2002-01-01
The apparent conservation of cellular and molecular developmental mechanisms observed in a handful of bilaterian metazoans has spawned a "race" to reconstruct the bilaterian ancestor. Knowledge of this ancestor would permit us to reconstruct the evolutionary changes that have occurred along specific bilaterian lineages. However, comparisons among extant bilaterians provide an unnecessarily limited view of the ancestral bilaterian. Since the original bilaterians are believed by many to be derived from a radially symmetrical ancestor, additional evidence might be obtained by examining present-day radially symmetrical animals. We briefly review pertinent features of the body plans of the extant radial eumetazoan phyla, the Cnidaria, and Ctenophora, in the context of revealing potential evolutionary links to the bilaterians.
Evolution of the Sauropterygian Labyrinth with Increasingly Pelagic Lifestyles.
Neenan, James M; Reich, Tobias; Evers, Serjoscha W; Druckenmiller, Patrick S; Voeten, Dennis F A E; Choiniere, Jonah N; Barrett, Paul M; Pierce, Stephanie E; Benson, Roger B J
2017-12-18
Sauropterygia, a successful clade of marine reptiles abundant in aquatic ecosystems of the Mesozoic, inhabited nearshore to pelagic habitats over >180 million years of evolutionary history [1]. Aquatic vertebrates experience strong buoyancy forces that allow movement in a three-dimensional environment, resulting in structural convergences such as flippers and fish-like bauplans [2, 3], as well as convergences in the sensory systems. We used computed tomographic scans of 19 sauropterygian species to determine how the transition to pelagic lifestyles influenced the evolution of the endosseous labyrinth, which houses the vestibular sensory organ of balance and orientation [4]. Semicircular canal geometries underwent distinct changes during the transition from nearshore Triassic sauropterygians to the later, pelagic plesiosaurs. Triassic sauropterygians have dorsoventrally compact, anteroposteriorly elongate labyrinths, resembling those of crocodylians. In contrast, plesiosaurs have compact, bulbous labyrinths, sharing some features with those of sea turtles. Differences in relative labyrinth size among sauropterygians correspond to locomotory differences: bottom-walking [5, 6] placodonts have proportionally larger labyrinths than actively swimming taxa (i.e., all other sauropterygians). Furthermore, independent evolutionary origins of short-necked, large-headed "pliosauromorph" body proportions among plesiosaurs coincide with reductions of labyrinth size, paralleling the evolutionary history of cetaceans [7]. Sauropterygian labyrinth evolution is therefore correlated closely with both locomotory style and body proportions, and these changes are consistent with isolated observations made previously in other marine tetrapods. Our study presents the first virtual reconstructions of plesiosaur endosseous labyrinths and the first large-scale, quantitative study detailing the effects of increasingly aquatic lifestyles on labyrinth morphology among marine reptiles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evolution of ribozymes in the presence of a mineral surface
Stephenson, James D.; Popović, Milena; Bristow, Thomas F.
2016-01-01
Mineral surfaces are often proposed as the sites of critical processes in the emergence of life. Clay minerals in particular are thought to play significant roles in the origin of life including polymerizing, concentrating, organizing, and protecting biopolymers. In these scenarios, the impact of minerals on biopolymer folding is expected to influence evolutionary processes. These processes include both the initial emergence of functional structures in the presence of the mineral and the subsequent transition away from the mineral-associated niche. The initial evolution of function depends upon the number and distribution of sequences capable of functioning in the presence of the mineral, and the transition to new environments depends upon the overlap between sequences that evolve on the mineral surface and sequences that can perform the same functions in the mineral's absence. To examine these processes, we evolved self-cleaving ribozymes in vitro in the presence or absence of Na-saturated montmorillonite clay mineral particles. Starting from a shared population of random sequences, RNA populations were evolved in parallel, along separate evolutionary trajectories. Comparative sequence analysis and activity assays show that the impact of this clay mineral on functional structure selection was minimal; it neither prevented common structures from emerging, nor did it promote the emergence of new structures. This suggests that montmorillonite does not improve RNA's ability to evolve functional structures; however, it also suggests that RNAs that do evolve in contact with montmorillonite retain the same structures in mineral-free environments, potentially facilitating an evolutionary transition away from a mineral-associated niche. PMID:27793980
Origin and evolution of Andigena potatoes revealed by chloroplast and nuclear DNA markers.
Sukhotu, Thitaporn; Hosaka, Kazuyoshi
2006-06-01
Andigena potatoes (Solanum tuberosum L. subsp. andigena Hawkes) (2n = 4x = 48) are important, native-farmer-selected cultivars in the Andes, which form a primary gene pool for improving a worldwide grown potato (S. tuberosum subsp. tuberosum). To elucidate the origin of Andigena, 196 Andigena accessions were compared with 301 accessions of 33 closely related cultivated and wild species using several types of chloroplast DNA (ctDNA) markers and nuclear DNA (nDNA) restriction fragment length polymorphism (RFLP) markers. Fourteen ctDNA types (haplotypes) and 115 RFLP bands were detected in Andigena, of which the main haplotypes and frequent RFLP bands were mostly shared with a cultivated diploid species, S. stenotomum Juz. et Buk. Principal component analysis of nDNA polymorphisms revealed a progressive and continuous variation from Peruvian wild species with C-type ctDNA to a group of wild species having S-type ctDNA in its variation range (S. bukasovii, S. canasense, S. candolleanum, and S. multidissectum), to cultivated diploid potatoes (S. phureja and S. stenotomum), and to cultivated tetraploid potatoes (Andigena and Chilean S. tuberosum subsp. tuberosum). These results suggest that the initial Andigena population arose with multiple origins exclusively from S. stenotomum. The overall evolutionary process toward the present-day Andigena was discussed.
Independent evolution of striated muscles in cnidarians and bilaterians.
Steinmetz, Patrick R H; Kraus, Johanna E M; Larroux, Claire; Hammel, Jörg U; Amon-Hassenzahl, Annette; Houliston, Evelyn; Wörheide, Gert; Nickel, Michael; Degnan, Bernard M; Technau, Ulrich
2012-07-12
Striated muscles are present in bilaterian animals (for example, vertebrates, insects and annelids) and some non-bilaterian eumetazoans (that is, cnidarians and ctenophores). The considerable ultrastructural similarity of striated muscles between these animal groups is thought to reflect a common evolutionary origin. Here we show that a muscle protein core set, including a type II myosin heavy chain (MyHC) motor protein characteristic of striated muscles in vertebrates, was already present in unicellular organisms before the origin of multicellular animals. Furthermore, 'striated muscle' and 'non-muscle' myhc orthologues are expressed differentially in two sponges, compatible with a functional diversification before the origin of true muscles and the subsequent use of striated muscle MyHC in fast-contracting smooth and striated muscle. Cnidarians and ctenophores possess striated muscle myhc orthologues but lack crucial components of bilaterian striated muscles, such as genes that code for titin and the troponin complex, suggesting the convergent evolution of striated muscles. Consistently, jellyfish orthologues of a shared set of bilaterian Z-disc proteins are not associated with striated muscles, but are instead expressed elsewhere or ubiquitously. The independent evolution of eumetazoan striated muscles through the addition of new proteins to a pre-existing, ancestral contractile apparatus may serve as a model for the evolution of complex animal cell types.
Independent evolution of striated muscles in cnidarians and bilaterians
Steinmetz, Patrick R.H.; Kraus, Johanna E.M.; Larroux, Claire; U. Hammel, Jörg; Amon-Hassenzahl, Annette; Houliston, Evelyn; Wörheide, Gert; Nickel, Michael; Degnan, Bernard M.; Technau, Ulrich
2012-01-01
Striated muscles are present in bilaterian animals (e.g. vertebrates, insects, annelids) and some non-bilaterian eumetazoans (i.e. cnidarians and ctenophores). The striking ultrastructural similarity of striated muscles between these animal groups is thought to reflect a common evolutionary origin1, 2. Here we show that a muscle protein core set, including a Myosin type II Heavy Chain motor protein characteristic of striated muscles in vertebrates (MyHC-st), was already present in unicellular organisms before the origin of multicellular animals. Furthermore, myhc-st and myhc-non-muscle (myhc-nm) orthologues are expressed differentially in two sponges, compatible with the functional diversification of myhc paralogues before the origin of true muscles and the subsequent deployment of MyHC-st in fast-contracting smooth and striated muscle. Cnidarians and ctenophores possess myhc-st orthologues but lack crucial components of bilaterian striated muscles, such as troponin complex and titin genes, suggesting the convergent evolution of striated muscles. Consistently, jellyfish orthologues of a shared set of bilaterian z-disc proteins are not associated with striated muscles, but are instead expressed elsewhere or ubiquitously. The independent evolution of eumetazoan striated muscles through the addition of novel proteins to a pre-existing, ancestral contractile apparatus may serve as a paradigm for the evolution of complex animal cell types. PMID:22763458
Salvi, Daniele; Pinho, Catarina; Harris, D James
2017-03-02
Mediterranean islands host a disproportionately high level of biodiversity and endemisms. Growing phylogeographic evidence on island endemics has unveiled unexpectedly complex patterns of intra-island diversification, which originated at diverse spatial and temporal scales. We investigated multilocus genetic variation of the Corsican-Sardinian endemic lizard Podarcis tiliguerta with the aim of shedding more light on the evolutionary processes underlying the origin of Mediterranean island biodiversity. We analysed DNA sequences of mitochondrial (12S and nd4) and nuclear (acm4 and mc1r) gene fragments in 174 individuals of P. tiliguerta from 81 localities across the full range of the species in a geographic and genealogical framework. We found surprisingly high genetic diversity both at mitochondrial and nuclear loci. Seventeen reciprocally monophyletic allopatric mitochondrial haplogroups were sharply divided into four main mitochondrial lineages (two in Corsica and two in Sardinia) of Miocene origin. In contrast, shallow divergence and shared diversity within and between islands was observed at the nuclear loci. We evaluated alternative biogeographic and evolutionary scenarios to explain such profound discordance in spatial and phylogenetic patterning between mitochondrial and nuclear genomes. While neutral models provided unparsimonious explanations for the observed pattern, the hypothesis of environmental selection driving mitochondrial divergence in the presence of nuclear gene flow is favoured. Our study on the genetic variation of P. tiliguerta reveals surprising levels of diversity underlining a complex phylogeographic pattern with a striking example of mito-nuclear discordance. These findings have profound implications, not only for the taxonomy and conservation of P. tiliguerta. Growing evidence on deep mitochondrial breaks in absence of geographic barriers and of climatic factors associated to genetic variation of Corsican-Sardinian endemics warrants additional investigation on the potential role of environmental selection driving the evolution of diversity hotspots within Mediterranean islands.
Network Analysis of Plasmidomes: The Azospirillum brasilense Sp245 Case
Fondi, Marco
2014-01-01
Azospirillum brasilense is a nitrogen-fixing bacterium living in association with plant roots. The genome of the strain Sp245, isolated in Brazil from wheat roots, consists of one chromosome and six plasmids. In this work, the A. brasilense Sp245 plasmids were analyzed in order to shed some light on the evolutionary pathways they followed over time. To this purpose, a similarity network approach was applied in order to identify the evolutionary relationships among all the A. brasilense plasmids encoded proteins; in this context a computational pipeline specifically devoted to the analysis and the visualization of the network-like evolutionary relationships among different plasmids molecules was developed. This information was supplemented with a detailed (in silico) functional characterization of both the connected (i.e., sharing homology with other sequences in the dataset) and the unconnected (i.e., not sharing homology) components of the network. Furthermore, the most likely source organism for each of the genes encoded by A. brasilense plasmids was checked, allowing the identification of possible trends of gene loss/gain in this microorganism. Data obtained provided a detailed description of the evolutionary landscape of the plasmids of A. brasilense Sp245, suggesting some of the molecular mechanisms responsible for the present-day structure of these molecules. PMID:25610702
Nepomnyachiy, Sergey; Ben-Tal, Nir; Kolodny, Rachel
2017-01-01
Proteins share similar segments with one another. Such “reused parts”—which have been successfully incorporated into other proteins—are likely to offer an evolutionary advantage over de novo evolved segments, as most of the latter will not even have the capacity to fold. To systematically explore the evolutionary traces of segment “reuse” across proteins, we developed an automated methodology that identifies reused segments from protein alignments. We search for “themes”—segments of at least 35 residues of similar sequence and structure—reused within representative sets of 15,016 domains [Evolutionary Classification of Protein Domains (ECOD) database] or 20,398 chains [Protein Data Bank (PDB)]. We observe that theme reuse is highly prevalent and that reuse is more extensive when the length threshold for identifying a theme is lower. Structural domains, the best characterized form of reuse in proteins, are just one of many complex and intertwined evolutionary traces. Others include long themes shared among a few proteins, which encompass and overlap with shorter themes that recur in numerous proteins. The observed complexity is consistent with evolution by duplication and divergence, and some of the themes might include descendants of ancestral segments. The observed recursive footprints, where the same amino acid can simultaneously participate in several intertwined themes, could be a useful concept for protein design. Data are available at http://trachel-srv.cs.haifa.ac.il/rachel/ppi/themes/. PMID:29078314
Hagey, Travis J; Uyeda, Josef C; Crandell, Kristen E; Cheney, Jorn A; Autumn, Kellar; Harmon, Luke J
2017-10-01
Understanding macroevolutionary dynamics of trait evolution is an important endeavor in evolutionary biology. Ecological opportunity can liberate a trait as it diversifies through trait space, while genetic and selective constraints can limit diversification. While many studies have examined the dynamics of morphological traits, diverse morphological traits may yield the same or similar performance and as performance is often more proximately the target of selection, examining only morphology may give an incomplete understanding of evolutionary dynamics. Here, we ask whether convergent evolution of pad-bearing lizards has followed similar evolutionary dynamics, or whether independent origins are accompanied by unique constraints and selective pressures over macroevolutionary time. We hypothesized that geckos and anoles each have unique evolutionary tempos and modes. Using performance data from 59 species, we modified Brownian motion (BM) and Ornstein-Uhlenbeck (OU) models to account for repeated origins estimated using Bayesian ancestral state reconstructions. We discovered that adhesive performance in geckos evolved in a fashion consistent with Brownian motion with a trend, whereas anoles evolved in bounded performance space consistent with more constrained evolution (an Ornstein-Uhlenbeck model). Our results suggest that convergent phenotypes can have quite distinctive evolutionary patterns, likely as a result of idiosyncratic constraints or ecological opportunities. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
[AGAINST PATERNALISTIC VIEWS ON NEUROENHANCEMENT: A LIBERTARIAN EVOLUTIONARY ACCOUNT].
Corbellini, Gilberto; Sirgiovanni, Elisabetta
2015-01-01
The term "enhancement" has come to represent a very precise form of improving individual skills. By means of pharmaceutics, surgery, and reproductive technology, all originally intended for clinical use, healthy individuals may improve their cognitive and emotional capacities for many reasons, such as to gain a competitive edge. In today's society, cognitive performance and mood assume a more relevant role than physical ability if one aspires to emerge above the average. In this paper, we present and discuss common views on "neuroenhancement," a term often used to describe the use of artificial means that interfer with brain function to improve cognitive skills. Most philosophical arguments and beliefs on the topic are based on some inappropriate distinctions and definitions which favour unfruitful alarmist attitudes and may obscure the complexity of the issue. In particular we point out that both radical prohibitionist and libertarian approaches are affected by paternalistic ideas which we refute. We also show that even though enhancement nowadays is occurring at an impressive rate, we cannot infer that it is a present-day phenomenon, because enhancement is a human disposition, shared between most species and has always existed. We argue against moralistic views on neuroenhancement and defend a reasoned libertarian perspective. We believe that case-by-case evolutionary-medical heuristics is the best approach to help individuals in their autonomous choices.
Derouiche, Abderahmane; Shi, Lei; Kalantari, Aida; Mijakovic, Ivan
2016-02-01
In this study, we focus on functional interactions among multi-domain proteins which share a common evolutionary origin. The examples we develop are four Bacillus subtilis proteins, which all possess an ATP-binding Walker motif: the bacterial tyrosine kinase (BY-kinase) PtkA, the chromosome segregation protein Soj (ParA), the cell division protein MinD and a transcription regulator SalA. These proteins have arisen via duplication of the ancestral ATP-binding domain, which has undergone fusions with other functional domains in the process of divergent evolution. We point out that these four proteins, despite having very different physiological roles, engage in an unusually high number of binary functional interactions. Namely, MinD attracts Soj and PtkA to the cell pole, and in addition, activates the kinase function of PtkA. SalA also activates the kinase function of PtkA, and it gets phosphorylated by PtkA as well. The consequence of this phosphorylation is the activation of SalA as a transcriptional repressor. We hypothesize that these functional interactions remain preserved during divergent evolution and represent a constraint on the process of evolutionary "tinkering", brought about by fusions of different functional domains.
Incorporating evolutionary history into conservation planning in biodiversity hotspots.
Buerki, Sven; Callmander, Martin W; Bachman, Steven; Moat, Justin; Labat, Jean-Noël; Forest, Félix
2015-02-19
There is increased evidence that incorporating evolutionary history directly in conservation actions is beneficial, particularly given the likelihood that extinction is not random and that phylogenetic diversity (PD) is lost at higher rates than species diversity. This evidence is even more compelling in biodiversity hotspots, such as Madagascar, where less than 10% of the original vegetation remains. Here, we use the Leguminosae, an ecologically and economically important plant family, and a combination of phylogenetics and species distribution modelling, to assess biodiversity patterns and identify regions, coevolutionary processes and ecological factors that are important in shaping this diversity, especially during the Quaternary. We show evidence that species distribution and community PD are predicted by watershed boundaries, which enable the identification of a network of refugia and dispersal corridors that were perhaps important for maintaining community integrity during past climate change. Phylogenetically clustered communities are found in the southwest of the island at low elevation and share a suite of morphological characters (especially fruit morphology) indicative of coevolution with their main dispersers, the extinct and extant lemurs. Phylogenetically over-dispersed communities are found along the eastern coast at sea level and may have resulted from many independent dispersal events from the drier and more seasonal regions of Madagascar. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Liu, Maoyan; Liu, Xiangning; Li, Xun; Zhang, Deyong; Dai, Liangyin; Tang, Qianjun
2016-03-01
The genome sequence of pepper vein yellows virus (PeVYV) (PeVYV-HN, accession number KP326573), isolated from pepper plants (Capsicum annuum L.) grown at the Hunan Vegetables Institute (Changsha, Hunan, China), was determined by deep sequencing of small RNAs. The PeVYV-HN genome consists of 6244 nucleotides, contains six open reading frames (ORFs), and is similar to that of an isolate (AB594828) from Japan. Its genomic organization is similar to that of members of the genus Polerovirus. Sequence analysis revealed that PeVYV-HN shared 92% sequence identity with the Japanese PeVYV genome at both the nucleotide and amino acid levels. Evolutionary analysis based on the coat protein (CP), movement protein (MP), and RNA-dependent RNA polymerase (RdRP) showed that PeVYV could be divided into two major lineages corresponding to their geographical origins. The Asian isolates have a higher population expansion frequency than the African isolates. Negative selection and genetic drift (founder effect) were found to be the potential drivers of the molecular evolution of PeVYV. Moreover, recombination was not the distinct cause of PeVYV evolution. This is the first report of a complete genomic sequence of PeVYV in China.
Gruetzner, Frank; Ashley, Terry; Rowell, David M; Marshall Graves, Jennifer A
2006-04-01
The duck-billed platypus is an extraordinary mammal. Its chromosome complement is no less extraordinary, for it includes a system in which ten sex chromosomes form an extensive meiotic chain in males. Such meiotic multiples are unprecedented in vertebrates but occur sporadically in plant and invertebrate species. In this paper, we review the evolution and formation of meiotic multiples in plants and invertebrates to try to gain insights into the origin of the platypus meiotic multiple. We describe the meiotic hurdles that translocated mammalian chromosomes face, which make longer chains disadvantageous in mammals, and we discuss how sex chromosomes and dosage compensation might have affected the evolution of sex-linked meiotic multiples. We conclude that the evolutionary conservation of the chain in monotremes, the structural properties of the translocated chromosomes and the highly accurate segregation at meiosis make the platypus system remarkably different from meiotic multiples in other species. We discuss alternative evolutionary models, which fall broadly into two categories: either the chain is the result of a sequence of translocation events from an ancestral pair of sex chromosomes (Model I) or the entire chain came into being at once by hybridization of two populations with different chromosomal rearrangements sharing monobrachial homology (Model II).
The importance of pollen chemistry in evolutionary host shifts of bees
Vanderplanck, Maryse; Vereecken, Nicolas J.; Grumiau, Laurent; Esposito, Fabiana; Lognay, Georges; Wattiez, Ruddy; Michez, Denis
2017-01-01
Although bee-plant associations are generally maintained through speciation processes, host shifts have occurred during evolution. Understanding shifts between both phylogenetically and morphologically unrelated plants (i.e., host-saltation) is especially important since they could have been key processes in the origin and radiation of bees. Probably far from being a random process, such host-saltation might be driven by hidden constraints associated with plant traits. We selected two clades of oligolectic bees (i.e., Colletes succinctus group and Melitta leporina group) foraging on co-flowering but unrelated host-plants to test this hypothesis. We analyzed floral scent, floral color and chemical composition of pollen from host and non-host plants of these two clades. We did not find evidence for host-plant evolution in the Melitta leporina group driven by one of the assayed floral traits. On the contrary, hosts of the C. succinctus group display similar primary nutritive content of pollen (i.e., amino acids and sterols) but not similar floral scent or color, suggesting that shared pollen chemistry probably mediates saltation in this clade. Our study revealed that constraints shaping floral associations are diverse and clearly depend on species life-history traits, but evidence suggests that pollen chemistry may act as a major floral filter and guide evolutionary host-shifts. PMID:28216663
Reptile genomes open the frontier for comparative analysis of amniote development and regeneration.
Tollis, Marc; Hutchins, Elizabeth D; Kusumi, Kenro
2014-01-01
Developmental genetic studies of vertebrates have focused primarily on zebrafish, frog and mouse models, which have clear application to medicine and well-developed genomic resources. In contrast, reptiles represent the most diverse amniote group, but have only recently begun to gather the attention of genome sequencing efforts. Extant reptilian groups last shared a common ancestor ?280 million years ago and include lepidosaurs, turtles and crocodilians. This phylogenetic diversity is reflected in great morphological and behavioral diversity capturing the attention of biologists interested in mechanisms regulating developmental processes such as somitogenesis and spinal patterning, regeneration, the evolution of "snake-like" morphology, the formation of the unique turtle shell, and the convergent evolution of the four-chambered heart shared by mammals and archosaurs. The complete genome of the first non-avian reptile, the green anole lizard, was published in 2011 and has provided insights into the origin and evolution of amniotes. Since then, the genomes of multiple snakes, turtles, and crocodilians have also been completed. Here we will review the current diversity of available reptile genomes, with an emphasis on their evolutionary relationships, and will highlight how these genomes have and will continue to facilitate research in developmental and regenerative biology.
Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution.
Zhao, Chen; Pyle, Anna Marie
2016-06-01
Group II introns are self-splicing ribozymes that are essential in many organisms, and they have been hypothesized to share a common evolutionary ancestor with the spliceosome. Although structural similarity of RNA components supports this connection, it is of interest to determine whether associated protein factors also share an evolutionary heritage. Here we present the crystal structures of reverse transcriptase (RT) domains from two group II intron-encoded proteins (maturases) from Roseburia intestinalis and Eubacterium rectale, obtained at 1.2-Å and 2.1-Å resolution, respectively. These domains are more similar in architecture to the spliceosomal Prp8 RT-like domain than to any other RTs, and they share substantial similarity with flaviviral RNA polymerases. The RT domain itself is sufficient for binding intron RNA with high affinity and specificity, and it is contained within an active RT enzyme. These studies provide a foundation for understanding structure-function relationships within group II intron-maturase complexes.
Genetic evidence and the modern human origins debate.
Relethford, J H
2008-06-01
A continued debate in anthropology concerns the evolutionary origin of 'anatomically modern humans' (Homo sapiens sapiens). Different models have been proposed to examine the related questions of (1) where and when anatomically modern humans first appeared and (2) the genetic and evolutionary relationship between modern humans and earlier human populations. Genetic data have been increasingly used to address these questions. Genetic data on living human populations have been used to reconstruct the evolutionary history of the human species by considering how global patterns of human variation could be produced given different evolutionary scenarios. Of particular interest are gene trees that reconstruct the time and place of the most recent common ancestor of humanity for a given haplotype and the analysis of regional differences in genetic diversity. Ancient DNA has also allowed a direct assessment of genetic variation in European Neandertals. Together with the fossil record, genetic data provide insight into the origin of modern humans. The evidence points to an African origin of modern humans dating back to 200,000 years followed by later expansions of moderns out of Africa across the Old World. What is less clear is what happened when these early modern humans met preexisting 'archaic human' populations outside of Africa. At present, it is difficult to distinguish between a model of total genetic replacement and a model that includes some degree of genetic mixture.
Complex Ancestries of Isoprenoid Synthesis in Dinoflagellates.
Bentlage, Bastian; Rogers, Travis S; Bachvaroff, Tsvetan R; Delwiche, Charles F
2016-01-01
Isoprenoid metabolism occupies a central position in the anabolic metabolism of all living cells. In plastid-bearing organisms, two pathways may be present for de novo isoprenoid synthesis, the cytosolic mevalonate pathway (MVA) and nuclear-encoded, plastid-targeted nonmevalonate pathway (DOXP). Using transcriptomic data we find that dinoflagellates apparently make exclusive use of the DOXP pathway. Using phylogenetic analyses of all DOXP genes we inferred the evolutionary origins of DOXP genes in dinoflagellates. Plastid replacements led to a DOXP pathway of multiple evolutionary origins. Dinoflagellates commonly referred to as dinotoms due to their relatively recent acquisition of a diatom plastid, express two completely redundant DOXP pathways. Dinoflagellates with a tertiary plastid of haptophyte origin, by contrast, express a hybrid pathway of dual evolutionary origin. Here, changes in the targeting motif of signal/transit peptide likely allow for targeting the new plastid by the proteins of core isoprenoid metabolism proteins. Parasitic dinoflagellates of the Amoebophyra species complex appear to have lost the DOXP pathway, suggesting that they may rely on their host for sterol synthesis. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.
An evolutionary perspective on the systems of adaptive immunity.
Müller, Viktor; de Boer, Rob J; Bonhoeffer, Sebastian; Szathmáry, Eörs
2018-02-01
We propose an evolutionary perspective to classify and characterize the diverse systems of adaptive immunity that have been discovered across all major domains of life. We put forward a new function-based classification according to the way information is acquired by the immune systems: Darwinian immunity (currently known from, but not necessarily limited to, vertebrates) relies on the Darwinian process of clonal selection to 'learn' by cumulative trial-and-error feedback; Lamarckian immunity uses templated targeting (guided adaptation) to internalize heritable information on potential threats; finally, shotgun immunity operates through somatic mechanisms of variable targeting without feedback. We argue that the origin of Darwinian (but not Lamarckian or shotgun) immunity represents a radical innovation in the evolution of individuality and complexity, and propose to add it to the list of major evolutionary transitions. While transitions to higher-level units entail the suppression of selection at lower levels, Darwinian immunity re-opens cell-level selection within the multicellular organism, under the control of mechanisms that direct, rather than suppress, cell-level evolution for the benefit of the individual. From a conceptual point of view, the origin of Darwinian immunity can be regarded as the most radical transition in the history of life, in which evolution by natural selection has literally re-invented itself. Furthermore, the combination of clonal selection and somatic receptor diversity enabled a transition from limited to practically unlimited capacity to store information about the antigenic environment. The origin of Darwinian immunity therefore comprises both a transition in individuality and the emergence of a new information system - the two hallmarks of major evolutionary transitions. Finally, we present an evolutionary scenario for the origin of Darwinian immunity in vertebrates. We propose a revival of the concept of the 'Big Bang' of vertebrate immunity, arguing that its origin involved a 'difficult' (i.e. low-probability) evolutionary transition that might have occurred only once, in a common ancestor of all vertebrates. In contrast to the original concept, we argue that the limiting innovation was not the generation of somatic diversity, but the regulatory circuitry needed for the safe operation of amplifiable immune responses with somatically acquired targeting. Regulatory complexity increased abruptly by genomic duplications at the root of the vertebrate lineage, creating a rare opportunity to establish such circuitry. We discuss the selection forces that might have acted at the origin of the transition, and in the subsequent stepwise evolution leading to the modern immune systems of extant vertebrates. © 2017 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
Generation of Earth's First-Order Biodiversity Pattern
NASA Astrophysics Data System (ADS)
Krug, Andrew Z.; Jablonski, David; Valentine, James W.; Roy, Kaustuv
2009-02-01
The first-order biodiversity pattern on Earth today and at least as far back as the Paleozoic is the latitudinal diversity gradient (LDG), a decrease in richness of species and higher taxa from the equator to the poles. LDGs are produced by geographic trends in origination, extinction, and dispersal over evolutionary timescales, so that analyses of static patterns will be insufficient to reveal underlying processes. The fossil record of marine bivalve genera, a model system for the analysis of biodiversity dynamics over large temporal and spatial scales, shows that an origination and range-expansion gradient plays a major role in generating the LDG. Peak origination rates and peak diversities fall within the tropics, with range expansion out of the tropics the predominant spatial dynamic thereafter. The origination-diversity link occurs even in a "contrarian" group whose diversity peaks at midlatitudes, an exception proving the rule that spatial variations in origination are key to latitudinal diversity patterns. Extinction rates are lower in polar latitudes (≥60°) than in temperate zones and thus cannot create the observed gradient alone. They may, however, help to explain why origination and immigration are evidently damped in higher latitudes. We suggest that species require more resources in higher latitudes, for the seasonality of primary productivity increases by more than an order of magnitude from equatorial to polar regions. Higher-latitude species are generalists that, unlike potential immigrants, are adapted to garner the large share of resources required for incumbency in those regions. When resources are opened up by extinctions, lineages spread chiefly poleward and chiefly through speciation.
Generation of Earth's first-order biodiversity pattern.
Krug, Andrew Z; Jablonski, David; Valentine, James W; Roy, Kaustuv
2009-01-01
The first-order biodiversity pattern on Earth today and at least as far back as the Paleozoic is the latitudinal diversity gradient (LDG), a decrease in richness of species and higher taxa from the equator to the poles. LDGs are produced by geographic trends in origination, extinction, and dispersal over evolutionary timescales, so that analyses of static patterns will be insufficient to reveal underlying processes. The fossil record of marine bivalve genera, a model system for the analysis of biodiversity dynamics over large temporal and spatial scales, shows that an origination and range-expansion gradient plays a major role in generating the LDG. Peak origination rates and peak diversities fall within the tropics, with range expansion out of the tropics the predominant spatial dynamic thereafter. The origination-diversity link occurs even in a "contrarian" group whose diversity peaks at midlatitudes, an exception proving the rule that spatial variations in origination are key to latitudinal diversity patterns. Extinction rates are lower in polar latitudes (> or =60 degrees ) than in temperate zones and thus cannot create the observed gradient alone. They may, however, help to explain why origination and immigration are evidently damped in higher latitudes. We suggest that species require more resources in higher latitudes, for the seasonality of primary productivity increases by more than an order of magnitude from equatorial to polar regions. Higher-latitude species are generalists that, unlike potential immigrants, are adapted to garner the large share of resources required for incumbency in those regions. When resources are opened up by extinctions, lineages spread chiefly poleward and chiefly through speciation.
Ornelas, Juan Francisco; Sosa, Victoria; Soltis, Douglas E.; Daza, Juan M.; González, Clementina; Soltis, Pamela S.; Gutiérrez-Rodríguez, Carla; de los Monteros, Alejandro Espinosa; Castoe, Todd A.; Bell, Charles; Ruiz-Sanchez, Eduardo
2013-01-01
Comparative phylogeography can elucidate the influence of historical events on current patterns of biodiversity and can identify patterns of co-vicariance among unrelated taxa that span the same geographic areas. Here we analyze temporal and spatial divergence patterns of cloud forest plant and animal species and relate them to the evolutionary history of naturally fragmented cloud forests–among the most threatened vegetation types in northern Mesoamerica. We used comparative phylogeographic analyses to identify patterns of co-vicariance in taxa that share geographic ranges across cloud forest habitats and to elucidate the influence of historical events on current patterns of biodiversity. We document temporal and spatial genetic divergence of 15 species (including seed plants, birds and rodents), and relate them to the evolutionary history of the naturally fragmented cloud forests. We used fossil-calibrated genealogies, coalescent-based divergence time inference, and estimates of gene flow to assess the permeability of putative barriers to gene flow. We also used the hierarchical Approximate Bayesian Computation (HABC) method implemented in the program msBayes to test simultaneous versus non-simultaneous divergence of the cloud forest lineages. Our results show shared phylogeographic breaks that correspond to the Isthmus of Tehuantepec, Los Tuxtlas, and the Chiapas Central Depression, with the Isthmus representing the most frequently shared break among taxa. However, dating analyses suggest that the phylogeographic breaks corresponding to the Isthmus occurred at different times in different taxa. Current divergence patterns are therefore consistent with the hypothesis of broad vicariance across the Isthmus of Tehuantepec derived from different mechanisms operating at different times. This study, coupled with existing data on divergence cloud forest species, indicates that the evolutionary history of contemporary cloud forest lineages is complex and often lineage-specific, and thus difficult to capture in a simple conservation strategy. PMID:23409165
Genomic signatures of evolutionary transitions from solitary to group living
USDA-ARS?s Scientific Manuscript database
Eusociality has evolved rarely, but repeatedly, in vertebrates and invertebrates, and resulted inconvergent morphological, physiological, and behavioural innovations. It is unknown whether similar evolutionary processes are responsible for the repeated origins and further elaborations of eusociality...
Evolutionary disarmament in interspecific competition.
Kisdi, E; Geritz, S A
2001-12-22
Competitive asymmetry, which is the advantage of having a larger body or stronger weaponry than a contestant, drives spectacular evolutionary arms races in intraspecific competition. Similar asymmetries are well documented in interspecific competition, yet they seldom lead to exaggerated traits. Here we demonstrate that two species with substantially different size may undergo parallel coevolution towards a smaller size under the same ecological conditions where a single species would exhibit an evolutionary arms race. We show that disarmament occurs for a wide range of parameters in an ecologically explicit model of competition for a single shared resource; disarmament also occurs in a simple Lotka-Volterra competition model. A key property of both models is the interplay between evolutionary dynamics and population density. The mechanism does not rely on very specific features of the model. Thus, evolutionary disarmament may be widespread and may help to explain the lack of interspecific arms races.
Evolutionary disarmament in interspecific competition.
Kisdi, E.; Geritz, S. A.
2001-01-01
Competitive asymmetry, which is the advantage of having a larger body or stronger weaponry than a contestant, drives spectacular evolutionary arms races in intraspecific competition. Similar asymmetries are well documented in interspecific competition, yet they seldom lead to exaggerated traits. Here we demonstrate that two species with substantially different size may undergo parallel coevolution towards a smaller size under the same ecological conditions where a single species would exhibit an evolutionary arms race. We show that disarmament occurs for a wide range of parameters in an ecologically explicit model of competition for a single shared resource; disarmament also occurs in a simple Lotka-Volterra competition model. A key property of both models is the interplay between evolutionary dynamics and population density. The mechanism does not rely on very specific features of the model. Thus, evolutionary disarmament may be widespread and may help to explain the lack of interspecific arms races. PMID:11749715
Glimpsing over the event horizon: evolution of nuclear pores and envelope.
Jékely, Gáspár
2005-02-01
The origin of eukaryotes from prokaryotic ancestors is one of the major evolutionary transitions in the history of life. The nucleus, a membrane bound compartment for confining the genome, is a central feature of eukaryotic cells and its origin also has to be a central feature of any workable theory that ventures to explain eukaryotic origins. Recent bioinformatic analyses of components of the nuclear pore complex (NPC), the nuclear envelope (NE), and the nuclear transport systems revealed exciting evolutionary connections (e.g., between NPC and coated vesicles) and provided a useful record of the phyletic distribution and history of NPC and NE components. These analyses allow us to refine theories on the origin and evolution of the nucleus, and consequently, of the eukaryotic cell.
From Darwin's Origin of Species toward a theory of natural history
2015-01-01
Darwin is the father of evolutionary theory because he identified evolutionary patterns and, with Natural Selection, he ascertained the exquisitely ecological ultimate processes that lead to evolution. The proximate processes of evolution he proposed, however, predated the discovery of genetics, the backbone of modern evolutionary theory. The later discovery of the laws of inheritance by Mendel and the rediscovery of Mendel in the early 20th century led to two reforms of Darwinism: Neo-Darwinism and the Modern Synthesis (and subsequent refinements). If Darwin's evolutionary thought required much refinement, his ecological insight is still very modern. In the first edition of The Origin of Species, Darwin did not use either the word “evolution” or the word “ecology”. “Ecology” was not coined until after the publication of the Origin. Evolution, for him, was the origin of varieties, then species, which he referred to as well-marked varieties, whereas, instead of using ecology, he used “the economy of nature”. The Origin contains a high proportion of currently accepted ecological principles. Darwin labelled himself a naturalist. His discipline (natural history) was a blend of ecology and evolution in which he investigated both the patterns and the processes that determine the organization of life. Reductionist approaches, however, often keep the two disciplines separated from each other, undermining a full understanding of natural phenomena that might be favored by blending ecology and evolution through the development of a modern Theory of Natural History based on Darwin's vision of the study of life. PMID:26097722
[Genetic mechanism and evolutionary significance of the origin of parthenogenetic insects].
Wang, Cheng-Ye
2011-12-01
There is a high proportion of parthenogenesis in insecta, and the parthenogenetic potential of insects is an important but often ignored threaten factor for the agricultural and forestry production. The maintenance of parthenogenetic species is a puzzling issue in evolutionary biology. In recent years, although the cellular mechanisms during parthenogenesis in some species have been well studied, the underlying genetic mechanisms that cause the switch from sexual reproduction to parthenogenesis have not been defined. While, understanding the genetic mechanism and evolutionary significance of the origin of parthenogenetic insects is crucial for preventing the pests in agricultural and forestry production. Here we summarized recent studies aimed at identifying the underlying genetic mechanism of parthenogenesis in insects, and briefly discussed its potential application in this filed.
Boltzmann, Darwin and Directionality theory
NASA Astrophysics Data System (ADS)
Demetrius, Lloyd A.
