Heidel-Fischer, Hanna M; Freitak, Dalial; Janz, Niklas; Söderlind, Lina; Vogel, Heiko; Nylin, Sören
2009-01-01
Background The mechanisms that shape the host plant range of herbivorous insect are to date not well understood but knowledge of these mechanisms and the selective forces that influence them can expand our understanding of the larger ecological interaction. Nevertheless, it is well established that chemical defenses of plants influence the host range of herbivorous insects. While host plant chemistry is influenced by phylogeny, also the growth forms of plants appear to influence the plant defense strategies as first postulated by Feeny (the "plant apparency" hypothesis). In the present study we aim to investigate the molecular basis of the diverse host plant range of the comma butterfly (Polygonia c-album) by testing differential gene expression in the caterpillars on three host plants that are either closely related or share the same growth form. Results In total 120 genes were identified to be differentially expressed in P. c-album after feeding on different host plants, 55 of them in the midgut and 65 in the restbody of the caterpillars. Expression patterns could be confirmed with an independent method for 14 of 27 tested genes. Pairwise similarities in upregulation in the midgut of the caterpillars were higher between plants that shared either growth form or were phylogenetically related. No known detoxifying enzymes were found to be differently regulated in the midgut after feeding on different host plants. Conclusion Our data suggest a complex picture of gene expression in response to host plant feeding. While each plant requires a unique gene regulation in the caterpillar, both phylogenetic relatedness and host plant growth form appear to influence the expression profile of the polyphagous comma butterfly, in agreement with phylogenetic studies of host plant utilization in butterflies. PMID:19878603
Heidel-Fischer, Hanna M; Freitak, Dalial; Janz, Niklas; Söderlind, Lina; Vogel, Heiko; Nylin, Sören
2009-10-31
The mechanisms that shape the host plant range of herbivorous insect are to date not well understood but knowledge of these mechanisms and the selective forces that influence them can expand our understanding of the larger ecological interaction. Nevertheless, it is well established that chemical defenses of plants influence the host range of herbivorous insects. While host plant chemistry is influenced by phylogeny, also the growth forms of plants appear to influence the plant defense strategies as first postulated by Feeny (the "plant apparency" hypothesis). In the present study we aim to investigate the molecular basis of the diverse host plant range of the comma butterfly (Polygonia c-album) by testing differential gene expression in the caterpillars on three host plants that are either closely related or share the same growth form. In total 120 genes were identified to be differentially expressed in P. c-album after feeding on different host plants, 55 of them in the midgut and 65 in the restbody of the caterpillars. Expression patterns could be confirmed with an independent method for 14 of 27 tested genes. Pairwise similarities in upregulation in the midgut of the caterpillars were higher between plants that shared either growth form or were phylogenetically related. No known detoxifying enzymes were found to be differently regulated in the midgut after feeding on different host plants. Our data suggest a complex picture of gene expression in response to host plant feeding. While each plant requires a unique gene regulation in the caterpillar, both phylogenetic relatedness and host plant growth form appear to influence the expression profile of the polyphagous comma butterfly, in agreement with phylogenetic studies of host plant utilization in butterflies.
Toju, Hirokazu; Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S.
2013-01-01
Most terrestrial plants interact with diverse clades of mycorrhizal and root-endophytic fungi in their roots. Through belowground plant–fungal interactions, dominant plants can benefit by interacting with host-specific mutualistic fungi and proliferate in a community based on positive plant–mutualistic fungal feedback. On the other hand, subordinate plant species may persist in the community by sharing other sets (functional groups) of fungal symbionts with each other. Therefore, revealing how diverse clades of root-associated fungi are differentially hosted by dominant and subordinate plant species is essential for understanding plant community structure and dynamics. Based on 454-pyrosequencing, we determined the community composition of root-associated fungi on 36 co-occurring plant species in an oak-dominated forest in northern Japan and statistically evaluated the host preference phenotypes of diverse mycorrhizal and root-endophytic fungi. An analysis of 278 fungal taxa indicated that an ectomycorrhizal basidiomycete fungus in the genus Lactarius and a possibly endophytic ascomycete fungus in the order Helotiales significantly favored the dominant oak (Quercus) species. In contrast, arbuscular mycorrhizal fungi were generally shared among subordinate plant species. Although fungi with host preferences contributed to the compartmentalization of belowground plant–fungal associations, diverse clades of ectomycorrhizal fungi and possible root endophytes were associated not only with the dominant Quercus but also with the remaining plant species. Our findings suggest that dominant-ectomycorrhizal and subordinate plant species can host different subsets of root-associated fungi, and diverse clades of generalist fungi can counterbalance the compartmentalization of plant–fungal associations. Such insights into the overall structure of belowground plant–fungal associations will help us understand the mechanisms that facilitate the coexistence of plant species in natural communities. PMID:24250752
Host Plant Use by Competing Acacia-Ants: Mutualists Monopolize While Parasites Share Hosts
Kautz, Stefanie; Ballhorn, Daniel J.; Kroiss, Johannes; Pauls, Steffen U.; Moreau, Corrie S.; Eilmus, Sascha; Strohm, Erhard; Heil, Martin
2012-01-01
Protective ant-plant mutualisms that are exploited by non-defending parasitic ants represent prominent model systems for ecology and evolutionary biology. The mutualist Pseudomyrmex ferrugineus is an obligate plant-ant and fully depends on acacias for nesting space and food. The parasite Pseudomyrmex gracilis facultatively nests on acacias and uses host-derived food rewards but also external food sources. Integrative analyses of genetic microsatellite data, cuticular hydrocarbons and behavioral assays showed that an individual acacia might be inhabited by the workers of several P. gracilis queens, whereas one P. ferrugineus colony monopolizes one or more host trees. Despite these differences in social organization, neither of the species exhibited aggressive behavior among conspecific workers sharing a tree regardless of their relatedness. This lack of aggression corresponds to the high similarity of cuticular hydrocarbon profiles among ants living on the same tree. Host sharing by unrelated colonies, or the presence of several queens in a single colony are discussed as strategies by which parasite colonies could achieve the observed social organization. We argue that in ecological terms, the non-aggressive behavior of non-sibling P. gracilis workers — regardless of the route to achieve this social structure — enables this species to efficiently occupy and exploit a host plant. By contrast, single large and long-lived colonies of the mutualist P. ferrugineus monopolize individual host plants and defend them aggressively against invaders from other trees. Our findings highlight the necessity for using several methods in combination to fully understand how differing life history strategies affect social organization in ants. PMID:22662191
Pollination niche overlap between a parasitic plant and its host.
Ollerton, Jeff; Stott, Adrian; Allnutt, Emma; Shove, Sam; Taylor, Chloe; Lamborn, Ellen
2007-03-01
Niche theory predicts that species which share resources should evolve strategies to minimise competition for those resources, or the less competitive species would be extirpated. Some plant species are constrained to co-occur, for example parasitic plants and their hosts, and may overlap in their pollination niche if they flower at the same time and attract the same pollinators. Using field observations and experiments between 1996 and 2006, we tested a series of hypotheses regarding pollination niche overlap between a specialist parasitic plant Orobanche elatior (Orobanchaceae) and its host Centaurea scabiosa (Asteraceae). These species flower more or less at the same time, with some year-to-year variation. The host is pollinated by a diverse range of insects, which vary in their effectiveness, whilst the parasite is pollinated by a single species of bumblebee, Bombus pascuorum, which is also an effective pollinator of the host plant. The two species therefore have partially overlapping pollination niches. These niches are not finely subdivided by differential pollen placement, or by diurnal segregation of the niches. We therefore found no evidence of character displacement within the pollination niches of these species, possibly because pollinators are not a limiting resource for these plants. Direct observation of pollinator movements, coupled with experimental manipulations of host plant inflorescence density, showed that Bombus pascuorum only rarely moves between inflorescences of the host and the parasite and therefore the presence of one plant is unlikely to be facilitating pollination in the other. This is the first detailed examination of pollination niche overlap in a plant parasite system and we suggest avenues for future research in relation to pollination and other shared interactions between parasitic plants and their hosts.
Pan, Hongsheng; Liu, Bing; Lu, Yanhui; Wyckhuys, Kris A. G.
2015-01-01
In herbivorous insects, host plant switching is commonly observed and plays an important role in their annual life cycle. However, much remains to be learned about seasonal host switching of various pestiferous arthropods under natural conditions. From 2006 until 2012, we assessed Apolygus lucorum (Meyer-Dür) host plant use in successive spring, summer and winter seasons at one single location (Langfang, China). Data were used to quantify changes in host plant breadth and host fidelity between seasons. Host fidelity of A. lucorum differed between seasons, with 87.9% of spring hosts also used in the summer and 36.1% of summer hosts used in winter. In contrast, as little as 25.6% host plant species were shared between winter and spring. Annual herbaceous plants are most often used for overwintering, while perennial woody plants are relatively important for initial population build-up in the spring. Our study contributes to an improved understanding of evolutionary interactions between A. lucorum and its host plants and lays the groundwork for the design of population management strategies for this important pest in myriad crops. PMID:25692969
Interspecies hormonal control of host root morphology by parasitic plants.
Spallek, Thomas; Melnyk, Charles W; Wakatake, Takanori; Zhang, Jing; Sakamoto, Yuki; Kiba, Takatoshi; Yoshida, Satoko; Matsunaga, Sachihiro; Sakakibara, Hitoshi; Shirasu, Ken
2017-05-16
Parasitic plants share a common anatomical feature, the haustorium. Haustoria enable both infection and nutrient transfer, which often leads to growth penalties for host plants and yield reduction in crop species. Haustoria also reciprocally transfer substances, such as RNA and proteins, from parasite to host, but the biological relevance for such movement remains unknown. Here, we studied such interspecies transport by using the hemiparasitic plant Phtheirospermum japonicum during infection of Arabidopsis thaliana Tracer experiments revealed a rapid and efficient transfer of carboxyfluorescein diacetate (CFDA) from host to parasite upon formation of vascular connections. In addition, Phtheirospermum induced hypertrophy in host roots at the site of infection, a form of enhanced secondary growth that is commonly observed during various parasitic plant-host interactions. The plant hormone cytokinin is important for secondary growth, and we observed increases in cytokinin and its response during infection in both host and parasite. Phtheirospermum -induced host hypertrophy required cytokinin signaling genes ( AHK3,4 ) but not cytokinin biosynthesis genes ( IPT1,3,5,7) in the host. Furthermore, expression of a cytokinin-degrading enzyme in Phtheirospermum prevented host hypertrophy. Wild-type hosts with hypertrophy were smaller than ahk3,4 mutant hosts resistant to hypertrophy, suggesting hypertrophy improves the efficiency of parasitism. Taken together, these results demonstrate that the interspecies movement of a parasite-derived hormone modified both host root morphology and fitness. Several microbial and animal plant pathogens use cytokinins during infections, highlighting the central role of this growth hormone during the establishment of plant diseases and revealing a common strategy for parasite infections of plants.
The importance of pollen chemistry in evolutionary host shifts of bees
Vanderplanck, Maryse; Vereecken, Nicolas J.; Grumiau, Laurent; Esposito, Fabiana; Lognay, Georges; Wattiez, Ruddy; Michez, Denis
2017-01-01
Although bee-plant associations are generally maintained through speciation processes, host shifts have occurred during evolution. Understanding shifts between both phylogenetically and morphologically unrelated plants (i.e., host-saltation) is especially important since they could have been key processes in the origin and radiation of bees. Probably far from being a random process, such host-saltation might be driven by hidden constraints associated with plant traits. We selected two clades of oligolectic bees (i.e., Colletes succinctus group and Melitta leporina group) foraging on co-flowering but unrelated host-plants to test this hypothesis. We analyzed floral scent, floral color and chemical composition of pollen from host and non-host plants of these two clades. We did not find evidence for host-plant evolution in the Melitta leporina group driven by one of the assayed floral traits. On the contrary, hosts of the C. succinctus group display similar primary nutritive content of pollen (i.e., amino acids and sterols) but not similar floral scent or color, suggesting that shared pollen chemistry probably mediates saltation in this clade. Our study revealed that constraints shaping floral associations are diverse and clearly depend on species life-history traits, but evidence suggests that pollen chemistry may act as a major floral filter and guide evolutionary host-shifts. PMID:28216663
Yoshimura, Yuko; Ido, Akifumi; Matsumoto, Teruyuki; Yamato, Masahide
2013-01-01
We investigated communities of arbuscular mycorrhizal fungi (AMF) in the fine roots of Pyrus pyrifolia var. culta, and Plantago asiatica to consider the relationship between orchard trees and herbaceous plants in AMF symbioses. The AMF communities were analyzed on the basis of the partial fungal DNA sequences of the nuclear small subunit ribosomal RNA gene (SSU rDNA), which were amplified using the AMF-specific primers AML1 and AML2. Phylogenetic analysis showed that the obtained AMF sequences were divided into 23 phylotypes. Among them, 12 phylotypes included AMF from both host plants, and most of the obtained sequences (689/811) were affiliated to them. Canonical correspondence analysis showed that the host plant species did not have a significant effect on the distribution of AMF phylotypes, whereas the effects of sampling site, soil total C, soil total N and soil-available P were significant. It was also found that the mean observed overlaps of AMF phylotypes between the paired host plants in the same soil cores (27.1% of phylotypes shared) were significantly higher than the mean 1,000 simulated overlaps (14.2%). Furthermore, the same AMF sequences (100% sequence identity) were detected from both host plants in 8/12 soil cores having both roots. Accordingly, we concluded that Py. pyrifolia and Pl. asiatica examined shared some AMF communities, which suggested that understory herbaceous plants may function as AMF inoculum sources for orchard trees.
Yoshimura, Yuko; Ido, Akifumi; Matsumoto, Teruyuki; Yamato, Masahide
2013-01-01
We investigated communities of arbuscular mycorrhizal fungi (AMF) in the fine roots of Pyrus pyrifolia var. culta, and Plantago asiatica to consider the relationship between orchard trees and herbaceous plants in AMF symbioses. The AMF communities were analyzed on the basis of the partial fungal DNA sequences of the nuclear small subunit ribosomal RNA gene (SSU rDNA), which were amplified using the AMF-specific primers AML1 and AML2. Phylogenetic analysis showed that the obtained AMF sequences were divided into 23 phylotypes. Among them, 12 phylotypes included AMF from both host plants, and most of the obtained sequences (689/811) were affiliated to them. Canonical correspondence analysis showed that the host plant species did not have a significant effect on the distribution of AMF phylotypes, whereas the effects of sampling site, soil total C, soil total N and soil-available P were significant. It was also found that the mean observed overlaps of AMF phylotypes between the paired host plants in the same soil cores (27.1% of phylotypes shared) were significantly higher than the mean 1,000 simulated overlaps (14.2%). Furthermore, the same AMF sequences (100% sequence identity) were detected from both host plants in 8/12 soil cores having both roots. Accordingly, we concluded that Py. pyrifolia and Pl. asiatica examined shared some AMF communities, which suggested that understory herbaceous plants may function as AMF inoculum sources for orchard trees. PMID:23614902
Interspecies hormonal control of host root morphology by parasitic plants
Melnyk, Charles W.; Wakatake, Takanori; Zhang, Jing; Sakamoto, Yuki; Kiba, Takatoshi; Yoshida, Satoko; Matsunaga, Sachihiro; Sakakibara, Hitoshi
2017-01-01
Parasitic plants share a common anatomical feature, the haustorium. Haustoria enable both infection and nutrient transfer, which often leads to growth penalties for host plants and yield reduction in crop species. Haustoria also reciprocally transfer substances, such as RNA and proteins, from parasite to host, but the biological relevance for such movement remains unknown. Here, we studied such interspecies transport by using the hemiparasitic plant Phtheirospermum japonicum during infection of Arabidopsis thaliana. Tracer experiments revealed a rapid and efficient transfer of carboxyfluorescein diacetate (CFDA) from host to parasite upon formation of vascular connections. In addition, Phtheirospermum induced hypertrophy in host roots at the site of infection, a form of enhanced secondary growth that is commonly observed during various parasitic plant–host interactions. The plant hormone cytokinin is important for secondary growth, and we observed increases in cytokinin and its response during infection in both host and parasite. Phtheirospermum-induced host hypertrophy required cytokinin signaling genes (AHK3,4) but not cytokinin biosynthesis genes (IPT1,3,5,7) in the host. Furthermore, expression of a cytokinin-degrading enzyme in Phtheirospermum prevented host hypertrophy. Wild-type hosts with hypertrophy were smaller than ahk3,4 mutant hosts resistant to hypertrophy, suggesting hypertrophy improves the efficiency of parasitism. Taken together, these results demonstrate that the interspecies movement of a parasite-derived hormone modified both host root morphology and fitness. Several microbial and animal plant pathogens use cytokinins during infections, highlighting the central role of this growth hormone during the establishment of plant diseases and revealing a common strategy for parasite infections of plants. PMID:28461500
Ingegno, B L; Candian, V; Psomadelis, I; Bodino, N; Tavella, L
2017-06-01
Dicyphus errans (Wolff) has been shown to be a suitable biocontrol agent for Tuta absoluta (Meyrick). This generalist predator shares various host plants with the exotic pest, and these interactions could be exploited to enhance pest control. Therefore, host preference, survival rate and development times of the predator and prey were investigated on crop and non-crop plant species. Among the tested plants, the favourite hosts were Solanum species for T. absoluta, and herb Robert, European black nightshade, courgette and tomato for D. errans. Tuta absoluta accepted the same plant species as hosts for oviposition, but it never developed on herb Robert and courgette in all the experiments. Based on our results, we would suggest the use of courgette and herb Robert in consociation with tomato and as a companion plant, respectively, which may keep pest densities below the economic threshold. Moreover, the omnivorous and widespread D. errans could be a key predator of this exotic pest, allowing a high encounter probability on several cultivated and non-cultivated plant species.
Milet-Pinheiro, Paulo; Ayasse, Manfred; Dötterl, Stefan
2015-01-01
Oligolectic bees collect pollen from a few plants within a genus or family to rear their offspring, and are known to rely on visual and olfactory floral cues to recognize host plants. However, studies investigating whether oligolectic bees recognize distinct host plants by using shared floral cues are scarce. In the present study, we investigated in a comparative approach the visual and olfactory floral cues of six Campanula species, of which only Campanula lactiflora has never been reported as a pollen source of the oligolectic bee Ch. rapunculi. We hypothesized that the flowers of Campanula species visited by Ch. rapunculi share visual (i.e. color) and/or olfactory cues (scents) that give them a host-specific signature. To test this hypothesis, floral color and scent were studied by spectrophotometric and chemical analyses, respectively. Additionally, we performed bioassays within a flight cage to test the innate color preference of Ch. rapunculi. Our results show that Campanula flowers reflect the light predominantly in the UV-blue/blue bee-color space and that Ch. rapunculi displays a strong innate preference for these two colors. Furthermore, we recorded spiroacetals in the floral scent of all Campanula species, but Ca. lactiflora. Spiroacetals, rarely found as floral scent constituents but quite common among Campanula species, were recently shown to play a key function for host-flower recognition by Ch. rapunculi. We conclude that Campanula species share some visual and olfactory floral cues, and that neurological adaptations (i.e. vision and olfaction) of Ch. rapunculi innately drive their foraging flights toward host flowers. The significance of our findings for the evolution of pollen diet breadth in bees is discussed. PMID:26060994
Cui, Jin-Long; Vijayakumar, Vinod; Zhang, Gang
2018-01-01
Endophytic fungi are an integral part and even seen as host organs of plant, influencing physiology, ecology, and development of host plants. However, little is known about micro-ecosystems and functional interactions of endophytic fungi in root-parasitic interactions of Cynomorium songaricum and its host Nitraria tangutorum. Here, distribution and dynamics of endophytic fungi were objectively investigated in their associations with C. songaricum and N. tangutorum based on mycobiome studies using high-throughput sequencing. Results suggest that endophytic fungi may be exchanged between C. songaricum and its host N. tangutorum probably through haustorium, connection of xylem and phloem in the vascular system. The similarity of endophytic fungal composition between C. songaricum and parasitized N. tangutorum was 3.88% which was significantly higher than the fungal similarity of 0.10% observed between C. songaricum and non-parasitized N. tangutorum. The similarities of fungal community in parasitized N. tangutorum were much closer to C. songaricum than to the non-parasitized N. tangutorum. The composition of endophytic fungi in these associations increased in progressive developmental stages of C. songaricum from sprouting to above ground emergence, and decreased subsequently probably due to host recognition and response by fungi. However, the shared fungal operational taxonomic units (OTUs) increased among interactions of C. songaricum with parasitized and non-parasitized N. tangutorum. Studies of bioactivity on culturable endophytic fungi showed that isolates such as Fusarium spp. possess the ability to promote seed germination of C. songaricum. Our study reports for the first time the special ecological system of endophytic fungi in C. songaricum and its host N. tangutorum. Overall, we hypothesize that a deeper understanding of the sharing, movement, and role of endophytic fungi between root-parasitic plant and its host may lead to finding alternative approaches to help increase the output of ethno-pharmacologically important medicinal plants. PMID:29686655
Drakulic, Jassy; Caulfield, John; Woodcock, Christine; Jones, Stephen P. T.; Linforth, Robert; Bruce, Toby J. A.
2015-01-01
We hypothesized that interactions between fusarium head blight-causing pathogens and herbivores are likely to occur because they share wheat as a host plant. Our aim was to investigate the interactions between the grain aphid, Sitobion avenae, and Fusarium graminearum on wheat ears and the role that host volatile chemicals play in mediating interactions. Wheat ears were treated with aphids and F. graminearum inoculum, together or separately, and disease progress was monitored by visual assessment and by quantification of pathogen DNA and mycotoxins. Plants exposed to both aphids and F. graminearum inoculum showed accelerated disease progression, with a 2-fold increase in disease severity and 5-fold increase in mycotoxin accumulation over those of plants treated only with F. graminearum. Furthermore, the longer the period of aphid colonization of the host prior to inoculation with F. graminearum, the greater the amount of pathogen DNA that accumulated. Headspace samples of plant volatiles were collected for use in aphid olfactometer assays and were analyzed by gas chromatography-mass spectrometry (GC-MS) and GC-coupled electroantennography. Disease-induced plant volatiles were repellent to aphids, and 2-pentadecanone was the key semiochemical underpinning the repellent effect. We measured aphid survival and fecundity on infected wheat ears and found that both were markedly reduced on infected ears. Thus, interactions between F. graminearum and grain aphids on wheat ears benefit the pathogen at the expense of the pest. Our findings have important consequences for disease epidemiology, because we show increased spread and development of host disease, together with greater disease severity and greater accumulation of pathogen DNA and mycotoxin, when aphids are present. PMID:25769834
Drakulic, Jassy; Caulfield, John; Woodcock, Christine; Jones, Stephen P T; Linforth, Robert; Bruce, Toby J A; Ray, Rumiana V
2015-05-15
We hypothesized that interactions between fusarium head blight-causing pathogens and herbivores are likely to occur because they share wheat as a host plant. Our aim was to investigate the interactions between the grain aphid, Sitobion avenae, and Fusarium graminearum on wheat ears and the role that host volatile chemicals play in mediating interactions. Wheat ears were treated with aphids and F. graminearum inoculum, together or separately, and disease progress was monitored by visual assessment and by quantification of pathogen DNA and mycotoxins. Plants exposed to both aphids and F. graminearum inoculum showed accelerated disease progression, with a 2-fold increase in disease severity and 5-fold increase in mycotoxin accumulation over those of plants treated only with F. graminearum. Furthermore, the longer the period of aphid colonization of the host prior to inoculation with F. graminearum, the greater the amount of pathogen DNA that accumulated. Headspace samples of plant volatiles were collected for use in aphid olfactometer assays and were analyzed by gas chromatography-mass spectrometry (GC-MS) and GC-coupled electroantennography. Disease-induced plant volatiles were repellent to aphids, and 2-pentadecanone was the key semiochemical underpinning the repellent effect. We measured aphid survival and fecundity on infected wheat ears and found that both were markedly reduced on infected ears. Thus, interactions between F. graminearum and grain aphids on wheat ears benefit the pathogen at the expense of the pest. Our findings have important consequences for disease epidemiology, because we show increased spread and development of host disease, together with greater disease severity and greater accumulation of pathogen DNA and mycotoxin, when aphids are present. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Parasitic nematode interactions with mammals and plants.
Jasmer, Douglas P; Goverse, Aska; Smant, Geert
2003-01-01
Parasitic nematodes that infect humans, animals, and plants cause serious diseases that are deleterious to human health and agricultural productivity. Chemical and biological control methods have reduced the impact of these parasites. However, surviving environmental stages lead to persistent reinfection of host species. In addition, development of resistance to nematicides and anthelmintics by these parasites and reduced availability of some nematicides, for environmental protection, pose significant obstacles for current and future prospects of effective parasite control. Due to marked differences in host species, research on animal and plant parasitic nematodes often proceeds independently. Despite the differences between animals and plants, basic cellular properties are shared among these host organisms. Some common properties may be important for mechanisms [homologous or convergent (homoplastic)] by which nematodes successfully infect these diverse hosts or by which animal and plant hosts resist infections by these pathogens. Here we compare host/parasite interactions between plant parasitic nematodes (PPN) and animal parasitic nematodes, with an emphasis on mammalian hosts (MPN). Similarities and differences are considered in the context of progress on molecular dissection of these interactions. A comprehensive coverage is not possible in the space allotted. Instead, an illustrative approach is used to establish examples that, it is hoped, exemplify the value of the comparative approach.
Sato, Yukie; Alba, Juan M; Egas, Martijn; Sabelis, Maurice W
2016-11-01
When competing with indigenous species, invasive species face a problem, because they typically start with a few colonizers. Evidently, some species succeeded, begging an answer to the question how they invade. Here, we investigate how the invasive spider mite Tetranychus evansi interacts with the indigenous species T. urticae when sharing the solanaceous host plant tomato: do they choose to live together or to avoid each other's colonies? Both species spin protective, silken webs on the leaf surfaces, under which they live in groups of con- and possibly heterospecifics. In Spain, T. evansi invaded the non-crop field where native Tetranychus species including T. urticae dominated. Moreover, T. evansi outcompetes T. urticae when released together on a tomato plant. However, molecular plant studies suggest that T. urticae benefits from the local down-regulation of tomato plant defences by T. evansi, whereas T. evansi suffers from the induction of these defences by T. urticae. Therefore, we hypothesize that T. evansi avoids leaves infested with T. urticae whereas T. urticae prefers leaves infested by T. evansi. Using wild-type tomato and a mutant lacking jasmonate-mediated anti-herbivore defences, we tested the hypothesis and found that T. evansi avoided sharing webs with T. urticae in favour of a web with conspecifics, whereas T. urticae more frequently chose to share webs with T. evansi than with conspecifics. Also, T. evansi shows higher aggregation on a tomato plant than T. urticae, irrespective of whether the mites occur on the plant together or not.
RNA-protein interactions in plant disease: hackers at the dinner table.
Spanu, Pietro D
2015-09-01
Plants are the source of most of our food, whether directly or as feed for the animals we eat. Our dinner table is a trophic level we share with the microbes that also feed on the primary photosynthetic producers. Microbes that enter into close interactions with plants need to evade or suppress detection and host immunity to access nutrients. They do this by deploying molecular tools - effectors - which target host processes. The mode of action of effector proteins in these events is varied and complex. Recent data from diverse systems indicate that RNA-interacting proteins and RNA itself are delivered by eukaryotic microbes, such as fungi and oomycetes, to host plants and contribute to the establishment of successful interactions. This is evidence that pathogenic microbes can interfere with the host software. We are beginning to see that pathogenic microbes are capable of hacking into the plants' immunity programs. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.
Gossner, Martin M; Chao, Anne; Bailey, Richard I; Prinzing, Andreas
2009-05-01
The relative roles of evolutionary history and geographical and ecological contingency for community assembly remain unknown. Plant species, for instance, share more phytophages with closer relatives (phylogenetic conservatism), but for exotic plants introduced to another continent, this may be overlaid by geographically contingent evolution or immigration from locally abundant plant species (mass effects). We assessed within local forests to what extent exotic trees (Douglas-fir, red oak) recruit phytophages (Coleoptera, Heteroptera) from more closely or more distantly related native plants. We found that exotics shared more phytophages with natives from the same major plant lineage (angiosperms vs. gymnosperms) than with natives from the other lineage. This was particularly true for Heteroptera, and it emphasizes the role of host specialization in phylogenetic conservatism of host use. However, for Coleoptera on Douglas-fir, mass effects were important: immigration from beech increased with increasing beech abundance. Within a plant phylum, phylogenetic proximity of exotics and natives increased phytophage similarity, primarily in younger Coleoptera clades on angiosperms, emphasizing a role of past codiversification of hosts and phytophages. Overall, phylogenetic conservatism can shape the assembly of local phytophage communities on exotic trees. Whether it outweighs geographic contingency and mass effects depends on the interplay of phylogenetic scale, local abundance of native tree species, and the biology and evolutionary history of the phytophage taxon.
Giron, David; Huguet, Elisabeth; Stone, Graham N; Body, Mélanie
2016-01-01
Gall-inducing insects are iconic examples in the manipulation and reprogramming of plant development, inducing spectacular morphological and physiological changes of host-plant tissues within which the insect feeds and grows. Despite decades of research, effectors involved in gall induction and basic mechanisms of gall formation remain unknown. Recent research suggests that some aspects of the plant manipulation shown by gall-inducers may be shared with other insect herbivorous life histories. Here, we illustrate similarities and contrasts by reviewing current knowledge of metabolic and morphological effects induced on plants by gall-inducing and leaf-mining insects, and ask whether leaf-miners can also be considered to be plant reprogrammers. We review key plant functions targeted by various plant reprogrammers, including plant-manipulating insects and nematodes, and functionally characterize insect herbivore-derived effectors to provide a broader understanding of possible mechanisms used in host-plant manipulation. Consequences of plant reprogramming in terms of ecology, coevolution and diversification of plant-manipulating insects are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Samad, Abdul; Trognitz, Friederike; Compant, Stéphane; Antonielli, Livio; Sessitsch, Angela
2017-04-01
Weeds and crop plants select their microbiota from the same pool of soil microorganisms, however, the ecology of weed microbiomes is poorly understood. We analysed the microbiomes associated with roots and rhizospheres of grapevine and four weed species (Lamium amplexicaule L., Veronica arvensis L., Lepidium draba L. and Stellaria media L.) growing in proximity in the same vineyard using 16S rRNA gene sequencing. We also isolated and characterized 500 rhizobacteria and root endophytes from L. draba and grapevine. Microbiome data analysis revealed that all plants hosted significantly different microbiomes in the rhizosphere as well as in root compartment, however, differences were more pronounced in the root compartment. The shared microbiome of grapevine and the four weed species contained 145 OTUs (54.2%) in the rhizosphere, but only nine OTUs (13.2%) in the root compartment. Seven OTUs (12.3%) were shared in all plants and compartments. Approximately 56% of the major OTUs (>1%) showed more than 98% identity to bacteria isolated in this study. Moreover, weed-associated bacteria generally showed a higher species richness in the rhizosphere, whereas the root-associated bacteria were more diverse in the perennial plants grapevine and L. draba. Overall, weed isolates showed more plant growth-promoting characteristics compared with grapevine isolates. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Shared weapons of blood- and plant-feeding insects: Surprising commonalities for manipulating hosts.
Guiguet, Antoine; Dubreuil, Géraldine; Harris, Marion O; Appel, Heidi M; Schultz, Jack C; Pereira, Marcos H; Giron, David
2016-01-01
Insects that reprogram host plants during colonization remind us that the insect side of plant-insect story is just as interesting as the plant side. Insect effectors secreted by the salivary glands play an important role in plant reprogramming. Recent discoveries point to large numbers of salivary effectors being produced by a single herbivore species. Since genetic and functional characterization of effectors is an arduous task, narrowing the field of candidates is useful. We present ideas about types and functions of effectors from research on blood-feeding parasites and their mammalian hosts. Because of their importance for human health, blood-feeding parasites have more tools from genomics and other - omics than plant-feeding parasites. Four themes have emerged: (1) mechanical damage resulting from attack by blood-feeding parasites triggers "early danger signals" in mammalian hosts, which are mediated by eATP, calcium, and hydrogen peroxide, (2) mammalian hosts need to modulate their immune responses to the three "early danger signals" and use apyrases, calreticulins, and peroxiredoxins, respectively, to achieve this, (3) blood-feeding parasites, like their mammalian hosts, rely on some of the same "early danger signals" and modulate their immune responses using the same proteins, and (4) blood-feeding parasites deploy apyrases, calreticulins, and peroxiredoxins in their saliva to manipulate the "danger signals" of their mammalian hosts. We review emerging evidence that plant-feeding insects also interfere with "early danger signals" of their hosts by deploying apyrases, calreticulins and peroxiredoxins in saliva. Given emerging links between these molecules, and plant growth and defense, we propose that these effectors interfere with phytohormone signaling, and therefore have a special importance for gall-inducing and leaf-mining insects, which manipulate host-plants to create better food and shelter. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nakadai, Ryosuke; Kawakita, Atsushi
2017-06-01
The diversity of herbivorous insects is often considered a function of host plant diversity. However, recent research has uncovered many examples of closely related herbivores using the same host plant(s), suggesting that partitioning of host plants is not the only mechanism generating diversity. Herbivores sharing hosts may utilize different parts of the same plant, but such resource partitioning is often not apparent; hence, the factors that allow closely related herbivores to coexist are still largely undetermined. We examined whether partitioning of phenology or natural enemies may explain the coexistence of leaf cone moths (Caloptilia; Gracillariidae) associated with maples (Acer; Sapindaceae). Larval activity of 10 sympatric Caloptilia species found on nine maple species was monitored every 2-3 weeks for a total of 13 sampling events, and an exhaustive search for internal parasitoid wasps was conducted using high-throughput sequencing. Blocking primers were used to facilitate the detection of wasp larvae inside moth tissue. We found considerable phenological overlap among Caloptilia species, with two clear peaks in July and September-October. Coexisting Caloptilia species also had largely overlapping parasitoid communities; a total of 13 chalcid and ichneumon wasp species attacked Caloptilia in a nonspecific fashion at an overall parasitism rate of 46.4%. Although coexistence may be facilitated by factors not accounted for in this study, it appears that niche partitioning is not necessary for closely related herbivores to stably coexist on shared hosts. Co-occurrence without resource partitioning may provide an additional axis along which herbivorous insects attain increased species richness. © 2017 John Wiley & Sons Ltd.
Phylogenetic composition of host plant communities drives plant-herbivore food web structure.
Volf, Martin; Pyszko, Petr; Abe, Tomokazu; Libra, Martin; Kotásková, Nela; Šigut, Martin; Kumar, Rajesh; Kaman, Ondřej; Butterill, Philip T; Šipoš, Jan; Abe, Haruka; Fukushima, Hiroaki; Drozd, Pavel; Kamata, Naoto; Murakami, Masashi; Novotny, Vojtech
2017-05-01
Insects tend to feed on related hosts. The phylogenetic composition of host plant communities thus plays a prominent role in determining insect specialization, food web structure, and diversity. Previous studies showed a high preference of insect herbivores for congeneric and confamilial hosts suggesting that some levels of host plant relationships may play more prominent role that others. We aim to quantify the effects of host phylogeny on the structure of quantitative plant-herbivore food webs. Further, we identify specific patterns in three insect guilds with different life histories and discuss the role of host plant phylogeny in maintaining their diversity. We studied herbivore assemblages in three temperate forests in Japan and the Czech Republic. Sampling from a canopy crane, a cherry picker and felled trees allowed a complete census of plant-herbivore interactions within three 0·1 ha plots for leaf chewing larvae, miners, and gallers. We analyzed the effects of host phylogeny by comparing the observed food webs with randomized models of host selection. Larval leaf chewers exhibited high generality at all three sites, whereas gallers and miners were almost exclusively monophagous. Leaf chewer generality dropped rapidly when older host lineages (5-80 myr) were collated into a single lineage but only decreased slightly when the most closely related congeneric hosts were collated. This shows that leaf chewer generality has been maintained by feeding on confamilial hosts while only a few herbivores were shared between more distant plant lineages and, surprisingly, between some congeneric hosts. In contrast, miner and galler generality was maintained mainly by the terminal nodes of the host phylogeny and dropped immediately after collating congeneric hosts into single lineages. We show that not all levels of host plant phylogeny are equal in their effect on structuring plant-herbivore food webs. In the case of generalist guilds, it is the phylogeny of deeper plant lineages that drives the food web structure whereas the terminal relationships play minor roles. In contrast, the specialization and abundance of monophagous guilds are affected mainly by the terminal parts of the plant phylogeny and do not generally reflect deeper host phylogeny. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Apoplastic interactions between plants and plant root intruders.
Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko
2015-01-01
Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.
Apoplastic interactions between plants and plant root intruders
Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko
2015-01-01
Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant–parasite interactions. PMID:26322059
Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants.
Tasin, Marco; Bäckman, Anna-Carin; Anfora, Gianfranco; Carlin, Silvia; Ioriatti, Claudio; Witzgall, Peter
2010-01-01
In herbivorous insects with more than 1 host plant, attraction to host odor could conceptually be mediated by common compounds, by specific compounds released by each plant or by combinations of common and specific compounds. We have compared the attraction of female grapevine moth, Lobesia botrana, with specific and common (shared) odors from 2 different plants: a wild host (Daphne gnidium) and a recently colonized host (Vitis vinifera). Odor blends eliciting female attraction to V. vinifera have previously been identified. In this study, olfactory cues from D. gnidium were identified by electroantennographic detection and chemical analysis. The attraction of mated females to synthetic odor blends was then tested in a wind tunnel bioassay. Female attraction was elicited by a blend of compounds released by both from D. gnidium and V. vinifera and by 2 blends with the compounds released specifically from each host. However, more complete odor blends of the 2 plants elicited stronger attraction. The common compounds in combination with the specific compounds of D. gnidium were the most attractive blend. This blend was tested with the common compounds presented both in the ratio emitted by D. gnidium and by V. vinifera, but there was no difference in female attraction. Our findings suggest that specific as well as common plant odor cues play a role in L. botrana host recognition and that there is plasticity in attraction to partial blends. The results are discussed in relation to mechanisms behind host odor recognition and the evolution of insect-plant associations.
Tree-mediated interactions between the jack pine budworm and a mountain pine beetle fungal
Nadir Erbilgin; Jessie Colgan
2012-01-01
Coniferous trees deploy a combination of constitutive (pre-existing) and induced (post-invasion) structural and biochemical defenses against invaders. Induced responses can also alter host suitability for other organisms sharing the same host, which may result in indirect, plant-mediated, interactions between different species of attacking organisms. Current range and...
Hoang, Kim; Matzkin, Luciano M; Bono, Jeremy M
2015-10-01
Although the importance of host plant chemistry in plant-insect interactions is widely accepted, the genetic basis of adaptation to host plants is not well understood. Here, we investigate transcriptional changes associated with a host plant shift in Drosophila mettleri. While D. mettleri is distributed mainly throughout the Sonoran Desert where it specializes on columnar cacti (Carnegiea gigantea and Pachycereus pringleii), a population on Santa Catalina Island has shifted to chemically divergent coastal prickly pear cactus (Opuntia littoralis). We compared gene expression of larvae from the Sonoran Desert and Santa Catalina Island when reared on saguaro (C. gigantea), coastal prickly pear and laboratory food. Consistent with expectations based on the complexity and toxicity of cactus relative to laboratory food, within-population comparisons between larvae reared on these food sources revealed transcriptional differences in detoxification and other metabolic pathways. The majority of transcriptional differences between populations on the cactus hosts were independent of the rearing environment and included a disproportionate number of genes involved in processes relevant to host plant adaptation (e.g. detoxification, central metabolism and chemosensory pathways). Comparisons of transcriptional reaction norms between the two populations revealed extensive shared plasticity that likely allowed colonization of coastal prickly pear on Santa Catalina Island. We also found that while plasticity may have facilitated subsequent adaptive divergence in gene expression between populations, the majority of genes that differed in expression on the novel host were not transcriptionally plastic in the presumed ancestral state. © 2015 John Wiley & Sons Ltd.
The origin and genetic differentiation of the socially parasitic aphid Tamalia inquilinus.
Miller, Donald G; Lawson, Sarah P; Rinker, David C; Estby, Heather; Abbot, Patrick
2015-11-01
Social and brood parasitisms are nonconsumptive forms of parasitism involving the exploitation of the colonies or nests of a host. Such parasites are often related to their hosts and may evolve in various ecological contexts, causing evolutionary constraints and opportunities for both parasites and their hosts. In extreme cases, patterns of diversification between social parasites and their hosts can be coupled, such that diversity of one is correlated with or even shapes the diversity of the other. Aphids in the genus Tamalia induce galls on North American manzanita (Arctostaphylos) and related shrubs (Arbutoideae) and are parasitized by nongalling social parasites or inquilines in the same genus. We used RNA sequencing to identify and generate new gene sequences for Tamalia and performed maximum-likelihood, Bayesian and phylogeographic analyses to reconstruct the origins and patterns of diversity and host-associated differentiation in the genus. Our results indicate that the Tamalia inquilines are monophyletic and closely related to their gall-forming hosts on Arctostaphylos, supporting a previously proposed scenario for origins of these parasitic aphids. Unexpectedly, population structure and host-plant-associated differentiation were greater in the non-gall-inducing parasites than in their gall-inducing hosts. RNA-seq indicated contrasting patterns of gene expression between host aphids and parasites, and perhaps functional differences in host-plant relationships. Our results suggest a mode of speciation in which host plants drive within-guild diversification in insect hosts and their parasites. Shared host plants may be sufficient to promote the ecological diversification of a network of phytophagous insects and their parasites, as exemplified by Tamalia aphids. © 2015 John Wiley & Sons Ltd.
Toju, Hirokazu; Sato, Hirotoshi
2018-01-01
Arbuscular mycorrhizal and ectomycorrhizal symbioses are among the most important drivers of terrestrial ecosystem dynamics. Historically, the two types of symbioses have been investigated separately because arbuscular mycorrhizal and ectomycorrhizal plant species are considered to host discrete sets of fungal symbionts (i.e., arbuscular mycorrhizal and ectomycorrhizal fungi, respectively). Nonetheless, recent studies based on high-throughput DNA sequencing technologies have suggested that diverse non-mycorrhizal fungi (e.g., endophytic fungi) with broad host ranges play roles in relationships between arbuscular mycorrhizal and ectomycorrhizal plant species in forest ecosystems. By analyzing an Illumina sequencing dataset of root-associated fungi in a temperate forest in Japan, we statistically examined whether co-occurring arbuscular mycorrhizal (Chamaecyparis obtusa) and ectomycorrhizal (Pinus densiflora) plant species could share non-mycorrhizal fungal communities. Among the 919 fungal operational taxonomic units (OTUs) detected, OTUs in various taxonomic lineages were statistically designated as “generalists,” which associated commonly with both coniferous species. The list of the generalists included fungi in the genera Meliniomyces, Oidiodendron, Cladophialophora, Rhizodermea, Penicillium, and Mortierella. Meanwhile, our statistical analysis also detected fungi preferentially associated with Chamaecyparis (e.g., Pezicula) or Pinus (e.g., Neolecta). Overall, this study provides a basis for future studies on how arbuscular mycorrhizal and ectomycorrhizal plant species interactively drive community- or ecosystem-scale processes. The physiological functions of the fungi highlighted in our host-preference analysis deserve intensive investigations for understanding their roles in plant endosphere and rhizosphere. PMID:29593682
Toju, Hirokazu; Sato, Hirotoshi
2018-01-01
Arbuscular mycorrhizal and ectomycorrhizal symbioses are among the most important drivers of terrestrial ecosystem dynamics. Historically, the two types of symbioses have been investigated separately because arbuscular mycorrhizal and ectomycorrhizal plant species are considered to host discrete sets of fungal symbionts (i.e., arbuscular mycorrhizal and ectomycorrhizal fungi, respectively). Nonetheless, recent studies based on high-throughput DNA sequencing technologies have suggested that diverse non-mycorrhizal fungi (e.g., endophytic fungi) with broad host ranges play roles in relationships between arbuscular mycorrhizal and ectomycorrhizal plant species in forest ecosystems. By analyzing an Illumina sequencing dataset of root-associated fungi in a temperate forest in Japan, we statistically examined whether co-occurring arbuscular mycorrhizal ( Chamaecyparis obtusa ) and ectomycorrhizal ( Pinus densiflora ) plant species could share non-mycorrhizal fungal communities. Among the 919 fungal operational taxonomic units (OTUs) detected, OTUs in various taxonomic lineages were statistically designated as "generalists," which associated commonly with both coniferous species. The list of the generalists included fungi in the genera Meliniomyces, Oidiodendron, Cladophialophora, Rhizodermea, Penicillium , and Mortierella . Meanwhile, our statistical analysis also detected fungi preferentially associated with Chamaecyparis (e.g., Pezicula ) or Pinus (e.g., Neolecta ). Overall, this study provides a basis for future studies on how arbuscular mycorrhizal and ectomycorrhizal plant species interactively drive community- or ecosystem-scale processes. The physiological functions of the fungi highlighted in our host-preference analysis deserve intensive investigations for understanding their roles in plant endosphere and rhizosphere.
Shrestha, Deepak; McAuslane, Heather J; Adkins, Scott T; Smith, Hugh A; Dufault, Nicholas; Colee, James; Webb, Susan E
2017-08-01
Plant viruses may indirectly affect insect vector behavior and fitness via a shared host plant. Here, we evaluated the host-mediated effects of Squash vein yellowing virus (SqVYV) on the behavior and fitness of its whitefly vector, Bemisia tabaci (Gennadius) Middle East-Asia Minor 1, formerly biotype B. Alighting, settling, and oviposition behavioral assays were conducted on infected and mock-inoculated squash (Cucurbita pepo L.) and watermelon [Citrullus lanatus (Thunb) Matsum and Nakai] plants. Developmental time of immature stages, adult longevity, and fecundity were measured on infected and mock-inoculated squash plants. For adult longevity and fecundity, whiteflies were reared on infected and mock-inoculated squash plants to determine the effects of nymphal rearing host on the adult stage. More whiteflies alighted and remained settled on infected squash than on mock-inoculated squash 0.25, 1, 8, and 24 h after release. No such initial preference was observed on watermelon plants, but by 8 h after release, more whiteflies were found on mock-inoculated watermelon plants than on infected plants. Whiteflies laid approximately six times more eggs on mock-inoculated watermelon than on infected watermelon; however, no differences were observed on squash. Development from egg to adult emergence was 3 d shorter on infected than mock-inoculated squash plants. Females lived 25% longer and had higher fecundity on infected squash plants than on mock-inoculated plants, regardless of infection status of the rearing host. The host-mediated effects of SqVYV infection on whitefly behavior differ on two cucurbit host plants, suggesting the potential for more rapid spread of the virus within watermelon fields. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Martinson, Holly M; Bergmann, Erik J; Venugopal, P Dilip; Riley, Christopher B; Shrewsbury, Paula M; Raupp, Michael J
2016-09-01
With the introduction and establishment of exotic species, most ecosystems now contain both native and exotic plants and herbivores. Recent research identifies several factors that govern how specialist herbivores switch host plants upon introduction. Predicting the feeding ecology and impacts of introduced generalist species, however, remains difficult. Here, we examine how plant geographic origin, an indicator of shared co-evolutionary history, influences patterns of host use by a generalist, invasive herbivore, while accounting for variation in plant availability. The brown marmorated stink bug, Halyomorpha halys, is a highly polyphagous Asian herbivore and an economically important invasive pest in North America and Europe. In visual surveys of 220 plant taxa in commercial nurseries in Maryland, USA, H. halys was more abundant on non-Asian plants and selected these over Asian plants. The relationship between the relative use of plants and their availability was strongly positive but depended also on plant origin at two of our three sites, where the higher relative use of non-Asian plants was greatest for highly abundant taxa. These results highlight the importance of considering both plant origin and relative abundance in understanding the selection of host plants by invasive generalist herbivores in diverse, natural and urban forests.
Satler, Jordan D; Zellmer, Amanda J; Carstens, Bryan C
2016-01-01
Understanding if the members of an ecological community have co-diversified is a central concern of evolutionary biology, as co-diversification suggests prolonged association and possible coevolution. By sampling associated species from an ecosystem, researchers can better understand how abiotic and biotic factors influence diversification in a region. In particular, studies of co-distributed species that interact ecologically can allow us to disentangle the effect of how historical processes have helped shape community level structure and interactions. Here we investigate the Sarracenia alata pitcher plant system, an ecological community where many species from disparate taxonomic groups live inside the fluid-filled pitcher leaves. Direct sequencing of the eukaryotes present in the pitcher plant fluid enables us to better understand how a host plant can shape and contribute to the genetic structure of its associated inquilines, and to ask whether genetic variation in the taxa are structured in a similar manner to the host plant. We used 454 amplicon-based metagenomics to demonstrate that the pattern of genetic diversity in many, but not all, of the eukaryotic community is similar to that of S. alata, providing evidence that associated eukaryotes share an evolutionary history with the host pitcher plant. Our work provides further evidence that a host plant can influence the evolution of its associated commensals.
Mousa, Walaa Kamel; Raizada, Manish N
2013-01-01
Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens.
Mousa, Walaa Kamel; Raizada, Manish N.