2013-09-01
Boltzmann’s statistical thermodynamics is a mathematical theory which relates the macroscopic properties of aggregates of interacting molecules with the laws of their interaction. The theory is based on the concept thermodynamic entropy, a statistical measure of the extent to which energy is spread throughout macroscopic matter. Macroscopic evolution of material aggregates is quantitatively explained in terms of the principle: Thermodynamic entropy increases as the composition of the aggregate changes under molecular collision. Darwin’s theory of evolution is a qualitative theory of the origin of species and the adaptation of populations to their environment. A central concept in the theory is fitness, a qualitative measure of the capacity of an organism to contribute to the ancestry of future generations. Macroscopic evolution of populations of living organisms can be qualitatively explained in terms of a neo-Darwinian principle: Fitness increases as the composition of the population changes under variation and natural selection. Directionality theory is a quantitative model of the Darwinian argument of evolution by variation and selection. This mathematical theory is based on the concept evolutionary entropy, a statistical measure which describes the rate at which an organism appropriates energy from the environment and reinvests this energy into survivorship and reproduction. According to directionality theory, microevolutionary dynamics, that is evolution by mutation and natural selection, can be quantitatively explained in terms of a directionality principle: Evolutionary entropy increases when the resources are diverse and of constant abundance; but decreases when the resource is singular and of variable abundance. This report reviews the analytical and empirical support for directionality theory, and invokes the microevolutionary dynamics of variation and selection to delineate the principles which govern macroevolutionary dynamics of speciation and extinction. We also elucidate the relation between thermodynamic entropy, which pertains to the extent of energy spreading and sharing within inanimate matter, and evolutionary entropy, which refers to the rate of energy appropriation from the environment and allocation within living systems. We show that the entropic principle of thermodynamics is the limit as R→0, M→∞, (where R denote the resource production rate, and M denote population size) of the entropic principle of evolution. We exploit this relation between the thermodynamic and evolutionary tenets to propose a physico-chemical model of the transition from inanimate matter which is under thermodynamic selection, to living systems which are subject to evolutionary selection. Life history variation and the evolution of senescence The evolutionary dynamics of speciation and extinction Evolutionary trends in body size. The origin of sporadic forms of cancer and neurological diseases, and the evolution of cooperation are important recent applications of directionality theory. These applications, which draw from the medical sciences and sociobiology, appeal to methods which lie outside the formalism described in this report. A companion review, Demetrius and Gundlach (submitted for publication), gives an account of these applications.An important aspect of this report pertains to the connection between statistical mechanics and evolutionary theory and its implications towards understanding the processes which underlie the emergence of living systems from inanimate matter-a problem which has recently attracted considerable attention, Morowitz (1992), Eigen (1992), Dyson (2000), Pross (2012).The connection between the two disciplines can be addressed by appealing to certain extremal principles which are considered the mainstay of the respective theories.The extremal principle in statistical mechanics can be stated as follows:
Wu, Meng; Lewis, Jamicia; Moore, Richard C
2017-01-01
The red flesh of some papaya cultivars is caused by a recessive loss-of-function mutation in the coding region of the chromoplast-specific lycopene beta cyclase gene (CYC-b). We performed an evolutionary genetic analysis of the CYC-b locus in wild and cultivated papaya to uncover the origin of this loss-of-function allele in cultivated papaya. We analyzed the levels and patterns of genetic diversity at the CYC-b locus and six loci in a 100-kb region flanking CYC-b and compared these to genetic diversity levels at neutral autosomal loci. The evolutionary relationships of CYC-b haplotypes were assessed using haplotype network analysis of the CYC-b locus and the 100-kb CYC-b region. Genetic diversity at the recessive CYC-b allele (y) was much lower relative to the dominant Y allele found in yellow-fleshed wild and cultivated papaya due to a strong selective sweep. Haplotype network analyses suggest the y allele most likely arose in the wild and was introduced into domesticated varieties after the first papaya domestication event. The shared haplotype structure between some wild, feral, and cultivated haplotypes around the y allele supports subsequent escape of this allele from red cultivars back into wild populations through feral intermediates. Our study supports a protracted domestication process of papaya through the introgression of wild-derived traits and gene flow from cultivars to wild populations. Evidence of gene flow from cultivars to wild populations through feral intermediates has implications for the introduction of transgenic papaya into Central American countries. © 2017 Botanical Society of America.
Algal MIPs, high diversity and conserved motifs.
Anderberg, Hanna I; Danielson, Jonas Å H; Johanson, Urban
2011-04-21
Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.
The story of life: critical insights from evolutionary biology.
Paulson, Steve; Chang, Melanie Lee; Tattersall, Ian; Morris, Simon Conway
2018-06-06
The notion that humans, in all their complexity, are merely an evolutionary accident, an insignificant speck in a boundless cosmos, is deeply unsatisfying for most nonscientists and fails to resonate with their life experience. What, then, can evolutionary biology ultimately tell us about the meaning of our lives? In conversation with Steve Paulson, executive producer and host of To the Best of Our Knowledge, paleoanthropologists Melanie Lee Chang and Ian Tattersall, and paleontologist Simon Conway Morris share their insights on these competing concepts and explain how meaning and purpose can be gleaned from the remarkable story of life itself. © 2018 New York Academy of Sciences.
Punishment and reputation in spatial public goods games.
Brandt, Hannelore; Hauert, Christoph; Sigmund, Karl
2003-05-22
The puzzle of the emergence of cooperation between unrelated individuals is shared across diverse fields of behavioural sciences and economics. In this article we combine the public goods game originating in economics with evolutionary approaches traditionally used in biology. Instead of pairwise encounters, we consider the more complex case of groups of three interacting individuals. We show that territoriality is capable of promoting cooperative behaviour, as in the case of the Prisoner's Dilemma. Moreover, by adding punishment opportunities, the readiness to cooperate is greatly enhanced and asocial strategies can be largely suppressed. Finally, as soon as players carry a reputation for being willing or unwilling to punish, highly cooperative and fair outcomes are achieved. This group-beneficial result is obtained, intriguingly, by making individuals more likely to exploit their co-players if they can get away with it. Thus, less-cooperative individuals make more-cooperative societies.
Heterogeneous distribution of metabolites across plant species
NASA Astrophysics Data System (ADS)
Takemoto, Kazuhiro; Arita, Masanori
2009-07-01
We investigate the distribution of flavonoids, a major category of plant secondary metabolites, across species. Flavonoids are known to show high species specificity, and were once considered as chemical markers for understanding adaptive evolution and characterization of living organisms. We investigate the distribution among species using bipartite networks, and find that two heterogeneous distributions are conserved among several families: the power-law distributions of the number of flavonoids in a species and the number of shared species of a particular flavonoid. In order to explain the possible origin of the heterogeneity, we propose a simple model with, essentially, a single parameter. As a result, we show that two respective power-law statistics emerge from simple evolutionary mechanisms based on a multiplicative process. These findings provide insights into the evolution of metabolite diversity and characterization of living organisms that defy genome sequence analysis for different reasons.
The major synthetic evolutionary transitions.
Solé, Ricard
2016-08-19
Evolution is marked by well-defined events involving profound innovations that are known as 'major evolutionary transitions'. They involve the integration of autonomous elements into a new, higher-level organization whereby the former isolated units interact in novel ways, losing their original autonomy. All major transitions, which include the origin of life, cells, multicellular systems, societies or language (among other examples), took place millions of years ago. Are these transitions unique, rare events? Have they instead universal traits that make them almost inevitable when the right pieces are in place? Are there general laws of evolutionary innovation? In order to approach this problem under a novel perspective, we argue that a parallel class of evolutionary transitions can be explored involving the use of artificial evolutionary experiments where alternative paths to innovation can be explored. These 'synthetic' transitions include, for example, the artificial evolution of multicellular systems or the emergence of language in evolved communicating robots. These alternative scenarios could help us to understand the underlying laws that predate the rise of major innovations and the possibility for general laws of evolved complexity. Several key examples and theoretical approaches are summarized and future challenges are outlined.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Author(s).
The major synthetic evolutionary transitions
Solé, Ricard
2016-01-01
Evolution is marked by well-defined events involving profound innovations that are known as ‘major evolutionary transitions'. They involve the integration of autonomous elements into a new, higher-level organization whereby the former isolated units interact in novel ways, losing their original autonomy. All major transitions, which include the origin of life, cells, multicellular systems, societies or language (among other examples), took place millions of years ago. Are these transitions unique, rare events? Have they instead universal traits that make them almost inevitable when the right pieces are in place? Are there general laws of evolutionary innovation? In order to approach this problem under a novel perspective, we argue that a parallel class of evolutionary transitions can be explored involving the use of artificial evolutionary experiments where alternative paths to innovation can be explored. These ‘synthetic’ transitions include, for example, the artificial evolution of multicellular systems or the emergence of language in evolved communicating robots. These alternative scenarios could help us to understand the underlying laws that predate the rise of major innovations and the possibility for general laws of evolved complexity. Several key examples and theoretical approaches are summarized and future challenges are outlined. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431528
Bergamo, Pedro Joaquim; Wolowski, Marina; Maruyama, Pietro Kiyoshi; Vizentin-Bugoni, Jeferson; Carvalheiro, Luísa G; Sazima, Marlies
2017-07-01
Plant species within communities may overlap in pollinators' use and influence visitation patterns of shared pollinators, potentially engaging in indirect interactions (e.g., facilitation or competition). While several studies have explored the mechanisms regulating insect-pollination networks, there is a lack of studies on bird-pollination systems, particularly in species-rich tropical areas. Here, we evaluated if phenotypic similarity, resource availability (floral abundance), evolutionary relatedness and flowering phenology affect the potential for indirect effects via shared pollinators in hummingbird-pollinated plant species within four communities in the Brazilian Atlantic forest. Among the evaluated factors, phenotypic similarity (corolla length and anther height) was the most important variable, while resource availability (floral abundance) had a secondary importance. On the other hand, evolutionary relatedness and flowering phenology were less important, which altogether highlights the relevance of convergent evolution and that the contribution of a plant to the diet of the pollinators of another plant is independent of the level of temporal overlap in flowering in this tropical system. Interestingly, our findings contrast with results from multiple insect-pollinated plant communities, mostly from temperate regions, in which floral abundance was the most important driver, followed by evolutionary relatedness and phenotypic similarity. We propose that these contrasting results are due to high level of specialization inherent to tropical hummingbird-pollination systems. Moreover, our results demonstrated that factors defining linkage rules of plant-hummingbird networks also determinate plant-plant potential indirect effects. Future studies are needed to test if these findings can be generalized to other highly specialized systems. Overall, our results have important implications for the understanding of ecological processes due resource sharing in mutualistic systems. © 2017 by the Ecological Society of America.
Al-Momani, Shireen; Qi, Da; Ren, Zhe; Jones, Andrew R
2018-06-15
Phosphorylation is one of the most prevalent post-translational modifications and plays a key role in regulating cellular processes. We carried out a bioinformatics analysis of pre-existing phosphoproteomics data, to profile two model species representing the largest subclasses in flowering plants the dicot Arabidopsis thaliana and the monocot Oryza sativa, to understand the extent to which phosphorylation signaling and function is conserved across evolutionary divergent plants. We identified 6537 phosphopeptides from 3189 phosphoproteins in Arabidopsis and 2307 phosphopeptides from 1613 phosphoproteins in rice. We identified phosphorylation motifs, finding nineteen pS motifs and two pT motifs shared in rice and Arabidopsis. The majority of shared motif-containing proteins were mapped to the same biological processes with similar patterns of fold enrichment, indicating high functional conservation. We also identified shared patterns of crosstalk between phosphoserines with enrichment for motifs pSXpS, pSXXpS and pSXXXpS, where X is any amino acid. Lastly, our results identified several pairs of motifs that are significantly enriched to co-occur in Arabidopsis proteins, indicating cross-talk between different sites, but this was not observed in rice. Our results demonstrate that there are evolutionary conserved mechanisms of phosphorylation-mediated signaling in plants, via analysis of high-throughput phosphorylation proteomics data from key monocot and dicot species: rice and Arabidposis thaliana. The results also suggest that there is increased crosstalk between phosphorylation sites in A. thaliana compared with rice. The results are important for our general understanding of cell signaling in plants, and the ability to use A. thaliana as a general model for plant biology. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
2013-01-01
Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of green algae and higher plants. Protein domain structures and expression analyses in green alga H. pluvialis indicate that various chy genes are in different manners response to light. The knowledge of evolution of chy genes in photosynthetic eukaryotes provided information of gene cloning and functional investigation of chy genes in algae in the future. PMID:23834441
Fragile genomic sites are associated with origins of replication.
Di Rienzi, Sara C; Collingwood, David; Raghuraman, M K; Brewer, Bonita J
2009-09-09
Genome rearrangements are mediators of evolution and disease. Such rearrangements are frequently bounded by transfer RNAs (tRNAs), transposable elements, and other repeated elements, suggesting a functional role for these elements in creating or repairing breakpoints. Though not well explored, there is evidence that origins of replication also colocalize with breakpoints. To investigate a potential correlation between breakpoints and origins, we analyzed evolutionary breakpoints defined between Saccharomyces cerevisiae and Kluyveromyces waltii and S. cerevisiae and a hypothetical ancestor of both yeasts, as well as breakpoints reported in the experimental literature. We find that origins correlate strongly with both evolutionary breakpoints and those described in the literature. Specifically, we find that origins firing earlier in S phase are more strongly correlated with breakpoints than are later-firing origins. Despite origins being located in genomic regions also bearing tRNAs and Ty elements, the correlation we observe between origins and breakpoints appears to be independent of these genomic features. This study lays the groundwork for understanding the mechanisms by which origins of replication may impact genome architecture and disease.
Theories about evolutionary origins of human hepatitis B virus in primates and humans.
Souza, Breno Frederico de Carvalho Dominguez; Drexler, Jan Felix; Lima, Renato Santos de; Rosário, Mila de Oliveira Hughes Veiga do; Netto, Eduardo Martins
2014-01-01
The human hepatitis B virus causes acute and chronic hepatitis and is considered one of the most serious human health issues by the World Health Organization, causing thousands of deaths per year. There are similar viruses belonging to the Hepadnaviridae family that infect non-human primates and other mammals as well as some birds. The majority of non-human primate virus isolates were phylogenetically close to the human hepatitis B virus, but like the human genotypes, the origins of these viruses remain controversial. However, there is a possibility that human hepatitis B virus originated in primates. Knowing whether these viruses might be common to humans and primates is crucial in order to reduce the risk to humans. To review the existing knowledge about the evolutionary origins of viruses of the Hepadnaviridae family in primates. This review was done by reading several articles that provide information about the Hepadnaviridae virus family in non-human primates and humans and the possible origins and evolution of these viruses. The evolutionary origin of viruses of the Hepadnaviridae family in primates has been dated back to several thousand years; however, recent analyses of genomic fossils of avihepadnaviruses integrated into the genomes of several avian species have suggested a much older origin of this genus. Some hypotheses about the evolutionary origins of human hepatitis B virus have been debated since the '90s. One theory suggested a New World origin because of the phylogenetic co-segregation between some New World human hepatitis B virus genotypes F and H and woolly monkey human hepatitis B virus in basal sister-relationship to the Old World non-human primates and human hepatitis B virus variants. Another theory suggests an Old World origin of human hepatitis B virus, and that it would have been spread following prehistoric human migrations over 100,000 years ago. A third theory suggests a co-speciation of human hepatitis B virus in non-human primate hosts because of the proximity between the phylogeny of Old and New World non-human primate and their human hepatitis B virus variants. The importance of further research, related to the subject in South American wild fauna, is paramount and highly relevant for understanding the origin of human hepatitis B virus. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
Evolutionary biology: microsporidia sex--a missing link to fungi.
Dyer, Paul S
2008-11-11
The evolutionary origins of the microsporidia, a group of intracellular eukaryotic pathogens, have been unclear. Genome analysis of a sex locus and other gene clusters has now revealed conserved synteny with zygomycete fungi, indicating that microsporidia are true fungi descended from a zygomycete ancestor.
Haplogroups as Evolutionary Markers of Cognitive Ability
ERIC Educational Resources Information Center
Rindermann, Heiner; Woodley, Michael A.; Stratford, James
2012-01-01
Studies investigating evolutionary theories on the origins of national differences in intelligence have been criticized on the basis that both national cognitive ability measures and supposedly evolutionarily informative proxies (such as latitude and climate) are confounded with general developmental status. In this study 14 Y chromosomal…
Evolutionary mysteries in meiosis.
Lenormand, Thomas; Engelstädter, Jan; Johnston, Susan E; Wijnker, Erik; Haag, Christoph R
2016-10-19
Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often 'weird' features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).
Evolutionary mysteries in meiosis
2016-01-01
Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often ‘weird’ features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes. This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’. PMID:27619705
A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms
Werner, Gijsbert D. A.; Cornwell, William K.; Sprent, Janet I.; Kattge, Jens; Kiers, E. Toby
2014-01-01
Symbiotic associations occur in every habitat on earth, but we know very little about their evolutionary histories. Current models of trait evolution cannot adequately reconstruct the deep history of symbiotic innovation, because they assume homogenous evolutionary processes across millions of years. Here we use a recently developed, heterogeneous and quantitative phylogenetic framework to study the origin of the symbiosis between angiosperms and nitrogen-fixing (N2) bacterial symbionts housed in nodules. We compile the largest database of global nodulating plant species and reconstruct the symbiosis’ evolution. We identify a single, cryptic evolutionary innovation driving symbiotic N2-fixation evolution, followed by multiple gains and losses of the symbiosis, and the subsequent emergence of ‘stable fixers’ (clades extremely unlikely to lose the symbiosis). Originating over 100 MYA, this innovation suggests deep homology in symbiotic N2-fixation. Identifying cryptic innovations on the tree of life is key to understanding the evolution of complex traits, including symbiotic partnerships. PMID:24912610
Lam, Hong Kiat; Ross, John J; McAdam, Erin L; McAdam, Scott A M
2016-07-02
Chlorinated auxin (4-chloroindole-3-acetic acid, 4-Cl-IAA), a highly potent plant hormone, was once thought to be restricted to species of the tribe Fabeae within the Fabaceae, until we recently detected this hormone in the seeds of Medicago, Melilotus and Trifolium species. The absence of 4-Cl-IAA in the seeds of the cultivated species Cicer aeritinum from the Cicerae tribe, immediately basal to the Fabeae and Trifolieae tribes, suggested a single evolutionary origin of 4-Cl-IAA. Here, we provide a more robust phylogenetic placement of the ability to produce chlorinated auxin by screening key species spanning this evolutionary transition. We report no detectable level of 4-Cl-IAA in Cicer echinospermum (a wild relative of C. aeritinum) and 4 species (Galega officinalis, Parochetus communis, Astragalus propinquus and A. sinicus) from tribes or clades more basal or sister to the Cicerae tribe. We did detect 4-Cl-IAA in the dry seeds of 4 species from the genus Ononis that are either basal to the genera Medicago, Melilotus and Trigonella or basal to, but still within, the Fabeae and Trifolieae (ex. Parochetus) clades. We conclude that the single evolutionary origin of this hormone in seeds can be used as a phylogenetically informative trait within the Fabaceae.
Lam, Hong Kiat; Ross, John J.; McAdam, Erin L.; McAdam, Scott A. M.
2016-01-01
ABSTRACT Chlorinated auxin (4-chloroindole-3-acetic acid, 4-Cl-IAA), a highly potent plant hormone, was once thought to be restricted to species of the tribe Fabeae within the Fabaceae, until we recently detected this hormone in the seeds of Medicago, Melilotus and Trifolium species. The absence of 4-Cl-IAA in the seeds of the cultivated species Cicer aeritinum from the Cicerae tribe, immediately basal to the Fabeae and Trifolieae tribes, suggested a single evolutionary origin of 4-Cl-IAA. Here, we provide a more robust phylogenetic placement of the ability to produce chlorinated auxin by screening key species spanning this evolutionary transition. We report no detectable level of 4-Cl-IAA in Cicer echinospermum (a wild relative of C. aeritinum) and 4 species (Galega officinalis, Parochetus communis, Astragalus propinquus and A. sinicus) from tribes or clades more basal or sister to the Cicerae tribe. We did detect 4-Cl-IAA in the dry seeds of 4 species from the genus Ononis that are either basal to the genera Medicago, Melilotus and Trigonella or basal to, but still within, the Fabeae and Trifolieae (ex. Parochetus) clades. We conclude that the single evolutionary origin of this hormone in seeds can be used as a phylogenetically informative trait within the Fabaceae. PMID:27302610
Evolutionary origins and diversification of proteobacterial mutualists.
Sachs, Joel L; Skophammer, Ryan G; Bansal, Nidhanjali; Stajich, Jason E
2014-01-22
Mutualistic bacteria infect most eukaryotic species in nearly every biome. Nonetheless, two dilemmas remain unresolved about bacterial-eukaryote mutualisms: how do mutualist phenotypes originate in bacterial lineages and to what degree do mutualists traits drive or hinder bacterial diversification? Here, we reconstructed the phylogeny of the hyperdiverse phylum Proteobacteria to investigate the origins and evolutionary diversification of mutualistic bacterial phenotypes. Our ancestral state reconstructions (ASRs) inferred a range of 34-39 independent origins of mutualist phenotypes in Proteobacteria, revealing the surprising frequency with which host-beneficial traits have evolved in this phylum. We found proteobacterial mutualists to be more often derived from parasitic than from free-living ancestors, consistent with the untested paradigm that bacterial mutualists most often evolve from pathogens. Strikingly, we inferred that mutualists exhibit a negative net diversification rate (speciation minus extinction), which suggests that mutualism evolves primarily via transitions from other states rather than diversification within mutualist taxa. Moreover, our ASRs infer that proteobacterial mutualist lineages exhibit a paucity of reversals to parasitism or to free-living status. This evolutionary conservatism of mutualism is contrary to long-standing theory, which predicts that selection should often favour mutants in microbial mutualist populations that exploit or abandon more slowly evolving eukaryotic hosts.
Okasha, S; Martens, J
2016-03-01
Hamilton's original work on inclusive fitness theory assumed additivity of costs and benefits. Recently, it has been argued that an exact version of Hamilton's rule for the spread of a pro-social allele (rb > c) holds under nonadditive pay-offs, so long as the cost and benefit terms are defined as partial regression coefficients rather than pay-off parameters. This article examines whether one of the key components of Hamilton's original theory can be preserved when the rule is generalized to the nonadditive case in this way, namely that evolved organisms will behave as if trying to maximize their inclusive fitness in social encounters. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Zhang, Hong-Li; Ye, Fei
2017-01-01
Praying mantises are a diverse group of predatory insects. Although some Mantodea mitogenomes have been reported, a comprehensive comparative and evolutionary genomic study is lacking for this group. In the present study, four new mitogenomes were sequenced, annotated, and compared to the previously published mitogenomes of other Mantodea species. Most Mantodea mitogenomes share a typical set of mitochondrial genes and a putative control region (CR). Additionally, and most intriguingly, another large non-coding region (LNC) was detected between trnM and ND2 in all six Paramantini mitogenomes examined. The main section in this common region of Paramantini may have initially originated from the corresponding control region for each species, whereas sequence differences between the LNCs and CRs and phylogenetic analyses indicate that LNC and CR are largely independently evolving. Namely, the LNC (the duplicated CR) may have subsequently degenerated during evolution. Furthermore, evidence suggests that special intergenic gaps have been introduced in some species through gene rearrangement and duplication. These gaps are actually the original abutting sequences of migrated or duplicated genes. Some gaps (G5 and G6) are homologous to the 5' and 3' surrounding regions of the duplicated gene in the original gene order, and another specific gap (G7) has tandem repeats. We analysed the phylogenetic relationships of fifteen Mantodea species using 37 concatenated mitochondrial genes and detected several synapomorphies unique to species in some clades. PMID:28367101
Celeste, Silvestri María; Ortiz, Alejandra Marcela; Robledo, Germán Ariel; Valls, José Francisco Montenegro; Lavia, Graciela Inés
2017-01-01
Abstract The genus Arachis Linnaeus, 1753 comprises four species with x = 9, three belong to the section Arachis: Arachis praecox (Krapov. W.C. Greg. & Valls, 1994), Arachis palustris (Krapov. W.C. Greg. & Valls, 1994) and Arachis decora (Krapov. W.C. Greg. & Valls, 1994) and only one belongs to the section Erectoides: Arachis porphyrocalyx (Valls & C.E. Simpson, 2005). Recently, the x = 9 species of section Arachis have been assigned to G genome, the latest described so far. The genomic relationship of Arachis porphyrocalyx with these species is controversial. In the present work, we carried out a karyotypic characterisation of Arachis porphyrocalyx to evaluate its genomic structure and analyse the origin of all x = 9 Arachis species. Arachis porphyrocalyx showed a karyotype formula of 14m+4st, one pair of A chromosomes, satellited chromosomes type 8, one pair of 45S rDNA sites in the SAT chromosomes, one pair of 5S rDNA sites and pericentromeric C-DAPI+ bands in all chromosomes. Karyotype structure indicates that Arachis porphyrocalyx does not share the same genome type with the other three x = 9 species and neither with the remaining Erectoides species. Taking into account the geographic distribution, morphological and cytogenetic features, the origin of species with x = 9 of the genus Arachis cannot be unique; instead, they originated at least twice in the evolutionary history of the genus. PMID:28919947
The Simulation and Analysis of an Evolutionary Model of Deoxyribonucleic Acid (DNA).
1983-09-01
current interest in evolutionary biology . This section identifies the organization of the remainder of the paper. The second chapter reports the...the field of evolutionary biology . 77 APPENDIX 78 APPENDIX A PROGRAM SOURCE LISTING -79 PROGRAM SOURCE LISTING 00005 PROGRAM (COMPUTERANDOM MUTATIONS...34Some Theoretical Aspects of the Problem of Life Origin," Journal 2f Theoreical Biology : 13-23, 1975. 27. Chirpich, Thomas P. "Rates of Protein
Life is determined by its environment
NASA Astrophysics Data System (ADS)
Torday, John S.; Miller, William B.
2016-10-01
A well-developed theory of evolutionary biology requires understanding of the origins of life on Earth. However, the initial conditions (ontology) and causal (epistemology) bases on which physiology proceeded have more recently been called into question, given the teleologic nature of Darwinian evolutionary thinking. When evolutionary development is focused on cellular communication, a distinctly different perspective unfolds. The cellular communicative-molecular approach affords a logical progression for the evolutionary narrative based on the basic physiologic properties of the cell. Critical to this appraisal is recognition of the cell as a fundamental reiterative unit of reciprocating communication that receives information from and reacts to epiphenomena to solve problems. Following the course of vertebrate physiology from its unicellular origins instead of its overt phenotypic appearances and functional associations provides a robust, predictive picture for the means by which complex physiology evolved from unicellular organisms. With this foreknowledge of physiologic principles, we can determine the fundamentals of Physiology based on cellular first principles using a logical, predictable method. Thus, evolutionary creativity on our planet can be viewed as a paradoxical product of boundary conditions that permit homeostatic moments of varying length and amplitude that can productively absorb a variety of epigenetic impacts to meet environmental challenges.
Life is determined by its environment
Torday, John S.; Miller, William B.
2016-01-01
A well-developed theory of evolutionary biology requires understanding of the origins of life on Earth. However, the initial conditions (ontology) and causal (epistemology) bases on which physiology proceeded have more recently been called into question, given the teleologic nature of Darwinian evolutionary thinking. When evolutionary development is focused on cellular communication, a distinctly different perspective unfolds. The cellular communicative-molecular approach affords a logical progression for the evolutionary narrative based on the basic physiologic properties of the cell. Critical to this appraisal is recognition of the cell as a fundamental reiterative unit of reciprocating communication that receives information from and reacts to epiphenomena to solve problems. Following the course of vertebrate physiology from its unicellular origins instead of its overt phenotypic appearances and functional associations provides a robust, predictive picture for the means by which complex physiology evolved from unicellular organisms. With this foreknowledge of physiologic principles, we can determine the fundamentals of Physiology based on cellular first principles using a logical, predictable method. Thus, evolutionary creativity on our planet can be viewed as a paradoxical product of boundary conditions that permit homeostatic moments of varying length and amplitude that can productively absorb a variety of epigenetic impacts to meet environmental challenges. PMID:27708547
Bonobos and chimpanzees exhibit human-like framing effects
Krupenye, Christopher; Rosati, Alexandra G.; Hare, Brian
2015-01-01
Humans exhibit framing effects when making choices, appraising decisions involving losses differently from those involving gains. To directly test for the evolutionary origin of this bias, we examined decision-making in humans' closest living relatives: bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). We presented the largest sample of non-humans to date (n = 40) with a simple task requiring minimal experience. Apes made choices between a ‘framed’ option that provided preferred food, and an alternative option that provided a constant amount of intermediately preferred food. In the gain condition, apes experienced a positive ‘gain’ event in which the framed option was initially presented as one piece of food but sometimes was augmented to two. In the loss condition, apes experienced a negative ‘loss' event in which they initially saw two pieces but sometimes received only one. Both conditions provided equal pay-offs, but apes chose the framed option more often in the positive ‘gain’ frame. Moreover, male apes were more susceptible to framing than were females. These results suggest that some human economic biases are shared through common descent with other apes and highlight the importance of comparative work in understanding the origins of individual differences in human choice. PMID:25672997
The Common Ancestor of Archaea and Eukarya Was Not an Archaeon
Forterre, Patrick
2013-01-01
It is often assumed that eukarya originated from archaea. This view has been recently supported by phylogenetic analyses in which eukarya are nested within archaea. Here, I argue that these analyses are not reliable, and I critically discuss archaeal ancestor scenarios, as well as fusion scenarios for the origin of eukaryotes. Based on recognized evolutionary trends toward reduction in archaea and toward complexity in eukarya, I suggest that their last common ancestor was more complex than modern archaea but simpler than modern eukaryotes (the bug in-between scenario). I propose that the ancestors of archaea (and bacteria) escaped protoeukaryotic predators by invading high temperature biotopes, triggering their reductive evolution toward the “prokaryotic” phenotype (the thermoreduction hypothesis). Intriguingly, whereas archaea and eukarya share many basic features at the molecular level, the archaeal mobilome resembles more the bacterial than the eukaryotic one. I suggest that selection of different parts of the ancestral virosphere at the onset of the three domains played a critical role in shaping their respective biology. Eukarya probably evolved toward complexity with the help of retroviruses and large DNA viruses, whereas similar selection pressure (thermoreduction) could explain why the archaeal and bacterial mobilomes somehow resemble each other. PMID:24348094
The common ancestor of archaea and eukarya was not an archaeon.
Forterre, Patrick
2013-01-01
It is often assumed that eukarya originated from archaea. This view has been recently supported by phylogenetic analyses in which eukarya are nested within archaea. Here, I argue that these analyses are not reliable, and I critically discuss archaeal ancestor scenarios, as well as fusion scenarios for the origin of eukaryotes. Based on recognized evolutionary trends toward reduction in archaea and toward complexity in eukarya, I suggest that their last common ancestor was more complex than modern archaea but simpler than modern eukaryotes (the bug in-between scenario). I propose that the ancestors of archaea (and bacteria) escaped protoeukaryotic predators by invading high temperature biotopes, triggering their reductive evolution toward the "prokaryotic" phenotype (the thermoreduction hypothesis). Intriguingly, whereas archaea and eukarya share many basic features at the molecular level, the archaeal mobilome resembles more the bacterial than the eukaryotic one. I suggest that selection of different parts of the ancestral virosphere at the onset of the three domains played a critical role in shaping their respective biology. Eukarya probably evolved toward complexity with the help of retroviruses and large DNA viruses, whereas similar selection pressure (thermoreduction) could explain why the archaeal and bacterial mobilomes somehow resemble each other.
Emergence of novel canine parvovirus type 2 and its pathogenesis in raccoon dogs.
Jia-Yu, Yu; Qian, Zhu; Fei-Fei, Diao; Chuan-Jie, Teng; Hui, Peng; Yuan-Yuan, Shang; Yong-Feng, Zhao; Jian-Li, Wang; Jiang, Shijin; Zhi-Jing, Xie
2018-03-01
Three parvoviruses were isolated from the raccoon dogs experiencing severe enteritis, named RDPV-DP1, RDPV-DP2 and RDPV-DP3, respectively. The VP2 genes of the 3 isolates showed 99.9% identity at the nucleotide level, and shared 99.1%-99.5% identity with the reference CPVs. The RDPVs resembled original CPV-2, but with four mutations. The RDPVs displayed S297A of VP2 protein as CPV-2a or CPV-2b prevalent throughout most of the world. Residue N375D was found in the 3 isolates, resembling CPV-2a/2b/2c. And the 3 isolates had a natural mutation of VP2 residue V562L, which is adjacent to residue 564 and 568 and might be involved in host range. Interestingly, VP2 S27T was firstly found in the isolates. Phylogenetic analysis of VP2 genes revealed that the RDPVs were clustered into one small evolutionary branch and shared the identical branch with 7 CPV-2 isolates from raccoon dogs and one CPV-2 isolate from fox, not with CPV vaccine viruses. Phylogenetic analysis of NS1 genes demonstrated that the RDPVs shared the identical branch with the reference CPV-2a/2b/2c. Experimental infection showed that RDPV infection caused a high morbidity in raccoon dogs. It implied that the RDPV was virulent to raccoon dogs and continued to evolve in China. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
MacDonald, Teresa Elise
This exploratory study sought to investigate the influence of tree graphic design---specifically linear versus branching depictions of taxa---on visitors in three different age groups (aged 11-13, 14-18, adults) interpretation and understanding using a multiple-case study strategy. The findings from this research indicate that linear and branched depictions elicit qualitatively different narratives and explanations about the relationships between the taxa in all age groups. Branched tree graphics support scientifically appropriate explanations of evolutionary relationships, i.e. that taxa are related via shared or common ancestry; while linear representations reinforce intuitive interpretations of ancestor-descendant or anagenic relationships. Furthermore, differences in the language used for linear and branched trees suggests that there is a spectrum within an analogy of developmental change that is thought to serve as a transitional concept between intuitive and scientific understanding--with 'evolved from' for branched depictions of taxa representing a shift towards an interpretation of shared ancestry rather than an individual transformation from one thing into another. In addition, branched graphics appear to support the correct reading and interpretation of shared or common ancestry in tree diagrams. Mixed reasoning was common and overall reasoning patterns were broadly similar among participants in all age groups, however, older youth (aged 14 to 18) and adults often provided more detail in their explanations and sometimes included references to evolutionary ideas such as variation, inheritance and selection.
Roots of angiosperm formins: The evolutionary history of plant FH2 domain-containing proteins
2008-01-01
Background Shuffling of modular protein domains is an important source of evolutionary innovation. Formins are a family of actin-organizing proteins that share a conserved FH2 domain but their overall domain architecture differs dramatically between opisthokonts (metazoans and fungi) and plants. We performed a phylogenomic analysis of formins in most eukaryotic kingdoms, aiming to reconstruct an evolutionary scenario that may have produced the current diversity of domain combinations with focus on the origin of the angiosperm formin architectures. Results The Rho GTPase-binding domain (GBD/FH3) reported from opisthokont and Dictyostelium formins was found in all lineages except plants, suggesting its ancestral character. Instead, mosses and vascular plants possess the two formin classes known from angiosperms: membrane-anchored Class I formins and Class II formins carrying a PTEN-like domain. PTEN-related domains were found also in stramenopile formins, where they have been probably acquired independently rather than by horizontal transfer, following a burst of domain rearrangements in the chromalveolate lineage. A novel RhoGAP-related domain was identified in some algal, moss and lycophyte (but not angiosperm) formins that define a specific branch (Class III) of the formin family. Conclusion We propose a scenario where formins underwent multiple domain rearrangements in several eukaryotic lineages, especially plants and chromalveolates. In plants this replaced GBD/FH3 by a probably inactive RhoGAP-like domain, preserving a formin-mediated association between (membrane-anchored) Rho GTPases and the actin cytoskeleton. Subsequent amplification of formin genes, possibly coincident with the expansion of plants to dry land, was followed by acquisition of alternative membrane attachment mechanisms present in extant Class I and Class II formins, allowing later loss of the RhoGAP-like domain-containing formins in angiosperms. PMID:18430232
[MiRNA system in unicellular eukaryotes and its evolutionary implications].
Zhang, Yan-Qiong; Wen, Jian-Fan
2010-02-01
microRNAs (miRNAs) in higher multicellular eukaryotes have been extensively studied in recent years. Great progresses have also been achieved for miRNAs in unicellular eukaryotes. All these studies not only enrich our knowledge about the complex expression regulation system in diverse organisms, but also have evolutionary significance for understanding the origin of this system. In this review, Authors summarize the recent advance in the studies of miRNA in unicellular eukaryotes, including that on the most primitive unicellular eukaryote--Giardia. The origin and evolution of miRNA system is also discussed.
The evolutionary sequence: origin and emergences.
Fox, S W
1986-03-01
The evolutionary sequence is being reexamined experimentally from a "Big Bang"origin to the protocell and from the emergence of protocell and variety of species to Darwin's mental power (mind) and society (The Descent of Man). A most fundamentally revisionary consequence of experiments is an emphasis on endogenous ordering. This principle, seen vividly in ordered copolymerization of amino acids, has had new impact on the theory of Darwinian evolution and has been found to apply to the entire sequence. Herein, I will discuss some problems of dealing with teaching controversial subjects.
The evolutionary sequence: origin and emergences
NASA Technical Reports Server (NTRS)
Fox, S. W.
1986-01-01
The evolutionary sequence is being reexamined experimentally from a "Big Bang"origin to the protocell and from the emergence of protocell and variety of species to Darwin's mental power (mind) and society (The Descent of Man). A most fundamentally revisionary consequence of experiments is an emphasis on endogenous ordering. This principle, seen vividly in ordered copolymerization of amino acids, has had new impact on the theory of Darwinian evolution and has been found to apply to the entire sequence. Herein, I will discuss some problems of dealing with teaching controversial subjects.
Tinkering: a conceptual and historical evaluation.
Laubichler, Manfred D
2007-01-01
Francois Jacob's article 'Evolution and Tinkering' published in Science in 1977 is still the locus classicus for the concept of tinkering in biology. It first introduced the notion of tinkering to a wide audience of scientists. Jacob drew on a variety of different sources ranging from molecular biology to evolutionary biology and cultural anthropology. The notion of tinkering, or more accurately, the concept of bricolage, are conceptual abstractions that allow for the theoretical analysis of a wide range of phenomena that are united by a shared underlying process--tinkering, or the opportunistic rearrangement and recombination of existing elements. This paper looks at Jacob's analysis as itself an example of conceptual tinkering. It traces the history of some of its elements and sketches how it has become part of an inclusive discourse of theoretical biology and evolutionary developmental biology that emerged over the last 30 years. I will argue that the theoretical power of Jacob's analysis lies in the fact that he captured a widespread phenomenon. His conceptual analysis is thus an example of an interdisciplinary synthesis that is based on a shared process rather than a shared object.
Evolution and Structural Organization of the C Proteins of Paramyxovirinae
Karlin, David G.
2014-01-01
The phosphoprotein (P) gene of most Paramyxovirinae encodes several proteins in overlapping frames: P and V, which share a common N-terminus (PNT), and C, which overlaps PNT. Overlapping genes are of particular interest because they encode proteins originated de novo, some of which have unknown structural folds, challenging the notion that nature utilizes only a limited, well-mapped area of fold space. The C proteins cluster in three groups, comprising measles, Nipah, and Sendai virus. We predicted that all C proteins have a similar organization: a variable, disordered N-terminus and a conserved, α-helical C-terminus. We confirmed this predicted organization by biophysically characterizing recombinant C proteins from Tupaia paramyxovirus (measles group) and human parainfluenza virus 1 (Sendai group). We also found that the C of the measles and Nipah groups have statistically significant sequence similarity, indicating a common origin. Although the C of the Sendai group lack sequence similarity with them, we speculate that they also have a common origin, given their similar genomic location and structural organization. Since C is dispensable for viral replication, unlike PNT, we hypothesize that C may have originated de novo by overprinting PNT in the ancestor of Paramyxovirinae. Intriguingly, in measles virus and Nipah virus, PNT encodes STAT1-binding sites that overlap different regions of the C-terminus of C, indicating they have probably originated independently. This arrangement, in which the same genetic region encodes simultaneously a crucial functional motif (a STAT1-binding site) and a highly constrained region (the C-terminus of C), seems paradoxical, since it should severely reduce the ability of the virus to adapt. The fact that it originated twice suggests that it must be balanced by an evolutionary advantage, perhaps from reducing the size of the genetic region vulnerable to mutations. PMID:24587180
Darwin and Spencer on the origin of music: is music the food of love?
Kleinman, Kim
2015-01-01
Finding an evolutionary explanation for the origins of music serves as a rich test of broader ideas on the emergence of mind and the evolution of mental processes. Charles Darwin and Herbert Spencer both offered evolutionary explanations for the origins of music, indicating the importance of the question for these two leading nineteenth-century students of "descent with modification." Their discussion unfolded between the publication of Spencer's "The origin and function of music" in 1857 and Darwin's commentaries on music in The Descent of Man in 1871 with an addendum Spencer offered to his original article in light of Darwin's views. They had conflicting views on the lines of causation, asked differing questions, and had fundamentally different approaches. Their exchange laid the foundation for the discussion among contemporary adaptationists and nonadaptationists and contributed to the thinking of those who argue for Mixed Origins of Music or that it is a Transformative Technology of Mind. © 2015 Elsevier B.V. All rights reserved.
The contribution of statistical physics to evolutionary biology.
de Vladar, Harold P; Barton, Nicholas H
2011-08-01
Evolutionary biology shares many concepts with statistical physics: both deal with populations, whether of molecules or organisms, and both seek to simplify evolution in very many dimensions. Often, methodologies have undergone parallel and independent development, as with stochastic methods in population genetics. Here, we discuss aspects of population genetics that have embraced methods from physics: non-equilibrium statistical mechanics, travelling waves and Monte-Carlo methods, among others, have been used to study polygenic evolution, rates of adaptation and range expansions. These applications indicate that evolutionary biology can further benefit from interactions with other areas of statistical physics; for example, by following the distribution of paths taken by a population through time. Copyright © 2011 Elsevier Ltd. All rights reserved.
Balasubramaniam, Shandiya; Bray, Rebecca D; Mulder, Raoul A; Sunnucks, Paul; Pavlova, Alexandra; Melville, Jane
2016-05-21
The major histocompatibility complex (MHC) plays a crucial role in the adaptive immune system and has been extensively studied across vertebrate taxa. Although the function of MHC genes appears to be conserved across taxa, there is great variation in the number and organisation of these genes. Among avian species, for instance, there are notable differences in MHC structure between passerine and non-passerine lineages: passerines typically have a high number of highly polymorphic MHC paralogs whereas non-passerines have fewer loci and lower levels of polymorphism. Although the occurrence of highly polymorphic MHC paralogs in passerines is well documented, their evolutionary origins are relatively unexplored. The majority of studies have focussed on the more derived passerine lineages and there is very little empirical information on the diversity of the MHC in basal passerine lineages. We undertook a study of MHC diversity and evolutionary relationships across seven species from four families (Climacteridae, Maluridae, Pardalotidae, Meliphagidae) that comprise a prominent component of the basal passerine lineages. We aimed to determine if highly polymorphic MHC paralogs have an early evolutionary origin within passerines or are a more derived feature of the infraorder Passerida. We identified 177 alleles of the MHC class II β exon 2 in seven basal passerine species, with variation in numbers of alleles across individuals and species. Overall, we found evidence of multiple gene loci, pseudoalleles, trans-species polymorphism and high allelic diversity in these basal lineages. Phylogenetic reconstruction of avian lineages based on MHC class II β exon 2 sequences strongly supported the monophyletic grouping of basal and derived passerine species. Our study provides evidence of a large number of highly polymorphic MHC paralogs in seven basal passerine species, with strong similarities to the MHC described in more derived passerine lineages rather than the simpler MHC in non-passerine lineages. These findings indicate an early evolutionary origin of highly polymorphic MHC paralogs in passerines and shed light on the evolutionary forces shaping the avian MHC.
The drug target genes show higher evolutionary conservation than non-target genes.
Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie
2016-01-26
Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.
Comparative Phylodynamics of Rabbit Hemorrhagic Disease Virus in Australia and New Zealand
Eden, John-Sebastian; Kovaliski, John; Duckworth, Janine A.; Swain, Grace; Mahar, Jackie E.; Strive, Tanja
2015-01-01
ABSTRACT The introduction of rabbit hemorrhagic disease virus (RHDV) into Australia and New Zealand during the 1990s as a means of controlling feral rabbits is an important case study in viral emergence. Both epidemics are exceptional in that the founder viruses share an origin and the timing of their release is known, providing a unique opportunity to compare the evolution of a single virus in distinct naive populations. We examined the evolution and spread of RHDV in Australia and New Zealand through a genome-wide evolutionary analysis, including data from 28 newly sequenced RHDV field isolates. Following the release of the Australian inoculum strain into New Zealand, no subsequent mixing of the populations occurred, with viruses from both countries forming distinct groups. Strikingly, the rate of evolution in the capsid gene was higher in the Australian viruses than in those from New Zealand, most likely due to the presence of transient deleterious mutations in the former. However, estimates of both substitution rates and population dynamics were strongly sample dependent, such that small changes in sample composition had an important impact on evolutionary parameters. Phylogeographic analysis revealed a clear spatial structure in the Australian RHDV strains, with a major division between those viruses from western and eastern states. Importantly, RHDV sequences from the state where the virus was first released, South Australia, had the greatest diversity and were diffuse throughout both geographic lineages, such that this region was likely a source population for the subsequent spread of the virus across the country. IMPORTANCE Most studies of viral emergence lack detailed knowledge about which strains were founders for the outbreak or when these events occurred. Hence, the human-mediated introduction of rabbit hemorrhagic disease virus (RHDV) into Australia and New Zealand from known starting stocks provides a unique opportunity to understand viral evolution and emergence. Within Australia, we revealed a major phylogenetic division between viruses sampled from the east and west of the country, with both regions likely seeded by viruses from South Australia. Despite their common origins, marked differences in evolutionary rates were observed between the Australian and New Zealand RHDV, which led to conflicting conclusions about population growth rates. An analysis of mutational patterns suggested that evolutionary rates have been elevated in the Australian viruses, at least in part due to the presence of low-fitness (deleterious) variants that have yet to be selectively purged. PMID:26157125
The scope and strength of sex-specific selection in genome evolution.
Wright, A E; Mank, J E
2013-09-01
Males and females share the vast majority of their genomes and yet are often subject to different, even conflicting, selection. Genomic and transcriptomic developments have made it possible to assess sex-specific selection at the molecular level, and it is clear that sex-specific selection shapes the evolutionary properties of several genomic characteristics, including transcription, post-transcriptional regulation, imprinting, genome structure and gene sequence. Sex-specific selection is strongly influenced by mating system, which also causes neutral evolutionary changes that affect different regions of the genome in different ways. Here, we synthesize theoretical and molecular work in order to provide a cohesive view of the role of sex-specific selection and mating system in genome evolution. We also highlight the need for a combined approach, incorporating both genomic data and experimental phenotypic studies, in order to understand precisely how sex-specific selection drives evolutionary change across the genome. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Evidence for Evolution from the Vertebrate Fossil Record.
ERIC Educational Resources Information Center
Gingerich, Philip D.
1983-01-01
Discusses three examples of evolutionary transition in the vertebrate fossil record, considering evolutionary transitions at the species level. Uses archaic squirrel-like Paleocine primates, the earliest primates of modern aspect, as examples. Also reviews new evidence on the origin of whales and their transition from land to sea. (JN)
Developmental plasticity and the origin of species differences
West-Eberhard, Mary Jane
2005-01-01
Speciation is the origin of reproductive isolation and divergence between populations, according to the “biological species concept” of Mayr. Studies of reproductive isolation have dominated research on speciation, leaving the origin of species differences relatively poorly understood. Here, I argue that the origin of species differences, and of novel phenotypes in general, involves the reorganization of ancestral phenotypes (developmental recombination) followed by the genetic accommodation of change. Because selection acts on phenotypes, not directly on genotypes or genes, novel traits can originate by environmental induction as well as mutation, then undergo selection and genetic accommodation fueled by standing genetic variation or by subsequent mutation and genetic recombination. Insofar as phenotypic novelties arise from adaptive developmental plasticity, they are not “random” variants, because their initial form reflects adaptive responses with an evolutionary history, even though they are initiated by mutations or novel environmental factors that are random with respect to (future) adaptation. Change in trait frequency involves genetic accommodation of the threshold or liability for expression of a novel trait, a process that follows rather than directs phenotypic change. Contrary to common belief, environmentally initiated novelties may have greater evolutionary potential than mutationally induced ones. Thus, genes are probably more often followers than leaders in evolutionary change. Species differences can originate before reproductive isolation and contribute to the process of speciation itself. Therefore, the genetics of speciation can profit from studies of changes in gene expression as well as changes in gene frequency and genetic isolation. PMID:15851679
Grigoraki, Linda; Pipini, Dimitra; Labbé, Pierrick; Chaskopoulou, Alexandra; Weill, Mylene; Vontas, John
2017-01-01
Background Aedes albopictus is one of the most invasive human disease vectors. Its control has been largely based on insecticides, such as the larvicide temephos. Temephos resistance has been associated with the up-regulation, through gene amplification, of two carboxylesterase (CCE) genes closely linked on the genome, capable of sequestering and metabolizing temephos oxon, the activated form of temephos. Principal findings Here, we investigated the occurrence, geographical distribution and origin of the CCE amplicon in Ae. albopictus populations from several geographical regions worldwide. The haplotypic diversity at the CCEae3a locus revealed high polymorphism, while phylogenetic analysis showed an absence of correlation between haplotype similarity and geographic origin. Two types of esterase amplifications were found, in two locations only (Athens and Florida): one, previously described, results in the amplification of both CCEae3a and CCEae6a; the second is being described for the first time and results in the amplification of CCEae3a only. The two amplification events are independent, as confirmed by sequence analysis. All individuals from Athens and Florida carrying the CCEae3a-CCEae6a co-amplicon share a common haplotype, indicating a single amplification event, which spread between the two countries. Significance The importance of passive transportation of disease vectors, including individuals carrying resistance mechanisms, is discussed in the light of efficient and sustainable vector control strategies. PMID:28394886
Emergence of evolutionary cycles in size-structured food webs.
Ritterskamp, Daniel; Bearup, Daniel; Blasius, Bernd
2016-11-07
The interplay of population dynamics and evolution within ecological communities has been of long-standing interest for ecologists and can give rise to evolutionary cycles, e.g. taxon cycles. Evolutionary cycling was intensely studied in small communities with asymmetric competition; the latter drives the evolutionary processes. Here we demonstrate that evolutionary cycling arises naturally in larger communities if trophic interactions are present, since these are intrinsically asymmetric. To investigate the evolutionary dynamics of a trophic community, we use an allometric food web model. We find that evolutionary cycles emerge naturally for a large parameter ranges. The origin of the evolutionary dynamics is an intrinsic asymmetry in the feeding kernel which creates an evolutionary ratchet, driving species towards larger bodysize. We reveal different kinds of cycles: single morph cycles, and coevolutionary and mixed cycling of complete food webs. The latter refers to the case where each trophic level can have different evolutionary dynamics. We discuss the generality of our findings and conclude that ongoing evolution in food webs may be more frequent than commonly believed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hudson, Nicholas J; Naval-Sánchez, Marina; Porto-Neto, Laercio; Pérez-Enciso, Miguel; Reverter, Antonio
2018-06-05
Asian and European wild boars were independently domesticated ca. 10,000 years ago. Since the 17th century, Chinese breeds have been imported to Europe to improve the genetics of European animals by introgression of favourable alleles, resulting in a complex mosaic of haplotypes. To interrogate the structure of these haplotypes further, we have run a new haplotype segregation analysis based on information theory, namely compression efficiency (CE). We applied the approach to sequence data from individuals from each phylogeographic region (n = 23 from Asia and Europe) including a number of major pig breeds. Our genome-wide CE is able to discriminate the breeds in a manner reflecting phylogeography. Furthermore, 24,956 non-overlapping sliding windows (each comprising 1,000 consecutive SNP) were quantified for extent of haplotype sharing within and between Asia and Europe. The genome-wide distribution of extent of haplotype sharing was quite different between groups. Unlike European pigs, Asian pigs haplotype sharing approximates a normal distribution. In line with this, we found the European breeds possessed a number of genomic windows of dramatically higher haplotype sharing than the Asian breeds. Our CE analysis of sliding windows capture some of the genomic regions reported to contain signatures of selection in domestic pigs. Prominent among these regions, we highlight the role of a gene encoding the mitochondrial enzyme LACTB which has been associated with obesity, and the gene encoding MYOG a fundamental transcriptional regulator of myogenesis. The origin of these regions likely reflects either a population bottleneck in European animals, or selective targets on commercial phenotypes reducing allelic diversity in particular genes and/or regulatory regions.
Piperno, Dolores R.
2017-01-01
The development of agricultural societies, one of the most transformative events in human and ecological history, was made possible by plant and animal domestication. Plant domestication began 12,000–10,000 y ago in a number of major world areas, including the New World tropics, Southwest Asia, and China, during a period of profound global environmental perturbations as the Pleistocene epoch ended and transitioned into the Holocene. Domestication is at its heart an evolutionary process, and for many prehistorians evolutionary theory has been foundational in investigating agricultural origins. Similarly, geneticists working largely with modern crops and their living wild progenitors have documented some of the mechanisms that underwrote phenotypic transformations from wild to domesticated species. Ever-improving analytic methods for retrieval of empirical data from archaeological sites, together with advances in genetic, genomic, epigenetic, and experimental research on living crop plants and wild progenitors, suggest that three fields of study currently little applied to plant domestication processes may be necessary to understand these transformations across a range of species important in early prehistoric agriculture. These fields are phenotypic (developmental) plasticity, niche construction theory, and epigenetics with transgenerational epigenetic inheritance. All are central in a controversy about whether an Extended Evolutionary Synthesis is needed to reconceptualize how evolutionary change occurs. An exploration of their present and potential utility in domestication study shows that all three fields have considerable promise in elucidating important issues in plant domestication and in agricultural origin and dispersal research and should be increasingly applied to these issues. PMID:28576881
Patel, Vir D; Capra, John A
2017-08-31
microRNAs (miRNAs) are essential to the regulation of gene expression in eukaryotes, and improper expression of miRNAs contributes to hundreds of diseases. Despite the essential functions of miRNAs, the evolutionary dynamics of how they are integrated into existing gene regulatory and functional networks is not well understood. Knowledge of the origin and evolutionary history a gene has proven informative about its functions and disease associations; we hypothesize that incorporating the evolutionary origins of miRNAs into analyses will help resolve differences in their functional dynamics and how they influence disease. We computed the phylogenetic age of miRNAs across 146 species and quantified the relationship between human miRNA age and several functional attributes. Older miRNAs are significantly more likely to be associated with disease than younger miRNAs, and the number of associated diseases increases with age. As has been observed for genes, the miRNAs associated with different diseases have different age profiles. For example, human miRNAs implicated in cancer are enriched for origins near the dawn of animal multicellularity. Consistent with the increasing contribution of miRNAs to disease with age, older miRNAs target more genes than younger miRNAs, and older miRNAs are expressed in significantly more tissues. Furthermore, miRNAs of all ages exhibit a strong preference to target older genes; 93% of validated miRNA gene targets were in existence at the origin of the targeting miRNA. Finally, we find that human miRNAs in evolutionarily related families are more similar in their targets and expression profiles than unrelated miRNAs. Considering the evolutionary origin and history of a miRNA provides useful context for the analysis of its function. Consistent with recent work in Drosophila, our results support a model in which miRNAs increase their expression and functional regulatory interactions over evolutionary time, and thus older miRNAs have increased potential to cause disease. We anticipate that these patterns hold across mammalian species; however, comprehensively evaluating them will require refining miRNA annotations across species and collecting functional data in non-human systems.
Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster
Wang, Wen; Brunet, Frédéric G.; Nevo, Eviatar; Long, Manyuan
2002-01-01
Non-protein-coding RNA genes play an important role in various biological processes. How new RNA genes originated and whether this process is controlled by similar evolutionary mechanisms for the origin of protein-coding genes remains unclear. A young chimeric RNA gene that we term sphinx (spx) provides the first insight into the early stage of evolution of RNA genes. spx originated as an insertion of a retroposed sequence of the ATP synthase chain F gene at the cytological region 60DB since the divergence of Drosophila melanogaster from its sibling species 2–3 million years ago. This retrosequence, which is located at 102F on the fourth chromosome, recruited a nearby exon and intron, thereby evolving a chimeric gene structure. This molecular process suggests that the mechanism of exon shuffling, which can generate protein-coding genes, also plays a role in the origin of RNA genes. The subsequent evolutionary process of spx has been associated with a high nucleotide substitution rate, possibly driven by a continuous positive Darwinian selection for a novel function, as is shown in its sex- and development-specific alternative splicing. To test whether spx has adapted to different environments, we investigated its population genetic structure in the unique “Evolution Canyon” in Israel, revealing a similar haplotype structure in spx, and thus similar evolutionary forces operating on spx between environments. PMID:11904380
Culture extends the scope of evolutionary biology in the great apes.
Whiten, Andrew
2017-07-24
Discoveries about the cultures and cultural capacities of the great apes have played a leading role in the recognition emerging in recent decades that cultural inheritance can be a significant factor in the lives not only of humans but also of nonhuman animals. This prominence derives in part from these primates being those with whom we share the most recent common ancestry, thus offering clues to the origins of our own thoroughgoing reliance on cumulative cultural achievements. In addition, the intense research focus on these species has spawned an unprecedented diversity of complementary methodological approaches, the results of which suggest that cultural phenomena pervade the lives of these apes, with potentially major implications for their broader evolutionary biology. Here I review what this extremely broad array of observational and experimental methodologies has taught us about the cultural lives of chimpanzees, gorillas, and orangutans and consider the ways in which this knowledge extends our wider understanding of primate biology and the processes of adaptation and evolution that shape it. I address these issues first by evaluating the extent to which the results of cultural inheritance echo a suite of core principles that underlie organic Darwinian evolution but also extend them in new ways and then by assessing the principal causal interactions between the primary, genetically based organic processes of evolution and the secondary system of cultural inheritance that is based on social learning from others.
Broderick, Nichole A
2016-05-26
Drosophila melanogaster lives, breeds and feeds on fermenting fruit, an environment that supports a high density, and often a diversity, of microorganisms. This association with such dense microbe-rich environments has been proposed as a reason that D. melanogaster evolved a diverse and potent antimicrobial peptide (AMP) response to microorganisms, especially to combat potential pathogens that might occupy this niche. Yet, like most animals, D. melanogaster also lives in close association with the beneficial microbes that comprise its microbiota, or microbiome, and recent studies have shown that antimicrobial peptides (AMPs) of the epithelial immune response play an important role in dictating these interactions and controlling the host response to gut microbiota. Moreover, D. melanogaster also eats microbes for food, consuming fermentative microbes of decaying plant material and their by-products as both larvae and adults. The processes of nutrient acquisition and host defence are remarkably similar and use shared functions for microbe detection and response, an observation that has led to the proposal that the digestive and immune systems have a common evolutionary origin. In this manner, D. melanogaster provides a powerful model to understand how, and whether, hosts differentiate between the microbes they encounter across this spectrum of associations.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).
2016-01-01
Drosophila melanogaster lives, breeds and feeds on fermenting fruit, an environment that supports a high density, and often a diversity, of microorganisms. This association with such dense microbe-rich environments has been proposed as a reason that D. melanogaster evolved a diverse and potent antimicrobial peptide (AMP) response to microorganisms, especially to combat potential pathogens that might occupy this niche. Yet, like most animals, D. melanogaster also lives in close association with the beneficial microbes that comprise its microbiota, or microbiome, and recent studies have shown that antimicrobial peptides (AMPs) of the epithelial immune response play an important role in dictating these interactions and controlling the host response to gut microbiota. Moreover, D. melanogaster also eats microbes for food, consuming fermentative microbes of decaying plant material and their by-products as both larvae and adults. The processes of nutrient acquisition and host defence are remarkably similar and use shared functions for microbe detection and response, an observation that has led to the proposal that the digestive and immune systems have a common evolutionary origin. In this manner, D. melanogaster provides a powerful model to understand how, and whether, hosts differentiate between the microbes they encounter across this spectrum of associations. This article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’. PMID:27160597
Defensins and the convergent evolution of platypus and reptile venom genes.
Whittington, Camilla M; Papenfuss, Anthony T; Bansal, Paramjit; Torres, Allan M; Wong, Emily S W; Deakin, Janine E; Graves, Tina; Alsop, Amber; Schatzkamer, Kyriena; Kremitzki, Colin; Ponting, Chris P; Temple-Smith, Peter; Warren, Wesley C; Kuchel, Philip W; Belov, Katherine
2008-06-01
When the platypus (Ornithorhynchus anatinus) was first discovered, it was thought to be a taxidermist's hoax, as it has a blend of mammalian and reptilian features. It is a most remarkable mammal, not only because it lays eggs but also because it is venomous. Rather than delivering venom through a bite, as do snakes and shrews, male platypuses have venomous spurs on each hind leg. The platypus genome sequence provides a unique opportunity to unravel the evolutionary history of many of these interesting features. While searching the platypus genome for the sequences of antimicrobial defensin genes, we identified three Ornithorhynchus venom defensin-like peptide (OvDLP) genes, which produce the major components of platypus venom. We show that gene duplication and subsequent functional diversification of beta-defensins gave rise to these platypus OvDLPs. The OvDLP genes are located adjacent to the beta-defensins and share similar gene organization and peptide structures. Intriguingly, some species of snakes and lizards also produce venoms containing similar molecules called crotamines and crotamine-like peptides. This led us to trace the evolutionary origins of other components of platypus and reptile venom. Here we show that several venom components have evolved separately in the platypus and reptiles. Convergent evolution has repeatedly selected genes coding for proteins containing specific structural motifs as templates for venom molecules.
Defensins and the convergent evolution of platypus and reptile venom genes
Whittington, Camilla M.; Papenfuss, Anthony T.; Bansal, Paramjit; Torres, Allan M.; Wong, Emily S.W.; Deakin, Janine E.; Graves, Tina; Alsop, Amber; Schatzkamer, Kyriena; Kremitzki, Colin; Ponting, Chris P.; Temple-Smith, Peter; Warren, Wesley C.; Kuchel, Philip W.; Belov, Katherine
2008-01-01
When the platypus (Ornithorhynchus anatinus) was first discovered, it was thought to be a taxidermist’s hoax, as it has a blend of mammalian and reptilian features. It is a most remarkable mammal, not only because it lays eggs but also because it is venomous. Rather than delivering venom through a bite, as do snakes and shrews, male platypuses have venomous spurs on each hind leg. The platypus genome sequence provides a unique opportunity to unravel the evolutionary history of many of these interesting features. While searching the platypus genome for the sequences of antimicrobial defensin genes, we identified three Ornithorhynchus venom defensin-like peptide (OvDLP) genes, which produce the major components of platypus venom. We show that gene duplication and subsequent functional diversification of beta-defensins gave rise to these platypus OvDLPs. The OvDLP genes are located adjacent to the beta-defensins and share similar gene organization and peptide structures. Intriguingly, some species of snakes and lizards also produce venoms containing similar molecules called crotamines and crotamine-like peptides. This led us to trace the evolutionary origins of other components of platypus and reptile venom. Here we show that several venom components have evolved separately in the platypus and reptiles. Convergent evolution has repeatedly selected genes coding for proteins containing specific structural motifs as templates for venom molecules. PMID:18463304
Zhao, Yaofeng; Cui, Huiting; Whittington, Camilla M; Wei, Zhiguo; Zhang, Xiaofeng; Zhang, Ziding; Yu, Li; Ren, Liming; Hu, Xiaoxiang; Zhang, Yaping; Hellman, Lars; Belov, Katherine; Li, Ning; Hammarström, Lennart
2009-09-01
The evolutionary origins of mammalian immunoglobulin H chain isotypes (IgM, IgD, IgG, IgE, and IgA) are still incompletely understood as these isotypes differ considerably in structure and number from their counterparts in nonmammalian tetrapods. We report in this study that the platypus (Ornithorhynchus anatinus) Ig H chain constant region gene locus contains eight Ig encoding genes, which are arranged in an mu-delta-omicron-gamma2-gamma1-alpha1-epsilon-alpha2 order, spanning a total of approximately 200 kb DNA, encoding six distinct isotypes. The omicron (omicron for Ornithorhynchus) gene encodes a novel Ig H chain isotype that consists of four constant region domains and a hinge, and is structurally different from any of the five known mammalian Ig classes. This gene is phylogenetically related to upsilon (epsilon) and gamma, and thus appears to be a structural intermediate between these two genes. The platypus delta gene encodes ten heavy chain constant region domains, lacks a hinge region and is similar to IgD in amphibians and fish, but strikingly different from that in eutherian mammals. The platypus Ig H chain isotype repertoire thus shows a unique combination of genes that share similarity both to those of nonmammalian tetrapods and eutherian animals and demonstrates how phylogenetically informative species can be used to reconstruct the evolutionary history of functionally important genes.
Sharma, Bharti; Guo, Chunce; Kong, Hongzhi; Kramer, Elena M
2011-08-01
• The petals of the lower eudicot family Ranunculaceae are thought to have been derived many times independently from stamens. However, investigation of the genetic basis of their identity has suggested an alternative hypothesis: that they share a commonly inherited petal identity program. This theory is based on the fact that an ancient paralogous lineage of APETALA3 (AP3) in the Ranunculaceae appears to have a conserved, petal-specific expression pattern. • Here, we have used a combination of approaches, including RNAi, comparative gene expression and molecular evolutionary studies, to understand the function of this petal-specific AP3 lineage. • Functional analysis of the Aquilegia locus AqAP3-3 has demonstrated that the paralog is required for petal identity with little contribution to the identity of the other floral organs. Expanded expression studies and analyses of molecular evolutionary patterns provide further evidence that orthologs of AqAP3-3 are primarily expressed in petals and are under higher purifying selection across the family than the other AP3 paralogs. • Taken together, these findings suggest that the AqAP3-3 lineage underwent progressive subfunctionalization within the order Ranunculales, ultimately yielding a specific role in petal identity that has probably been conserved, in stark contrast with the multiple independent origins predicted by botanical theories. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Culture extends the scope of evolutionary biology in the great apes
2017-01-01
Discoveries about the cultures and cultural capacities of the great apes have played a leading role in the recognition emerging in recent decades that cultural inheritance can be a significant factor in the lives not only of humans but also of nonhuman animals. This prominence derives in part from these primates being those with whom we share the most recent common ancestry, thus offering clues to the origins of our own thoroughgoing reliance on cumulative cultural achievements. In addition, the intense research focus on these species has spawned an unprecedented diversity of complementary methodological approaches, the results of which suggest that cultural phenomena pervade the lives of these apes, with potentially major implications for their broader evolutionary biology. Here I review what this extremely broad array of observational and experimental methodologies has taught us about the cultural lives of chimpanzees, gorillas, and orangutans and consider the ways in which this knowledge extends our wider understanding of primate biology and the processes of adaptation and evolution that shape it. I address these issues first by evaluating the extent to which the results of cultural inheritance echo a suite of core principles that underlie organic Darwinian evolution but also extend them in new ways and then by assessing the principal causal interactions between the primary, genetically based organic processes of evolution and the secondary system of cultural inheritance that is based on social learning from others. PMID:28739927
Evidence for an Ancestral Association of Human Coronavirus 229E with Bats
Corman, Victor Max; Baldwin, Heather J.; Tateno, Adriana Fumie; Zerbinati, Rodrigo Melim; Annan, Augustina; Owusu, Michael; Nkrumah, Evans Ewald; Maganga, Gael Darren; Oppong, Samuel; Adu-Sarkodie, Yaw; Vallo, Peter; da Silva Filho, Luiz Vicente Ribeiro Ferreira; Leroy, Eric M.; Thiel, Volker; van der Hoek, Lia; Poon, Leo L. M.; Tschapka, Marco
2015-01-01
ABSTRACT We previously showed that close relatives of human coronavirus 229E (HCoV-229E) exist in African bats. The small sample and limited genomic characterizations have prevented further analyses so far. Here, we tested 2,087 fecal specimens from 11 bat species sampled in Ghana for HCoV-229E-related viruses by reverse transcription-PCR (RT-PCR). Only hipposiderid bats tested positive. To compare the genetic diversity of bat viruses and HCoV-229E, we tested historical isolates and diagnostic specimens sampled globally over 10 years. Bat viruses were 5- and 6-fold more diversified than HCoV-229E in the RNA-dependent RNA polymerase (RdRp) and spike genes. In phylogenetic analyses, HCoV-229E strains were monophyletic and not intermixed with animal viruses. Bat viruses formed three large clades in close and more distant sister relationships. A recently described 229E-related alpaca virus occupied an intermediate phylogenetic position between bat and human viruses. According to taxonomic criteria, human, alpaca, and bat viruses form a single CoV species showing evidence for multiple recombination events. HCoV-229E and the alpaca virus showed a major deletion in the spike S1 region compared to all bat viruses. Analyses of four full genomes from 229E-related bat CoVs revealed an eighth open reading frame (ORF8) located at the genomic 3′ end. ORF8 also existed in the 229E-related alpaca virus. Reanalysis of HCoV-229E sequences showed a conserved transcription regulatory sequence preceding remnants of this ORF, suggesting its loss after acquisition of a 229E-related CoV by humans. These data suggested an evolutionary origin of 229E-related CoVs in hipposiderid bats, hypothetically with camelids as intermediate hosts preceding the establishment of HCoV-229E. IMPORTANCE The ancestral origins of major human coronaviruses (HCoVs) likely involve bat hosts. Here, we provide conclusive genetic evidence for an evolutionary origin of the common cold virus HCoV-229E in hipposiderid bats by analyzing a large sample of African bats and characterizing several bat viruses on a full-genome level. Our evolutionary analyses show that animal and human viruses are genetically closely related, can exchange genetic material, and form a single viral species. We show that the putative host switches leading to the formation of HCoV-229E were accompanied by major genomic changes, including deletions in the viral spike glycoprotein gene and loss of an open reading frame. We reanalyze a previously described genetically related alpaca virus and discuss the role of camelids as potential intermediate hosts between bat and human viruses. The evolutionary history of HCoV-229E likely shares important characteristics with that of the recently emerged highly pathogenic Middle East respiratory syndrome (MERS) coronavirus. PMID:26378164
The evolutionary origins of Lévy walk foraging
Wosniack, Marina E.
2017-01-01
We study through a reaction-diffusion algorithm the influence of landscape diversity on the efficiency of search dynamics. Remarkably, the identical optimal search strategy arises in a wide variety of environments, provided the target density is sparse and the searcher’s information is restricted to its close vicinity. Our results strongly impact the current debate on the emergentist vs. evolutionary origins of animal foraging. The inherent character of the optimal solution (i.e., independent on the landscape for the broad scenarios assumed here) suggests an interpretation favoring the evolutionary view, as originally implied by the Lévy flight foraging hypothesis. The latter states that, under conditions of scarcity of information and sparse resources, some organisms must have evolved to exploit optimal strategies characterized by heavy-tailed truncated power-law distributions of move lengths. These results strongly suggest that Lévy strategies—and hence the selection pressure for the relevant adaptations—are robust with respect to large changes in habitat. In contrast, the usual emergentist explanation seems not able to explain how very similar Lévy walks can emerge from all the distinct non-Lévy foraging strategies that are needed for the observed large variety of specific environments. We also report that deviations from Lévy can take place in plentiful ecosystems, where locomotion truncation is very frequent due to high encounter rates. So, in this case normal diffusion strategies—performing as effectively as the optimal one—can naturally emerge from Lévy. Our results constitute the strongest theoretical evidence to date supporting the evolutionary origins of experimentally observed Lévy walks. PMID:28972973
The Impact of Lamarck's Theory of Evolution Before Darwin's Theory.
Galera, Andrés
2017-02-01
This paper analyzes the impact that Lamarckian evolutionary theory had in the scientific community during the period between the advent of Zoological Philosophy and the publication Origin of Species. During these 50 years Lamarck's model was a well known theory and it was discussed by the scientific community as a hypothesis to explain the changing nature of the fossil record throughout the history of Earth. Lamarck's transmutation theory established the foundation of an evolutionary model introducing a new way to research in nature. Darwin's selectionist theory was proposed in 1859 to explain the origin of species within this epistemological process. In this context, Charles Lyell's Principles of Geology and Auguste Comte's Cours de Philosophie Positive appear as two major works for the dissemination of Lamarck's evolutionary ideology after the death of the French naturalist in 1829.
What serial homologs can tell us about the origin of insect wings
2017-01-01
Although the insect wing is a textbook example of morphological novelty, the origin of insect wings remains a mystery and is regarded as a chief conundrum in biology. Centuries of debates have culminated into two prominent hypotheses: the tergal origin hypothesis and the pleural origin hypothesis. However, between these two hypotheses, there is little consensus in regard to the origin tissue of the wing as well as the evolutionary route from the origin tissue to the functional flight device. Recent evolutionary developmental (evo-devo) studies have shed new light on the origin of insect wings. A key concept in these studies is “serial homology”. In this review, we discuss how the wing serial homologs identified in recent evo-devo studies have provided a new angle through which this century-old conundrum can be explored. We also review what we have learned so far from wing serial homologs and discuss what we can do to go beyond simply identifying wing serial homologs and delve further into the developmental and genetic mechanisms that have facilitated the evolution of insect wings. PMID:28357056
Repeated parallel evolution reveals limiting similarity in subterranean diving beetles.
Vergnon, Remi; Leijs, Remko; van Nes, Egbert H; Scheffer, Marten
2013-07-01
The theory of limiting similarity predicts that co-occurring species must be sufficiently different to coexist. Although this idea is a staple of community ecology, convincing empirical evidence has been scarce. Here we examine 34 subterranean beetle communities in arid inland Australia that share the same habitat type but have evolved in complete isolation over the past 5 million years. Although these communities come from a range of phylogenetic origins, we find that they have almost invariably evolved to share a similar size structure. The relative positions of coexisting species on the body size axis were significantly more regular across communities than would be expected by chance, with a size ratio, on average, of 1.6 between coexisting species. By contrast, species' absolute body sizes varied substantially from one community to the next. This suggests that self-organized spacing according to limiting-similarity theory, as opposed to evolution toward preexisting fixed niches, shaped the communities. Using a model starting from random sets of founder species, we demonstrate that the patterns are indeed consistent with evolutionary self-organization. For less isolated habitats, the same model predicts the coexistence of multiple species in each regularly spaced functional group. Limiting similarity, therefore, may also be compatible with the coexistence of many redundant species.
Comparative study of the shell development of hard- and soft-shelled turtles
Nagashima, Hiroshi; Shibata, Masahiro; Taniguchi, Mari; Ueno, Shintaro; Kamezaki, Naoki; Sato, Noboru
2014-01-01
The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used – the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin. PMID:24754673
Comparative study of the shell development of hard- and soft-shelled turtles.
Nagashima, Hiroshi; Shibata, Masahiro; Taniguchi, Mari; Ueno, Shintaro; Kamezaki, Naoki; Sato, Noboru
2014-07-01
The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used - the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin. © 2014 Anatomical Society.
A structural analysis of the AAA+ domains in Saccharomyces cerevisiae cytoplasmic dynein
Gleave, Emma S.; Schmidt, Helgo; Carter, Andrew P.
2014-01-01
Dyneins are large protein complexes that act as microtubule based molecular motors. The dynein heavy chain contains a motor domain which is a member of the AAA+ protein family (ATPases Associated with diverse cellular Activities). Proteins of the AAA+ family show a diverse range of functionalities, but share a related core AAA+ domain, which often assembles into hexameric rings. Dynein is unusual because it has all six AAA+ domains linked together, in one long polypeptide. The dynein motor domain generates movement by coupling ATP driven conformational changes in the AAA+ ring to the swing of a motile element called the linker. Dynein binds to its microtubule track via a long antiparallel coiled-coil stalk that emanates from the AAA+ ring. Recently the first high resolution structures of the dynein motor domain were published. Here we provide a detailed structural analysis of the six AAA+ domains using our Saccharomycescerevisiae crystal structure. We describe how structural similarities in the dynein AAA+ domains suggest they share a common evolutionary origin. We analyse how the different AAA+ domains have diverged from each other. We discuss how this is related to the function of dynein as a motor protein and how the AAA+ domains of dynein compare to those of other AAA+ proteins. PMID:24680784
Evolution in Mind: Evolutionary Dynamics, Cognitive Processes, and Bayesian Inference.
Suchow, Jordan W; Bourgin, David D; Griffiths, Thomas L
2017-07-01
Evolutionary theory describes the dynamics of population change in settings affected by reproduction, selection, mutation, and drift. In the context of human cognition, evolutionary theory is most often invoked to explain the origins of capacities such as language, metacognition, and spatial reasoning, framing them as functional adaptations to an ancestral environment. However, evolutionary theory is useful for understanding the mind in a second way: as a mathematical framework for describing evolving populations of thoughts, ideas, and memories within a single mind. In fact, deep correspondences exist between the mathematics of evolution and of learning, with perhaps the deepest being an equivalence between certain evolutionary dynamics and Bayesian inference. This equivalence permits reinterpretation of evolutionary processes as algorithms for Bayesian inference and has relevance for understanding diverse cognitive capacities, including memory and creativity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lemur behaviour informs the evolution of social monogamy.
Kappeler, Peter M
2014-11-01
Recent comparative analyses reached contradictory conclusions about the evolutionary origins of social monogamy in primates and other mammals, but they ignored variation in social bond quality between pair-partners. Recent field studies of Malagasy primates (lemurs) with variable intersexual bonds indicate independent evolutionary transitions to pair-living from solitary and group-living ancestors, respectively, as well as four cumulative steps in evolutionary transitions from a solitary life style to pair-living that resolve some contradictory results of previous studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Full circumpolar migration ensures evolutionary unity in the Emperor penguin.