2013-01-01
Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens. PMID:23543048
Association and Host Selectivity in Multi-Host Pathogens
Malpica, José M.; Sacristán, Soledad; Fraile, Aurora; García-Arenal, Fernando
2006-01-01
The distribution of multi-host pathogens over their host range conditions their population dynamics and structure. Also, host co-infection by different pathogens may have important consequences for the evolution of hosts and pathogens, and host-pathogen co-evolution. Hence it is of interest to know if the distribution of pathogens over their host range is random, or if there are associations between hosts and pathogens, or between pathogens sharing a host. To analyse these issues we propose indices for the observed patterns of host infection by pathogens, and for the observed patterns of co-infection, and tests to analyse if these patterns conform to randomness or reflect associations. Applying these tests to the prevalence of five plant viruses on 21 wild plant species evidenced host-virus associations: most hosts and viruses were selective for viruses and hosts, respectively. Interestingly, the more host-selective viruses were the more prevalent ones, suggesting that host specialisation is a successful strategy for multi-host pathogens. Analyses also showed that viruses tended to associate positively in co-infected hosts. The developed indices and tests provide the tools to analyse how strong and common are these associations among different groups of pathogens, which will help to understand and model the population biology of multi-host pathogens. PMID:17183670
Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.
Dobón, Albor; Canet, Juan Vicente; García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo
2015-04-01
Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.
Adam, Nora; Erler, Theresa; Kallenbach, Mario; Kaltenpoth, Martin; Kunert, Grit; Baldwin, Ian T.; Schuman, Meredith C.
2016-01-01
Herbivore species sharing a host plant often compete. In this study, we show that host plant-mediated interaction between two insect herbivores – a generalist and a specialist – results in a sex ratio shift of the specialist’s offspring. We studied demographic parameters of the specialist Tupiocoris notatus (Hemiptera: Miridae) when co-infesting the host plant Nicotiana attenuata (Solanaceae) with the generalist leafhopper Empoasca sp. (Hemiptera: Cicadellidae). We show that the usually female-biased sex ratio of T. notatus shifts toward a higher male proportion in the offspring on plants co-infested by Empoasca sp. This sex ratio change did not occur after oviposition, nor is it due differential mortality of female and male nymphs. Based on pyrosequencing and PCR of bacterial 16S rRNA amplicons, we concluded that sex ratio shifts were unlikely to be due to infection with Wolbachia or other known sex ratio- distorting endosymbionts. Finally, we used transgenic lines of N. attenuata to evaluate if the sex ratio shift could be mediated by changes in general or specialized host plant metabolites. We found that the sex ratio shift occurred on plants deficient in two cytokinin receptors (irCHK2/3). Thus, cytokinin-regulated traits can alter the offspring sex ratio of the specialist T. notatus. PMID:27862998
Host genotype and age shape the leaf and root microbiomes of a wild perennial plant
Wagner, Maggie R.; Lundberg, Derek S.; del Rio, Tijana G.; ...
2016-07-12
Bacteria living on and in leaves and roots influence many aspects of plant health, so the extent of a plant's genetic control over its microbiota is of great interest to crop breeders and evolutionary biologists. Laboratory-based studies, because they poorly simulate true environmental heterogeneity, may misestimate or totally miss the influence of certain host genes on the microbiome. Here we report a large-scale field experiment to disentangle the effects of genotype, environment, age and year of harvest on bacterial communities associated with leaves and roots of Boechera stricta (Brassicaceae), a perennial wild mustard. Host genetic control of the microbiome ismore » evident in leaves but not roots, and varies substantially among sites. Microbiome composition also shifts as plants age. Furthermore, a large proportion of leaf bacterial groups are shared with roots, suggesting inoculation from soil. Our results demonstrate how genotype-by-environment interactions contribute to the complexity of microbiome assembly in natural environments.« less
The potential for host switching via ecological fitting in the emerald ash borer-host plant system.
Cipollini, Don; Peterson, Donnie L
2018-02-27
The traits used by phytophagous insects to find and utilize their ancestral hosts can lead to host range expansions, generally to closely related hosts that share visual and chemical features with ancestral hosts. Host range expansions often result from ecological fitting, which is the process whereby organisms colonize and persist in novel environments, use novel resources, or form novel associations with other species because of the suites of traits that they carry at the time they encounter the novel environment. Our objective in this review is to discuss the potential and constraints on host switching via ecological fitting in emerald ash borer, Agrilus planipennis, an ecologically and economically important invasive wood boring beetle. Once thought of as an ash (Fraxinus spp.) tree specialist, recent studies have revealed a broader potential host range than was expected for this insect. We discuss the demonstrated host-use capabilities of this beetle, as well as the potential for and barriers to the adoption of additional hosts by this beetle. We place our observations in the context of biochemical mechanisms that mediate the interaction of these beetles with their host plants and discuss whether evolutionary host shifts are a possible outcome of the interaction of this insect with novel hosts.
Satler, Jordan D.; Zellmer, Amanda J.
2016-01-01
Understanding if the members of an ecological community have co-diversified is a central concern of evolutionary biology, as co-diversification suggests prolonged association and possible coevolution. By sampling associated species from an ecosystem, researchers can better understand how abiotic and biotic factors influence diversification in a region. In particular, studies of co-distributed species that interact ecologically can allow us to disentangle the effect of how historical processes have helped shape community level structure and interactions. Here we investigate the Sarracenia alata pitcher plant system, an ecological community where many species from disparate taxonomic groups live inside the fluid-filled pitcher leaves. Direct sequencing of the eukaryotes present in the pitcher plant fluid enables us to better understand how a host plant can shape and contribute to the genetic structure of its associated inquilines, and to ask whether genetic variation in the taxa are structured in a similar manner to the host plant. We used 454 amplicon-based metagenomics to demonstrate that the pattern of genetic diversity in many, but not all, of the eukaryotic community is similar to that of S. alata, providing evidence that associated eukaryotes share an evolutionary history with the host pitcher plant. Our work provides further evidence that a host plant can influence the evolution of its associated commensals. PMID:26788436
2017-07-12
During a brainstorming session on innovative approaches to food production, an industry participant looks at plants growing inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The workshop was hosted by the Exploration Research and Technology Directorate.
Wijeratne, Saranga; Fraga, Martina; Meulia, Tea; Doohan, Doug; Li, Zhaohu; Qu, Feng
2013-01-01
Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions. PMID:24312295
Jiang, Linjian; Wijeratne, Asela J; Wijeratne, Saranga; Fraga, Martina; Meulia, Tea; Doohan, Doug; Li, Zhaohu; Qu, Feng
2013-01-01
Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions.
Horizontal transmission of the insect symbiont Rickettsia is plant-mediated
Caspi-Fluger, Ayelet; Inbar, Moshe; Mozes-Daube, Netta; Katzir, Nurit; Portnoy, Vitaly; Belausov, Eduard; Hunter, Martha S.; Zchori-Fein, Einat
2012-01-01
Bacteria in the genus Rickettsia, best known as vertebrate pathogens vectored by blood-feeding arthropods, can also be found in phytophagous insects. The presence of closely related bacterial symbionts in evolutionarily distant arthropod hosts presupposes a means of horizontal transmission, but no mechanism for this transmission has been described. Using a combination of experiments with live insects, molecular analyses and microscopy, we found that Rickettsia were transferred from an insect host (the whitefly Bemisia tabaci) to a plant, moved inside the phloem, and could be acquired by other whiteflies. In one experiment, Rickettsia was transferred from the whitefly host to leaves of cotton, basil and black nightshade, where the bacteria were restricted to the phloem cells of the plant. In another experiment, Rickettsia-free adult whiteflies, physically segregated but sharing a cotton leaf with Rickettsia-plus individuals, acquired the Rickettsia at a high rate. Plants can serve as a reservoir for horizontal transmission of Rickettsia, a mechanism which may explain the occurrence of phylogenetically similar symbionts among unrelated phytophagous insect species. This plant-mediated transmission route may also exist in other insect–symbiont systems and, since symbionts may play a critical role in the ecology and evolution of their hosts, serve as an immediate and powerful tool for accelerated evolution. PMID:22113034
Novel Disease Susceptibility Factors for Fungal Necrotrophic Pathogens in Arabidopsis
García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo
2015-01-01
Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens. PMID:25830627
Chitosan-induced antiviral activity and innate immunity in plants.
Iriti, Marcello; Varoni, Elena Maria
2015-02-01
Immunity represents a trait common to all living organisms, and animals and plants share some similarities. Therefore, in susceptible host plants, complex defence machinery may be stimulated by elicitors. Among these, chitosan deserves particular attention because of its proved efficacy. This survey deals with the antiviral activity of chitosan, focusing on its perception by the plant cell and mechanism of action. Emphasis has been paid to benefits and limitations of this strategy in crop protection, as well as to the potential of chitosan as a promising agent in virus disease control.
Chiapello, Hélène; Mallet, Ludovic; Guérin, Cyprien; Aguileta, Gabriela; Amselem, Joëlle; Kroj, Thomas; Ortega-Abboud, Enrique; Lebrun, Marc-Henri; Henrissat, Bernard; Gendrault, Annie; Rodolphe, François; Tharreau, Didier; Fournier, Elisabeth
2015-01-01
Deciphering the genetic bases of pathogen adaptation to its host is a key question in ecology and evolution. To understand how the fungus Magnaporthe oryzae adapts to different plants, we sequenced eight M. oryzae isolates differing in host specificity (rice, foxtail millet, wheat, and goosegrass), and one Magnaporthe grisea isolate specific of crabgrass. Analysis of Magnaporthe genomes revealed small variation in genome sizes (39–43 Mb) and gene content (12,283–14,781 genes) between isolates. The whole set of Magnaporthe genes comprised 14,966 shared families, 63% of which included genes present in all the nine M. oryzae genomes. The evolutionary relationships among Magnaporthe isolates were inferred using 6,878 single-copy orthologs. The resulting genealogy was mostly bifurcating among the different host-specific lineages, but was reticulate inside the rice lineage. We detected traces of introgression from a nonrice genome in the rice reference 70-15 genome. Among M. oryzae isolates and host-specific lineages, the genome composition in terms of frequencies of genes putatively involved in pathogenicity (effectors, secondary metabolism, cazome) was conserved. However, 529 shared families were found only in nonrice lineages, whereas the rice lineage possessed 86 specific families absent from the nonrice genomes. Our results confirmed that the host specificity of M. oryzae isolates was associated with a divergence between lineages without major gene flow and that, despite the strong conservation of gene families between lineages, adaptation to different hosts, especially to rice, was associated with the presence of a small number of specific gene families. All information was gathered in a public database (http://genome.jouy.inra.fr/gemo). PMID:26454013
Beet western yellows virus infects the carnivorous plant Nepenthes mirabilis.
Miguel, Sissi; Biteau, Flore; Mignard, Benoit; Marais, Armelle; Candresse, Thierry; Theil, Sébastien; Bourgaud, Frédéric; Hehn, Alain
2016-08-01
Although poleroviruses are known to infect a broad range of higher plants, carnivorous plants have not yet been reported as hosts. Here, we describe the first polerovirus naturally infecting the pitcher plant Nepenthes mirabilis. The virus was identified through bioinformatic analysis of NGS transcriptome data. The complete viral genome sequence was assembled from overlapping PCR fragments and shown to share 91.1 % nucleotide sequence identity with the US isolate of beet western yellows virus (BWYV). Further analysis of other N. mirabilis plants revealed the presence of additional BWYV isolates differing by several insertion/deletion mutations in ORF5.
Alabi, Olufemi J.; Simpson, Catherine R.; Jifon, John L.
2017-01-01
Huanglongbing is a devastating disease of citrus. In this study, a comprehensive profile of phloem sap amino acids (AA) in four permissive host plants of Candidatus Liberibacter asiaticus (CLas) and three non-permissive Rutaceae plants was conducted to gain a better understanding of host factors that may promote or suppress the bacterium. The AA profiles of Diaphorina citri nymphs and adults were similarly analyzed. A total of 38 unique AAs were detected in phloem sap of the various plants and D. citri samples, with phloem sap of young shoots containing more AAs and at higher concentrations than their mature counterparts. All AAs detected in phloem sap of non-permissive plants were also present in CLas -permissive hosts plus additional AAs in the latter class of plants. However, the relative composition of 18 commonly shared AAs varied between CLas -permissive hosts and non-permissive plants. Multivariate analysis with a partial least square discriminant methodology revealed a total of 12 AAs as major factors affecting CLas host status, of which seven were positively related to CLas tolerance/resistance and five positively associated with CLas susceptibility. Most of the AAs positively associated with CLas susceptibility were predominantly of the glutamate family, notably stressed-induced AAs such as arginine, GABA and proline. In contrast, AAs positively correlated with CLas tolerance/resistance were mainly of the serine family. Further analysis revealed that whereas the relative proportions of AAs positively associated with CLas susceptibility did not vary with host developmental stages, those associated with CLas tolerance/resistance increased with flush shoot maturity. Significantly, the proline-to-glycine ratio was determined to be an important discriminating factor for CLas permissivity with higher values characteristic of CLas -permissive hosts. This ratio could be exploited as a biomarker in HLB-resistance breeding programs. PMID:29236706
Jia, Shuzheng; Nakano, Takashi; Hattori, Masahira; Nara, Kazuhide
2017-11-01
Pyroleae species are perennial understory shrubs, many of which are partial mycoheterotrophs. Most fungi colonizing Pyroleae roots are ectomycorrhizal (ECM) and share common mycobionts with their Pyroleae hosts. However, such mycobiont sharing has neither been examined in depth before nor has the interspecific variation in sharing among Pyroleae species. Here, we examined root-associated fungal communities in three co-existing Pyroleae species, including Pyrola alpina, Pyrola incarnata, and Orthilia secunda, with reference to co-existing ECM fungi on the surrounding trees in the same soil blocks in subalpine coniferous forests. We identified 42, 75, and 18 fungal molecular operational taxonomic units in P. alpina, P. incarnata, and O. secunda roots, respectively. Mycobiont sharing with surrounding trees, which was defined as the occurrence of the same mycobiont between Pyroleae and surrounding trees in each soil block, was most frequent among P. incarnata (31 of 44 plants). In P. alpina, sharing was confirmed in 12 of 37 plants, and the fungal community was similar to that of P. incarnata. Mycobiont sharing was least common in O. secunda, found in only 5 of 32 plants. Root-associated fungi of O. secunda were dominated by Wilcoxina species, which were absent from the surrounding ECM roots in the same soil blocks. These results indicate that mycobiont sharing with surrounding trees does not equally occur among Pyroleae plants, some of which may develop independent mycorrhizal associations with ECM fungi, as suggested in O. secunda at our research sites.
Inactivation Rates of Coliphages Isolated from Waste Water Treatment Plant Effluents in Georgia
Coliphages are a type of host-specific bacteriophages that infect E. coli and are found abundantly in the gut of animals, including humans. They share many structural similarities with human enteric viruses and are being evaluated as indicators for the presence of enteric viral c...
Li, Ai-Rong; Smith, Sally E; Smith, F Andrew; Guan, Kai-Yun
2012-05-01
Plant parasitism and arbuscular mycorrhizal (AM) associations have many parallels and share a number of regulatory pathways. Despite a rapid increase in investigations addressing the roles of AM fungi in regulating interactions between parasitic plants and their hosts, few studies have tested the effect of AM fungi on the initiation and differentiation of haustoria, the parasite-specific structures exclusively responsible for host attachment and nutrient transfer. In this study, we tested the influence of AM fungi on haustorium formation in a root hemiparasitic plant. Using a facultative root hemiparasitic species (Pedicularis tricolor) with the potential to form AM associations, the effects of inoculation were tested with two AM fungal species, Glomus mosseae and Glomus intraradices, on haustorium initiation in P. tricolor grown alone or with Hordeum vulgare 'Fleet' (barley) as the host plant. This study consisted of two greenhouse pot experiments. Both AM fungal species dramatically suppressed intraspecific haustorium initiation in P. tricolor at a very low colonization level. The suppression over-rode inductive effects of the parasite's host plant on haustoria production and caused significant growth depression of P. tricolor. AM fungi had strong and direct suppressive effects on haustorium formation in the root hemiparasite. The significant role of AM fungi in haustorium initiation of parasitic plants was demonstrated for the first time. This study provides new clues for the regulation of haustorium formation and a route to development of new biocontrol strategies in management of parasitic weeds.
The core microbiome bonds the Alpine bog vegetation to a transkingdom metacommunity.
Bragina, Anastasia; Berg, Christian; Berg, Gabriele
2015-09-01
Bog ecosystems fulfil important functions in Earth's carbon and water turnover. While plant communities and their keystone species Sphagnum have been well studied, less is known about the microbial communities associated with them. To study our hypothesis that bog plants share an essential core of their microbiome despite their different phylogenetic origins, we analysed four plant community plots with 24 bryophytes, vascular plants and lichen species in two Alpine bogs in Austria by 16S rDNA amplicon sequencing followed by bioinformatic analyses. The overall bog microbiome was classified into 32 microbial phyla, while Proteobacteria (30.8%), Verrucomicrobia (20.3%) and Planctomycetes (15.1%) belonged to the most abundant groups. Interestingly, the archaeal phylum Euryarcheota represented 7.2% of total microbial abundance. However, a high portion of micro-organisms remained unassigned at phylum and class level, respectively. The core microbiome of the bog vegetation contained 177 operational taxonomic units (OTUs) (150 526 seq.) and contributed to 49.5% of the total microbial abundance. Only a minor portion of associated core micro-organisms was host specific for examined plant groups (5.9-11.6%). Using our new approach to analyse plant-microbial communities in an integral framework of ecosystem, vegetation and microbiome, we demonstrated that bog vegetation harboured a core microbiome that is shared between plants and lichens over the whole ecosystem and formed a transkingdom metacommunity. All micro- and macro-organisms are connected to keystone Sphagnum mosses via set of microbial species, for example Burkholderia bryophila which was found associated with a wide spectrum of host plants and is known for a beneficial plant-microbe interaction. © 2015 John Wiley & Sons Ltd.
Healthy plants: necessary for a balanced 'One Health' concept.
Fletcher, Jacqueline; Franz, David; Leclerc, J Eugene
2009-01-01
All life forms depend ultimately upon sunlight to create the energy 'currency' required for the functions of living. Green plants can make that conversion directly but the rest of us would perish without access to foods derived, directly or indirectly, from plants. We also require their fibre which we use for clothing, building and other purposes. However, plants, just as humans and animals, are attacked by pathogens that cause a myriad of symptoms that can lead to reduced yields, lower quality products and diminished nutritional value. Plant pathogens share many features with their human and animal counterparts. Some pathogens - whether of humans, animals, or plants - have nimble genomes or the ability to pirate genes from other organisms via mobile elements. Some have developed the ability to cross kingdoms in their host ranges. Many others share virulence factors, such as the type III secretion system (T3SS) or mechanisms for sensing population density, that work equally well in all kingdoms. Certain pathogens of hosts in all kingdoms rely upon insect vectors and use similar mechanisms to ensure dispersal (and sometimes survival) in this way. Plant-pathogen interactions have more direct consequence for humans when the microbes are human pathogens such as Escherichia coli 0157:H7 and Salmonella spp., which can contaminate fresh produce or when they produce metabolites, such as mycotoxins, which are harmful when consumed. Finally, national biosecurity concerns and the need for prevention, preparedness and forensic capabilities cross all kingdom barriers. Thus, our communities that focus on one of these kingdoms have much to learn from one another and a complete and balanced 'One Health' initiative must be tripartite, embracing the essential components of healthy plants, healthy animals and healthy people.
Clarkson, John P.; Warmington, Rachel J.; Walley, Peter G.; Denton-Giles, Matthew; Barbetti, Martin J.; Brodal, Guro; Nordskog, Berit
2017-01-01
Sclerotinia species are important fungal pathogens of a wide range of crops and wild host plants. While the biology and population structure of Sclerotinia sclerotiorum has been well-studied, little information is available for the related species S. subarctica. In this study, Sclerotinia isolates were collected from different crop plants and the wild host Ranuculus ficaria (meadow buttercup) in England, Scotland, and Norway to determine the incidence of Sclerotinia subarctica and examine the population structure of this pathogen for the first time. Incidence was very low in England, comprising only 4.3% of isolates while moderate and high incidence of S. subarctica was identified in Scotland and Norway, comprising 18.3 and 48.0% of isolates respectively. Characterization with eight microsatellite markers identified 75 haplotypes within a total of 157 isolates over the three countries with a few haplotypes in Scotland and Norway sampled at a higher frequency than the rest across multiple locations and host plants. In total, eight microsatellite haplotypes were shared between Scotland and Norway while none were shared with England. Bayesian and principal component analyses revealed common ancestry and clustering of Scottish and Norwegian S. subarctica isolates while English isolates were assigned to a separate population cluster and exhibited low diversity indicative of isolation. Population structure was also examined for S. sclerotiorum isolates from England, Scotland, Norway, and Australia using microsatellite data, including some from a previous study in England. In total, 484 haplotypes were identified within 800 S. sclerotiorum isolates with just 15 shared between England and Scotland and none shared between any other countries. Bayesian and principal component analyses revealed a common ancestry and clustering of the English and Scottish isolates while Norwegian and Australian isolates were assigned to separate clusters. Furthermore, sequencing part of the intergenic spacer (IGS) region of the rRNA gene resulted in 26 IGS haplotypes within 870 S. sclerotiorum isolates, nine of which had not been previously identified and two of which were also widely distributed across different countries. S. subarctica therefore has a multiclonal population structure similar to S. sclerotiorum, but has a different ancestry and distribution across England, Scotland, and Norway. PMID:28421039
USDA-ARS?s Scientific Manuscript database
Phytophagous mites and endophytic fungi may interact when sharing a host plant, potentially influencing one another’s growth or population dynamics; however, interactions between them are poorly known and remain largely unexplored. In this study, quantitative associations between three species of ph...
Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants
Perilla-Henao, Laura M.; Casteel, Clare L.
2016-01-01
Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant–virus–vector interactions has flourished in recent years, plant–bacteria–vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant–bacteria–vector interactions, some common themes have emerged: (1) all known vector-borne bacteria share the ability to propagate in the plant and insect host; (2) particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; (3) all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and (4) vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and ‘Candidatus Phytoplasma spp.’. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector–plant–bacteria interactions. PMID:27555855
Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S.; Hidaka, Amane; Kadowaki, Kohmei; Toju, Hirokazu
2014-01-01
Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., < 0.005) turned non-significant after the application of a multiple comparison method. However, our overall results imply that the community structures of ectomycorrhizal and endophytic fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants' control of fungus–fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high-throughput investigation of fungus–fungus interactions in plant root systems. PMID:24801150
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Maggie R.; Lundberg, Derek S.; del Rio, Tijana G.
Bacteria living on and in leaves and roots influence many aspects of plant health, so the extent of a plant's genetic control over its microbiota is of great interest to crop breeders and evolutionary biologists. Laboratory-based studies, because they poorly simulate true environmental heterogeneity, may misestimate or totally miss the influence of certain host genes on the microbiome. Here we report a large-scale field experiment to disentangle the effects of genotype, environment, age and year of harvest on bacterial communities associated with leaves and roots of Boechera stricta (Brassicaceae), a perennial wild mustard. Host genetic control of the microbiome ismore » evident in leaves but not roots, and varies substantially among sites. Microbiome composition also shifts as plants age. Furthermore, a large proportion of leaf bacterial groups are shared with roots, suggesting inoculation from soil. Our results demonstrate how genotype-by-environment interactions contribute to the complexity of microbiome assembly in natural environments.« less
Alatae production and population increase of aphid vectors on virus-infected host plants.
Blua, M J; Perring, T M
1992-10-01
Zucchini yellow mosaic virus (ZYMV) and Aphis gossypii Glover are two components of a recently identified plant-parasite system that provides an excellent opportunity to study interrelations between a virus and a vector that share the same host, but have no direct physiological interaction. In a field experiment we documented numbers of alate and apterous A. gossypii on healthy Cucurbita pepo and on plants inoculated with virus 0, 7, 14, and 21 days before aphid infestation. When plants were inoculated and infested simultaneously, more than twice as many alatae were produced after 20 days of colony growth than on any other treatment. This indicates that properties unique to the early stages of viral infection somehow stimulated wing formation. Because it is spread by the activities of alatae, virus dispersal would be greater as a result of these properties. Developmental rate, total numbers of aphids, and numbers of alatae and apterae decreased as the time between virus inoculation and aphid colonization increased.
Nembaware, Victoria; Seoighe, Cathal; Sayed, Muhammed; Gehring, Chris
2004-03-24
Plant natriuretic peptides (PNPs) are systemically mobile molecules that regulate homeostasis at nanomolar concentrations. PNPs are up-regulated under conditions of osmotic stress and PNP-dependent processes include changes in ion transport and increases of H2O uptake into protoplasts and whole tissue. The bacterial citrus pathogen Xanthomonas axonopodis pv. Citri str. 306 contains a gene encoding a PNP-like protein. We hypothesise that this bacterial protein can alter plant cell homeostasis and thus is likely to represent an example of molecular mimicry that enables the pathogen to manipulate plant responses in order to bring about conditions favourable to the pathogen such as the induced plant tissue hyper-hydration seen in the wet edged lesions associated with Xanthomonas axonopodis infection. We found a Xanthomonas axonopodis PNP-like protein that shares significant sequence similarity and identical domain organisation with PNPs. We also observed a significant excess of conserved residues between the two proteins within the domain previously identified as being sufficient to induce biological activity. Structural modelling predicts identical six stranded double-psi beta barrel folds for both proteins thus supporting the hypothesis of similar modes of action. No significant similarity between the Xanthomonas axonopodis protein and other bacterial proteins from GenBank was found. Sequence similarity of the Xanthomonas axonopodis PNP-like protein with the Arabidopsis thaliana PNP (AtPNP-A), shared domain organisation and incongruent phylogeny suggest that the PNP-gene may have been acquired by the bacteria in an ancient lateral gene transfer event. Finally, activity of a recombinant Xanthomonas axonopodis protein in plant tissue and changes in symptoms induced by a Xanthomonas axonopodis mutant with a knocked-out PNP-like gene will be experimental proof of molecular mimicry. If the hypothesis is true, it could at least in part explain why the citrus pathogen Xanthomonas campestris that does not contain a PNP-like gene produces dry corky lesions while the closely related Xanthomonas axonopodis forms lesions with wet edges. It also suggests that genes typically found in the host, horizontally transferred or heterologous, can help to explain aspects of the physiology of the host-pathogen interactions.
Li, Ran; Weldegergis, Berhane T.; Li, Jie; Jung, Choonkyun; Qu, Jing; Sun, Yanwei; Qian, Hongmei; Tee, ChuanSia; van Loon, Joop J.A.; Dicke, Marcel; Chua, Nam-Hai; Liu, Shu-Sheng
2014-01-01
A pathogen may cause infected plants to promote the performance of its transmitting vector, which accelerates the spread of the pathogen. This positive effect of a pathogen on its vector via their shared host plant is termed indirect mutualism. For example, terpene biosynthesis is suppressed in begomovirus-infected plants, leading to reduced plant resistance and enhanced performance of the whiteflies (Bemisia tabaci) that transmit these viruses. Although begomovirus-whitefly mutualism has been known, the underlying mechanism is still elusive. Here, we identified βC1 of Tomato yellow leaf curl China virus, a monopartite begomovirus, as the viral genetic factor that suppresses plant terpene biosynthesis. βC1 directly interacts with the basic helix-loop-helix transcription factor MYC2 to compromise the activation of MYC2-regulated terpene synthase genes, thereby reducing whitefly resistance. MYC2 associates with the bipartite begomoviral protein BV1, suggesting that MYC2 is an evolutionarily conserved target of begomoviruses for the suppression of terpene-based resistance and the promotion of vector performance. Our findings describe how this viral pathogen regulates host plant metabolism to establish mutualism with its insect vector. PMID:25490915
Inada, Noriko; Betsuyaku, Shigeyuki; Shimada, Takashi L; Ebine, Kazuo; Ito, Emi; Kutsuna, Natsumaro; Hasezawa, Seiichiro; Takano, Yoshitaka; Fukuda, Hiroo; Nakano, Akihiko; Ueda, Takashi
2016-09-01
RAB5 is a small GTPase that acts in endosomal trafficking. In addition to canonical RAB5 members that are homologous to animal RAB5, land plants harbor a plant-specific RAB5, the ARA6 group, which regulates trafficking events distinct from canonical RAB5 GTPases. Here, we report that plant RAB5, both canonical and plant-specific members, accumulate at the interface between host plants and biotrophic fungal and oomycete pathogens. Biotrophic fungi and oomycetes colonize living plant tissues by establishing specialized infection hyphae, the haustorium, within host plant cells. We found that Arabidopsis thaliana ARA6/RABF1, a plant-specific RAB5, is localized to the specialized membrane that surrounds the haustorium, the extrahaustorial membrane (EHM), formed by the A. thaliana-adapted powdery mildew fungus Golovinomyces orontii Whereas the conventional RAB5 ARA7/RABF2b was also localized to the EHM, endosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) and RAB5-activating proteins were not, which suggests that the EHM has modified endosomal characteristic. The recruitment of host RAB5 to the EHM was a property shared by the barley-adapted powdery mildew fungus Blumeria graminis f.sp. hordei and the oomycete Hyaloperonospora arabidopsidis, but the extrahyphal membrane surrounding the hypha of the hemibiotrophic fungus Colletotrichum higginsianum at the biotrophic stage was devoid of RAB5. The localization of RAB5 to the EHM appears to correlate with the functionality of the haustorium. Our discovery sheds light on a novel relationship between plant RAB5 and obligate biotrophic pathogens. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
de Moraes, Marcos H; Desai, Prerak; Porwollik, Steffen; Canals, Rocio; Perez, Daniel R; Chu, Weiping; McClelland, Michael; Teplitski, Max
2017-03-01
Human enteric pathogens, such as Salmonella spp. and verotoxigenic Escherichia coli , are increasingly recognized as causes of gastroenteritis outbreaks associated with the consumption of fruits and vegetables. Persistence in plants represents an important part of the life cycle of these pathogens. The identification of the full complement of Salmonella genes involved in the colonization of the model plant (tomato) was carried out using transposon insertion sequencing analysis. With this approach, 230,000 transposon insertions were screened in tomato pericarps to identify loci with reduction in fitness, followed by validation of the screen results using competition assays of the isogenic mutants against the wild type. A comparison with studies in animals revealed a distinct plant-associated set of genes, which only partially overlaps with the genes required to elicit disease in animals. De novo biosynthesis of amino acids was critical to persistence within tomatoes, while amino acid scavenging was prevalent in animal infections. Fitness reduction of the Salmonella amino acid synthesis mutants was generally more severe in the tomato rin mutant, which hyperaccumulates certain amino acids, suggesting that these nutrients remain unavailable to Salmonella spp. within plants. Salmonella lipopolysaccharide (LPS) was required for persistence in both animals and plants, exemplifying some shared pathogenesis-related mechanisms in animal and plant hosts. Similarly to phytopathogens, Salmonella spp. required biosynthesis of amino acids, LPS, and nucleotides to colonize tomatoes. Overall, however, it appears that while Salmonella shares some strategies with phytopathogens and taps into its animal virulence-related functions, colonization of tomatoes represents a distinct strategy, highlighting this pathogen's flexible metabolism. IMPORTANCE Outbreaks of gastroenteritis caused by human pathogens have been increasingly associated with foods of plant origin, with tomatoes being one of the common culprits. Recent studies also suggest that these human pathogens can use plants as alternate hosts as a part of their life cycle. While dual (animal/plant) lifestyles of other members of the Enterobacteriaceae family are well known, the strategies with which Salmonella colonizes plants are only partially understood. Therefore, we undertook a high-throughput characterization of the functions required for Salmonella persistence within tomatoes. The results of this study were compared with what is known about genes required for Salmonella virulence in animals and interactions of plant pathogens with their hosts to determine whether Salmonella repurposes its virulence repertoire inside plants or whether it behaves more as a phytopathogen during plant colonization. Even though Salmonella utilized some of its virulence-related genes in tomatoes, plant colonization required a distinct set of functions. Copyright © 2017 American Society for Microbiology.
Desai, Prerak; Porwollik, Steffen; Canals, Rocio; Perez, Daniel R.; Chu, Weiping; McClelland, Michael; Teplitski, Max
2016-01-01
ABSTRACT Human enteric pathogens, such as Salmonella spp. and verotoxigenic Escherichia coli, are increasingly recognized as causes of gastroenteritis outbreaks associated with the consumption of fruits and vegetables. Persistence in plants represents an important part of the life cycle of these pathogens. The identification of the full complement of Salmonella genes involved in the colonization of the model plant (tomato) was carried out using transposon insertion sequencing analysis. With this approach, 230,000 transposon insertions were screened in tomato pericarps to identify loci with reduction in fitness, followed by validation of the screen results using competition assays of the isogenic mutants against the wild type. A comparison with studies in animals revealed a distinct plant-associated set of genes, which only partially overlaps with the genes required to elicit disease in animals. De novo biosynthesis of amino acids was critical to persistence within tomatoes, while amino acid scavenging was prevalent in animal infections. Fitness reduction of the Salmonella amino acid synthesis mutants was generally more severe in the tomato rin mutant, which hyperaccumulates certain amino acids, suggesting that these nutrients remain unavailable to Salmonella spp. within plants. Salmonella lipopolysaccharide (LPS) was required for persistence in both animals and plants, exemplifying some shared pathogenesis-related mechanisms in animal and plant hosts. Similarly to phytopathogens, Salmonella spp. required biosynthesis of amino acids, LPS, and nucleotides to colonize tomatoes. Overall, however, it appears that while Salmonella shares some strategies with phytopathogens and taps into its animal virulence-related functions, colonization of tomatoes represents a distinct strategy, highlighting this pathogen's flexible metabolism. IMPORTANCE Outbreaks of gastroenteritis caused by human pathogens have been increasingly associated with foods of plant origin, with tomatoes being one of the common culprits. Recent studies also suggest that these human pathogens can use plants as alternate hosts as a part of their life cycle. While dual (animal/plant) lifestyles of other members of the Enterobacteriaceae family are well known, the strategies with which Salmonella colonizes plants are only partially understood. Therefore, we undertook a high-throughput characterization of the functions required for Salmonella persistence within tomatoes. The results of this study were compared with what is known about genes required for Salmonella virulence in animals and interactions of plant pathogens with their hosts to determine whether Salmonella repurposes its virulence repertoire inside plants or whether it behaves more as a phytopathogen during plant colonization. Even though Salmonella utilized some of its virulence-related genes in tomatoes, plant colonization required a distinct set of functions. PMID:28039131
Opik, M; Metsis, M; Daniell, T J; Zobel, M; Moora, M
2009-10-01
* Knowledge of the diversity of arbuscular mycorrhizal fungi (AMF) in natural ecosystems is a major bottleneck in mycorrhizal ecology. Here, we aimed to apply 454 sequencing--providing a new level of descriptive power--to assess the AMF diversity in a boreonemoral forest. * 454 sequencing reads of the small subunit ribosomal RNA (SSU rRNA) gene of Glomeromycota were assigned to sequence groups by blast searches against a custom-made annotated sequence database. * We detected 47 AMF taxa in the roots of 10 plant species in a 10 x 10 m plot, which is almost the same as the number of plant species in the whole studied forest. There was a significant difference between AMF communities in the roots of forest specialist plant species and in the roots of habitat generalist plant species. Forest plant species hosted 22 specialist AMF taxa, and the generalist plants shared all but one AMF taxon with forest plants, including globally distributed generalist fungi. These AMF taxa that have been globally recorded only in forest ecosystems were significantly over-represented in the roots of forest plant species. * Our findings suggest that partner specificity in AM symbiosis may occur at the level of ecological groups, rather than at the species level, of both plant and fungal partners.
Alagarasan, Ganesh; Aswathy, Kumar S.; Madhaiyan, Munusamy
2017-01-01
Immunity, virulence, biofilm formation, and survival in the host environment are regulated by the versatile nature of density dependent microbial cell signaling, also called quorum sensing (QS). The QS molecules can associate with host plant tissues and, at times, cause a change in its gene expression at the downstream level through inter-kingdom cross talking. Progress in controlling QS through fungicide/bactericide in pathogenic microscopic organisms has lead to a rise of antibiotic resistance pathogens. Here, we review the application of selective quorum quenching (QQ) endophytes to control phytopathogens that are shared by most, if not all, terrestrial plant species as well as aquatic plants. Allowing the plants to posses endophytic colonies through biotization will be an additional and a sustainable encompassing methodology resulting in attenuated virulence rather than killing the pathogens. Furthermore, the introduced endophytes could serve as a potential biofertilizer and bioprotection agent, which in turn increases the PAMP- triggered immunity and hormonal systemic acquired resistance (SAR) in plants through SA-JA-ET signaling systems. This paper discusses major challenges imposed by QS and QQ application in biotechnology. PMID:28446917
2008-01-01
Background Using phylogenetic approaches, the expectation that parallel cladogenesis should occur between parasites and hosts has been validated in some studies, but most others provided evidence for frequent host shifts. Here we examine the evolutionary history of the association between Microbotryum fungi that cause anther smut disease and their Caryophyllaceous hosts. We investigated the congruence between host and parasite phylogenies, inferred cospeciation events and host shifts, and assessed whether geography or plant ecology could have facilitated the putative host shifts identified. For cophylogeny analyses on microorganisms, parasite strains isolated from different host species are generally considered to represent independent evolutionary lineages, often without checking whether some strains actually belong to the same generalist species. Such an approach may mistake intraspecific nodes for speciation events and thus bias the results of cophylogeny analyses if generalist species are found on closely related hosts. A second aim of this study was therefore to evaluate the impact of species delimitation on the inferences of cospeciation. Results We inferred a multiple gene phylogeny of anther smut strains from 21 host plants from several geographic origins, complementing a previous study on the delimitation of fungal species and their host specificities. We also inferred a multi-gene phylogeny of their host plants, and the two phylogenies were compared. A significant level of cospeciation was found when each host species was considered to harbour a specific parasite strain, i.e. when generalist parasite species were not recognized as such. This approach overestimated the frequency of cocladogenesis because individual parasite species capable of infecting multiple host species (i.e. generalists) were found on closely related hosts. When generalist parasite species were appropriately delimited and only a single representative of each species was retained, cospeciation events were not more frequent than expected under a random distribution, and many host shifts were inferred. Current geographic distributions of host species seemed to be of little relevance for understanding the putative historical host shifts, because most fungal species had overlapping geographic ranges. We did detect some ecological similarities, including shared pollinators and habitat types, between host species that were diseased by closely related anther smut species. Overall, genetic similarity underlying the host-parasite interactions appeared to have the most important influence on specialization and host-shifts: generalist multi-host parasite species were found on closely related plant species, and related species in the Microbotryum phylogeny were associated with members of the same host clade. Conclusion We showed here that Microbotryum species have evolved through frequent host shifts to moderately distant hosts, and we show further that accurate delimitation of parasite species is essential for interpreting cophylogeny studies. PMID:18371215
2014-01-01
Background Aquaporins (AQPs) and aquaglyceroporins (AQGPs) belong to the superfamily of Major Intrinsic Proteins (MIPs) and are involved in the transport of water and neutral solutes across the membranes. MIP channels play significant role in plant-fungi symbiotic relationship and are believed to be important in host-pathogen interactions in human fungal diseases. In plants, at least five major MIP subfamilies have been identified. Fungal MIP subfamilies include orthodox aquaporins and five subgroups within aquaglyceroporins. XIP subfamily is common to both plants and fungi. In this study, we have investigated the extent of diversity in fungal MIPs and explored further evolutionary relationships with the plant MIP counterparts. Results We have extensively analyzed the available fungal genomes and examined nearly 400 fungal MIPs. Phylogenetic analysis and homology modeling exhibit the existence of a new MIP cluster distinct from any of the known fungal MIP subfamilies. All members of this cluster are found in microsporidia which are unicellular fungal parasites. Members of this family are small in size, charged and have hydrophobic residues in the aromatic/arginine selectivity filter and these features are shared by small and basic intrinsic proteins (SIPs), one of the plant MIP subfamilies. We have also found two new subfamilies (δ and γ2) within the AQGP group. Fungal AQGPs are the most diverse and possess the largest number of subgroups. We have also identified distinguishing features in loops E and D in the newly identified subfamilies indicating their possible role in channel transport and gating. Conclusions Fungal SIP-like MIP family is distinct from any of the known fungal MIP families including orthodox aquaporins and aquaglyceroporins. After XIPs, this is the second MIP subfamily from fungi that may have possible evolutionary link with a plant MIP subfamily. AQGPs in fungi are more diverse and possess the largest number of subgroups. The aromatic/arginine selectivity filter of SIP-like fungal MIPs and the δ AQGPs are unique, hydrophobic in nature and are likely to transport novel hydrophobic solutes. They can be attractive targets for developing anti-fungal drugs. The evolutionary pattern shared with their plant counterparts indicates possible involvement of new fungal MIPs in plant-fungi symbiosis and host-pathogen interactions. PMID:25112373
The Cacti Microbiome: Interplay between Habitat-Filtering and Host-Specificity
Fonseca-García, Citlali; Coleman-Derr, Devin; Garrido, Etzel; ...
2016-02-12
Cactaceae represents one of the most species-rich families of succulent plants native to arid and semi-arid ecosystems, yet the associations Cacti establish with microorganisms and the rules governing microbial community assembly remain poorly understood. We analyzed the composition, diversity, and factors influencing above- and below-ground bacterial, archaeal, and fungal communities associated with two native and sympatric Cacti species: Myrtillocactus geometrizans and Opuntia robusta. Phylogenetic profiling showed that the composition and assembly of microbial communities associated with Cacti were primarily influenced by the plant compartment; plant species, site, and season played only a minor role. Remarkably, bacterial, and archaeal diversity wasmore » higher in the phyllosphere than in the rhizosphere of Cacti, while the opposite was true for fungi. Semi-arid soils exhibited the highest levels of microbial diversity whereas the stem endosphere the lowest. Despite their taxonomic distance, M. geometrizans and O. robusta shared most microbial taxa in all analyzed compartments. Influence of the plant host did only play a larger role in the fungal communities of the stem endosphere. These results suggest that fungi establish specific interactions with their host plant inside the stem, whereas microbial communities in the other plant compartments may play similar functional roles in these two species. Biochemical and molecular characterization of seed-borne bacteria of Cacti supports the idea that these microbial symbionts may be vertically inherited and could promote plant growth and drought tolerance for the fitness of the Cacti holobiont. We envision this knowledge will help improve and sustain agriculture in arid and semi-arid regions of the world.« less
The Cacti Microbiome: Interplay between Habitat-Filtering and Host-Specificity
Fonseca-García, Citlali; Coleman-Derr, Devin; Garrido, Etzel; Visel, Axel; Tringe, Susannah G.; Partida-Martínez, Laila P.
2016-01-01
Cactaceae represents one of the most species-rich families of succulent plants native to arid and semi-arid ecosystems, yet the associations Cacti establish with microorganisms and the rules governing microbial community assembly remain poorly understood. We analyzed the composition, diversity, and factors influencing above- and below-ground bacterial, archaeal, and fungal communities associated with two native and sympatric Cacti species: Myrtillocactus geometrizans and Opuntia robusta. Phylogenetic profiling showed that the composition and assembly of microbial communities associated with Cacti were primarily influenced by the plant compartment; plant species, site, and season played only a minor role. Remarkably, bacterial, and archaeal diversity was higher in the phyllosphere than in the rhizosphere of Cacti, while the opposite was true for fungi. Semi-arid soils exhibited the highest levels of microbial diversity whereas the stem endosphere the lowest. Despite their taxonomic distance, M. geometrizans and O. robusta shared most microbial taxa in all analyzed compartments. Influence of the plant host did only play a larger role in the fungal communities of the stem endosphere. These results suggest that fungi establish specific interactions with their host plant inside the stem, whereas microbial communities in the other plant compartments may play similar functional roles in these two species. Biochemical and molecular characterization of seed-borne bacteria of Cacti supports the idea that these microbial symbionts may be vertically inherited and could promote plant growth and drought tolerance for the fitness of the Cacti holobiont. We envision this knowledge will help improve and sustain agriculture in arid and semi-arid regions of the world. PMID:26904020
Boivin, Thomas; Gidoin, Cindy; von Aderkas, Patrick; Safrana, Jonathan; Candau, Jean-Noël; Chalon, Alain; Sondo, Marion; El Maâtaoui, Mohamed
2015-01-01
Host plant interactions are likely key drivers of evolutionary processes involved in the diversification of phytophagous insects. Granivory has received substantial attention for its crucial role in shaping the interaction between plants and their seed parasites, but fine-scale mechanisms explaining the role of host plant reproductive biology on specialization of seed parasites remain poorly described. In a comparative approach using plant histological techniques, we tested the hypotheses that different seed parasite species synchronize their life cycles to specific stages in seed development, and that the stage they target depends on major differences in seed development programs. In a pinaceous system, seed storage products are initiated before ovule fertilization and the wasps target the ovule’s nucellus during megagametogenesis, a stage at which larvae may benefit from the by-products derived from both secreting cells and dying nucellar cells. In a cupressaceous system, oviposition activity peaks later, during embryogenesis, and the wasps target the ovule’s megagametophyte where larvae may benefit from cell disintegration during embryogenesis. Our cytohistological approach shows for the first time how, despite divergent oviposition targets, different parasite species share a common strategy that consists of first competing for nutrients with developing plant structures, and then consuming these developed structures to complete their development. Our results support the prediction that seed developmental program is an axis for specialization in seed parasites, and that it could be an important parameter in models of their ecological and taxonomic divergence. This study provides the basis for further investigating the possibility of the link between plant ontogeny and pre-dispersal seed parasitism. PMID:26441311
Boivin, Thomas; Gidoin, Cindy; von Aderkas, Patrick; Safrana, Jonathan; Candau, Jean-Noël; Chalon, Alain; Sondo, Marion; El Maâtaoui, Mohamed
2015-01-01
Host plant interactions are likely key drivers of evolutionary processes involved in the diversification of phytophagous insects. Granivory has received substantial attention for its crucial role in shaping the interaction between plants and their seed parasites, but fine-scale mechanisms explaining the role of host plant reproductive biology on specialization of seed parasites remain poorly described. In a comparative approach using plant histological techniques, we tested the hypotheses that different seed parasite species synchronize their life cycles to specific stages in seed development, and that the stage they target depends on major differences in seed development programs. In a pinaceous system, seed storage products are initiated before ovule fertilization and the wasps target the ovule's nucellus during megagametogenesis, a stage at which larvae may benefit from the by-products derived from both secreting cells and dying nucellar cells. In a cupressaceous system, oviposition activity peaks later, during embryogenesis, and the wasps target the ovule's megagametophyte where larvae may benefit from cell disintegration during embryogenesis. Our cytohistological approach shows for the first time how, despite divergent oviposition targets, different parasite species share a common strategy that consists of first competing for nutrients with developing plant structures, and then consuming these developed structures to complete their development. Our results support the prediction that seed developmental program is an axis for specialization in seed parasites, and that it could be an important parameter in models of their ecological and taxonomic divergence. This study provides the basis for further investigating the possibility of the link between plant ontogeny and pre-dispersal seed parasitism.
Mukaihara, Takafumi; Hatanaka, Tadashi; Nakano, Masahito; Oda, Kenji
2016-04-12
The plant pathogen Ralstonia solanacearum uses a large repertoire of type III effector proteins to succeed in infection. To clarify the function of effector proteins in host eukaryote cells, we expressed effectors in yeast cells and identified seven effector proteins that interfere with yeast growth. One of the effector proteins, RipAY, was found to share homology with the ChaC family proteins that function as γ-glutamyl cyclotransferases, which degrade glutathione (GSH), a tripeptide that plays important roles in the plant immune system. RipAY significantly inhibited yeast growth and simultaneously induced rapid GSH depletion when expressed in yeast cells. The in vitro GSH degradation activity of RipAY is specifically activated by eukaryotic factors in the yeast and plant extracts. Biochemical purification of the yeast protein identified that RipAY is activated by thioredoxin TRX2. On the other hand, RipAY was not activated by bacterial thioredoxins. Interestingly, RipAY was activated by plant h-type thioredoxins that exist in large amounts in the plant cytosol, but not by chloroplastic m-, f-, x-, y- and z-type thioredoxins, in a thiol-independent manner. The transient expression of RipAY decreased the GSH level in plant cells and affected the flg22-triggered production of reactive oxygen species (ROS) and expression of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes in Nicotiana benthamiana leaves. These results indicate that RipAY is activated by host cytosolic thioredoxins and degrades GSH specifically in plant cells to suppress plant immunity. Ralstonia solanacearum is the causal agent of bacterial wilt disease of plants. This pathogen injects virulence effector proteins into host cells to suppress disease resistance responses of plants. In this article, we report a biochemical activity of R. solanacearum effector protein RipAY. RipAY can degrade GSH, a tripeptide that plays important roles in the plant immune system, with its γ-glutamyl cyclotransferase activity. The high GSH degradation activity of RipAY is considered to be a good weapon for this bacterium to suppress plant immunity. However, GSH also plays important roles in bacterial tolerance to various stresses and growth. Interestingly, RipAY has an excellent safety mechanism to prevent unwanted firing of its enzyme activity in bacterial cells because RipAY is specifically activated by host eukaryotic thioredoxins. This study also reveals a novel host plant protein acting as a molecular switch for effector activation. Copyright © 2016 Mukaihara et al.
De Maayer, Pieter; Aliyu, Habibu; Vikram, Surendra; Blom, Jochen; Duffy, Brion; Cowan, Don A.; Smits, Theo H. M.; Venter, Stephanus N.; Coutinho, Teresa A.