Cristofari, Robin; Bertorelle, Giorgio; Ancel, André; Benazzo, Andrea; Le Maho, Yvon; Ponganis, Paul J; Stenseth, Nils Chr; Trathan, Phil N; Whittington, Jason D; Zanetti, Enrico; Zitterbart, Daniel P; Le Bohec, Céline; Trucchi, Emiliano
2016-06-14
Defining reliable demographic models is essential to understand the threats of ongoing environmental change. Yet, in the most remote and threatened areas, models are often based on the survey of a single population, assuming stationarity and independence in population responses. This is the case for the Emperor penguin Aptenodytes forsteri, a flagship Antarctic species that may be at high risk continent-wide before 2100. Here, using genome-wide data from the whole Antarctic continent, we reveal that this top-predator is organized as one single global population with a shared demography since the late Quaternary. We refute the view of the local population as a relevant demographic unit, and highlight that (i) robust extinction risk estimations are only possible by including dispersal rates and (ii) colony-scaled population size is rather indicative of local stochastic events, whereas the species' response to global environmental change is likely to follow a shared evolutionary trajectory.
Full circumpolar migration ensures evolutionary unity in the Emperor penguin
Cristofari, Robin; Bertorelle, Giorgio; Ancel, André; Benazzo, Andrea; Le Maho, Yvon; Ponganis, Paul J.; Stenseth, Nils Chr; Trathan, Phil N.; Whittington, Jason D.; Zanetti, Enrico; Zitterbart, Daniel P.; Le Bohec, Céline; Trucchi, Emiliano
2016-01-01
Defining reliable demographic models is essential to understand the threats of ongoing environmental change. Yet, in the most remote and threatened areas, models are often based on the survey of a single population, assuming stationarity and independence in population responses. This is the case for the Emperor penguin Aptenodytes forsteri, a flagship Antarctic species that may be at high risk continent-wide before 2100. Here, using genome-wide data from the whole Antarctic continent, we reveal that this top-predator is organized as one single global population with a shared demography since the late Quaternary. We refute the view of the local population as a relevant demographic unit, and highlight that (i) robust extinction risk estimations are only possible by including dispersal rates and (ii) colony-scaled population size is rather indicative of local stochastic events, whereas the species' response to global environmental change is likely to follow a shared evolutionary trajectory. PMID:27296726
Jung, Kirsten; Molinari, Jesús; Kalko, Elisabeth K V
2014-01-01
Phylogeny, ecology, and sensorial constraints are thought to be the most important factors influencing echolocation call design in bats. The Molossidae is a diverse bat family with a majority of species restricted to tropical and subtropical regions. Most molossids are specialized to forage for insects in open space, and thus share similar navigational challenges. We use an unprecedented dataset on the echolocation calls of 8 genera and 18 species of New World molossids to explore how habitat, phylogenetic relatedness, body mass, and prey perception contribute to echolocation call design. Our results confirm that, with the exception of the genus Molossops, echolocation calls of these bats show a typical design for open space foraging. Two lines of evidence point to echolocation call structure of molossids reflecting phylogenetic relatedness. First, such structure is significantly more similar within than among genera. Second, except for allometric scaling, such structure is nearly the same in congeneric species. Despite contrasting body masses, 12 of 18 species call within a relatively narrow frequency range of 20 to 35 kHz, a finding that we explain by using a modeling approach whose results suggest this frequency range to be an adaptation optimizing prey perception in open space. To conclude, we argue that the high variability in echolocation call design of molossids is an advanced evolutionary trait allowing the flexible adjustment of echolocation systems to various sensorial challenges, while conserving sender identity for social communication. Unraveling evolutionary drivers for echolocation call design in bats has so far been hampered by the lack of adequate model organisms sharing a phylogenetic origin and facing similar sensorial challenges. We thus believe that knowledge of the echolocation call diversity of New World molossid bats may prove to be landmark to understand the evolution and functionality of species-specific signal design in bats.
Jung, Kirsten; Molinari, Jesús
2014-01-01
Phylogeny, ecology, and sensorial constraints are thought to be the most important factors influencing echolocation call design in bats. The Molossidae is a diverse bat family with a majority of species restricted to tropical and subtropical regions. Most molossids are specialized to forage for insects in open space, and thus share similar navigational challenges. We use an unprecedented dataset on the echolocation calls of 8 genera and 18 species of New World molossids to explore how habitat, phylogenetic relatedness, body mass, and prey perception contribute to echolocation call design. Our results confirm that, with the exception of the genus Molossops, echolocation calls of these bats show a typical design for open space foraging. Two lines of evidence point to echolocation call structure of molossids reflecting phylogenetic relatedness. First, such structure is significantly more similar within than among genera. Second, except for allometric scaling, such structure is nearly the same in congeneric species. Despite contrasting body masses, 12 of 18 species call within a relatively narrow frequency range of 20 to 35 kHz, a finding that we explain by using a modeling approach whose results suggest this frequency range to be an adaptation optimizing prey perception in open space. To conclude, we argue that the high variability in echolocation call design of molossids is an advanced evolutionary trait allowing the flexible adjustment of echolocation systems to various sensorial challenges, while conserving sender identity for social communication. Unraveling evolutionary drivers for echolocation call design in bats has so far been hampered by the lack of adequate model organisms sharing a phylogenetic origin and facing similar sensorial challenges. We thus believe that knowledge of the echolocation call diversity of New World molossid bats may prove to be landmark to understand the evolution and functionality of species-specific signal design in bats. PMID:24454833
Chapple, David G; Birkett, Alisha; Miller, Kimberly A; Daugherty, Charles H; Gleeson, Dianne M
2012-01-01
Climatic cooling and substantial tectonic activity since the late Miocene have had a pronounced influence on the evolutionary history of the fauna of New Zealand's South Island. However, many species have recently experienced dramatic range reductions due to habitat fragmentation and the introduction of mammalian predators and competitors. These anthropogenic impacts have been particularly severe in the tussock grasslands of the Otago region. The Otago skink (Oligosoma otagense), endemic to the region, is one of the most critically endangered vertebrates in New Zealand. We use mitochondrial DNA sequence data to investigate the evolutionary history of the Otago skink, examine its population genetic structure, and assess the level of genetic diversity in the individuals in the captive breeding program. Our data indicate that the Otago skink diverged from its closest relatives in the Miocene, consistent with the commencement of tectonic uplift of the Southern Alps. However, there is evidence for past introgression with the scree skink (O. waimatense) in the northern Otago-southern Canterbury region. The remnant populations in eastern Otago and western Otago are estimated to have diverged in the mid-Pliocene, with no haplotypes shared between these two regions. This divergence accounts for 95% of the genetic diversity in the species. Within both regions there is strong genetic structure among populations, although shared haplotypes are generally evident between adjacent localities. Although substantial genetic diversity is present in the captive population, all individuals originate from the eastern region and the majority had haplotypes that were not evident in the intensively managed populations at Macraes Flat. Our data indicate that eastern and western populations should continue to be regarded as separate management units. Knowledge of the genetic diversity of the breeding stock will act to inform the captive management of the Otago skink and contribute to a key recovery action for the species.
Mikó, István; Friedrich, Frank; Yoder, Matthew J.; Hines, Heather M.; Deitz, Lewis L.; Bertone, Matthew A.; Seltmann, Katja C.; Wallace, Matthew S.; Deans, Andrew R.
2012-01-01
A spectacular hypothesis was published recently, which suggested that the “helmet” (a dorsal thoracic sclerite that obscures most of the body) of treehoppers (Insecta: Hemiptera: Membracidae) is connected to the 1st thoracic segment (T1; prothorax) via a jointed articulation and therefore was a true appendage. Furthermore, the “helmet” was interpreted to share multiple characteristics with wings, which in extant pterygote insects are present only on the 2nd (T2) and 3rd (T3) thoracic segments. In this context, the “helmet” could be considered an evolutionary novelty. Although multiple lines of morphological evidence putatively supported the “helmet”-wing homology, the relationship of the “helmet” to other thoracic sclerites and muscles remained unclear. Our observations of exemplar thoraces of 10 hemipteran families reveal multiple misinterpretations relevant to the “helmet”-wing homology hypothesis as originally conceived: 1) the “helmet” actually represents T1 (excluding the fore legs); 2) the “T1 tergum” is actually the anterior dorsal area of T2; 3) the putative articulation between the “helmet” and T1 is actually the articulation between T1 and T2. We conclude that there is no dorsal, articulated appendage on the membracid T1. Although the posterior, flattened, cuticular evagination (PFE) of the membracid T1 does share structural and genetic attributes with wings, the PFE is actually widely distributed across Hemiptera. Hence, the presence of this structure in Membracidae is not an evolutionary novelty for this clade. We discuss this new interpretation of the membracid T1 and the challenges of interpreting and representing morphological data more broadly. We acknowledge that the lack of data standards for morphology is a contributing factor to misinterpreted results and offer an example for how one can reduce ambiguity in morphology by referencing anatomical concepts in published ontologies. PMID:22272287
Evolutionary Biology: Its Value to Society
ERIC Educational Resources Information Center
Carson, Hampton L.
1972-01-01
Cites examples of the contribution of basic research in evolutionary biology to the solution of problems facing society (1) by dispelling myths about human origins, the nature of the individual, and the nature of race (2) by providing basic data concerning the effects of overpopulation, the production of improved sources of food, resistance of…
The evolution of plant-insect mutualisms.
Bronstein, Judith L; Alarcón, Ruben; Geber, Monica
2006-01-01
Mutualisms (cooperative interactions between species) have had a central role in the generation and maintenance of life on earth. Insects and plants are involved in diverse forms of mutualism. Here we review evolutionary features of three prominent insect-plant mutualisms: pollination, protection and seed dispersal. We focus on addressing five central phenomena: evolutionary origins and maintenance of mutualism; the evolution of mutualistic traits; the evolution of specialization and generalization; coevolutionary processes; and the existence of cheating. Several features uniting very diverse insect-plant mutualisms are identified and their evolutionary implications are discussed: the involvement of one mobile and one sedentary partner; natural selection on plant rewards; the existence of a continuum from specialization to generalization; and the ubiquity of cheating, particularly on the part of insects. Plant-insect mutualisms have apparently both arisen and been lost repeatedly. Many adaptive hypotheses have been proposed to explain these transitions, and it is unlikely that any one of them dominates across interactions differing so widely in natural history. Evolutionary theory has a potentially important, but as yet largely unfilled, role to play in explaining the origins, maintenance, breakdown and evolution of insect-plant mutualisms.
Origin and Reticulate Evolutionary Process of Wheatgrass Elymus trachycaulus (Triticeae: Poaceae)
Zuo, Hongwei; Wu, Panpan; Wu, Dexiang; Sun, Genlou
2015-01-01
To study origin and evolutionary dynamics of tetraploid Elymus trachycaulus that has been cytologically defined as containing StH genomes, thirteen accessions of E. trachycaulus were analyzed using two low-copy nuclear gene Pepc (phosphoenolpyruvate carboxylase) and Rpb2 (the second largest subunit of RNA polymerase II), and one chloroplast region trnL–trnF (spacer between the tRNA Leu (UAA) gene and the tRNA-Phe (GAA) gene). Our chloroplast data indicated that Pseudoroegneria (St genome) was the maternal donor of E. trachycaulus. Rpb2 data indicated that the St genome in E. trachycaulus was originated from either P. strigosa, P. stipifolia, P. spicata or P. geniculate. The Hordeum (H genome)-like sequences of E. trachycaulus are polyphyletic in the Pepc tree, suggesting that the H genome in E. trachycaulus was contributed by multiple sources, whether due to multiple origins or introgression resulting from subsequent hybridization. Failure to recovering St copy of Pepc sequence in most accessions of E. trachycaulus might be caused by genome convergent evolution in allopolyploids. Multiple copies of H-like Pepc sequence from each accession with relative large deletions and insertions might be caused by either instability of Pepc sequence in H- genome or incomplete concerted evolution. Our results highlighted complex evolutionary history of E. trachycaulus. PMID:25946188
Wjst, M
2013-12-01
Evolutionary medicine allows new insights into long standing medical problems. Are we "really stoneagers on the fast lane"? This insight might have enormous consequences and will allow new answers that could never been provided by traditional anthropology. Only now this is made possible using data from molecular medicine and systems biology. Thereby evolutionary medicine takes a leap from a merely theoretical discipline to practical fields - reproductive, nutritional and preventive medicine, as well as microbiology, immunology and psychiatry. Evolutionary medicine is not another "just so story" but a serious candidate for the medical curriculum providing a universal understanding of health and disease based on our biological origin. © Georg Thieme Verlag KG Stuttgart · New York.
Derivation of the mammalian skull vault
MORRISS-KAY, GILLIAN M.
2001-01-01
This review describes the evolutionary history of the mammalian skull vault as a basis for understanding its complex structure. Current information on the developmental tissue origins of the skull vault bones (mesoderm and neural crest) is assessed for mammals and other tetrapods. This information is discussed in the context of evolutionary changes in the proportions of the skull vault bones at the sarcopterygian-tetrapod transition. The dual tissue origin of the skull vault is considered in relation to the molecular mechanisms underlying osteogenic cell proliferation and differentiation in the sutural growth centres and in the proportionate contributions of different sutures to skull growth. PMID:11523816
Caetano-Anollés, Gustavo
2013-01-01
Reconstructing the evolutionary history of modern species is a difficult problem complicated by the conceptual and technical limitations of phylogenetic tree building methods. Here, we propose a comparative proteomic and functionomic inferential framework for genome evolution that allows resolving the tripartite division of cells and sketching their history. Evolutionary inferences were derived from the spread of conserved molecular features, such as molecular structures and functions, in the proteomes and functionomes of contemporary organisms. Patterns of use and reuse of these traits yielded significant insights into the origins of cellular diversification. Results uncovered an unprecedented strong evolutionary association between Bacteria and Eukarya while revealing marked evolutionary reductive tendencies in the archaeal genomic repertoires. The effects of nonvertical evolutionary processes (e.g., HGT, convergent evolution) were found to be limited while reductive evolution and molecular innovation appeared to be prevalent during the evolution of cells. Our study revealed a strong vertical trace in the history of proteins and associated molecular functions, which was reliably recovered using the comparative genomics approach. The trace supported the existence of a stem line of descent and the very early appearance of Archaea as a diversified superkingdom, but failed to uncover a hidden canonical pattern in which Bacteria was the first superkingdom to deploy superkingdom-specific structures and functions. PMID:24492748
NASA Astrophysics Data System (ADS)
Smith, Erin Irene
Although beliefs about origins and evolutionary knowledge have been considered independent, research has suggested that both are influenced by cognitive constraints of psychological essentialism and teleology. Most research supporting these claims has been conducted with children from Western cultures; little is known about the psychological processes underpinning beliefs and knowledge about the natural world outside Western contexts or during adolescence. Claims about the universality of beliefs, knowledge, and the possible relationship between should be made after examining samples that differ in theoretically relevant ways from a typical Western sample, such as a Chinese sample in which religious explanations are rare or an adolescent sample in which brain development promotes the coordination of conflicting information. To examine how belief and knowledge are related in Western- and non-Western samples, as well as the factors that predict both independently, 238 Chinese (M = 15.85 years old, SD = .85 years; 36.6% male) and 277 American adolescents (M = 15.80 years, SD = 1.34 years; 51.6% male) were recruited from their high schools to participate. Adolescents completed a survey measuring beliefs about the origin of living and non-living exemplars, evolutionary knowledge, and variables that were likely to influence belief and knowledge such as science preference, epistemology, psychological essentialism, teleological reasoning, and religious beliefs. American adolescents were more creationist than Chinese adolescents. Chinese adolescents displayed more sophisticated evolutionary knowledge than American adolescents although overall performance was low. Finally, there was no relationship between belief and knowledge for American adolescents yet there was a small, positive relationship for Chinese adolescents such that adolescents who believed in creation also tended to demonstrate more evolutionary knowledge. Additional analyses employed mediation techniques to explain why cultural differences in creation belief and evolutionary knowledge exist. Age was unrelated to belief and to knowledge. The discussion focuses on the aspects of cultural membership that contribute to belief and evolutionary knowledge. Additional discussion highlights the role of classroom curriculum, curriculum testing, and focusing on uncovering variables and techniques that promote evolutionary learning.
Evolution of the toxins muscarine and psilocybin in a family of mushroom-forming fungi.
Kosentka, Pawel; Sprague, Sarah L; Ryberg, Martin; Gartz, Jochen; May, Amanda L; Campagna, Shawn R; Matheny, P Brandon
2013-01-01
Mushroom-forming fungi produce a wide array of toxic alkaloids. However, evolutionary analyses aimed at exploring the evolution of muscarine, a toxin that stimulates the parasympathetic nervous system, and psilocybin, a hallucinogen, have never been performed. The known taxonomic distribution of muscarine within the Inocybaceae is limited, based only on assays of species from temperate regions of the northern hemisphere. Here, we present a review of muscarine and psilocybin assays performed on species of Inocybaceae during the last fifty years. To supplement these results, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine whether muscarine was present in 30 new samples of Inocybaceae, the majority of which have not been previously assayed or that originated from either the tropics or temperate regions of the southern hemisphere. Our main objective is to test the hypothesis that the presence of muscarine is a shared ancestral feature of the Inocybaceae. In addition, we also test whether species of Inocyabceae that produce psilocybin are monophyletic. Our findings suggest otherwise. Muscarine has evolved independently on several occasions, together with several losses. We also detect at least two independent transitions of muscarine-free lineages to psilocybin-producing states. Although not ancestral for the family as a whole, muscarine is a shared derived trait for an inclusive clade containing three of the seven major lineages of Inocybaceae (the Inocybe, Nothocybe, and Pseudosperma clades), the common ancestor of which may have evolved ca. 60 million years ago. Thus, muscarine represents a conserved trait followed by several recent losses. Transitions to psilocybin from muscarine-producing ancestors occurred more recently between 10-20 million years ago after muscarine loss in two separate lineages. Statistical analyses firmly reject a single origin of muscarine-producing taxa.
Evolution of the Toxins Muscarine and Psilocybin in a Family of Mushroom-Forming Fungi
Kosentka, Pawel; Sprague, Sarah L.; Ryberg, Martin; Gartz, Jochen; May, Amanda L.; Campagna, Shawn R.; Matheny, P. Brandon
2013-01-01
Mushroom-forming fungi produce a wide array of toxic alkaloids. However, evolutionary analyses aimed at exploring the evolution of muscarine, a toxin that stimulates the parasympathetic nervous system, and psilocybin, a hallucinogen, have never been performed. The known taxonomic distribution of muscarine within the Inocybaceae is limited, based only on assays of species from temperate regions of the northern hemisphere. Here, we present a review of muscarine and psilocybin assays performed on species of Inocybaceae during the last fifty years. To supplement these results, we used liquid chromatography–tandem mass spectrometry (LC–MS/MS) to determine whether muscarine was present in 30 new samples of Inocybaceae, the majority of which have not been previously assayed or that originated from either the tropics or temperate regions of the southern hemisphere. Our main objective is to test the hypothesis that the presence of muscarine is a shared ancestral feature of the Inocybaceae. In addition, we also test whether species of Inocyabceae that produce psilocybin are monophyletic. Our findings suggest otherwise. Muscarine has evolved independently on several occasions, together with several losses. We also detect at least two independent transitions of muscarine-free lineages to psilocybin-producing states. Although not ancestral for the family as a whole, muscarine is a shared derived trait for an inclusive clade containing three of the seven major lineages of Inocybaceae (the Inocybe, Nothocybe, and Pseudosperma clades), the common ancestor of which may have evolved ca. 60 million years ago. Thus, muscarine represents a conserved trait followed by several recent losses. Transitions to psilocybin from muscarine-producing ancestors occurred more recently between 10–20 million years ago after muscarine loss in two separate lineages. Statistical analyses firmly reject a single origin of muscarine-producing taxa. PMID:23717644
Shaukat, Shahzad; Angez, Mehar; Alam, Muhammad Masroor; Sharif, Salmaan; Khurshid, Adnan; Malik, Farzana; Rehman, Lubna; Zaidi, Syed Sohail Zahoor
2014-01-01
Pakistan and Afghanistan share a long uncontrolled border with extensive population movement on both sides. Wild poliovirus transmission has never been interrupted in this block due to war against terrorism, poor public health infrastructure, misconceptions about polio vaccines and inadequate immunization activities. All these issues complicate the eradication operations and reinforce the complexity of wiping out poliomyelitis from this region. This study illustrates the origins and routes of cross-border wild poliovirus type 1 (WPV1) transmission during 2010-2012 between Pakistan and Afghanistan. Sequence analyses were conducted based on complete VP1 capsid protein sequences for WPV1 study strains to determine the origin of poliovirus genetic lineages and their evolutionary relationships. Phylogenetic tree was constructed from VP1 gene sequences applying Maximum Likelihood method using Kimura 2- parameter model in MEGA program v 5.0. A total of 72 (14.3%) out of 502 wild-type 1 polioviruses were found circulating in border areas of both countries during 2010-2012. Molecular phylogenetic analysis classified these strains in to two sub-genotypes with four clusters and 18 lineages. Genetic data confirmed that the most of WPV1 lineages (12; 66.6%) were transmitted from Pakistan to Afghanistan. However, the genetic diversity was significantly reduced during 2012 as most of the lineages were completely eliminated. In conclusion, Pakistan-Afghanistan block has emerged as a single poliovirus reservoir sharing the multiple poliovirus lineages due to uncontrolled movement of people across the borders between two countries. If it is neglected, it can jeopardize the extensive global efforts done so-far to eradicate the poliovirus infection. Our data will be helpful to devise the preventive strategies for effective control of wild poliovirus transmission in this region.
Day, E H; Hua, X; Bromham, L
2016-06-01
Specialization has often been claimed to be an evolutionary dead end, with specialist lineages having a reduced capacity to persist or diversify. In a phylogenetic comparative framework, an evolutionary dead end may be detectable from the phylogenetic distribution of specialists, if specialists rarely give rise to large, diverse clades. Previous phylogenetic studies of the influence of specialization on macroevolutionary processes have demonstrated a range of patterns, including examples where specialists have both higher and lower diversification rates than generalists, as well as examples where the rates of evolutionary transitions from generalists to specialists are higher, lower or equal to transitions from specialists to generalists. Here, we wish to ask whether these varied answers are due to the differences in macroevolutionary processes in different clades, or partly due to differences in methodology. We analysed ten phylogenies containing multiple independent origins of specialization and quantified the phylogenetic distribution of specialists by applying a common set of metrics to all datasets. We compared the tip branch lengths of specialists to generalists, the size of specialist clades arising from each evolutionary origin of a specialized trait and whether specialists tend to be clustered or scattered on phylogenies. For each of these measures, we compared the observed values to expectations under null models of trait evolution and expected outcomes under alternative macroevolutionary scenarios. We found that specialization is sometimes an evolutionary dead end: in two of the ten case studies (pollinator-specific plants and host-specific flies), specialization is associated with a reduced rate of diversification or trait persistence. However, in the majority of studies, we could not distinguish the observed phylogenetic distribution of specialists from null models in which specialization has no effect on diversification or trait persistence. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Pair of lice lost or parasites regained: the evolutionary history of anthropoid primate lice
Reed, David L; Light, Jessica E; Allen, Julie M; Kirchman, Jeremy J
2007-01-01
Background The parasitic sucking lice of primates are known to have undergone at least 25 million years of coevolution with their hosts. For example, chimpanzee lice and human head/body lice last shared a common ancestor roughly six million years ago, a divergence that is contemporaneous with their hosts. In an assemblage where lice are often highly host specific, humans host two different genera of lice, one that is shared with chimpanzees and another that is shared with gorillas. In this study, we reconstruct the evolutionary history of primate lice and infer the historical events that explain the current distribution of these lice on their primate hosts. Results Phylogenetic and cophylogenetic analyses suggest that the louse genera Pediculus and Pthirus are each monophyletic, and are sister taxa to one another. The age of the most recent common ancestor of the two Pediculus species studied matches the age predicted by host divergence (ca. 6 million years), whereas the age of the ancestor of Pthirus does not. The two species of Pthirus (Pthirus gorillae and Pthirus pubis) last shared a common ancestor ca. 3–4 million years ago, which is considerably younger than the divergence between their hosts (gorillas and humans, respectively), of approximately 7 million years ago. Conclusion Reconciliation analysis determines that there are two alternative explanations that account for the current distribution of anthropoid primate lice. The more parsimonious of the two solutions suggests that a Pthirus species switched from gorillas to humans. This analysis assumes that the divergence between Pediculus and Pthirus was contemporaneous with the split (i.e., a node of cospeciation) between gorillas and the lineage leading to chimpanzees and humans. Divergence date estimates, however, show that the nodes in the host and parasite trees are not contemporaneous. Rather, the shared coevolutionary history of the anthropoid primates and their lice contains a mixture of evolutionary events including cospeciation, parasite duplication, parasite extinction, and host switching. Based on these data, the coevolutionary history of primates and their lice has been anything but parsimonious. PMID:17343749
Koonin, Eugene V.
2015-01-01
The origin of eukaryotes is a fundamental, forbidding evolutionary puzzle. Comparative genomic analysis clearly shows that the last eukaryotic common ancestor (LECA) possessed most of the signature complex features of modern eukaryotic cells, in particular the mitochondria, the endomembrane system including the nucleus, an advanced cytoskeleton and the ubiquitin network. Numerous duplications of ancestral genes, e.g. DNA polymerases, RNA polymerases and proteasome subunits, also can be traced back to the LECA. Thus, the LECA was not a primitive organism and its emergence must have resulted from extensive evolution towards cellular complexity. However, the scenario of eukaryogenesis, and in particular the relationship between endosymbiosis and the origin of eukaryotes, is far from being clear. Four recent developments provide new clues to the likely routes of eukaryogenesis. First, evolutionary reconstructions suggest complex ancestors for most of the major groups of archaea, with the subsequent evolution dominated by gene loss. Second, homologues of signature eukaryotic proteins, such as actin and tubulin that form the core of the cytoskeleton or the ubiquitin system, have been detected in diverse archaea. The discovery of this ‘dispersed eukaryome’ implies that the archaeal ancestor of eukaryotes was a complex cell that might have been capable of a primitive form of phagocytosis and thus conducive to endosymbiont capture. Third, phylogenomic analyses converge on the origin of most eukaryotic genes of archaeal descent from within the archaeal evolutionary tree, specifically, the TACK superphylum. Fourth, evidence has been presented that the origin of the major archaeal phyla involved massive acquisition of bacterial genes. Taken together, these findings make the symbiogenetic scenario for the origin of eukaryotes considerably more plausible and the origin of the organizational complexity of eukaryotic cells more readily explainable than they appeared until recently. PMID:26323764
Multiobjective Multifactorial Optimization in Evolutionary Multitasking.
Gupta, Abhishek; Ong, Yew-Soon; Feng, Liang; Tan, Kay Chen
2016-05-03
In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.
Biological mechanisms underlying evolutionary origins of psychotic and mood disorders.
Goto, Yukiori; Lee, Young-A; Yamaguchi, Yoshie; Jas, Emanuel
2016-10-01
Psychotic and mood disorders are brain dysfunctions that are caused by gene environment interactions. Although these disorders are disadvantageous and involve behavioral phenotypes that decrease the reproductive success of afflicted individuals in the modern human society, the prevalence of these disorders have remained constant in the population. Here, we propose several biological mechanisms by which the genes associated with psychotic and mood disorders could be selected for in specific environmental conditions that provide evolutionary bases for explanations of when, why, and where these disorders emerged and have been maintained in humans. We discuss the evolutionary origins of psychotic and mood disorders with specific focuses on the roles of dopamine and serotonin in the conditions of social competitiveness/hierarchy and maternal care and other potential mechanisms, such as social network homophily and symbiosis. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Constraining the Deep Origin of Parasitic Flatworms and Host-Interactions with Fossil Evidence.
De Baets, Kenneth; Dentzien-Dias, Paula; Upeniece, Ieva; Verneau, Olivier; Donoghue, Philip C J
2015-01-01
Novel fossil discoveries have contributed to our understanding of the evolutionary appearance of parasitism in flatworms. Furthermore, genetic analyses with greater coverage have shifted our views on the coevolution of parasitic flatworms and their hosts. The putative record of parasitic flatworms is consistent with extant host associations and so can be used to put constraints on the evolutionary origin of the parasites themselves. The future lies in new molecular clock analyses combined with additional discoveries of exceptionally preserved flatworms associated with hosts and coprolites. Besides direct evidence, the host fossil record and biogeography have the potential to constrain their evolutionary history, albeit with caution needed to avoid circularity, and a need for calibrations to be implemented in the most conservative way. This might result in imprecise, but accurate divergence estimates for the evolution of parasitic flatworms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schwentner, Martin; Bosch, Thomas C G
2015-10-01
The genus Hydra has long served as a model system in comparative immunology, developmental and evolutionary biology. Despite its relevance for fundamental research, Hydra's evolutionary origins and species level diversity are not well understood. Detailed previous studies using molecular techniques identified several clades within Hydra, but how these are related to described species remained largely an open question. In the present study, we compiled all published sequence data for three mitochondrial and nuclear genes (COI, 16S and ITS), complemented these with some new sequence data and delimited main genetic lineages (=hypothetical species) objectively by employing two DNA barcoding approaches. Conclusions on the species status of these main lineages were based on inferences of reproductive isolation. Relevant divergence times within Hydra were estimated based on relaxed molecular clock analyses with four genes (COI, 16S, EF1α and 28S) and four cnidarians fossil calibration points All in all, 28 main lineages could be delimited, many more than anticipated from earlier studies. Because allopatric distributions were common, inferences of reproductive isolation often remained ambiguous but reproductive isolation was rarely refuted. Our results support three major conclusions which are central for Hydra research: (1) species level diversity was underestimated by molecular studies; (2) species affiliations of several crucial 'workhorses' of Hydra evolutionary research were wrong and (3) crown group Hydra originated ∼200mya. Our results demonstrate that the taxonomy of Hydra requires a thorough revision and that evolutionary studies need to take this into account when interspecific comparisons are made. Hydra originated on Pangea. Three of four extant groups evolved ∼70mya ago, possibly on the northern landmass of Laurasia. Consequently, Hydra's cosmopolitan distribution is the result of transcontinental and transoceanic dispersal. Copyright © 2015 Elsevier Inc. All rights reserved.
Vargas, Alexander O; Ruiz-Flores, Macarena; Soto-Acuña, Sergio; Haidr, Nadia; Acosta-Hospitaleche, Carolina; Ossa-Fuentes, Luis; Muñoz-Walther, Vicente
2017-12-01
Embryonic muscular activity (EMA) is involved in the development of several distinctive traits of birds. Modern avian diversity and the fossil record of the dinosaur-bird transition allow special insight into their evolution. Traits shaped by EMA result from mechanical forces acting at post-morphogenetic stages, such that genes often play a very indirect role. Their origin seldom suggests direct selection for the trait, but a side-effect of other changes such as musculo-skeletal rearrangements, heterochrony in skeletal maturation, or increased incubation temperature (which increases EMA). EMA-shaped traits like sesamoids may be inconstant, highly conserved, or even disappear and then reappear in evolution. Some sesamoids may become increasingly influenced in evolution by genetic-molecular mechanisms (genetic assimilation). There is also ample evidence of evolutionary transitions from sesamoids to bony eminences at tendon insertion sites, and vice-versa. This can be explained by newfound similarities in the earliest development of both kinds of structures, which suggest these transitions are likely triggered by EMA. Other traits that require EMA for their formation will not necessarily undergo genetic assimilation, but still be conserved over tens and hundreds of millions of years, allowing evolutionary reduction and loss of other skeletal elements. Upon their origin, EMA-shaped traits may not be directly genetic, nor immediately adaptive. Nevertheless, EMA can play a key role in evolutionary innovation, and have consequences for the subsequent direction of evolutionary change. Its role may be more important and ubiquitous than currently suspected. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Mitochondrial DNA phylogeography of the Norway rat.
Song, Ying; Lan, Zhenjiang; Kohn, Michael H
2014-01-01
Central Eastern Asia, foremost the area bordering northern China and Mongolia, has been thought to be the geographic region where Norway rats (Rattus norvegicus) have originated. However recent fossil analyses pointed to their origin in southern China. Moreover, whereas analyses of fossils dated the species' origin as ∼ 1.2-1.6 million years ago (Mya), molecular analyses yielded ∼ 0.5-2.9 Mya. Here, to study the geographic origin of the Norway rat and its spread across the globe we analyzed new and all published mitochondrial DNA cytochrome-b (cyt-b; N = 156) and D-loop (N = 212) sequences representing wild rats from four continents and select inbred strains. Our results are consistent with an origin of the Norway rat in southern China ∼ 1.3 Mya, subsequent prehistoric differentiation and spread in China and Asia from an initially weakly structured ancestral population, followed by further spread and differentiation across the globe during historic times. The recent spreading occurred mostly from derived European populations rather than from archaic Asian populations. We trace laboratory strains to wild lineages from Europe and North America and these represent a subset of the diversity of the rat; leaving Asian lineages largely untapped as a resource for biomedical models. By studying rats from Europe we made the observation that mtDNA diversity cannot be interpreted without consideration of pest control and, possibly, the evolution of rodenticide resistance. However, demographic models explored by forward-time simulations cannot fully explain the low mtDNA diversity of European rats and lack of haplotype sharing with their source from Asia. Comprehensive nuclear marker analyses of a larger sample of Norway rats representing the world are needed to better resolve the evolutionary history of wild rats and of laboratory rats, as well as to better understand the evolution of anticoagulant resistance.
The Evolutionary History of Protein Domains Viewed by Species Phylogeny
Yang, Song; Bourne, Philip E.
2009-01-01
Background Protein structural domains are evolutionary units whose relationships can be detected over long evolutionary distances. The evolutionary history of protein domains, including the origin of protein domains, the identification of domain loss, transfer, duplication and combination with other domains to form new proteins, and the formation of the entire protein domain repertoire, are of great interest. Methodology/Principal Findings A methodology is presented for providing a parsimonious domain history based on gain, loss, vertical and horizontal transfer derived from the complete genomic domain assignments of 1015 organisms across the tree of life. When mapped to species trees the evolutionary history of domains and domain combinations is revealed, and the general evolutionary trend of domain and combination is analyzed. Conclusions/Significance We show that this approach provides a powerful tool to study how new proteins and functions emerged and to study such processes as horizontal gene transfer among more distant species. PMID:20041107
Polymorphic Evolutionary Games.
Fishman, Michael A
2016-06-07
In this paper, I present an analytical framework for polymorphic evolutionary games suitable for explicitly modeling evolutionary processes in diploid populations with sexual reproduction. The principal aspect of the proposed approach is adding diploid genetics cum sexual recombination to a traditional evolutionary game, and switching from phenotypes to haplotypes as the new game׳s pure strategies. Here, the relevant pure strategy׳s payoffs derived by summing the payoffs of all the phenotypes capable of producing gametes containing that particular haplotype weighted by the pertinent probabilities. The resulting game is structurally identical to the familiar Evolutionary Games with non-linear pure strategy payoffs (Hofbauer and Sigmund, 1998. Cambridge University Press), and can be analyzed in terms of an established analytical framework for such games. And these results can be translated into the terms of genotypic, and whence, phenotypic evolutionary stability pertinent to the original game. Copyright © 2016 Elsevier Ltd. All rights reserved.
Progenitors of the protochordate ocellus as an evolutionary origin of the neural crest
2013-01-01
The neural crest represents a highly multipotent population of embryonic stem cells found only in vertebrate embryos. Acquisition of the neural crest during the evolution of vertebrates was a great advantage, providing Chordata animals with the first cellular cartilage, bone, dentition, advanced nervous system and other innovations. Today not much is known about the evolutionary origin of neural crest cells. Here we propose a novel scenario in which the neural crest originates from neuroectodermal progenitors of the pigmented ocelli in Amphioxus-like animals. We suggest that because of changes in photoreception needs, these multipotent progenitors of photoreceptors gained the ability to migrate outside of the central nervous system and subsequently started to give rise to neural, glial and pigmented progeny at the periphery. PMID:23575111
Turchetto-Zolet, Andreia C; Maraschin, Felipe S; de Morais, Guilherme L; Cagliari, Alexandro; Andrade, Cláudia M B; Margis-Pinheiro, Marcia; Margis, Rogerio
2011-09-20
Triacylglycerides (TAGs) are a class of neutral lipids that represent the most important storage form of energy for eukaryotic cells. DGAT (acyl-CoA: diacylglycerol acyltransferase; EC 2.3.1.20) is a transmembrane enzyme that acts in the final and committed step of TAG synthesis, and it has been proposed to be the rate-limiting enzyme in plant storage lipid accumulation. In fact, two different enzymes identified in several eukaryotic species, DGAT1 and DGAT2, are the main enzymes responsible for TAG synthesis. These enzymes do not share high DNA or protein sequence similarities, and it has been suggested that they play non-redundant roles in different tissues and in some species in TAG synthesis. Despite a number of previous studies on the DGAT1 and DGAT2 genes, which have emphasized their importance as potential obesity treatment targets to increase triacylglycerol accumulation, little is known about their evolutionary timeline in eukaryotes. The goal of this study was to examine the evolutionary relationship of the DGAT1 and DGAT2 genes across eukaryotic organisms in order to infer their origin. We have conducted a broad survey of fully sequenced genomes, including representatives of Amoebozoa, yeasts, fungi, algae, musses, plants, vertebrate and invertebrate species, for the presence of DGAT1 and DGAT2 gene homologs. We found that the DGAT1 and DGAT2 genes are nearly ubiquitous in eukaryotes and are readily identifiable in all the major eukaryotic groups and genomes examined. Phylogenetic analyses of the DGAT1 and DGAT2 amino acid sequences revealed evolutionary partitioning of the DGAT protein family into two major DGAT1 and DGAT2 clades. Protein secondary structure and hydrophobic-transmembrane analysis also showed differences between these enzymes. The analysis also revealed that the MGAT2 and AWAT genes may have arisen from DGAT2 duplication events. In this study, we identified several DGAT1 and DGAT2 homologs in eukaryote taxa. Overall, the data show that DGAT1 and DGAT2 are present in most eukaryotic organisms and belong to two different gene families. The phylogenetic and evolutionary analyses revealed that DGAT1 and DGAT2 evolved separately, with functional convergence, despite their wide molecular and structural divergence.