2017-01-01
Pantoea ananatis is ubiquitously found in the environment and causes disease on a wide range of plant hosts. By contrast, its sister species, Pantoea stewartii subsp. stewartii is the host-specific causative agent of the devastating maize disease Stewart’s wilt. This pathogen has a restricted lifecycle, overwintering in an insect vector before being introduced into susceptible maize cultivars, causing disease and returning to overwinter in its vector. The other subspecies of P. stewartii subsp. indologenes, has been isolated from different plant hosts and is predicted to proliferate in different environmental niches. Here we have, by the use of comparative genomics and a comprehensive suite of bioinformatic tools, analyzed the genomes of ten P. stewartii and nineteen P. ananatis strains. Our phylogenomic analyses have revealed that there are two distinct clades within P. ananatis while far less phylogenetic diversity was observed among the P. stewartii subspecies. Pan-genome analyses revealed a large core genome comprising of 3,571 protein coding sequences is shared among the twenty-nine compared strains. Furthermore, we showed that an extensive accessory genome made up largely by a mobilome of plasmids, integrated prophages, integrative and conjugative elements and insertion elements has resulted in extensive diversification of P. stewartii and P. ananatis. While these organisms share many pathogenicity determinants, our comparative genomic analyses show that they differ in terms of the secretion systems they encode. The genomic differences identified in this study have allowed us to postulate on the divergent evolutionary histories of the analyzed P. ananatis and P. stewartii strains and on the molecular basis underlying their ecological success and host range. PMID:28959245
De Maayer, Pieter; Aliyu, Habibu; Vikram, Surendra; Blom, Jochen; Duffy, Brion; Cowan, Don A; Smits, Theo H M; Venter, Stephanus N; Coutinho, Teresa A
2017-01-01
Pantoea ananatis is ubiquitously found in the environment and causes disease on a wide range of plant hosts. By contrast, its sister species, Pantoea stewartii subsp. stewartii is the host-specific causative agent of the devastating maize disease Stewart's wilt. This pathogen has a restricted lifecycle, overwintering in an insect vector before being introduced into susceptible maize cultivars, causing disease and returning to overwinter in its vector. The other subspecies of P. stewartii subsp. indologenes , has been isolated from different plant hosts and is predicted to proliferate in different environmental niches. Here we have, by the use of comparative genomics and a comprehensive suite of bioinformatic tools, analyzed the genomes of ten P. stewartii and nineteen P. ananatis strains. Our phylogenomic analyses have revealed that there are two distinct clades within P. ananatis while far less phylogenetic diversity was observed among the P. stewartii subspecies. Pan-genome analyses revealed a large core genome comprising of 3,571 protein coding sequences is shared among the twenty-nine compared strains. Furthermore, we showed that an extensive accessory genome made up largely by a mobilome of plasmids, integrated prophages, integrative and conjugative elements and insertion elements has resulted in extensive diversification of P. stewartii and P. ananatis . While these organisms share many pathogenicity determinants, our comparative genomic analyses show that they differ in terms of the secretion systems they encode. The genomic differences identified in this study have allowed us to postulate on the divergent evolutionary histories of the analyzed P. ananatis and P. stewartii strains and on the molecular basis underlying their ecological success and host range.
Oña, L; Lachmann, M
2011-03-01
Mutualistic partners derive a benefit from their interaction, but this benefit can come at a cost. This is the case for plant-ant and plant-pollinator mutualistic associations. In exchange for protection from herbivores provided by the resident ants, plants supply various kinds of resources or nests to the ants. Most ant-myrmecophyte mutualisms are horizontally transmitted, and therefore, partners share an interest in growth but not in reproduction. This lack of alignment in fitness interests between plants and ants drives a conflict between them: ants can attack pollinators that cross-fertilize the host plants. Using a mathematical model, we define a threshold in ant aggressiveness determining pollinator survival or elimination on the host plant. In our model we observed that, all else being equal, facultative interactions result in pollinator extinction for lower levels of ant aggressiveness than obligatory interactions. We propose that the capacity to discriminate pollinators from herbivores should not often evolve in ants, and when it does it will be when the plants exhibit limited dispersal in an environment that is not seed saturated so that each seed produced can effectively generate a new offspring or if ants acquire an extra benefit from pollination (e.g. if ants eat fruit). We suggest specific mutualism examples where these hypotheses can be tested empirically. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.
The Malarial Host-Targeting Signal Is Conserved in the Irish Potato Famine Pathogen
Liolios, Konstantinos; Win, Joe; Kanneganti, Thirumala-Devi; Young, Carolyn; Kamoun, Sophien; Haldar, Kasturi
2006-01-01
Animal and plant eukaryotic pathogens, such as the human malaria parasite Plasmodium falciparum and the potato late blight agent Phytophthora infestans, are widely divergent eukaryotic microbes. Yet they both produce secretory virulence and pathogenic proteins that alter host cell functions. In P. falciparum, export of parasite proteins to the host erythrocyte is mediated by leader sequences shown to contain a host-targeting (HT) motif centered on an RxLx (E, D, or Q) core: this motif appears to signify a major pathogenic export pathway with hundreds of putative effectors. Here we show that a secretory protein of P. infestans, which is perceived by plant disease resistance proteins and induces hypersensitive plant cell death, contains a leader sequence that is equivalent to the Plasmodium HT-leader in its ability to export fusion of green fluorescent protein (GFP) from the P. falciparum parasite to the host erythrocyte. This export is dependent on an RxLR sequence conserved in P. infestans leaders, as well as in leaders of all ten secretory oomycete proteins shown to function inside plant cells. The RxLR motif is also detected in hundreds of secretory proteins of P. infestans, Phytophthora sojae, and Phytophthora ramorum and has high value in predicting host-targeted leaders. A consensus motif further reveals E/D residues enriched within ~25 amino acids downstream of the RxLR, which are also needed for export. Together the data suggest that in these plant pathogenic oomycetes, a consensus HT motif may reside in an extended sequence of ~25–30 amino acids, rather than in a short linear sequence. Evidence is presented that although the consensus is much shorter in P. falciparum, information sufficient for vacuolar export is contained in a region of ~30 amino acids, which includes sequences flanking the HT core. Finally, positional conservation between Phytophthora RxLR and P. falciparum RxLx (E, D, Q) is consistent with the idea that the context of their presentation is constrained. These studies provide the first evidence to our knowledge that eukaryotic microbes share equivalent pathogenic HT signals and thus conserved mechanisms to access host cells across plant and animal kingdoms that may present unique targets for prophylaxis across divergent pathogens. PMID:16733545
Pollinators visit related plant species across 29 plant–pollinator networks
Vamosi, Jana C; Moray, Clea M; Garcha, Navdeep K; Chamberlain, Scott A; Mooers, Arne Ø
2014-01-01
Understanding the evolution of specialization in host plant use by pollinators is often complicated by variability in the ecological context of specialization. Flowering communities offer their pollinators varying numbers and proportions of floral resources, and the uniformity observed in these floral resources is, to some degree, due to shared ancestry. Here, we find that pollinators visit related plant species more so than expected by chance throughout 29 plant–pollinator networks of varying sizes, with “clade specialization” increasing with community size. As predicted, less versatile pollinators showed more clade specialization overall. We then asked whether this clade specialization varied with the ratio of pollinator species to plant species such that pollinators were changing their behavior when there was increased competition (and presumably a forced narrowing of the realized niche) by examining pollinators that were present in at least three of the networks. Surprisingly, we found little evidence that variation in clade specialization is caused by pollinator species changing their behavior in different community contexts, suggesting that clade specialization is observed when pollinators are either restricted in their floral choices due to morphological constraints or innate preferences. The resulting pollinator sharing between closely related plant species could result in selection for greater pollinator specialization. PMID:25360269
Root-associated fungal community response to drought-associated changes in vegetation community.
Dean, Sarah L; Warnock, Daniel D; Litvak, Marcy E; Porras-Alfaro, Andrea; Sinsabaugh, Robert
2015-01-01
Recent droughts in southwestern USA have led to large-scale mortality of piñon (Pinus edulis) in piñon-juniper woodlands. Piñon mortality alters soil moisture, nutrient and carbon availability, which could affect the root-associated fungal (RAF) communities and therefore the fitness of the remaining plants. We collected fine root samples at a piñon-juniper woodland and a juniper savannah site in central New Mexico. Roots were collected from piñon and juniper (Juniperus monosperma) trees whose nearest neighbors were live piñon, live juniper or dead piñon. RAF communities were analyzed by 454 pyrosequencing of the universal fungal ITS region. The most common taxa were Hypocreales and Chaetothyriales. More than 10% of ITS sequences could not be assigned taxonomy at the phylum level. Two of the unclassified OTUs significantly differed between savanna and woodland, had few like sequences in GenBank and formed new fungal clades with other unclassified RAF from arid plants, highlighting how little study has been done on the RAF of arid ecosystems. Plant host or neighbor did not affect RAF community composition. However, there was a significant difference between RAF communities from woodland vs. savanna, indicating that abiotic factors such as temperature and aridity might be more important in structuring these RAF communities than biotic factors such as plant host or neighbor identity. Ectomycorrhizal fungi (EM) were present in juniper as well as piñon in the woodland site, in contrast with previous research, but did not occur in juniper savanna, suggesting a potential shared EM network with juniper. RAF richness was lower in hosts that were neighbors of the opposite host. This may indicate competitive exclusion between fungi from different hosts. Characterizing these communities and their responses to environment and plant neighborhood is a step toward understanding the effects of drought on a biome that spans 19,000,000 ha of southwestern USA. © 2015 by The Mycological Society of America.
NASA Astrophysics Data System (ADS)
Alguacil, M. M.; Torrecillas, E.; Roldán, A.; Díaz, G.; Torres, P.
2012-04-01
The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots and whether there are AMF species that might be indicators of specific functional plant roles in these ecosystems. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species had differing compositions of the AMF community and higher diversity when compared with the annual species, showing preferential selection by specific AMF sequences types. B. rubens did not show host specificity, sharing the full composition of its AMF community with both perennial plant species. Seasonal variations in the competitiveness of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.
van Baarlen, Peter; van Belkum, Alex; Thomma, Bart P H J
2007-02-01
Relatively simple eukaryotic model organisms such as the genetic model weed plant Arabidopsis thaliana possess an innate immune system that shares important similarities with its mammalian counterpart. In fact, some human pathogens infect Arabidopsis and cause overt disease with human symptomology. In such cases, decisive elements of the plant's immune system are likely to be targeted by the same microbial factors that are necessary for causing disease in humans. These similarities can be exploited to identify elementary microbial pathogenicity factors and their corresponding targets in a green host. This circumvents important cost aspects that often frustrate studies in humans or animal models and, in addition, results in facile ethical clearance.
Kemen, Eric; Gardiner, Anastasia; Schultz-Larsen, Torsten; Kemen, Ariane C; Balmuth, Alexi L; Robert-Seilaniantz, Alexandre; Bailey, Kate; Holub, Eric; Studholme, David J; Maclean, Dan; Jones, Jonathan D G
2011-07-01
Biotrophic eukaryotic plant pathogens require a living host for their growth and form an intimate haustorial interface with parasitized cells. Evolution to biotrophy occurred independently in fungal rusts and powdery mildews, and in oomycete white rusts and downy mildews. Biotroph evolution and molecular mechanisms of biotrophy are poorly understood. It has been proposed, but not shown, that obligate biotrophy results from (i) reduced selection for maintenance of biosynthetic pathways and (ii) gain of mechanisms to evade host recognition or suppress host defence. Here we use Illumina sequencing to define the genome, transcriptome, and gene models for the obligate biotroph oomycete and Arabidopsis parasite, Albugo laibachii. A. laibachii is a member of the Chromalveolata, which incorporates Heterokonts (containing the oomycetes), Apicomplexa (which includes human parasites like Plasmodium falciparum and Toxoplasma gondii), and four other taxa. From comparisons with other oomycete plant pathogens and other chromalveolates, we reveal independent loss of molybdenum-cofactor-requiring enzymes in downy mildews, white rusts, and the malaria parasite P. falciparum. Biotrophy also requires "effectors" to suppress host defence; we reveal RXLR and Crinkler effectors shared with other oomycetes, and also discover and verify a novel class of effectors, the "CHXCs", by showing effector delivery and effector functionality. Our findings suggest that evolution to progressively more intimate association between host and parasite results in reduced selection for retention of certain biosynthetic pathways, and particularly reduced selection for retention of molybdopterin-requiring biosynthetic pathways. These mechanisms are not only relevant to plant pathogenic oomycetes but also to human pathogens within the Chromalveolata.
Kemen, Eric; Gardiner, Anastasia; Schultz-Larsen, Torsten; Kemen, Ariane C.; Balmuth, Alexi L.; Robert-Seilaniantz, Alexandre; Bailey, Kate; Holub, Eric; Studholme, David J.; MacLean, Dan; Jones, Jonathan D. G.
2011-01-01
Biotrophic eukaryotic plant pathogens require a living host for their growth and form an intimate haustorial interface with parasitized cells. Evolution to biotrophy occurred independently in fungal rusts and powdery mildews, and in oomycete white rusts and downy mildews. Biotroph evolution and molecular mechanisms of biotrophy are poorly understood. It has been proposed, but not shown, that obligate biotrophy results from (i) reduced selection for maintenance of biosynthetic pathways and (ii) gain of mechanisms to evade host recognition or suppress host defence. Here we use Illumina sequencing to define the genome, transcriptome, and gene models for the obligate biotroph oomycete and Arabidopsis parasite, Albugo laibachii. A. laibachii is a member of the Chromalveolata, which incorporates Heterokonts (containing the oomycetes), Apicomplexa (which includes human parasites like Plasmodium falciparum and Toxoplasma gondii), and four other taxa. From comparisons with other oomycete plant pathogens and other chromalveolates, we reveal independent loss of molybdenum-cofactor-requiring enzymes in downy mildews, white rusts, and the malaria parasite P. falciparum. Biotrophy also requires “effectors” to suppress host defence; we reveal RXLR and Crinkler effectors shared with other oomycetes, and also discover and verify a novel class of effectors, the “CHXCs”, by showing effector delivery and effector functionality. Our findings suggest that evolution to progressively more intimate association between host and parasite results in reduced selection for retention of certain biosynthetic pathways, and particularly reduced selection for retention of molybdopterin-requiring biosynthetic pathways. These mechanisms are not only relevant to plant pathogenic oomycetes but also to human pathogens within the Chromalveolata. PMID:21750662
Diacetin, a reliable cue and private communication channel in a specialized pollination system
Schäffler, Irmgard; Steiner, Kim E.; Haid, Mark; van Berkel, Sander S.; Gerlach, Günter; Johnson, Steven D.; Wessjohann, Ludger; Dötterl, Stefan
2015-01-01
The interaction between floral oil secreting plants and oil-collecting bees is one of the most specialized of all pollination mutualisms. Yet, the specific stimuli used by the bees to locate their host flowers have remained elusive. This study identifies diacetin, a volatile acetylated glycerol, as a floral signal compound shared by unrelated oil plants from around the globe. Electrophysiological measurements of antennae and behavioural assays identified diacetin as the key volatile used by oil-collecting bees to locate their host flowers. Furthermore, electrophysiological measurements indicate that only oil-collecting bees are capable of detecting diacetin. The structural and obvious biosynthetic similarity between diacetin and associated floral oils make it a reliable cue for oil-collecting bees. It is easily perceived by oil bees, but can’t be detected by other potential pollinators. Therefore, diacetin represents the first demonstrated private communication channel in a pollination system. PMID:26245141
A virus responds instantly to the presence of the vector on the host and forms transmission morphs
Martinière, Alexandre; Bak, Aurélie; Macia, Jean-Luc; Lautredou, Nicole; Gargani, Daniel; Doumayrou, Juliette; Garzo, Elisa; Moreno, Aranzazu; Fereres, Alberto; Blanc, Stéphane; Drucker, Martin
2013-01-01
Many plant and animal viruses are spread by insect vectors. Cauliflower mosaic virus (CaMV) is aphid-transmitted, with the virus being taken up from specialized transmission bodies (TB) formed within infected plant cells. However, the precise events during TB-mediated virus acquisition by aphids are unknown. Here, we show that TBs react instantly to the presence of the vector by ultra-rapid and reversible redistribution of their key components onto microtubules throughout the cell. Enhancing or inhibiting this TB reaction pharmacologically or by using a mutant virus enhanced or inhibited transmission, respectively, confirming its requirement for efficient virus-acquisition. Our results suggest that CaMV can perceive aphid vectors, either directly or indirectly by sharing the host perception. This novel concept in virology, where viruses respond directly or via the host to the outside world, opens new research horizons, that is, investigating the impact of ‘perceptive behaviors’ on other steps of the infection cycle. DOI: http://dx.doi.org/10.7554/eLife.00183.001 PMID:23358702
Shan, Libo; He, Ping; Li, Jianming; Heese, Antje; Peck, Scott C; Nürnberger, Thorsten; Martin, Gregory B; Sheen, Jen
2008-07-17
Successful pathogens have evolved strategies to interfere with host immune systems. For example, the ubiquitous plant pathogen Pseudomonas syringae injects two sequence-distinct effectors, AvrPto and AvrPtoB, to intercept convergent innate immune responses stimulated by multiple microbe-associated molecular patterns (MAMPs). However, the direct host targets and precise molecular mechanisms of bacterial effectors remain largely obscure. We show that AvrPto and AvrPtoB bind the Arabidopsis receptor-like kinase BAK1, a shared signaling partner of both the flagellin receptor FLS2 and the brassinosteroid receptor BRI1. This targeting interferes with ligand-dependent association of FLS2 with BAK1 during infection. It also impedes BAK1-dependent host immune responses to diverse other MAMPs and brassinosteroid signaling. Significantly, the structural basis of AvrPto-BAK1 interaction appears to be distinct from AvrPto-Pto association required for effector-triggered immunity. These findings uncover a unique strategy of bacterial pathogenesis where virulence effectors block signal transmission through a key common component of multiple MAMP-receptor complexes.
Wang, Hua; Guo, Wen-Fei; Zhang, Peng-Jun; Wu, Zhi-Yi; Liu, Shu-Sheng
2008-03-01
In phytophagous insects, experience can increase positive responses towards non-host plant extracts or induce oviposition on non-host plants, but the underlying chemical and behavioral mechanisms are poorly understood. By using the diamondback moth, Plutella xylostella, its host plant Chinese cabbage, and a non-host plant Chrysanthemum morifolium, as a model system, we observed the experience-altered olfactory responses of ovipositing females towards volatiles of the non-host plant, volatiles of pure chemicals (p-cymene and alpha-terpinene) found in the non-host plant, and volatiles of host plants treated with these chemicals. We assessed the experience-altered oviposition preference towards host plants treated with p-cymene. Naive females showed aversion to the odors of the non-host plant, the pure chemicals, and the pure chemical-treated host plants. In contrast, experienced females either became attracted by these non-host odors or were no longer repelled by these odors. Similarly, naive females laid a significantly lower proportion of eggs on pure chemical-treated host plants than on untreated host plants, but experienced females laid a similar or higher proportion of eggs on pure chemical-treated host plants compared to untreated host plants. Chemical analysis indicated that application of the non-host pure chemicals on Chinese cabbage induced emissions of volatiles by this host plant. We conclude that induced preference for previously repellent compounds is a major mechanism that leads to behavioral changes of this moth towards non-host plants or their extracts.
Lights Off for Arbuscular Mycorrhiza: On Its Symbiotic Functioning under Light Deprivation
Konvalinková, Tereza; Jansa, Jan
2016-01-01
Plants are often exposed to shade over different time scales and this may substantially affect not only their own growth, but also development and functioning of the energetically dependent organisms. Among those, the root symbionts such as arbuscular mycorrhizal (AM) fungi and rhizobia represent particularly important cases—on the one hand, they consume a significant share of plant carbon (C) budget and, on the other, they generate a number of important nutritional feedbacks on their plant hosts, often resulting in a net positive effect on their host growth and/or fitness. Here we discuss our previous results comparing mycorrhizal performance under different intensities and durations of shade (Konvalinková et al., 2015) in a broader context of previously published literature. Additionally, we review publicly available knowledge on the root colonization and mycorrhizal growth responses in AM plants under light deprivation. Experimental evidence shows that sudden and intensive decrease of light availability to a mycorrhizal plant triggers rapid deactivation of phosphorus transfer from the AM fungus to the plant already within a few days, implying active and rapid response of the AM fungus to the energetic status of its plant host. When AM plants are exposed to intensive shading on longer time scales (weeks to months), positive mycorrhizal growth responses (MGR) are often decreasing and may eventually become negative. This is most likely due to the high C cost of the symbiosis relative to the C availability, and failure of plants to fully compensate for the fungal C demand under low light. Root colonization by AM fungi often declines under low light intensities, although the active role of plants in regulating the extent of root colonization has not yet been unequivocally demonstrated. Quantitative information on the rates and dynamics of C transfer from the plant to the fungus is mostly missing, as is the knowledge on the involved molecular mechanisms. Therefore, these subjects deserve particular attention in the future. PMID:27375642
Lights Off for Arbuscular Mycorrhiza: On Its Symbiotic Functioning under Light Deprivation.
Konvalinková, Tereza; Jansa, Jan
2016-01-01
Plants are often exposed to shade over different time scales and this may substantially affect not only their own growth, but also development and functioning of the energetically dependent organisms. Among those, the root symbionts such as arbuscular mycorrhizal (AM) fungi and rhizobia represent particularly important cases-on the one hand, they consume a significant share of plant carbon (C) budget and, on the other, they generate a number of important nutritional feedbacks on their plant hosts, often resulting in a net positive effect on their host growth and/or fitness. Here we discuss our previous results comparing mycorrhizal performance under different intensities and durations of shade (Konvalinková et al., 2015) in a broader context of previously published literature. Additionally, we review publicly available knowledge on the root colonization and mycorrhizal growth responses in AM plants under light deprivation. Experimental evidence shows that sudden and intensive decrease of light availability to a mycorrhizal plant triggers rapid deactivation of phosphorus transfer from the AM fungus to the plant already within a few days, implying active and rapid response of the AM fungus to the energetic status of its plant host. When AM plants are exposed to intensive shading on longer time scales (weeks to months), positive mycorrhizal growth responses (MGR) are often decreasing and may eventually become negative. This is most likely due to the high C cost of the symbiosis relative to the C availability, and failure of plants to fully compensate for the fungal C demand under low light. Root colonization by AM fungi often declines under low light intensities, although the active role of plants in regulating the extent of root colonization has not yet been unequivocally demonstrated. Quantitative information on the rates and dynamics of C transfer from the plant to the fungus is mostly missing, as is the knowledge on the involved molecular mechanisms. Therefore, these subjects deserve particular attention in the future.
Signals and cues in the evolution of plant-microbe communication.
Padje, Anouk Van't; Whiteside, Matthew D; Kiers, E Toby
2016-08-01
Communication has played a key role in organismal evolution. If sender and receiver have a shared interest in propagating reliable information, such as when they are kin relatives, then effective communication can bring large fitness benefits. However, interspecific communication (among different species) is more prone to dishonesty. Over the last decade, plants and their microbial root symbionts have become a model system for studying interspecific molecular crosstalk. However, less is known about the evolutionary stability of plant-microbe communication. What prevents partners from hijacking or manipulating information to their own benefit? Here, we focus on communication between arbuscular mycorrhizal fungi and their host plants. We ask how partners use directed signals to convey specific information, and highlight research on the problem of dishonest signaling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of Molecular Methods to Detect Macrophomina phaseolina from Strawberry Plants and Soil.
Burkhardt, Alyssa; Ramon, Marina L; Smith, Brett; Koike, Steven T; Martin, Frank N
2018-06-05
Macrophomina phaseolina is a broad-host range fungus that shows some degree of host preference on strawberry, and causes symptoms including crown rot and root rot. Recently, this pathogen has impacted strawberry production as fumigation practices have changed, leaving many growers in California and around the world in need of accurate, rapid diagnostic tools for M. phaseolina in soil and infected plants. This study uses next-generation sequencing and comparative genomics to identify a locus that is unique to isolates within a main genotype shared by a majority of isolates that infect strawberry. This locus was used to develop a quantitative single-tube nested TaqMan qPCR assay which is able to quantify as little as 2-3 microsclerotia/g of soil with 100% genotype specificity. An isothermal assay using recombinase polymerase amplification (RPA) was developed from the same locus and has been validated on over 200 infected strawberry plants with a diagnostic sensitivity of 93% and a diagnostic specificity of 99%, respectively. Together, this work demonstrates the value of using new approaches to identify loci for detection and provides valuable diagnostic tools that can be used to monitor soil and strawberry plant samples for M. phaseolina.
The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage
Gagic, Vesna; Petrović-Obradović, Olivera; Fründ, Jochen; Kavallieratos, Nickolas G.; Athanassiou, Christos G.; Starý, Petr; Tomanović, Željko
2016-01-01
Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure. PMID:27309729
Novel Insights into Insect-Microbe Interactions—Role of Epigenomics and Small RNAs
Kim, Dohyup; Thairu, Margaret W.; Hansen, Allison K.
2016-01-01
It has become increasingly clear that microbes form close associations with the vast majority of animal species, especially insects. In fact, an array of diverse microbes is known to form shared metabolic pathways with their insect hosts. A growing area of research in insect-microbe interactions, notably for hemipteran insects and their mutualistic symbionts, is to elucidate the regulation of this inter-domain metabolism. This review examines two new emerging mechanisms of gene regulation and their importance in host-microbe interactions. Specifically, we highlight how the incipient areas of research on regulatory “dark matter” such as epigenomics and small RNAs, can play a pivotal role in the evolution of both insect and microbe gene regulation. We then propose specific models of how these dynamic forms of gene regulation can influence insect-symbiont-plant interactions. Future studies in this area of research will give us a systematic understanding of how these symbiotic microbes and animals reciprocally respond to and regulate their shared metabolic processes. PMID:27540386
Runo, Steven; Alakonya, Amos; Machuka, Jesse; Sinha, Neelima
2011-02-01
Biological crop pests cause serious economic losses. In Africa, the most prevalent parasites are insect pests, plant pathogenic root-knot nematodes, viruses and parasitic plants. African smallholder farmers struggle to overcome these parasitic constraints to agricultural production. Crop losses and the host range of these parasites have continued to increase in spite of the use of widely advocated control methods. A sustainable method to overcome biological pests in Africa would be to develop crop germplasm resistant to parasites. This is achievable using either genetic modification (GM) or a non-GM approach. However, there is a paucity of resistant genes available for introduction. Additionally, the biological processes underpinning host parasite resistance are not sufficiently well understood. The authors review a technology platform for using RNA-mediated interference (RNAi) as bioengineered resistance to important crop parasites in Africa. To achieve acquired resistance, a host crop is stably transformed with a transgene that encodes a hairpin RNA targeting essential parasitic genes. The RNAi sequence is chosen in such a way that it shares no homology with the host's genes, so it remains 'inactive' until parasitism. Upon parasitism, the RNAi sequence enters the parasite and post-transcriptional gene silencing (PTGS) mechanisms are activated, leading to the death of the parasite. Copyright © 2010 Society of Chemical Industry.
Nielsen, David G; Muilenburg, Vanessa L; Herms, Daniel A
2011-06-01
Bronze birch borer (Agrilus anxius Gory) is the key pest of birches (Betula spp.) in North America, several of which have been recommended for ornamental landscapes based on anecdotal reports of borer resistance that had not been confirmed experimentally. In a 20-yr common garden experiment initiated in 1979 in Ohio, North American birch species, including paper birch (Betula papyrifera Marshall), 'Whitespire' gray birch (Betula populifolia Marshall), and river birch (Betula nigra L.), were much more resistant to bronze birch borer than species indigenous to Europe and Asia, including European white birch (Betula pendula Roth), downy birch (Betula pubescens Ehrh.), monarch birch (Betula maximowicziana Regel), and Szechuan white birch (Betula szechuanica Jansson). Within 8 yr of planting, every European white, downy, and Szechuan birch had been colonized and killed, although 100% of monarch birch had been colonized and 88% of these plants were killed after nine years. Conversely, 97% of river birch, 76% of paper birch, and 73% Whitespire gray birch were alive 20 yr after planting, and river birch showed no evidence of colonization. This pattern is consistent with biogeographic theory of plant defense: North American birch species that share a coevolutionary history with bronze birch borer were much more resistant than naïve hosts endemic to Europe and Asia, possibly by virtue of evolution of targeted defenses. This information suggests that if bronze birch borer were introduced to Europe or Asia, it could threaten its hosts there on a continental scale. This study also exposed limitations of anecdotal observation as evidence of host plant resistance.
Nobre, Paola A F; Bergamini, Leonardo L; Lewinsohn, Thomas M; Jorge, Leonardo R; Almeida-Neto, Mário
2016-02-01
Among-population variation in host use is a common phenomenon in herbivorous insects. The simplest and most trivial explanation for such variation in host use is the among-site variation in plant species composition. Another aspect that can influence spatial variation in host use is the relative abundance of each host-plant species compared to all available hosts. Here, we used endophagous insects that develop in flower heads of Asteraceae species as a study system to investigate how plant abundance influences the pattern of host-plant use by herbivorous insects with distinct levels of host-range specialization. Only herbivores recorded on three or more host species were included in this study. In particular, we tested two related hypotheses: 1) plant abundance has a positive effect on the host-plant preference of herbivorous insects, and 2) the relative importance of plant abundance to host-plant preference is greater for herbivorous species that use a wider range of host-plant species. We analyzed 11 herbivore species in 20 remnants of Cerrado in Southeastern Brazil. For 8 out of 11 herbivore species, plant abundance had a positive influence on host use. In contrast to our expectation, both the most specialized and the most generalist herbivores showed a stronger positive effect of plant species abundance in host use. Thus, we found evidence that although the abundance of plant species is a major factor determining the preferential use of host plants, its relative importance is mediated by the host-range specialization of herbivores.
Huang, Renyan; Hui, Shugang; Zhang, Meng; Li, Pei; Xiao, Jinghua; Li, Xianghua; Yuan, Meng; Wang, Shiping
2017-01-01
Many Xanthomonas bacteria use transcription activator-like effector (TALE) proteins to activate plant disease susceptibility ( S ) genes, and this activation contributes to disease. We recently reported that rice basal transcription factor IIA gamma subunit, OsTFIIAγ5, is hijacked by TALE-carrying Xanthomonas oryzae infecting the plants. However, whether TFIIAγs are also involved in TALE-carrying Xanthomonas -caused diseases in other plants is unknown. Here, molecular and genetic approaches were used to investigate the role of TFIIAγs in other plants. We found that TFIIAγs are also used by TALE-carrying Xanthomonas to cause disease in other plants. The TALEs of Xanthomonas citri pv. citri ( Xcc ) causing canker in citrus and Xanthomonas campestris pv. vesicatoria ( Xcv ) causing bacterial spot in pepper and tomato interacted with corresponding host TFIIAγs as in rice. Transcriptionally suppressing TFIIAγ led to resistance to Xcc in citrus and Xcv in pepper and tomato. The 39th residue of OsTFIIAγ5 and citrus CsTFIIAγ is vital for TALE-dependent induction of plant S genes. As mutated OsTFIIAγ5 V 39E , CsTFIIAγ V 39E , pepper CaTFIIAγ V 39E , and tomato SlTFIIAγ V 39E also did not interact with TALEs to prevent disease. These results suggest that TALE-carrying bacteria share a common mechanism for infecting plants. Using TFIIAγ V 39E -type mutation could be a general strategy for improving resistance to TALE-carrying pathogens in crops.
Response of host plants to periodical cicada oviposition damage.
Flory, S Luke; Mattingly, W Brett
2008-06-01
Insect oviposition on plants is widespread across many systems, but studies on the response of host plants to oviposition damage are lacking. Although patterns of oviposition vary spatially and temporally, ovipositing insects that exhibit outbreak characteristics may have strong effects on host plants during peak abundance. Periodical cicadas (Magicicada spp.), in particular, may reduce the performance of host plants when they synchronously emerge in massive numbers to mate and oviposit on host plants. Here we provide the first experimental manipulation of host plant use by periodical cicadas to evaluate the impact of cicada oviposition on plant performance across a diversity of host species within an ecologically relevant setting. Using a randomized block design, we established a plantation of three native and three exotic host plant species common to the successional forests in which cicadas occur. During the emergence of Brood X in 2004, we employed a highly effective cicada exclusion treatment by netting half of the host plants within each block. We assessed multiple measures of host plant performance, including overall plant growth and the growth and reproduction of individual branches, across three growing seasons. Despite our thorough assessment of potential host plant responses to oviposition damage, cicada oviposition did not generally inhibit host plant performance. Oviposition densities on unnetted host plants were comparable to levels documented in other studies, reinforcing the ecological relevance of our results, which indicate that cicada oviposition damage did not generally reduce the performance of native or exotic host plants.
Host jumps shaped the diversity of extant rust fungi (Pucciniales).
McTaggart, Alistair R; Shivas, Roger G; van der Nest, Magriet A; Roux, Jolanda; Wingfield, Brenda D; Wingfield, Michael J
2016-02-01
The aim of this study was to determine the evolutionary time line for rust fungi and date key speciation events using a molecular clock. Evidence is provided that supports a contemporary view for a recent origin of rust fungi, with a common ancestor on a flowering plant. Divergence times for > 20 genera of rust fungi were studied with Bayesian evolutionary analyses. A relaxed molecular clock was applied to ribosomal and mitochondrial genes, calibrated against estimated divergence times for the hosts of rust fungi, such as Acacia (Fabaceae), angiosperms and the cupressophytes. Results showed that rust fungi shared a most recent common ancestor with a mean age between 113 and 115 million yr. This dates rust fungi to the Cretaceous period, which is much younger than previous estimations. Host jumps, whether taxonomically large or between host genera in the same family, most probably shaped the diversity of rust genera. Likewise, species diversified by host shifts (through coevolution) or via subsequent host jumps. This is in contrast to strict coevolution with their hosts. Puccinia psidii was recovered in Sphaerophragmiaceae, a family distinct from Raveneliaceae, which were regarded as confamilial in previous studies. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Li, Junmin; Jin, Zexin; Song, Wenjing
2012-01-01
Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community.
Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants.
Hettenhausen, Christian; Li, Juan; Zhuang, Huifu; Sun, Huanhuan; Xu, Yuxing; Qi, Jinfeng; Zhang, Jingxiong; Lei, Yunting; Qin, Yan; Sun, Guiling; Wang, Lei; Baldwin, Ian T; Wu, Jianqiang
2017-08-08
Cuscuta spp. (i.e., dodders) are stem parasites that naturally graft to their host plants to extract water and nutrients; multiple adjacent hosts are often parasitized by one or more Cuscuta plants simultaneously, forming connected plant clusters. Metabolites, proteins, and mRNAs are known to be transferred from hosts to Cuscuta , and Cuscuta bridges even facilitate host-to-host virus movement. Whether Cuscuta bridges transmit ecologically meaningful signals remains unknown. Here we show that, when host plants are connected by Cuscuta bridges, systemic herbivory signals are transmitted from attacked plants to unattacked plants, as revealed by the large transcriptomic changes in the attacked local leaves, undamaged systemic leaves of the attacked plants, and leaves of unattacked but connected hosts. The interplant signaling is largely dependent on the jasmonic acid pathway of the damaged local plants, and can be found among conspecific or heterospecific hosts of different families. Importantly, herbivore attack of one host plant elevates defensive metabolites in the other systemic Cuscuta bridge-connected hosts, resulting in enhanced resistance against insects even in several consecutively Cuscuta -connected host plants over long distances (> 100 cm). By facilitating plant-to-plant signaling, Cuscuta provides an information-based means of countering the resource-based fitness costs to their hosts.
Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants
Hettenhausen, Christian; Li, Juan; Zhuang, Huifu; Sun, Huanhuan; Xu, Yuxing; Qi, Jinfeng; Zhang, Jingxiong; Lei, Yunting; Qin, Yan; Sun, Guiling; Wang, Lei; Baldwin, Ian T.
2017-01-01
Cuscuta spp. (i.e., dodders) are stem parasites that naturally graft to their host plants to extract water and nutrients; multiple adjacent hosts are often parasitized by one or more Cuscuta plants simultaneously, forming connected plant clusters. Metabolites, proteins, and mRNAs are known to be transferred from hosts to Cuscuta, and Cuscuta bridges even facilitate host-to-host virus movement. Whether Cuscuta bridges transmit ecologically meaningful signals remains unknown. Here we show that, when host plants are connected by Cuscuta bridges, systemic herbivory signals are transmitted from attacked plants to unattacked plants, as revealed by the large transcriptomic changes in the attacked local leaves, undamaged systemic leaves of the attacked plants, and leaves of unattacked but connected hosts. The interplant signaling is largely dependent on the jasmonic acid pathway of the damaged local plants, and can be found among conspecific or heterospecific hosts of different families. Importantly, herbivore attack of one host plant elevates defensive metabolites in the other systemic Cuscuta bridge-connected hosts, resulting in enhanced resistance against insects even in several consecutively Cuscuta-connected host plants over long distances (> 100 cm). By facilitating plant-to-plant signaling, Cuscuta provides an information-based means of countering the resource-based fitness costs to their hosts. PMID:28739895
Violi, Helen A; Menge, John A; Beaver, Robert J
2007-04-01
Plants support numerous root colonists that may share morphological characteristics with mycorrhizal fungi but may play different roles in the rhizosphere. To determine the function of one such root-colonizing fungus, Chaetomium elatum, the infectivity and composition of inoculum containing C. elatum were varied independently of and in association with the known mutualist Glomus intraradices under two light intensities. Maximum plant benefit occurred with mixtures of both G. intraradices and C. elatum and under high light intensity. Under low light intensity and in monoculture, C. elatum functioned as a weak pathogen that was able to kill host plants. Here, maximum plant mortality was associated with the highest levels of C. elatum infectivity. When G. intraradices was present, no negative impact of C. elatum was detected. Intraspecific interactions were important in predicting sporulation rates for both fungi, whereas no interspecific fungal interactions were detected. In the presence of G. intraradices, C. elatum appears to function as a "commensalistic associate," neither impacting plant growth nor sporulation by G. intraradices. Overall, C. elatum appears to be multifunctional, serving as both a rhizoplane and rhizophere fungus, opportunistically colonizing plant roots and only becoming pathogenic when resources are severely limited and intraspecific competition is high. This multifunctional strategy may be shared with other fungi that form similar structures in roots.
Boulanger, Alice; Lautier, Martine; Guynet, Catherine; Denancé, Nicolas; Vasse, Jacques
2007-01-01
TonB-dependent receptors (TBDRs) are outer membrane proteins mainly known for the active transport of iron siderophore complexes in Gram-negative bacteria. Analysis of the genome of the phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc), predicts 72 TBDRs. Such an overrepresentation is common in Xanthomonas species but is limited to only a small number of bacteria. Here, we show that one Xcc TBDR transports sucrose with a very high affinity, suggesting that it might be a sucrose scavenger. This TBDR acts with an inner membrane transporter, an amylosucrase and a regulator to utilize sucrose, thus defining a new type of carbohydrate utilization locus, named CUT locus, involving a TBDR for the transport of substrate across the outer membrane. This sucrose CUT locus is required for full pathogenicity on Arabidopsis, showing its importance for the adaptation to host plants. A systematic analysis of Xcc TBDR genes and a genome context survey suggested that several Xcc TBDRs belong to other CUT loci involved in the utilization of various plant carbohydrates. Interestingly, several Xcc TBDRs and CUT loci are conserved in aquatic bacteria such as Caulobacter crescentus, Colwellia psychrerythraea, Saccharophagus degradans, Shewanella spp., Sphingomonas spp. or Pseudoalteromonas spp., which share the ability to degrade a wide variety of complex carbohydrates and display TBDR overrepresentation. We therefore propose that TBDR overrepresentation and the presence of CUT loci designate the ability to scavenge carbohydrates. Thus CUT loci, which seem to participate to the adaptation of phytopathogenic bacteria to their host plants, might also play a very important role in the biogeochemical cycling of plant-derived nutrients in marine environments. Moreover, the TBDRs and CUT loci identified in this study are clearly different from those characterized in the human gut symbiont Bacteroides thetaiotaomicron, which allow glycan foraging, suggesting a convergent evolution of TBDRs in Proteobacteria and Bacteroidetes. PMID:17311090
YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity
2016-01-01
SUMMARY Gram-negative bacterial pathogens rely on the type III secretion system to inject virulence proteins into host cells. These type III secreted “effector” proteins directly manipulate cellular processes to cause disease. Although the effector repertoires in different bacterial species are highly variable, the Yersinia outer protein J (YopJ) effector family is unique in that its members are produced by diverse animal and plant pathogens as well as a nonpathogenic microsymbiont. All YopJ family effectors share a conserved catalytic triad that is identical to that of the C55 family of cysteine proteases. However, an accumulating body of evidence demonstrates that many YopJ effectors modify their target proteins in hosts by acetylating specific serine, threonine, and/or lysine residues. This unique acetyltransferase activity allows the YopJ family effectors to affect the function and/or stability of their targets, thereby dampening innate immunity. Here, we summarize the current understanding of this prevalent and evolutionarily conserved type III effector family by describing their enzymatic activities and virulence functions in animals and plants. In particular, the molecular mechanisms by which representative YopJ family effectors subvert host immunity through posttranslational modification of their target proteins are discussed. PMID:27784797
Li, Junmin; Jin, Zexin; Song, Wenjing
2012-01-01
Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community. PMID:22493703
Testing Two Methods that Relate Herbivorous Insects to Host Plants
White, Peter J. T.
2013-01-01
Insect herbivores are integral to terrestrial ecosystems. They provide essential food for higher trophic levels and aid in nutrient cycling. In general, research tends to relate individual insect herbivore species to host plant identity, where a species will show preference for one host over another. In contrast, insect herbivore assemblages are often related to host plant richness where an area with a higher richness of hosts will also have a higher richness of herbivores. In this study, the ability of these two approaches (host plant identity/abundance vs. host plant richness) to describe the diversity, richness, and abundance of an herbivorous Lepidoptera assemblage in temperate forest fragments in southern Canada is tested. Analyses indicated that caterpillar diversity, richness, and abundance were better described by quadrat-scale host plant identity and abundance than by host plant richness. Most host plant-herbivore studies to date have only considered investigating host plant preferences at a species level; the type of assemblage level preference shown in this study has been rarely considered. In addition, host plant replacement simulations indicate that increasing the abundance of preferred host plants could increase Lepidoptera richness and abundance by as much as 30% and 40% respectively in disturbed remnant forest fragments. This differs from traditional thinking that suggests higher levels of insect richness can be best obtained by maximizing plant richness. Host plant species that are highly preferred by the forest-dwelling caterpillar assemblage should be given special management and conservation considerations to maximize biodiversity in forest communities. PMID:24205830
Contribution of transposable elements in the plant's genome.
Sahebi, Mahbod; Hanafi, Mohamed M; van Wijnen, Andre J; Rice, David; Rafii, M Y; Azizi, Parisa; Osman, Mohamad; Taheri, Sima; Bakar, Mohd Faizal Abu; Isa, Mohd Noor Mat; Noor, Yusuf Muhammad
2018-07-30
Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.
The invasive MED/Q Bemisia tabaci genome: a tale of gene loss and gene gain.
Xie, Wen; Yang, Xin; Chen, Chunhai; Yang, Zezhong; Guo, Litao; Wang, Dan; Huang, Jinqun; Zhang, Hailin; Wen, Yanan; Zhao, Jinyang; Wu, Qingjun; Wang, Shaoli; Coates, Brad S; Zhou, Xuguo; Zhang, Youjun
2018-01-22
Sweetpotato whitefly, Bemisia tabaci MED/Q and MEAM1/B, are two economically important invasive species that cause considerable damages to agriculture crops through direct feeding and indirect vectoring of plant pathogens. Recently, a draft genome of B. tabaci MED/Q has been assembled. In this study, we focus on the genomic comparison between MED/Q and MEAM1/B, with a special interest in MED/Q's genomic signatures that may contribute to the highly invasive nature of this emerging insect pest. The genomes of both species share similarity in syntenic blocks, but have significant divergence in the gene coding sequence. Expansion of cytochrome P450 monooxygenases and UDP glycosyltransferases in MED/Q and MEAM1/B genome is functionally validated for mediating insecticide resistance in MED/Q using in vivo RNAi. The amino acid biosynthesis pathways in MED/Q genome are partitioned among the host and endosymbiont genomes in a manner distinct from other hemipterans. Evidence of horizontal gene transfer to the host genome may explain their obligate relationship. Putative loss-of-function in the immune deficiency-signaling pathway due to the gene loss is a shared ancestral trait among hemipteran insects. The expansion of detoxification genes families, such as P450s, may contribute to the development of insecticide resistance traits and a broad host range in MED/Q and MEAM1/B, and facilitate species' invasions into intensively managed cropping systems. Numerical and compositional changes in multiple gene families (gene loss and gene gain) in the MED/Q genome sets a foundation for future hypothesis testing that will advance our understanding of adaptation, viral transmission, symbiosis, and plant-insect-pathogen tritrophic interactions.
Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores.
Sanders, Jon G; Beichman, Annabel C; Roman, Joe; Scott, Jarrod J; Emerson, David; McCarthy, James J; Girguis, Peter R
2015-09-22
Mammals host gut microbiomes of immense physiological consequence, but the determinants of diversity in these communities remain poorly understood. Diet appears to be the dominant factor, but host phylogeny also seems to be an important, if unpredictable, correlate. Here we show that baleen whales, which prey on animals (fish and crustaceans), harbor unique gut microbiomes with surprising parallels in functional capacity and higher level taxonomy to those of terrestrial herbivores. These similarities likely reflect a shared role for fermentative metabolisms despite a shift in primary carbon sources from plant-derived to animal-derived polysaccharides, such as chitin. In contrast, protein catabolism and essential amino acid synthesis pathways in baleen whale microbiomes more closely resemble those of terrestrial carnivores. Our results demonstrate that functional attributes of the microbiome can vary independently even given an animal-derived diet, illustrating how diet and evolutionary history combine to shape microbial diversity in the mammalian gut.
Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores
Sanders, Jon G.; Beichman, Annabel C.; Roman, Joe; Scott, Jarrod J.; Emerson, David; McCarthy, James J.; Girguis, Peter R.
2015-01-01
Mammals host gut microbiomes of immense physiological consequence, but the determinants of diversity in these communities remain poorly understood. Diet appears to be the dominant factor, but host phylogeny also seems to be an important, if unpredictable, correlate. Here we show that baleen whales, which prey on animals (fish and crustaceans), harbor unique gut microbiomes with surprising parallels in functional capacity and higher level taxonomy to those of terrestrial herbivores. These similarities likely reflect a shared role for fermentative metabolisms despite a shift in primary carbon sources from plant-derived to animal-derived polysaccharides, such as chitin. In contrast, protein catabolism and essential amino acid synthesis pathways in baleen whale microbiomes more closely resemble those of terrestrial carnivores. Our results demonstrate that functional attributes of the microbiome can vary independently even given an animal-derived diet, illustrating how diet and evolutionary history combine to shape microbial diversity in the mammalian gut. PMID:26393325
Influence of host diet and phylogeny on parasite sharing by fish in a diverse tropical floodplain.
Lima, L B; Bellay, S; Giacomini, H C; Isaac, A; Lima-Junior, D P
2016-03-01
The patterns of parasite sharing among hosts have important implications for ecosystem structure and functioning, and are influenced by several ecological and evolutionary factors associated with both hosts and parasites. Here we evaluated the influence of fish diet and phylogenetic relatedness on the pattern of infection by parasites with contrasting life history strategies in a freshwater ecosystem of key ecological importance in South America. The studied network of interactions included 52 fish species, which consumed 58 food types and were infected with 303 parasite taxa. Our results show that both diet and evolutionary history of hosts significantly explained parasite sharing; phylogenetically close fish species and/or species sharing food types tend to share more parasites. However, the effect of diet was observed only for endoparasites in contrast to ectoparasites. These results are consistent with the different life history strategies and selective pressures imposed on these groups: endoparasites are in general acquired via ingestion by their intermediate hosts, whereas ectoparasites actively seek and attach to the gills, body surface or nostrils of its sole host, thus not depending directly on its feeding habits.
Host plant species determines symbiotic bacterial community mediating suppression of plant defenses
Chung, Seung Ho; Scully, Erin D.; Peiffer, Michelle; Geib, Scott M.; Rosa, Cristina; Hoover, Kelli; Felton, Gary W.
2017-01-01
Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore’s ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants. PMID:28045052
Host plant species determines symbiotic bacterial community mediating suppression of plant defenses.
Chung, Seung Ho; Scully, Erin D; Peiffer, Michelle; Geib, Scott M; Rosa, Cristina; Hoover, Kelli; Felton, Gary W
2017-01-03
Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore's ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants.
The activation and suppression of plant innate immunity by parasitic nematodes.
Goverse, Aska; Smant, Geert
2014-01-01
Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions released by infective juvenile nematodes are thought to be crucial for host invasion, for nematode migration inside plants, and for feeding on host cells. In the past, much of the research focused on the manipulation of developmental pathways in host plants by plant-parasitic nematodes. However, recent findings demonstrate that plant-parasitic nematodes also deliver effectors into the apoplast and cytoplasm of host cells to suppress plant defense responses. In this review, we describe the current insights in the molecular and cellular mechanisms underlying the activation and suppression of host innate immunity by plant-parasitic nematodes along seven critical evolutionary and developmental transitions in plant parasitism.
Knudsen, Geir K.; Norli, Hans R.; Tasin, Marco
2017-01-01
Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear) or unrelated to the host (Pinaceae, spruce) and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E)-4,8-Dimethyl-1,3,7-nonatriene ((E)-DMNT) and (Z)-3-hexenyl acetate was found in the rowan-apple and rowan-pear but not in the rowan-spruce headspace. A higher ratio between the abundance of each field attractive component and that of (E)-DMNT and (Z)-3-hexenyl acetate was measured for rowan and rowan-spruce in contrast to rowan-pear and rowan-apple headspaces. Our result suggests that the ratio between field attractive and background antennaly active volatiles encodes host-plant recognition in our study system. PMID:29312430
Knudsen, Geir K; Norli, Hans R; Tasin, Marco
2017-01-01
Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear) or unrelated to the host (Pinaceae, spruce) and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E)-4,8-Dimethyl-1,3,7-nonatriene ((E)-DMNT) and (Z)-3-hexenyl acetate was found in the rowan-apple and rowan-pear but not in the rowan-spruce headspace. A higher ratio between the abundance of each field attractive component and that of (E)-DMNT and (Z)-3-hexenyl acetate was measured for rowan and rowan-spruce in contrast to rowan-pear and rowan-apple headspaces. Our result suggests that the ratio between field attractive and background antennaly active volatiles encodes host-plant recognition in our study system.
2011-12-19
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a pond hosts a large group of birds including white ibises and bright-pink roseate spoonbills. The center shares a boundary with the Merritt Island National Wildlife Refuge, consisting of 140,000 acres. The refuge provides a wide variety of habitats -- coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks -- that provide sanctuary for more than 1,500 species of plants and animals, including about 331 species of birds. Photo credit: NASA/Jim Grossmann
Research into display sharing techniques for distributed computing environments
NASA Technical Reports Server (NTRS)
Hugg, Steven B.; Fitzgerald, Paul F., Jr.; Rosson, Nina Y.; Johns, Stephen R.
1990-01-01
The X-based Display Sharing solution for distributed computing environments is described. The Display Sharing prototype includes the base functionality for telecast and display copy requirements. Since the prototype implementation is modular and the system design provided flexibility for the Mission Control Center Upgrade (MCCU) operational consideration, the prototype implementation can be the baseline for a production Display Sharing implementation. To facilitate the process the following discussions are presented: Theory of operation; System of architecture; Using the prototype; Software description; Research tools; Prototype evaluation; and Outstanding issues. The prototype is based on the concept of a dedicated central host performing the majority of the Display Sharing processing, allowing minimal impact on each individual workstation. Each workstation participating in Display Sharing hosts programs to facilitate the user's access to Display Sharing as host machine.
Oshima, Kenro; Ishii, Yoshiko; Kakizawa, Shigeyuki; Sugawara, Kyoko; Neriya, Yutaro; Himeno, Misako; Minato, Nami; Miura, Chihiro; Shiraishi, Takuya; Yamaji, Yasuyuki; Namba, Shigetou
2011-01-01
Phytoplasmas are bacterial plant pathogens that have devastating effects on the yields of crops and plants worldwide. They are intracellular parasites of both plants and insects, and are spread among plants by insects. How phytoplasmas can adapt to two diverse environments is of considerable interest; however, the mechanisms enabling the "host switching" between plant and insect hosts are poorly understood. Here, we report that phytoplasmas dramatically alter their gene expression in response to "host switching" between plant and insect. We performed a detailed characterization of the dramatic change that occurs in the gene expression profile of Candidatus Phytoplasma asteris OY-M strain (approximately 33% of the genes change) upon host switching between plant and insect. The phytoplasma may use transporters, secreted proteins, and metabolic enzymes in a host-specific manner. As phytoplasmas reside within the host cell, the proteins secreted from phytoplasmas are thought to play crucial roles in the interplay between phytoplasmas and host cells. Our microarray analysis revealed that the expression of the gene encoding the secreted protein PAM486 was highly upregulated in the plant host, which is also observed by immunohistochemical analysis, suggesting that this protein functions mainly when the phytoplasma grows in the plant host. Additionally, phytoplasma growth in planta was partially suppressed by an inhibitor of the MscL osmotic channel that is highly expressed in the plant host, suggesting that the osmotic channel might play an important role in survival in the plant host. These results also suggest that the elucidation of "host switching" mechanism may contribute to the development of novel pest controls.
Feeding guild of non-host community members affects host-foraging efficiency of a parasitic wasp.
De Rijk, Marjolein; Yang, Daowei; Engel, Bas; Dicke, Marcel; Poelman, Erik H
2016-06-01
Interactions between predator and prey, or parasitoid and host, are shaped by trait- and density-mediated processes involving other community members. Parasitoids that lay their eggs in herbivorous insects locate their hosts through infochemicals such as herbivore-induced plant volatiles (HIPVs) and host-produced kairomones. Hosts are frequently accompanied by non-host herbivores that are unsuitable for the parasitoid. These non-hosts may interfere with host location primarily through trait-mediated processes, by their own infochemicals, and their induction of the emission of plant volatiles. Although it is known that single non-hosts can interfere with parasitoid host location, it is still unknown whether the observed effects are due to species specific characteristics or to the feeding habits of the non-host herbivores. Here we addressed whether the feeding guild of non-host herbivores differentially affects foraging of the parasitoid Cotesia glomerata for its common host, caterpillars of Pieris brassicae feeding on Brassica oleracea plants. We used different phloem-feeding and leaf-chewing non-hosts to study their effects on host location by the parasitoid when searching for host-infested plants based on HIPVs and when searching for hosts on the plant using infochemicals. To evaluate the ultimate effect of these two phases in host location, we studied parasitism efficiency of parasitoids in small plant communities under field-tent conditions. We show that leaf-chewing non-hosts primarily affected host location through trait-mediated effects via plant volatiles, whereas phloem-feeding non-hosts exerted trait-mediated effects by affecting foraging efficiency of the parasitoid on the plant. These trait-mediated effects resulted in associational susceptibility of hosts in environments with phloem feeders and associational resistance in environments with non-host leaf chewers.
Factors Influencing Host Plant Choice and Larval Performance in Bactericera cockerelli
Prager, Sean M.; Esquivel, Isaac; Trumble, John T.
2014-01-01
Among the many topics of interest to ecologists studying associations between phytophagous insects and their host plants are the influence of natal host plant on future oviposition decisions and the mechanisms of generalist versus specialist host selection behavior. In this study, we examined the oviposition preferences, behavior and larval development of the tomato/potato psyllid, Bactericera cockerelli. By rearing psyllids with two distinct geographically-linked haplotypes on different host plants, we were able to examine the role of natal host plant and potential local adaptation on host plant usage. Choice bioassays among three host species demonstrated that psyllids from California had clear preferences that were influenced by natal plant. We further found that patterns in choice bioassays corresponded to observed feeding and movement responses. No-choice bioassays demonstrated that there is little to no association between development and host-plant choice for oviposition, while also indicating that host choice varies between haplotypes. These findings support the concept that mothers do not always choose oviposition sites optimally and also add support for the controversial Hopkins' host selection principle. PMID:24710468
Savage, Amy M; Rudgers, Jennifer A
2013-06-01
In complex communities, organisms often form mutualisms with multiple different partners simultaneously. Non-additive effects may emerge among species linked by these positive interactions. Ants commonly participate in mutualisms with both honeydew-producing insects (HPI) and their extrafloral nectary (EFN)-bearing host plants. Consequently, HPI and EFN-bearing plants may experience non-additive benefits or costs when these groups co-occur. The outcomes of these interactions are likely to be influenced by variation in preferences among ants for honeydew vs. nectar. In this study, a test was made for non-additive effects on HPI and EFN-bearing plants resulting from sharing exotic ant guards. Preferences of the dominant exotic ant species for nectar vs. honeydew resources were also examined. Ant access, HPI and nectar availability were manipulated on the EFN-bearing shrub, Morinda citrifolia, and ant and HPI abundances, herbivory and plant growth were assessed. Ant-tending behaviours toward HPI across an experimental gradient of nectar availability were also tracked in order to investigate mechanisms underlying ant responses. The dominant ant species, Anoplolepis gracilipes, differed from less invasive ants in response to multiple mutualists, with reductions in plot-wide abundances when nectar was reduced, but no response to HPI reduction. Conversely, at sites where A. gracilipes was absent or rare, abundances of less invasive ants increased when nectar was reduced, but declined when HPI were reduced. Non-additive benefits were found at sites dominated by A. gracilipes, but only for M. citrifolia plants. Responses of HPI at these sites supported predictions of the non-additive cost model. Interestingly, the opposite non-additive patterns emerged at sites dominated by other ants. It was demonstrated that strong non-additive benefits and costs can both occur when a plant and herbivore share mutualist partners. These findings suggest that broadening the community context of mutualism studies can reveal important non-additive effects and increase understanding of the dynamics of species interactions.
The plant cell nucleus: a true arena for the fight between plants and pathogens.
Deslandes, Laurent; Rivas, Susana
2011-01-01
Communication between the cytoplasm and the nucleus is a fundamental feature shared by both plant and animal cells. Cellular factors involved in the transport of macromolecules through the nuclear envelope, including nucleoporins, importins and Ran-GTP related components, are conserved among a variety of eukaryotic systems. Interestingly, mutations in these nuclear components compromise resistance signalling, illustrating the importance of nucleocytoplasmic trafficking in plant innate immunity. Indeed, spatial restriction of defence regulators by the nuclear envelope and stimulus-induced nuclear translocation constitute an important level of defence-associated gene regulation in plants. A significant number of effectors from different microbial pathogens are targeted to the plant cell nucleus. In addition, key host factors, including resistance proteins, immunity components, transcription factors and transcriptional regulators shuttle between the cytoplasm and the nucleus, and their level of nuclear accumulation determines the output of the defence response, further confirming the crucial role played by the nucleus during the interaction between plants and pathogens. Here, we discuss recent findings that situate the nucleus at the frontline of the mutual recognition between plants and invading microbes.
NASA Astrophysics Data System (ADS)
Sarkar, A.; Koohikamali, M.; Pick, J. B.
2017-10-01
In recent years, disruptive innovation by peer-to-peer platforms in a variety of industries, notably transportation and hospitality have altered the way individuals consume everyday essential services. With growth in sharing economy platforms such as Uber for ridesharing and Airbnb for short-term accommodations, interest in examining spatiotemporal patterns of participation in the sharing economy by suppliers and consumers is increasing. This research is motivated by key questions: who are the sharing economy workers, where are they located, and does their location influence their participation in the sharing economy? This paper is the first systematic effort to analyze spatiotemporal patterns of participation by hosts in the shared accommodation-based economy. Using three different kinds of shared accommodations listed in a 3-year period in the popular short-term accommodation platform, Airbnb, we examine spatiotemporal dimensions of host participation in a major U.S. market, Los Angeles CA. The paper also develops a conceptual model by positing associations of demographic, socioeconomic, occupational, and social capital attributes of hosts, along with their attitudes toward trust and greener consumption with hosts' participation in a shared accommodation market. Results confirm host participation to be influenced by young dependency ratio, the potential of supplemental income, as well as the sustainability potential of collaborative consumption, along with finance, insurance, and real estate occupation, but not so much by trust for our overall study area. These results add new insights to limited prior knowledge about the sharing economy worker and have policy implications.
Evolutionary dynamics of host-plant specialization: a case study of the tribe Nymphalini.
Janz, N; Nyblom, K; Nylin, S
2001-04-01
Two general patterns that have emerged from the intense studies on insect-host plant associations are a predominance of specialists over generalists and a taxonomic conservatism in host-plant use. In most insect-host plant systems, explanations for these patterns must be based on biases in the processes of host colonizations, host shifts, and specialization, rather than cospeciation. In the present paper, we investigate changes in host range in the nymphalid butterfly tribe Nymphalini, using parsimony optimizations of host-plant data on the butterfly phylogeny. In addition, we performed larval establishment tests to search for larval capacity to feed and survive on plants that have been lost from the female egg-laying repertoire. Optimizations suggested an ancestral association with Urticaceae, and most of the tested species showed a capacity to feed on Urtica dioica regardless of actual host-plant use. In addition, there was a bias among the successful establishments on nonhosts toward plants that are used as hosts by other species in the Nymphalini. An increased likelihood of colonizing ancestral or related plants could also provide an alternative explanation for the observed pattern that some plant families appear to have been colonized independently several times in the tribe. We also show that there is no directionality in host range evolution toward increased specialization, that is, specialization is not a dead end. Instead, changes in host range show a very dynamic pattern.
Tiple, Ashish D.; Khurad, Arun M.; Dennis, Roger L. H.
2011-01-01
This study examines butterfly larval host plants, herbivory and related life history attributes within Nagpur City, India. The larval host plants of 120 butterfly species are identified and their host specificity, life form, biotope, abundance and perennation recorded; of the 126 larval host plants, most are trees (49), with fewer herbs (43), shrubs (22), climbers (7) and stem parasites (2). They include 89 wild, 23 cultivated, 11 wild/cultivated and 3 exotic plant species; 78 are perennials, 43 annuals and 5 biannuals. Plants belonging to Poaceae and Fabaceae are most widely used by butterfly larvae. In addition to distinctions in host plant family affiliation, a number of significant differences between butterfly families have been identified in host use patterns: for life forms, biotopes, landforms, perennation, host specificity, egg batch size and ant associations. These differences arising from the development of a butterfly resource database have important implications for conserving butterfly species within the city area. Differences in overall butterfly population sizes within the city relate mainly to the number of host plants used, but other influences, including egg batch size and host specificity are identified. Much of the variation in population size is unaccounted for and points to the need to investigate larval host plant life history and strategies as population size is not simply dependent on host plant abundance. PMID:21864159
Centrally managed unified shared virtual address space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkes, John
Systems, apparatuses, and methods for managing a unified shared virtual address space. A host may execute system software and manage a plurality of nodes coupled to the host. The host may send work tasks to the nodes, and for each node, the host may externally manage the node's view of the system's virtual address space. Each node may have a central processing unit (CPU) style memory management unit (MMU) with an internal translation lookaside buffer (TLB). In one embodiment, the host may be coupled to a given node via an input/output memory management unit (IOMMU) interface, where the IOMMU frontendmore » interface shares the TLB with the given node's MMU. In another embodiment, the host may control the given node's view of virtual address space via memory-mapped control registers.« less
Checklist of host plants of insect galls in the state of Goiás in the Midwest Region of Brazil
Porfírio Júnior, Eder Dasdoriano; Ribeiro, Bárbara Araújo; Silva, Taiza Moura; Silva, Elienai Cândida e; Guilherme, Frederico Augusto Guimarães; Scareli-Santos, Claudia; dos Santos, Benedito Baptista
2015-01-01
Abstract Background Surveys of host plants of insect galls have been performed in different regions of Brazil. The knowledge of species of host plants of insect galls is fundamental to further studies of plant-galling insect interactions. However, a list of host plant species of gall-inducing insects has not yet been compiled for the flora of the Midwest Region of Brazil. New information We provide a compilation of the plant species reported to host insect galls in the Cerrado of the state of Goiás in the Midwest Region of Brazil. Altogether we found records for 181 species of 47 families of host plants, which hosted 365 distinct gall morphotypes. PMID:26696767
Checklist of host plants of insect galls in the state of Goiás in the Midwest Region of Brazil.
de Araújo, Walter Santos; Porfírio Júnior, Eder Dasdoriano; Ribeiro, Bárbara Araújo; Silva, Taiza Moura; Silva, Elienai Cândida E; Guilherme, Frederico Augusto Guimarães; Scareli-Santos, Claudia; Dos Santos, Benedito Baptista
2015-01-01
Surveys of host plants of insect galls have been performed in different regions of Brazil. The knowledge of species of host plants of insect galls is fundamental to further studies of plant-galling insect interactions. However, a list of host plant species of gall-inducing insects has not yet been compiled for the flora of the Midwest Region of Brazil. We provide a compilation of the plant species reported to host insect galls in the Cerrado of the state of Goiás in the Midwest Region of Brazil. Altogether we found records for 181 species of 47 families of host plants, which hosted 365 distinct gall morphotypes.
Oshima, Kenro; Ishii, Yoshiko; Kakizawa, Shigeyuki; Sugawara, Kyoko; Neriya, Yutaro; Himeno, Misako; Minato, Nami; Miura, Chihiro; Shiraishi, Takuya; Yamaji, Yasuyuki; Namba, Shigetou
2011-01-01
Phytoplasmas are bacterial plant pathogens that have devastating effects on the yields of crops and plants worldwide. They are intracellular parasites of both plants and insects, and are spread among plants by insects. How phytoplasmas can adapt to two diverse environments is of considerable interest; however, the mechanisms enabling the “host switching” between plant and insect hosts are poorly understood. Here, we report that phytoplasmas dramatically alter their gene expression in response to “host switching” between plant and insect. We performed a detailed characterization of the dramatic change that occurs in the gene expression profile of Candidatus Phytoplasma asteris OY-M strain (approximately 33% of the genes change) upon host switching between plant and insect. The phytoplasma may use transporters, secreted proteins, and metabolic enzymes in a host-specific manner. As phytoplasmas reside within the host cell, the proteins secreted from phytoplasmas are thought to play crucial roles in the interplay between phytoplasmas and host cells. Our microarray analysis revealed that the expression of the gene encoding the secreted protein PAM486 was highly upregulated in the plant host, which is also observed by immunohistochemical analysis, suggesting that this protein functions mainly when the phytoplasma grows in the plant host. Additionally, phytoplasma growth in planta was partially suppressed by an inhibitor of the MscL osmotic channel that is highly expressed in the plant host, suggesting that the osmotic channel might play an important role in survival in the plant host. These results also suggest that the elucidation of “host switching” mechanism may contribute to the development of novel pest controls. PMID:21858041
Wei, Chia-Fong; Hsu, Shih-Tien; Deng, Wen-Ling; Wen, Yu-Der; Huang, Hsiou-Chen
2012-01-01
A new pathogen, Pseudomonas syringae pv. averrhoi (Pav), which causes bacterial spot disease on carambola was identified in Taiwan in 1997. Many strains of this pathovar have been isolated from different locations and several varieties of hosts. Some of these strains, such as HL1, are nonmotile and elicit a strong hypersensitive response (HR) in nonhost tobacco leaves, while other strains, such as PA5, are motile and elicit a weak HR. Based on the image from a transmission electron microscope, the results showed that HL1 is flagellum-deficient and PA5 has normal flagella. Here we cloned and analyzed the fliC gene and glycosylation island from Pav HL1 and PA5. The amino acid sequences of FliC from HL1 and PA5 are identical to P. s. pvs. tabaci (Pta), glycinea and phaseolicola and share very high similarity with other pathovars of P. syringae. In contrast to the flagellin mutant PtaΔfliC, PA5ΔfliC grows as well as wild type in the host plant, but it elicits stronger HR than wild type does in non-host plants. Furthermore, the purified Pav flagellin, but not the divergent flagellin from Agrobacterium tumefaciens, is able to impair the HR induced by PA5ΔfliC. PA5Δfgt1 possessing nonglycosylated flagella behaved as its wild type in both bacterial growth in host and HR elicitation. Flagellin was infiltrated into tobacco leaves either simultaneously with flagellum-deficient HL1 or prior to the inoculation of wild type HL1, and both treatments impaired the HR induced by HL1. Moreover, the HR elicited by PA5 and PA5ΔfliC was enhanced by the addition of cycloheximide, suggesting that the flagellin is one of the PAMPs (pathogen-associated molecular patterns) contributed to induce the PAMP-triggered immunity (PTI). Taken together, the results shown in this study reveal that flagellin in Pav is capable of suppressing HR via PTI induction during an incompatible interaction. PMID:22911741
Wei, Chia-Fong; Hsu, Shih-Tien; Deng, Wen-Ling; Wen, Yu-Der; Huang, Hsiou-Chen
2012-01-01
A new pathogen, Pseudomonas syringae pv. averrhoi (Pav), which causes bacterial spot disease on carambola was identified in Taiwan in 1997. Many strains of this pathovar have been isolated from different locations and several varieties of hosts. Some of these strains, such as HL1, are nonmotile and elicit a strong hypersensitive response (HR) in nonhost tobacco leaves, while other strains, such as PA5, are motile and elicit a weak HR. Based on the image from a transmission electron microscope, the results showed that HL1 is flagellum-deficient and PA5 has normal flagella. Here we cloned and analyzed the fliC gene and glycosylation island from Pav HL1 and PA5. The amino acid sequences of FliC from HL1 and PA5 are identical to P. s. pvs. tabaci (Pta), glycinea and phaseolicola and share very high similarity with other pathovars of P. syringae. In contrast to the flagellin mutant PtaΔfliC, PA5ΔfliC grows as well as wild type in the host plant, but it elicits stronger HR than wild type does in non-host plants. Furthermore, the purified Pav flagellin, but not the divergent flagellin from Agrobacterium tumefaciens, is able to impair the HR induced by PA5ΔfliC. PA5Δfgt1 possessing nonglycosylated flagella behaved as its wild type in both bacterial growth in host and HR elicitation. Flagellin was infiltrated into tobacco leaves either simultaneously with flagellum-deficient HL1 or prior to the inoculation of wild type HL1, and both treatments impaired the HR induced by HL1. Moreover, the HR elicited by PA5 and PA5ΔfliC was enhanced by the addition of cycloheximide, suggesting that the flagellin is one of the PAMPs (pathogen-associated molecular patterns) contributed to induce the PAMP-triggered immunity (PTI). Taken together, the results shown in this study reveal that flagellin in Pav is capable of suppressing HR via PTI induction during an incompatible interaction.
YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity.
Ma, Ka-Wai; Ma, Wenbo
2016-12-01
Gram-negative bacterial pathogens rely on the type III secretion system to inject virulence proteins into host cells. These type III secreted "effector" proteins directly manipulate cellular processes to cause disease. Although the effector repertoires in different bacterial species are highly variable, the Yersinia outer protein J (YopJ) effector family is unique in that its members are produced by diverse animal and plant pathogens as well as a nonpathogenic microsymbiont. All YopJ family effectors share a conserved catalytic triad that is identical to that of the C55 family of cysteine proteases. However, an accumulating body of evidence demonstrates that many YopJ effectors modify their target proteins in hosts by acetylating specific serine, threonine, and/or lysine residues. This unique acetyltransferase activity allows the YopJ family effectors to affect the function and/or stability of their targets, thereby dampening innate immunity. Here, we summarize the current understanding of this prevalent and evolutionarily conserved type III effector family by describing their enzymatic activities and virulence functions in animals and plants. In particular, the molecular mechanisms by which representative YopJ family effectors subvert host immunity through posttranslational modification of their target proteins are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Himler, Anna G; Machado, Carlos A
2009-12-01
Coevolutionary interactions between plants and their associated pollinators and seed dispersers are thought to have promoted the diversification of flowering plants (Raven 1977; Regal 1977; Stebbins 1981). The actual mechanisms by which pollinators could drive species diversification in plants are not fully understood. However, it is thought that pollinator host specialization can influence the evolution of reproductive isolation among plant populations because the pollinator's choice of host is what determines patterns of gene flow in its host plant, and host choice may also have important consequences on pollinator and host fitness (Grant 1949; Bawa 1992). In this issue of Molecular Ecology, Smith et al. (2009) present a very interesting study that addresses how host specialization affects pollinator fitness and patterns of gene flow in a plant host. Several aspects of this study match elements of a seminal mathematical model of plant-pollinator codivergence (Kiester et al. 1984) suggesting that reciprocal selection for matched plant and pollinator reproductive traits may lead to speciation in the host and its pollinator when there is strong host specialization and a pattern of geographic subdivision. Smith et al.'s study represents an important step to fill the gap in our understanding of how reciprocal selection may lead to speciation in coevolved plant-pollinator mutualisms.
The Use of Arabidopsis to Study Interactions between Parasitic Angiosperms and Their Plant Hosts
Goldwasser, Y.; Westwood, J. H.; Yoder, J. I.
2002-01-01
Parasitic plants invade host plants in order to rob them of water, minerals and nutrients. The consequences to the infected hosts can be debilitating and some of the world's most pernicious agricultural weeds are parasitic. Parasitic genera of the Scrophulariaceae and Orobanchaceae directly invade roots of neighboring plants via underground structures called haustoria. The mechanisms by which these parasites identify and associate with host plants present unsurpassed opportunities for studying chemical signaling in plant-plant interactions. Seeds of some parasites require specific host factors for efficient germination, thereby insuring the availability of an appropriate host root prior to germination. A second set of signal molecules is required to induce haustorium development and the beginning of heterotrophy. Later stages in parasitism also require the presence of host factors, although these have not yet been well characterized. Arabidopsis is being used as a model host plant to identify genetic loci associated with stimulating parasite germination, haustorium development, and parasite support. Arabidopsis is also being employed to explore how host plants respond to parasite attack. Current methodologies and recent findings in Arabidopsis – parasitic plant interactions will be discussed. PMID:22303205
Micro- and Macroevolutionary Trade-Offs in Plant-Feeding Insects.
Peterson, Daniel A; Hardy, Nate B; Normark, Benjamin B
2016-12-01
A long-standing hypothesis asserts that plant-feeding insects specialize on particular host plants because of negative interactions (trade-offs) between adaptations to alternative hosts, yet empirical evidence for such trade-offs is scarce. Most studies have looked for microevolutionary performance trade-offs within insect species, but host use could also be constrained by macroevolutionary trade-offs caused by epistasis and historical contingency. Here we used a phylogenetic approach to estimate the micro- and macroevolutionary correlations between use of alternative host-plant taxa within two major orders of plant-feeding insects: Lepidoptera (caterpillars) and Hemiptera (true bugs). Across 1,604 caterpillar species, we found both positive and negative pairwise correlations between use of 11 host-plant orders, with overall network patterns suggesting that different host-use constraints act over micro- and macroevolutionary timescales. In contrast, host-use patterns of 955 true bug species revealed uniformly positive correlations between use of the same 11 host plant orders over both timescales. The lack of consistent patterns across timescales and insect orders indicates that host-use trade-offs are historically contingent rather than universal constraints. Moreover, we observed few negative correlations overall despite the wide taxonomic and ecological diversity of the focal host-plant orders, suggesting that positive interactions between host-use adaptations, not trade-offs, dominate the long-term evolution of host use in plant-feeding insects.
Beckstead, Julie; Meyer, Susan E.; Ishizuka, Toby S.; McEvoy, Kelsey M.; Coleman, Craig E.
2016-01-01
Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora semeniperda by reciprocally inoculating pathogen strains from Bromus tectorum and from four other winter annual grass weeds (Bromus diandrus, Bromus rubens, Bromus arvensis and Taeniatherum caput-medusae) onto dormant seeds of B. tectorum and each alternate host. We found that host species varied in resistance and pathogen strains varied in aggressiveness, but there was no evidence for host specialization. Most variation in aggressiveness was among strains within populations and was expressed similarly on both hosts, resulting in a positive correlation between strain-level disease incidence on B. tectorum and on the alternate host. In spite of this lack of host specialization, we detected weak but significant population genetic structure as a function of host species using two neutral marker systems that yielded similar results. This genetic structure is most likely due to founder effects, as the pathogen is known to be dispersed with host seeds. All host species were highly susceptible to their own pathogen races. Tolerance to infection (i.e., the ability to germinate even when infected and thereby avoid seed mortality) increased as a function of seed germination rate, which in turn increased as dormancy was lost. Pyrenophora semeniperda apparently does not require host specialization to fully exploit these winter annual grass species, which share many life history features that make them ideal hosts for this pathogen. PMID:26950931
Lev-Yadun, Simcha
2013-07-01
Aposematism (warning) signaling is a common defensive mechanism toward predatory or herbivorous animals, i.e., interactions between different trophic levels. I propose that it should be considered at least as a working hypothesis that chemical aposematism operates between certain host plants and their plant predators, parasitic plants, and that although they are also plants, they belong to a higher trophic level. Specific host plant genotypes emit known repelling chemical signals toward parasitic plants, which reduce the level of, slow the directional parasite growth (attack) toward the signaling hosts, or even cause parasitic plants to grow away from them in response to these chemicals. Chemical host aposematism toward parasitic plants may be a common but overlooked defense from parasitic plants.
Cui, Hongguang; Wang, Aiming
2017-03-01
RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus-induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile period and are recalcitrant to genetic transformation. Here, we report the development of a viral vector derived from Prunus necrotic ringspot virus (PNRSV), a widespread fruit tree virus that is endemic in all Prunus fruit production countries and regions in the world. We show that the modified PNRSV vector, harbouring the sense-orientated target gene sequence of 100-200 bp in length in genomic RNA3, could efficiently trigger the silencing of a transgene or an endogenous gene in the model plant Nicotiana benthamiana. We further demonstrate that the PNRSV-based vector could be manipulated to silence endogenous genes in peach such as eukaryotic translation initiation factor 4E isoform (eIF(iso)4E), a host factor of many potyviruses including Plum pox virus (PPV). Moreover, the eIF(iso)4E-knocked down peach plants were resistant to PPV. This work opens a potential avenue for the control of virus diseases in perennial trees via viral vector-mediated silencing of host factors, and the PNRSV vector may serve as a powerful molecular tool for functional genomic studies of Prunus fruit trees. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Phytophagous insect fauna tracks host plant responses to exotic grass invasion.
Almeida-Neto, Mário; Prado, Paulo I; Lewinsohn, Thomas M
2011-04-01
The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.
Stockton, Dara G.; Martini, Xavier; Patt, Joseph M.; Stelinski, Lukasz L.
2016-01-01
Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri; vector of the causal agent of citrus greening disease or huanglongbing. We investigated: a) whether development on specific host plant species influenced host plant preference in mature D. citri; and b) the extent of associative learning in D. citri in the form of simple and compound conditioning. Learning was measured by cue selection in a 2-choice behavioral assay and compared to naïve controls. Our results showed that learned responses in D. citri are complex and diverse. The developmental host plant species influenced adult host plant preference, with female psyllids preferring the species on which they were reared. However, such preferences were subject to change with the introduction of an alternative host plant within 24–48 hrs, indicating a large degree of experience-dependent response plasticity. Additionally, learning occurred for multiple sensory modalities where novel olfactory and visual environmental cues were associated with the host plant. However, males and females displayed differing discriminatory abilities. In compound conditioning tasks, males exhibited recognition of a compound stimulus alone while females were capable of learning the individual components. These findings suggest D. citri are dynamic animals that demonstrate host plant preference based on developmental and adult experience and can learn to recognize olfactory and visual host plant stimuli in ways that may be sex specific. These experience-based associations are likely used by adults to locate and select suitable host plants for feeding and reproduction and may suggest the need for more tailored lures and traps, which reflect region-specific cultivars or predominate Rutaceae in the area being monitored. PMID:26930355
Stockton, Dara G; Martini, Xavier; Patt, Joseph M; Stelinski, Lukasz L
2016-01-01
Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri; vector of the causal agent of citrus greening disease or huanglongbing. We investigated: a) whether development on specific host plant species influenced host plant preference in mature D. citri; and b) the extent of associative learning in D. citri in the form of simple and compound conditioning. Learning was measured by cue selection in a 2-choice behavioral assay and compared to naïve controls. Our results showed that learned responses in D. citri are complex and diverse. The developmental host plant species influenced adult host plant preference, with female psyllids preferring the species on which they were reared. However, such preferences were subject to change with the introduction of an alternative host plant within 24-48 hrs, indicating a large degree of experience-dependent response plasticity. Additionally, learning occurred for multiple sensory modalities where novel olfactory and visual environmental cues were associated with the host plant. However, males and females displayed differing discriminatory abilities. In compound conditioning tasks, males exhibited recognition of a compound stimulus alone while females were capable of learning the individual components. These findings suggest D. citri are dynamic animals that demonstrate host plant preference based on developmental and adult experience and can learn to recognize olfactory and visual host plant stimuli in ways that may be sex specific. These experience-based associations are likely used by adults to locate and select suitable host plants for feeding and reproduction and may suggest the need for more tailored lures and traps, which reflect region-specific cultivars or predominate Rutaceae in the area being monitored.
Do rice water weevils and rice stem borers compete when sharing a host plant?*
Shi, Sheng-wei; He, Yan; Ji, Xiang-hua; Jiang, Ming-xing; Cheng, Jia-an
2008-01-01
The rice water weevil (RWW) Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae) is an invasive insect pest of rice Oryza sativa L. in China. Little is known about the interactions of this weevil with indigenous herbivores. In the present study, adult feeding and population density of the weevil, injury level of striped stem borer Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) and pink stem borer Sesamia inferens (Walker) (Lepidoptera: Noctuidae) to rice, as well as growth status of their host plants were surveyed in a rice field located in Southeastern Zhejiang, China, in 2004 with the objective to discover interspecific interactions on the rice. At tillering stage, both adult feeding of the weevil and injury of the stem borers tended to occur on larger tillers (bearing 5 leaves) compared with small tillers (bearing 2~4 leaves), but the insects showed no evident competition with each other. At booting stage, the stem borers caused more withering/dead hearts and the weevil reached a higher density on the plants which had more productive tillers and larger root system; the number of weevils per tiller correlated negatively with the percentage of withering/dead hearts of plants in a hill. These observations indicate that interspecific interactions exist between the rice water weevil and the rice stem borers with negative relations occurring at booting or earlier developmental stages of rice. PMID:18600788
Salvaudon, Lucie; De Moraes, Consuelo M.; Mescher, Mark C.
2013-01-01
Recent studies have documented effects of plant viruses on host plants that appear to enhance transmission by insect vectors. But, almost no empirical work has explored the implications of such apparent manipulation for interactions among co-infecting pathogens. We examined single and mixed infections of two potyviruses, watermelon mosaic virus (WMV) and zucchini yellow mosaic virus (ZYMV), that frequently co-occur in cucurbitaceae populations and share the same aphid vectors. We found that ZYMV isolates replicated at similar rates in single and mixed infections, whereas WMV strains accumulated to significantly lower levels in the presence of ZYMV. Furthermore, ZYMV induced changes in leaf colour and volatile emissions that enhanced aphid (Aphis gossypii) recruitment to infected plants. By contrast, WMV did not elicit strong effects on plant–aphid interactions. Nevertheless, WMV was still readily transmitted from mixed infections, despite fairing poorly in in-plant competition. These findings suggest that pathogen effects on host–vector interactions may well influence competition among co-infecting pathogens. For example, if non-manipulative pathogens benefit from the increased vector traffic elicited by manipulative competitors, their costs of competition may be mitigated to some extent. Conversely, the benefits of manipulation may be limited by free-rider effects in systems where there is strong competition among pathogens for host resources and/or access to vectors. PMID:23407835
Yu, Ziquan; Xiong, Jing; Zhou, Qiaoni; Luo, Haiyan; Hu, Shengbiao; Xia, Liqiu; Sun, Ming; Li, Lin; Yu, Ziniu
2015-02-01
Cry6A toxin from Bacillus thuringiensis is a representative nematicidal crystal protein with a variety of nematicidal properties to free-living nematode Caenorhabditis elegans. Cry6A shares very low homology and different structure with Cry5B, another representative nematicidal crystal protein, and probably acts in a distinct pathway. All these strongly indicate that Cry6A toxin is likely a potent candidate for nematicide. The present study dealt with global investigation to determine the detrimental impacts of Cry6Aa2 toxin on Meloidogyne hapla, a root-knot nematode, and evaluated its biocontrol efficacy in pot experiment. Obtained results indicated that Cry6Aa2 toxin exhibits obvious toxicity to second-stage juvenile of M. hapla, and significantly inhibits egg hatch, motility, and penetration to host plant. Pot experiment suggested that soil drenching with spore-crystal mixture of Cry6Aa2 can clearly lighten the disease of root-knot nematode, including reduction of galling index and egg masses on host plant root, decreasing final population of nematode in soil. Moreover, application of Cry6Aa2 can obviously promote plant growth. These results demonstrated that Cry6Aa2 toxin is a promising nematicidal agent, and possesses great potential in plant-parasitic nematode management and construction of transgenic crop with constant resistance to nematode. Copyright © 2015 Elsevier Inc. All rights reserved.
Do rice water weevils and rice stem borers compete when sharing a host plant?
Shi, Sheng-Wei; He, Yan; Ji, Xiang-Hua; Jiang, Ming-Xing; Cheng, Jia-An
2008-07-01
The rice water weevil (RWW) Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae) is an invasive insect pest of rice Oryza sativa L. in China. Little is known about the interactions of this weevil with indigenous herbivores. In the present study, adult feeding and population density of the weevil, injury level of striped stem borer Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) and pink stem borer Sesamia inferens (Walker) (Lepidoptera: Noctuidae) to rice, as well as growth status of their host plants were surveyed in a rice field located in Southeastern Zhejiang, China, in 2004 with the objective to discover interspecific interactions on the rice. At tillering stage, both adult feeding of the weevil and injury of the stem borers tended to occur on larger tillers (bearing 5 leaves) compared with small tillers (bearing 2~4 leaves), but the insects showed no evident competition with each other. At booting stage, the stem borers caused more withering/dead hearts and the weevil reached a higher density on the plants which had more productive tillers and larger root system; the number of weevils per tiller correlated negatively with the percentage of withering/dead hearts of plants in a hill. These observations indicate that interspecific interactions exist between the rice water weevil and the rice stem borers with negative relations occurring at booting or earlier developmental stages of rice.
Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae
2014-01-01
Background Rice blast fungus Magnaporthe oryzae is one of the most devastating pathogens in rice. Avirulence genes in this fungus share a gene-for-gene relationship with the resistance genes in its host rice. Although numerous studies have shown that rice blast R-genes are extremely diverse and evolve rapidly in their host populations, little is known about the evolutionary patterns of the Avr-genes in the pathogens. Results Here, six well-characterized Avr-genes and seven randomly selected non-Avr control genes were used to investigate the genetic variations in 62 rice blast strains from different parts of China. Frequent presence/absence polymorphisms, high levels of nucleotide variation (~10-fold higher than non-Avr genes), high non-synonymous to synonymous substitution ratios, and frequent shared non-synonymous substitution were observed in the Avr-genes of these diversified blast strains. In addition, most Avr-genes are closely associated with diverse repeated sequences, which may partially explain the frequent presence/absence polymorphisms in Avr-genes. Conclusion The frequent deletion and gain of Avr-genes and rapid non-synonymous variations might be the primary mechanisms underlying rapid adaptive evolution of pathogens toward virulence to their host plants, and these features can be used as the indicators for identifying additional Avr-genes. The high number of nucleotide polymorphisms among Avr-gene alleles could also be used to distinguish genetic groups among different strains. PMID:24725999
Wang, Jianying; Replogle, Amy; Hussey, Richard; Baum, Thomas; Wang, Xiaohong; Davis, Eric L; Mitchum, Melissa G
2011-02-01
In this article, we present the cloning of two CLAVATA3/ESR (CLE)-like genes, HsCLE1 and HsCLE2, from the beet cyst nematode Heterodera schachtii, a plant-parasitic cyst nematode with a relatively broad host range that includes the model plant Arabidopsis. CLEs are small secreted peptide ligands that play important roles in plant growth and development. By secreting peptide mimics of plant CLEs, the nematode can developmentally reprogramme root cells for the formation of unique feeding sites within host roots for its own benefit. Both HsCLE1 and HsCLE2 encode small secreted polypeptides with a conserved C-terminal CLE domain sharing highest similarity to Arabidopsis CLEs 1-7. Moreover, HsCLE2 contains a 12-amino-acid CLE motif that is identical to AtCLE5 and AtCLE6. Like all other plant and nematode CLEs identified to date, HsCLEs caused wuschel-like phenotypes when overexpressed in Arabidopsis, and this activity was abolished when the proteins were expressed without the CLE motif. HsCLEs could also function in planta without a signal peptide, highlighting the unique, yet conserved function of nematode CLE variable domains in trafficking CLE peptides for secretion. In a direct comparison of HsCLE2 overexpression phenotypes with those of AtCLE5 and AtCLE6, similar shoot and root phenotypes were observed. Exogenous application of 12-amino-acid synthetic peptides corresponding to the CLE motifs of HsCLEs and AtCLE5/6 suggests that the function of this class of CLEs may be subject to complex endogenous regulation. When seedlings were grown on high concentrations of peptide (10 µm), root growth was suppressed; however, when seedlings were grown on low concentrations of peptide (0.1 µm), root growth was stimulated. Together, these findings indicate that AtCLEs1-7 may be the target peptides mimicked by HsCLEs to promote parasitism. © 2010 The Authors. Molecular Plant Pathology © 2010 BSPP and Blackwell Publishing Ltd.
Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts.
Mauck, Kerry E; De Moraes, Consuelo M; Mescher, Mark C
2010-02-23
Previous studies have shown that vector-borne pathogens can alter the phenotypes of their hosts and vectors in ways that influence the frequency and nature of interactions between them, with significant implications for the transmission and spread of disease. For insect-borne pathogens, host odors are particularly likely targets for manipulation, because both plant- and animal-feeding insects use volatile compounds derived from their hosts as key foraging cues. Here, we document the effects of a widespread plant pathogen, Cucumber mosaic virus (CMV), on the quality and attractiveness of one of its host plants (Cucurbita pepo cv. Dixie) for two aphid vectors, Myzus persicae and Aphis gossypii. Our results indicate that CMV greatly reduces host-plant quality-aphids performed poorly on infected plants and rapidly emigrated from them-but increases the attractiveness of infected plants to aphids by inducing elevated emissions of a plant volatile blend otherwise similar to that emitted by healthy plants. Thus, CMV appears to attract vectors deceptively to infected plants from which they then disperse rapidly, a pattern highly conducive to the nonpersistent transmission mechanism employed by CMV and very different from the pattern previously reported for persistently transmitted viruses that require sustained aphid feeding for transmission. In addition to providing a documented example of a pathogen inducing a deceptive signal of host-plant quality to vectors, our results suggest that the transmission mechanism is a major factor shaping pathogen-induced changes in host-plant phenotypes. Furthermore, our findings yield a general hypothesis that, when vector-borne plant or animal pathogens reduce host quality for vectors, pathogen-induced changes in host phenotypes that enhance vector attraction frequently will involve the exaggeration of existing host-location cues.
Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts
Mauck, Kerry E.; De Moraes, Consuelo M.; Mescher, Mark C.
2010-01-01
Previous studies have shown that vector-borne pathogens can alter the phenotypes of their hosts and vectors in ways that influence the frequency and nature of interactions between them, with significant implications for the transmission and spread of disease. For insect-borne pathogens, host odors are particularly likely targets for manipulation, because both plant- and animal-feeding insects use volatile compounds derived from their hosts as key foraging cues. Here, we document the effects of a widespread plant pathogen, Cucumber mosaic virus (CMV), on the quality and attractiveness of one of its host plants (Cucurbita pepo cv. Dixie) for two aphid vectors, Myzus persicae and Aphis gossypii. Our results indicate that CMV greatly reduces host-plant quality—aphids performed poorly on infected plants and rapidly emigrated from them—but increases the attractiveness of infected plants to aphids by inducing elevated emissions of a plant volatile blend otherwise similar to that emitted by healthy plants. Thus, CMV appears to attract vectors deceptively to infected plants from which they then disperse rapidly, a pattern highly conducive to the nonpersistent transmission mechanism employed by CMV and very different from the pattern previously reported for persistently transmitted viruses that require sustained aphid feeding for transmission. In addition to providing a documented example of a pathogen inducing a deceptive signal of host-plant quality to vectors, our results suggest that the transmission mechanism is a major factor shaping pathogen-induced changes in host-plant phenotypes. Furthermore, our findings yield a general hypothesis that, when vector-borne plant or animal pathogens reduce host quality for vectors, pathogen-induced changes in host phenotypes that enhance vector attraction frequently will involve the exaggeration of existing host-location cues. PMID:20133719
Transgenerational acclimatization in an herbivore–host plant relationship
Cahenzli, Fabian; Erhardt, Andreas
2013-01-01
Twenty years ago, scientists began to recognize that parental effects are one of the most important influences on progeny phenotype. Consequently, it was postulated that herbivorous insects could produce progeny that are acclimatized to the host plant experienced by the parents to improve progeny fitness, because host plants vary greatly in quality and quantity, and can thus provide important cues about the resources encountered by the next generation. However, despite the possible profound implications for our understanding of host-use evolution of herbivores, host-race formation and sympatric speciation, intense research has been unable to verify transgenerational acclimatization in herbivore–host plant relationships. We reared Coenonympha pamphilus larvae in the parental generation (P) on high- and low-quality host plants, and reared the offspring (F1) of both treatments again on high- and low-quality plants. We tested not only for maternal effects, as most previous studies, but also for paternal effects. Our results show that parents experiencing predictive cues on their host plant can indeed adjust progeny's phenotype to anticipated host plant quality. Maternal effects affected female and male offspring, whereas paternal effects affected only male progeny. We here verify, for the first time to our knowledge, the long postulated transgenerational acclimatization in an herbivore–host plant interaction. PMID:23407834
Transgenerational acclimatization in an herbivore-host plant relationship.
Cahenzli, Fabian; Erhardt, Andreas
2013-04-07
Twenty years ago, scientists began to recognize that parental effects are one of the most important influences on progeny phenotype. Consequently, it was postulated that herbivorous insects could produce progeny that are acclimatized to the host plant experienced by the parents to improve progeny fitness, because host plants vary greatly in quality and quantity, and can thus provide important cues about the resources encountered by the next generation. However, despite the possible profound implications for our understanding of host-use evolution of herbivores, host-race formation and sympatric speciation, intense research has been unable to verify transgenerational acclimatization in herbivore-host plant relationships. We reared Coenonympha pamphilus larvae in the parental generation (P) on high- and low-quality host plants, and reared the offspring (F(1)) of both treatments again on high- and low-quality plants. We tested not only for maternal effects, as most previous studies, but also for paternal effects. Our results show that parents experiencing predictive cues on their host plant can indeed adjust progeny's phenotype to anticipated host plant quality. Maternal effects affected female and male offspring, whereas paternal effects affected only male progeny. We here verify, for the first time to our knowledge, the long postulated transgenerational acclimatization in an herbivore-host plant interaction.
Intersections between immune responses and morphological regulation in plants.
Uchida, Naoyuki; Tasaka, Masao
2010-06-01
Successful plant pathogens have developed strategies to interfere with the defence mechanisms of their host plants through evolution. Conversely, host plants have evolved systems to counteract pathogen attack. Some pathogens induce pathogenic symptoms on plants that include morphological changes in addition to interference with plant growth. Recent studies, based on molecular biology and genetics using Arabidopsis thaliana, have revealed that factors derived from pathogens can modulate host systems and/or host factors that play important roles in the morphological regulation of host plants. Other reports, meanwhile, have shown that factors known to have roles in plant morphology also function in plant immune responses. Evolutionary conservation of these factors and systems implies that host-pathogen interactions and the evolution they drive have yielded tight links between morphological processes and immune responses. In this review, recent findings about these topics are introduced and discussed.
Mauck, Kerry E.; Pulido, Hannier; De Moraes, Consuelo M.; Stephenson, Andrew G.; Mescher, Mark C.
2013-01-01
Both biotic and abiotic stressors can elicit broad-spectrum plant resistance against subsequent pathogen challenges. However, we currently have little understanding of how such effects influence broader aspects of disease ecology and epidemiology in natural environments where plants interact with multiple antagonists simultaneously. In previous work, we have shown that healthy wild gourd plants (Cucurbita pepo ssp. texana) contract a fatal bacterial wilt infection (caused by Erwinia tracheiphila) at significantly higher rates than plants infected with Zucchini yellow mosaic virus (ZYMV). We recently reported evidence that this pattern is explained, at least in part, by reduced visitation of ZYMV-infected plants by the cucumber beetle vectors of E. tracheiphila. Here we examine whether ZYMV-infection may also directly elicit plant resistance to subsequent E. tracheiphila infection. In laboratory studies, we assayed the induction of key phytohormones (SA and JA) in single and mixed infections of these pathogens, as well as in response to the feeding of A. vittatum cucumber beetles on healthy and infected plants. We also tracked the incidence and progression of wilt disease symptoms in plants with prior ZYMV infections. Our results indicate that ZYMV-infection slightly delays the progression of wilt symptoms, but does not significantly reduce E. tracheiphila infection success. This observation supports the hypothesis that reduced rates of wilt disease in ZYMV-infected plants reflect reduced visitation by beetle vectors. We also documented consistently strong SA responses to ZYMV infection, but limited responses to E. tracheiphila in the absence of ZYMV, suggesting that the latter pathogen may effectively evade or suppress plant defenses, although we observed no evidence of antagonistic cross-talk between SA and JA signaling pathways. We did, however, document effects of E. tracheiphila on induced responses to herbivory that may influence host-plant quality for (and hence pathogen acquisition by) cucumber beetles. PMID:24155951
Stone, Graham N; Lohse, Konrad; Nicholls, James A; Fuentes-Utrilla, Pablo; Sinclair, Frazer; Schönrogge, Karsten; Csóka, György; Melika, George; Nieves-Aldrey, Jose-Luis; Pujade-Villar, Juli; Tavakoli, Majide; Askew, Richard R; Hickerson, Michael J
2012-03-20
How geographically widespread biological communities assemble remains a major question in ecology. Do parallel population histories allow sustained interactions (such as host-parasite or plant-pollinator) among species, or do discordant histories necessarily interrupt them? Though few empirical data exist, these issues are central to our understanding of multispecies evolutionary dynamics. Here we use hierarchical approximate Bayesian analysis of DNA sequence data for 12 herbivores and 19 parasitoids to reconstruct the assembly of an insect community spanning the Western Palearctic and assess the support for alternative host tracking and ecological sorting hypotheses. We show that assembly occurred primarily by delayed host tracking from a shared eastern origin. Herbivores escaped their enemies for millennia before parasitoid pursuit restored initial associations, with generalist parasitoids no better able to track their hosts than specialists. In contrast, ecological sorting played only a minor role. Substantial turnover in host-parasitoid associations means that coevolution must have been diffuse, probably contributing to the parasitoid generalism seen in this and similar systems. Reintegration of parasitoids after host escape shows these communities to have been unsaturated throughout their history, arguing against major roles for parasitoid niche evolution or competition during community assembly. Copyright © 2012 Elsevier Ltd. All rights reserved.