2011-01-01
Background Triacylglycerides (TAGs) are a class of neutral lipids that represent the most important storage form of energy for eukaryotic cells. DGAT (acyl-CoA: diacylglycerol acyltransferase; EC 2.3.1.20) is a transmembrane enzyme that acts in the final and committed step of TAG synthesis, and it has been proposed to be the rate-limiting enzyme in plant storage lipid accumulation. In fact, two different enzymes identified in several eukaryotic species, DGAT1 and DGAT2, are the main enzymes responsible for TAG synthesis. These enzymes do not share high DNA or protein sequence similarities, and it has been suggested that they play non-redundant roles in different tissues and in some species in TAG synthesis. Despite a number of previous studies on the DGAT1 and DGAT2 genes, which have emphasized their importance as potential obesity treatment targets to increase triacylglycerol accumulation, little is known about their evolutionary timeline in eukaryotes. The goal of this study was to examine the evolutionary relationship of the DGAT1 and DGAT2 genes across eukaryotic organisms in order to infer their origin. Results We have conducted a broad survey of fully sequenced genomes, including representatives of Amoebozoa, yeasts, fungi, algae, musses, plants, vertebrate and invertebrate species, for the presence of DGAT1 and DGAT2 gene homologs. We found that the DGAT1 and DGAT2 genes are nearly ubiquitous in eukaryotes and are readily identifiable in all the major eukaryotic groups and genomes examined. Phylogenetic analyses of the DGAT1 and DGAT2 amino acid sequences revealed evolutionary partitioning of the DGAT protein family into two major DGAT1 and DGAT2 clades. Protein secondary structure and hydrophobic-transmembrane analysis also showed differences between these enzymes. The analysis also revealed that the MGAT2 and AWAT genes may have arisen from DGAT2 duplication events. Conclusions In this study, we identified several DGAT1 and DGAT2 homologs in eukaryote taxa. Overall, the data show that DGAT1 and DGAT2 are present in most eukaryotic organisms and belong to two different gene families. The phylogenetic and evolutionary analyses revealed that DGAT1 and DGAT2 evolved separately, with functional convergence, despite their wide molecular and structural divergence. PMID:21933415
2012-01-01
Background The entire evolutionary history of life can be studied using myriad sequences generated by genomic research. This includes the appearance of the first cells and of superkingdoms Archaea, Bacteria, and Eukarya. However, the use of molecular sequence information for deep phylogenetic analyses is limited by mutational saturation, differential evolutionary rates, lack of sequence site independence, and other biological and technical constraints. In contrast, protein structures are evolutionary modules that are highly conserved and diverse enough to enable deep historical exploration. Results Here we build phylogenies that describe the evolution of proteins and proteomes. These phylogenetic trees are derived from a genomic census of protein domains defined at the fold family (FF) level of structural classification. Phylogenomic trees of FF structures were reconstructed from genomic abundance levels of 2,397 FFs in 420 proteomes of free-living organisms. These trees defined timelines of domain appearance, with time spanning from the origin of proteins to the present. Timelines are divided into five different evolutionary phases according to patterns of sharing of FFs among superkingdoms: (1) a primordial protein world, (2) reductive evolution and the rise of Archaea, (3) the rise of Bacteria from the common ancestor of Bacteria and Eukarya and early development of the three superkingdoms, (4) the rise of Eukarya and widespread organismal diversification, and (5) eukaryal diversification. The relative ancestry of the FFs shows that reductive evolution by domain loss is dominant in the first three phases and is responsible for both the diversification of life from a universal cellular ancestor and the appearance of superkingdoms. On the other hand, domain gains are predominant in the last two phases and are responsible for organismal diversification, especially in Bacteria and Eukarya. Conclusions The evolution of functions that are associated with corresponding FFs along the timeline reveals that primordial metabolic domains evolved earlier than informational domains involved in translation and transcription, supporting the metabolism-first hypothesis rather than the RNA world scenario. In addition, phylogenomic trees of proteomes reconstructed from FFs appearing in each of the five phases of the protein world show that trees reconstructed from ancient domain structures were consistently rooted in archaeal lineages, supporting the proposal that the archaeal ancestor is more ancient than the ancestors of other superkingdoms. PMID:22284070
Peroxisomes in parasitic protists.
Gabaldón, Toni; Ginger, Michael L; Michels, Paul A M
Representatives of all major lineages of eukaryotes contain peroxisomes with similar morphology and mode of biogenesis, indicating a monophyletic origin of the organelles within the common ancestor of all eukaryotes. Peroxisomes originated from the endoplasmic reticulum, but despite a common origin and shared morphological features, peroxisomes from different organisms show a remarkable diversity of enzyme content and the metabolic processes present can vary dependent on nutritional or developmental conditions. A common characteristic and probable evolutionary driver for the origin of the organelle is an involvement in lipid metabolism, notably H 2 O 2 -dependent fatty-acid oxidation. Subsequent evolution of the organelle in different lineages involved multiple acquisitions of metabolic processes-often involving retargeting enzymes from other cell compartments-and losses. Information about peroxisomes in protists is still scarce, but available evidence, including new bioinformatics data reported here, indicate striking diversity amongst free-living and parasitic protists from different phylogenetic supergroups. Peroxisomes in only some protists show major involvement in H 2 O 2 -dependent metabolism, as in peroxisomes of mammalian, plant and fungal cells. Compartmentalization of glycolytic and gluconeogenic enzymes inside peroxisomes is characteristic of kinetoplastids and diplonemids, where the organelles are hence called glycosomes, whereas several other excavate parasites (Giardia, Trichomonas) have lost peroxisomes. Amongst alveolates and amoebozoans patterns of peroxisome loss are more complicated. Often, a link is apparent between the niches occupied by the parasitic protists, nutrient availability, and the absence of the organelles or their presence with a specific enzymatic content. In trypanosomatids, essentiality of peroxisomes may be considered for use in anti-parasite drug discovery. Copyright © 2016 Elsevier B.V. All rights reserved.
Mantophasmatodea now in the Jurassic
NASA Astrophysics Data System (ADS)
Huang, Di-Ying; Nel, André; Zompro, Oliver; Waller, Alain
2008-10-01
The Mantophasmatodea is the most recently discovered insect order. The fossil records of all other ‘polyneopteran’ orders extend far in the past, but the current absence of pre-Cenozoic fossils of the Mantophasmatodea contradicts a long evolutionary history, which has to be assumed from the morphological distinctness of the group. In this paper, we report the first Mesozoic evidence of a mantophasmatodean from the Middle Jurassic of Daohugou, Inner Mongolia, China. Furthermore, the new fossil shares apomorphic characters with Cenozoic and recent Mantophasmatodea, suggesting a longer evolutionary history of this order.
Shared governance in a clinic system.
Meyers, Michelle M; Costanzo, Cindy
2015-01-01
Shared governance in health care empowers nurses to share in the decision-making process, which results in decentralized management and collective accountability. Share governance practices have been present in hospitals since the late 1970s. However, shared governance in ambulatory care clinics has not been well established. The subjects of this quality project included staff and administrative nurses in a clinic system. The stakeholder committee chose what model of shared governance to implement and educated clinic staff. The Index of Professional Nursing Governance measured a shared governance score pre- and postimplementation of the Clinic Nursing Council. The Clinic Nursing Council met bimonthly for 3 months during this project to discuss issues and make decisions related to nursing staff. The Index of Professional Nursing Governance scores indicated traditional governance pre- and postimplementation of the Clinic Nursing Council, which is to be expected. The stakeholder committee was beneficial to the initial implementation process and facilitated staff nurse involvement. Shared governance is an evolutionary process that develops empowered nurses and nurse leaders.
Bermúdez de Castro, José-María; Quam, Rolf; Martinón-Torres, María; Martínez, Ignacio; Gracia-Téllez, Ana; Arsuaga, Juan Luís; Carbonell, Eudald
2015-01-01
Numerous studies have attempted to identify the presence of uniquely derived (autoapomorphic) Neandertal features. Here, we deal with the medial pterygoid tubercle (MTP), which is usually present on the internal face of the ascending ramus of Neandertal specimens. Our study stems from the identification of a hypertrophied tubercle in ATD6-96, an Early Pleistocene mandible recovered from the TD6 level of the Atapuerca-Gran Dolina site and attributed to Homo antecessor. Our review of the literature and study of numerous original fossil specimens and high quality replicas confirm that the MTP occurs at a high frequency in Neandertals (ca. 89%) and is also present in over half (ca. 55%) of the Middle Pleistocene Sima de los Huesos (SH) hominins. In contrast, it is generally absent or minimally developed in other extinct hominins, but can be found in variable frequencies (
Phylogenetic conservatism in plant phenology
Davies, T. Jonathan; Wolkovich, Elizabeth M.; Kraft, Nathan J. B.; Salamin, Nicolas; Allen, Jenica M.; Ault, Toby R.; Betancourt, Julio L.; Bolmgren, Kjell; Cleland, Elsa E.; Cook, Benjamin I.; Crimmins, Theresa M.; Mazer, Susan J.; McCabe, Gregory J.; Pau, Stephanie; Regetz, Jim; Schwartz, Mark D.; Travers, Steven E.
2013-01-01
Synthesis. Closely related species tend to resemble each other in the timing of their life-history events, a likely product of evolutionarily conser ved responses to environmental cues. The search for the underlying drivers of phenology must therefore account for species’ shared evolutionary histories.
Frolov, A O; Malysheva, M N; Kostygov, A Yu
2015-01-01
The review concerns analysis of life cycle macrotransformations in the evolutionary history of trypanosomatids. The term "macrotransformations" stands for evolutionary processes leading to the establishment of heteroxenous and secondary homoxenous life cycles within Trypanosomatidae. There were three direct macrotransformations in the evolution of the group resulting in the rise of heteroxenous genera Leishmania, Trypanosoma and Phytomonas, and one case of reverse macrotransformation in trypanosomes of T. (b.) brucei group. The issues of the origin, diversity and phylogeny of taxa whose emergence resulted from macrotransformations of life cycles of homoxenous trypanosomatids.
Prediction of stock markets by the evolutionary mix-game model
NASA Astrophysics Data System (ADS)
Chen, Fang; Gou, Chengling; Guo, Xiaoqian; Gao, Jieping
2008-06-01
This paper presents the efforts of using the evolutionary mix-game model, which is a modified form of the agent-based mix-game model, to predict financial time series. Here, we have carried out three methods to improve the original mix-game model by adding the abilities of strategy evolution to agents, and then applying the new model referred to as the evolutionary mix-game model to forecast the Shanghai Stock Exchange Composite Index. The results show that these modifications can improve the accuracy of prediction greatly when proper parameters are chosen.
Collar, David C; Quintero, Michelle; Buttler, Bernardo; Ward, Andrea B; Mehta, Rita S
2016-03-01
Major morphological transformations, such as the evolution of elongate body shape in vertebrates, punctuate evolutionary history. A fundamental step in understanding the processes that give rise to such transformations is identification of the underlying anatomical changes. But as we demonstrate in this study, important insights can also be gained by comparing these changes to those that occur in ancestral and closely related lineages. In labyrinth fishes (Anabantoidei), rapid evolution of a highly derived torpedo-shaped body in the common ancestor of the pikehead (Luciocephalus aura and L. pulcher) occurred primarily through exceptional elongation of the head, with secondary contributions involving reduction in body depth and lengthening of the precaudal vertebral region. This combination of changes aligns closely with the primary axis of anatomical diversification in other anabantoids, revealing that pikehead evolution involved extraordinarily rapid change in structures that were ancestrally labile. Finer-scale examination of the anatomical components that determine head elongation also shows alignment between the pikehead evolutionary trajectory and the primary axis of cranial diversification in anabantoids, with much higher evolutionary rates leading to the pikehead. Altogether, our results show major morphological transformation stemming from extreme change along a shared morphological axis in labyrinth fishes. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Murat, Florent; Zhang, Rongzhi; Guizard, Sébastien; Flores, Raphael; Armero, Alix; Pont, Caroline; Steinbach, Delphine; Quesneville, Hadi; Cooke, Richard; Salse, Jerome
2013-01-01
Modern plant genomes are diploidized paleopolyploids. We revisited grass genome paleohistory in response to the diploidization process through a detailed investigation of the evolutionary fate of duplicated blocks. Ancestrally duplicated genes can be conserved, deleted, and shuffled, defining dominant (bias toward duplicate retention) and sensitive (bias toward duplicate erosion) chromosomal fragments. We propose a new grass genome paleohistory deriving from an ancestral karyotype structured in seven protochromosomes containing 16,464 protogenes and following evolutionary rules where 1) ancestral shared polyploidizations shaped conserved dominant (D) and sensitive (S) subgenomes, 2) subgenome dominance is revealed by both gene deletion and shuffling from the S blocks, 3) duplicate deletion/movement may have been mediated by single-/double-stranded illegitimate recombination mechanisms, 4) modern genomes arose through centromeric fusion of protochromosomes, leading to functional monocentric neochromosomes, 5) the fusion of two dominant blocks leads to supradominant neochromosomes (D + D = D) with higher ancestral gene retention compared with D + S = D (i.e., fusion of blocks with opposite sensitivity) or even S + S = S (i.e., fusion of two sensitive ancestral blocks). A new user-friendly online tool named “PlantSyntenyViewer,” available at http://urgi.versailles.inra.fr/synteny-cereal, presents the refined comparative genomics data. PMID:24317974
CMCpy: Genetic Code-Message Coevolution Models in Python
Becich, Peter J.; Stark, Brian P.; Bhat, Harish S.; Ardell, David H.
2013-01-01
Code-message coevolution (CMC) models represent coevolution of a genetic code and a population of protein-coding genes (“messages”). Formally, CMC models are sets of quasispecies coupled together for fitness through a shared genetic code. Although CMC models display plausible explanations for the origin of multiple genetic code traits by natural selection, useful modern implementations of CMC models are not currently available. To meet this need we present CMCpy, an object-oriented Python API and command-line executable front-end that can reproduce all published results of CMC models. CMCpy implements multiple solvers for leading eigenpairs of quasispecies models. We also present novel analytical results that extend and generalize applications of perturbation theory to quasispecies models and pioneer the application of a homotopy method for quasispecies with non-unique maximally fit genotypes. Our results therefore facilitate the computational and analytical study of a variety of evolutionary systems. CMCpy is free open-source software available from http://pypi.python.org/pypi/CMCpy/. PMID:23532367
On the evolution of developmental mechanisms: Divergent polarities in leaf growth as a case study.
Gupta, Mainak Das; Nath, Utpal
2016-01-01
Most model plants used to study leaf growth share a common developmental mechanism, namely basipetal growth polarity, wherein the distal end differentiates first with progressively more proliferative cells toward the base. Therefore, this base-to-tip growth pattern has served as a paradigm to explain leaf growth and also formed the basis for several computational models. However, our recent report in The Plant Cell on the investigation of leaf growth in 75 eudicot species covering a wide range of eudicot families showed that leaves grow with divergent polarities in the proximo-distal axis or without any obvious polarity. This divergence in growth polarity is linked to the expression divergence of a conserved microRNA-transcription factor module. This study raises several questions on the evolutionary origin of leaf growth pattern, such as 'when and why in evolution did the divergent growth polarities arise?' and 'what were the molecular changes that led to this divergence?'. Here, we discuss a few of these questions in some detail.
Social bonds affect anti-predator behaviour in a tolerant species of macaque, Macaca nigra.
Micheletta, Jérôme; Waller, Bridget M; Panggur, Maria R; Neumann, Christof; Duboscq, Julie; Agil, Muhammad; Engelhardt, Antje
2012-10-07
Enduring positive social bonds between individuals are crucial for humans' health and well being. Similar bonds can be found in a wide range of taxa, revealing the evolutionary origins of humans' social bonds. Evidence suggests that these strong social bonds can function to buffer the negative effects of living in groups, but it is not known whether they also function to minimize predation risk. Here, we show that crested macaques (Macaca nigra) react more strongly to playbacks of recruitment alarm calls (i.e. calls signalling the presence of a predator and eliciting cooperative mobbing behaviour) if they were produced by an individual with whom they share a strong social bond. Dominance relationships between caller and listener had no effect on the reaction of the listener. Thus, strong social bonds may improve the coordination and efficiency of cooperative defence against predators, and therefore increase chances of survival. This result broadens our understanding of the evolution and function of social bonds by highlighting their importance in the anti-predator context.
Evolution of Conus Peptide Toxins: Analysis of Conus californicus Reeve, 1844
Biggs, Jason S.; Watkins, Maren; Puillandre, Nicolas; Ownby, John-Paul; Lopez-Vera, Estuardo; Christensen, Sean; Moreno, Karla Juarez; Navarro, Alexei Licea; Corneli, Patrice Showers; Olivera, Baldomero M.
2010-01-01
Conus species are characterized by their hyperdiverse toxins, encoded by a few gene superfamilies. Our phylogenies of the genus, based on mitochondrial genes, confirm previous results that C. californicus is highly divergent from all other species. Genetic and biochemical analysis of their venom peptides comprise the fifteen most abundant conopeptides and over 50 mature cDNA transcripts from the venom duct. Although C. californicus venom retains many of the general properties of other Conus species, they share only half of the toxin gene superfamilies found in other Conus species. Thus, in these two lineages, approximately half of the rapidly diversifying gene superfamilies originated after an early Tertiary split. Such results demonstrate that, unlike endogenously acting gene families, these genes are likely to be significantly more restricted in their phylogenetic distribution. In concordance with the evolutionary duistance of C. californicus from other species, there are aspects of prey-capture behavior and prey preferences of this species that diverges significantly from all other Conus. PMID:20363338
Feldman, Chris R; Brodie, Edmund D; Brodie, Edmund D; Pfrender, Michael E
2009-08-11
Where do the genetic variants underlying adaptive change come from? Are currently adaptive alleles recruited by selection from standing genetic variation within populations, moved through introgression from other populations, or do they arise as novel mutations? Here, we examine the molecular basis of repeated adaptation to the toxin of deadly prey in 3 species of garter snakes (Thamnophis) to determine whether adaptation has evolved through novel mutations, sieving of existing variation, or transmission of beneficial alleles across species. Functional amino acid substitutions in the skeletal muscle sodium channel (Na(v)1.4) are largely responsible for the physiological resistance of garter snakes to tetrodotoxin found in their newt (Taricha) prey. Phylogenetic analyses reject the hypotheses that the unique resistance alleles observed in multiple Thamnophis species were present before the split of these lineages, or that alleles were shared among species through occasional hybridization events. Our results demonstrate that adaptive evolution has occurred independently multiple times in garter snakes via the de novo acquisition of beneficial mutations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasan, Neil; Hutagalung, Alex; Novick, Peter
2010-08-13
The Golgi-associated retrograde protein (GARP) complex is a membrane-tethering complex that functions in traffic from endosomes to the trans-Golgi network. Here we present the structure of a C-terminal fragment of the Vps53 subunit, important for binding endosome-derived vesicles, at a resolution of 2.9 {angstrom}. We show that the C terminus consists of two {alpha}-helical bundles arranged in tandem, and we identify a highly conserved surface patch, which may play a role in vesicle recognition. Mutations of the surface result in defects in membrane traffic. The fold of the Vps53 C terminus is strongly reminiscent of proteins that belong to threemore » other tethering complexes - Dsl1, conserved oligomeric Golgi, and the exocyst - thought to share a common evolutionary origin. Thus, the structure of the Vps53 C terminus suggests that GARP belongs to this family of complexes.« less
Freij, Joudeh B.; Hann-Soden, Christopher; Taylor, John
2017-01-01
ABSTRACT Genomic analysis has placed the origins of two human-pathogenic fungi, the Cryptococcus gattii species complex and the Cryptococcus neoformans species complex, in South America and Africa, respectively. Molecular clock calculations suggest that the two species separated ~80 to 100 million years ago. This time closely approximates the breakup of the supercontinent Pangea, which gave rise to South America and Africa. On the basis of the geographic distribution of these two species complexes and the coincidence of the evolutionary divergence and Pangea breakup times, we propose that a spatial separation caused by continental drift resulted in the emergence of the C. gattii and C. neoformans species complexes from a Pangean ancestor. We note that, despite the spatial and temporal separation that occurred approximately 100 million years ago, these two species complexes are morphologically similar, share virulence factors, and cause very similar diseases. Continuation of these phenotypic characteristics despite ancient separation suggests the maintenance of similar selection pressures throughout geologic ages. PMID:28435888
Casadevall, Arturo; Freij, Joudeh B; Hann-Soden, Christopher; Taylor, John
2017-01-01
Genomic analysis has placed the origins of two human-pathogenic fungi, the Cryptococcus gattii species complex and the Cryptococcus neoformans species complex, in South America and Africa, respectively. Molecular clock calculations suggest that the two species separated ~80 to 100 million years ago. This time closely approximates the breakup of the supercontinent Pangea, which gave rise to South America and Africa. On the basis of the geographic distribution of these two species complexes and the coincidence of the evolutionary divergence and Pangea breakup times, we propose that a spatial separation caused by continental drift resulted in the emergence of the C. gattii and C. neoformans species complexes from a Pangean ancestor. We note that, despite the spatial and temporal separation that occurred approximately 100 million years ago, these two species complexes are morphologically similar, share virulence factors, and cause very similar diseases. Continuation of these phenotypic characteristics despite ancient separation suggests the maintenance of similar selection pressures throughout geologic ages.
Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ
Thi-Kim Vu, Hanh; Rink, Jochen C; McKinney, Sean A; McClain, Melainia; Lakshmanaperumal, Naharajan; Alexander, Richard; Sánchez Alvarado, Alejandro
2015-01-01
Cystic kidney diseases (CKDs) affect millions of people worldwide. The defining pathological features are fluid-filled cysts developing from nephric tubules due to defective flow sensing, cell proliferation and differentiation. The underlying molecular mechanisms, however, remain poorly understood, and the derived excretory systems of established invertebrate models (Caenorhabditis elegans and Drosophila melanogaster) are unsuitable to model CKDs. Systematic structure/function comparisons revealed that the combination of ultrafiltration and flow-associated filtrate modification that is central to CKD etiology is remarkably conserved between the planarian excretory system and the vertebrate nephron. Consistently, both RNA-mediated genetic interference (RNAi) of planarian orthologues of human CKD genes and inhibition of tubule flow led to tubular cystogenesis that share many features with vertebrate CKDs, suggesting deep mechanistic conservation. Our results demonstrate a common evolutionary origin of animal excretory systems and establish planarians as a novel and experimentally accessible invertebrate model for the study of human kidney pathologies. DOI: http://dx.doi.org/10.7554/eLife.07405.001 PMID:26057828
NASA Astrophysics Data System (ADS)
Benoit, Julien; Jasinoski, Sandra C.; Fernandez, Vincent; Abdala, Fernando
2017-08-01
The basal non-mammaliaform cynodonts from the late Permian (Lopingian) and Early Triassic are a major source of information for the understanding of the evolutionary origin of mammals. Detailed knowledge of their anatomy is critical for understanding the phylogenetic transition toward mammalness and the paleobiological reconstruction of mammalian precursors. Using micro-computed tomography (μCT), we describe the internal morphology of the interorbital region that includes the rarely fossilized orbitosphenoid elements in four basal cynodonts. These paired bones, which are positioned relatively dorsally in the skull, contribute to the wall of the anterior part of the braincase and form the floor for the olfactory lobes. Unlike procynosuchids and the more basal therapsids in which the orbitosphenoids are well developed, dense, and bear a ventral keel, the basal epicynodonts Cynosaurus, Galesaurus, and Thrinaxodon display cancellous, reduced, and loosely articulated orbitosphenoids, a condition shared with many eucynodonts. The hemi-cylindrical orbitosphenoid from which the mammalian condition is derived re-evolved convergently in traversodontid and some probainognathian cynodonts.
Dosage compensation, the origin and the afterlife of sex chromosomes.
Larsson, Jan; Meller, Victoria H
2006-01-01
Over the past 100 years Drosophila has been developed into an outstanding model system for the study of evolutionary processes. A fascinating aspect of evolution is the differentiation of sex chromosomes. Organisms with highly differentiated sex chromosomes, such as the mammalian X and Y, must compensate for the imbalance in gene dosage that this creates. The need to adjust the expression of sex-linked genes is a potent force driving the rise of regulatory mechanisms that act on an entire chromosome. This review will contrast the process of dosage compensation in Drosophila with the divergent strategies adopted by other model organisms. While the machinery of sex chromosome compensation is different in each instance, all share the ability to direct chromatin modifications to an entire chromosome. This review will also explore the idea that chromosome-targeting systems are sometimes adapted for other purposes. This appears the likely source of a chromosome-wide targeting system displayed by the Drosophila fourth chromosome.
Genetic and phylogenetic analysis of a novel parvovirus isolated from chickens in Guangxi, China.
Feng, Bin; Xie, Zhixun; Deng, Xianwen; Xie, Liji; Xie, Zhiqin; Huang, Li; Fan, Qin; Luo, Sisi; Huang, Jiaoling; Zhang, Yanfang; Zeng, Tingting; Wang, Sheng; Wang, Leyi
2016-11-01
A previously unidentified chicken parvovirus (ChPV) strain, associated with runting-stunting syndrome (RSS), is now endemic among chickens in China. To explore the genetic diversity of ChPV strains, we determined the first complete genome sequence of a novel ChPV isolate (GX-CH-PV-7) identified in chickens in Guang Xi, China, and showed moderate genome sequence similarity to reference strains. Analysis showed that the viral genome sequence is 86.4 %-93.9 % identical to those of other ChPVs. Genetic and phylogenetic analyses showed that this newly emergent GX-CH-PV-7 is closely related to Gallus gallus enteric parvovirus isolate ChPV 798 from the USA, indicating that they may share a common ancestor. The complete DNA sequence is 4612 bp long with an A+T content of 56.66 %. We determined the first complete genome sequence of a previously unidentified ChPV strain to elucidate its origin and evolutionary status.
Johnston, Peter
2014-03-01
Homology or shared evolutionary origin of jaw adductor muscles in lizards and snakes has been difficult to establish, although snakes clearly arose within the lizard radiation. Lizards typically have temporal adductors layered lateral to medial, and in snakes the muscles are arranged in a rostral to caudal pattern. Recent work has suggested that the jaw adductor group in gnathostomes is arranged as a folded sheet; when this theory is applied to snakes, homology with lizard morphology can be seen. This conclusion revisits the work of S.B. McDowell, J Herpetol 1986; 20:353-407, who proposed that homology involves identity of m. levator anguli oris and the loss of m. adductor mandibulae externus profundus, at least in "advanced" (colubroid) snakes. Here I advance the folded sheet hypothesis across the whole snake tree using new and literature data, and provide a solution to this homology problem. Copyright © 2014 Wiley Periodicals, Inc.
Ikehara, Kenji
2016-01-01
It is no doubt quite difficult to solve the riddle of the origin of life. So, firstly, I would like to point out the kinds of obstacles there are in solving this riddle and how we should tackle these difficult problems, reviewing the studies that have been conducted so far. After that, I will propose that the consecutive evolutionary steps in a timeline can be rationally deduced by using a common event as a juncture, which is obtained by two counter-directional approaches: one is the bottom-up approach through which many researchers have studied the origin of life, and the other is the top-down approach, through which I established the [GADV]-protein world hypothesis or GADV hypothesis on the origin of life starting from a study on the formation of entirely new genes in extant microorganisms. Last, I will describe the probable evolutionary process from the formation of Earth to the emergence of life, which was deduced by using a common event—the establishment of the first genetic code encoding [GADV]-amino acids—as a juncture for the results obtained from the two approaches. PMID:26821048
Ikehara, Kenji
2016-01-26
It is no doubt quite difficult to solve the riddle of the origin of life. So, firstly, I would like to point out the kinds of obstacles there are in solving this riddle and how we should tackle these difficult problems, reviewing the studies that have been conducted so far. After that, I will propose that the consecutive evolutionary steps in a timeline can be rationally deduced by using a common event as a juncture, which is obtained by two counter-directional approaches: one is the bottom-up approach through which many researchers have studied the origin of life, and the other is the top-down approach, through which I established the [GADV]-protein world hypothesis or GADV hypothesis on the origin of life starting from a study on the formation of entirely new genes in extant microorganisms. Last, I will describe the probable evolutionary process from the formation of Earth to the emergence of life, which was deduced by using a common event-the establishment of the first genetic code encoding [GADV]-amino acids-as a juncture for the results obtained from the two approaches.
Ng, Soon Hwee; Shankar, Shruti; Shikichi, Yasumasa; Akasaka, Kazuaki; Mori, Kenji; Yew, Joanne Y
2014-02-25
Animals exhibit a spectacular array of traits to attract mates. Understanding the evolutionary origins of sexual features and preferences is a fundamental problem in evolutionary biology, and the mechanisms remain highly controversial. In some species, females choose mates based on direct benefits conferred by the male to the female and her offspring. Thus, female preferences are thought to originate and coevolve with male traits. In contrast, sensory exploitation occurs when expression of a male trait takes advantage of preexisting sensory biases in females. Here, we document in Drosophila a previously unidentified example of sensory exploitation of males by other males through the use of the sex pheromone CH503. We use mass spectrometry, high-performance liquid chromatography, and behavioral analysis to demonstrate that an antiaphrodisiac produced by males of the melanogaster subgroup also is effective in distant Drosophila relatives that do not express the pheromone. We further show that species that produce the pheromone have become less sensitive to the compound, illustrating that sensory adaptation occurs after sensory exploitation. Our findings provide a mechanism for the origin of a sex pheromone and show that sensory exploitation changes male sexual behavior over evolutionary time.
Chordate evolution and the three-phylum system
Satoh, Noriyuki; Rokhsar, Daniel; Nishikawa, Teruaki
2014-01-01
Traditional metazoan phylogeny classifies the Vertebrata as a subphylum of the phylum Chordata, together with two other subphyla, the Urochordata (Tunicata) and the Cephalochordata. The Chordata, together with the phyla Echinodermata and Hemichordata, comprise a major group, the Deuterostomia. Chordates invariably possess a notochord and a dorsal neural tube. Although the origin and evolution of chordates has been studied for more than a century, few authors have intimately discussed taxonomic ranking of the three chordate groups themselves. Accumulating evidence shows that echinoderms and hemichordates form a clade (the Ambulacraria), and that within the Chordata, cephalochordates diverged first, with tunicates and vertebrates forming a sister group. Chordates share tadpole-type larvae containing a notochord and hollow nerve cord, whereas ambulacrarians have dipleurula-type larvae containing a hydrocoel. We propose that an evolutionary occurrence of tadpole-type larvae is fundamental to understanding mechanisms of chordate origin. Protostomes have now been reclassified into two major taxa, the Ecdysozoa and Lophotrochozoa, whose developmental pathways are characterized by ecdysis and trochophore larvae, respectively. Consistent with this classification, the profound dipleurula versus tadpole larval differences merit a category higher than the phylum. Thus, it is recommended that the Ecdysozoa, Lophotrochozoa, Ambulacraria and Chordata be classified at the superphylum level, with the Chordata further subdivided into three phyla, on the basis of their distinctive characteristics. PMID:25232138
Avigdor, Bracha Erlanger; Cimino-Mathews, Ashley; DeMarzo, Angelo M; Hicks, Jessica L; Shin, James; Sukumar, Saraswati; Fetting, John; Argani, Pedram; Park, Ben H; Wheelan, Sarah J
2017-12-21
Heterogeneity within and among tumors in a metastatic cancer patient is a well-established phenomenon that may confound treatment and accurate prognosis. Here, we used whole-exome sequencing to survey metastatic breast cancer tumors from 5 patients in a rapid autopsy program to construct the origin and genetic development of metastases. Metastases were obtained from 5 breast cancer patients using a rapid autopsy protocol and subjected to whole-exome sequencing. Metastases were evaluated for sharing of somatic mutations, correlation of copy number variation and loss of heterozygosity, and genetic similarity scores. Pathological features of the patients' disease were assessed by immunohistochemical analyses. Our data support a monoclonal origin of metastasis in 3 cases, but in 2 cases, metastases arose from at least 2 distinct subclones in the primary tumor. In the latter 2 cases, the primary tumor presented with mixed histologic and pathologic features, suggesting early divergent evolution within the primary tumor with maintenance of metastatic capability in multiple lineages. We used genetic and histopathological evidence to demonstrate that metastases can be derived from a single or multiple independent clones within a primary tumor. This underscores the complexity of breast cancer clonal evolution and has implications for how best to determine and implement therapies for early- and late-stage disease.
Avigdor, Bracha Erlanger; Cimino-Mathews, Ashley; DeMarzo, Angelo M.; Hicks, Jessica L.; Shin, James; Sukumar, Saraswati; Fetting, John; Argani, Pedram; Park, Ben H.; Wheelan, Sarah J.
2017-01-01
Heterogeneity within and among tumors in a metastatic cancer patient is a well-established phenomenon that may confound treatment and accurate prognosis. Here, we used whole-exome sequencing to survey metastatic breast cancer tumors from 5 patients in a rapid autopsy program to construct the origin and genetic development of metastases. Metastases were obtained from 5 breast cancer patients using a rapid autopsy protocol and subjected to whole-exome sequencing. Metastases were evaluated for sharing of somatic mutations, correlation of copy number variation and loss of heterozygosity, and genetic similarity scores. Pathological features of the patients’ disease were assessed by immunohistochemical analyses. Our data support a monoclonal origin of metastasis in 3 cases, but in 2 cases, metastases arose from at least 2 distinct subclones in the primary tumor. In the latter 2 cases, the primary tumor presented with mixed histologic and pathologic features, suggesting early divergent evolution within the primary tumor with maintenance of metastatic capability in multiple lineages. We used genetic and histopathological evidence to demonstrate that metastases can be derived from a single or multiple independent clones within a primary tumor. This underscores the complexity of breast cancer clonal evolution and has implications for how best to determine and implement therapies for early- and late-stage disease. PMID:29263308
Bonobos and chimpanzees exhibit human-like framing effects.
Krupenye, Christopher; Rosati, Alexandra G; Hare, Brian
2015-02-01
Humans exhibit framing effects when making choices, appraising decisions involving losses differently from those involving gains. To directly test for the evolutionary origin of this bias, we examined decision-making in humans' closest living relatives: bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). We presented the largest sample of non-humans to date (n = 40) with a simple task requiring minimal experience. Apes made choices between a 'framed' option that provided preferred food, and an alternative option that provided a constant amount of intermediately preferred food. In the gain condition, apes experienced a positive 'gain' event in which the framed option was initially presented as one piece of food but sometimes was augmented to two. In the loss condition, apes experienced a negative 'loss' event in which they initially saw two pieces but sometimes received only one. Both conditions provided equal pay-offs, but apes chose the framed option more often in the positive 'gain' frame. Moreover, male apes were more susceptible to framing than were females. These results suggest that some human economic biases are shared through common descent with other apes and highlight the importance of comparative work in understanding the origins of individual differences in human choice. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Change of the heterogametic sex from male to female in the frog.
Ogata, M; Ohtani, H; Igarashi, T; Hasegawa, Y; Ichikawa, Y; Miura, I
2003-01-01
Two different types of sex chromosomes, XX/XY and ZZ/ZW, exist in the Japanese frog Rana rugosa. They are separated in two local forms that share a common origin in hybridization between the other two forms (West Japan and Kanto) with male heterogametic sex determination and homomorphic sex chromosomes. In this study, to find out how the different types of sex chromosomes differentiated, particularly the evolutionary reason for the heterogametic sex change from male to female, we performed artificial crossings between the West Japan and Kanto forms and mitochondrial 12S rRNA gene sequence analysis. The crossing results showed male bias using mother frogs with West Japan cytoplasm and female bias using those with Kanto cytoplasm. The mitochondrial genes of ZZ/ZW and XX/XY forms, respectively, were similar in sequence to those of the West Japan and Kanto forms. These results suggest that in the primary ZZ/ZW form, the West Japan strain was maternal and thus male bias was caused by the introgression of the Kanto strain while in the primary XX/XY form and vice versa. We therefore hypothesize that sex ratio bias according to the maternal origin of the hybrid population was a trigger for the sex chromosome differentiation and the change of heterogametic sex. PMID:12807781
NASA Technical Reports Server (NTRS)
Kumar, Vivek; Horio, Brant M.; DeCicco, Anthony H.; Hasan, Shahab; Stouffer, Virginia L.; Smith, Jeremy C.; Guerreiro, Nelson M.
2015-01-01
This paper presents a search algorithm based framework to calibrate origin-destination (O-D) market specific airline ticket demands and prices for the Air Transportation System (ATS). This framework is used for calibrating an agent based model of the air ticket buy-sell process - Airline Evolutionary Simulation (Airline EVOS) -that has fidelity of detail that accounts for airline and consumer behaviors and the interdependencies they share between themselves and the NAS. More specificially, this algorithm simultaneous calibrates demand and airfares for each O-D market, to within specified threshold of a pre-specified target value. The proposed algorithm is illustrated with market data targets provided by the Transportation System Analysis Model (TSAM) and Airline Origin and Destination Survey (DB1B). Although we specify these models and datasources for this calibration exercise, the methods described in this paper are applicable to calibrating any low-level model of the ATS to some other demand forecast model-based data. We argue that using a calibration algorithm such as the one we present here to synchronize ATS models with specialized forecast demand models, is a powerful tool for establishing credible baseline conditions in experiments analyzing the effects of proposed policy changes to the ATS.
Phylogeny of the genus Pistacia as determined from analysis of the chloroplast genome
Parfitt, Dan E.; Badenes, Maria L.
1997-01-01
Classification within the genus Pistacia has been based on leaf morphology and geographical distribution. Molecular genetic tools (PCR amplification followed by restriction analysis of a 3.2-kb region of variable chloroplast DNA, and restriction fragment length polymorphism analysis of the Pistacia cpDNA with tobacco chloroplast DNA probes) provided a new set of variables to study the phylogenetic relationships of 10 Pistacia species. Both parsimony and cluster analyses were used to divide the genus into two major groups. P. vera was determined to be the least derived species. P. weinmannifolia, an Asian species, is most closely related to P. texana and P. mexicana, New World species. These three species share a common origin, suggesting that a common ancestor of P. texana and P. mexicana originated in Asia. P. integerrima and P. chinensis were shown to be distinct whereas the pairs of species were monophyletic within each of two tertiary groups, P. vera:P. khinjuk and P. mexicana:P. texana. An evolutionary trend from large to small nuts and leaves with few, large leaflets to many, small leaflets was supported. The genus Pistacia was shown to have a low chloroplast DNA mutation rate: 0.05–0.16 times that expected of annual plants. PMID:9223300
Arrigoni, Roberto; Benzoni, Francesca; Terraneo, Tullia I; Caragnano, Annalisa; Berumen, Michael L
2016-10-07
Reticulate evolution, introgressive hybridisation, and phenotypic plasticity have been documented in scleractinian corals and have challenged our ability to interpret speciation processes. Stylophora is a key model system in coral biology and physiology, but genetic analyses have revealed that cryptic lineages concealed by morphological stasis exist in the Stylophora pistillata species complex. The Red Sea represents a hotspot for Stylophora biodiversity with six morphospecies described, two of which are regionally endemic. We investigated Stylophora species boundaries from the Red Sea and the associated Symbiodinium by sequencing seven DNA loci. Stylophora morphospecies from the Red Sea were not resolved based on mitochondrial phylogenies and showed nuclear allele sharing. Low genetic differentiation, weak isolation, and strong gene flow were found among morphospecies although no signals of genetic recombination were evident among them. Stylophora mamillata harboured Symbiodinium clade C whereas the other two Stylophora morphospecies hosted either Symbiodinium clade A or C. These evolutionary patterns suggest that either gene exchange occurs through reticulate evolution or that multiple ecomorphs of a phenotypically plastic species occur in the Red Sea. The recent origin of the lineage leading to the Red Sea Stylophora may indicate an ongoing speciation driven by environmental changes and incomplete lineage sorting.
Ceccarelli, F Sara; Mongiardino Koch, Nicolás; Soto, Eduardo M; Barone, Mariana L; Arnedo, Miquel A; Ramírez, Martín J
2018-04-14
While grasslands, one of Earth's major biomes, are known for their close evolutionary ties with ungulate grazers, these habitats are also paramount to the origins and diversification of other animals. Within the primarily South American spider subfamily Amaurobioidinae (Anyphaenidae), several species are found living in the continent's grasslands, with some displaying putative morphological adaptations to dwelling unnoticed in the grass blades. Here, a dated molecular phylogeny provides the backbone for analyses revealing the ecological and morphological processes behind these spiders' grassland adaptations. The multiple switches from Patagonian forests to open habitats coincide with the expansion of South America's grasslands during the Miocene, while the specialized morphology of several grass-dwelling spiders originated at least three independent times and is best described as the result of different selective regimes operating on macroevolutionary timescales. Although grass-adapted lineages evolved towards different peaks in adaptive landscape, they all share one characteristic: an anterior narrowing of the prosoma allowing spiders to extend the first two pairs of legs, thus maintaining a slender resting posture in the grass blade. By combining phylogenetic, morphological, and biogeographic perspectives we disentangle multiple factors determining the evolution of a clade of terrestrial invertebrate predators alongside their biomes.
Arrigoni, Roberto; Benzoni, Francesca; Terraneo, Tullia I.; Caragnano, Annalisa; Berumen, Michael L.
2016-01-01
Reticulate evolution, introgressive hybridisation, and phenotypic plasticity have been documented in scleractinian corals and have challenged our ability to interpret speciation processes. Stylophora is a key model system in coral biology and physiology, but genetic analyses have revealed that cryptic lineages concealed by morphological stasis exist in the Stylophora pistillata species complex. The Red Sea represents a hotspot for Stylophora biodiversity with six morphospecies described, two of which are regionally endemic. We investigated Stylophora species boundaries from the Red Sea and the associated Symbiodinium by sequencing seven DNA loci. Stylophora morphospecies from the Red Sea were not resolved based on mitochondrial phylogenies and showed nuclear allele sharing. Low genetic differentiation, weak isolation, and strong gene flow were found among morphospecies although no signals of genetic recombination were evident among them. Stylophora mamillata harboured Symbiodinium clade C whereas the other two Stylophora morphospecies hosted either Symbiodinium clade A or C. These evolutionary patterns suggest that either gene exchange occurs through reticulate evolution or that multiple ecomorphs of a phenotypically plastic species occur in the Red Sea. The recent origin of the lineage leading to the Red Sea Stylophora may indicate an ongoing speciation driven by environmental changes and incomplete lineage sorting. PMID:27713475
Tsui, Clement Kin-Ming; Farfan, Lina; Roe, Amanda D.; Rice, Adrianne V.; Cooke, Janice E. K.; El-Kassaby, Yousry A.; Hamelin, Richard C.
2014-01-01
Over 18 million ha of forests have been destroyed in the past decade in Canada by the mountain pine beetle (MPB) and its fungal symbionts. Understanding their population dynamics is critical to improving modeling of beetle epidemics and providing potential clues to predict population expansion. Leptographium longiclavatum and Grosmannia clavigera are fungal symbionts of MPB that aid the beetle to colonize and kill their pine hosts. We investigated the genetic structure and demographic expansion of L. longiclavatum in populations established within the historic distribution range and in the newly colonized regions. We identified three genetic clusters/populations that coincide with independent geographic locations. The genetic profiles of the recently established populations in northern British Columbia (BC) and Alberta suggest that they originated from central and southern BC. Approximate Bayesian Computation supports the scenario that this recent expansion represents an admixture of individuals originating from BC and the Rocky Mountains. Highly significant correlations were found among genetic distance matrices of L. longiclavatum, G. clavigera, and MPB. This highlights the concordance of demographic processes in these interacting organisms sharing a highly specialized niche and supports the hypothesis of long-term multipartite beetle-fungus co-evolutionary history and mutualistic relationships. PMID:25153489
Evolutionary trade-offs in kidney injury and repair.
Lei, Yutian; Anders, Hans-Joachim
2017-11-01
Evolutionary medicine has proven helpful to understand the origin of human disease, e.g. in identifying causal roles of recent environmental changes impacting on human physiology (environment-phenotype mismatch). In contrast, diseases affecting only a limited number of members of a species often originate from evolutionary trade-offs for usually physiologic adaptations assuring reproductive success in the context of extrinsic threats. For example, the G1 and G2 variants of the APOL1 gene supporting control of Trypanosoma infection come with the trade-off that they promote the progression of kidney disease. In this review we extend the concept of evolutionary nephrology by discussing how the physiologic adaptations (danger responses) to tissue injury create evolutionary trade-offs that drive histopathological changes underlying acute and chronic kidney diseases. The evolution of multicellular organisms positively selected a number of danger response programs for their overwhelming benefits in assuring survival such as clotting, inflammation, epithelial healing and mesenchymal healing, i.e. fibrosis and sclerosis. Upon kidney injury these danger programs often present as pathomechanisms driving persistent nephron loss and renal failure. We explore how classic kidney disease entities involve insufficient or overshooting activation of these danger response programs for which the underlying genetic basis remains largely to be defined. Dissecting the causative and hierarchical relationships between danger programs should help to identify molecular targets to control kidney injury and to improve disease outcomes.
Photosynthesis: what color was its origin?
Xiong, Jin
2006-01-01
Recent studies using geological and molecular phylogenetic evidence suggest several alternative evolutionary scenarios for the origin of photosynthesis. The earliest photosynthetic group is variously thought to be heliobacteria, proteobacteria or a precursor of cyanobacteria, organisms whose photosynthetic pigments make them different colors. PMID:17210067
Devos, Damien P; Gräf, Ralph; Field, Mark C
2014-01-01
The nucleus represents a major evolutionary transition. As a consequence of separating translation from transcription many new functions arose, which likely contributed to the remarkable success of eukaryotic cells. Here we will consider what has recently emerged on the evolutionary histories of several key aspects of nuclear biology; the nuclear pore complex, the lamina, centrosomes and evidence for prokaryotic origins of relevant players. PMID:24508984
Xu, Yifei; Ramey, Andrew M.; Bowman, Andrew S; DeLiberto, Thomas J.; Killian, Mary Lea; Krauss, Scott; Nolting, Jacqueline M.; Torchetti, Mia Kim; Reeves, Andrew B.; Webby, Richard J.; Stallknecht, David E.; Wan, Xiu-Feng
2017-01-01
Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir.
Toxin Plasmids of Clostridium perfringens
Li, Jihong; Adams, Vicki; Bannam, Trudi L.; Miyamoto, Kazuaki; Garcia, Jorge P.; Uzal, Francisco A.; Rood, Julian I.
2013-01-01
SUMMARY In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract. PMID:23699255
The importance of offshore origination revealed through ophiuroid phylogenomics.
Bribiesca-Contreras, Guadalupe; Verbruggen, Heroen; Hugall, Andrew F; O'Hara, Timothy D
2017-07-12
Our knowledge of macro-evolutionary processes in the deep sea is poor, leading to much speculation about whether the deep sea is a source or sink of evolutionary adaptation. Here, we use a phylogenetic approach, on large molecular (688 species, 275 kbp) and distributional datasets (104 513 records) across an entire class of marine invertebrates (Ophiuroidea), to infer rates of bathymetric range shift over time between shallow and deep water biomes. Biome conservation is evident through the phylogeny, with the majority of species in most clades distributed within the same bathome. Despite this, bathymetric shifts have occurred. We inferred from ancestral reconstructions that eurybathic or intermediate distributions across both biomes were a transitional state and direct changes between shallow and deep sea did not occur. The macro-evolutionary pattern of bathome shift appeared to reflect micro-evolutionary processes of bathymetric speciation. Results suggest that most of the oldest clades have a deep-sea origin, but multiple colonization events indicate that the evolution of this group conforms neither to a simple onshore-offshore hypothesis, nor the opposite pattern. Both shallow and deep bathomes have played an important role in generating the current diversity of this major benthic class. © 2017 The Author(s).
de Jager, Marinus L; Ellis, Allan G
2017-02-01
The Greater Cape Floristic Region (GCFR) in South Africa has been extensively investigated for its phenomenal angiosperm diversity. A key emergent pattern is the occurrence of older plant lineages in the southern Fynbos biome and younger lineages in the northern Succulent Karoo biome. We know practically nothing, however, about the evolutionary history of the animals that pollinate this often highly-specialized flora. In this study, we explore the evolutionary history of an important GCFR fly pollinator, Megapalpus capensis, and ask whether it exhibits broadly congruent genetic structuring and timing of diversification to flowering plants within these biomes. We find that the oldest M. capensis lineages originated in Fynbos during the Miocene, while younger Succulent Karoo lineages diverged in the Pliocene and correspond to the proposed age of this recent biome. A strong signature of population expansion is also recovered for flies in this arid biome, consistent with recent colonization. Our first investigation into the evolutionary history of GCFR pollinators thus supports a recent origin of the SK biome, as inferred from angiosperm phylogenies, and suggests that plants and pollinators may have co-diverged within this remarkable area. Copyright © 2016 Elsevier Inc. All rights reserved.
Charles Darwin and the Origins of Plant Evolutionary Developmental Biology
Friedman, William E.; Diggle, Pamela K.
2011-01-01
Much has been written of the early history of comparative embryology and its influence on the emergence of an evolutionary developmental perspective. However, this literature, which dates back nearly a century, has been focused on metazoans, without acknowledgment of the contributions of comparative plant morphologists to the creation of a developmental view of biodiversity. We trace the origin of comparative plant developmental morphology from its inception in the eighteenth century works of Wolff and Goethe, through the mid nineteenth century discoveries of the general principles of leaf and floral organ morphogenesis. Much like the stimulus that von Baer provided as a nonevolutionary comparative embryologist to the creation of an evolutionary developmental view of animals, the comparative developmental studies of plant morphologists were the basis for the first articulation of the concept that plant (namely floral) evolution results from successive modifications of ontogeny. Perhaps most surprisingly, we show that the first person to carefully read and internalize the remarkable advances in the understanding of plant morphogenesis in the 1840s and 1850s is none other than Charles Darwin, whose notebooks, correspondence, and (then) unpublished manuscripts clearly demonstrate that he had discovered the developmental basis for the evolutionary transformation of plant form. PMID:21515816
Charles Darwin and the origins of plant evolutionary developmental biology.
Friedman, William E; Diggle, Pamela K
2011-04-01
Much has been written of the early history of comparative embryology and its influence on the emergence of an evolutionary developmental perspective. However, this literature, which dates back nearly a century, has been focused on metazoans, without acknowledgment of the contributions of comparative plant morphologists to the creation of a developmental view of biodiversity. We trace the origin of comparative plant developmental morphology from its inception in the eighteenth century works of Wolff and Goethe, through the mid nineteenth century discoveries of the general principles of leaf and floral organ morphogenesis. Much like the stimulus that von Baer provided as a nonevolutionary comparative embryologist to the creation of an evolutionary developmental view of animals, the comparative developmental studies of plant morphologists were the basis for the first articulation of the concept that plant (namely floral) evolution results from successive modifications of ontogeny. Perhaps most surprisingly, we show that the first person to carefully read and internalize the remarkable advances in the understanding of plant morphogenesis in the 1840s and 1850s is none other than Charles Darwin, whose notebooks, correspondence, and (then) unpublished manuscripts clearly demonstrate that he had discovered the developmental basis for the evolutionary transformation of plant form.
Evolutionary genomics: is Buchnera a bacterium or an organelle?
Andersson, J O
2000-11-30
The first genome sequence of an intracellular bacterial symbiont of a eukaryotic cell has been determined. The Buchnera genome shares features with the genomes of both intracellular pathogenic bacteria and eukaryotic organelles, and it may represent an intermediate between the two.
Butler, Richard J; Barrett, Paul M; Kenrick, Paul; Penn, Malcolm G
2009-02-01
The significance of co-evolution over ecological timescales is well established, yet it remains unclear to what extent co-evolutionary processes contribute to driving large-scale evolutionary and ecological changes over geological timescales. Some of the most intriguing and pervasive long-term co-evolutionary hypotheses relate to proposed interactions between herbivorous non-avian dinosaurs and Mesozoic plants, including cycads. Dinosaurs have been proposed as key dispersers of cycad seeds during the Mesozoic, and temporal variation in cycad diversity and abundance has been linked to dinosaur faunal changes. Here we assess the evidence for proposed hypotheses of trophic and evolutionary interactions between these two groups using diversity analyses, a new database of Cretaceous dinosaur and plant co-occurrence data, and a geographical information system (GIS) as a visualisation tool. Phylogenetic evidence suggests that the origins of several key biological properties of cycads (e.g. toxins, bright-coloured seeds) likely predated the origin of dinosaurs. Direct evidence of dinosaur-cycad interactions is lacking, but evidence from extant ecosystems suggests that dinosaurs may plausibly have acted as seed dispersers for cycads, although it is likely that other vertebrate groups (e.g. birds, early mammals) also played a role. Although the Late Triassic radiations of dinosaurs and cycads appear to have been approximately contemporaneous, few significant changes in dinosaur faunas coincide with the late Early Cretaceous cycad decline. No significant spatiotemporal associations between particular dinosaur groups and cycads can be identified - GIS visualisation reveals disparities between the spatiotemporal distributions of some dinosaur groups (e.g. sauropodomorphs) and cycads that are inconsistent with co-evolutionary hypotheses. The available data provide no unequivocal support for any of the proposed co-evolutionary interactions between cycads and herbivorous dinosaurs - diffuse co-evolutionary scenarios that are proposed to operate over geological timescales are plausible, but such hypotheses need to be firmly grounded on direct evidence of interaction and may be difficult to support given the patchiness of the fossil record.
Imoto, Junichi M; Saitoh, Kenji; Sasaki, Takeshi; Yonezawa, Takahiro; Adachi, Jun; Kartavtsev, Yuri P; Miya, Masaki; Nishida, Mutsumi; Hanzawa, Naoto
2013-02-10
The distribution of freshwater taxa is a good biogeographic model to study pattern and process of vicariance and dispersal. The subfamily Leuciscinae (Cyprinidae, Teleostei) consists of many species distributed widely in Eurasia and North America. Leuciscinae have been divided into two phyletic groups, leuciscin and phoxinin. The phylogenetic relationships between major clades within the subfamily are poorly understood, largely because of the overwhelming diversity of the group. The origin of the Far Eastern phoxinin is an interesting question regarding the evolutionary history of Leuciscinae. Here we present phylogenetic analysis of 31 species of Leuciscinae and outgroups based on complete mitochondrial genome sequences to clarify the phylogenetic relationships and to infer the evolutionary history of the subfamily. Phylogenetic analysis suggests that the Far Eastern phoxinin species comprised the monophyletic clades Tribolodon, Pseudaspius, Oreoleuciscus and Far Eastern Phoxinus. The Far Eastern phoxinin clade was independent of other Leuciscinae lineages and was closer to North American phoxinins than European leuciscins. All of our analysis also suggested that leuciscins and phoxinins each constituted monophyletic groups. Divergence time estimation suggested that Leuciscinae species diverged from outgroups such as Tincinae to be 83.3 million years ago (Mya) in the Late Cretaceous and leuciscin and phoxinin shared a common ancestor 70.7 Mya. Radiation of Leuciscinae lineages occurred during the Late Cretaceous to Paleocene. This period also witnessed the radiation of tetrapods. Reconstruction of ancestral areas indicates Leuciscinae species originated within Europe. Leuciscin species evolved in Europe and the ancestor of phoxinin was distributed in North America. The Far Eastern phoxinins would have dispersed from North America to Far East across the Beringia land bridge. The present study suggests important roles for the continental rearrangements during the Late Cretaceous to form the present-day distribution of organisms. Furthermore, the Late Cretaceous biotic turnover influenced for the modern terrestrial biodiversity. Copyright © 2012 Elsevier B.V. All rights reserved.
Time to split Salvia s.l. (Lamiaceae) - New insights from Old World Salvia phylogeny.
Will, Maria; Claßen-Bockhoff, Regine
2017-04-01
Salvia L. is widely known as the largest genus in the mint family. A morphological modification of the androecium (lever-like stamens) was used to support this genus. However, molecular data revealed that Salvia is polyphyletic. Since phylogenetic studies largely underrepresented Old World Salvia species, we filled this gap and combined new data with existing sequences. The aim of our study was the identification of well-supported clades that provide the basis for evolutionary and taxonomic conclusions. We included ITS data (internal transcribed spacer) from 220 Salvia species, 86 of which were sequenced for the first time. Additionally, the highly variable plastid marker rpl32-trnL was sequenced, providing new data for 100 Salvia species. These sequences were combined with the accessions available from GenBank. Old World Salvia is represented herein with 57% of its species. The two datasets were analyzed separately using BI and ML approaches. Our data confirm that Salvia is polyphyletic with four distinct evolutionary lineages (Clade I-IV), including five additional genera. The clades strongly reflect the geographical distribution, i.e., Clade IV (East Asia), Clade III (Southwest Asia to Northern Africa), and Clade II (America). The origin of Salvia s.s. (Clade I) is most likely Southwest Asia. A high degree of parallel character evolution was identified in most of the Old World sections. Based on our results, we reconstructed the evolution and biogeography of Salvia s.l. and propose to split this large group into six genera, each supported by geographical distribution, morphology, and karyology. Salvia s.l. is a polyphyletic group that was originally regarded as a genus because its species share a derived stamen structure. However, phylogenetic data clearly indicate that this floral trait and other morphological characters evolved in parallel. Our study illustrates that the combination of different data sets allows a comprehensive reconstruction of taxa and characteristic evolution, both of which are a precondition for future revision. Copyright © 2017 Elsevier Inc. All rights reserved.
Algal MIPs, high diversity and conserved motifs
2011-01-01
Background Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. Results A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Conclusions Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs. PMID:21510875
Consciousness and the natural method.
Flanagan, O
1995-09-01
'Consciousness' is a superordinate term for a heterogeneous array of mental state types. The types share the property of 'being experienced' or 'being experiences'--'of there being something that it is like for the subject to be in one of these states.' I propose that we can only build a theory of consciousness by deploying 'the natural method' of coordinating all relevant informational resources at once, especially phenomenology, cognitive science, neuroscience and evolutionary biology. I'll provide two examples of the natural method in action in mental domains where an adaptationist evolutionary account seems plausible: (i) visual awareness and (ii) conscious event memory. Then I will discuss a case, (iii), dreaming, where I think no adaptationist evolutionary account exists. Beyond whatever interest the particular cases have, the examination will show why I think that a theory of mind, and the role conscious mentation plays in it, will need to be built domain-by-domain with no a priori expectation that there will be a unified account of the causal role or evolutionary history of different domains and competences.
Evolutionary Dynamics and Diversity in Microbial Populations
NASA Astrophysics Data System (ADS)
Thompson, Joel; Fisher, Daniel
2013-03-01
Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.
Molecular marker suggests rapid changes of sex-determining mechanisms in Australian dragon lizards.
Ezaz, Tariq; Quinn, Alexander E; Sarre, Stephen D; O'Meally, Denis; Georges, Arthur; Graves, Jennifer A Marshall
2009-01-01
Distribution of sex-determining mechanisms across Australian agamids shows no clear phylogenetic segregation, suggesting multiple transitions between temperature-dependent (TSD) and genotypic sex determination (GSD). These taxa thus present an excellent opportunity for studying the evolution of sex chromosomes, and evolutionary transitions between TSD and GSD. Here we report the hybridization of a 3 kb genomic sequence (PvZW3) that marks the Z and W microchromosomes of the Australian central bearded dragon (Pogona vitticeps) to chromosomes of 12 species of Australian agamids from eight genera using fluorescence in-situ hybridization (FISH). The probe hybridized to a single microchromosome pair in 11 of these species, but to the tip of the long arm of chromosome pair 2 in the twelfth (Physignathus lesueurii), indicating a micro-macro chromosome rearrangement. Three TSD species shared the marked microchromosome, implying that it is a conserved autosome in related species that determine sex by temperature. C-banding identified the marked microchromosome as the heterochromatic W chromosome in two of the three GSD species. However, in Ctenophorus fordi, the probe hybridized to a different microchromosome from that shown by C-banding to be the heterochromatic W, suggesting an independent origin for the ZW chromosome pair in that species. Given the haphazard distribution of GSD and TSD in this group and the existence of at least two sets of sex microchromosomes in GSD species, we conclude that sex-determining mechanisms in this family have evolved independently, multiple times in a short evolutionary period.
Mhc class II B gene evolution in East African cichlid fishes.
Figueroa, F; Mayer, W E; Sültmann, H; O'hUigin, C; Tichy, H; Satta, Y; Takezaki, N; Takahata, N; Klein, J
2000-06-01
A distinctive feature of essential major histocompatibility complex (Mhc) loci is their polymorphism characterized by large genetic distances between alleles and long persistence times of allelic lineages. Since the lineages often span several successive speciations, we investigated the behavior of the Mhc alleles during or close to the speciation phase. We sequenced exon 2 of the class II B locus 4 from 232 East African cichlid fishes representing 32 related species. The divergence times of the (sub)species ranged from 6,000 to 8.4 million years. Two types of evolutionary analysis were used to elucidate the pattern of exon 2 sequence divergence. First, phylogenetic methods were applied to reconstruct the most likely evolutionary pathways leading from the last common ancestor of the set to the extant sequences, and to assess the probable mechanisms involved in allelic diversification. Second, pairwise comparisons of sequences were carried out to detect differences seemingly incompatible with origin by nonparallel point mutations. The analysis revealed point mutations to be the most important mechanism behind allelic divergences, with recombination playing only an auxiliary part. Comparison of sequences from related species revealed evidence of random allelic (lineage) losses apparently associated with speciation. Sharing of identical alleles could be demonstrated between species that diverged 2 million years ago. The phylogeny of the exon was incongruent with that of the flanking introns, indicating either a high degree of convergent evolution at the peptide-binding region-encoding sites, or intron homogenization.
Baldo, Angela; Righetti, Laura; Bailey, Aubrey; Fontana, Paolo; Velasco, Riccardo; Malnoy, Mickael
2014-01-01
The family of resistance gene analogues (RGAs) with a nucleotide-binding site (NBS) domain accounts for the largest number of disease resistance genes and is one of the largest gene families in plants. We have identified 868 RGAs in the genome of the apple (Malus × domestica Borkh.) cultivar ‘Golden Delicious’. This represents 1.51% of the total number of predicted genes for this cultivar. Several evolutionary features are pronounced in M. domestica, including a high fraction (80%) of RGAs occurring in clusters. This suggests frequent tandem duplication and ectopic translocation events. Of the identified RGAs, 56% are located preferentially on six chromosomes (Chr 2, 7, 8, 10, 11, and 15), and 25% are located on Chr 2. TIR-NBS and non-TIR-NBS classes of RGAs are primarily exclusive of different chromosomes, and 99% of non-TIR-NBS RGAs are located on Chr 11. A phylogenetic reconstruction was conducted to study the evolution of RGAs in the Rosaceae family. More than 1400 RGAs were identified in six species based on their NBS domain, and a neighbor-joining analysis was used to reconstruct the phylogenetic relationships among the protein sequences. Specific phylogenetic clades were found for RGAs of Malus, Fragaria, and Rosa, indicating genus-specific evolution of resistance genes. However, strikingly similar RGAs were shared in Malus, Pyrus, and Prunus, indicating high conservation of specific RGAs and suggesting a monophyletic origin of these three genera. PMID:24505246
Perazzolli, Michele; Malacarne, Giulia; Baldo, Angela; Righetti, Laura; Bailey, Aubrey; Fontana, Paolo; Velasco, Riccardo; Malnoy, Mickael
2014-01-01
The family of resistance gene analogues (RGAs) with a nucleotide-binding site (NBS) domain accounts for the largest number of disease resistance genes and is one of the largest gene families in plants. We have identified 868 RGAs in the genome of the apple (Malus × domestica Borkh.) cultivar 'Golden Delicious'. This represents 1.51% of the total number of predicted genes for this cultivar. Several evolutionary features are pronounced in M. domestica, including a high fraction (80%) of RGAs occurring in clusters. This suggests frequent tandem duplication and ectopic translocation events. Of the identified RGAs, 56% are located preferentially on six chromosomes (Chr 2, 7, 8, 10, 11, and 15), and 25% are located on Chr 2. TIR-NBS and non-TIR-NBS classes of RGAs are primarily exclusive of different chromosomes, and 99% of non-TIR-NBS RGAs are located on Chr 11. A phylogenetic reconstruction was conducted to study the evolution of RGAs in the Rosaceae family. More than 1400 RGAs were identified in six species based on their NBS domain, and a neighbor-joining analysis was used to reconstruct the phylogenetic relationships among the protein sequences. Specific phylogenetic clades were found for RGAs of Malus, Fragaria, and Rosa, indicating genus-specific evolution of resistance genes. However, strikingly similar RGAs were shared in Malus, Pyrus, and Prunus, indicating high conservation of specific RGAs and suggesting a monophyletic origin of these three genera.
Phylogenomics and the Dynamic Genome Evolution of the Genus Streptococcus
Richards, Vincent P.; Palmer, Sara R.; Pavinski Bitar, Paulina D.; Qin, Xiang; Weinstock, George M.; Highlander, Sarah K.; Town, Christopher D.; Burne, Robert A.; Stanhope, Michael J.
2014-01-01
The genus Streptococcus comprises important pathogens that have a severe impact on human health and are responsible for substantial economic losses to agriculture. Here, we utilize 46 Streptococcus genome sequences (44 species), including eight species sequenced here, to provide the first genomic level insight into the evolutionary history and genetic basis underlying the functional diversity of all major groups of this genus. Gene gain/loss analysis revealed a dynamic pattern of genome evolution characterized by an initial period of gene gain followed by a period of loss, as the major groups within the genus diversified. This was followed by a period of genome expansion associated with the origins of the present extant species. The pattern is concordant with an emerging view that genomes evolve through a dynamic process of expansion and streamlining. A large proportion of the pan-genome has experienced lateral gene transfer (LGT) with causative factors, such as relatedness and shared environment, operating over different evolutionary scales. Multiple gene ontology terms were significantly enriched for each group, and mapping terms onto the phylogeny showed that those corresponding to genes born on branches leading to the major groups represented approximately one-fifth of those enriched. Furthermore, despite the extensive LGT, several biochemical characteristics have been retained since group formation, suggesting genomic cohesiveness through time, and that these characteristics may be fundamental to each group. For example, proteolysis: mitis group; urea metabolism: salivarius group; carbohydrate metabolism: pyogenic group; and transcription regulation: bovis group. PMID:24625962
Clay, Danielle L; Novak, Stephen J; Serpe, Marcelo D; Tank, David C; Smith, James F
2012-12-01
Hybridization is an important evolutionary force in the history of angiosperms; however, there are few examples of stabilized species derived through homoploid hybrid speciation. Homoploid hybrid species are generally detected via the presence of genetic additivity of parental markers, novel ecological and spatial distinctions, and novel morphological traits, all of which may aid in the successful establishment of hybrid species from parental types. Speciation and diversification within the genus Castilleja (Orobanchaceae) has been attributed to high levels of hybridization and polyploidy, though currently there are no examples of homoploid hybrid speciation within the genus. We employed multiple lines of evidence to examine a putative hybrid origin in C. christii, a rare endemic, known only from 80 hectares at the summit of Mt. Harrison (Cassia Co., Idaho). • We used granule-bound starch synthase II (waxy) sequences and 26 morphological characters to address hybridization between C. christii and widespread congeners C. miniata and/or C. linariifolia in an area of sympatry. Chromosomes of C. christii were also counted for the first time. • All 230 direct-sequenced C. christii individuals had the additive genomes of both C. miniata and C. linariifolia. Castilleja christii shares traits with both parents but also has floral characters that are unique and transgressive. Cytological counts indicated that all three taxa are diploid. • We conclude that C. christii is a stabilized homoploid hybrid derivative of C. linariifolia and C. miniata and is likely following an independent evolutionary trajectory from its progenitors.
Evolutionary analyses of non-genealogical bonds produced by introgressive descent.
Bapteste, Eric; Lopez, Philippe; Bouchard, Frédéric; Baquero, Fernando; McInerney, James O; Burian, Richard M
2012-11-06
All evolutionary biologists are familiar with evolutionary units that evolve by vertical descent in a tree-like fashion in single lineages. However, many other kinds of processes contribute to evolutionary diversity. In vertical descent, the genetic material of a particular evolutionary unit is propagated by replication inside its own lineage. In what we call introgressive descent, the genetic material of a particular evolutionary unit propagates into different host structures and is replicated within these host structures. Thus, introgressive descent generates a variety of evolutionary units and leaves recognizable patterns in resemblance networks. We characterize six kinds of evolutionary units, of which five involve mosaic lineages generated by introgressive descent. To facilitate detection of these units in resemblance networks, we introduce terminology based on two notions, P3s (subgraphs of three nodes: A, B, and C) and mosaic P3s, and suggest an apparatus for systematic detection of introgressive descent. Mosaic P3s correspond to a distinct type of evolutionary bond that is orthogonal to the bonds of kinship and genealogy usually examined by evolutionary biologists. We argue that recognition of these evolutionary bonds stimulates radical rethinking of key questions in evolutionary biology (e.g., the relations among evolutionary players in very early phases of evolutionary history, the origin and emergence of novelties, and the production of new lineages). This line of research will expand the study of biological complexity beyond the usual genealogical bonds, revealing additional sources of biodiversity. It provides an important step to a more realistic pluralist treatment of evolutionary complexity.
Exploring Connectivity in Sequence Space of Functional RNA
NASA Technical Reports Server (NTRS)
Wei, Chenyu; Pohorille, Andrzej; Popovic, Milena; Ditzler, Mark
2017-01-01
Emergence of replicable genetic molecules was one of the marking points in the origin of life, evolution of which can be conceptualized as a walk through the space of all possible sequences. A theoretical concept of fitness landscape helps to understand evolutionary processes through assigning a value of fitness to each genotype. Then, evolution of a phenotype is viewed as a series of consecutive, single-point mutations. Natural selection biases evolution toward peaks of high fitness and away from valleys of low fitness. whereas neutral drift occurs in the sequence space without direction as mutations are introduced at random. Large networks of neutral or near-neutral mutations on a fitness landscape, especially for sufficiently long genomes, are possible or even inevitable. Their detection in experiments, however, has been elusive. Although a few near-neutral evolutionary pathways have been found, recent experimental evidence indicates landscapes consist of largely isolated islands. The generality of these results, however, is not clear, as the genome length or the fraction of functional molecules in the genotypic space might have been insufficient for the emergence of large, neutral networks. Thorough investigation on the structure of the fitness landscape is essential to understand the mechanisms of evolution of early genomes. RNA molecules are commonly assumed to play the pivotal role in the origin of genetic systems. They are widely believed to be early, if not the earliest, genetic and catalytic molecules, with abundant biochemical activities as aptamers and ribozymes, i.e. RNA molecules capable, respectively, to bind small molecules or catalyze chemical reactions. Here, we present results of our recent studies on the structure of the sequence space of RNA ligase ribozymes selected through in vitro evolution. Several hundred thousands of sequences active to a different degree were obtained by way of deep sequencing. Analysis of these sequences revealed several large clusters defined such that every sequence in a cluster can be reached from any other sequence in the same cluster through a series of single point mutations. Sequences in a single cluster appear to adopt more than one secondary structure. The mechanism of refolding within a single cluster was examined. To shed light on possible evolutionary paths in the space of ribozymes, the connectivity between clusters was investigated. The effect of length of RNA molecules on the structure of the fitness landscape and possible evolutionary paths was examined by way of comparing functional sequences of 20 and 80 nucleobases in length. It was found that sequences of different lengths shared secondary structure motifs that were presumed responsible for catalytic activity, with increasing complexity and global structural rearrangements emerging in longer molecules.
Reconciling the evolutionary origin of bread wheat (Triticum aestivum).
El Baidouri, Moaine; Murat, Florent; Veyssiere, Maeva; Molinier, Mélanie; Flores, Raphael; Burlot, Laura; Alaux, Michael; Quesneville, Hadi; Pont, Caroline; Salse, Jérôme
2017-02-01
The origin of bread wheat (Triticum aestivum; AABBDD) has been a subject of controversy and of intense debate in the scientific community over the last few decades. In 2015, three articles published in New Phytologist discussed the origin of hexaploid bread wheat (AABBDD) from the diploid progenitors Triticum urartu (AA), a relative of Aegilops speltoides (BB) and Triticum tauschii (DD). Access to new genomic resources since 2013 has offered the opportunity to gain novel insights into the paleohistory of modern bread wheat, allowing characterization of its origin from its diploid progenitors at unprecedented resolution. We propose a reconciled evolutionary scenario for the modern bread wheat genome based on the complementary investigation of transposable element and mutation dynamics between diploid, tetraploid and hexaploid wheat. In this scenario, the structural asymmetry observed between the A, B and D subgenomes in hexaploid bread wheat derives from the cumulative effect of diploid progenitor divergence, the hybrid origin of the D subgenome, and subgenome partitioning following the polyploidization events. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Animal Evolution: The Hard Problem of Cartilage Origins.
Brunet, Thibaut; Arendt, Detlev
2016-07-25
Our skeletons evolved from cartilaginous tissue, but it remains a mystery how cartilage itself first arose in evolution. Characterization of cartilage in cuttlefish and horseshoe crabs reveals surprising commonalities with chordate chondrocytes, suggesting a common evolutionary origin. Copyright © 2016 Elsevier Ltd. All rights reserved.
The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals
2011-01-01
Background Scleractinian corals are currently a focus of major interest because of their ecological importance and the uncertain fate of coral reefs in the face of increasing anthropogenic pressure. Despite this, remarkably little is known about the evolutionary origins of corals. The Scleractinia suddenly appear in the fossil record about 240 Ma, but the range of morphological variation seen in these Middle Triassic fossils is comparable to that of modern scleractinians, implying much earlier origins that have so far remained elusive. A significant weakness in reconstruction(s) of early coral evolution is that deep-sea corals have been poorly represented in molecular phylogenetic analyses. Results By adding new data from a large and representative range of deep-water species to existing molecular datasets and applying a relaxed molecular clock, we show that two exclusively deep-sea families, the Gardineriidae and Micrabaciidae, diverged prior to the Complexa/Robusta coral split around 425 Ma, thereby pushing the evolutionary origin of scleractinian corals deep into the Paleozoic. Conclusions The early divergence and distinctive morphologies of the extant gardineriid and micrabaciid corals suggest a link with Ordovician "scleractiniamorph" fossils that were previously assumed to represent extinct anthozoan skeletonized lineages. Therefore, scleractinian corals most likely evolved from Paleozoic soft-bodied ancestors. Modern shallow-water Scleractinia, which are dependent on symbionts, appear to have had several independent origins from solitary, non-symbiotic precursors. The Scleractinia have survived periods of massive climate change in the past, suggesting that as a lineage they may be less vulnerable to future changes than often assumed. PMID:22034946
Endosymbiotic theories for eukaryote origin
Martin, William F.; Garg, Sriram; Zimorski, Verena
2015-01-01
For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe. PMID:26323761
Evolutionary dynamics of collective index insurance.
Pacheco, Jorge M; Santos, Francisco C; Levin, Simon A
2016-03-01
Index-based insurances offer promising opportunities for climate-risk investments in developing countries. Indeed, contracts conditional on, e.g., weather or livestock indexes can be cheaper to set up than conventional indemnity-based insurances, while offering a safety net to vulnerable households, allowing them to eventually escape poverty traps. Moreover, transaction costs by insurance companies may be additionally reduced if contracts, instead of arranged with single households, are endorsed by collectives of households that bear the responsibility of managing the division of the insurance coverage by its members whenever the index is surpassed, allowing for additional flexibility in what concerns risk-sharing and also allowing insurance companies to avoid the costs associated with moral hazard. Here we resort to a population dynamics framework to investigate under which conditions household collectives may find collective index insurances attractive, when compared with individual index insurances. We assume risk sharing among the participants of each collective, and model collective action in terms of an N-person threshold game. Compared to less affordable individual index insurances, we show how collective index insurances lead to a coordination problem in which the adoption of index insurances may become the optimal decision, spreading index insurance coverage to the entire population. We further investigate the role of risk-averse and risk-prone behaviors, as well as the role of partial correlation between insurance coverage and actual loss of crops, and in which way these affect the original coordination thresholds.
Ley, A C; Hardy, O J
2014-08-01
Gene flow within and between species is a fundamental process shaping the evolutionary history of taxa. However, the extent of hybridization and reinforcement is little documented in the tropics. Here we explore the pattern of gene flow between three sister species from the herbaceous genus Marantochloa (Marantaceae), sympatrically distributed in the understorey of the African rainforest, using data from the chloroplast and nuclear genomes (DNA sequences and AFLP). We found highly contrasting patterns: while there was no evidence of gene flow between M. congensis and M. monophylla, species identity between M. monophylla and M. incertifolia was maintained despite considerable gene flow. We hypothesize that M. incertifolia originated from an ancient hybridization event between M. congensis and M. monophylla, considering the current absence of hybridization between the two assumed parent species, the rare presence of shared haplotypes between all three species and the high percentage of haplotypes shared by M. incertifolia with each of the two parent species. This example is contrasted with two parapatrically distributed species from the same family in the genus Haumania forming a hybrid zone restricted to the area of overlap. This work illustrates the diversity of speciation/introgression patterns that can potentially occur in the flora of tropical Africa. Copyright © 2014 Elsevier Inc. All rights reserved.
Ardipithecus ramidus and the paleobiology of early hominids.
White, Tim D; Asfaw, Berhane; Beyene, Yonas; Haile-Selassie, Yohannes; Lovejoy, C Owen; Suwa, Gen; WoldeGabriel, Giday
2009-10-02
Hominid fossils predating the emergence of Australopithecus have been sparse and fragmentary. The evolution of our lineage after the last common ancestor we shared with chimpanzees has therefore remained unclear. Ardipithecus ramidus, recovered in ecologically and temporally resolved contexts in Ethiopia's Afar Rift, now illuminates earlier hominid paleobiology and aspects of extant African ape evolution. More than 110 specimens recovered from 4.4-million-year-old sediments include a partial skeleton with much of the skull, hands, feet, limbs, and pelvis. This hominid combined arboreal palmigrade clambering and careful climbing with a form of terrestrial bipedality more primitive than that of Australopithecus. Ar. ramidus had a reduced canine/premolar complex and a little-derived cranial morphology and consumed a predominantly C3 plant-based diet (plants using the C3 photosynthetic pathway). Its ecological habitat appears to have been largely woodland-focused. Ar. ramidus lacks any characters typical of suspension, vertical climbing, or knuckle-walking. Ar. ramidus indicates that despite the genetic similarities of living humans and chimpanzees, the ancestor we last shared probably differed substantially from any extant African ape. Hominids and extant African apes have each become highly specialized through very different evolutionary pathways. This evidence also illuminates the origins of orthogrady, bipedality, ecology, diet, and social behavior in earliest Hominidae and helps to define the basal hominid adaptation, thereby accentuating the derived nature of Australopithecus.