Streptophyte Terrestrialization in Light of Plastid Evolution.
de Vries, Jan; Stanton, Amanda; Archibald, John M; Gould, Sven B
2016-06-01
Key steps in evolution are often singularities. The emergence of land plants is one such case and it is not immediately apparent why. A recent analysis found that the zygnematophycean algae represent the closest relative to embryophytes. Intriguingly, many exaptations thought essential to conquer land are common among various streptophytes, but zygnematophycean algae share with land plants the transfer of a few plastid genes to the nucleus. Considering the contribution of the chloroplast to terrestrialization highlights potentially novel exaptations that currently remain unexplored. We discuss how the streptophyte chloroplast evolved into what we refer to as the embryoplast, and argue this was as important for terrestrialization by freshwater algae as the host cell-associated exaptations that are usually focused upon. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sun, Si-sheng; Chen, Xiao-mei; Guo, Shun-xing
2014-01-01
Santalum album Linn. is an evergreen and hemi-parasitic tree, the heartwood-sandalwood of which was used during a long history in traditional Chinese medicine. Kuhnia rosmarinifolia Vent. is a good host for 1- or 2-year-old growing S. album. The interaction between S. album and K. rosmarinifolia is still little known. Many studies have been carried out on a number of plants for identification and diversity of endophytes. In this study, in total 25 taxa of endophytic fungi were isolated from the roots of S. album and the roots of K. rosmarinifolia. The most frequently isolated genera were Penicillium sp. 1 and Fusarium sp. 1 in the roots of S. album and K. rosmarinifolia, respectively. S. album is a root parasite of K. rosmarinifolia. The interesting result is that they apparently do not share the same endophytic fungi isolates. This study for the first time explored the content of endophytic fungi from S. album and K. rosmarinifolia, which provides important information for further studies. PMID:24510703
Omnivore-herbivore interactions: thrips and whiteflies compete via the shared host plant.
Pappas, Maria L; Tavlaki, Georgia; Triantafyllou, Anneta; Broufas, George
2018-03-05
Phytophagy is a common feature among pure herbivorous insects and omnivores that utilise both plant and prey as food resources; nevertheless, experimental evidence for factors affecting their interactions is restricted to intraguild predation and predator-mediated competition. We herein focused on plant-mediated effects that could result from plant defence activation or quality alteration and compared the performance of an omnivore, the western flower thrips Frankliniella occidentalis, and a pure herbivore, the greenhouse whitefly Trialeurodes vaporariorum, on cucumber plants previously infested with either species. Furthermore, we recorded their behavioural responses when given a choice among infested and clean plants. Whiteflies laid less eggs on plants previously exposed to thrips but more on whitefly-infested plants. Thrips survival was negatively affected on whitefly-infested than on thrips-infested or clean plants. Notably, whiteflies developed significantly faster on plants infested with conspecifics. In accordance, whiteflies avoided thrips-infested plants and preferred whitefly-infested over clean plants. Thrips showed no preference for either infested or clean plants. Our study is a first report on the role of plant-mediated effects in shaping omnivore-herbivore interactions. Considering the factors driving such interactions we will likely better understand the ecology of the more complex relationships among plants and pest organisms.
Adaptation to different host plant ages facilitates insect divergence without a host shift
Zhang, Bin; Segraves, Kari A.; Xue, Huai-Jun; Nie, Rui-E; Li, Wen-Zhu; Yang, Xing-Ke
2015-01-01
Host shifts and subsequent adaption to novel host plants are important drivers of speciation among phytophagous insects. However, there is considerably less evidence for host plant-mediated speciation in the absence of a host shift. Here, we investigated divergence of two sympatric sister elm leaf beetles, Pyrrhalta maculicollis and P. aenescens, which feed on different age classes of the elm Ulmus pumila L. (seedling versus adult trees). Using a field survey coupled with preference and performance trials, we show that these beetle species are highly divergent in both feeding and oviposition preference and specialize on either seedling or adult stages of their host plant. An experiment using artificial leaf discs painted with leaf surface wax extracts showed that host plant chemistry is a critical element that shapes preference. Specialization appears to be driven by adaptive divergence as there was also evidence of divergent selection; beetles had significantly higher survival and fecundity when reared on their natal host plant age class. Together, the results identify the first probable example of divergence induced by host plant age, thus extending how phytophagous insects might diversify in the absence of host shifts. PMID:26378220
Posledovich, Diana; Toftegaard, Tenna; Wiklund, Christer; Ehrlén, Johan; Gotthard, Karl
2015-11-01
Interactions between herbivorous insects and their host plants that are limited in time are widespread. Therefore, many insect-plant interactions result in a developmental race, where herbivores need to complete their development before plants become unsuitable, while plants strive to minimize damage from herbivores by outgrowing them. When spring phenologies of interacting species change asymmetrically in response to climate warming, there will be a change in the developmental state of host plants at the time of insect herbivore emergence. In combination with altered temperatures during the subsequent developmental period, this is likely to affect interaction strength as well as fitness of interacting species. Here, we experimentally explore whether the combined effect of phenological matching and thermal conditions influence the outcome of an insect-host interaction. We manipulated both developmental stages of the host plants at the start of the interaction and temperature during the subsequent developmental period in a model system of a herbivorous butterfly, Anthocharis cardamines, and five of its Brassicaceae host plant species. Larval performance characteristics were favoured by earlier stages of host plants at oviposition as well as by higher developmental temperatures on most of the host species. The probability of a larva needing a second host plant covered the full range from no influence of either phenological matching or temperature to strong effects of both factors, and complex interactions between them. The probability of a plant outgrowing a larva was dependent only on the species identity. This study demonstrates that climatic variation can influence the outcome of consumer-resource interactions in multiple ways and that its effects differ among host plant species. Therefore, climate warming is likely to change the temporal match between larval and plant development in some plant species, but not in the others. This is likely to have important implications for host plant use and possibly influence competitive relationships. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Caddigan, Sara C; Pfenning, Alaina C; Sparkes, Timothy C
2017-01-01
The acanthocephalan Acanthocephalus dirus is a trophically transmitted parasite that modifies both the physiology and behavior of its intermediate host (isopod) prior to transmission to its definitive host (fish). Infected isopods often contain multiple A. dirus individuals and we examined the relationships between host sharing, body size, energy content, and host modification to determine if host sharing was costly and if these costs could influence the modification of host behavior (mating behavior). Using field-based measures of parasite energy content (glycogen, lipid) and parasite body size (volume), we showed that host sharing was costly in terms of energy content but not in terms of body size. Analysis of the predictors of host behavior revealed that energy content, and body size, were not predictors of host behavior. Of the variables examined, parasite intensity was the only predictor of host behavior. Hosts that contained more parasites were less likely to be modified (i.e., less likely to undergo mating suppression). We suggest that intraspecific competition influenced parasite energy content and that the costs associated with competition are likely to shape the strategy of growth and energy allocation adopted by the parasites. These costs did not appear to have a direct effect on the modification of host mating behavior.
Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, Jon G.; Beichman, Annabel C.; Roman, Joe
Mammals host gut microbiomes of immense physiological consequence, but the determinants of diversity in these communities remain poorly understood. Diet appears to be the dominant factor, but host phylogeny also seems to be an important, if unpredictable, correlate. Here we show that baleen whales, which prey on animals (fish and crustaceans), harbor unique gut microbiomes with surprising parallels in functional capacity and higher level taxonomy to those of terrestrial herbivores. These similarities likely reflect a shared role for fermentative metabolisms despite a shift in primary carbon sources from plant-derived to animal-derived polysaccharides, such as chitin. In contrast, protein catabolism andmore » essential amino acid synthesis pathways in baleen whale microbiomes more closely resemble those of terrestrial carnivores. Our results demonstrate that functional attributes of the microbiome can vary independently even given an animal-derived diet, illustrating how diet and evolutionary history combine to shape microbial diversity in the mammalian gut.« less
Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores
Sanders, Jon G.; Beichman, Annabel C.; Roman, Joe; ...
2015-09-22
Mammals host gut microbiomes of immense physiological consequence, but the determinants of diversity in these communities remain poorly understood. Diet appears to be the dominant factor, but host phylogeny also seems to be an important, if unpredictable, correlate. Here we show that baleen whales, which prey on animals (fish and crustaceans), harbor unique gut microbiomes with surprising parallels in functional capacity and higher level taxonomy to those of terrestrial herbivores. These similarities likely reflect a shared role for fermentative metabolisms despite a shift in primary carbon sources from plant-derived to animal-derived polysaccharides, such as chitin. In contrast, protein catabolism andmore » essential amino acid synthesis pathways in baleen whale microbiomes more closely resemble those of terrestrial carnivores. Our results demonstrate that functional attributes of the microbiome can vary independently even given an animal-derived diet, illustrating how diet and evolutionary history combine to shape microbial diversity in the mammalian gut.« less
Ripa, Renato; Funderburk, Joe; Rodriguez, Fernando; Espinoza, Fernanda; Mound, Laurence
2009-04-01
Populations of the invasive Frankliniella occidentalis (Pergande) are serious pests of agricultural crops in the Aconcagua Valley of central Chile. An extensive survey was conducted of 55 plant species in 24 families to identify plant hosts of F. occidentalis and to determine its relative abundance on each host during each season. A more intensive study was conducted on selected plant species serving as reproductive hosts to determine the population dynamics of F. occidentalis and to evaluate the potential importance of Orius species and other natural enemies for controlling F. occidentalis. Adults of F. occidentalis were active during each season of the year inhabiting the flowers of 91% of the sampled plant species in 22 families, and 86% of these plant species in 19 families served as reproductive hosts. The number of host plant species used was greatest in the spring and least in the winter. All of the hosts except Medicago sativa L. were used only when flowering. Populations of F. occidentalis were significantly aggregated in M. sativa in the terminal buds over the leaves when the host was not flowering, and in the flowers, followed by the terminal buds, followed by the leaves when the host was flowering. Larvae were 1.3-2.3 times more abundant on dates when M. sativa was flowering. There were no identifiable patterns in plant hosts based on endemicity or plant family. Most of the plant species used by F. occidentalis were inferior quality hosts where populations either declined or were stable. Populations of F. occidentalis on low-quality hosts generally escaped predation by Orius species and competition by other species of thrips. Only 25% of the food hosts and 28% of the reproductive hosts for F. occidentalis in the extensive survey, respectively, were host plants for Orius. Parasitoids and other predators were not found to be important in suppressing thrips on any of the plant hosts. Populations of F. occidentalis increased on only a few hosts, including M. sativa and Sisymbrium officinale L. Scop. These apparently are major sources of F. occidentalis adults invading crops. We conclude that F. occidentalis is established in central Chile and that it has replaced and possibly displaced the native Frankliniella australis (Morgan) as the most common thrips species.
Kaiser, Bettina; Vogg, Gerd; Fürst, Ursula B; Albert, Markus
2015-01-01
By comparison with plant-microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates, and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant-plant dialog between Cuscuta spp. and its host plants focuses on the incompatible interaction of C. reflexa with tomato.
Lysøe, Erik; Harris, Linda J.; Walkowiak, Sean; Subramaniam, Rajagopal; Divon, Hege H.; Riiser, Even S.; Llorens, Carlos; Gabaldón, Toni; Kistler, H. Corby; Jonkers, Wilfried; Kolseth, Anna-Karin; Nielsen, Kristian F.; Thrane, Ulf; Frandsen, Rasmus J. N.
2014-01-01
Fusarium avenaceum is a fungus commonly isolated from soil and associated with a wide range of host plants. We present here three genome sequences of F. avenaceum, one isolated from barley in Finland and two from spring and winter wheat in Canada. The sizes of the three genomes range from 41.6–43.1 MB, with 13217–13445 predicted protein-coding genes. Whole-genome analysis showed that the three genomes are highly syntenic, and share>95% gene orthologs. Comparative analysis to other sequenced Fusaria shows that F. avenaceum has a very large potential for producing secondary metabolites, with between 75 and 80 key enzymes belonging to the polyketide, non-ribosomal peptide, terpene, alkaloid and indole-diterpene synthase classes. In addition to known metabolites from F. avenaceum, fuscofusarin and JM-47 were detected for the first time in this species. Many protein families are expanded in F. avenaceum, such as transcription factors, and proteins involved in redox reactions and signal transduction, suggesting evolutionary adaptation to a diverse and cosmopolitan ecology. We found that 20% of all predicted proteins were considered to be secreted, supporting a life in the extracellular space during interaction with plant hosts. PMID:25409087
Radville, Laura; Chaves, Arielle; Preisser, Evan L
2011-06-01
Herbivores can trigger a wide array of morphological and chemical changes in their host plants. Feeding by some insects induces a defensive hypersensitive response, a defense mechanism consisting of elevated H(2)O(2) levels and tissue death at the site of herbivore feeding. The invasive hemlock woolly adelgid Adelges tsugae ('HWA') and elongate hemlock scale Fiorinia externa ('EHS') feed on eastern hemlocks; although both are sessile sap feeders, HWA causes more damage than EHS. The rapid rate of tree death following HWA infestation has led to the suggestion that feeding induces a hypersensitive response in hemlock trees. We assessed the potential for an herbivore-induced hypersensitive response in eastern hemlocks by measuring H(2)O(2) levels in foliage from HWA-infested, EHS-infested, and uninfested trees. Needles with settled HWA or EHS had higher H(2)O(2) levels than control needles, suggesting a localized hypersensitive plant response. Needles with no direct contact to settled HWA also had high H(2)O(2) levels, suggesting that HWA infestation may induce a systemic defense response in eastern hemlocks. There was no similar systemic defensive response in the EHS treatment. Our results showed that two herbivores in the same feeding guild had dramatically different outcomes on the health of their shared host.
USDA-ARS?s Scientific Manuscript database
Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri, vector ...
Davis, T S; Wu, Y; Eigenbrode, S D
2017-02-01
Intraspecific specialization by insect herbivores on different host plant species contributes to the formation of genetically distinct "host races," but the effects of plant virus infection on interactions between specialized herbivores and their host plants have barely been investigated. Using three genetically and phenotypically divergent pea aphid clones (Acyrthosiphon pisum L.) adapted to either pea (Pisum sativum L.) or alfalfa (Medicago sativa L.), we tested how infection of these hosts by an insect-borne phytovirus (Bean leafroll virus; BLRV) affects aphid performance and preference. Four important findings emerged: 1) mean aphid survival rate and intrinsic rate of population growth (Rm) were increased by 15% and 14%, respectively, for aphids feeding on plants infected with BLRV; 2) 34% of variance in survival rate was attributable to clone × host plant interactions; 3) a three-way aphid clone × host plant species × virus treatment significantly affected intrinsic rates of population growth; and 4) each clone exhibited a preference for either pea or alfalfa when choosing between noninfected host plants, but for two of the three clones tested these preferences were modestly reduced when selecting among virus-infected host plants. Our studies show that colonizing BLRV-infected hosts increased A. pisum survival and rates of population growth, confirming that the virus benefits A. pisum. BLRV transmission affected aphid discrimination of host plant species in a genotype-specific fashion, and we detected three unique "virus-association phenotypes," with potential consequences for patterns of host plant use by aphid populations and crop virus epidemiology. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Torres-Aquino, Margarita; Becquer, Adeline; Le Guernevé, Christine; Louche, Julien; Amenc, Laurie K; Staunton, Siobhan; Quiquampoix, Hervé; Plassard, Claude
2017-02-01
Ectomycorrhizal (ECM) association can improve plant phosphorus (P) nutrition. Polyphosphates (polyP) synthesized in distant fungal cells after P uptake may contribute to P supply from the fungus to the host plant if they are hydrolyzed to phosphate in ECM roots then transferred to the host plant when required. In this study, we addressed this hypothesis for the ECM fungus Hebeloma cylindrosporum grown in vitro and incubated without plant or with host (Pinus pinaster) and non-host (Zea mays) plants, using an experimental system simulating the symbiotic interface. We used 32 P labelling to quantify P accumulation and P efflux and in vivo and in vitro nuclear magnetic resonance (NMR) spectroscopy and cytological staining to follow the fate of fungal polyP. Phosphate supply triggered a massive P accumulation as newly synthesized long-chain polyP in H. cylindrosporum if previously grown under P-deficient conditions. P efflux from H. cylindrosporum towards the roots was stimulated by both host and non-host plants. However, the host plant enhanced 32 P release compared with the non-host plant and specifically increased the proportion of short-chain polyP in the interacting mycelia. These results support the existence of specific host plant effects on fungal P metabolism able to provide P in the apoplast of ectomycorrhizal roots. © 2016 John Wiley & Sons Ltd.
McClure, Melanie; Elias, Marianne
2016-06-16
Understanding the processes underlying diversification is a central question in evolutionary biology. For butterflies, access to new host plants provides opportunities for adaptive speciation. On the one hand, locally abundant host species can generate ecologically significant selection pressure. But a diversity of host plant species within the geographic range of each population and/or species might also eliminate any advantage conferred by specialization. This paper focuses on four Melinaea species, which are oligophagous on the family Solanaceae: M. menophilus, M. satevis, M. marsaeus, and finally, M. mothone. We examined both female preference and larval performance on two host plant species that commonly occur in this butterfly's native range, Juanulloa parasitica and Trianaea speciosa, to determine whether the different Melinaea species show evidence of local adaptation. In choice experiments, M. mothone females used both host plants for oviposition, whereas all other species used J. parasitica almost exclusively. In no choice experiment, M. mothone was the only species that readily accepted T. speciosa as a larval host plant. Larval survival was highest on J. parasitica (82.0 % vs. 60.9 %) and development took longer on T. speciosa (14.12 days vs. 13.35 days), except for M. mothone, which did equally well on both host plants. For all species, average pupal weight was highest on J. parasitica (450.66 mg vs. 420.01 mg), although this difference was least apparent in M. mothone. We did not find that coexisting species of Melinaea partition host plant resources as expected if speciation is primarily driven by host plant divergence. Although M. mothone shows evidence of local adaptation to a novel host plant, T. speciosa, which co-occurs, it does not preferentially lay more eggs on or perform better on this host plant than on host plants used by other Melinaea species and not present in its distributional range. It is likely that diversification in this genus is driven by co-occurring Müllerian mimics and the resulting predation pressure, although this is also likely made possible by greater niche diversity as a consequence of plasticity for potential hosts.
Evolution of larval host plant associations and adaptive radiation in pierid butterflies.
Braby, M F; Trueman, J W H
2006-09-01
Butterflies in the family Pieridae (Lepidoptera: Papilionoidea) feed as larvae on plants belonging primarily to three distantly related angiosperm orders: Fabales (legumes and allied plants), Brassicales (crucifers and related plants containing mustard oil glucosides), and Santalales ('mistletoes'). However, some utilize plants from 13 other families in a further eight orders. We investigated the evolutionary history of host plant use of the Pieridae in the context of a recent phylogenetic hypothesis of the family, using simple character optimization. Although there is a close association between host plant and butterfly higher classification, we find no evidence for cospeciation but a pattern of repeated colonization and specialization. The ancestral host of the family appears to be Fabaceae or Fabales, with multiple independent shifts to other orders, including three to Santalales. The shift to Brassicales, which contain secondary compounds (glucosinolates), promoted diversification and adaptive radiation within the subfamily Pierinae. Subsequent shifts from crucifers to mistletoes (aerial-stem hemiparasites) facilitated further diversification, and more recent shifts from mistletoes to mistletoe host trees led to exploitation of novel host plants outside the conventional three orders. Possible mechanisms underlying these host shifts are briefly discussed. In the Pierinae, a striking association between host plant, larval and adult behaviour, adult phenotype, and mimicry calls for further research into possible relationships between host specialization, plant chemistry and butterfly palatability.
Immune Receptors and Co-receptors in Antiviral Innate Immunity in Plants.
Gouveia, Bianca C; Calil, Iara P; Machado, João Paulo B; Santos, Anésia A; Fontes, Elizabeth P B
2016-01-01
Plants respond to pathogens using an innate immune system that is broadly divided into PTI (pathogen-associated molecular pattern- or PAMP-triggered immunity) and ETI (effector-triggered immunity). PTI is activated upon perception of PAMPs, conserved motifs derived from pathogens, by surface membrane-anchored pattern recognition receptors (PRRs). To overcome this first line of defense, pathogens release into plant cells effectors that inhibit PTI and activate effector-triggered susceptibility (ETS). Counteracting this virulence strategy, plant cells synthesize intracellular resistance (R) proteins, which specifically recognize pathogen effectors or avirulence (Avr) factors and activate ETI. These coevolving pathogen virulence strategies and plant resistance mechanisms illustrate evolutionary arms race between pathogen and host, which is integrated into the zigzag model of plant innate immunity. Although antiviral immune concepts have been initially excluded from the zigzag model, recent studies have provided several lines of evidence substantiating the notion that plants deploy the innate immune system to fight viruses in a manner similar to that used for non-viral pathogens. First, most R proteins against viruses so far characterized share structural similarity with antibacterial and antifungal R gene products and elicit typical ETI-based immune responses. Second, virus-derived PAMPs may activate PTI-like responses through immune co-receptors of plant PTI. Finally, and even more compelling, a viral Avr factor that triggers ETI in resistant genotypes has recently been shown to act as a suppressor of PTI, integrating plant viruses into the co-evolutionary model of host-pathogen interactions, the zigzag model. In this review, we summarize these important progresses, focusing on the potential significance of antiviral immune receptors and co-receptors in plant antiviral innate immunity. In light of the innate immune system, we also discuss a newly uncovered layer of antiviral defense that is specific to plant DNA viruses and relies on transmembrane receptor-mediated translational suppression for defense.
Quaglino, Fabio; Kube, Michael; Jawhari, Maan; Abou-Jawdah, Yusuf; Siewert, Christin; Choueiri, Elia; Sobh, Hana; Casati, Paola; Tedeschi, Rosemarie; Lova, Marina Molino; Alma, Alberto; Bianco, Piero Attilio
2015-07-30
Almond witches'-broom (AlmWB), a devastating disease of almond, peach and nectarine in Lebanon, is associated with 'Candidatus Phytoplasma phoenicium'. In the present study, we generated a draft genome sequence of 'Ca. P. phoenicium' strain SA213, representative of phytoplasma strain populations from different host plants, and determined the genetic diversity among phytoplasma strain populations by phylogenetic analyses of 16S rRNA, groEL, tufB and inmp gene sequences. Sequence-based typing and phylogenetic analysis of the gene inmp, coding an integral membrane protein, distinguished AlmWB-associated phytoplasma strains originating from diverse host plants, whereas their 16S rRNA, tufB and groEL genes shared 100 % sequence identity. Moreover, dN/dS analysis indicated positive selection acting on inmp gene. Additionally, the analysis of 'Ca. P. phoenicium' draft genome revealed the presence of integral membrane proteins and effector-like proteins and potential candidates for interaction with hosts. One of the integral membrane proteins was predicted as BI-1, an inhibitor of apoptosis-promoting Bax factor. Bioinformatics analyses revealed the presence of putative BI-1 in draft and complete genomes of other 'Ca. Phytoplasma' species. The genetic diversity within 'Ca. P. phoenicium' strain populations in Lebanon suggested that AlmWB disease could be associated with phytoplasma strains derived from the adaptation of an original strain to diverse hosts. Moreover, the identification of a putative inhibitor of apoptosis-promoting Bax factor (BI-1) in 'Ca. P. phoenicium' draft genome and within genomes of other 'Ca. Phytoplasma' species suggested its potential role as a phytoplasma fitness-increasing factor by modification of the host-defense response.
Luan, Jun-Bo; Chen, Wenbo; Hasegawa, Daniel K; Simmons, Alvin M; Wintermantel, William M; Ling, Kai-Shu; Fei, Zhangjun; Liu, Shu-Sheng; Douglas, Angela E
2015-09-15
Genomic decay is a common feature of intracellular bacteria that have entered into symbiosis with plant sap-feeding insects. This study of the whitefly Bemisia tabaci and two bacteria (Portiera aleyrodidarum and Hamiltonella defensa) cohoused in each host cell investigated whether the decay of Portiera metabolism genes is complemented by host and Hamiltonella genes, and compared the metabolic traits of the whitefly symbiosis with other sap-feeding insects (aphids, psyllids, and mealybugs). Parallel genomic and transcriptomic analysis revealed that the host genome contributes multiple metabolic reactions that complement or duplicate Portiera function, and that Hamiltonella may contribute multiple cofactors and one essential amino acid, lysine. Homologs of the Bemisia metabolism genes of insect origin have also been implicated in essential amino acid synthesis in other sap-feeding insect hosts, indicative of parallel coevolution of shared metabolic pathways across multiple symbioses. Further metabolism genes coded in the Bemisia genome are of bacterial origin, but phylogenetically distinct from Portiera, Hamiltonella and horizontally transferred genes identified in other sap-feeding insects. Overall, 75% of the metabolism genes of bacterial origin are functionally unique to one symbiosis, indicating that the evolutionary history of metabolic integration in these symbioses is strongly contingent on the pattern of horizontally acquired genes. Our analysis, further, shows that bacteria with genomic decay enable host acquisition of complex metabolic pathways by multiple independent horizontal gene transfers from exogenous bacteria. Specifically, each horizontally acquired gene can function with other genes in the pathway coded by the symbiont, while facilitating the decay of the symbiont gene coding the same reaction. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Evolutionary history of aphid-plant associations and their role in aphid diversification.
Peccoud, Jean; Simon, Jean-Christophe; von Dohlen, Carol; Coeur d'acier, Armelle; Plantegenest, Manuel; Vanlerberghe-Masutti, Flavie; Jousselin, Emmanuelle
2010-01-01
Aphids are intimately linked with their host plants that constitute their only food resource and habitat, and thus impose considerable selective pressure on their evolution. It is therefore commonly assumed that host plants have greatly influenced the diversification of aphids. Here, we review what is known about the role of host plant association on aphid speciation by examining both macroevolutionary and population-level studies. Phylogenetic studies conducted at different taxonomic levels show that, as in many phytophagous insect groups, the radiation of angiosperms has probably favoured the major Tertiary diversification of aphids. These studies also highlight many aphid lineages constrained to sets of related host plants, suggesting strong evolutionary commitment in aphids' host plant choice, but they fail to document cospeciation events between aphid and host lineages. Instead, phylogenies of several aphid genera reveal that divergence events are often accompanied by host shifts, and suggest, without constituting a formal demonstration, that aphid speciation could be a consequence of adaptation to new hosts. Experimental and field studies below the species level support reproductive isolation between host races as partly due to divergent selection by their host plants. Selected traits are mainly feeding performances and life cycle adaptations to plant phenology. Combined with behavioural preference for favourable host species, these divergent adaptations can induce pre- and post-zygotic barriers between host-specialized aphid populations. However, the hypothesis of host-driven speciation is seldom tested formally and must be weighed against overlooked explanations involving geographic isolation and non-ecological reproductive barriers in the process of speciation. Copyright 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Visual cues may be the first line of host plant recognition and an important determining factor when selecting host plants for feeding and oviposition, especially for highly polyphagous insects, such as leafhoppers, which have a broad range of potential host plants. Temperate Empoasca fabae and trop...
Host plant species determines symbiotic bacterial community mediating suppression of plant defenses
USDA-ARS?s Scientific Manuscript database
Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We prev...
Volatile chemical cues guide host location and host selection by parasitic plants
Justin B. Runyon; Mark C. Mescher; Consuelo M. De Moraes
2006-01-01
The importance of plant volatiles in mediating interactions between plant species is much debated. Here, we demonstrate that the parasitic plant Cuscuta pentagona (dodder) uses volatile cues for host location. Cuscuta pentagona seedlings exhibit directed growth toward nearby tomato plants (Lycopersicon esculentum...
Host Plant Species Differentiation in a Polyphagous Moth: Olfaction is Enough.
Conchou, Lucie; Anderson, Peter; Birgersson, Göran
2017-08-01
Polyphagous herbivorous insects need to discriminate suitable from unsuitable host plants in complex plant communities. While studies on the olfactory system of monophagous herbivores have revealed close adaptations to their host plant's characteristic volatiles, such adaptive fine-tuning is not possible when a large diversity of plants is suitable. Instead, the available literature on polyphagous herbivore preferences suggests a higher level of plasticity, and a bias towards previously experienced plant species. It is therefore necessary to take into account the diversity of plant odors that polyphagous herbivores encounter in the wild in order to unravel the olfactory basis of their host plant choice behaviour. In this study we show that a polyphagous moth, Spodoptera littoralis, has the sensory ability to distinguish five host plant species using olfaction alone, this being a prerequisite to the ability to make a choice. We have used gas chromatography mass spectrometry (GC-MS) and gas chromatography electroantennographic detection (GC-EAD) in order to describe host plant odor profiles as perceived by S. littoralis. We find that each plant emits specific combinations and proportions of GC-EAD active volatiles, leading to statistically distinct profiles. In addition, at least four of these plants show GC-EAD active compound proportions that are conserved across individual plants, a characteristic that enables insects to act upon previous olfactory experiences during host plant choice. By identifying the volatiles involved in olfactory differentiation of alternative host plants by Spodoptera littoralis, we set the groundwork for deeper investigations of how olfactory perceptions translate into behaviour in polyphagous herbivores.
Messages from the Other Side: Parasites Receive Damage Cues from their Host Plants.
Tjiurutue, Muvari Connie; Stevenson, Philip C; Adler, Lynn S
2016-08-01
As sessile organisms, plants rely on their environment for cues indicating imminent herbivory. These cues can originate from tissues on the same plant or from different individuals. Since parasitic plants form vascular connections with their host, parasites have the potential to receive cues from hosts that allow them to adjust defenses against future herbivory. However, the role of plant communication between hosts and parasites for herbivore defense remains poorly investigated. Here, we examined the effects of damage to lupine hosts (Lupinus texensis) on responses of the attached hemiparasite (Castilleja indivisa), and indirectly, on a specialist herbivore of the parasite, buckeyes (Junonia coenia). Lupines produce alkaloids that act as defenses against herbivores that can be taken up by the parasite. We found that damage to lupine host plants by beet armyworm (Spodoptera exigua) significantly increased jasmonic acid (JA) levels in both the lupine host and parasite, suggesting uptake of phytohormones or priming of parasite defenses by using host cues. However, lupine host damage did not induce changes in alkaloid levels in the hosts or parasites. Interestingly, the parasite had substantially higher concentrations of JA and alkaloids compared to lupine host plants. Buckeye herbivores consumed more parasite tissue when attached to damaged compared to undamaged hosts. We hypothesize that increased JA due to lupine host damage induced higher iridoid glycosides in the parasite, which are feeding stimulants for this specialist herbivore. Our results demonstrate that damage to hosts may affect both parasites and associated herbivores, indicating cascading effects of host damage on multiple trophic levels.
Grandez-Rios, Julio Miguel; Lima Bergamini, Leonardo; Santos de Araújo, Walter; Villalobos, Fabricio; Almeida-Neto, Mário
2015-01-01
Understanding the drivers of plant-insect interactions is still a key issue in terrestrial ecology. Here, we used 30 well-defined plant-herbivore assemblages to assess the effects of host plant phylogenetic isolation and origin (native vs. exotic) on the species richness, composition and specialization of the insect herbivore fauna on co-occurring plant species. We also tested for differences in such effects between assemblages composed exclusively of exophagous and endophagous herbivores. We found a consistent negative effect of the phylogenetic isolation of host plants on the richness, similarity and specialization of their insect herbivore faunas. Notably, except for Jaccard dissimilarity, the effect of phylogenetic isolation on the insect herbivore faunas did not vary between native and exotic plants. Our findings show that the phylogenetic isolation of host plants is a key factor that influences the richness, composition and specialization of their local herbivore faunas, regardless of the host plant origin. PMID:26379159
Kaiser, Bettina; Vogg, Gerd; Fürst, Ursula B.; Albert, Markus
2015-01-01
By comparison with plant–microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates, and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant–plant dialog between Cuscuta spp. and its host plants focuses on the incompatible interaction of C. reflexa with tomato. PMID:25699071
Coelho, Marcel Serra; Carneiro, Marco Antônio Alves; Branco, Cristina Alves; Borges, Rafael Augusto Xavier; Fernandes, Geraldo Wilson
2018-01-01
This study describes differences in species richness and composition of the assemblages of galling insects and their host plants at different spatial scales. Sampling was conducted along altitudinal gradients composed of campos rupestres and campos de altitude of two mountain complexes in southeastern Brazil: Espinhaço Range and Mantiqueira Range. The following hypotheses were tested: i) local and regional richness of host plants and galling insects are positively correlated; ii) beta diversity is the most important component of regional diversity of host plants and galling insects; and iii) Turnover is the main mechanism driving beta diversity of both host plants and galling insects. Local richness of galling insects and host plants increased with increasing regional richness of species, suggesting a pattern of unsaturated communities. The additive partition of regional richness (γ) into local and beta components shows that local richnesses (α) of species of galling insects and host plants are low relative to regional richness; the beta (β) component incorporates most of the regional richness. The multi-scale analysis of additive partitioning showed similar patterns for galling insects and host plants with the local component (α) incorporated a small part of regional richness. Beta diversity of galling insects and host plants were mainly the result of turnover, with little contribution from nesting. Although the species composition of galling insects and host plant species varied among sample sites, mountains and even mountain ranges, local richness remained relatively low. In this way, the addition of local habitats with different landscapes substantially affects regional richness. Each mountain contributes fundamentally to the composition of regional diversity of galling insects and host plants, and so the design of future conservation strategies should incorporate multiple scales.
Xu, Jun; Saunders, Charles W; Hu, Ping; Grant, Raymond A; Boekhout, Teun; Kuramae, Eiko E; Kronstad, James W; Deangelis, Yvonne M; Reeder, Nancy L; Johnstone, Kevin R; Leland, Meredith; Fieno, Angela M; Begley, William M; Sun, Yiping; Lacey, Martin P; Chaudhary, Tanuja; Keough, Thomas; Chu, Lien; Sears, Russell; Yuan, Bo; Dawson, Thomas L
2007-11-20
Fungi in the genus Malassezia are ubiquitous skin residents of humans and other warm-blooded animals. Malassezia are involved in disorders including dandruff and seborrheic dermatitis, which together affect >50% of humans. Despite the importance of Malassezia in common skin diseases, remarkably little is known at the molecular level. We describe the genome, secretory proteome, and expression of selected genes of Malassezia globosa. Further, we report a comparative survey of the genome and secretory proteome of Malassezia restricta, a close relative implicated in similar skin disorders. Adaptation to the skin environment and associated pathogenicity may be due to unique metabolic limitations and capabilities. For example, the lipid dependence of M. globosa can be explained by the apparent absence of a fatty acid synthase gene. The inability to synthesize fatty acids may be complemented by the presence of multiple secreted lipases to aid in harvesting host lipids. In addition, an abundance of genes encoding secreted hydrolases (e.g., lipases, phospholipases, aspartyl proteases, and acid sphingomyelinases) was found in the M. globosa genome. In contrast, the phylogenetically closely related plant pathogen Ustilago maydis encodes a different arsenal of extracellular hydrolases with more copies of glycosyl hydrolase genes. M. globosa shares a similar arsenal of extracellular hydrolases with the phylogenetically distant human pathogen, Candida albicans, which occupies a similar niche, indicating the importance of host-specific adaptation. The M. globosa genome sequence also revealed the presence of mating-type genes, providing an indication that Malassezia may be capable of sex.
Xu, Jun; Saunders, Charles W.; Hu, Ping; Grant, Raymond A.; Boekhout, Teun; Kuramae, Eiko E.; Kronstad, James W.; DeAngelis, Yvonne M.; Reeder, Nancy L.; Johnstone, Kevin R.; Leland, Meredith; Fieno, Angela M.; Begley, William M.; Sun, Yiping; Lacey, Martin P.; Chaudhary, Tanuja; Keough, Thomas; Chu, Lien; Sears, Russell; Yuan, Bo; Dawson, Thomas L.
2007-01-01
Fungi in the genus Malassezia are ubiquitous skin residents of humans and other warm-blooded animals. Malassezia are involved in disorders including dandruff and seborrheic dermatitis, which together affect >50% of humans. Despite the importance of Malassezia in common skin diseases, remarkably little is known at the molecular level. We describe the genome, secretory proteome, and expression of selected genes of Malassezia globosa. Further, we report a comparative survey of the genome and secretory proteome of Malassezia restricta, a close relative implicated in similar skin disorders. Adaptation to the skin environment and associated pathogenicity may be due to unique metabolic limitations and capabilities. For example, the lipid dependence of M. globosa can be explained by the apparent absence of a fatty acid synthase gene. The inability to synthesize fatty acids may be complemented by the presence of multiple secreted lipases to aid in harvesting host lipids. In addition, an abundance of genes encoding secreted hydrolases (e.g., lipases, phospholipases, aspartyl proteases, and acid sphingomyelinases) was found in the M. globosa genome. In contrast, the phylogenetically closely related plant pathogen Ustilago maydis encodes a different arsenal of extracellular hydrolases with more copies of glycosyl hydrolase genes. M. globosa shares a similar arsenal of extracellular hydrolases with the phylogenetically distant human pathogen, Candida albicans, which occupies a similar niche, indicating the importance of host-specific adaptation. The M. globosa genome sequence also revealed the presence of mating-type genes, providing an indication that Malassezia may be capable of sex. PMID:18000048
DNA barcoding insect–host plant associations
Jurado-Rivera, José A.; Vogler, Alfried P.; Reid, Chris A.M.; Petitpierre, Eduard; Gómez-Zurita, Jesús
2008-01-01
Short-sequence fragments (‘DNA barcodes’) used widely for plant identification and inventorying remain to be applied to complex biological problems. Host–herbivore interactions are fundamental to coevolutionary relationships of a large proportion of species on the Earth, but their study is frequently hampered by limited or unreliable host records. Here we demonstrate that DNA barcodes can greatly improve this situation as they (i) provide a secure identification of host plant species and (ii) establish the authenticity of the trophic association. Host plants of leaf beetles (subfamily Chrysomelinae) from Australia were identified using the chloroplast trnL(UAA) intron as barcode amplified from beetle DNA extracts. Sequence similarity and phylogenetic analyses provided precise identifications of each host species at tribal, generic and specific levels, depending on the available database coverage in various plant lineages. The 76 species of Chrysomelinae included—more than 10 per cent of the known Australian fauna—feed on 13 plant families, with preference for Australian radiations of Myrtaceae (eucalypts) and Fabaceae (acacias). Phylogenetic analysis of beetles shows general conservation of host association but with rare host shifts between distant plant lineages, including a few cases where barcodes supported two phylogenetically distant host plants. The study demonstrates that plant barcoding is already feasible with the current publicly available data. By sequencing plant barcodes directly from DNA extractions made from herbivorous beetles, strong physical evidence for the host association is provided. Thus, molecular identification using short DNA fragments brings together the detection of species and the analysis of their interactions. PMID:19004756
2013-01-01
Background Fungal pathogens cause devastating losses in economically important cereal crops by utilising pathogen proteins to infect host plants. Secreted pathogen proteins are referred to as effectors and have thus far been identified by selecting small, cysteine-rich peptides from the secretome despite increasing evidence that not all effectors share these attributes. Results We take advantage of the availability of sequenced fungal genomes and present an unbiased method for finding putative pathogen proteins and secreted effectors in a query genome via comparative hidden Markov model analyses followed by unsupervised protein clustering. Our method returns experimentally validated fungal effectors in Stagonospora nodorum and Fusarium oxysporum as well as the N-terminal Y/F/WxC-motif from the barley powdery mildew pathogen. Application to the cereal pathogen Fusarium graminearum reveals a secreted phosphorylcholine phosphatase that is characteristic of hemibiotrophic and necrotrophic cereal pathogens and shares an ancient selection process with bacterial plant pathogens. Three F. graminearum protein clusters are found with an enriched secretion signal. One of these putative effector clusters contains proteins that share a [SG]-P-C-[KR]-P sequence motif in the N-terminal and show features not commonly associated with fungal effectors. This motif is conserved in secreted pathogenic Fusarium proteins and a prime candidate for functional testing. Conclusions Our pipeline has successfully uncovered conservation patterns, putative effectors and motifs of fungal pathogens that would have been overlooked by existing approaches that identify effectors as small, secreted, cysteine-rich peptides. It can be applied to any pathogenic proteome data, such as microbial pathogen data of plants and other organisms. PMID:24252298
Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race.
Ramesh, Shunmugiah V; Sahu, Pranav P; Prasad, Manoj; Praveen, Shelly; Pappu, Hanu R
2017-09-15
Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant's defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistance are highlighted to complete the perspective on geminivirus-plant molecular interactions.
Savage, Amy M.; Rudgers, Jennifer A.
2013-01-01
Background and Aims In complex communities, organisms often form mutualisms with multiple different partners simultaneously. Non-additive effects may emerge among species linked by these positive interactions. Ants commonly participate in mutualisms with both honeydew-producing insects (HPI) and their extrafloral nectary (EFN)-bearing host plants. Consequently, HPI and EFN-bearing plants may experience non-additive benefits or costs when these groups co-occur. The outcomes of these interactions are likely to be influenced by variation in preferences among ants for honeydew vs. nectar. In this study, a test was made for non-additive effects on HPI and EFN-bearing plants resulting from sharing exotic ant guards. Preferences of the dominant exotic ant species for nectar vs. honeydew resources were also examined. Methods Ant access, HPI and nectar availability were manipulated on the EFN-bearing shrub, Morinda citrifolia, and ant and HPI abundances, herbivory and plant growth were assessed. Ant-tending behaviours toward HPI across an experimental gradient of nectar availability were also tracked in order to investigate mechanisms underlying ant responses. Key Results The dominant ant species, Anoplolepis gracilipes, differed from less invasive ants in response to multiple mutualists, with reductions in plot-wide abundances when nectar was reduced, but no response to HPI reduction. Conversely, at sites where A. gracilipes was absent or rare, abundances of less invasive ants increased when nectar was reduced, but declined when HPI were reduced. Non-additive benefits were found at sites dominated by A. gracilipes, but only for M. citrifolia plants. Responses of HPI at these sites supported predictions of the non-additive cost model. Interestingly, the opposite non-additive patterns emerged at sites dominated by other ants. Conclusions It was demonstrated that strong non-additive benefits and costs can both occur when a plant and herbivore share mutualist partners. These findings suggest that broadening the community context of mutualism studies can reveal important non-additive effects and increase understanding of the dynamics of species interactions. PMID:23609021
Data integration aids understanding of butterfly-host plant networks
NASA Astrophysics Data System (ADS)
Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki
2017-03-01
Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant-herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant-herbivore and plant-compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect-compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection.
Inui, Yoko; Shimizu-Kaya, Usun; Okubo, Tadahiro; Yamsaki, Eri; Itioka, Takao
2015-01-01
Macaranga myrmecophytes (ant-plants) are generally well protected from herbivore attacks by their symbiotic ants (plant-ants). However, larvae of Arhopala (Lepidoptera: Lycaenidae) species survive and develop on specific Macaranga ant-plant species without being attacked by the plant-ants of their host species. We hypothesized that Arhopala larvae chemically mimic or camouflage themselves with the ants on their host plant so that the larvae are accepted by the plant-ant species of their host. Chemical analyses of cuticular hydrocarbons showed that chemical congruency varied among Arhopala species; A. dajagaka matched well the host plant-ants, A. amphimuta did not match, and unexpectedly, A. zylda lacked hydrocarbons. Behaviorally, the larvae and dummies coated with cuticular chemicals of A. dajagaka were well attended by the plant-ants, especially by those of the host. A. amphimuta was often attacked by all plant-ants except for the host plant-ants toward the larvae, and those of A. zylda were ignored by all plant-ants. Our results suggested that conspicuous variations exist in the chemical strategies used by the myrmecophilous butterflies that allow them to avoid ant attack and be accepted by the plant-ant colonies.
Inui, Yoko; Shimizu-kaya, Usun; Okubo, Tadahiro; Yamsaki, Eri; Itioka, Takao
2015-01-01
Macaranga myrmecophytes (ant-plants) are generally well protected from herbivore attacks by their symbiotic ants (plant-ants). However, larvae of Arhopala (Lepidoptera: Lycaenidae) species survive and develop on specific Macaranga ant-plant species without being attacked by the plant-ants of their host species. We hypothesized that Arhopala larvae chemically mimic or camouflage themselves with the ants on their host plant so that the larvae are accepted by the plant-ant species of their host. Chemical analyses of cuticular hydrocarbons showed that chemical congruency varied among Arhopala species; A. dajagaka matched well the host plant-ants, A. amphimuta did not match, and unexpectedly, A. zylda lacked hydrocarbons. Behaviorally, the larvae and dummies coated with cuticular chemicals of A. dajagaka were well attended by the plant-ants, especially by those of the host. A. amphimuta was often attacked by all plant-ants except for the host plant-ants toward the larvae, and those of A. zylda were ignored by all plant-ants. Our results suggested that conspicuous variations exist in the chemical strategies used by the myrmecophilous butterflies that allow them to avoid ant attack and be accepted by the plant-ant colonies. PMID:25853675
Blaisdell, G. Kai; Roy, Bitty A.; Pfeifer-Meister, Laurel; Bridgham, Scott D.
2015-01-01
Many hypotheses address the associations of plant community composition with natural enemies, including: (i) plant species diversity may reduce enemy attack, (ii) attack may increase as host abundance increases, (iii) enemy spillover may lead to increased attack on one host species due to transmission from another host species, or enemy dilution may lead to reduced attack on a host that would otherwise have more attack, (iv) physical characteristics of the plant community may influence attack, and (v) plant vigor may affect attack. Restoration experiments with replicated plant communities provide an exceptional opportunity to explore these hypotheses. To explore the relative predictive strengths of these related hypotheses and to investigate the potential effect of several restoration site preparation techniques, we surveyed arthropod herbivore and fungal pathogen attack on the six most common native plant species in a restoration experiment. Multi-model inference revealed a weak but consistent negative correlation with pathogen attack and host diversity across the plant community, and no correlation between herbivory and host diversity. Our analyses also revealed host species-specific relationships between attack and abundance of the target host species, other native plant species, introduced plant species, and physical community characteristics. We found no relationship between enemy attack and plant vigor. We found minimal differences in plant community composition among several diverse site preparation techniques, and limited effects of site preparation techniques on attack. The strongest associations of community characteristics with attack varied among plant species with no community-wide patterns, suggesting that no single hypothesis successfully predicts the dominant community-wide trends in enemy attack. PMID:25699672
Iliadou, Eleni; Kallimanis, Athanasios S; Dimopoulos, Panayotis; Panitsa, Maria
2014-12-01
Greece has two island archipelagos, the Aegean and the Ionian, which host a rich array of plants and wildlife, particularly endemic and threatened plant species. Despite the long history of island biogeographic studies in the Aegean, similar studies in the Ionian remain limited, with the two island archipelagos rarely being compared. The Aegean and Ionian archipelagos share many features, especially regarding total plant diversity, but exhibit different patterns of endemism. For instance, when considering similarly sized islands, those in the Ionian host as many as, if not more, species compared to the Aegean. In contrast, the Ionian Islands are poor in endemics (particularly narrow range endemics, such as single island or regional endemics) and threatened taxa, compared to the Aegean Islands. In the Ionian, endemics only persist on the largest islands, and form a very small proportion of the species pool, compared to the Aegean archipelago. The lack of endemism might be attributed to the more recent separation of the Ionian Islands from the mainland and the shorter distance separating them from the mainland. In addition, the Ionian Islands receive higher levels of precipitation and are typically covered by denser and higher vegetation than the Aegean Islands. These conditions favour greater total species richness, but tend to lead to higher numbers of common species compared to threatened and endemic taxa. This study demonstrates that both isolation and precipitation serve as biodiversity drivers, influencing plant species diversity and endemism patterns, of the two Greek archipelagos.
Climate change, phenology, and butterfly host plant utilization.
Navarro-Cano, Jose A; Karlsson, Bengt; Posledovich, Diana; Toftegaard, Tenna; Wiklund, Christer; Ehrlén, Johan; Gotthard, Karl
2015-01-01
Knowledge of how species interactions are influenced by climate warming is paramount to understand current biodiversity changes. We review phenological changes of Swedish butterflies during the latest decades and explore potential climate effects on butterfly-host plant interactions using the Orange tip butterfly Anthocharis cardamines and its host plants as a model system. This butterfly has advanced its appearance dates substantially, and its mean flight date shows a positive correlation with latitude. We show that there is a large latitudinal variation in host use and that butterfly populations select plant individuals based on their flowering phenology. We conclude that A. cardamines is a phenological specialist but a host species generalist. This implies that thermal plasticity for spring development influences host utilization of the butterfly through effects on the phenological matching with its host plants. However, the host utilization strategy of A. cardamines appears to render it resilient to relatively large variation in climate.
Battenberg, Kai; Wren, Jannah A.; Hillman, Janell; Edwards, Joseph; Huang, Liujing
2016-01-01
ABSTRACT The actinobacterial genus Frankia establishes nitrogen-fixing root nodule symbioses with specific hosts within the nitrogen-fixing plant clade. Of four genetically distinct subgroups of Frankia, cluster I, II, and III strains are capable of forming effective nitrogen-fixing symbiotic associations, while cluster IV strains generally do not. Cluster II Frankia strains have rarely been detected in soil devoid of host plants, unlike cluster I or III strains, suggesting a stronger association with their host. To investigate the degree of host influence, we characterized the cluster II Frankia strain distribution in rhizosphere soil in three locations in northern California. The presence/absence of cluster II Frankia strains at a given site correlated significantly with the presence/absence of host plants on the site, as determined by glutamine synthetase (glnA) gene sequence analysis, and by microbiome analysis (16S rRNA gene) of a subset of host/nonhost rhizosphere soils. However, the distribution of cluster II Frankia strains was not significantly affected by other potential determinants such as host-plant species, geographical location, climate, soil pH, or soil type. Rhizosphere soil microbiome analysis showed that cluster II Frankia strains occupied only a minute fraction of the microbiome even in the host-plant-present site and further revealed no statistically significant difference in the α-diversity or in the microbiome composition between the host-plant-present or -absent sites. Taken together, these data suggest that host plants provide a factor that is specific for cluster II Frankia strains, not a general growth-promoting factor. Further, the factor accumulates or is transported at the site level, i.e., beyond the host rhizosphere. IMPORTANCE Biological nitrogen fixation is a bacterial process that accounts for a major fraction of net new nitrogen input in terrestrial ecosystems. Transfer of fixed nitrogen to plant biomass is especially efficient via root nodule symbioses, which represent evolutionarily and ecologically specialized mutualistic associations. Frankia spp. (Actinobacteria), especially cluster II Frankia spp., have an extremely broad host range, yet comparatively little is known about the soil ecology of these organisms in relation to the host plants and their rhizosphere microbiomes. This study reveals a strong influence of the host plant on soil distribution of cluster II Frankia spp. PMID:27795313
Grönemeyer, Jann L.; Kulkarni, Ajinkya; Berkelmann, Dirk; Hurek, Thomas
2014-01-01
The rhizobial community indigenous to the Okavango region has not yet been characterized. The isolation of indigenous rhizobia can provide a basis for the formulation of a rhizobial inoculant. Moreover, their identification and characterization contribute to the general understanding of species distribution and ecology. Isolates were obtained from nodules of local varieties of the pulses cowpea, Bambara groundnut, peanut, hyacinth bean, and common bean. Ninety-one of them were identified by BOX repetitive element PCR (BOX-PCR) and sequence analyses of the 16S-23S rRNA internally transcribed spacer (ITS) and the recA, glnII, rpoB, and nifH genes. A striking geographical distribution was observed. Bradyrhizobium pachyrhizi dominated at sampling sites in Angola which were characterized by acid soils and a semihumid climate. Isolates from the semiarid sampling sites in Namibia were more diverse, with most of them being related to Bradyrhizobium yuanmingense and Bradyrhizobium daqingense. Host plant specificity was observed only for hyacinth bean, which was nodulated by rhizobia presumably representing yet-undescribed species. Furthermore, the isolates were characterized with respect to their adaptation to high temperatures, drought, and local host plants. The adaptation experiments revealed that the Namibian isolates shared an exceptionally high temperature tolerance, but none of the isolates showed considerable adaptation to drought. Moreover, the isolates' performance on different local hosts showed variable results, with most Namibian isolates inducing better nodulation on peanut and hyacinth bean than the Angolan strains. The local predominance of distinct genotypes implies that indigenous strains may exhibit a better performance in inoculant formulations. PMID:25239908
Powell, Jeff R; Parrent, Jeri L; Hart, Miranda M; Klironomos, John N; Rillig, Matthias C; Maherali, Hafiz
2009-12-07
The diversity of functional and life-history traits of organisms depends on adaptation as well as the legacy of shared ancestry. Although the evolution of traits in macro-organisms is well studied, relatively little is known about character evolution in micro-organisms. Here, we surveyed an ancient and ecologically important group of microbial plant symbionts, the arbuscular mycorrhizal (AM) fungi, and tested hypotheses about the evolution of functional and life-history traits. Variation in the extent of root and soil colonization by AM fungi is constrained to a few nodes basal to the most diverse groups within the phylum, with relatively little variation associated with recent divergences. We found no evidence for a trade-off in biomass allocated to root versus soil colonization in three published glasshouse experiments; rather these traits were positively correlated. Partial support was observed for correlated evolution between fungal colonization strategies and functional benefits of the symbiosis to host plants. The evolution of increased soil colonization was positively correlated with total plant biomass and shoot phosphorus content. Although the effect of AM fungi on infection by root pathogens was phylogenetically conserved, there was no evidence for correlated evolution between the extent of AM fungal root colonization and pathogen infection. Variability in colonization strategies evolved early in the diversification of AM fungi, and we propose that these strategies were influenced by functional interactions with host plants, resulting in an evolutionary stasis resembling trait conservatism.
Poelman, Erik H; Zheng, Si-Jun; Zhang, Zhao; Heemskerk, Nanda M; Cortesero, Anne-Marie; Dicke, Marcel
2011-12-06
Plants are exposed to a suite of herbivorous attackers that often arrive sequentially. Herbivory affects interactions between the host plants and subsequently attacking herbivores. Moreover, plants may respond to herbivory by emitting volatile organic compounds (VOCs) that attract carnivorous natural enemies of the herbivores. However, information borne by VOCs is ubiquitous and may attract carnivores, such as parasitoids, that differ in their effectiveness at releasing the plant from its herbivorous attackers. Furthermore, the development of parasitoids within their herbivorous hosts, attacking a given host plant, may influence the elicitation of defensive reactions in the host plant. This may, in turn, affect the behavior of subsequent herbivores attacking the host plant. Here, we show that the species identity of a parasitoid had a more significant effect on defense responses of Brassica oleracea plants than the species identity of the herbivorous hosts of the parasitoids. Consequently, B. oleracea plants that were damaged by caterpillars (Pieris spp.) parasitized by different parasitoid species varied in the degree to which diamondback moths (Plutella xylostella) selected the plants for oviposition. Attracting parasitoids in general benefitted the plants by reducing diamondback moth colonization. However, the species of parasitoid that parasitized the herbivore significantly affected the magnitude of this benefit by its species-specific effect on herbivore-plant interactions mediated by caterpillar regurgitant. Our findings show that information-mediated indirect defense may lead to unpredictable consequences for plants when considering trait-mediated effects of parasitized caterpillars on the host plant and their consequences because of community-wide responses to induced plants.
Lee, Gisuk; Joo, Youngsung; Kim, Sang-Gyu; Baldwin, Ian T
2017-11-01
Herbivore attack is known to elicit systemic defense responses that spread throughout the host plant and influence the performance of other herbivores. While these plant-mediated indirect competitive interactions are well described, and the co-existence of herbivores from different feeding guilds is common, the mechanisms of co-existence are poorly understood. In both field and glasshouse experiments with a native tobacco, Nicotiana attenuata, we found no evidence of negative interactions when plants were simultaneously attacked by two spatially separated herbivores: a leaf chewer Manduca sexta and a stem borer Trichobaris mucorea. T. mucorea attack elicited jasmonic acid (JA) and jasmonoyl-l-isoleucine bursts in the pith of attacked stems similar to those that occur in leaves when M. sexta attacks N. attenuata leaves. Pith chlorogenic acid (CGA) levels increased 1000-fold to levels 6-fold higher than leaf levels after T. mucorea attack; these increases in pith CGA levels, which did not occur in M. sexta-attacked leaves, required JA signaling. With plants silenced in CGA biosynthesis (irHQT plants), CGA, as well as other caffeic acid conjugates, was demonstrated in both glasshouse and field experiments to function as a direct defense protecting piths against T. mucorea attack, but not against leaf chewers or sucking insects. T. mucorea attack does not systemically activate JA signaling in leaves, while M. sexta leaf-attack transiently induces detectable but minor pith JA levels that are dwarfed by local responses. We conclude that tissue-localized defense responses allow tissue-specialized herbivores to share the same host and occupy different chemical defense niches in the same hostplant. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Island phytophagy: explaining the remarkable diversity of plant-feeding insects
Joy, Jeffrey B.; Crespi, Bernard J.
2012-01-01
Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa. PMID:22553094
Island phytophagy: explaining the remarkable diversity of plant-feeding insects.
Joy, Jeffrey B; Crespi, Bernard J
2012-08-22
Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa.
Aphid Infestation Increases Fusarium langsethiae and T-2 and HT-2 Mycotoxins in Wheat
Drakulic, Jassy; Ajigboye, Olubukola; Swarup, Ranjan; Bruce, Toby
2016-01-01
ABSTRACT Fusarium langsethiae is a fungal pathogen of cereal crops that is an increasing problem in northern Europe, but much of its epidemiology is poorly understood. The species produces the mycotoxins T-2 and HT-2, which are highly toxic. It was hypothesized that grain aphids, Sitobion avenae, may transmit F. langsethiae inoculum between wheat plants, and a series of transmission experiments and volatile chemical analyses was performed to test this. Manual translocation of aphids from inoculated to uninfected hosts resulted in pathogen DNA accumulation in hosts. However, the free movement of wingless aphids from infected to healthy plants did not. The addition of winged aphids reared on F. langsethiae-inoculated wheat seedlings to wheat plants also did not achieve successful pathogen transfer. While our data suggested that aphid transmission of the pathogen was not very efficient, we observed an increase in disease when aphids were present. After seedling inoculation, an increase in pathogen DNA accumulation in seedling leaves was observed upon treatment with aphids. Furthermore, the presence of aphids on wheat plants with F. langsethiae-inoculated ears not only led to a rise in the amount of F. langsethiae DNA in infected grain but also to an increase in the concentrations of T-2 and HT-2 toxins, with more than 3-fold higher toxin levels than diseased plants without aphids. This work highlights that aphids increase the susceptibility of wheat host plants to F. langsethiae and that aphid infestation is a risk factor for accumulating increased levels of T-2 and HT-2 in wheat products. IMPORTANCE Fusarium langsethiae is shown here to cause increased contamination levels of grain with toxins produced by fungus when aphids share the host plant. This effect has also recently been demonstrated with Fusarium graminearum, yet the two fungal species show stark differences in their effect on aphid populations. In both cases, aphids improve the ability of the pathogens to cause and initiate Fusarium head blight (FHB) disease in wheat, but F. langsethiae may be able to act as a dispersal agent. F. langsethiae contributes harmful toxins to wheat grain that need to be controlled, but as yet, its epidemiology is unresolved. This work reveals insights into the role aphids play in promoting the successful colonization of this species in wheat and the benefit of controlling aphid populations on crops that are at high risk of FHB. PMID:27590814
Plant immunity in plant–aphid interactions
Jaouannet, Maëlle; Rodriguez, Patricia A.; Lenoir, Camille J. G.; MacLeod, Ruari; Escudero-Martinez, Carmen; Bos, Jorunn I.B.
2014-01-01
Aphids are economically important pests that cause extensive feeding damage and transmit viruses. While some species have a broad host range and cause damage to a variety of crops, others are restricted to only closely related plant species. While probing and feeding aphids secrete saliva, containing effectors, into their hosts to manipulate host cell processes and promote infestation. Aphid effector discovery studies pointed out parallels between infection and infestation strategies of plant pathogens and aphids. Interestingly, resistance to some aphid species is known to involve plant resistance proteins with a typical NB-LRR domain structure. Whether these resistance proteins indeed recognize aphid effectors to trigger ETI remains to be elucidated. In addition, it was recently shown that unknown aphid derived elicitors can initiate reactive oxygen species (ROS) production and callose deposition and that these responses were dependent on BAK1 (BRASSINOSTERIOD INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1) which is a key component of the plant immune system. In addition, BAK-1 contributes to non-host resistance to aphids pointing to another parallel between plant-pathogen and – aphid interactions. Understanding the role of plant immunity and non-host resistance to aphids is essential to generate durable and sustainable aphid control strategies. Although insect behavior plays a role in host selection and non-host resistance, an important observation is that aphids interact with non-host plants by probing the leaf surface, but are unable to feed or establish colonization. Therefore, we hypothesize that aphids interact with non-host plants at the molecular level, but are potentially not successful in suppressing plant defenses and/or releasing nutrients. PMID:25520727
Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O
2012-01-01
Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service – Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data – the number of known hosts and the phylogenetic distance between known hosts and other species of interest – can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation. PMID:23346231
Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O
2012-12-01
Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service - Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data - the number of known hosts and the phylogenetic distance between known hosts and other species of interest - can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation.
Cahenzli, Fabian; Wenk, Barbara A; Erhardt, Andreas
2015-07-01
Recent studies with diverse taxa have shown that parents can utilize their experience of the environment to adapt their offspring's phenotype to the same environmental conditions. Thus, offspring would then perform best under environmental conditions experienced by their parents due to transgenerational phenotypic plasticity. Such an effect has been dubbed transgenerational acclimatization. However, evidence that parents can subsequently ensure the appropriate environmental conditions in order that offspring benefit from transgenerational acclimatization has never been demonstrated. We reared Pieris rapae larvae in the parental generation on high-nitrogen and low-nitrogen host plants, and reared the offspring (F1) of both treatments again on high- and low-nitrogen plants. Furthermore, we tested if females prefer to oviposit on high- or low-nitrogen host plants in two-way choice tests. We here show not only that females adapt their offspring's phenotype to the host-plant quality that they themselves experienced, but that females also mainly oviposit on the host quality to which they adapt their offspring. Moreover, effects of larval host plant on oviposition preference of females increased across two generations in F1-females acclimatized to low-nitrogen host plants, showing an adaptive host shift from one generation to the next. These findings may have profound implications for host-race formation and sympatric speciation.
Fraiture, Malou; Liu, Xiaoyu; Boevink, Petra C.; Gilroy, Eleanor M.; Chen, Ying; Kandel, Kabindra; Sessa, Guido; Birch, Paul R. J.; Brunner, Frédéric
2014-01-01
Genome sequences of several economically important phytopathogenic oomycetes have revealed the presence of large families of so-called RXLR effectors. Functional screens have identified RXLR effector repertoires that either compromise or induce plant defense responses. However, limited information is available about the molecular mechanisms underlying the modes of action of these effectors in planta. The perception of highly conserved pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs), such as flg22, triggers converging signaling pathways recruiting MAP kinase cascades and inducing transcriptional re-programming, yielding a generic anti-microbial response. We used a highly synchronizable, pathogen-free protoplast-based assay to identify a set of RXLR effectors from Phytophthora infestans (PiRXLRs), the causal agent of potato and tomato light blight that manipulate early stages of flg22-triggered signaling. Of thirty-three tested PiRXLR effector candidates, eight, called Suppressor of early Flg22-induced Immune response (SFI), significantly suppressed flg22-dependent activation of a reporter gene under control of a typical MAMP-inducible promoter (pFRK1-Luc) in tomato protoplasts. We extended our analysis to Arabidopsis thaliana, a non-host plant species of P. infestans. From the aforementioned eight SFI effectors, three appeared to share similar functions in both Arabidopsis and tomato by suppressing transcriptional activation of flg22-induced marker genes downstream of post-translational MAP kinase activation. A further three effectors interfere with MAMP signaling at, or upstream of, the MAP kinase cascade in tomato, but not in Arabidopsis. Transient expression of the SFI effectors in Nicotiana benthamiana enhances susceptibility to P. infestans and, for the most potent effector, SFI1, nuclear localization is required for both suppression of MAMP signaling and virulence function. The present study provides a framework to decipher the molecular mechanisms underlying the manipulation of host MAMP-triggered immunity (MTI) by P. infestans and to understand the basis of host versus non-host resistance in plants towards P. infestans. PMID:24763622
Wilson, J K; Woods, H A
2015-12-01
Insect carnivores frequently use olfactory cues from plants to find prey or hosts. For plants, the benefits of attracting parasitoids have been controversial, partly because parasitoids often do not kill their host insect immediately. Furthermore, most research has focused on the effects of solitary parasitoids on growth and feeding of hosts, even though many parasitoids are gregarious (multiple siblings inhabit the same host). Here, we examine how a gregarious parasitoid, the tachinid fly Drino rhoeo, uses olfactory cues from the host plant Datura wrightii to find the sphingid herbivore Manduca sexta, and how parasitism affects growth and feeding of host larvae. In behavioral trials using a Y-olfactometer, female flies were attracted to olfactory cues emitted by attacked plants and by cues emitted from the frass produced by larval Manduca sexta. M. sexta caterpillars that were parasitized by D. rhoeo grew to lower maximum weights, grew more slowly, and ate less of their host plant. We also present an analytical model to predict how tri-trophic interactions change with varying herbivory levels, parasitization rates and plant sizes. This model predicted that smaller plants gain a relatively greater benefit compared to large plants in attracting D. rhoeo. By assessing the behavior, the effects of host performance, and the variation in ecological parameters of the system, we can better understand the complex interactions between herbivorous insects, the plants they live on and the third trophic level members that attack them.
Lu, Hong; Yang, Pengcheng; Xu, Yongyu; Luo, Lan; Zhu, Junjie; Cui, Na; Kang, Le; Cui, Feng
2016-01-01
Insect populations feeding on different plant species are under selection pressure to adapt to these differences. A study integrating elements of the ecology, behavior, and gene expression of aphids on different host plants has not yet been well-explored. The present study explores the relationship between host fitness and survival, feeding behavior, and salivary gland gene expression of a pea (Pisum sativum) host race of Acyrthosiphon pisum feeding on a common host Vicia faba and on three genetically-related hosts (Vicia villosa, Medicago truncatula, and Medicago sativa). Life table data indicated that aphids on non-favored hosts exhibited small size, low reproduction rate, slow population increase and individual development, and long lifespan. Electrical penetration graph results showed that the aphids spent significantly less time in passive ingestion of phloem sap on all non-preferred host plants before acclimation. After a period of acclimation on M. truncatula and V. villosa, pea host race individuals showed improved feeding behavior. No individuals of the pea host race completed its life history on M. sativa. Interestingly, the number of host-specific differentially-expressed salivary gland genes was negatively correlated with the fitness of aphids on this host plant. This study provided important cues in host plant specialization in aphids. PMID:26758247
Progress in preliminary studies at Ottana Solar Facility
NASA Astrophysics Data System (ADS)
Demontis, V.; Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Melis, T.; Musio, M.
2016-05-01
The fast increasing share of distributed generation from non-programmable renewable energy sources, such as the strong penetration of photovoltaic technology in the distribution networks, has generated several problems for the management and security of the whole power grid. In order to meet the challenge of a significant share of solar energy in the electricity mix, several actions aimed at increasing the grid flexibility and its hosting capacity, as well as at improving the generation programmability, need to be investigated. This paper focuses on the ongoing preliminary studies at the Ottana Solar Facility, a new experimental power plant located in Sardinia (Italy) currently under construction, which will offer the possibility to progress in the study of solar plants integration in the power grid. The facility integrates a concentrating solar power (CSP) plant, including a thermal energy storage system and an organic Rankine cycle (ORC) unit, with a concentrating photovoltaic (CPV) plant and an electrical energy storage system. The facility has the main goal to assess in real operating conditions the small scale concentrating solar power technology and to study the integration of the two technologies and the storage systems to produce programmable and controllable power profiles. A model for the CSP plant yield was developed to assess different operational strategies that significantly influence the plant yearly yield and its global economic effectiveness. In particular, precise assumptions for the ORC module start-up operation behavior, based on discussions with the manufacturers and technical datasheets, will be described. Finally, the results of the analysis of the: "solar driven", "weather forecasts" and "combined storage state of charge (SOC)/ weather forecasts" operational strategies will be presented.
Gut microbiota may predict host divergence time during Glires evolution.
Li, Huan; Qu, Jiapeng; Li, Tongtong; Yao, Minjie; Li, Jiaying; Li, Xiangzhen
2017-03-01
The gut microbial communities of animals play key roles in host evolution. However, the possible relationship between gut microbiota and host divergence time remains unknown. Here, we investigated the gut microbiota of eight Glires species (four lagomorph species and four rodent species) distributed throughout the Qinghai-Tibet plateau and Inner Mongolia grassland. Lagomorphs and rodents had distinct gut microbial compositions. Three out of four lagomorph species were dominated by Firmicutes, while rodents were dominated by Bacteroidetes in general. The alpha diversity values (Shannon diversity and evenness) exhibited significant differences between any two species within the lagomorphs, whereas there were no significant differences among rodents. The structure of the gut microbiota showed significant differences between lagomorphs and rodents. In addition, we calculated host phylogeny and divergence times, and used a phylogenetic approach to reconstruct how the animal gut microbiota has diverged from their ancestral species. Some core bacterial genera (e.g. Prevotella and Clostridium) shared by more than nine-tenths of all the Glires individuals associated with plant polysaccharide degradation showed marked changes within lagomorphs. Differences in Glires gut microbiota (based on weighted UniFrac and Bray-Curtis dissimilarity metrics) were positively correlated with host divergence time. Our results thus suggest the gut microbial composition is associated with host phylogeny, and further suggest that dissimilarity of animal gut microbiota may predict host divergence time. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
The melon fly, Bactrocera cucurbitae (Coquillett), is a widespread, economically important tephritid fruit fly (Diptera: Tephritidae) species. Bactrocera cucurbitae infests fruits and vegetables of a number of different plant species, with many host plants in the plant family Cucurbitaceae, but with...
Correlations between adult mimicry and larval host plants in ithomiine butterflies.
Willmott, Keith R; Mallet, James
2004-08-07
The apparent paradox of multiple coexisting wing pattern mimicry 'rings' in tropical butterflies has been explained as a result of microhabitat partitioning in adults. However, very few studies have tested this hypothesis. In neotropical forests, ithomiine butterflies dominate and display the richest diversity of mimicry rings. We show that co-mimetic species occupy the same larval host-plant species significantly more often than expected in two out of five communities that we surveyed; in one of these, the effect remains significant after phylogenetic correction. This relationship is most probably a result of a third correlated variable, such as microhabitat. Host-plant microhabitat may constrain adult movement, or host-plant choice may depend on butterfly microhabitat preferences and mimicry associations. This link between mimicry and host plant could help explain some host-plant and mimicry shifts, which have been important in the radiation of this speciose tropical group.
Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race
Ramesh, Shunmugiah V.; Sahu, Pranav P.; Prasad, Manoj; Praveen, Shelly; Pappu, Hanu R.
2017-01-01
Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant’s defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistance are highlighted to complete the perspective on geminivirus-plant molecular interactions. PMID:28914771
Ottens, K; Winkler, I S; Lewis, M L; Scheffer, S J; Gomes-Costa, G A; Condon, M A; Forbes, A A
2017-04-01
Tropical herbivorous insects are astonishingly diverse, and many are highly host-specific. Much evidence suggests that herbivorous insect diversity is a function of host plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most species of herbivorous fruit flies in the Neotropical genus Blepharoneura are strongly host-specific (they deposit their eggs in a single host plant species and flower sex), some species are collected from multiple hosts or flowers and these may represent examples of lineages that are diversifying via changes in host use. Here, we investigate patterns of diversification within six geographically widespread Blepharoneura species that have been collected and reared from at least two host plant species or host plant parts. We use microsatellites to (1) test for evidence of local genetic differentiation associated with different sympatric hosts (different plant species or flower sexes) and (2) examine geographic patterns of genetic differentiation across multiple South American collection sites. In four of the six fly species, we find evidence of local genetic differences between flies collected from different hosts. All six species show evidence of geographic structure, with consistent differences between flies collected in the Guiana Shield and flies collected in Amazonia. Continent-wide analyses reveal - in all but one instance - that genetically differentiated flies collected in sympatry from different host species or different sex flowers are not one another's closest relatives, indicating that genetic differences often arise in allopatry before, or at least coincident with, the evolution of novel host use. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Bergamot versus beetle: evidence for intraspecific chemical specialization
Keefover-Ring, Ken
2015-01-01
A large proportion of phytophagous insects show host plant specificity (monophagy or oligophagy), often determined by host secondary chemistry. Yet, even specialists can be negatively affected by host chemistry at high levels or with novel compounds, which may manifest itself if their host species is chemically variable. This study tested for reciprocal effects of a specialist tortoise beetle (Physonota unipunctata) feeding on a host plant (Monarda fistulosa) with two monoterpene chemotypes [thymol (T) and carvacrol (C)] using a controlled field experiment where larvae fed on caged plants of both chemotypes, haphazardly collected natural plants with and without beetle damage, and growth chamber experiments where larvae that hatched and briefly fed on one chemotype were reared on either chemotype. In the field experiment, plant chemotype did not affect larval weight or length, but did influence larval survival with almost 8.3 % more surviving on T plants. Herbivores reduced seed head area (86.5 % decrease), stem mass (41.2 %) and stem height (21.1 %) of caged plants, but this was independent of host chemotype. Natural plants experienced similar reductions in these variables (74.0, 41.4 and 8.7 %) and T chemotypes were more frequently damaged. In the growth chamber, larval relative growth rate (RGR) differed for both feeding history and year. Larvae from T natal plants reared on T hosts grew at almost twice the rate of those from C and reared on T. Larvae from either T or C natal plants reared on C plants showed intermediate growth rates. Additional analyses revealed natal plant chemotype as the most important factor, with the RGR of larvae from T natal plants almost one-third higher than that of those from C natal plants. These cumulative results demonstrate intraspecific variation in plant resistance that may lead to herbivore specialization on distinct host chemistry, which has implications for the evolutionary trajectory of both the insect and plant species. PMID:26578745
Bergamot versus beetle: evidence for intraspecific chemical specialization.
Keefover-Ring, Ken
2015-11-16
A large proportion of phytophagous insects show host plant specificity (monophagy or oligophagy), often determined by host secondary chemistry. Yet, even specialists can be negatively affected by host chemistry at high levels or with novel compounds, which may manifest itself if their host species is chemically variable. This study tested for reciprocal effects of a specialist tortoise beetle (Physonota unipunctata) feeding on a host plant (Monarda fistulosa) with two monoterpene chemotypes [thymol (T) and carvacrol (C)] using a controlled field experiment where larvae fed on caged plants of both chemotypes, haphazardly collected natural plants with and without beetle damage, and growth chamber experiments where larvae that hatched and briefly fed on one chemotype were reared on either chemotype. In the field experiment, plant chemotype did not affect larval weight or length, but did influence larval survival with almost 8.3 % more surviving on T plants. Herbivores reduced seed head area (86.5 % decrease), stem mass (41.2 %) and stem height (21.1 %) of caged plants, but this was independent of host chemotype. Natural plants experienced similar reductions in these variables (74.0, 41.4 and 8.7 %) and T chemotypes were more frequently damaged. In the growth chamber, larval relative growth rate (RGR) differed for both feeding history and year. Larvae from T natal plants reared on T hosts grew at almost twice the rate of those from C and reared on T. Larvae from either T or C natal plants reared on C plants showed intermediate growth rates. Additional analyses revealed natal plant chemotype as the most important factor, with the RGR of larvae from T natal plants almost one-third higher than that of those from C natal plants. These cumulative results demonstrate intraspecific variation in plant resistance that may lead to herbivore specialization on distinct host chemistry, which has implications for the evolutionary trajectory of both the insect and plant species. Published by Oxford University Press on behalf of the Annals of Botany Company.
Effects of herbicide-treated host plants on the development of Mamestra brassicae L. caterpillars.
Hahn, Melanie; Geisthardt, Martin; Brühl, Carsten A
2014-11-01
Herbicides are widely used pesticides that affect plants by changing their chemistry. In doing so, herbicides might also influence the quality of plants as food for herbivores. To study the effects of herbicides on host plant quality, 3 plant species (Plantago lanceolata L., P. major L., and Ranunculus acris L.) were treated with sublethal rates of either a sulfonylurea (Atlantis WG, Bayer CropScience) or a glyphosate (Roundup LB Plus, Monsanto) herbicide, and the development of caterpillars of the cabbage moth Mamestra brassicae L. that fed on these plants was observed. Of the 6 tested plant-herbicide combinations, 1 combination (R. acris + sulfonylurea herbicide) resulted in significantly lower caterpillar weight, increased time to pupation, and increased overall development time compared with larvae that were fed unsprayed plants. These results might be caused by a lower nutritional value of these host plants or increased concentrations of secondary metabolites that are involved in plant defense. The results of the present and other studies suggest potential risks to herbivores that feed on host plants treated with sublethal rates of herbicides. However, as the effects of herbicides on host plant quality appear to be species-specific and as there are numerous plant-herbicide-herbivore relationships in agricultural landscapes, a general reduction in herbicide contamination of nontarget habitats (e.g., field margins) might mitigate the negative effects of herbicides on host plant quality. © 2014 SETAC.
O'Rorke, Richard; Cobian, Gerald M; Holland, Brenden S; Price, Melissa R; Costello, Vincent; Amend, Anthony S
2015-05-01
Achatinella mustelina is a critically endangered tree snail that subsists entirely by grazing microbes from leaf surfaces of native trees. Little is known about the fundamental aspects of these microbe assemblages: not taxonomic composition, how this varies with host plant or location, nor whether snails selectively consume microbes. To address these questions, we collected 102 snail faecal samples as a proxy for diet, and 102 matched-leaf samples from four locations. We used Illumina amplicon sequencing to determine bacterial and fungal community composition. Microbial community structure was significantly distinct between snail faeces and leaf samples, but the same microbes occurred in both. We conclude that snails are not 'picky' eaters at the microbial level, but graze the surface of whatever plant they are on. In a second experiment, the gut was dissected from non-endangered native tree snails in the same family as Achatinella to confirm that faecal samples reflect gut contents. Over 60% of fungal reads were shared between faeces, gut and leaf samples. Overall, location, sample type (faeces or leaf) and host plant identity all significantly explained the community composition and variation among samples. Understanding the microbial ecology of microbes grazed by tree snails enables effective management when conservation requires captive breeding or field relocation. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system.
Endara, María-José; Coley, Phyllis D; Ghabash, Gabrielle; Nicholls, James A; Dexter, Kyle G; Donoso, David A; Stone, Graham N; Pennington, R Toby; Kursar, Thomas A
2017-09-05
Coevolutionary models suggest that herbivores drive diversification and community composition in plants. For herbivores, many questions remain regarding how plant defenses shape host choice and community structure. We addressed these questions using the tree genus Inga and its lepidopteran herbivores in the Amazon. We constructed phylogenies for both plants and insects and quantified host associations and plant defenses. We found that similarity in herbivore assemblages between Inga species was correlated with similarity in defenses. There was no correlation with phylogeny, a result consistent with our observations that the expression of defenses in Inga is independent of phylogeny. Furthermore, host defensive traits explained 40% of herbivore community similarity. Analyses at finer taxonomic scales showed that different lepidopteran clades select hosts based on different defenses, suggesting taxon-specific histories of herbivore-host plant interactions. Finally, we compared the phylogeny and defenses of Inga to phylogenies for the major lepidopteran clades. We found that closely related herbivores fed on Inga with similar defenses rather than on closely related plants. Together, these results suggest that plant defenses might be more evolutionarily labile than the herbivore traits related to host association. Hence, there is an apparent asymmetry in the evolutionary interactions between Inga and its herbivores. Although plants may evolve under selection by herbivores, we hypothesize that herbivores may not show coevolutionary adaptations, but instead "chase" hosts based on the herbivore's own traits at the time that they encounter a new host, a pattern more consistent with resource tracking than with the arms race model of coevolution.
Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system
Coley, Phyllis D.; Ghabash, Gabrielle; Nicholls, James A.; Donoso, David A.; Stone, Graham N.; Pennington, R. Toby; Kursar, Thomas A.
2017-01-01
Coevolutionary models suggest that herbivores drive diversification and community composition in plants. For herbivores, many questions remain regarding how plant defenses shape host choice and community structure. We addressed these questions using the tree genus Inga and its lepidopteran herbivores in the Amazon. We constructed phylogenies for both plants and insects and quantified host associations and plant defenses. We found that similarity in herbivore assemblages between Inga species was correlated with similarity in defenses. There was no correlation with phylogeny, a result consistent with our observations that the expression of defenses in Inga is independent of phylogeny. Furthermore, host defensive traits explained 40% of herbivore community similarity. Analyses at finer taxonomic scales showed that different lepidopteran clades select hosts based on different defenses, suggesting taxon-specific histories of herbivore–host plant interactions. Finally, we compared the phylogeny and defenses of Inga to phylogenies for the major lepidopteran clades. We found that closely related herbivores fed on Inga with similar defenses rather than on closely related plants. Together, these results suggest that plant defenses might be more evolutionarily labile than the herbivore traits related to host association. Hence, there is an apparent asymmetry in the evolutionary interactions between Inga and its herbivores. Although plants may evolve under selection by herbivores, we hypothesize that herbivores may not show coevolutionary adaptations, but instead “chase” hosts based on the herbivore’s own traits at the time that they encounter a new host, a pattern more consistent with resource tracking than with the arms race model of coevolution. PMID:28827317
Temporal and spatial scaling of the genetic structure of a vector-borne plant pathogen.
Coletta-Filho, Helvécio D; Francisco, Carolina S; Almeida, Rodrigo P P
2014-02-01
The ecology of plant pathogens of perennial crops is affected by the long-lived nature of their immobile hosts. In addition, changes to the genetic structure of pathogen populations may affect disease epidemiology and management practices; examples include local adaptation of more fit genotypes or introduction of novel genotypes from geographically distant areas via human movement of infected plant material or insect vectors. We studied the genetic structure of Xylella fastidiosa populations causing disease in sweet orange plants in Brazil at multiple scales using fast-evolving molecular markers (simple-sequence DNA repeats). Results show that populations of X. fastidiosa were regionally isolated, and that isolation was maintained for populations analyzed a decade apart from each other. However, despite such geographic isolation, local populations present in year 2000 were largely replaced by novel genotypes in 2009 but not as a result of migration. At a smaller spatial scale (individual trees), results suggest that isolates within plants originated from a shared common ancestor. In summary, new insights on the ecology of this economically important plant pathogen were obtained by sampling populations at different spatial scales and two different time points.
USDA-ARS?s Scientific Manuscript database
Tagged Colorado potato beetles (CPB), Leptinotarsa decemlineata (Say), were released on potato plants, Solanum tuberosum L., and tracked using a portable harmonic radar system to determine the impact of host plant spatial distribution on the tendency of the pest to remain on the colonized host plant...
Ozone impedes the ability of a herbivore to find its host
NASA Astrophysics Data System (ADS)
Fuentes, Jose D.; Roulston, T.'ai H.; Zenker, John
2013-03-01
Plant-emitted hydrocarbons mediate several key interactions between plants and insects. They enhance the ability of pollinators and herbivores to locate suitable host plants, and parasitoids to locate herbivores. While plant volatiles provide strong chemical signals, these signals are potentially degraded by exposure to pollutants such as ozone, which has increased in the troposphere and is projected to continue to increase over the coming decades. Despite the potential broad ecological significance of reduced plant signaling effectiveness, few studies have examined behavioral responses of insects to their hosts in polluted environments. Here, we use a laboratory study to test the effect of ozone concentration gradients on the ability of the striped cucumber beetle (Acalymma vittatum) to locate flowers of its host plant, Cucurbita foetidissima. Y-tube experiments showed that ozone mixing ratios below 80 parts per billion (ppb) resulted in beetles moving toward their host plant, but levels above 80 ppb resulted in beetles moving randomly with respect to host location. There was no evidence that beetles avoided polluted air directly. The results show that ozone pollution has great potential to perniciously alter key interactions between plants and animals.
Mauck, Kerry E.; De Moraes, Consuelo M.; Mescher, Mark C.
2015-01-01
Plant viruses can profoundly alter the phenotypes of their host plants, with potentially far-reaching implications for ecology. Yet few studies have explored the indirect, host-mediated, effects of plant viruses on non-vector insects. We examined how infection of Cucurbita pepo plants by Cucumber mosaic virus (CMV) impacted the susceptibility of aphids (Myzus persicae) to attack by the parasitoid wasp Aphidius colemani. In semi-natural foraging assays, we observed higher rates of aphid parasitism on infected plants compared to healthy plants. Subsequent experiments revealed that this difference is not explained by different attack rates on plants differing in infection status, but rather by the fact that parasitoid larvae successfully complete their development more often when aphid hosts feed on infected plants. This suggests that the reduced nutritional quality of infected plants as host for aphids—documented in previous studies—compromises their ability to mount effective defenses against parasitism. Furthermore, our current findings indicate that the aphid diet during parasitoid development (rather than prior to wasp oviposition) is a key factor influencing resistance. These findings complement our previous work showing that CMV-induced changes in host plant chemistry alter patterns of aphid recruitment and dispersal in ways conducive to virus transmission. PMID:26043237
Cellular and molecular aspects of rhabdovirus interactions with insect and plant hosts.
Ammar, El-Desouky; Tsai, Chi-Wei; Whitfield, Anna E; Redinbaugh, Margaret G; Hogenhout, Saskia A
2009-01-01
The rhabdoviruses form a large family (Rhabdoviridae) whose host ranges include humans, other vertebrates, invertebrates, and plants. There are at least 90 plant-infecting rhabdoviruses, several of which are economically important pathogens of various crops. All definitive plant-infecting and many vertebrate-infecting rhabdoviruses are persistently transmitted by insect vectors, and a few putative plant rhabdoviruses are transmitted by mites. Plant rhabdoviruses replicate in their plant and arthropod hosts, and transmission by vectors is highly specific, with each virus species transmitted by one or a few related insect species, mainly aphids, leafhoppers, or planthoppers. Here, we provide an overview of plant rhabdovirus interactions with their insect hosts and of how these interactions compare with those of vertebrate-infecting viruses and with the Sigma rhabdovirus that infects Drosophila flies. We focus on cellular and molecular aspects of vector/host specificity, transmission barriers, and virus receptors in the vectors. In addition, we briefly discuss recent advances in understanding rhabdovirus-plant interactions.
Calcium signaling during the plant-plant interaction of parasitic Cuscuta reflexa with its hosts.
Albert, Markus; Kaiser, Bettina; van der Krol, Sander; Kaldenhoff, Ralf
2010-09-01
The plant parasite Cuscuta reflexa induces various responses in compatible and incompatible host plants. The visual reactions of both types of host plants including obvious morphological changes require the recognition of Cuscuta ssp. A consequently initiated signaling cascade is triggered which leads to a tolerance of the infection or, in the case of some incompatible host plants, to resistance. Calcium (Ca(2+)) release is the major second messenger during signal transduction. Therefore, we have studied Ca(2+) spiking in tomato and tobacco during infection with C. reflexa. In our recently published study Ca(2+) signals were monitored as bioluminescence in aequorin-expressing tomato plants after the onset of C. reflexa infestation. Signals at the attachment sites were observed from 30 to 48 h after infection. In an assay with leaf disks of aequorin-expressing tomato which were treated with different C. reflexa plant extracts it turned out that the substance that induced Ca(2+) release in the host plant was closely linked to the parasite's haustoria.
Calcium signaling during the plant-plant interaction of parasitic Cuscuta reflexa with its hosts
Kaiser, Bettina; van der Krol, Sander; Kaldenhoff, Ralf
2010-01-01
The plant parasite Cuscuta reflexa induces various responses in compatible and incompatible host plants. The visual reactions of both types of host plants including obvious morphological changes require the recognition of Cuscuta ssp. A consequently initiated signaling cascade is triggered which leads to a tolerance of the infection or, in the case of some incompatible host plants, to resistance. Calcium (Ca2+) release is the major second messenger during signal transduction. Therefore, we have studied Ca2+ spiking in tomato and tobacco during infection with C. reflexa. In our recently published study1 Ca2+ signals were monitored as bioluminescence in aequorin-expressing tomato plants after the onset of C. reflexa infestation. Signals at the attachment sites were observed from 30 to 48 h after infection. In an assay with leaf disks of aequorin-expressing tomato which were treated with different C. reflexa plant extracts it turned out that the substance that induced Ca2+ release in the host plant was closely linked to the parasite's haustoria. PMID:20818172
Modulation of host cell biology by plant pathogenic microbes.
Le Fevre, Ruth; Evangelisti, Edouard; Rey, Thomas; Schornack, Sebastian
2015-01-01
Plant-pathogen interactions can result in dramatic visual changes in the host, such as galls, phyllody, pseudoflowers, and altered root-system architecture, indicating that the invading microbe has perturbed normal plant growth and development. These effects occur on a cellular level but range up to the organ scale, and they commonly involve attenuation of hormone homeostasis and deployment of effector proteins with varying activities to modify host cell processes. This review focuses on the cellular-reprogramming mechanisms of filamentous and bacterial plant pathogens that exhibit a biotrophic lifestyle for part, if not all, of their lifecycle in association with the host. We also highlight strategies for exploiting our growing knowledge of microbial host reprogramming to study plant processes other than immunity and to explore alternative strategies for durable plant resistance.
Aly, Radi; Hamamouch, Noureddine; Abu-Nassar, Jacklin; Wolf, Shmuel; Joel, Daniel M; Eizenberg, Hanan; Kaisler, Efrat; Cramer, Carole; Gal-On, Amit; Westwood, James H
2011-12-01
Little is known about the translocation of proteins and other macromolecules from a host plant to the parasitic weed Phelipanche spp. Long-distance movement of proteins between host and parasite was explored using transgenic tomato plants expressing green fluorescent protein (GFP) in their companion cells. We further used fluorescent probes of differing molecular weights to trace vascular continuity between the host plant and the parasite. Accumulation of GFP was observed in the central vascular bundle of leaves and in the root phloem of transgenic tomato plants expressing GFP under the regulation of AtSUC2 promoter. When transgenic tomato plants expressing GFP were parasitized with P. aegyptiaca, extensive GFP was translocated from the host phloem to the parasite phloem and accumulated in both Phelipanche tubercles and shoots. No movement of GFP to the parasite was observed when tobacco plants expressing GFP targeted to the ER were parasitized with P. aegyptiaca. Experiments using fluorescent probes of differing molecular weights to trace vascular continuity between the host plant and the parasite demonstrated that Phelipanche absorbs dextrans up to 70 kDa in size from the host and that this movement can be bi-directional. In the present study, we prove for the first time delivery of proteins from host to the parasitic weed P. aegyptiaca via phloem connections, providing information for developing parasite resistance strategies.
Kim, Dohyup; Minhas, Bushra F; Li-Byarlay, Hongmei; Hansen, Allison K
2018-05-25
Microbes are known to influence insect-plant interactions; however, it is unclear if host-plant diet influences the regulation of nutritional insect symbioses. The pea aphid, Acyrthosiphon pisum , requires its nutritional endosymbiont, Buchnera , for the production of essential amino acids. We hypothesize that key aphid genes that regulate the nutritional symbioses respond to host-plant diet when aphids feed on a specialized (alfalfa) compared to a universal host-plant diet (fava), which vary in amino acid profiles. Using RNA-Seq and whole genome bisulfite sequencing, we measured gene expression and DNA methylation profiles for such genes when aphids fed on either their specialized or universal host-plant diets. Our results reveal that when aphids feed on their specialized host-plant they significantly up-regulate and/or hypo-methylate key aphid genes in bacteriocytes related to the amino acid metabolism, including glutamine synthetase in the GOGAT cycle that recycles ammonia into glutamine and the glutamine transporter ApGLNT1 Moreover, regardless of what host-plant aphids feed on we observed significant up-regulation and differential methylation of key genes involved in the amino acid metabolism and the glycine/serine metabolism, a metabolic program observed in proliferating cancer cells potentially to combat oxidative stress. Based on our results, we suggest that this regulatory response of key symbiosis genes in bacteriocytes allows aphids to feed on a suboptimal host-plant that they specialize on. Copyright © 2018, G3: Genes, Genomes, Genetics.
Xu, Hong-Xing; He, Xiao-Chan; Zheng, Xu-Song; Yang, Ya-Jun; Lu, Zhong-Xian
2014-08-01
Rice black streak dwarf virus (RBSDV) is transmitted by the small brown planthopper (SBPH), Laodelphax striatellus (Fallen). Non-vector rice brown planthopper (BPH), Nilaparvata lugens (Stål), shares the same host rice plants with SBPH in paddy fields. The changes in nutritional composition of rice plants infected by RBSDV and the ecological fitness of BPH feeding on the infected plants were studied under both artificial climate chamber and field conditions. Contents of 16 detected amino acids and soluble sugar in RBSDV infected rice plants were higher than those in the healthy ones. On the diseased plants BPH had significantly higher nymphal survival rates, nymphal duration of the males, weight of the female adults, as well as egg hatchability compared to BPH being fed on healthy plants. However, there was no obvious difference in female nymph duration, longevity and fecundity. Defense enzymes (superoxidase dismutase, SOD and catalase, CAT) and detoxifying enzymes (carboxylesterase, CAE and glutathione S-transferase, GST) in BPH adults fed on diseased plants had markedly higher activities. The results indicate rice plants infected by RBSDV improved the ecological fitness of the brown planthopper, a serious pest but not a transmitter of the RBSDV virus. © 2013 Institute of Zoology, Chinese Academy of Sciences.
The targeting of plant cellular systems by injected type III effector proteins.
Lewis, Jennifer D; Guttman, David S; Desveaux, Darrell
2009-12-01
The battle between phytopathogenic bacteria and their plant hosts has revealed a diverse suite of strategies and mechanisms employed by the pathogen or the host to gain the higher ground. Pathogens continually evolve tactics to acquire host resources and dampen host defences. Hosts must evolve surveillance and defence systems that are sensitive enough to rapidly respond to a diverse range of pathogens, while reducing costly and damaging inappropriate misexpression. The primary virulence mechanism employed by many bacteria is the type III secretion system, which secretes and translocates effector proteins directly into the cells of their plant hosts. Effectors have diverse enzymatic functions and can target specific components of plant systems. While these effectors should favour bacterial fitness, the host may be able to thwart infection by recognizing the activity or presence of these foreign molecules and initiating retaliatory immune measures. We review the diverse host cellular systems exploited by bacterial effectors, with particular focus on plant proteins directly targeted by effectors. Effector-host interactions reveal different stages of the battle between pathogen and host, as well as the diverse molecular strategies employed by bacterial pathogens to hijack eukaryotic cellular systems.
Schandry, Niklas; de Lange, Orlando; Prior, Philippe; Lahaye, Thomas
2016-01-01
Ralstonia solanacearum, a species complex of bacterial plant pathogens divided into four monophyletic phylotypes, causes plant diseases in tropical climates around the world. Some strains exhibit a broad host range on solanaceous hosts, while others are highly host-specific as for example some banana-pathogenic strains. Previous studies showed that transcription activator-like (TAL) effectors from Ralstonia, termed RipTALs, are capable of activating reporter genes in planta, if these are preceded by a matching effector binding element (EBE). RipTALs target DNA via their central repeat domain (CRD), where one repeat pairs with one DNA-base of the given EBE. The repeat variable diresidue dictates base repeat specificity in a predictable fashion, known as the TALE code. In this work, we analyze RipTALs across all phylotypes of the Ralstonia solanacearum species complex. We find that RipTALs are prevalent in phylotypes I and IV but absent from most phylotype III and II strains (10/12, 8/14, 1/24, and 1/5 strains contained a RipTAL, respectively). RipTALs originating from strains of the same phylotype show high levels of sequence similarity (>98%) in the N-terminal and C-terminal regions, while RipTALs isolated from different phylotypes show 47-91% sequence similarity in those regions, giving rise to four RipTAL classes. We show that, despite sequence divergence, the base preference for guanine, mediated by the N-terminal region, is conserved across RipTALs of all classes. Using the number and order of repeats found in the CRD, we functionally sub-classify RipTALs, introduce a new simple nomenclature, and predict matching EBEs for all seven distinct RipTALs identified. We experimentally study RipTAL EBEs and uncover that some RipTALs are able to target the EBEs of other RipTALs, referred to as cross-reactivity. In particular, RipTALs from strains with a broad host range on solanaceous hosts cross-react on each other's EBEs. Investigation of sequence divergence between RipTAL repeats allows for a reconstruction of repeat array biogenesis, for example through slipped strand mispairing or gene conversion. Using these studies we show how RipTALs of broad host range strains evolved convergently toward a shared target sequence. Finally, we discuss the differences between TALE-likes of plant pathogens in the context of disease ecology.
Effects of bacterial secondary symbionts on host plant use in pea aphids
McLean, A. H. C.; van Asch, M.; Ferrari, J.; Godfray, H. C. J.
2011-01-01
Aphids possess several facultative bacterial symbionts that have important effects on their hosts' biology. These have been most closely studied in the pea aphid (Acyrthosiphon pisum), a species that feeds on multiple host plants. Whether secondary symbionts influence host plant utilization is unclear. We report the fitness consequences of introducing different strains of the symbiont Hamiltonella defensa into three aphid clones collected on Lathyrus pratensis that naturally lack symbionts, and of removing symbionts from 20 natural aphid–bacterial associations. Infection decreased fitness on Lathyrus but not on Vicia faba, a plant on which most pea aphids readily feed. This may explain the unusually low prevalence of symbionts in aphids collected on Lathyrus. There was no effect of presence of symbiont on performance of the aphids on the host plants of the clones from which the H. defensa strains were isolated. Removing the symbiont from natural aphid–bacterial associations led to an average approximate 20 per cent reduction in fecundity, both on the natural host plant and on V. faba, suggesting general rather than plant-species-specific effects of the symbiont. Throughout, we find significant genetic variation among aphid clones. The results provide no evidence that secondary symbionts have a major direct role in facilitating aphid utilization of particular host plant species. PMID:20843842
Host plant utilization in the comma butterfly: sources of variation and evolutionary implications.
Janz, Niklas; Nylin, Sören; Wedell, Nina
1994-09-01
A major challenge in the study of insect-host plant interactions is to understand how the different aspects of offspring performance interact to produce a preference hierarchy in the ovipositing females. In this paper we investigate host plant preference of the polyphagous butterfly Polygonia c-album (Lepidoptera: Nymphalidae) and compare it with several aspects of the life history of its offspring (growth rate, development time, adult size, survival and female fecundity). Females and offspring were tested on four naturally used host plants (Urtica dioica, Ulmus glabra, Salix caprea, and Betula pubescens). There was substantial individual variation in host plant preference, including reversals in rank order, but the differences were largely confined to differences in the ranking of Urtica dioica and S. caprea. Different aspects of performance on these two plants gave conflicting and complementary results, implying a trade-off between short development time on U. dioica, and larger size and higher fecundity on S. caprea. As all performance components showed low individual variation the large variation in host plant preference was interpreted as due to alternative oviposition strategies on the basis of similar 'performance hierarchies'. This indicates that the larval performance component of host-plant utilization may be more conservative to evolutionary change than the preference of ovipositing females. Possible macro-evolutionary implications of this are discussed.