A structural analysis of the AAA+ domains in Saccharomyces cerevisiae cytoplasmic dynein.
Gleave, Emma S; Schmidt, Helgo; Carter, Andrew P
2014-06-01
Dyneins are large protein complexes that act as microtubule based molecular motors. The dynein heavy chain contains a motor domain which is a member of the AAA+ protein family (ATPases Associated with diverse cellular Activities). Proteins of the AAA+ family show a diverse range of functionalities, but share a related core AAA+ domain, which often assembles into hexameric rings. Dynein is unusual because it has all six AAA+ domains linked together, in one long polypeptide. The dynein motor domain generates movement by coupling ATP driven conformational changes in the AAA+ ring to the swing of a motile element called the linker. Dynein binds to its microtubule track via a long antiparallel coiled-coil stalk that emanates from the AAA+ ring. Recently the first high resolution structures of the dynein motor domain were published. Here we provide a detailed structural analysis of the six AAA+ domains using our Saccharomycescerevisiae crystal structure. We describe how structural similarities in the dynein AAA+ domains suggest they share a common evolutionary origin. We analyse how the different AAA+ domains have diverged from each other. We discuss how this is related to the function of dynein as a motor protein and how the AAA+ domains of dynein compare to those of other AAA+ proteins. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
The Role of "Open" in Strategic Library Planning
ERIC Educational Resources Information Center
Petrides, Lisa; Goger, Letha; Jimes, Cynthia
2016-01-01
Academic libraries are undergoing evolutionary change as emerging technologies and new philosophies about how information is created, distributed, and shared have disrupted traditional operations and services. Additionally, the population that the academic library serves is increasingly distributed due to distance learning opportunities and new…
NCT and Culture-Conscious Developmental Science
ERIC Educational Resources Information Center
Downing-Wilson, Deborah; Pelaprat, Etienne; Rosero, Ivan; Vadeboncoeur, Jennifer; Packer, Martin; Cole, Michael
2013-01-01
The authors share the belief that there is great potential for developmental science in bringing the ideas of Niche Construction Theory (NCT), as developed in evolutionary biology, into conversation with Vygotskian-inspired theories such as cultural-historical and activity theories, distributed cognition, and embodied cognition, although from…
Revealing evolutionary pathways by fitness landscape reconstruction.
Kogenaru, Manjunatha; de Vos, Marjon G J; Tans, Sander J
2009-01-01
The concept of epistasis has since long been used to denote non-additive fitness effects of genetic changes and has played a central role in understanding the evolution of biological systems. Owing to an array of novel experimental methodologies, it has become possible to experimentally determine epistatic interactions as well as more elaborate genotype-fitness maps. These data have opened up the investigation of a host of long-standing questions in evolutionary biology, such as the ruggedness of fitness landscapes and the accessibility of mutational trajectories, the evolution of sex, and the origin of robustness and modularity. Here we review this recent and timely marriage between systems biology and evolutionary biology, which holds the promise to understand evolutionary dynamics in a more mechanistic and predictive manner.
Selfish genetic elements, genetic conflict, and evolutionary innovation.
Werren, John H
2011-06-28
Genomes are vulnerable to selfish genetic elements (SGEs), which enhance their own transmission relative to the rest of an individual's genome but are neutral or harmful to the individual as a whole. As a result, genetic conflict occurs between SGEs and other genetic elements in the genome. There is growing evidence that SGEs, and the resulting genetic conflict, are an important motor for evolutionary change and innovation. In this review, the kinds of SGEs and their evolutionary consequences are described, including how these elements shape basic biological features, such as genome structure and gene regulation, evolution of new genes, origin of new species, and mechanisms of sex determination and development. The dynamics of SGEs are also considered, including possible "evolutionary functions" of SGEs.
Selfish genetic elements, genetic conflict, and evolutionary innovation
Werren, John H.
2011-01-01
Genomes are vulnerable to selfish genetic elements (SGEs), which enhance their own transmission relative to the rest of an individual's genome but are neutral or harmful to the individual as a whole. As a result, genetic conflict occurs between SGEs and other genetic elements in the genome. There is growing evidence that SGEs, and the resulting genetic conflict, are an important motor for evolutionary change and innovation. In this review, the kinds of SGEs and their evolutionary consequences are described, including how these elements shape basic biological features, such as genome structure and gene regulation, evolution of new genes, origin of new species, and mechanisms of sex determination and development. The dynamics of SGEs are also considered, including possible “evolutionary functions” of SGEs. PMID:21690392
Pariaud, Bénédicte; Berg, Femke; Bosch, Frank; Powers, Stephen J; Kaltz, Oliver; Lannou, Christian
2013-02-01
Crop pathogens are notorious for their rapid adaptation to their host. We still know little about the evolution of their life cycles and whether there might be trade-offs between fitness components, limiting the evolutionary potential of these pathogens. In this study, we explored a trade-off between spore production capacity and latent period in Puccinia triticina, a fungal pathogen causing leaf rust on wheat. Using a simple multivariate (manova) technique, we showed that the covariance between the two traits is under shared control of host and pathogen, with contributions from host genotype (57%), pathogen genotype (18.4%) and genotype × genotype interactions (12.5%). We also found variation in sign and strength of genetic correlations for the pathogen, when measured on different host varieties. Our results suggest that these important pathogen life-history traits do not freely respond to directional selection and that precise evolutionary trajectories are contingent on the genetic identity of the interacting host and pathogen.
The derived FOXP2 variant of modern humans was shared with Neandertals.
Krause, Johannes; Lalueza-Fox, Carles; Orlando, Ludovic; Enard, Wolfgang; Green, Richard E; Burbano, Hernán A; Hublin, Jean-Jacques; Hänni, Catherine; Fortea, Javier; de la Rasilla, Marco; Bertranpetit, Jaume; Rosas, Antonio; Pääbo, Svante
2007-11-06
Although many animals communicate vocally, no extant creature rivals modern humans in language ability. Therefore, knowing when and under what evolutionary pressures our capacity for language evolved is of great interest. Here, we find that our closest extinct relatives, the Neandertals, share with modern humans two evolutionary changes in FOXP2, a gene that has been implicated in the development of speech and language. We furthermore find that in Neandertals, these changes lie on the common modern human haplotype, which previously was shown to have been subject to a selective sweep. These results suggest that these genetic changes and the selective sweep predate the common ancestor (which existed about 300,000-400,000 years ago) of modern human and Neandertal populations. This is in contrast to more recent age estimates of the selective sweep based on extant human diversity data. Thus, these results illustrate the usefulness of retrieving direct genetic information from ancient remains for understanding recent human evolution.
Shared signals and the potential for phylogenetic espionage between plants and animals.
Schultz, Jack C
2002-07-01
Until recently, the study and understanding of plant and animal signalling and response mechanisms have developed independently. Recent biochemical and molecular work is producing a growing list of elements involved in responses to biotic and abiotic stimuli that are very similar across kingdoms. Some of the more interesting examples of these include prostaglandin/octadecanoid-mediated responses to wounding, steroid-based signalling systems, and pathogen-recognition mechanisms. Some of these similarities probably represent evolutionary convergence; others may be ancestral to plants and animals. Ecological and evolutionary implications of such overlaps include the existence of pathogens that can cause disease in plants and animals, the ability of herbivores to manipulate plant responses, usurpation of microbial mechanisms and genes by herbivorous animals and plants, evolution of plant defenses exploiting shared signals in animals, and the medicinal use of plants by humans. Comparative study of the signalling and response mechanisms used by plants, animals, and microbes provides novel and useful insights to the ecology and evolution of interactions across kingdoms.
The study on knowledge transferring incentive for information system requirement development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang
2015-03-10
Information system requirement development is a process of users’ knowledge sharing and transferring. However the tacit requirements developing is a main problem during requirement development process, for the reason of difficult to encoding, express, and communicate. Knowledge fusion and corporate effort is needed to finding tacit requirements. Under this background, our paper try to find out the rule of effort dynamic evolutionary of software developer and user by building an evolutionary game model on the condition of incentive system. And in addition this paper provides an in depth discussion at the end of this paper.
Tijssen, Peter; Pénzes, Judit J; Yu, Qian; Pham, Hanh T; Bergoin, Max
2016-10-01
A wide spectrum of invertebrates is susceptible to various single-stranded DNA viruses. Their relative simplicity of replication and dependence on actively dividing cells makes them highly pathogenic for many invertebrates (Hexapoda, Decapoda, etc.). We present their taxonomical classification and describe the evolutionary relationships between various groups of invertebrate-infecting viruses, their high degree of recombination, and their relationship to viruses infecting mammals or other vertebrates. They share characteristics of the viruses within the various families, including structure of the virus particle, genome properties, and gene expression strategy. Copyright © 2016. Published by Elsevier Inc.
Characterizing behavioural ‘characters’: an evolutionary framework
Araya-Ajoy, Yimen G.; Dingemanse, Niels J.
2014-01-01
Biologists often study phenotypic evolution assuming that phenotypes consist of a set of quasi-independent units that have been shaped by selection to accomplish a particular function. In the evolutionary literature, such quasi-independent functional units are called ‘evolutionary characters’, and a framework based on evolutionary principles has been developed to characterize them. This framework mainly focuses on ‘fixed’ characters, i.e. those that vary exclusively between individuals. In this paper, we introduce multi-level variation and thereby expand the framework to labile characters, focusing on behaviour as a worked example. We first propose a concept of ‘behavioural characters’ based on the original evolutionary character concept. We then detail how integration of variation between individuals (cf. ‘personality’) and within individuals (cf. ‘individual plasticity’) into the framework gives rise to a whole suite of novel testable predictions about the evolutionary character concept. We further propose a corresponding statistical methodology to test whether observed behaviours should be considered expressions of a hypothesized evolutionary character. We illustrate the application of our framework by characterizing the behavioural character ‘aggressiveness’ in wild great tits, Parus major. PMID:24335984
Zsido, Andras N; Deak, Anita; Losonci, Adrienn; Stecina, Diana; Arato, Akos; Bernath, Laszlo
2018-04-01
Numerous objects and animals could be threatening, and thus, children learn to avoid them early. Spiders and syringes are among the most common targets of fears and phobias of the modern word. However, they are of different origins: while the former is evolutionary relevant, the latter is not. We sought to investigate the underlying mechanisms that make the quick detection of such stimuli possible and enable the impulse to avoid them in the future. The respective categories of threatening and non-threatening targets were similar in shape, while low-level visual features were controlled. Our results showed that children found threatening cues faster, irrespective of the evolutionary age of the cues. However, they detected non-threatening evolutionary targets faster than non-evolutionary ones. We suggest that the underlying mechanism may be different: general feature detection can account for finding evolutionary threatening cues quickly, while specific features detection is more appropriate for modern threatening stimuli. Copyright © 2018 Elsevier B.V. All rights reserved.
Cui, Peng; Ji, Rimutu; Ding, Feng; Qi, Dan; Gao, Hongwei; Meng, He; Yu, Jun; Hu, Songnian; Zhang, Heping
2007-01-01
Background The family Camelidae that evolved in North America during the Eocene survived with two distinct tribes, Camelini and Lamini. To investigate the evolutionary relationship between them and to further understand the evolutionary history of this family, we determined the complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus), the only wild survivor of the Old World camel. Results The mitochondrial genome sequence (16,680 bp) from C. bactrianus ferus contains 13 protein-coding, two rRNA, and 22 tRNA genes as well as a typical control region; this basic structure is shared by all metazoan mitochondrial genomes. Its protein-coding region exhibits codon usage common to all mammals and possesses the three cryptic stop codons shared by all vertebrates. C. bactrianus ferus together with the rest of mammalian species do not share a triplet nucleotide insertion (GCC) that encodes a proline residue found only in the nd1 gene of the New World camelid Lama pacos. This lineage-specific insertion in the L. pacos mtDNA occurred after the split between the Old and New World camelids suggests that it may have functional implication since a proline insertion in a protein backbone usually alters protein conformation significantly, and nd1 gene has not been seen as polymorphic as the rest of ND family genes among camelids. Our phylogenetic study based on complete mitochondrial genomes excluding the control region suggested that the divergence of the two tribes may occur in the early Miocene; it is much earlier than what was deduced from the fossil record (11 million years). An evolutionary history reconstructed for the family Camelidae based on cytb sequences suggested that the split of bactrian camel and dromedary may have occurred in North America before the tribe Camelini migrated from North America to Asia. Conclusion Molecular clock analysis of complete mitochondrial genomes from C. bactrianus ferus and L. pacos suggested that the two tribes diverged from their common ancestor about 25 million years ago, much earlier than what was predicted based on fossil records. PMID:17640355
Tonetti, Daniel A; Andrews, Edward G; Stabingas, Kristen; Tyler-Kabara, Elizabeth; Gross, Bradley A; Jadhav, Ashutosh
2018-01-01
The origin point of the anterior choroidal artery (AChA) is variable, typically arising from the supraclinoid internal carotid artery (ICA) distal to the posterior communicating artery (PComA) on either the posterolateral or posterior aspect of the ICA. Variations of AChA origin have important clinical implications, and rare origins reported previously include the ICA bifurcation and middle cerebral artery. We provide illustrations of a case of a shared-origin PComA and AChA. A young girl presented with intracranial hemorrhage and underwent angiography to evaluate for an underlying cause. Ultimately, 3-dimensional rotational angiography incidentally demonstrated a common origin of the AChA with the PComA. A rare case of a shared-origin AChA and PComA is reported for angiographic illustration. The radiologic findings, embryology behind the development of the AChA, and neurosurgical and neurovascular relevance of this variant are discussed. The importance of recognizing the origin of the AChA is emphasized. Copyright © 2017 Elsevier Inc. All rights reserved.
Deep evolutionary origins of neurobiology
Mancuso, Stefano
2009-01-01
It is generally assumed, both in common-sense argumentations and scientific concepts, that brains and neurons represent late evolutionary achievements which are present only in more advanced animals. Here we overview recently published data clearly revealing that our understanding of bacteria, unicellular eukaryotic organisms, plants, brains and neurons, rooted in the Aristotelian philosophy is flawed. Neural aspects of biological systems are obvious already in bacteria and unicellular biological units such as sexual gametes and diverse unicellular eukaryotic organisms. Altogether, processes and activities thought to represent evolutionary ‘recent’ specializations of the nervous system emerge rather to represent ancient and fundamental cell survival processes. PMID:19513267
NASA Technical Reports Server (NTRS)
Holmquist, R.
1978-01-01
The random evolutionary hits (REH) theory of evolutionary divergence, originally proposed in 1972, is restated with attention to certain aspects of the theory that have caused confusion. The theory assumes that natural selection and stochastic processes interact and that natural selection restricts those codon sites which may fix mutations. The predicted total number of fixed nucleotide replacements agrees with data for cytochrome c, a-hemoglobin, beta-hemoglobin, and myoglobin. The restatement analyzes the magnitude of possible sources of errors and simplifies calculational methodology by supplying polynomial expressions to replace tables and graphs.
Multi-Objective UAV Mission Planning Using Evolutionary Computation
2008-03-01
on a Solution Space. . . . . . . . . . . . . . . . . . . . 41 4.3. Crowding distance calculation. Dark points are non-dominated solutions. [14...SPEA2 was devel- oped by Zitzler [64] as an improvement to the original SPEA algorithm [65]. SPEA2 Figure 4.3: Crowding distance calculation. Dark ...thesis, Los Angeles, CA, USA, 2003. Adviser-Maja J. Mataric . 114 21. Homberger, Joerg and Hermann Gehring. “Two Evolutionary Metaheuristics for the
Evolution of endemism on a young tropical mountain.
Merckx, Vincent S F T; Hendriks, Kasper P; Beentjes, Kevin K; Mennes, Constantijn B; Becking, Leontine E; Peijnenburg, Katja T C A; Afendy, Aqilah; Arumugam, Nivaarani; de Boer, Hugo; Biun, Alim; Buang, Matsain M; Chen, Ping-Ping; Chung, Arthur Y C; Dow, Rory; Feijen, Frida A A; Feijen, Hans; Feijen-van Soest, Cobi; Geml, József; Geurts, René; Gravendeel, Barbara; Hovenkamp, Peter; Imbun, Paul; Ipor, Isa; Janssens, Steven B; Jocqué, Merlijn; Kappes, Heike; Khoo, Eyen; Koomen, Peter; Lens, Frederic; Majapun, Richard J; Morgado, Luis N; Neupane, Suman; Nieser, Nico; Pereira, Joan T; Rahman, Homathevi; Sabran, Suzana; Sawang, Anati; Schwallier, Rachel M; Shim, Phyau-Soon; Smit, Harry; Sol, Nicolien; Spait, Maipul; Stech, Michael; Stokvis, Frank; Sugau, John B; Suleiman, Monica; Sumail, Sukaibin; Thomas, Daniel C; van Tol, Jan; Tuh, Fred Y Y; Yahya, Bakhtiar E; Nais, Jamili; Repin, Rimi; Lakim, Maklarin; Schilthuizen, Menno
2015-08-20
Tropical mountains are hot spots of biodiversity and endemism, but the evolutionary origins of their unique biotas are poorly understood. In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities. Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere. Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue' in montane biodiversity hot spots under climate change scenarios.
Combination of Sharing Matrix and Image Encryption for Lossless $(k,n)$ -Secret Image Sharing.
Bao, Long; Yi, Shuang; Zhou, Yicong
2017-12-01
This paper first introduces a (k,n) -sharing matrix S (k, n) and its generation algorithm. Mathematical analysis is provided to show its potential for secret image sharing. Combining sharing matrix with image encryption, we further propose a lossless (k,n) -secret image sharing scheme (SMIE-SIS). Only with no less than k shares, all the ciphertext information and security key can be reconstructed, which results in a lossless recovery of original information. This can be proved by the correctness and security analysis. Performance evaluation and security analysis demonstrate that the proposed SMIE-SIS with arbitrary settings of k and n has at least five advantages: 1) it is able to fully recover the original image without any distortion; 2) it has much lower pixel expansion than many existing methods; 3) its computation cost is much lower than the polynomial-based secret image sharing methods; 4) it is able to verify and detect a fake share; and 5) even using the same original image with the same initial settings of parameters, every execution of SMIE-SIS is able to generate completely different secret shares that are unpredictable and non-repetitive. This property offers SMIE-SIS a high level of security to withstand many different attacks.
Kaplan, Warren A.; Wirtz, Veronika J.; Stephens, Peter
2013-01-01
This observational study investigates the private sector, retail pharmaceutical market of 19 low and middle income countries (LMICs) in Latin America, Asia and the Middle East/South Africa analyzing the relationships between volume market share of generic and originator medicines over a time series from 2001 to 2011. Over 5000 individual pharmaceutical substances were divided into generic (unbranded generic, branded generic medicines) and originator categories for each country, including the United States as a comparator. In 9 selected LMICs, the market share of those originator substances with the largest decrease over time was compared to the market share of their counterpart generic versions. Generic medicines (branded generic plus unbranded generic) represent between 70 and 80% of market share in the private sector of these LMICs which exceeds that of most European countries. Branded generic medicine market share is higher than that of unbranded generics in all three regions and this is in contrast to the U.S. Although switching from an originator to its generic counterpart can save money, this narrative in reality is complex at the level of individual medicines. In some countries, the market behavior of some originator medicines that showed the most temporal decrease, showed switching to their generic counterpart. In other countries such as in the Middle East/South Africa and Asia, the loss of these originators was not accompanied by any change at all in market share of the equivalent generic version. For those countries with a significant increase in generic medicines market share and/or with evidence of comprehensive “switching” to generic versions, notably in Latin America, it would be worthwhile to establish cause-effect relationships between pharmaceutical policies and uptake of generic medicines. The absence of change in the generic medicines market share in other countries suggests that, at a minimum, generic medicines have not been strongly promoted. PMID:24098644
Kaplan, Warren A; Wirtz, Veronika J; Stephens, Peter
2013-01-01
This observational study investigates the private sector, retail pharmaceutical market of 19 low and middle income countries (LMICs) in Latin America, Asia and the Middle East/South Africa analyzing the relationships between volume market share of generic and originator medicines over a time series from 2001 to 2011. Over 5000 individual pharmaceutical substances were divided into generic (unbranded generic, branded generic medicines) and originator categories for each country, including the United States as a comparator. In 9 selected LMICs, the market share of those originator substances with the largest decrease over time was compared to the market share of their counterpart generic versions. Generic medicines (branded generic plus unbranded generic) represent between 70 and 80% of market share in the private sector of these LMICs which exceeds that of most European countries. Branded generic medicine market share is higher than that of unbranded generics in all three regions and this is in contrast to the U.S. Although switching from an originator to its generic counterpart can save money, this narrative in reality is complex at the level of individual medicines. In some countries, the market behavior of some originator medicines that showed the most temporal decrease, showed switching to their generic counterpart. In other countries such as in the Middle East/South Africa and Asia, the loss of these originators was not accompanied by any change at all in market share of the equivalent generic version. For those countries with a significant increase in generic medicines market share and/or with evidence of comprehensive "switching" to generic versions, notably in Latin America, it would be worthwhile to establish cause-effect relationships between pharmaceutical policies and uptake of generic medicines. The absence of change in the generic medicines market share in other countries suggests that, at a minimum, generic medicines have not been strongly promoted.
Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic.
Kiessling, Wolfgang; Simpson, Carl; Foote, Michael
2010-01-08
Large-scale biodiversity gradients among environments and habitats are usually attributed to a complex array of ecological and evolutionary factors. We tested the evolutionary component of such gradients by compiling the environments of the geologically oldest occurrences of marine genera and using sampling standardization to assess if originations tended to be clustered in particular environments. Shallow, tropical environments and carbonate substrates all tend to have harbored high origination rates. Diversity within these environments tended to be preferentially generated in reefs, probably because of their habitat complexity. Reefs were also prolific at exporting diversity to other environments, which might be a consequence of low-diversity habitats being more susceptible to invasions.
Allopolyploidy in bryophytes: Multiple origins of Plagiomnium medium
Wyatt, Robert; Odrzykoski, Ireneusz J.; Stoneburner, Ann; Bass, Henry W.; Galau, Glenn A.
1988-01-01
Bryophytes are thought to be unique among land plants in lacking the important evolutionary process of allopolyploidy, which involves interspecific hybridization and chromosome doubling. Electrophoretic data show, however, that the polyploid moss Plagiomnium medium is an allopolyploid derivative of Plagiomnium ellipticum and Plagiomnium insigne, that P. medium has originated more than once from these progenitors, and that cross-fertilization results in interlocus genetic recombination. Evidence from restriction fragment length polymorphisms in chloroplast DNA implicates P. insigne as the female parent in interspecific hybridizations with P. ellipticum. Contrary to prevailing views, it appears that those evolutionary processes responsible for genetic differentiation and speciation in other land plants occur in the bryophytes as well. Images PMID:16593968
The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups.
Koonin, Eugene V; Wolf, Yuri I; Nagasaki, Keizo; Dolja, Valerian V
2008-12-01
The recent discovery of RNA viruses in diverse unicellular eukaryotes and developments in evolutionary genomics have provided the means for addressing the origin of eukaryotic RNA viruses. The phylogenetic analyses of RNA polymerases and helicases presented in this Analysis article reveal close evolutionary relationships between RNA viruses infecting hosts from the Chromalveolate and Excavate supergroups and distinct families of picorna-like viruses of plants and animals. Thus, diversification of picorna-like viruses probably occurred in a 'Big Bang' concomitant with key events of eukaryogenesis. The origins of the conserved genes of picorna-like viruses are traced to likely ancestors including bacterial group II retroelements, the family of HtrA proteases and DNA bacteriophages.
Campbell, Michael C.; Tishkoff, Sarah A.
2010-01-01
Comparative studies of ethnically diverse human populations, particularly in Africa, are important for reconstructing human evolutionary history and for understanding the genetic basis of phenotypic adaptation and complex disease. African populations are characterized by greater levels of genetic diversity, extensive population substructure, and less linkage disequilibrium (LD) among loci compared to non-African populations. Africans also possess a number of genetic adaptations that have evolved in response to diverse climates and diets, as well as exposure to infectious disease. This review summarizes patterns and the evolutionary origins of genetic diversity present in African populations, as well as their implications for the mapping of complex traits, including disease susceptibility. PMID:18593304
Silvestro, Daniele; Cascales-Miñana, Borja; Bacon, Christine D; Antonelli, Alexandre
2015-07-01
Plants have a long evolutionary history, during which mass extinction events dramatically affected Earth's ecosystems and its biodiversity. The fossil record can shed light on the diversification dynamics of plant life and reveal how changes in the origination-extinction balance have contributed to shaping the current flora. We use a novel Bayesian approach to estimate origination and extinction rates in plants throughout their history. We focus on the effect of the 'Big Five' mass extinctions and on estimating the timing of origin of vascular plants, seed plants and angiosperms. Our analyses show that plant diversification is characterized by several shifts in origination and extinction rates, often matching the most important geological boundaries. The estimated origin of major plant clades predates the oldest macrofossils when considering the uncertainties associated with the fossil record and the preservation process. Our findings show that the commonly recognized mass extinctions have affected each plant group differently and that phases of high extinction often coincided with major floral turnovers. For instance, after the Cretaceous-Paleogene boundary we infer negligible shifts in diversification of nonflowering seed plants, but find significantly decreased extinction in spore-bearing plants and increased origination rates in angiosperms, contributing to their current ecological and evolutionary dominance. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Evolutionary relationship and structural characterization of the EPF/EPFL gene family.
Takata, Naoki; Yokota, Kiyonobu; Ohki, Shinya; Mori, Masashi; Taniguchi, Toru; Kurita, Manabu
2013-01-01
EPF1-EPF2 and EPFL9/Stomagen act antagonistically in regulating leaf stomatal density. The aim of this study was to elucidate the evolutionary functional divergence of EPF/EPFL family genes. Phylogenetic analyses showed that AtEPFL9/Stomagen-like genes are conserved only in vascular plants and are closely related to AtEPF1/EPF2-like genes. Modeling showed that EPF/EPFL peptides share a common 3D structure that is constituted of a scaffold and loop. Molecular dynamics simulation suggested that AtEPF1/EPF2-like peptides form an additional disulfide bond in their loop regions and show greater flexibility in these regions than AtEPFL9/Stomagen-like peptides. This study uncovered the evolutionary relationship and the conformational divergence of proteins encoded by the EPF/EPFL family genes.
Evolutionary Relationship and Structural Characterization of the EPF/EPFL Gene Family
Takata, Naoki; Yokota, Kiyonobu; Ohki, Shinya; Mori, Masashi; Taniguchi, Toru; Kurita, Manabu
2013-01-01
EPF1-EPF2 and EPFL9/Stomagen act antagonistically in regulating leaf stomatal density. The aim of this study was to elucidate the evolutionary functional divergence of EPF/EPFL family genes. Phylogenetic analyses showed that AtEPFL9/Stomagen-like genes are conserved only in vascular plants and are closely related to AtEPF1/EPF2-like genes. Modeling showed that EPF/EPFL peptides share a common 3D structure that is constituted of a scaffold and loop. Molecular dynamics simulation suggested that AtEPF1/EPF2-like peptides form an additional disulfide bond in their loop regions and show greater flexibility in these regions than AtEPFL9/Stomagen-like peptides. This study uncovered the evolutionary relationship and the conformational divergence of proteins encoded by the EPF/EPFL family genes. PMID:23755192
Iterated Prisoner’s Dilemma contains strategies that dominate any evolutionary opponent
Press, William H.; Dyson, Freeman J.
2012-01-01
The two-player Iterated Prisoner’s Dilemma game is a model for both sentient and evolutionary behaviors, especially including the emergence of cooperation. It is generally assumed that there exists no simple ultimatum strategy whereby one player can enforce a unilateral claim to an unfair share of rewards. Here, we show that such strategies unexpectedly do exist. In particular, a player X who is witting of these strategies can (i) deterministically set her opponent Y’s score, independently of his strategy or response, or (ii) enforce an extortionate linear relation between her and his scores. Against such a player, an evolutionary player’s best response is to accede to the extortion. Only a player with a theory of mind about his opponent can do better, in which case Iterated Prisoner’s Dilemma is an Ultimatum Game. PMID:22615375
Inferring the mode of origin of polyploid species from next-generation sequence data.
Roux, Camille; Pannell, John R
2015-03-01
Many eukaryote organisms are polyploid. However, despite their importance, evolutionary inference of polyploid origins and modes of inheritance has been limited by a need for analyses of allele segregation at multiple loci using crosses. The increasing availability of sequence data for nonmodel species now allows the application of established approaches for the analysis of genomic data in polyploids. Here, we ask whether approximate Bayesian computation (ABC), applied to realistic traditional and next-generation sequence data, allows correct inference of the evolutionary and demographic history of polyploids. Using simulations, we evaluate the robustness of evolutionary inference by ABC for tetraploid species as a function of the number of individuals and loci sampled, and the presence or absence of an outgroup. We find that ABC adequately retrieves the recent evolutionary history of polyploid species on the basis of both old and new sequencing technologies. The application of ABC to sequence data from diploid and polyploid species of the plant genus Capsella confirms its utility. Our analysis strongly supports an allopolyploid origin of C. bursa-pastoris about 80 000 years ago. This conclusion runs contrary to previous findings based on the same data set but using an alternative approach and is in agreement with recent findings based on whole-genome sequencing. Our results indicate that ABC is a promising and powerful method for revealing the evolution of polyploid species, without the need to attribute alleles to a homeologous chromosome pair. The approach can readily be extended to more complex scenarios involving higher ploidy levels. © 2015 John Wiley & Sons Ltd.
Evolutionary origins of a novel host plant detoxification gene in butterflies.
Fischer, Hanna M; Wheat, Christopher W; Heckel, David G; Vogel, Heiko
2008-05-01
Chemical interactions between plants and their insect herbivores provide an excellent opportunity to study the evolution of species interactions on a molecular level. Here, we investigate the molecular evolutionary events that gave rise to a novel detoxifying enzyme (nitrile-specifier protein [NSP]) in the butterfly family Pieridae, previously identified as a coevolutionary key innovation. By generating and sequencing expressed sequence tags, genomic libraries, and screening databases we found NSP to be a member of an insect-specific gene family, which we characterized and named the NSP-like gene family. Members consist of variable tandem repeats, are gut expressed, and are found across Insecta evolving in a dynamic, ongoing birth-death process. In the Lepidoptera, multiple copies of single-domain major allergen genes are present and originate via tandem duplications. Multiple domain genes are found solely within the brassicaceous-feeding Pieridae butterflies, one of them being NSP and another called major allergen (MA). Analyses suggest that NSP and its paralog MA have a unique single-domain evolutionary origin, being formed by intragenic domain duplication followed by tandem whole-gene duplication. Duplicates subsequently experienced a period of relaxed constraint followed by an increase in constraint, perhaps after neofunctionalization. NSP and its ortholog MA are still experiencing high rates of change, reflecting a dynamic evolution consistent with the known role of NSP in plant-insect interactions. Our results provide direct evidence to the hypothesis that gene duplication is one of the driving forces for speciation and adaptation, showing that both within- and whole-gene tandem duplications are a powerful force underlying evolutionary adaptation.
Evolutionary and plastic responses to climate change in terrestrial plant populations
Franks, Steven J; Weber, Jennifer J; Aitken, Sally N
2014-01-01
As climate change progresses, we are observing widespread changes in phenotypes in many plant populations. Whether these phenotypic changes are directly caused by climate change, and whether they result from phenotypic plasticity or evolution, are active areas of investigation. Here, we review terrestrial plant studies addressing these questions. Plastic and evolutionary responses to climate change are clearly occurring. Of the 38 studies that met our criteria for inclusion, all found plastic or evolutionary responses, with 26 studies showing both. These responses, however, may be insufficient to keep pace with climate change, as indicated by eight of 12 studies that examined this directly. There is also mixed evidence for whether evolutionary responses are adaptive, and whether they are directly caused by contemporary climatic changes. We discuss factors that will likely influence the extent of plastic and evolutionary responses, including patterns of environmental changes, species’ life history characteristics including generation time and breeding system, and degree and direction of gene flow. Future studies with standardized methodologies, especially those that use direct approaches assessing responses to climate change over time, and sharing of data through public databases, will facilitate better predictions of the capacity for plant populations to respond to rapid climate change. PMID:24454552
Sharmin, Refat; Islam, Abul B M M K
2016-01-01
MERS-CoV is a newly emerged human coronavirus reported closely related with HKU4 and HKU5 Bat coronaviruses. Bat and MERS corona-viruses are structurally related. Therefore, it is of interest to estimate the degree of conserved antigenic sites among them. It is of importance to elucidate the shared antigenic-sites and extent of conservation between them to understand the evolutionary dynamics of MERS-CoV. Multiple sequence alignment of the spike (S), membrane (M), enveloped (E) and nucleocapsid (N) proteins was employed to identify the sequence conservation among MERS and Bat (HKU4, HKU5) coronaviruses. We used various in silico tools to predict the conserved antigenic sites. We found that MERS-CoV shared 30 % of its S protein antigenic sites with HKU4 and 70 % with HKU5 bat-CoV. Whereas 100 % of its E, M and N protein's antigenic sites are found to be conserved with those in HKU4 and HKU5. This sharing suggests that in case of pathogenicity MERS-CoV is more closely related to HKU5 bat-CoV than HKU4 bat-CoV. The conserved epitopes indicates their evolutionary relationship and ancestry of pathogenicity.
Adaptive cultural transmission biases in children and nonhuman primates.
Price, Elizabeth E; Wood, Lara A; Whiten, Andrew
2017-08-01
Comparative and evolutionary developmental analyses seek to discover the similarities and differences between humans and non-human species that might illuminate both the evolutionary foundations of our nature that we share with other animals, and the distinctive characteristics that make human development unique. As our closest animal relatives, with whom we last shared common ancestry, non-human primates have been particularly important in this endeavour. Such studies have focused on social learning, traditions, and culture, and have discovered much about the 'how' of social learning, concerned with key underlying processes such as imitation and emulation. One of the core discoveries is that the adaptive adjustment of social learning options to different contexts is not unique to human, therefore multiple new strands of research have begun to focus on more subtle questions about when, from whom, and why such learning occurs. Here we review illustrative studies on both human infants and young children and on non-human primates to identify the similarities shared more broadly across the primate order, and the apparent specialisms that distinguish human development. Adaptive biases in social learning discussed include those modulated by task comprehension, experience, conformity to majorities, and the age, skill, proficiency and familiarity of potential alternative cultural models. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Muraille, Eric
2018-01-01
Diversity is widely known to fuel adaptation and evolutionary processes and increase robustness at the population, species and ecosystem levels. The Neo-Darwinian paradigm proposes that the diversity of biological entities is the consequence of genetic changes arising spontaneously and randomly, without regard for their usefulness. However, a growing body of evidence demonstrates that the evolutionary process has shaped mechanisms, such as horizontal gene transfer mechanisms, meiosis and the adaptive immune system, which has resulted in the regulated generation of diversity among populations. Though their origins are unrelated, these diversity generator (DG) mechanisms share common functional properties. They (i) contribute to the great unpredictability of the composition and/or behavior of biological systems, (ii) favor robustness and collectivism among populations and (iii) operate mainly by manipulating the systems that control the interaction of living beings with their environment. The definition proposed here for DGs is based on these properties and can be used to identify them according to function. Interestingly, prokaryotic DGs appear to be mainly reactive, as they generate diversity in response to environmental stress. They are involved in the widely described Red Queen/arms race/Cairnsian dynamic. The emergence of multicellular organisms harboring K selection traits (longer reproductive life cycle and smaller population size) has led to the acquisition of a new class of DGs that act anticipatively to stress pressures and generate a distinct dynamic called the “White Queen” here. The existence of DGs leads to the view of evolution as a more “intelligent” and Lamarckian-like process. Their repeated selection during evolution could be a neglected example of convergent evolution and suggests that some parts of the evolutionary process are tightly constrained by ecological factors, such as the population size, the generation time and the intensity of selective pressure. The ubiquity of DGs also suggests that regulated auto-generation of diversity is a fundamental property of life. PMID:29487592
Neupert, Susanne; Marciniak, Pawel; Köhler, Rene; Nachman, Ronald J; Suh, Charles P-C; Predel, Reinhard
2018-03-01
Capa and pyrokinin (pk) genes in hexapods share a common evolutionary origin. Using transcriptomics and peptidomics, we analyzed products of these genes in two beetles, the giant mealworm beetle (Zophobas atratus; Tenebrionidae) and the boll weevil (Anthonomus grandis grandis; Curculionidae). Our data revealed that even within Coleoptera, which represents a very well-defined group of insects, highly different evolutionary developments occurred in the neuropeptidergic system. These differences, however, primarily affect the general structure of the precursors and differential processing of mature peptides and, to a lesser degree, the sequences of the active core motifs. With the differential processing of the CAPA-precursor in Z. atratus we found a perfect example of completely different products cleaved from a single neuropeptide precursor in different cells. The CAPA precursor in abdominal ganglia of this species yields primarily periviscerokinins (PVKs) whereas processing of the same precursor in neurosecretory cells of the subesophageal ganglion results in CAPA-tryptoPK and a novel CAPA-PK. Particularly important was the detection of that CAPA-PK which has never been observed in the CNS of insects before. The three different types of CAPA peptides (CAPA-tryptoPK, CAPA-PK, PVK) each represent potential ligands which activate different receptors. In contrast to the processing of the CAPA precursor from Z. atratus, no indications of a differential processing of the CAPA precursor were found in A. g. grandis. These data suggest that rapid evolutionary changes regarding the processing of CAPA precursors were still going on when the different beetle lineages diverged. The sequence of the single known PVK of A. g. grandis occupies a special position within the known PVKs of insects and might serve asa basis to develop lineage-specific peptidomimetics capable of disrupting physiological processes regulated by PVKs. Copyright © 2017 Elsevier Inc. All rights reserved.
Building a Shared Definitional Model of Long Duration Human Spaceflight
NASA Technical Reports Server (NTRS)
Arias, Diana; Orr, Martin; Whitmire, Alexandra; Leveton, Lauren; Sandoval, Luis
2012-01-01
Objective: To establish the need for a shared definitional model of long duration human spaceflight, that would provide a framework and vision to facilitate communication, research and practice In 1956, on the eve of human space travel, Hubertus Strughold first proposed a "simple classification of the present and future stages of manned flight" that identified key factors, risks and developmental stages for the evolutionary journey ahead. As we look to new destinations, we need a current shared working definitional model of long duration human space flight to help guide our path. Here we describe our preliminary findings and outline potential approaches for the future development of a definition and broader classification system
Remembering the evolutionary Freud.