Legeai, Fabrice; Gonzalez-Gonzalez, Angelica; Lavandero, Blas; Simon, Jean-Christophe
2017-01-01
The molecular mechanisms that allow generalist parasitoids to exploit many, often very distinct hosts are practically unknown. The wasp Aphidius ervi, a generalist koinobiont parasitoid of aphids, was introduced from Europe into Chile in the late 1970s to control agriculturally important aphid species. A recent study showed significant differences in host preference and host acceptance (infectivity) depending on the host A. ervi were reared on. In contrast, no genetic differentiation between A. ervi populations parasitizing different aphid species and aphids of the same species reared on different host plants was found in Chile. Additionally, the same study did not find any fitness effects in A. ervi if offspring were reared on a different host as their mothers. Here, we determined the effect of aphid host species (Sitobion avenae versus Acyrthosiphon pisum reared on two different host plants alfalfa and pea) on the transcriptome of adult A. ervi females. We found a large number of differentially expressed genes (between host species: head: 2,765; body: 1,216; within the same aphid host species reared on different host plants: alfalfa versus pea: head 593; body 222). As expected, the transcriptomes from parasitoids reared on the same host species (pea aphid) but originating from different host plants (pea versus alfalfa) were more similar to each other than the transcriptomes of parasitoids reared on a different aphid host and host plant (head: 648 and 1,524 transcripts; body: 566 and 428 transcripts). We found several differentially expressed odorant binding proteins and olfactory receptor proteins in particular, when we compared parasitoids from different host species. Additionally, we found differentially expressed genes involved in neuronal growth and development as well as signaling pathways. These results point towards a significant rewiring of the transcriptome of A. ervi depending on aphid-plant complex where parasitoids develop, even if different biotypes of a certain aphid host species (A. pisum) are reared on the same host plant. This difference seems to persist even after the different wasp populations were reared on the same aphid host in the laboratory for more than 50 generations. This indicates that either the imprinting process is very persistent or there is enough genetic/allelic variation between A. ervi populations. The role of distinct molecular mechanisms is discussed in terms of the formation of host fidelity. PMID:28852588
Birnbaum, Stephanie S L; Rinker, David C; Gerardo, Nicole M; Abbot, Patrick
2017-12-01
Interactions between plants and herbivorous insects have been models for theories of specialization and co-evolution for over a century. Phytochemicals govern many aspects of these interactions and have fostered the evolution of adaptations by insects to tolerate or even specialize on plant defensive chemistry. While genomic approaches are providing new insights into the genes and mechanisms insect specialists employ to tolerate plant secondary metabolites, open questions remain about the evolution and conservation of insect counterdefences, how insects respond to the diversity defences mounted by their host plants, and the costs and benefits of resistance and tolerance to plant defences in natural ecological communities. Using a milkweed-specialist aphid (Aphis nerii) model, we test the effects of host plant species with increased toxicity, likely driven primarily by increased secondary metabolites, on aphid life history traits and whole-body gene expression. We show that more toxic plant species have a negative effect on aphid development and lifetime fecundity. When feeding on more toxic host plants with higher levels of secondary metabolites, aphids regulate a narrow, targeted set of genes, including those involved in canonical detoxification processes (e.g., cytochrome P450s, hydrolases, UDP-glucuronosyltransferases and ABC transporters). These results indicate that A. nerii marshal a variety of metabolic detoxification mechanisms to circumvent milkweed toxicity and facilitate host plant specialization, yet, despite these detoxification mechanisms, aphids experience reduced fitness when feeding on more toxic host plants. Disentangling how specialist insects respond to challenging host plants is a pivotal step in understanding the evolution of specialized diet breadths. © 2017 John Wiley & Sons Ltd.
2013-01-01
Background Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. Results The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor β-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. Conclusions Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor β-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the characterization of plant genes with unknown functions. PMID:23302495
Krause, Cornelia; Garnica, Sigisfredo; Bauer, Robert; Nebel, Martin
2011-09-01
A total of 35 population samples of the liverwort genera Aneura (A. pinguis) and Riccardia (R. latifrons, R. multifida, and R. palmata) were sampled from diverse habitats and geographical provenances in Germany, Austria, and Switzerland. Light and transmission electron microscopy were used to characterise the morphological features of the associations, and phylogenetic analyses based on internal transcribed spacers (ITS) and the D1/D2 regions of the fungal 28S rDNA were used to address diversity and phylogenetic relationships. By comparing the cellular structures of the plant-fungus interactions, we recognised the following states of fungal colonisation within the thalli: fungus-free, epiphytic, intercellular, and intracellular. Colonising hyphae showed dolipores with imperforate parenthesomes, slime bodies, and multilayered walls. Colonised liverwort cells had pleomorphic nuclei and elongated starch-free chloroplasts with distinctive grana. Our analyses revealed six phylogenetic groups of tulasnelloid fungi associated with liverworts, where major lineages mostly share similar host and/or ecological specialisations. The mode of colonisation of the tulasnelloid mycobionts in Aneura and Riccardia sharing identical fungal sequences is different. Consequently, the mode of colonisation may be host-dependent. Finally, our findings demonstrate that Aneuraceae are model organisms for evolutionary studies of symbiotic associations between liverworts and fungi. Copyright © 2011 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Companion Plants for Aphid Pest Management
Ben-Issa, Refka; Gomez, Laurent; Gautier, Hélène
2017-01-01
A potential strategy for controlling pests is through the use of “companion plants” within a crop system. This strategy has been used in several trials to fight against a major crop insect pest: the aphid. We reviewed the literature to highlight the major mechanisms by which a companion plant may act. Trials carried out under laboratory or field conditions revealed that companion plants operate through several mechanisms. A companion plant may be associated with a target crop for various reasons. Firstly, it can attract aphids and draw them away from their host plants. Secondly, it can alter the recognition of the host plant. This effect is mostly attributed to companion plant volatiles since they disturb the aphid host plant location, and additionally they may react chemically and physiologically with the host plant, making it an unsuitable host for aphids. Thirdly, it can attract natural enemies by providing shelter and food resources. In this review, the feasibility of using companion plants is discussed. We conclude that many factors need to be taken into account for a successful companion plant strategy. For the best long-term results, companion plant strategies have to be combined with other alternative approaches against aphids. PMID:29053585
Lang, Andreas; Otto, Mathias
2015-08-31
Non-target butterfly larvae may be harmed by feeding on host plants dusted with Bt maize pollen. Feeding patterns of larvae and their utilization of host plants can affect the adverse Bt impact because the maize pollen is distributed unequally on the plant. In a field study, we investigated the feeding of larvae of the Small Tortoiseshell, Aglais urticae, on nettles, Urtica dioica. Young larvae used smaller host plants than older larvae. In general, the position of the larvae was in the top part of the host plant, but older larvae showed a broader vertical distribution on the nettles. Leaf blades and leaf tips were the plant parts most often consumed. Leaf veins were consumed but midribs were fed on to a lesser extent than other plant veins, particularly by young larvae. The feeding behavior of the larvae may increase possible exposure to Bt maize pollen because pollen densities are expected to be higher on the top parts and along leaf veins of nettles.
Mozaffarian, Fariba; Sarafrazi, Alimorad; Ganbalani, Gadir Nouri
2007-01-01
The carob moth, Ectomyelois ceratoniae (Zeller, 1839) (Lepidoptera: Pyralidae), is the most important pest of pomegranate in Iran. As it has been rarely recorded on other host plants, control methods have mostly been focused on its populations on pomegranate. In this study, shapes and sizes of wings were compared in populations on 4 host plants (pomegranate, fig, pistachio and walnut) using a landmark-based geometric morphometric method, and analysis of partial warp scores and centroid sizes. The results showed significantly smaller wing size in populations on pomegranate and a significant host plant-associated shape difference among populations as a consequence of allometric growth. This suggests that the wing size and shape differences among test populations may not have a genetic basis and could happen because of differences in the nutritional content of host plants. The results of the analysis suggest that the female carob moth lays her eggs on host plants that provide suitable conditions for hatching. The larger size of moths on hosts other than pomegranate showed that some host plants such as fig, pistachio and walnut can provide for increased stored nutritional reserves by larvae that may result in more successful over-wintering and higher fecundity in adults. This suggests that in spite of the more extensive activity of carob moth on pomegranate in Iran, populations on other host plants can have an important effect on expanding pest population sizes in following years which should be considered in control methods. PMID:20337550
Plant Virus–Insect Vector Interactions: Current and Potential Future Research Directions
Dietzgen, Ralf G.; Mann, Krin S.; Johnson, Karyn N.
2016-01-01
Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus–insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors. PMID:27834855
Plant Virus-Insect Vector Interactions: Current and Potential Future Research Directions.
Dietzgen, Ralf G; Mann, Krin S; Johnson, Karyn N
2016-11-09
Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus-insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors.
Data integration aids understanding of butterfly–host plant networks
Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki
2017-01-01
Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant–herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant–herbivore and plant–compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect–compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection. PMID:28262809
Wetzel, William C; Thaler, Jennifer S
2018-02-01
A consequence of plant diversity is that it can allow or force herbivores to consume multiple plant species, which studies indicate can have major effects on herbivore fitness. An underappreciated but potentially important factor modulating the consequences of multi-species diets is the extent to which herbivores can choose their diets versus being forced to consume specific host-plant sequences. We examined how host-selection behavior alters the effects of multi-species diets using the Colorado potato beetle (Leptinotarsa decemlineata) and diets of potato plants (Solanum tuberosum), tomato plants (S. lycopersicum), or both. When we gave beetles simultaneous access to both plants, allowing them to choose their diets, their final mass was within 0.1% of the average mass across both monocultures and 43.6% lower than mass on potato, the superior host in monoculture. This result indicates these beetles do not benefit from a mixed diet, and that the presence of tomato, an inferior but suitable host, makes it difficult to use potato. In contrast, when we forced beetles to switch between host species, their final mass was 37.8% less than the average of beetles fed constant diets of either host species and within 3.5% of the mass on tomato even though they also fed on potato. This indicates preventing host-selection behavior magnified the negative effects of this multi-species diet. Our results imply that ecological contexts that constrain host-selection or force host-switches, such as communities with competition or predation, will lead plant species diversity to reduce the performance of insect herbivores.
Duhamel, Marie; Pel, Roel; Ooms, Astra; Bücking, Heike; Jansa, Jan; Ellers, Jacintha; van Straalen, Nico M; Wouda, Tjalf; Vandenkoornhuyse, Philippe; Kiers, E Toby
2013-09-01
A key objective in ecology is to understand how cooperative strategies evolve and are maintained in species networks. Here, we focus on the tri-trophic relationship between arbuscular mycorrhizal (AM) fungi, host plants, and fungivores to ask if host plants are able to protect their mutualistic mycorrhizal partners from being grazed. Specifically, we test whether secondary metabolites are transferred from hosts to fungal partners to increase their defense against fungivores. We grew Plantago lanceolata hosts with and without mycorrhizal inoculum, and in the presence or absence of fungivorous springtails. We then measured fungivore effects on host biomass and mycorrhizal abundance (using quantitative PCR) in roots and soil. We used high-performance liquid chromatography to measure host metabolites in roots, shoots, and hyphae, focusing on catalpol, aucubin, and verbascoside. Our most striking result was that the metabolite catalpol was consistently found in AM fungal hyphae in host plants exposed to fungivores. When fungivores were absent, catalpol was undetectable in hyphae. Our results highlight the potential for plant-mediated protection of the mycorrhizal hyphal network.
Host Range and Selectivity of the Hemiparasitic Plant Thesium chinense (Santalaceae)
Suetsugu, Kenji; Kawakita, Atsushi; Kato, Makoto
2008-01-01
Background and Aims Thesium chinense is a hemiparasitic plant that is common in grassland habitats of eastern Asia. Although the physiology of Thesium has been well studied in attempts to control its weedy habit, there have been few ecological investigations of its parasitic life history. Thesium chinense is thought to parasitize species of Poaceae, but evidence remains circumstantial. Methods A vegetation survey was conducted to test whether any plant species occurs significantly more often in plots with T. chinense than expected. In addition, haustorial connections were examined directly by excavating the roots and post-attachment host selectivity was evaluated by comparing the observed numbers of haustoria on different hosts against those expected according to the relative below-ground biomass. Haustorium sizes were also compared among host species. Key Results Only two of the 38 species recorded, Lespedeza juncea and Eragrostis curvula, occurred more often in plots with Thesium than expected. In contrast to this, T. chinense parasitized 22 plant species in 11 families, corresponding to 57·9 % of plant species found at the study site. Haustoria were non-randomly distributed among host species, suggesting that there is some post-attachment host selectivity. Thesium chinense generally preferred the Poaceae, although haustoria formed on the Fabaceae were larger than those on other hosts. Conclusions This is the first quantitative investigation of the host range and selectivity of hemiparasitic plants of the Santalales. The preference for Fabaceae as hosts may be linked to the greater nutrient availability in these nitrogen-fixing plants. PMID:18492736
2017-01-01
We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants. PMID:28717591
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Chai Ling; Yew, Su Mei; Ngeow, Yun Fong
Background: Daldinia eschscholtzii is a wood-inhabiting fungus that causes wood decay under certain conditions. It has a broad host range and produces a large repertoire of potentially bioactive compounds. However, there is no extensive genome analysis on this fungal species. Results: Two fungal isolates (UM 1400 and UM 1020) from human specimens were identified as Daldinia eschscholtzii by morphological features and ITS-based phylogenetic analysis. Both genomes were similar in size with 10,822 predicted genes in UM 1400 (35.8 Mb) and 11,120 predicted genes in UM 1020 (35.5 Mb). A total of 751 gene families were shared among both UM isolates,more » including gene families associated with fungus-host interactions. In the CAZyme comparative analysis, both genomes were found to contain arrays of CAZyme related to plant cell wall degradation. Genes encoding secreted peptidases were found in the genomes, which encode for the peptidases involved in the degradation of structural proteins in plant cell wall. In addition, arrays of secondary metabolite backbone genes were identified in both genomes, indicating of their potential to produce bioactive secondary metabolites. Both genomes also contained an abundance of gene encoding signaling components, with three proposed MAPK cascades involved in cell wall integrity, osmoregulation, and mating/filamentation. Besides genomic evidence for degrading capability, both isolates also harbored an array of genes encoding stress response proteins that are potentially significant for adaptation to living in the hostile environments. In conclusion: Our genomic studies provide further information for the biological understanding of the D. eschscholtzii and suggest that these wood-decaying fungi are also equipped for adaptation to adverse environments in the human host.« less
Chan, Chai Ling; Yew, Su Mei; Ngeow, Yun Fong; ...
2015-11-18
Background: Daldinia eschscholtzii is a wood-inhabiting fungus that causes wood decay under certain conditions. It has a broad host range and produces a large repertoire of potentially bioactive compounds. However, there is no extensive genome analysis on this fungal species. Results: Two fungal isolates (UM 1400 and UM 1020) from human specimens were identified as Daldinia eschscholtzii by morphological features and ITS-based phylogenetic analysis. Both genomes were similar in size with 10,822 predicted genes in UM 1400 (35.8 Mb) and 11,120 predicted genes in UM 1020 (35.5 Mb). A total of 751 gene families were shared among both UM isolates,more » including gene families associated with fungus-host interactions. In the CAZyme comparative analysis, both genomes were found to contain arrays of CAZyme related to plant cell wall degradation. Genes encoding secreted peptidases were found in the genomes, which encode for the peptidases involved in the degradation of structural proteins in plant cell wall. In addition, arrays of secondary metabolite backbone genes were identified in both genomes, indicating of their potential to produce bioactive secondary metabolites. Both genomes also contained an abundance of gene encoding signaling components, with three proposed MAPK cascades involved in cell wall integrity, osmoregulation, and mating/filamentation. Besides genomic evidence for degrading capability, both isolates also harbored an array of genes encoding stress response proteins that are potentially significant for adaptation to living in the hostile environments. In conclusion: Our genomic studies provide further information for the biological understanding of the D. eschscholtzii and suggest that these wood-decaying fungi are also equipped for adaptation to adverse environments in the human host.« less
Justin B. Runyon; John F. Tooker; Mark C. Mescher; Consuelo M. De Moraes
2009-01-01
Parasitic plants are among the most problematic pests of agricultural crops worldwide. Effective means of control are generally lacking, in part because of the close physiological connection between the established parasite and host plant hindering efficient control using traditional methods. Seed germination and host location are critical early-growth stages that...
Implications of a temperature increase for host plant range: predictions for a butterfly
Audusseau, Hélène; Nylin, Sören; Janz, Niklas
2013-01-01
Although changes in phenology and species associations are relatively well-documented responses to global warming, the potential interactions between these phenomena are less well understood. In this study, we investigate the interactions between temperature, phenology (in terms of seasonal timing of larval growth) and host plant use in the polyphagous butterfly Polygonia c-album. We found that the hierarchy of larval performance on three natural host plants was not modified by a temperature increase as such. However, larval performance on each host plant and temperature treatment was affected by rearing season. Even though larvae performed better at the higher temperature regardless of the time of the rearing, relative differences between host plants changed with the season. For larvae reared late in the season, performance was always better on the herbaceous plant than on the woody plants. In this species, it is likely that a prolonged warming will lead to a shift from univoltinism to bivoltinism. The demonstrated interaction between host plant suitability and season means that such a shift is likely to lead to a shift in selective regime, favoring specialization on the herbaceous host. Based on our result, we suggest that host range evolution in response to temperature increase would in this species be highly contingent on whether the population undergoes a predicted shift from one to two generations. We discuss the effect of global warming on species associations and the outcome of asynchrony in rates of phenological change. PMID:24101991
Uramoto, Keiko; Martins, David S.; Lima, Rita C. A.; Zucchi, Roberto A.
2008-01-01
The first host plant record for Anastrepha fumipennis Lima (Diptera: Tephritidae) in Geissospermum laeve (Vell.) Baill (Apocynaceae) and for A. nascimentoi Zucchi found in Cathedra bahiensis Sleumer (Olacaceae) was determined in a host plant survey of fruit flies undertaken at the “Reserva Natural da Companhia Vale do Rio Doce”. This reserve is located in an Atlantic Rain Forest remnant area, in Linhares county, state of Espírito Santo, Brazil. The phylogenetic relationships of Anastrepha species and their hosts are discussed. The occurrence of these fruit fly species in relation to the distribution range of their host plants is also discussed. PMID:20302458
Smith, Jason D; Woldemariam, Melkamu G; Mescher, Mark C; Jander, Georg; De Moraes, Consuelo M
2016-09-01
Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. © 2016 American Society of Plant Biologists. All rights reserved.
Early-Season Host Switching in Adelphocoris spp. (Hemiptera: Miridae) of Differing Host Breadth
Pan, Hongsheng; Lu, Yanhui; Wyckhuys, Kris A. G.
2013-01-01
The mirid bugs Adelphocoris suturalis (Jakovlev), Adelphocoris lineolatus (Goeze) and Adelphocoris fasciaticollis (Reuter) (Hemiptera: Miridae) are common pests of several agricultural crops. These three species have vastly different geographical distributions, phenologies and abundances, all of which are linked to their reliance on local plants. Previous work has shown notable differences in Adelphocoris spp. host use for overwintering. In this study, we assessed the extent to which each of the Adelphocoris spp. relies on some of its major overwinter hosts for spring development. Over the course of four consecutive years (2009–2012), we conducted population surveys on 77 different plant species from 39 families. During the spring, A. fasciaticollis used the broadest range of hosts, as it was found on 35 plant species, followed by A. suturalis (15 species) and A. lineolatus (7 species). Abundances of the species greatly differed between host plants, with A. fasciaticollis reaching the highest abundance on Chinese date (Ziziphus jujuba Mill.), whereas both A. suturalis and A. lineolatus preferred alfalfa (Medicago sativa L.). The host breadths of the three Adelphocoris spp. differed greatly between subsequent spring and winter seasons. The generalist species exhibited the least host fidelity, with A. suturalis and A. lineolatus using 8 of 22 and 4 of 12 overwinter host species for spring development, respectively. By contrast, the comparative specialist A. fasciaticollis relied on 9 of its 11 overwinter plants as early-season hosts. We highlight important seasonal changes in host breadth and interspecific differences in the extent of host switching behavior between the winter and spring seasons. These findings benefit our understanding of the evolutionary interactions between mirid bugs and their host plants and can be used to guide early-season population management. PMID:23527069
Natal Host Plants Can Alter Herbivore Competition.
Pan, Huipeng; Preisser, Evan L; Su, Qi; Jiao, Xiaoguo; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Zhang, Youjun
2016-01-01
Interspecific competition between herbivores is widely recognized as an important determinant of community structure. Although researchers have identified a number of factors capable of altering competitive interactions, few studies have addressed the influence of neighboring plant species. If adaptation to/ epigenetic effects of an herbivore's natal host plant alter its performance on other host plants, then interspecific herbivore interactions may play out differently in heterogeneous and homogenous plant communities. We tested wether the natal host plant of a whitefly population affected interactions between the Middle-east Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species of the whitefly Bemisia tabaci by rearing the offspring of a cabbage-derived MEAM1 population and a poinsettia-derived MED population together on three different host plants: cotton, poinsettia, and cabbage. We found that MED dominated on poinsettia and that MEAM1 dominated on cabbage, results consistent with previous research. MED also dominated when reared with MEAM1 on cotton, however, a result at odds with multiple otherwise-similar studies that reared both species on the same natal plant. Our work provides evidence that natal plants affect competitive interactions on another plant species, and highlights the potential importance of neighboring plant species on herbivore community composition in agricultral systems.
Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader?
Redman, R.S.; Dunigan, D.D.; Rodriguez, R.J.
2001-01-01
Plant symbiotic fungi are generally thought to express a single lifestyle that might increase (mutualism), decrease (parasitism), or have no influence (commensalism) on host fitness. However, data are presented here demonstrating that plant pathogenic Colletotrichum species are able to asymptomatically colonize plants and express nonpathogenic lifestyles. Experiments were conducted in growth chambers and plant colonization was assessed by emergence of fungi from surface sterilized plant tissues. Expression of symbiotic lifestyles was assessed by monitoring the ability of fungi to confer disease resistance, drought tolerance and growth enhancement. Several pathogenic Colletotrichum species expressed either mutualistic or commensal lifestyles in plants not known to be hosts. Mutualists conferred disease resistance, drought tolerance, and/or growth enhancement to host plants. Lifestyle-altered mutants expressing nonpathogenic lifestyles had greater host ranges than the parental wildtype isolate. Successive colonization studies indicated that the ability of a symbiont to colonize a plant was dependent on previous colonization events and the lifestyles expressed by the initial colonizing fungus. The results indicate that the outcome of symbiosis is controlled by the plant's physiology. ?? New Phytologist.
Rhizosphere pseudomonads as probiotics improving plant health.
Kim, Young Cheol; Anderson, Anne J
2018-04-20
Many root-colonizing microbes are multifaceted in traits that improve plant health. Although isolates designated as biological control agents directly reduce pathogen growth, many exert additional beneficial features that parallel changes induced in animal and other hosts by health-promoting microbes termed probiotics. Both animal and plant probiotics cause direct antagonism of pathogens and induce systemic immunity in the host to pathogens and other stresses. They also alter host development, and improve host nutrition. The probiotic root-colonizing pseudomonads are generalists in terms of plant hosts, soil habitats and the array of stress responses that are ameliorated in the plant. This review illustrates how the probiotic pseudomonads, nurtured by the C and N sources released by the plant in root exudates, form protective biofilms on the root surface and produce the metabolites or enzymes to boost plant health. The findings reveal the multifunctional nature of many of the microbial metabolites in the plant-probiotic interplay. The beneficial effects of probiotics on plant function can contribute to sustainable yield and quality in agricultural production. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.
Pair of lice lost or parasites regained: the evolutionary history of anthropoid primate lice
Reed, David L; Light, Jessica E; Allen, Julie M; Kirchman, Jeremy J
2007-01-01
Background The parasitic sucking lice of primates are known to have undergone at least 25 million years of coevolution with their hosts. For example, chimpanzee lice and human head/body lice last shared a common ancestor roughly six million years ago, a divergence that is contemporaneous with their hosts. In an assemblage where lice are often highly host specific, humans host two different genera of lice, one that is shared with chimpanzees and another that is shared with gorillas. In this study, we reconstruct the evolutionary history of primate lice and infer the historical events that explain the current distribution of these lice on their primate hosts. Results Phylogenetic and cophylogenetic analyses suggest that the louse genera Pediculus and Pthirus are each monophyletic, and are sister taxa to one another. The age of the most recent common ancestor of the two Pediculus species studied matches the age predicted by host divergence (ca. 6 million years), whereas the age of the ancestor of Pthirus does not. The two species of Pthirus (Pthirus gorillae and Pthirus pubis) last shared a common ancestor ca. 3–4 million years ago, which is considerably younger than the divergence between their hosts (gorillas and humans, respectively), of approximately 7 million years ago. Conclusion Reconciliation analysis determines that there are two alternative explanations that account for the current distribution of anthropoid primate lice. The more parsimonious of the two solutions suggests that a Pthirus species switched from gorillas to humans. This analysis assumes that the divergence between Pediculus and Pthirus was contemporaneous with the split (i.e., a node of cospeciation) between gorillas and the lineage leading to chimpanzees and humans. Divergence date estimates, however, show that the nodes in the host and parasite trees are not contemporaneous. Rather, the shared coevolutionary history of the anthropoid primates and their lice contains a mixture of evolutionary events including cospeciation, parasite duplication, parasite extinction, and host switching. Based on these data, the coevolutionary history of primates and their lice has been anything but parsimonious. PMID:17343749
Natural History of Innate Host Defense Peptides.
Linde, A; Wachter, B; Höner, O P; Dib, L; Ross, C; Tamayo, A R; Blecha, F; Melgarejo, T
2009-12-01
Host defense peptides act on the forefront of innate immunity, thus playing a central role in the survival of animals and plants. Despite vast morphological changes in species through evolutionary history, all animals examined to date share common features in their innate immune defense strategies, hereunder expression of host defense peptides (HDPs). Most studies on HDPs have focused on humans, domestic and laboratory animals. More than a thousand different sequences have been identified, yet data on HDPs in wild-living animals are sparse. The biological functions of HDPs include broad-spectrum antimicrobial activity and immunomodulation. Natural selection and coevolutionary host-pathogen arms race theory suggest that the extent and specificity of the microbial load influences the spectrum and potency of HDPs in different species. Individuals of extant species-that have lived for an extended period in evolutionary history amid populations with intact processes of natural selection-likely possess the most powerful and well-adapted "natural antibiotics". Research on the evolutionary history of the innate defense system and the host in context of the consequences of challenges as well as the efficacy of the innate immune system under natural conditions is therefore of immediate interest. This review focuses on evolutionary aspects of immunophysiology, with emphasis on innate effector molecules. Studies on host defense in wild-living animals may significantly enhance our understanding of inborn immune mechanisms, and help identify molecules that may assist us to cope better with the increasing microbial challenges that likely follow from the continuous amplification of biodiversity levels on Earth.
Brown, Leone M; Breed, Greg A; Severns, Paul M; Crone, Elizabeth E
2017-02-01
Introduced plants can positively affect population viability by augmenting the diet of native herbivores, but can negatively affect populations if they are subpar or toxic resources. In organisms with complex life histories, such as insects specializing on host plants, the impacts of a novel host may differ across life stages, with divergent effects on population persistence. Most research on effects of novel hosts has focused on adult oviposition preference and larval performance, but adult preference may not optimize offspring performance, nor be indicative of host quality from a demographic perspective. We compared population growth rates of the Baltimore checkerspot butterfly, Euphydryas phaeton, on an introduced host, Plantago lanceolata (English plantain), and the native host Chelone glabra (white turtlehead). Contrary to the previous findings suggesting that P. lanceolata could be a population sink, we found higher population growth rates (λ) on the introduced than the native host, even though some component parameters of λ were higher on the native host. Our findings illustrate the importance of moving beyond preference-performance studies to integrate vital rates across all life stages for evaluating herbivore-host plant relationships. Single measures of preference or performance are not sufficient proxies for overall host quality nor do they provide insights into longer term consequences of novel host plant use. In our system, in particular, P. lanceolata may buffer checkerspot populations when the native host is limiting, but high growth rates could lead to crashes over longer time scales.
Bell, T L; Adams, M A
2011-01-01
This review discusses how understanding of functional relationships between parasitic plants and their woody hosts have benefited from a range of approaches to their study. Gross comparisons of nutrient content between infected and uninfected hosts, or parts of hosts, have been widely used to infer basic differences or similarities between hosts and parasites. Coupling of nutrient information with additional evidence of key processes such as transpiration, respiration and photosynthesis has helped elucidate host-parasite relationships and, in some cases, the anatomical nature of their connection and even the physiology of plants in general. For example, detailed analysis of xylem sap from hosts and parasites has increased our understanding of the spatial and temporal movement of solutes within plants. Tracer experiments using natural abundance or enriched application of stable isotopes ((15)N, (13)C, (18)O) have helped us to understand the extent and form of heterotrophy, including the effect of the parasite on growth and functioning of the host (and its converse) as well as environmental effects on the parasite. Nutritional studies of woody hosts and parasites have provided clues to the distribution of parasitic plants and their roles in ecosystems. This review also provides assessment of several corollaries to the host-parasite association.
Hopper, Julie V; Mills, Nicholas J
2016-12-01
What happens when an exotic herbivore invades and encounters novel host plants and enemies? Here, we investigate the impacts of host plant quality and plant architecture on an exotic generalist herbivore, Epiphyas postvittana (Lepidoptera: Tortricidae) and its interactions with resident parasitoids in California. Using artificial diet and five plant species, we found significant effects of diet on the fitness of E. postvittana under laboratory conditions. In the field, based on a common garden experiment with host plants of nine species, we found that larval parasitism varied among plant species by a factor of 2.1 with a higher risk of parasitism on shorter than taller plants. Parasitism of egg masses varied by a factor of 4.7 among plant species with a higher risk of parasitism on taller than shorter plants. In the laboratory, the foraging time of a resident egg parasitoid on excised leaves varied among plant species, but did not correspond to observed egg parasitism rates on these same plants in the field. On leaves of Plantago lanceolata, the probability of egg parasitism decreased with trichome density. Overall, there was a significant effect of host plant on the intrinsic rate of increase of E. postvittana and on the extent of parasitism by resident parasitoids, but no correlation existed between these two effects. The recent decline of E. postvittana in California may be due to the low quality of some host plants and to the many resident enemies that readily attack it, perhaps due to its phylogenetic relatedness to resident tortricids.
Suzuki, Hiromu C; Ozaki, Katsuhisa; Makino, Takashi; Uchiyama, Hironobu; Yajima, Shunsuke; Kawata, Masakado
2018-06-01
The host plant range of herbivorous insects is a major aspect of insect-plant interaction, but the genetic basis of host range expansion in insects is poorly understood. In butterflies, gustatory receptor genes (GRs) play important roles in host plant selection by ovipositing females. Since several studies have shown associations between the repertoire sizes of chemosensory gene families and the diversity of resource use, we hypothesized that the increase in the number of genes in the GR family is associated with host range expansion in butterflies. Here, we analyzed the evolutionary dynamics of GRs among related species, including the host generalist Vanessa cardui and three specialists. Although the increase of the GR repertoire itself was not observed, we found that the gene birth rate of GRs was the highest in the lineage leading to V. cardui compared with other specialist lineages. We also identified two taxon-specific subfamilies of GRs, characterized by frequent lineage-specific duplications and higher non-synonymous substitution rates. Together, our results suggest that frequent gene duplications in GRs, which might be involved in the detection of plant secondary metabolites, were associated with host range expansion in the V. cardui lineage. These evolutionary patterns imply that the capability to perceive various compounds during host selection was favored during adaptation to diverse host plants.
Cross-Species Translocation of mRNA from Host Plants into the Parasitic Plant Dodder1[OA
Roney, Jeannine K.; Khatibi, Piyum A.; Westwood, James H.
2007-01-01
An intriguing new paradigm in plant biology is that systemically mobile mRNAs play a role in coordinating development. In this process, specific mRNAs are loaded into the phloem transport stream for translocation to distant tissues, where they may impact on developmental processes. However, despite its potential significance for plant growth regulation, mRNA trafficking remains poorly understood and challenging to study. Here, we show that phloem-mobile mRNAs can also traffic between widely divergent species from a host to the plant parasite lespedeza dodder (Cuscuta pentagona Engelm.). Reverse transcription-polymerase chain reaction and microarray analysis were used to detect specific tomato (Lycopersicon esculentum Mill.) transcripts in dodder grown on tomato that were not present in control dodder grown on other host species. Foreign transcripts included LeGAI, which has previously been shown to be translocated in the phloem, as well as nine other transcripts not reported to be mobile. Dodders are parasitic plants that obtain resources by drawing from the phloem of a host plant and have joint plasmodesmata with host cortical cells. Although viruses are known to move between dodder and its hosts, translocation of endogenous plant mRNA has not been reported. These results point to a potentially new level of interspecies communication, and raise questions about the ability of parasites to recognize, use, and respond to transcripts acquired from their hosts. PMID:17189329
Identification of novel sources of host plant resistance to the soybean aphid biotypes
USDA-ARS?s Scientific Manuscript database
While soybean cultivars with resistance to the soybean aphid (Aphis glycines Matsumura) have been commercially released, the presence of virulent biotypes capable of overcoming plant resistance threatens the durability of host-plant resistance as a stable management tactic. Novel sources of host pla...
Genomic dissection of host-microbe and microbe-microbe interactions for advanced plant breeding.
Kroll, Samuel; Agler, Matthew T; Kemen, Eric
2017-04-01
Agriculture faces many emerging challenges to sustainability, including limited nutrient resources, losses from diseases caused by current and emerging pathogens and environmental degradation. Microorganisms have great importance for plant growth and performance, including the potential to increase yields, nutrient uptake and pathogen resistance. An urgent need is therefore to understand and engineer plants and their associated microbial communities. Recent massive genomic sequencing of host plants and associated microbes offers resources to identify novel mechanisms of communal assembly mediated by the host. For example, host-microbe and microbe-microbe interactions are involved in niche formation, thereby contributing to colonization. By leveraging genomic resources, genetic traits underlying those mechanisms will become important resources to design plants selecting and hosting beneficial microbial communities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Secondary bacterial symbiont community in aphids responds to plant diversity.
Zytynska, Sharon E; Meyer, Sebastian T; Sturm, Sarah; Ullmann, Wiebke; Mehrparvar, Mohsen; Weisser, Wolfgang W
2016-03-01
Biodiversity is important for ecosystem functioning and biotic interactions. In experimental grasslands, increasing plant species richness is known to increase the diversity of associated herbivores and their predators. If these interactions can also involve endosymbionts that reside within a plant or animal host is currently unknown. In plant-feeding aphids, secondary bacterial symbionts can have strong fitness effects on the host, e.g. resistance to natural enemies or fungal pathogens. We examined the secondary symbiont community in three species of aphid, each feeding on a unique host plant across experimental plots that varied in plant species richness. Aphids were collected in May and June, and the symbiont community identified using species-specific PCR assays. Aphis fabae aphids were found to host six different symbiont species with individual aphids co-hosting up to four symbionts. Uroleucon jaceae and Macrosiphum rosae hosted two and three symbiont species, respectively. We found that, at the aphid population level, increasing plant species richness increased the diversity of the aphid symbiont community, whereas at the individual aphid level, the opposite was found. These effects are potentially driven by varying selective pressures across different plant communities of varying diversities, mediated by defensive protection responses and a changing cost-benefit trade-off to the aphid for hosting multiple secondary symbionts. Our work extends documented effects of plant diversity beyond visible biotic interactions to changes in endosymbiont communities, with potentially far-reaching consequences to related ecosystem processes.
Effects of Abiotic Factors on HIPV-Mediated Interactions between Plants and Parasitoids
Becker, Christine; Desneux, Nicolas; Monticelli, Lucie; Fernandez, Xavier; Michel, Thomas; Lavoir, Anne-Violette
2015-01-01
In contrast to constitutively emitted plant volatiles (PV), herbivore-induced plant volatiles (HIPV) are specifically emitted by plants when afflicted with herbivores. HIPV can be perceived by parasitoids and predators which parasitize or prey on the respective herbivores, including parasitic hymenoptera. HIPV act as signals and facilitate host/prey detection. They comprise a blend of compounds: main constituents are terpenoids and “green leaf volatiles.” Constitutive emission of PV is well known to be influenced by abiotic factors like temperature, light intensity, water, and nutrient availability. HIPV share biosynthetic pathways with constitutively emitted PV and might therefore likewise be affected by abiotic conditions. However, the effects of abiotic factors on HIPV-mediated biotic interactions have received only limited attention to date. HIPV being influenced by the plant's growing conditions could have major implications for pest management. Quantitative and qualitative changes in HIPV blends may improve or impair biocontrol. Enhanced emission of HIPV may attract a larger number of natural enemies. Reduced emission rates or altered compositions, however, may render blends imperceptible to parasitoides and predators. Predicting the outcome of these changes is highly important for food production and for ecosystems affected by global climate change. PMID:26788501
Effect of biodiversity changes in disease risk: exploring disease emergence in a plant-virus system.
Pagán, Israel; González-Jara, Pablo; Moreno-Letelier, Alejandra; Rodelo-Urrego, Manuel; Fraile, Aurora; Piñero, Daniel; García-Arenal, Fernando
2012-01-01
The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species.
Multifaceted effects of host plants on entomopathogenic nematodes.
Hazir, Selcuk; Shapiro-Ilan, David I; Hazir, Canan; Leite, Luis G; Cakmak, Ibrahim; Olson, Dawn
2016-03-01
The success of parasites can be impacted by multi-trophic interactions. Tritrophic interactions have been observed in parasite-herbivore-host plant systems. Here we investigate aspects of multi-trophic interactions in a system involving an entomopathogenic nematode (EPN), its insect host, and host plant. Novel issues investigated include the impact of tritrophic interactions on nematode foraging behavior, the ability of EPNs to overcome negative tritrophic effects through genetic selection, and interactions with a fourth trophic level (nematode predators). We tested infectivity of the nematode, Steinernema riobrave, to corn earworm larvae (Helicoverpa zea) in three host plants, tobacco, eggplant and tomato. Tobacco reduced nematode virulence and reproduction relative to tomato and eggplant. However, successive selection (5 passages) overcame the deficiency; selected nematodes no longer exhibited reductions in phenotypic traits. Despite the loss in virulence and reproduction nematodes, first passage S. riobrave was more attracted to frass from insects fed tobacco than insects fed on other host plants. Therefore, we hypothesized the reduced virulence and reproduction in S. riobrave infecting tobacco fed insects would be based on a self-medicating tradeoff, such as deterring predation. We tested this hypothesis by assessing predatory success of the mite Sancassania polyphyllae and the springtail Sinella curviseta on nematodes reared on tobacco-fed larvae versus those fed on greater wax moth, Galleria mellonella, tomato fed larvae, or eggplant fed larvae. No advantage was observed in nematodes derived from tobacco fed larvae. In conclusion, our results indicated that insect-host plant diet has an important effect on nematode foraging, infectivity and reproduction. However, negative host plant effects, might be overcome through directed selection. We propose that host plant species should be considered when designing biocontrol programs using EPNs. Copyright © 2016 Elsevier Inc. All rights reserved.
Geiselhardt, Sven; Otte, Tobias; Hilker, Monika
2012-09-01
The role of phenotypical plasticity in ecological speciation and the evolution of sexual isolation remains largely unknown. We investigated whether or not divergent host plant use in an herbivorous insect causes assortative mating by phenotypically altering traits involved in mate recognition. We found that males of the mustard leaf beetle Phaedon cochleariae preferred to mate with females that were reared on the same plant species to females provided with a different plant species, based on divergent cuticular hydrocarbon profiles that serve as contact pheromones. The cuticular hydrocarbon phenotypes of the beetles were host plant specific and changed within 2 weeks after a shift to a novel host plant species. We suggest that plant-induced phenotypic divergence in mate recognition cues may act as an early barrier to gene flow between herbivorous insect populations on alternative host species, preceding genetic divergence and thus, promoting ecological speciation. © 2012 Blackwell Publishing Ltd/CNRS.
Evolution of Parasitism in Insect-transmitted Plant Nematodes
Giblin-Davis, R. M.; Davies, K. A.; Morris, K.; Thomas, W. K.
2003-01-01
Nematode-insect associations have evolved many times in the phylum Nematoda, but these lineages involve plant parasitism only in the Secernentean orders Aphelenchida and Tylenchida. In the Aphelenchida (Aphelenchoidoidea), Bursaphelenchus xylophilus (Pine wood nematode), B. cocophilus (Red ring or Coconut palm nematode) (Parasitaphelenchidae), and the many potential host-specific species of Schistonchus (fig nematodes) (Aphelenchoididae) nematode-insect interactions probably evolved independently from dauer-forming, mycophagous ancestors that were phoretically transmitted to breeding sites of their insect hosts in plants. Mycophagy probably gave rise to facultative or obligate plant-parasitism because of opportunities due to insect host switches or peculiarities in host behavior. In the Tylenchida, there is one significant radiation of insect-associated plant parasites involving Fergusobia nematodes (Fergusobiinae: Neotylenchidae) and Fergusonina (Fergusoninidae) flies as mutualists that gall myrtaceous plant buds or leaves. These dicyclic nematodes have different phases that are parasitic in either the insect or the plant hosts. The evolutionary origin of this association is unclear. PMID:19265987
Steidinger, Brian S.; Bever, James D.
2016-01-01
Plants in multiple symbioses are exploited by symbionts that consume their resources without providing services. Discriminating hosts are thought to stabilize mutualism by preferentially allocating resources into anatomical structures (modules) where services are generated, with examples of modules including the entire inflorescences of figs and the root nodules of legumes. Modules are often colonized by multiple symbiotic partners, such that exploiters that co-occur with mutualists within mixed modules can share rewards generated by their mutualist competitors. We developed a meta-population model to answer how the population dynamics of mutualists and exploiters change when they interact with hosts with different module occupancies (number of colonists per module) and functionally different patterns of allocation into mixed modules. We find that as module occupancy increases, hosts must increase the magnitude of preferentially allocated resources in order to sustain comparable populations of mutualists. Further, we find that mixed colonization can result in the coexistence of mutualist and exploiter partners, but only when preferential allocation follows a saturating function of the number of mutualists in a module. Finally, using published data from the fig–wasp mutualism as an illustrative example, we derive model predictions that approximate the proportion of exploiter, non-pollinating wasps observed in the field. PMID:26740613
Divergent host-plant use promotes reproductive isolation among cynipid gall wasp populations
Egan, Scott P.; Hood, Glen R.; Feder, Jeff L.; Ott, James R.
2012-01-01
Ecological speciation occurs when reproductive isolation evolves as a consequence of divergent natural selection among environments. A direct prediction of this process is that ecologically divergent pairs of populations will exhibit greater reproductive isolation than ecologically similar pairs of populations. By comparing allopatric populations of the cynipid gall wasp Belonocnema treatae infesting Quercus virginiana and Quercus geminata, we tested the role that divergent host use plays in generating ecological divergence and sexual isolation. We found differences in body size and gall structure associated with divergent host use, but no difference in neutral genetic divergence between populations on the same or different host plant. We observed significant assortative mating between populations from alternative host plants but not between allopatric populations on the same host plant. Thus, we provide evidence that divergent host use promotes speciation among gall wasp populations. PMID:22337505
Bacterial effectors target the plant cell nucleus to subvert host transcription.
Canonne, Joanne; Rivas, Susana
2012-02-01
In order to promote virulence, Gram-negative bacteria have evolved the ability to inject so-called type III effector proteins into host cells. The plant cell nucleus appears to be a subcellular compartment repeatedly targeted by bacterial effectors. In agreement with this observation, mounting evidence suggests that manipulation of host transcription is a major strategy developed by bacteria to counteract plant defense responses. It has been suggested that bacterial effectors may adopt at least three alternative, although not mutually exclusive, strategies to subvert host transcription. T3Es may (1) act as transcription factors that directly activate transcription in host cells, (2) affect histone packing and chromatin configuration, and/or (3) target host transcription factor activity. Here, we provide an overview on how all these strategies may lead to host transcriptional re-programming and, as a result, to improved bacterial multiplication inside plant cells.
Ethno veterinary uses of medicinal plants of district Karak, Pakistan.
Khattak, Noor Saeed; Nouroz, Faisal; Inayat Ur Rahman; Noreen, Shumaila
2015-08-02
In the study area, the traditional knowledge regarding the uses of local wild medicinal plants for treating diseases of domestic animals and birds is totally in the custody of elders of the existing community. The young ones are not much aware about such important practices. The main aim of the study was to document and to release this knowledge from the custody of elders and share with the community. Total 115 people between 20 and 80 years of age were interviewed and information was collected through semi-structured questionnaires. The data obtained were quantitatively analyzed using the use value (UV) formula. The collected specimens were pressed, dried, preserved, mounted on Herbarium sheets, identified properly and were submitted in the Herbarium, Department of Botany, Hazara University, Mansehra, Pakistan. With the co-ordination and cooperation of the local people, 46 plant species of 42 genera belonging to 31 families were collected, 3 were monocotyledons while 43 plant species belonged to dicotyledonae class. Considering taxonomic characteristics, it was confirmed that 12 trees, 10 shrubs and 22 herbs were commonly used by the local people in ethno veterinary practices. Two plants like Cistanche tubulosa and Cuscuta reflexa from family Orobanchaceae and family Cuscutaceae respectively lack chlorophyll and are parasites on host plants like Doedonia, Ziziphus, Calligonum and Calotropis. The powder of both plants showed great ethno veterinary value. The parts of 46 plant species commonly used for ethno veterinary practices were whole plants (32.60%), leaves (26.08%), fruits (17.39%), stems (13.04%) and roots (10.86%). Medicinal plants were administered through various routes i.e. oral (78.26%), skin (17.21%) and smoke (4.34%). The traditional knowledge of local plants of ethno veterinary values is mainly possessed by elders and transmitted from generation to generation with chances of elimination of such traditional knowledge due to less awareness. The present study was designed to document this ethno veterinary related knowledge and to share it with community members for use in future. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album.
Braschler, Brigitte; Hill, Jane K
2007-05-01
1. Some species have expanded their ranges during recent climate warming and the availability of breeding habitat and species' dispersal ability are two important factors determining expansions. The exploitation of a wide range of larval host plants should increase an herbivorous insect species' ability to track climate by increasing habitat availability. Therefore we investigated whether the performance of a species on different host plants changed towards its range boundary, and under warmer temperatures. 2. We studied the polyphagous butterfly Polygonia c-album, which is currently expanding its range in Britain and apparently has altered its host plant preference from Humulus lupulus to include other hosts (particularly Ulmus glabra and Urtica dioica). We investigated insect performance (development time, larval growth rate, adult size, survival) and adult flight morphology on these host plants under four rearing temperatures (18-28.5 degrees C) in populations from core and range margin sites. 3. In general, differences between core and margin populations were small compared with effects of rearing temperature and host plant. In terms of insect performance, host plants were generally ranked U. glabra > or = U. dioica > H. lupulus at all temperatures. Adult P. c-album can either enter diapause or develop directly and higher temperatures resulted in more directly developing adults, but lower survival rates (particularly on the original host H. lupulus) and smaller adult size. 4. Adult flight morphology of wild-caught individuals from range margin populations appeared to be related to increased dispersal potential relative to core populations. However, there was no difference in laboratory reared individuals, and conflicting results were obtained for different measures of flight morphology in relation to larval host plant and temperature effects, making conclusions about dispersal potential difficult. 5. Current range expansion of P. c-album is associated with the exploitation of more widespread host plants on which performance is improved. This study demonstrates how polyphagy may enhance the ability of species to track climate change. Our findings suggest that observed differences in climate-driven range shifts of generalist vs. specialist species may increase in the future and are likely to lead to greatly altered community composition.
Quiroz Velasquez, Paula F.; Abiff, Sumayyah K.; Fins, Katrina C.; Conway, Quincy B.; Salazar, Norma C.; Delgado, Ana Paula; Dawes, Jhanelle K.; Douma, Lauren G.
2014-01-01
A combination of 454 pyrosequencing and Sanger sequencing was used to sample and characterize the transcriptome of the entomopathogenic oomycete Lagenidium giganteum. More than 50,000 high-throughput reads were annotated through homology searches. Several selected reads served as seeds for the amplification and sequencing of full-length transcripts. Phylogenetic analyses inferred from full-length cellulose synthase alignments revealed that L giganteum is nested within the peronosporalean galaxy and as such appears to have evolved from a phytopathogenic ancestor. In agreement with the phylogeny reconstructions, full-length L. giganteum oomycete effector orthologs, corresponding to the cellulose-binding elicitor lectin (CBEL), crinkler (CRN), and elicitin proteins, were characterized by domain organizations similar to those of pathogenicity factors of plant-pathogenic oomycetes. Importantly, the L. giganteum effectors provide a basis for detailing the roles of canonical CRN, CBEL, and elicitin proteins in the infectious process of an oomycete known principally as an animal pathogen. Finally, phylogenetic analyses and genome mining identified members of glycoside hydrolase family 5 subfamily 27 (GH5_27) as putative virulence factors active on the host insect cuticle, based in part on the fact that GH5_27 genes are shared by entomopathogenic oomycetes and fungi but are underrepresented in nonentomopathogenic genomes. The genomic resources gathered from the L. giganteum transcriptome analysis strongly suggest that filamentous entomopathogens (oomycetes and fungi) exhibit convergent evolution: they have evolved independently from plant-associated microbes, have retained genes indicative of plant associations, and may share similar cores of virulence factors, such as GH5_27 enzymes, that are absent from the genomes of their plant-pathogenic relatives. PMID:25107973
Mejía, Luis C.; Herre, Edward A.; Sparks, Jed P.; Winter, Klaus; García, Milton N.; Van Bael, Sunshine A.; Stitt, Joseph; Shi, Zi; Zhang, Yufan; Guiltinan, Mark J.; Maximova, Siela N.