Young, Allan
2006-03-01
Throughout his career as a writer, Sigmund Freud maintained an interest in the evolutionary origins of the human mind and its neurotic and psychotic disorders. In common with many writers then and now, he believed that the evolutionary past is conserved in the mind and the brain. Today the "evolutionary Freud" is nearly forgotten. Even among Freudians, he is regarded to be a red herring, relevant only to the extent that he diverts attention from the enduring achievements of the authentic Freud. There are three ways to explain these attitudes. First, the evolutionary Freud's key work is the "Overview of the Transference Neurosis" (1915). But it was published at an inopportune moment, forty years after the author's death, during the so-called "Freud wars." Second, Freud eventually lost interest in the "Overview" and the prospect of a comprehensive evolutionary theory of psychopathology. The publication of The Ego and the Id (1923), introducing Freud's structural theory of the psyche, marked the point of no return. Finally, Freud's evolutionary theory is simply not credible. It is based on just-so stories and a thoroughly discredited evolutionary mechanism, Lamarckian use-inheritance. Explanations one and two are probably correct but also uninteresting. Explanation number three assumes that there is a fundamental difference between Freud's evolutionary narratives (not credible) and the evolutionary accounts of psychopathology that currently circulate in psychiatry and mainstream journals (credible). The assumption is mistaken but worth investigating.
Pascual-Anaya, Juan; Hirasawa, Tatsuya; Sato, Iori; Kuraku, Shigehiro; Kuratani, Shigeru
2014-01-01
The turtle shell is a wonderful example of a genuine morphological novelty, since it has no counterpart in any other extant vertebrate lineages. The evolutionary origin of the shell is a question that has fascinated evolutionary biologists for over two centuries and it still remains a mystery. One of the turtle innovations associated with the shell is the carapacial ridge (CR), a bulge that appears at both sides of the dorsal lateral trunk of the turtle embryo and that probably controls the formation of the carapace, the dorsal moiety of the shell. Although from the beginning of this century modern genetic techniques have been applied to resolve the evolutionary developmental origin of the CR, the use of different models with, in principle, dissimilar results has hampered the establishment of a common mechanism for the origin of the shell. Although modern turtles are divided into two major groups, Cryptodira (or hidden-necked turtles) and Pleurodira (or side-necked turtles), molecular developmental studies have been carried out mostly using cryptodiran models. In this study, we revisit the past data obtained from cryptodiran turtles in order to reconcile the different results. We also analyze the histological anatomy and the expression pattern of main CR factors in a pleurodiran turtle, the red-bellied short-necked turtle Emydura subglobosa. We suggest that the turtle shell probably originated concomitantly with the co-option of the canonical Wnt signaling pathway into the CR in the last common ancestor of the turtle.
Inoue, Jun G; Miya, Masaki; Lam, Kevin; Tay, Boon-Hui; Danks, Janine A; Bell, Justin; Walker, Terrence I; Venkatesh, Byrappa
2010-11-01
With our increasing ability for generating whole-genome sequences, comparative analysis of whole genomes has become a powerful tool for understanding the structure, function, and evolutionary history of human and other vertebrate genomes. By virtue of their position basal to bony vertebrates, cartilaginous fishes (class Chondrichthyes) are a valuable outgroup in comparative studies of vertebrates. Recently, a holocephalan cartilaginous fish, the elephant shark, Callorhinchus milii (Subclass Holocephali: Order Chimaeriformes), has been proposed as a model genome, and low-coverage sequence of its genome has been generated. Despite such an increasing interest, the evolutionary history of the modern holocephalans-a previously successful and diverse group but represented by only 39 extant species-and their relationship with elasmobranchs and other jawed vertebrates has been poorly documented largely owing to a lack of well-preserved fossil materials after the end-Permian about 250 Ma. In this study, we assembled the whole mitogenome sequences for eight representatives from all the three families of the modern holocephalans and investigated their phylogenetic relationships and evolutionary history. Unambiguously aligned sequences from these holocephalans together with 17 other vertebrates (9,409 nt positions excluding entire third codon positions) were subjected to partitioned maximum likelihood analysis. The resulting tree strongly supported a single origin of the modern holocephalans and their sister-group relationship with elasmobranchs. The mitogenomic tree recovered the most basal callorhinchids within the chimaeriforms, which is sister to a clade comprising the remaining two families (rhinochimaerids and chimaerids). The timetree derived from a relaxed molecular clock Bayesian method suggests that the holocephalans originated in the Silurian about 420 Ma, having survived from the end-Permian (250 Ma) mass extinction and undergoing familial diversifications during the late Jurassic to early Cretaceous (170-120 Ma). This postulated evolutionary scenario agrees well with that based on the paleontological observations.
The origin of weediness in U.S. red rice
USDA-ARS?s Scientific Manuscript database
Weedy or red rice, a congeneric weed of cultivated rice (Oryza sativa L.), is a significant problem throughout the world. Despite belonging to the same species complex as domesticated rice and its wild relatives, the evolutionary origins of weedy rice remain unclear. We have used genome-wide and can...
Water lilies as emerging models for Darwin’s abominable mystery
Chen, Fei; Liu, Xing; Yu, Cuiwei; Chen, Yuchu; Tang, Haibao; Zhang, Liangsheng
2017-01-01
Water lilies are not only highly favored aquatic ornamental plants with cultural and economic importance but they also occupy a critical evolutionary space that is crucial for understanding the origin and early evolutionary trajectory of flowering plants. The birth and rapid radiation of flowering plants has interested many scientists and was considered ‘an abominable mystery’ by Charles Darwin. In searching for the angiosperm evolutionary origin and its underlying mechanisms, the genome of Amborella has shed some light on the molecular features of one of the basal angiosperm lineages; however, little is known regarding the genetics and genomics of another basal angiosperm lineage, namely, the water lily. In this study, we reviewed current molecular research and note that water lily research has entered the genomic era. We propose that the genome of the water lily is critical for studying the contentious relationship of basal angiosperms and Darwin’s ‘abominable mystery’. Four pantropical water lilies, especially the recently sequenced Nymphaea colorata, have characteristics such as small size, rapid growth rate and numerous seeds and can act as the best model for understanding the origin of angiosperms. The water lily genome is also valuable for revealing the genetics of ornamental traits and will largely accelerate the molecular breeding of water lilies. PMID:28979789
Origin of marine planktonic cyanobacteria.
Sánchez-Baracaldo, Patricia
2015-12-01
Marine planktonic cyanobacteria contributed to the widespread oxygenation of the oceans towards the end of the Pre-Cambrian and their evolutionary origin represents a key transition in the geochemical evolution of the Earth surface. Little is known, however, about the evolutionary events that led to the appearance of marine planktonic cyanobacteria. I present here phylogenomic (135 proteins and two ribosomal RNAs), Bayesian relaxed molecular clock (18 proteins, SSU and LSU) and Bayesian stochastic character mapping analyses from 131 cyanobacteria genomes with the aim to unravel key evolutionary steps involved in the origin of marine planktonic cyanobacteria. While filamentous cell types evolved early on at around 2,600-2,300 Mya and likely dominated microbial mats in benthic environments for most of the Proterozoic (2,500-542 Mya), marine planktonic cyanobacteria evolved towards the end of the Proterozoic and early Phanerozoic. Crown groups of modern terrestrial and/or benthic coastal cyanobacteria appeared during the late Paleoproterozoic to early Mesoproterozoic. Decrease in cell diameter and loss of filamentous forms contributed to the evolution of unicellular planktonic lineages during the middle of the Mesoproterozoic (1,600-1,000 Mya) in freshwater environments. This study shows that marine planktonic cyanobacteria evolved from benthic marine and some diverged from freshwater ancestors during the Neoproterozoic (1,000-542 Mya).
Origin of marine planktonic cyanobacteria
Sánchez-Baracaldo, Patricia
2015-01-01
Marine planktonic cyanobacteria contributed to the widespread oxygenation of the oceans towards the end of the Pre-Cambrian and their evolutionary origin represents a key transition in the geochemical evolution of the Earth surface. Little is known, however, about the evolutionary events that led to the appearance of marine planktonic cyanobacteria. I present here phylogenomic (135 proteins and two ribosomal RNAs), Bayesian relaxed molecular clock (18 proteins, SSU and LSU) and Bayesian stochastic character mapping analyses from 131 cyanobacteria genomes with the aim to unravel key evolutionary steps involved in the origin of marine planktonic cyanobacteria. While filamentous cell types evolved early on at around 2,600–2,300 Mya and likely dominated microbial mats in benthic environments for most of the Proterozoic (2,500–542 Mya), marine planktonic cyanobacteria evolved towards the end of the Proterozoic and early Phanerozoic. Crown groups of modern terrestrial and/or benthic coastal cyanobacteria appeared during the late Paleoproterozoic to early Mesoproterozoic. Decrease in cell diameter and loss of filamentous forms contributed to the evolution of unicellular planktonic lineages during the middle of the Mesoproterozoic (1,600–1,000 Mya) in freshwater environments. This study shows that marine planktonic cyanobacteria evolved from benthic marine and some diverged from freshwater ancestors during the Neoproterozoic (1,000–542 Mya). PMID:26621203
The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals
Ahrens, Dirk; Schwarzer, Julia; Vogler, Alfried P.
2014-01-01
Extant terrestrial biodiversity arguably is driven by the evolutionary success of angiosperm plants, but the evolutionary mechanisms and timescales of angiosperm-dependent radiations remain poorly understood. The Scarabaeoidea is a diverse lineage of predominantly plant- and dung-feeding beetles. Here, we present a phylogenetic analysis of Scarabaeoidea based on four DNA markers for a taxonomically comprehensive set of specimens and link it to recently described fossil evidence. The phylogeny strongly supports multiple origins of coprophagy, phytophagy and anthophagy. The ingroup-based fossil calibration of the tree widely confirmed a Jurassic origin of the Scarabaeoidea crown group. The crown groups of phytophagous lineages began to radiate first (Pleurostict scarabs: 108 Ma; Glaphyridae between 101 Ma), followed by the later diversification of coprophagous lineages (crown-group age Scarabaeinae: 76 Ma; Aphodiinae: 50 Ma). Pollen feeding arose even later, at maximally 62 Ma in the oldest anthophagous lineage. The clear time lag between the origins of herbivores and coprophages suggests an evolutionary path driven by the angiosperms that first favoured the herbivore fauna (mammals and insects) followed by the secondary radiation of the dung feeders. This finding makes it less likely that extant dung beetle lineages initially fed on dinosaur excrements, as often hypothesized. PMID:25100705
Rougon-Cardoso, Alejandra; Flores-Ponce, Mitzi; Ramos-Aboites, Hilda Eréndira; Martínez-Guerrero, Christian Eduardo; Hao, You-Jin; Cunha, Luis; Rodríguez-Martínez, Jonathan Alejandro; Ovando-Vázquez, Cesaré; Bermúdez-Barrientos, José Roberto; Abreu-Goodger, Cei; Chavarría-Hernández, Norberto; Simões, Nelson; Montiel, Rafael
2016-01-01
The entomopathogenic nematode Steinernema carpocapsae has been widely used for the biological control of insect pests. It shares a symbiotic relationship with the bacterium Xenorhabdus nematophila, and is emerging as a genetic model to study symbiosis and pathogenesis. We obtained a high-quality draft of the nematode’s genome comprising 84,613,633 bp in 347 scaffolds, with an N50 of 1.24 Mb. To improve annotation, we sequenced both short and long RNA and conducted shotgun proteomic analyses. S. carpocapsae shares orthologous genes with other parasitic nematodes that are absent in the free-living nematode C. elegans, it has ncRNA families that are enriched in parasites, and expresses proteins putatively associated with parasitism and pathogenesis, suggesting an active role for the nematode during the pathogenic process. Host and parasites might engage in a co-evolutionary arms-race dynamic with genes participating in their interaction showing signatures of positive selection. Our analyses indicate that the consequence of this arms race is better characterized by positive selection altering specific functions instead of just increasing the number of positively selected genes, adding a new perspective to these co-evolutionary theories. We identified a protein, ATAD-3, that suggests a relevant role for mitochondrial function in the evolution and mechanisms of nematode parasitism. PMID:27876851
Reciprocal preening and food sharing in colour-polymorphic nestling barn owls.
Roulin, A; Des Monstiers, B; Ifrid, E; Da Silva, A; Genzoni, E; Dreiss, A N
2016-02-01
Barn owl (Tyto alba) siblings preen and offer food items to one another, behaviours that can be considered prosocial because they benefit a conspecific by relieving distress or need. In experimental broods, we analysed whether such behaviours were reciprocated, preferentially exchanged between specific phenotypes, performed to avoid harassment and food theft or signals of hierarchy status. Three of the results are consistent with the hypothesis of direct reciprocity. First, food sharing was reciprocated in three-chick broods but not in pairs of siblings, that is when nestlings could choose a partner with whom to develop a reciprocating interaction. Second, a nestling was more likely to give a prey item to its sibling if the latter individual had preened the former. Third, siblings matched their investment in preening each other. Manipulation of age hierarchy showed that food stealing was directed towards older siblings but was not performed to compensate for a low level of cooperation received. Social behaviours were related to melanin-based coloration, suggesting that animals may signal their propensity to interact socially. The most prosocial phenotype (darker reddish) was also the phenotype that stole more food, and the effect of coloration on prosocial behaviour depended upon rank and sex, suggesting that colour-related prosociality is state dependent. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
An Evolutionarily Structured Universe of Protein Architecture
Caetano-Anollés, Gustavo; Caetano-Anollés, Derek
2003-01-01
Protein structural diversity encompasses a finite set of architectural designs. Embedded in these topologies are evolutionary histories that we here uncover using cladistic principles and measurements of protein-fold usage and sharing. The reconstructed phylogenies are inherently rooted and depict histories of protein and proteome diversification. Proteome phylogenies showed two monophyletic sister-groups delimiting Bacteria and Archaea, and a topology rooted in Eucarya. This suggests three dramatic evolutionary events and a common ancestor with a eukaryotic-like, gene-rich, and relatively modern organization. Conversely, a general phylogeny of protein architectures showed that structural classes of globular proteins appeared early in evolution and in defined order, the α/β class being the first. Although most ancestral folds shared a common architecture of barrels or interleaved β-sheets and α-helices, many were clearly derived, such as polyhedral folds in the all-α class and β-sandwiches, β-propellers, and β-prisms in all-β proteins. We also describe transformation pathways of architectures that are prevalently used in nature. For example, β-barrels with increased curl and stagger were favored evolutionary outcomes in the all-β class. Interestingly, we found cases where structural change followed the α-to-β tendency uncovered in the tree of architectures. Lastly, we traced the total number of enzymatic functions associated with folds in the trees and show that there is a general link between structure and enzymatic function. PMID:12840035
2011-01-01
Background Understanding how freshwater assemblages have been formed and maintained is a fundamental goal in evolutionary and ecological disciplines. Here we use a historical approach to test the hypothesis of codivergence in three clades of the Chilean freshwater species assemblage. Molecular studies of freshwater crabs (Aegla: Aeglidae: Anomura) and catfish (Trichomycterus arealatus: Trichomycteridae: Teleostei) exhibited similar levels of genetic divergences of mitochondrial lineages between species of crabs and phylogroups of the catfish, suggesting a shared evolutionary history among the three clades in this species assemblage. Results A phylogeny was constructed for Trichomycterus areolatus under the following best-fit molecular models of evolution GTR + I + R, HKY + I, and HKY for cytochrome b, growth hormone, and rag 1 respectively. A GTR + I + R model provided the best fit for both 28S and mitochondrial loci and was used to construct both Aegla phylogenies. Three different diversification models were observed and the three groups arose during different time periods, from 2.25 to 5.05 million years ago (Ma). Cladogenesis within Trichomycterus areolatus was initiated roughly 2.25 Ma (Late Pliocene - Early Pleistocene) some 1.7 - 2.8 million years after the basal divergences observed in both Aegla clades. These results reject the hypothesis of codivergence. Conclusions The similar genetic distances between terminal sister-lineages observed in these select taxa from the freshwater Chilean species assemblage were formed by different processes occurring over the last ~5.0 Ma. Dramatic changes in historic sea levels documented in the region appear to have independently shaped the evolutionary history of each group. Our study illustrates the important role that history plays in shaping a species assemblage and argues against assuming similar patterns equal a shared evolutionary history. PMID:22118288
Rodríguez-González, Abril; Sarabeev, Volodimir; Balbuena, Juan Antonio
2017-01-01
The search for phylogenetic signal in morphological traits using geometric morphometrics represents a powerful approach to estimate the relative weights of convergence and shared evolutionary history in shaping organismal form. We assessed phylogenetic signal in the form of ventral and dorsal haptoral anchors of 14 species of Ligophorus occurring on grey mullets (Osteichthyes: Mugilidae) from the Mediterranean, the Black Sea and the Sea of Azov. The phylogenetic relationships among these species were mapped onto the morphospaces of shape and size of dorsal and ventral anchors and two different tests were applied to establish whether the spatial positions in the morphospace were dictated by chance. Overall significant phylogenetic signal was found in the data. Allometric effects on anchor shape were moderate or non-significant in the case of evolutionary allometry. Relatively phylogenetically distant species occurring on the same host differed markedly in anchor morphology indicating little influence of host species on anchor form. Our results suggest that common descent and shared evolutionary history play a major role in determining the shape and, to a lesser degree in the size of haptoral anchors in Ligophorus spp. The present approach allowed tracing paths of morphological evolution in anchor shape. Species with narrow anchors and long shafts were associated predominately with Liza saliens. This morphology was considered to be ancestral relative to anchors of species occurring on Liza haematocheila and M. cephalus possessing shorter shafts and longer roots. Evidence for phylogenetic signal was more compelling for the ventral anchors, than for the dorsal ones, which could reflect different functional roles in attachment to the gills. Although phylogeny and homoplasy may act differently in other monogeneans, the present study delivers a common framework to address effectively the relationships among morphology, phylogeny and other traits, such as host specificity or niche occupancy.
Hunt, Tam
2014-01-01
Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766
Jouiaei, Mahdokht; Sunagar, Kartik; Federman Gross, Aya; Scheib, Holger; Alewood, Paul F; Moran, Yehu; Fry, Bryan G
2015-06-01
Despite Cnidaria (sea anemones, corals, jellyfish, and hydroids) being the oldest venomous animal lineage, structure-function relationships, phyletic distributions, and the molecular evolutionary regimes of toxins encoded by these intriguing animals are poorly understood. Hence, we have comprehensively elucidated the phylogenetic and molecular evolutionary histories of pharmacologically characterized cnidarian toxin families, including peptide neurotoxins (voltage-gated Na(+) and K(+) channel-targeting toxins: NaTxs and KTxs, respectively), pore-forming toxins (actinoporins, aerolysin-related toxins, and jellyfish toxins), and the newly discovered small cysteine-rich peptides (SCRiPs). We show that despite long evolutionary histories, most cnidarian toxins remain conserved under the strong influence of negative selection-a finding that is in striking contrast to the rapid evolution of toxin families in evolutionarily younger lineages, such as cone snails and advanced snakes. In contrast to the previous suggestions that implicated SCRiPs in the biomineralization process in corals, we demonstrate that they are potent neurotoxins that are likely involved in the envenoming function, and thus represent the first family of neurotoxins from corals. We also demonstrate the common evolutionary origin of type III KTxs and NaTxs in sea anemones. We show that type III KTxs have evolved from NaTxs under the regime of positive selection, and likely represent a unique evolutionary innovation of the Actinioidea lineage. We report a correlation between the accumulation of episodically adaptive sites and the emergence of novel pharmacological activities in this rapidly evolving neurotoxic clade. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Research Data in Core Journals in Biology, Chemistry, Mathematics, and Physics.
Womack, Ryan P
2015-01-01
This study takes a stratified random sample of articles published in 2014 from the top 10 journals in the disciplines of biology, chemistry, mathematics, and physics, as ranked by impact factor. Sampled articles were examined for their reporting of original data or reuse of prior data, and were coded for whether the data was publicly shared or otherwise made available to readers. Other characteristics such as the sharing of software code used for analysis and use of data citation and DOIs for data were examined. The study finds that data sharing practices are still relatively rare in these disciplines' top journals, but that the disciplines have markedly different practices. Biology top journals share original data at the highest rate, and physics top journals share at the lowest rate. Overall, the study finds that within the top journals, only 13% of articles with original data published in 2014 make the data available to others.
Research Data in Core Journals in Biology, Chemistry, Mathematics, and Physics
Womack, Ryan P.
2015-01-01
This study takes a stratified random sample of articles published in 2014 from the top 10 journals in the disciplines of biology, chemistry, mathematics, and physics, as ranked by impact factor. Sampled articles were examined for their reporting of original data or reuse of prior data, and were coded for whether the data was publicly shared or otherwise made available to readers. Other characteristics such as the sharing of software code used for analysis and use of data citation and DOIs for data were examined. The study finds that data sharing practices are still relatively rare in these disciplines’ top journals, but that the disciplines have markedly different practices. Biology top journals share original data at the highest rate, and physics top journals share at the lowest rate. Overall, the study finds that within the top journals, only 13% of articles with original data published in 2014 make the data available to others. PMID:26636676
To share or not to share? Expected pros and cons of data sharing in radiological research.
Sardanelli, Francesco; Alì, Marco; Hunink, Myriam G; Houssami, Nehmat; Sconfienza, Luca M; Di Leo, Giovanni
2018-06-01
The aims of this paper are to illustrate the trend towards data sharing, i.e. the regulated availability of the original patient-level data obtained during a study, and to discuss the expected advantages (pros) and disadvantages (cons) of data sharing in radiological research. Expected pros include the potential for verification of original results with alternative or supplementary analyses (including estimation of reproducibility), advancement of knowledge by providing new results by testing new hypotheses (not explored by the original authors) on pre-existing databases, larger scale analyses based on individual-patient data, enhanced multidisciplinary cooperation, reduced publication of false studies, improved clinical practice, and reduced cost and time for clinical research. Expected cons are outlined as the risk that the original authors could not exploit the entire potential of the data they obtained, possible failures in patients' privacy protection, technical barriers such as the lack of standard formats, and possible data misinterpretation. Finally, open issues regarding data ownership, the role of individual patients, advocacy groups and funding institutions in decision making about sharing of data and images are discussed. • Regulated availability of patient-level data of published clinical studies (data-sharing) is expected. • Expected benefits include verification/advancement of knowledge, reduced cost/time of research, clinical improvement. • Potential drawbacks include faults in patients' identity protection and data misinterpretation.
Zhao, Zhe; Li, Shuqiang
2017-11-01
Evolutionary biology has long been concerned with how changing environments affect and drive the spatiotemporal development of organisms. Coelotine spiders (Agelenidae: Coelotinae) are common species in the temperate and subtropical areas of the Northern Hemisphere. Their long evolutionary history and the extremely imbalanced distribution of species richness suggest that Eurasian environments, especially since the Cenozoic, are the drivers of their diversification. We use phylogenetics, molecular dating, ancestral area reconstructions, diversity, and ecological niche analyses to investigate the spatiotemporal evolution of 286 coelotine species from throughout the region. Based on eight genes (6.5 kb) and 2323 de novo DNA sequences, analyses suggest an Eocene South China origin for them. Most extant, widespread species belong to the southern (SCG) or northern (NCG) clades. The origin of coelotine spiders appears to associate with either the Paleocene-Eocene Thermal Maximum or the hot period in early Eocene. Tibetan uplifting events influenced the current diversity patterns of coelotines. The origin of SCG lies outside of the Tibetan Plateau. Uplifting in the southeastern area of the plateau blocked dispersal since the Late Eocene. Continuous orogenesis appears to have created localized vicariant events, which drove rapid radiation in SCG. North-central Tibet is the likely location of origin for NCG and many lineages likely experienced extinction owing to uplifting since early Oligocene. Their evolutionary histories correspond with recent geological evidence that high-elevation orographical features existed in the Tibetan region as early as 40-35 Ma. Our discoveries may be the first empirical evidence that links the evolution of organisms to the Eocene-Oligocene uplifting of the Tibetan Plateau. [Tibet; biogeography; ecology; molecular clock; diversification.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Evolution of Modern Birds Revealed by Mitogenomics: Timing the Radiation and Origin of Major Orders
Pacheco, M. Andreína; Battistuzzi, Fabia U.; Lentino, Miguel; Aguilar, Roberto F.; Kumar, Sudhir; Escalante, Ananias A.
2011-01-01
Mitochondrial (mt) genes and genomes are among the major sources of data for evolutionary studies in birds. This places mitogenomic studies in birds at the core of intense debates in avian evolutionary biology. Indeed, complete mt genomes are actively been used to unveil the phylogenetic relationships among major orders, whereas single genes (e.g., cytochrome c oxidase I [COX1]) are considered standard for species identification and defining species boundaries (DNA barcoding). In this investigation, we study the time of origin and evolutionary relationships among Neoaves orders using complete mt genomes. First, we were able to solve polytomies previously observed at the deep nodes of the Neoaves phylogeny by analyzing 80 mt genomes, including 17 new sequences reported in this investigation. As an example, we found evidence indicating that columbiforms and charadriforms are sister groups. Overall, our analyses indicate that by improving the taxonomic sampling, complete mt genomes can solve the evolutionary relationships among major bird groups. Second, we used our phylogenetic hypotheses to estimate the time of origin of major avian orders as a way to test if their diversification took place prior to the Cretaceous/Tertiary (K/T) boundary. Such timetrees were estimated using several molecular dating approaches and conservative calibration points. Whereas we found time estimates slightly younger than those reported by others, most of the major orders originated prior to the K/T boundary. Finally, we used our timetrees to estimate the rate of evolution of each mt gene. We found great variation on the mutation rates among mt genes and within different bird groups. COX1 was the gene with less variation among Neoaves orders and the one with the least amount of rate heterogeneity across lineages. Such findings support the choice of COX 1 among mt genes as target for developing DNA barcoding approaches in birds. PMID:21242529
Šumbera, Radim
2015-01-01
Unravelling the evolutionary and developmental mechanisms that have impacted the mammalian dentition, since more than 200 Ma, is an intricate issue. Interestingly, a few mammal species, including the silvery mole-rat Heliophobius argenteocinereus, are able to replace their dentition by the addition of supernumerary molars at the back of jaw migrating then toward the front. The aim here was to demonstrate the potential interest of further studying this rodent in order to better understand the origins of continuous dental replacement in mammals, which could also provide interesting data concerning the evolution of limited dental generation occurring in first mammals. In the present study, we described the main stages of the dental eruptive sequence in the silvery mole-rat and the associated characteristics of horizontal replacement using X-ray microtomography. This was coupled to the investigation of other African mole-rats which have no dental replacement. This method permitted to establish evidence that the initial development of the dentition in Heliophobius is comparable to what it is observed in most of African mole-rats. This rodent first has premolars, but then identical additional molars, a mechanism convergent to manatees and the pygmy rock-wallaby. Evidence of continuous replacement and strong dental dynamics were also illustrated in Heliophobius, and stressed the need to deeply investigate these aspects for evolutionary, functional and developmental purposes. We also noticed that two groups of extinct non-mammalian synapsids convergently acquired this dental mechanism, but in a way differing from extant mammals. The discussion on the diverse evolutionary origins of horizontal dental replacement put emphasis on the necessity of focusing on biological parameters potentially involved in both continuous and limited developments of teeth in mammals. In that context, the silvery mole-rat could appear as the most appropriate candidate to do so. PMID:26401449
Komisaruk, Barry R
2016-12-01
Evidence is presented as an alternative to the authors' claims that in the course of evolution, a link between orgasm and ovulation has been lost in women, that evolutionary changes in clitoral anatomy underlie this loss, and that women's orgasm plays no significant role in reproduction. © 2016 Wiley Periodicals, Inc.
Ocampo, Denise; Booth, Mark
2016-07-22
Current interventions against malaria have significantly reduced the number of people infected and the number of deaths. Concerns about emerging resistance of both mosquitoes and parasites to intervention have been raised, and questions remain about how best to generate wider knowledge of the underlying evolutionary processes. The pedagogical and research principles of evolutionary medicine may provide an answer to this problem. Eight programme managers and five academic researchers were interviewed by telephone or videoconference to elicit their first-hand views and experiences of malaria control given that evolution is a constant threat to sustainable control. Interviewees were asked about their views on the relationship between practit groups and academics and for their thoughts on whether or not evolutionary medicine may provide a solution to reported tensions. There was broad agreement that evolution of both parasites and vectors presents an obstacle to sustainable control. It was also widely agreed that through more efficient monitoring, evolution could be widely monitored. Interviewees also expressed the view that even well planned interventions may fail if the evolutionary biology of the disease is not considered, potentially making current tools redundant. This scoping study suggests that it is important to make research, including evolutionary principles, available and easily applicable for programme managers and key decision-makers, including donors and politicians. The main conclusion is that sharing knowledge through the educational and research processes embedded within evolutionary medicine has potential to relieve tensions and facilitate sustainable control of malaria and other parasitic infections.
The origins and evolutionary history of human non-coding RNA regulatory networks.
Sherafatian, Masih; Mowla, Seyed Javad
2017-04-01
The evolutionary history and origin of the regulatory function of animal non-coding RNAs are not well understood. Lack of conservation of long non-coding RNAs and small sizes of microRNAs has been major obstacles in their phylogenetic analysis. In this study, we tried to shed more light on the evolution of ncRNA regulatory networks by changing our phylogenetic strategy to focus on the evolutionary pattern of their protein coding targets. We used available target databases of miRNAs and lncRNAs to find their protein coding targets in human. We were able to recognize evolutionary hallmarks of ncRNA targets by phylostratigraphic analysis. We found the conventional 3'-UTR and lesser known 5'-UTR targets of miRNAs to be enriched at three consecutive phylostrata. Firstly, in eukaryata phylostratum corresponding to the emergence of miRNAs, our study revealed that miRNA targets function primarily in cell cycle processes. Moreover, the same overrepresentation of the targets observed in the next two consecutive phylostrata, opisthokonta and eumetazoa, corresponded to the expansion periods of miRNAs in animals evolution. Coding sequence targets of miRNAs showed a delayed rise at opisthokonta phylostratum, compared to the 3' and 5' UTR targets of miRNAs. LncRNA regulatory network was the latest to evolve at eumetazoa.
Klymkowsky, Michael W.; Rentsch, Jeremy D.; Begovic, Emina; Cooper, Melanie M.
2016-01-01
Many introductory biology courses amount to superficial surveys of disconnected topics. Often, foundational observations and the concepts derived from them and students’ ability to use these ideas appropriately are overlooked, leading to unrealistic expectations and unrecognized learning obstacles. The result can be a focus on memorization at the expense of the development of a meaningful framework within which to consider biological phenomena. About a decade ago, we began a reconsideration of what an introductory course should present to students and the skills they need to master. The original Web-based course’s design presaged many of the recommendations of the Vision and Change report; in particular, a focus on social evolutionary mechanisms, stochastic (evolutionary and molecular) processes, and core ideas (cellular continuity, evolutionary homology, molecular interactions, coupled chemical reactions, and molecular machines). Inspired by insights from the Chemistry, Life, the Universe & Everything general chemistry project, we transformed the original Web version into a (freely available) book with a more unified narrative flow and a set of formative assessments delivered through the beSocratic system. We outline how student responses to course materials are guiding future course modifications, in particular a more concerted effort at helping students to construct logical, empirically based arguments, explanations, and models. PMID:27909020
Silva, Catarina S; Puranik, Sriharsha; Round, Adam; Brennich, Martha; Jourdain, Agnès; Parcy, François; Hugouvieux, Veronique; Zubieta, Chloe
2015-01-01
Understanding the evolutionary leap from non-flowering (gymnosperms) to flowering (angiosperms) plants and the origin and vast diversification of the floral form has been one of the focuses of plant evolutionary developmental biology. The evolving diversity and increasing complexity of organisms is often due to relatively small changes in genes that direct development. These "developmental control genes" and the transcription factors (TFs) they encode, are at the origin of most morphological changes. TFs such as LEAFY (LFY) and the MADS-domain TFs act as central regulators in key developmental processes of plant reproduction including the floral transition in angiosperms and the specification of the male and female organs in both gymnosperms and angiosperms. In addition to advances in genome wide profiling and forward and reverse genetic screening, structural techniques are becoming important tools in unraveling TF function by providing atomic and molecular level information that was lacking in purely genetic approaches. Here, we summarize previous structural work and present additional biophysical and biochemical studies of the key master regulators of plant reproduction - LEAFY and the MADS-domain TFs SEPALLATA3 and AGAMOUS. We discuss the impact of structural biology on our understanding of the complex evolutionary process leading to the development of the bisexual flower.
Hunt, Tam
2014-12-01
Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution-both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place-has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps' book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging "integral" or "evolutionary" cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps.
Rossi, Ernest; Erickson-Klein, Roxanna; Rossi, Kathryn
2008-04-01
We explore a new distinction between the future, prospective memory system being investigated in current neuroscience and the past, retrospective memory system, which was the original theoretical foundation of therapeutic hypnosis, classical psychoanalysis, and psychotherapy. We then generalize a current evolutionary theory of sleep and dreaming, which focuses on the future, prospective memory system, to conceptualize a new evolutionary perspective on therapeutic hypnosis and brief psychotherapy. The implication of current neuroscience research is that activity-dependent gene expression and brain plasticity are the psychobiological basis of adaptive behavior, consciousness, and creativity in everyday life as well as psychotherapy. We summarize a case illustrating how this evolutionary perspective can be used to quickly resolve problems with past obstructive procrastination in school to facilitate current and future academic success.
Erwin, Douglas H
2017-10-13
Eric Davidson had a deep and abiding interest in the role developmental mechanisms played in generating evolutionary patterns documented in deep time, from the origin of the euechinoids to the processes responsible for the morphological architectures of major animal clades. Although not an evolutionary biologist, Davidson's interests long preceded the current excitement over comparative evolutionary developmental biology. Here I discuss three aspects at the intersection between his research and evolutionary patterns in deep time: First, understanding the mechanisms of body plan formation, particularly those associated with the early diversification of major metazoan clades. Second, a critique of early claims about ancestral metazoans based on the discoveries of highly conserved genes across bilaterian animals. Third, Davidson's own involvement in paleontology through a collaborative study of the fossil embryos from the Ediacaran Doushantuo Formation in south China.
NASA Astrophysics Data System (ADS)
Roughgarden, J. E.
2006-12-01
My recent book, Evolution and Christian Faith explores how evolutionary biology can be portrayed from the religious perspective of Christianity. The principal metaphors for evolutionary biology---differential success at breeding and random mutation, probably originate with the dawn of agriculture and clearly occur in the Bible. The central narrative of evolutionary biology can be presented using Biblical passages, providing an account of evolution that is inherently friendly to a Christian perspective. Still, evolutionary biology is far from complete, and problematic areas pertain to species in which the concept of an individual is poorly defined, and to species in which the expression of gender and sexuality depart from Darwin's sexual-selection templates. The present- day controversy in the US about teaching evolution in the schools provides an opportunity to engage the public about science education.
Drosophila sex combs as a model of evolutionary innovations.
Kopp, Artyom
2011-01-01
The diversity of animal and plant forms is shaped by nested evolutionary innovations. Understanding the genetic and molecular changes responsible for these innovations is therefore one of the key goals of evolutionary biology. From the genetic point of view, the origin of novel traits implies the origin of new regulatory pathways to control their development. To understand how these new pathways are assembled in the course of evolution, we need model systems that combine relatively recent innovations with a powerful set of genetic and molecular tools. One such model is provided by the Drosophila sex comb-a male-specific morphological structure that evolved in a relatively small lineage related to the model species D. melanogaster. Our extensive knowledge of sex comb development in D. melanogaster provides the basis for investigating the genetic changes responsible for sex comb origin and diversification. At the same time, sex combs can change on microevolutionary timescales and differ spectacularly among closely related species, providing opportunities for direct genetic analysis and for integrating developmental and population-genetic approaches. Sex comb evolution is associated with the origin of novel interactions between Hox and sex determination genes. Activity of the sex determination pathway was brought under the control of the Hox code to become segment-specific, while Hox gene expression became sexually dimorphic. At the same time, both Hox and sex determination genes were integrated into the intrasegmental spatial patterning network, and acquired new joint downstream targets. Phylogenetic analysis shows that similar sex comb morphologies evolved independently in different lineages. Convergent evolution at the phenotypic level reflects convergent changes in the expression of Hox and sex determination genes, involving both independent gains and losses of regulatory interactions. However, the downstream cell-differentiation programs have diverged between species, and in some lineages, similar adult morphologies are produced by different morphogenetic mechanisms. These features make the sex comb an excellent model for examining not only the genetic changes responsible for its evolution, but also the cellular processes that translate DNA sequence changes into morphological diversity. The origin and diversification of sex combs provides insights into the roles of modularity, cooption, and regulatory changes in evolutionary innovations, and can serve as a model for understanding the origin of the more drastic novelties that define higher order taxa. © 2011 Wiley Periodicals, Inc.
Drosophila Sex Combs as a Model of Evolutionary Innovations
Kopp, Artyom
2011-01-01
The diversity of animal and plant forms is shaped by nested evolutionary innovations. Understanding the genetic and molecular changes responsible for these innovations is therefore one of the key goals of evolutionary biology. From the genetic point of view, the origin of novel traits implies the origin of new regulatory pathways to control their development. To understand how these new pathways are assembled in the course of evolution, we need model systems that combine relatively recent innovations with a powerful set of genetic and molecular tools. One such model is provided by the Drosophila sex comb – a male-specific morphological structure that evolved in a relatively small lineage related to the model species D. melanogaster. Our extensive knowledge of sex comb development in D. melanogaster provides the basis for investigating the genetic changes responsible for sex comb origin and diversification. At the same time, sex combs can change on microevolutionary timescales and differ spectacularly among closely related species, providing opportunities for direct genetic analysis and for integrating developmental and population-genetic approaches. Sex comb evolution is associated with the origin of novel interactions between HOX and sex determination genes. Activity of the sex determination pathway was brought under the control of the HOX code to become segment-specific, while HOX gene expression became sexually dimorphic. At the same time, both HOX and sex determination genes were integrated into the intrasegmental spatial patterning network, and acquired new joint downstream targets. Phylogenetic analysis shows that similar sex comb morphologies evolved independently in different lineages. Convergent evolution at the phenotypic level reflects convergent changes in the expression of HOX and sex determination genes, involving both independent gains and losses of regulatory interactions. However, the downstream cell differentiation programs have diverged between species, and in some lineages similar adult morphologies are produced by different morphogenetic mechanisms. These features make the sex comb an excellent model for examining not only the genetic changes responsible for its evolution, but also the cellular processes that translate DNA sequence changes into morphological diversity. The origin and diversification of sex combs provides insights into the roles of modularity, cooption, and regulatory changes in evolutionary innovations, and can serve as a model for understanding the origin of the more drastic novelties that define higher-order taxa. PMID:23016935
The genomic landscape of rapid, repeated evolutionary rescue from toxic pollution in wild fish
USDA-ARS?s Scientific Manuscript database
Several populations of Atlantic killifish (Fundulus heteroclitus) in contaminated Atlantic coast estuaries have evolved resistance to the toxic effects of PCBs, dioxins, and PAHs. However, the genetic mechanisms of resistance and whether they are shared among populations is not known. We sequenced t...