2014-01-01
It is increasingly recognized that macro-organisms (corals, insects, plants, vertebrates) consist of both host tissues and multiple microbial symbionts that play essential roles in their host's ecological and evolutionary success. Consequently, identifying benefits and costs of symbioses, as well as mechanisms underlying them are research priorities. All plants surveyed under natural conditions harbor foliar endophytic fungi (FEF) in their leaf tissues, often at high densities. Despite producing no visible effects on their hosts, experiments have nonetheless shown that FEF reduce pathogen and herbivore damage. Here, combining results from three genomic, and two physiological experiments, we demonstrate pervasive genetic and phenotypic effects of the apparently asymptomatic endophytes on their hosts. Specifically, inoculation of endophyte-free (E−) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant FEF species in healthy T. cacao, induces consistent changes in the expression of hundreds of host genes, including many with known defensive functions. Further, E+ plants exhibited increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes. These phenotypic changes observed in E+ plants correspond to changes in expression of specific functional genes in related pathways. Moreover, a cacao gene (Tc00g04254) highly up-regulated by C. tropicale also confers resistance to pathogen damage in the absence of endophytes or their products in host tissues. Thus, the benefits of increased pathogen resistance in E+ plants are derived in part from up-regulation of intrinsic host defense responses, and appear to be offset by potential costs including reduced photosynthesis, altered host nitrogen metabolism, and endophyte heterotrophy of host tissues. Similar effects are likely in most plant-endophyte interactions, and should be recognized in the design and interpretation of genetic and phenotypic studies of plants. PMID:25309519
Yang, Xiao-Hui; Zhu, Dao-Hong; Liu, Zhiwei; Zhao, Ling; Su, Cheng-Yuan
2013-01-01
Wolbachia are maternally inherited endosymbiotic bacteria of arthropods and nematodes. In arthropods, they manipulate the reproduction of their hosts to facilitate their own spread in host populations, causing cytoplasmic incompatibility, parthenogenesis induction, feminization of genetic males and male-killing. In this study, we investigated Wolbachia infection and studied wsp (Wolbachia surface protein) sequences in three wasp species associated with the unisexual galls of A. mukaigawae with the aim of determining the transmission mode and the reason for multiple infections of Wolbachia. Frequency of Wolbachia infected populations for A. mukaigawae, Synergus japonicus (inquiline), and Torymus sp. (parasitoid) was 75%, 100%, and 100%, respectively. Multiple Wolbachia infections were detected in A. mukaigawae and S. japonicus, with 5 and 8 Wolbachia strains, respectively. The two host species shared 5 Wolbachia strains and were infected by identical strains in several locations, indicating horizontal transmission of Wolbachia. The transmission potentially takes place through gall tissues, which the larvae of both wasps feed on. Furthermore, three recombination events of Wolbachia were observed: the strains W8, W2 and W6 apparently have derived from W3 and W5a, W6 and W7, W4 and W9, respectively. W8 and W2 and their respective parental strains were detected in S. japonicus. W6 was detected with only one parent (W4) in S. japonicus; W9 was detected in Torymus sp., suggesting horizontal transmission between hosts and parasitoids. In conclusion, our research supports earlier studies that horizontal transmission of Wolbachia, a symbiont of the Rickettsiales order, may be plant-mediated or take place between hosts and parasitoids. Our research provides novel molecular evidence for multiple recombination events of Wolbachia in gall wasp communities. We suggest that genomic recombination and potential plant-mediated horizontal transmission may be attributable to the high levels of multiple Wolbachia infections observed in A. mukaigawae and S. japonicus.
Plasticity in host utilization by two host-associated populations of Aphis gossypii Glover.
Barman, A K; Gadhave, K R; Dutta, B; Srinivasan, R
2018-06-01
Biological and morphological plasticity in polyphagous insect herbivores allow them to exploit diverse host plant species. Geographical differences in resource availability can lead to preferential host exploitation and result in inconsistent host specialization. Biological and molecular data provide insights into specialization and plasticity of such herbivore populations. In agricultural landscapes, Aphis gossypii encounters several crop and non-crop hosts, which exist in temporal and spatial proximity. We investigated the host-specialization of two A. gossypii host-associated populations (HAPs), which were field collected from cotton and squash (cotton-associated population and melon-associated population), and later maintained separately in the greenhouse. The two aphid populations were exposed to seven plant species (cotton, okra, watermelon, squash, cucumber, pigweed, and morning glory), and evaluated for their host utilization plasticity by estimating aphid's fitness parameters (nymphal period, adult period, fecundity, and intrinsic rate of increase). Four phenotypical characters (body length, head capsule width, hind tibia length and cornicle length) were also measured from the resulting 14 different HAP × host plant combinations. Phylogenetic analysis of mitochondrial COI sequences showed no genetic variation between the two HAPs. Fitness parameters indicated a significant variation between the two aphid populations, and the variation was influenced by host plants. The performance of melon-aphids was poor (up to 89% reduction in fecundity) on malvaceous hosts, cotton and okra. However, cotton-aphids performed better on cucurbitaceous hosts, squash and watermelon (up to 66% increased fecundity) compared with the natal host, cotton. Both HAPs were able to reproduce on two weed hosts. Cotton-aphids were smaller than melon-aphids irrespective of their host plants. Results from this study suggest that the two HAPs in the study area do not have strict host specialization; rather they exhibit plasticity in utilizing several hosts. In this scenario, it is unlikely that host-associated A. gossypii populations would evolve into host-specific biotypes.
Cunha, Beatriz P.; Solferini, Vera N.
2015-01-01
Sequestration of chemical defenses from host plants is a strategy widely used by herbivorous insects to avoid predation. Larvae of the arctiine moth Utetheisa ornatrix feeding on unripe seeds and leaves of many species of Crotalaria (Leguminosae) sequester N-oxides of pyrrolizidine alkaloids (PAs) from these host plants, and transfer them to adults through the pupal stage. PAs confer protection against predation on all life stages of U. ornatrix. As U. ornatrix also uses other Crotalaria species as host plants, we evaluated whether the PA chemical defense against predation is independent of host plant use. We fed larvae from hatching to pupation with either leaves or seeds of one of eight Crotalaria species (C. incana, C. juncea, C. micans, C. ochroleuca, C. pallida, C. paulina, C. spectabilis, and C. vitellina), and tested if adults were preyed upon or released by the orb-weaving spider Nephila clavipes. We found that the protection against the spider was more effective in adults whose larvae fed on seeds, which had a higher PA concentration than leaves. The exceptions were adults from larvae fed on C. paulina, C. spectabilis and C. vitellina leaves, which showed high PA concentrations. With respect to the PA profile, we describe for the first time insect-PAs in U. ornatrix. These PAs, biosynthesized from the necine base retronecine of plant origin, or monocrotaline- and senecionine-type PAs sequestered from host plants, were equally active in moth chemical defense, in a dose-dependent manner. These results are also partially explained by host plant phylogeny, since PAs of the host plants do have a phylogenetic signal (clades with high and low PA concentrations in leaves) which is reflected in the adult defense. PMID:26517873
Martins, Carlos H Z; Cunha, Beatriz P; Solferini, Vera N; Trigo, José R
2015-01-01
Sequestration of chemical defenses from host plants is a strategy widely used by herbivorous insects to avoid predation. Larvae of the arctiine moth Utetheisa ornatrix feeding on unripe seeds and leaves of many species of Crotalaria (Leguminosae) sequester N-oxides of pyrrolizidine alkaloids (PAs) from these host plants, and transfer them to adults through the pupal stage. PAs confer protection against predation on all life stages of U. ornatrix. As U. ornatrix also uses other Crotalaria species as host plants, we evaluated whether the PA chemical defense against predation is independent of host plant use. We fed larvae from hatching to pupation with either leaves or seeds of one of eight Crotalaria species (C. incana, C. juncea, C. micans, C. ochroleuca, C. pallida, C. paulina, C. spectabilis, and C. vitellina), and tested if adults were preyed upon or released by the orb-weaving spider Nephila clavipes. We found that the protection against the spider was more effective in adults whose larvae fed on seeds, which had a higher PA concentration than leaves. The exceptions were adults from larvae fed on C. paulina, C. spectabilis and C. vitellina leaves, which showed high PA concentrations. With respect to the PA profile, we describe for the first time insect-PAs in U. ornatrix. These PAs, biosynthesized from the necine base retronecine of plant origin, or monocrotaline- and senecionine-type PAs sequestered from host plants, were equally active in moth chemical defense, in a dose-dependent manner. These results are also partially explained by host plant phylogeny, since PAs of the host plants do have a phylogenetic signal (clades with high and low PA concentrations in leaves) which is reflected in the adult defense.
Orlovskis, Zigmunds; Hogenhout, Saskia A.
2016-01-01
Parasites can take over their hosts and trigger dramatic changes in host appearance and behavior that are typically interpreted as extended phenotypes that promote parasite survival and fitness. For example, Toxoplasma gondii is thought to manipulate the behaviors of infected rodents to aid transmission to cats and parasitic trematodes of the genus Ribeiroia alter limb development in their amphibian hosts to facilitate predation of the latter by birds. Plant parasites and pathogens also reprogram host development and morphology. However, whereas some parasite-induced morphological alterations may have a direct benefit to the fitness of the parasite and may therefore be adaptive, other host alterations may be side effects of parasite infections having no adaptive effects on parasite fitness. Phytoplasma parasites of plants often induce the development of leaf-like flowers (phyllody) in their host plants, and we previously found that the phytoplasma effector SAP54 generates these leaf-like flowers via the degradation of plant MADS-box transcription factors (MTFs), which regulate all major aspects of development in plants. Leafhoppers prefer to reproduce on phytoplasma-infected and SAP54-trangenic plants leading to the hypothesis that leafhopper vectors are attracted to plants with leaf-like flowers. Surprisingly, here we show that leafhopper attraction occurs independently of the presence of leaf-like flowers. First, the leafhoppers were also attracted to SAP54 transgenic plants without leaf-like flowers and to single leaves of these plants. Moreover, leafhoppers were not attracted to leaf-like flowers of MTF-mutant plants without the presence of SAP54. Thus, the primary role of SAP54 is to attract leafhopper vectors, which spread the phytoplasmas, and the generation of leaf-like flowers may be secondary or a side effect of the SAP54-mediated degradation of MTFs. PMID:27446117
Lang, Andreas; Otto, Mathias
2015-01-01
Non-target butterfly larvae may be harmed by feeding on host plants dusted with Bt maize pollen. Feeding patterns of larvae and their utilization of host plants can affect the adverse Bt impact because the maize pollen is distributed unequally on the plant. In a field study, we investigated the feeding of larvae of the Small Tortoiseshell, Aglais urticae, on nettles, Urtica dioica. Young larvae used smaller host plants than older larvae. In general, the position of the larvae was in the top part of the host plant, but older larvae showed a broader vertical distribution on the nettles. Leaf blades and leaf tips were the plant parts most often consumed. Leaf veins were consumed but midribs were fed on to a lesser extent than other plant veins, particularly by young larvae. The feeding behavior of the larvae may increase possible exposure to Bt maize pollen because pollen densities are expected to be higher on the top parts and along leaf veins of nettles. PMID:26463415
USDA-ARS?s Scientific Manuscript database
Plant species used for host specificity testing are usually chosen based on the assumption that the risk of attack by a prospective biological control agent decreases with increasing phylogenetic distance from the target weed. Molecular genetics methods have greatly improved our ability to measure ...
USDA-ARS?s Scientific Manuscript database
Tropical herbivorous insects are astonishingly diverse and many are highly host-specific. Much evidence suggests that herbivorous insect diversity is a function of host-plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most lineages of herbivorous fruit f...
USDA-ARS?s Scientific Manuscript database
The waterfern weevil, Stenopelmus refinasus Gyllenhal, has previously been reported as host-specific, only feeding on plants in the genus Azolla. We report the first observations of S. rufinasus feeding on a non-host plant, Salvinia minima Baker, within the United States....
ERIC Educational Resources Information Center
Winchester-Seeto, Theresa; Rowe, Anna; Mackaway, Jacqueline
2016-01-01
Student supervision is a key factor underpinning the success of work-integrated learning programs. Supervisory responsibilities can be shared across a number of stakeholders including university staff and host/workplace supervisors. While there have been attempts to understand the roles played by each of these stakeholders, little research has…
Motivation for Knowledge Sharing by Expert Participants in Company-Hosted Online User Communities
ERIC Educational Resources Information Center
Cheng, Jingli
2014-01-01
Company-hosted online user communities are increasingly popular as firms continue to search for ways to provide their customers with high quality and reliable support in a low cost and scalable way. Yet, empirical understanding of motivations for knowledge sharing in this type of online communities is lacking, especially with regard to an…
Differential Colonization Dynamics of Cucurbit Hosts by Erwinia tracheiphila.
Vrisman, Cláudio M; Deblais, Loïc; Rajashekara, Gireesh; Miller, Sally A
2016-07-01
Bacterial wilt is one of the most destructive diseases of cucurbits in the Midwestern and Northeastern United States. Although the disease has been studied since 1900, host colonization dynamics remain unclear. Cucumis- and Cucurbita-derived strains exhibit host preference for the cucurbit genus from which they were isolated. We constructed a bioluminescent strain of Erwinia tracheiphila (TedCu10-BL#9) and colonization of different cucurbit hosts was monitored. At the second-true-leaf stage, Cucumis melo plants were inoculated with TedCu10-BL#9 via wounded leaves, stems, and roots. Daily monitoring of colonization showed bioluminescent bacteria in the inoculated leaf and petiole beginning 1 day postinoculation (DPI). The bacteria spread to roots via the stem by 2 DPI, reached the plant extremities 4 DPI, and the plant wilted 6 DPI. However, Cucurbita plants inoculated with TedCu10-BL#9 did not wilt, even at 35 DPI. Bioluminescent bacteria were detected 6 DPI in the main stem of squash and pumpkin plants, which harbored approximately 10(4) and 10(1) CFU/g, respectively, of TedCu10-BL#9 without symptoms. Although significantly less systemic plant colonization was observed in nonpreferred host Cucurbita plants compared with preferred hosts, the mechanism of tolerance of Cucurbita plants to E. tracheiphila strains from Cucumis remains unknown.
Maixner, Michael; Albert, Andreas; Johannesen, Jes
2014-01-01
Dissemination of vectorborne diseases depends strongly on the vector's host range and the pathogen's reservoir range. Because vectors interact with pathogens, the direction and strength of a vector's host shift is vital for understanding epidemiology and is embedded in the framework of ecological specialization. This study investigates survival in host-race evolution of a polyphagous insect disease vector, Hyalesthes obsoletus, whether survival is related to the direction of the host shift (from field bindweed to stinging nettle), the interaction with plant-specific strains of obligate vectored pathogens/symbionts (stolbur phytoplasma), and whether survival is related to genetic differentiation between the host races. We used a twice repeated, identical nested experimental design to study survival of the vector on alternative hosts and relative to infection status. Survival was tested with Kaplan–Meier analyses, while genetic differentiation between vector populations was quantified with microsatellite allele frequencies. We found significant direct effects of host plant (reduced survival on wrong hosts) and sex (males survive longer than females) in both host races and relative effects of host (nettle animals more affected than bindweed animals) and sex (males more affected than females). Survival of bindweed animals was significantly higher on symptomatic than nonsymptomatic field bindweed, but in the second experiment only. Infection potentially had a positive effect on survival in nettle animals but due to low infection rates the results remain suggestive. Genetic differentiation was not related to survival. Greater negative plant-transfer effect but no negative effect of stolbur in the derived host race suggests preadaptation to the new pathogen/symbiont strain before strong diversifying selection during the specialization process. Physiological maladaptation or failure to accept the ancestral plant will have similar consequences, namely positive assortative mating within host races and a reduction in the likelihood of oviposition on the alternative plant and thus the acquisition of alternative stolbur strains. PMID:25247065
Maixner, Michael; Albert, Andreas; Johannesen, Jes
2014-08-01
Dissemination of vectorborne diseases depends strongly on the vector's host range and the pathogen's reservoir range. Because vectors interact with pathogens, the direction and strength of a vector's host shift is vital for understanding epidemiology and is embedded in the framework of ecological specialization. This study investigates survival in host-race evolution of a polyphagous insect disease vector, Hyalesthes obsoletus, whether survival is related to the direction of the host shift (from field bindweed to stinging nettle), the interaction with plant-specific strains of obligate vectored pathogens/symbionts (stolbur phytoplasma), and whether survival is related to genetic differentiation between the host races. We used a twice repeated, identical nested experimental design to study survival of the vector on alternative hosts and relative to infection status. Survival was tested with Kaplan-Meier analyses, while genetic differentiation between vector populations was quantified with microsatellite allele frequencies. We found significant direct effects of host plant (reduced survival on wrong hosts) and sex (males survive longer than females) in both host races and relative effects of host (nettle animals more affected than bindweed animals) and sex (males more affected than females). Survival of bindweed animals was significantly higher on symptomatic than nonsymptomatic field bindweed, but in the second experiment only. Infection potentially had a positive effect on survival in nettle animals but due to low infection rates the results remain suggestive. Genetic differentiation was not related to survival. Greater negative plant-transfer effect but no negative effect of stolbur in the derived host race suggests preadaptation to the new pathogen/symbiont strain before strong diversifying selection during the specialization process. Physiological maladaptation or failure to accept the ancestral plant will have similar consequences, namely positive assortative mating within host races and a reduction in the likelihood of oviposition on the alternative plant and thus the acquisition of alternative stolbur strains.
Advances in plant virus evolution: translating evolutionary insights into better disease management.
Acosta-Leal, R; Duffy, S; Xiong, Z; Hammond, R W; Elena, S F
2011-10-01
Recent studies in plant virus evolution are revealing that genetic structure and behavior of virus and viroid populations can explain important pathogenic properties of these agents, such as host resistance breakdown, disease severity, and host shifting, among others. Genetic variation is essential for the survival of organisms. The exploration of how these subcellular parasites generate and maintain a certain frequency of mutations at the intra- and inter-host levels is revealing novel molecular virus-plant interactions. They emphasize the role of host environment in the dynamic genetic composition of virus populations. Functional genomics has identified host factors that are transcriptionally altered after virus infections. The analyses of these data by means of systems biology approaches are uncovering critical plant genes specifically targeted by viruses during host adaptation. Also, a next-generation resequencing approach of a whole virus genome is opening new avenues to study virus recombination and the relationships between intra-host virus composition and pathogenesis. Altogether, the analyzed data indicate that systematic disruption of some specific parameters of evolving virus populations could lead to more efficient ways of disease prevention, eradication, or tolerable virus-plant coexistence.
2017-01-01
The parasitic vines of the genus Cuscuta form haustoria that grow into other plants and connect with their vascular system, thus allowing the parasite to feed on its host. A major obstacle that meets the infection organ as it penetrates the host tissue is the rigid plant cell wall. In the present study, we examined the activity of xyloglucan endotransglucosylases/hydrolases (XTHs) during the host-invasive growth of the haustorium. The level of xyloglucan endotransglucosylation (XET) activity was found to peak at the penetrating stage of Cuscuta reflexa on its host Pelargonium zonale. In vivo colocalization of XET activity and donor substrate demonstrated XET activity at the border between host and parasite. A test for secretion of XET-active enzymes from haustoria of C. reflexa corroborated this and further indicated that the xyloglucan-modifying enzymes originated from the parasite. A known inhibitor of XET, Coomassie Brilliant Blue R250, was shown to reduce the level of XET in penetrating haustoria of C. reflexa. Moreover, the coating of P. zonale petioles with the inhibitor compound lowered the number of successful haustorial invasions of this otherwise compatible host plant. The presented data indicate that the activity of Cuscuta XTHs at the host-parasite interface is essential to penetration of host plant tissue. PMID:28448560
Olsen, Stian; Krause, Kirsten
2017-01-01
The parasitic vines of the genus Cuscuta form haustoria that grow into other plants and connect with their vascular system, thus allowing the parasite to feed on its host. A major obstacle that meets the infection organ as it penetrates the host tissue is the rigid plant cell wall. In the present study, we examined the activity of xyloglucan endotransglucosylases/hydrolases (XTHs) during the host-invasive growth of the haustorium. The level of xyloglucan endotransglucosylation (XET) activity was found to peak at the penetrating stage of Cuscuta reflexa on its host Pelargonium zonale. In vivo colocalization of XET activity and donor substrate demonstrated XET activity at the border between host and parasite. A test for secretion of XET-active enzymes from haustoria of C. reflexa corroborated this and further indicated that the xyloglucan-modifying enzymes originated from the parasite. A known inhibitor of XET, Coomassie Brilliant Blue R250, was shown to reduce the level of XET in penetrating haustoria of C. reflexa. Moreover, the coating of P. zonale petioles with the inhibitor compound lowered the number of successful haustorial invasions of this otherwise compatible host plant. The presented data indicate that the activity of Cuscuta XTHs at the host-parasite interface is essential to penetration of host plant tissue.
Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis.
Zeng, Tian; Holmer, Rens; Hontelez, Jan; Te Lintel-Hekkert, Bas; Marufu, Lucky; de Zeeuw, Thijs; Wu, Fangyuan; Schijlen, Elio; Bisseling, Ton; Limpens, Erik
2018-05-01
Arbuscular mycorrhizal fungi form the most wide-spread endosymbiosis with plants. There is very little host specificity in this interaction, however host preferences as well as varying symbiotic efficiencies have been observed. We hypothesize that secreted proteins (SPs) may act as fungal effectors to control symbiotic efficiency in a host-dependent manner. Therefore, we studied whether arbuscular mycorrhizal (AM) fungi adjust their secretome in a host- and stage-dependent manner to contribute to their extremely wide host range. We investigated the expression of SP-encoding genes of Rhizophagus irregularis in three evolutionary distantly related plant species, Medicago truncatula, Nicotiana benthamiana and Allium schoenoprasum. In addition we used laser microdissection in combination with RNA-seq to study SP expression at different stages of the interaction in Medicago. Our data indicate that most expressed SPs show roughly equal expression levels in the interaction with all three host plants. In addition, a subset shows significant differential expression depending on the host plant. Furthermore, SP expression is controlled locally in the hyphal network in response to host-dependent cues. Overall, this study presents a comprehensive analysis of the R. irregularis secretome, which now offers a solid basis to direct functional studies on the role of fungal SPs in AM symbiosis. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
Natal Host Plants Can Alter Herbivore Competition
Pan, Huipeng; Preisser, Evan L.; Su, Qi; Jiao, Xiaoguo; Xie, Wen; Wang, Shaoli; Wu, Qingjun
2016-01-01
Interspecific competition between herbivores is widely recognized as an important determinant of community structure. Although researchers have identified a number of factors capable of altering competitive interactions, few studies have addressed the influence of neighboring plant species. If adaptation to/ epigenetic effects of an herbivore’s natal host plant alter its performance on other host plants, then interspecific herbivore interactions may play out differently in heterogeneous and homogenous plant communities. We tested wether the natal host plant of a whitefly population affected interactions between the Middle-east Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species of the whitefly Bemisia tabaci by rearing the offspring of a cabbage-derived MEAM1 population and a poinsettia-derived MED population together on three different host plants: cotton, poinsettia, and cabbage. We found that MED dominated on poinsettia and that MEAM1 dominated on cabbage, results consistent with previous research. MED also dominated when reared with MEAM1 on cotton, however, a result at odds with multiple otherwise-similar studies that reared both species on the same natal plant. Our work provides evidence that natal plants affect competitive interactions on another plant species, and highlights the potential importance of neighboring plant species on herbivore community composition in agricultral systems. PMID:28030636
Trafficking arms: oomycete effectors enter host plant cells.
Birch, Paul R J; Rehmany, Anne P; Pritchard, Leighton; Kamoun, Sophien; Beynon, Jim L
2006-01-01
Oomycetes cause devastating plant diseases of global importance, yet little is known about the molecular basis of their pathogenicity. Recently, the first oomycete effector genes with cultivar-specific avirulence (AVR) functions were identified. Evidence of diversifying selection in these genes and their cognate plant host resistance genes suggests a molecular "arms race" as plants and oomycetes attempt to achieve and evade detection, respectively. AVR proteins from Hyaloperonospora parasitica and Phytophthora infestans are detected in the plant host cytoplasm, consistent with the hypothesis that oomycetes, as is the case with bacteria and fungi, actively deliver effectors inside host cells. The RXLR amino acid motif, which is present in these AVR proteins and other secreted oomycete proteins, is similar to a host-cell-targeting signal in virulence proteins of malaria parasites (Plasmodium species), suggesting a conserved role in pathogenicity.
RNA mobility in parasitic plant - host interactions.
Westwood, James H; Kim, Gunjune
2017-04-03
The parasitic plant Cuscuta exchanges mRNAs with its hosts. Systemic mobility of mRNAs within plants is well documented, and has gained increasing attention as studies using grafted plant systems have revealed new aspects of mobile mRNA regulation and function. But parasitic plants take this phenomenon to a new level by forming seamless connections to a wide range of host species, and raising questions about how mRNAs might function after transfer to a different species. Cuscuta and other parasitic plant species also take siRNAs from their hosts, indicating that multiple types of RNA are capable of trans-specific movement. Parasitic plants are intriguing systems for studying RNA mobility, in part because such exchange opens new possibilities for control of parasitic weeds, but also because they provide a fresh perspective into understanding roles of RNAs in inter-organismal communication.
Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J; Wang, Baohua; Wang, Zonghua
2016-05-06
One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants.
Molecular biology of viroid-host interactions and disease control strategies.
Kovalskaya, Natalia; Hammond, Rosemarie W
2014-11-01
Viroids are single-stranded, covalently closed, circular, highly structured noncoding RNAs that cause disease in several economically important crop plants. They replicate autonomously and move systemically in host plants with the aid of the host machinery. In addition to symptomatic infections, viroids also cause latent infections where there is no visual evidence of infection in the host; however, transfer to a susceptible host can result in devastating disease. While there are non-hosts for viroids, no naturally occurring durable resistance has been observed in most host species. Current effective control methods for viroid diseases include detection and eradication, and cultural controls. In addition, heat or cold therapy combined with meristem tip culture has been shown to be effective for elimination of viroids for some viroid-host combinations. An understanding of viroid-host interactions, host susceptibility, and non-host resistance could provide guidance for the design of viroid-resistant plants. Efforts to engineer viroid resistance into host species have been underway for several years, and include the use of antisense RNA, antisense RNA plus ribozymes, a dsRNase, and siRNAs, among others. The results of those efforts and the challenges associated with creating viroid resistant plants are summarized in this review. Published by Elsevier Ireland Ltd.
Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J.; Wang, Baohua; Wang, Zonghua
2016-01-01
One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants. PMID:27151494
Geography and major host evolutionary transitions shape the resource use of plant parasites
Calatayud, Joaquín; Hórreo, José Luis; Madrigal-González, Jaime; Migeon, Alain; Rodríguez, Miguel Á.; Magalhães, Sara; Hortal, Joaquín
2016-01-01
The evolution of resource use in herbivores has been conceptualized as an analog of the theory of island biogeography, assuming that plant species are islands separated by phylogenetic distances. Despite its usefulness, this analogy has paradoxically led to neglecting real biogeographical processes in the study of macroevolutionary patterns of herbivore–plant interactions. Here we show that host use is mostly determined by the geographical cooccurrence of hosts and parasites in spider mites (Tetranychidae), a globally distributed group of plant parasites. Strikingly, geography accounts for most of the phylogenetic signal in host use by these parasites. Beyond geography, only evolutionary transitions among major plant lineages (i.e., gymnosperms, commelinids, and eudicots) shape resource use patterns in these herbivores. Still, even these barriers have been repeatedly overcome in evolutionary time, resulting in phylogenetically diverse parasite communities feeding on similar hosts. Therefore, our results imply that patterns of apparent evolutionary conservatism may largely be a byproduct of the geographic cooccurrence of hosts and parasites. PMID:27535932
Quentin, Michaëel; Abad, Pierre; Favery, Bruno
2013-01-01
Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells (FCs). Effectors synthesized in the esophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized FCs requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defense responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalized within FC nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesized roles in the unique feeding behavior of these pests.
Geography and major host evolutionary transitions shape the resource use of plant parasites.
Calatayud, Joaquín; Hórreo, José Luis; Madrigal-González, Jaime; Migeon, Alain; Rodríguez, Miguel Á; Magalhães, Sara; Hortal, Joaquín
2016-08-30
The evolution of resource use in herbivores has been conceptualized as an analog of the theory of island biogeography, assuming that plant species are islands separated by phylogenetic distances. Despite its usefulness, this analogy has paradoxically led to neglecting real biogeographical processes in the study of macroevolutionary patterns of herbivore-plant interactions. Here we show that host use is mostly determined by the geographical cooccurrence of hosts and parasites in spider mites (Tetranychidae), a globally distributed group of plant parasites. Strikingly, geography accounts for most of the phylogenetic signal in host use by these parasites. Beyond geography, only evolutionary transitions among major plant lineages (i.e., gymnosperms, commelinids, and eudicots) shape resource use patterns in these herbivores. Still, even these barriers have been repeatedly overcome in evolutionary time, resulting in phylogenetically diverse parasite communities feeding on similar hosts. Therefore, our results imply that patterns of apparent evolutionary conservatism may largely be a byproduct of the geographic cooccurrence of hosts and parasites.
Martini, Xavier; Willett, Denis S; Kuhns, Emily H; Stelinski, Lukasz L
2016-05-01
Plant pathogens can manipulate the odor of their host; the odor of an infected plant is often attractive to the plant pathogen vector. It has been suggested that this odor-mediated manipulation attracts vectors and may contribute to spread of disease; however, this requires further broad demonstration among vector-pathogen systems. In addition, disruption of this indirect chemical communication between the pathogen and the vector has not been attempted. We present a model that demonstrates how a phytophathogen (Candidatus Liberibacter asiaticus) can increase its spread by indirectly manipulating the behavior of its vector (Asian citrus psyllid, Diaphorina citri Kuwayama). The model indicates that when vectors are attracted to pathogen-infected hosts, the proportion of infected vectors increases, as well as, the proportion of infected hosts. Additionally, the peak of infected host populations occurs earlier as compared with controls. These changes in disease dynamics were more important during scenarios with higher vector mortality. Subsequently, we conducted a series of experiments to disrupt the behavior of the Asian citrus psyllid. To do so, we exposed the vector to methyl salicylate, the major compound released following host infection with the pathogen. We observed that during exposure or after pre-exposure to methyl salicylate, the host preference can be altered; indeed, the Asian citrus psyllids were unable to select infected hosts over uninfected counterparts. We suggest mechanisms to explain these interactions and potential applications of disrupting herbivore host preference with plant volatiles for sustainable management of insect vectors.
Lin, Borong; Zhuo, Kan; Chen, Shiyan; Hu, Lili; Sun, Longhua; Wang, Xiaohong; Zhang, Lian-Hui; Liao, Jinling
2016-02-01
Evidence is emerging that plant-parasitic nematodes can secrete effectors to interfere with the host immune response, but it remains unknown how these effectors can conquer host immune responses. Here, we depict a novel effector, MjTTL5, that could suppress plant immune response. Immunolocalization and transcriptional analyses showed that MjTTL5 is expressed specifically within the subventral gland of Meloidogyne javanica and up-regulated in the early parasitic stage of the nematode. Transgenic Arabidopsis lines expressing MjTTL5 were significantly more susceptible to M. javanica infection than wild-type plants, and vice versa, in planta silencing of MjTTL5 substantially increased plant resistance to M. javanica. Yeast two-hybrid, coimmunoprecipitation and bimolecular fluorescent complementation assays showed that MjTTL5 interacts specifically with Arabidopsis ferredoxin : thioredoxin reductase catalytic subunit (AtFTRc), a key component of host antioxidant system. The expression of AtFTRc is induced by the infection of M. javanica. Interaction between AtFTRc and MjTTL could drastically increase host reactive oxygen species-scavenging activity, and result in suppression of plant basal defenses and attenuation of host resistance to the nematode infection. Our results demonstrate that the host ferredoxin : thioredoxin system can be exploited cunningly by M. javanica, revealing a novel mechanism utilized by plant-parasitic nematodes to subjugate plant innate immunity and thereby promoting parasitism. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Kupferschmied, Peter; Péchy-Tarr, Maria; Imperiali, Nicola; Maurhofer, Monika; Keel, Christoph
2014-01-01
Pseudomonas protegens is a biocontrol rhizobacterium with a plant-beneficial and an insect pathogenic lifestyle, but it is not understood how the organism switches between the two states. Here, we focus on understanding the function and possible evolution of a molecular sensor that enables P. protegens to detect the insect environment and produce a potent insecticidal toxin specifically during insect infection but not on roots. By using quantitative single cell microscopy and mutant analysis, we provide evidence that the sensor histidine kinase FitF is a key regulator of insecticidal toxin production. Our experimental data and bioinformatic analyses indicate that FitF shares a sensing domain with DctB, a histidine kinase regulating carbon uptake in Proteobacteria. This suggested that FitF has acquired its specificity through domain shuffling from a common ancestor. We constructed a chimeric DctB-FitF protein and showed that it is indeed functional in regulating toxin expression in P. protegens. The shuffling event and subsequent adaptive modifications of the recruited sensor domain were critical for the microorganism to express its potent insect toxin in the observed host-specific manner. Inhibition of the FitF sensor during root colonization could explain the mechanism by which P. protegens differentiates between the plant and insect host. Our study establishes FitF of P. protegens as a prime model for molecular evolution of sensor proteins and bacterial pathogenicity. PMID:24586167
Kembel, Steven W.; O’Connor, Timothy K.; Arnold, Holly K.; Hubbell, Stephen P.; Wright, S. Joseph; Green, Jessica L.
2014-01-01
The phyllosphere—the aerial surfaces of plants, including leaves—is a ubiquitous global habitat that harbors diverse bacterial communities. Phyllosphere bacterial communities have the potential to influence plant biogeography and ecosystem function through their influence on the fitness and function of their hosts, but the host attributes that drive community assembly in the phyllosphere are poorly understood. In this study we used high-throughput sequencing to quantify bacterial community structure on the leaves of 57 tree species in a neotropical forest in Panama. We tested for relationships between bacterial communities on tree leaves and the functional traits, taxonomy, and phylogeny of their plant hosts. Bacterial communities on tropical tree leaves were diverse; leaves from individual trees were host to more than 400 bacterial taxa. Bacterial communities in the phyllosphere were dominated by a core microbiome of taxa including Actinobacteria, Alpha-, Beta-, and Gammaproteobacteria, and Sphingobacteria. Host attributes including plant taxonomic identity, phylogeny, growth and mortality rates, wood density, leaf mass per area, and leaf nitrogen and phosphorous concentrations were correlated with bacterial community structure on leaves. The relative abundances of several bacterial taxa were correlated with suites of host plant traits related to major axes of plant trait variation, including the leaf economics spectrum and the wood density–growth/mortality tradeoff. These correlations between phyllosphere bacterial diversity and host growth, mortality, and function suggest that incorporating information on plant–microbe associations will improve our ability to understand plant functional biogeography and the drivers of variation in plant and ecosystem function. PMID:25225376
Wroblewski, Tadeusz; Caldwell, Katherine S.; Piskurewicz, Urszula; Cavanaugh, Keri A.; Xu, Huaqin; Kozik, Alexander; Ochoa, Oswaldo; McHale, Leah K.; Lahre, Kirsten; Jelenska, Joanna; Castillo, Jose A.; Blumenthal, Daniel; Vinatzer, Boris A.; Greenberg, Jean T.; Michelmore, Richard W.
2009-01-01
Bacterial plant pathogens manipulate their hosts by injection of numerous effector proteins into host cells via type III secretion systems. Recognition of these effectors by the host plant leads to the induction of a defense reaction that often culminates in a hypersensitive response manifested as cell death. Genes encoding effector proteins can be exchanged between different strains of bacteria via horizontal transfer, and often individual strains are capable of infecting multiple hosts. Host plant species express diverse repertoires of resistance proteins that mediate direct or indirect recognition of bacterial effectors. As a result, plants and their bacterial pathogens should be considered as two extensive coevolving groups rather than as individual host species coevolving with single pathovars. To dissect the complexity of this coevolution, we cloned 171 effector-encoding genes from several pathovars of Pseudomonas and Ralstonia. We used Agrobacterium tumefaciens-mediated transient assays to test the ability of each effector to induce a necrotic phenotype on 59 plant genotypes belonging to four plant families, including numerous diverse accessions of lettuce (Lactuca sativa) and tomato (Solanum lycopersicum). Known defense-inducing effectors (avirulence factors) and their homologs commonly induced extensive necrosis in many different plant species. Nonhost species reacted to multiple effector proteins from an individual pathovar more frequently and more intensely than host species. Both homologous and sequence-unrelated effectors could elicit necrosis in a similar spectrum of plants, suggesting common effector targets or targeting of the same pathways in the plant cell. PMID:19571308
An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence.
Rodriguez, Patricia A; Escudero-Martinez, Carmen; Bos, Jorunn I B
2017-03-01
Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M persicae -host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.
Evolutionary history and distance dependence control survival of dipterocarp seedlings.
Bagchi, Robert; Press, Malcolm C; Scholes, Julie D
2010-01-01
One important hypothesis to explain tree-species coexistence in tropical forests suggests that increased attack by natural enemies near conspecific trees gives locally rare species a competitive advantage. Host ranges of natural enemies generally encompass several closely related plant taxa suggesting that seedlings should also do poorly around adults of closely related species. We investigated the effects of adult Parashorea malaanonan on seedling survival in a Bornean rain forest. Survival of P. malaanonan seedlings was highest at intermediate distances from parent trees while heterospecific seedlings were unaffected by distance. Leaf herbivores did not drive this relationship. Survival of seedlings was lowest for P. malaanonan, and increased with phylogenetic dissimilarity from this species, suggesting that survival of close relatives of common species is reduced. This study suggests that distance dependence contributes to species coexistence and highlights the need for further investigation into the role of shared plant enemies in community dynamics.
USDA-ARS?s Scientific Manuscript database
Species of Ophiognomonia (Gnomoniaceae) are perithecial fungi that occur as endophytes, pathogens, and latent saprobes on leaf and stem tissue of plants in the Betulaceae, Fagaceae, Juglandaceae, Lauraceae, Malvaceae, Platanaceae, Rosaceae, Salicaceae, and Sapindaceae. In this study host plant patte...
Gehring, Chris; Irving, Helen
2013-06-01
Immunologic evidence has suggested the presence of biologically active natriuretic peptide (NPs) hormones in plants because antiatrial NP antibodies affinity purify biologically active plant NPs (PNP). In the model plant, an Arabidopsis thaliana PNP (AtPNP-A) has been identified and characterized. AtPNP-A belongs to a novel class of molecules that share some similarity with the cell wall loosening expansins but do not contain the carbohydrate-binding wall anchor thus suggesting that PNPs and atrial natriuretic peptides are heterologs. AtPNP-A acts systemically, and this is consistent with its localization in the apoplastic extracellular space and the conductive tissue. Furthermore, AtPNP-A signals via the second messenger cyclic guanosine 3',5'-monophosphate and modulates ion and water transport and homeostasis. It also plays a critical role in host defense against pathogens. AtPNP-A can be classified as novel paracrine plant hormone because it is secreted into the apoplastic space in response to stress and can enhance its own expression. Interestingly, purified recombinant PNP induces apoptosis in a dose-dependent manner and was most effective on cardiac myoblast cell lines. Because PNP is mimicking the effect of ANP in some instances, PNP may prove to provide useful leads for development of novel therapeutic NPs.
Rossbach, A; Löhr, B; Vidal, S
2008-04-01
Interspecific competition between an introduced parasitoid species aimed at controlling a herbivorous pest species and a native parasitoid parasitising the same host may influence the success of classical biological control programmes. In Kenya, interspecific competition between an introduced and a local parasitoid on two diamondback moth populations (DBM, Plutella xylostella) was investigated on two different host plants. We tested simultaneous and delayed competition of the local parasitoid Diadegma mollipla Holmgren and its exotic congenus D. semiclausum Hellen on a newly aquired DBM host plant (snowpea) in the laboratory. Under simultaneous competition, D. mollipla produced more progeny than D. semiclausum on snowpea. A head start of D. Mollipla, of four and eight hours before its congenus was introduced, resulted in a similar number of progeny of both species. In delayed competition (time intervals of 24 h, 48 h and 72 h), progeny production was similar for both parasitoids when the time interval was 24 h, irrespective of which species parasitized first. More progeny was produced by the species which attacked first, when the time interval was greater than 24 h, although it was only significant at 72 h. Competitive abilites of both parasitoids on the new host plant differed largely between laboratory and semi-field conditions. The influence of two host plants (snowpea and cabbage) on competition was studied in the greenhouse with different host and parasitoid densities. Parasitism levels of D. semiclausum were significantly higher than those of D. mollipla, regardless of host plant, host and parasitoid densities, but progeny production of D. mollipla on snowpea was still slightly higher than on cabbage. As compared to the confinement of parasitoids and larvae to small containers, D. mollipla parasitized very few larvae in the cages. Competitive ability of the two parasitoid species tested was influenced both by the density of the searching females and by parameters related to either the host plant and/or the herbivorous hosts.
USDA-ARS?s Scientific Manuscript database
• The common mycorrhizal networks (CMN) of arbuscular mycorrhizal (AM) fungi in the soil provide multiple host plants with nutrients, but the mechanisms by which the nutrient transport to individual host plants within one CMN is controlled, are currently unknown. • We followed by radioactive and st...
Yan, Shu-Wei; Zhang, Jin; Liu, Yang; Li, Guo-Qing; Wang, Gui-Rong
2015-08-01
Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is one of the most serious agricultural pests, feeding on a wide range of cultivated plants, including cotton, cereals and vegetables in the north of China. This insect can frequently switch between habitats and host plants over seasons and prefer plants in bloom. A. lucorum relies heavily on olfaction to locate its host plants finely discriminating different plant volatiles in the environment. Despite its economical importance, research on the olfactory system of this species has been so far very limited. In this study, we have identified and characterized an olfactory receptor which is sensitively tuned to (Z)-3-Hexenyl acetate and several flowering compounds. Besides being present in the bouquet of some flowers, these compounds are produced by plants that have suffered attacks and are supposed to act as chemical messengers between plants. This OR may play an important role in the selection of host plants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kirk, Heather; Vrieling, Klaas; Pelser, Pieter B; Schaffner, Urs
2012-04-01
At both a macro- and micro-evolutionary level, selection of and performance on host plants by specialist herbivores are thought to be governed partially by host plant chemistry. Thus far, there is little evidence to suggest that specialists can detect small structural differences in secondary metabolites of their hosts, or that such differences affect host choice or performance of specialists. We tested whether phytochemical differences between closely related plant species are correlated with specialist host choice. We conducted no-choice feeding trials using 17 plant species of three genera of tribe Senecioneae (Jacobaea, Packera, and Senecio; Asteraceae) and a more distantly related species (Cynoglossum officinale; Boraginaceae) containing pyrrolizidine alkaloids (PAs), and four PA-sequestering specialist herbivores of the genus Longitarsus (Chrysomelidae). We also assessed whether variation in feeding by specialist herbivores is attributable to different resource use strategies of the tested plant species. Plant resource use strategy was quantified by measuring leaf dry matter content, which is related to both plant nutritive value and to plant investment in quantitative defences. We found no evidence that intra-generic differences in PA profiles affect feeding by specialist herbivores. Instead, our results indicate that decisions to begin feeding are related to plant resource use strategy, while decisions to continue feeding are not based on any plant characteristics measured in this study. These findings imply that PA composition does not significantly affect host choice by these specialist herbivores. Leaf dry matter content is somewhat phylogenetically conserved, indicating that plants may have difficulty altering resource use strategy in response to selection pressure by herbivores and other environmental factors on an evolutionary time scale.
A Friendly Relationship between Endophytic Fungi and Medicinal Plants: A Systematic Review
Jia, Min; Chen, Ling; Xin, Hai-Liang; Zheng, Cheng-Jian; Rahman, Khalid; Han, Ting; Qin, Lu-Ping
2016-01-01
Endophytic fungi or endophytes exist widely inside the healthy tissues of living plants, and are important components of plant micro-ecosystems. Over the long period of evolution, some co-existing endophytes and their host plants have established a special relationship with one and another, which can significantly influence the formation of metabolic products in plants, then affect quality and quantity of crude drugs derived from medicinal plants. This paper will focus on the increasing knowledge of relationships between endophytic fungi and medicinal plants through reviewing of published research data obtained from the last 30 years. The analytical results indicate that the distribution and population structure of endophytes can be considerably affected by factors, such as the genetic background, age, and environmental conditions of their hosts. On the other hand, the endophytic fungi can also confer profound impacts on their host plants by enhancing their growth, increasing their fitness, strengthening their tolerances to abiotic and biotic stresses, and promoting their accumulation of secondary metabolites. All the changes are very important for the production of bioactive components in their hosts. Hence, it is essential to understand such relationships between endophytic fungi and their host medicinal plants. Such knowledge can be well exploited and applied for the production of better and more drugs from medicinal plants. PMID:27375610
Kosovac, Andrea; Johannesen, Jes; Krstić, Oliver; Cvrković, Tatjana; Toševski, Ivo
2018-01-01
The stolbur phytoplasma vector Hyalesthes obsoletus is generally considered as a polyphagous species associated with numerous wild and cultivated plants. However, recent research in southeastern Europe, the distribution centre of H. obsoletus and the area of most stolbur-inflicted crop diseases, points toward specific host-plant associations of the vector, indicating specific vector-based transmission routes. Here, we study the specificity of populations associated with four host-plants using mitochondrial and nuclear genetic markers, and we evaluate the evolution of host-shifts in H. obsoletus. Host-plant use was confirmed for Convolvulus arvensis, Urtica dioica, Vitex agnus-castus and Crepis foetida. Mitochondrial genetic analysis showed sympatric occurrence of three phylogenetic lineages that were ecologically delineated by host-plant preference, but were morphologically inseparable. Nuclear data supported the existence of three genetic groups (Evanno’s ΔK(3) = 803.72) with average genetic membership probabilities > 90%. While populations associated with C. arvensis and U. dioica form a homogenous group, populations affiliated with V. agnus-castus and C. foetida constitute two independent plant-associated lineages. The geographical signal permeating the surveyed populations indicated complex diversification processes associated with host-plant selection and likely derived from post-glacial refugia in the eastern Mediterranean. This study provides evidence for cryptic species diversification within H. obsoletus sensu lato: i) consistent mitochondrial differentiation (1.1–1.5%) among host-associated populations in syntopy and in geographically distant areas, ii) nuclear genetic variance supporting mitochondrial data, and iii) average mitochondrial genetic distances among host-associated meta-populations are comparable to the most closely related, morphologically distinguishable species, i.e., Hyalesthes thracicus (2.1–3.3%). PMID:29738577
Agunbiade, Tolulope A.; Coates, Brad S.; Datinon, Benjamin; Djouaka, Rousseau; Sun, Weilin; Tamò, Manuele; Pittendrigh, Barry R.
2014-01-01
Maruca vitrata Fabricius (Lepidoptera: Crambidae) is a polyphagous insect pest that feeds on a variety of leguminous plants in the tropics and subtropics. The contribution of host-associated genetic variation on population structure was investigated using analysis of mitochondrial cytochrome oxidase 1 (cox1) sequence and microsatellite marker data from M. vitrata collected from cultivated cowpea (Vigna unguiculata L. Walp.), and alternative host plants Pueraria phaseoloides (Roxb.) Benth. var. javanica (Benth.) Baker, Loncocarpus sericeus (Poir), and Tephrosia candida (Roxb.). Analyses of microsatellite data revealed a significant global FST estimate of 0.05 (P≤0.001). The program STRUCTURE estimated 2 genotypic clusters (co-ancestries) on the four host plants across 3 geographic locations, but little geographic variation was predicted among genotypes from different geographic locations using analysis of molecular variance (AMOVA; among group variation −0.68%) or F-statistics (F ST Loc = −0.01; P = 0.62). These results were corroborated by mitochondrial haplotype data (φSTLoc = 0.05; P = 0.92). In contrast, genotypes obtained from different host plants showed low but significant levels of genetic variation (F ST Host = 0.04; P = 0.01), which accounted for 4.08% of the total genetic variation, but was not congruent with mitochondrial haplotype analyses (φSTHost = 0.06; P = 0.27). Variation among host plants at a location and host plants among locations showed no consistent evidence for M. vitrata population subdivision. These results suggest that host plants do not significantly influence the genetic structure of M. vitrata, and this has implications for biocontrol agent releases as well as insecticide resistance management (IRM) for M. vitrata in West Africa. PMID:24647356
Kosovac, Andrea; Johannesen, Jes; Krstić, Oliver; Mitrović, Milana; Cvrković, Tatjana; Toševski, Ivo; Jović, Jelena
2018-01-01
The stolbur phytoplasma vector Hyalesthes obsoletus is generally considered as a polyphagous species associated with numerous wild and cultivated plants. However, recent research in southeastern Europe, the distribution centre of H. obsoletus and the area of most stolbur-inflicted crop diseases, points toward specific host-plant associations of the vector, indicating specific vector-based transmission routes. Here, we study the specificity of populations associated with four host-plants using mitochondrial and nuclear genetic markers, and we evaluate the evolution of host-shifts in H. obsoletus. Host-plant use was confirmed for Convolvulus arvensis, Urtica dioica, Vitex agnus-castus and Crepis foetida. Mitochondrial genetic analysis showed sympatric occurrence of three phylogenetic lineages that were ecologically delineated by host-plant preference, but were morphologically inseparable. Nuclear data supported the existence of three genetic groups (Evanno's ΔK(3) = 803.72) with average genetic membership probabilities > 90%. While populations associated with C. arvensis and U. dioica form a homogenous group, populations affiliated with V. agnus-castus and C. foetida constitute two independent plant-associated lineages. The geographical signal permeating the surveyed populations indicated complex diversification processes associated with host-plant selection and likely derived from post-glacial refugia in the eastern Mediterranean. This study provides evidence for cryptic species diversification within H. obsoletus sensu lato: i) consistent mitochondrial differentiation (1.1-1.5%) among host-associated populations in syntopy and in geographically distant areas, ii) nuclear genetic variance supporting mitochondrial data, and iii) average mitochondrial genetic distances among host-associated meta-populations are comparable to the most closely related, morphologically distinguishable species, i.e., Hyalesthes thracicus (2.1-3.3%).
Fire creates host plant patches for monarch butterflies
Baum, Kristen A.; Sharber, Wyatt V.
2012-01-01
Monarch butterflies (Danaus plexippus) depend on the presence of host plants (Asclepias spp.) within their breeding range for reproduction. In the southern Great Plains, Asclepias viridis is a perennial that flowers in May and June, and starts to senesce by August. It is locally abundant and readily used by monarchs as a host plant. We evaluated the effects of summer prescribed fire on A. viridis and the use of A. viridis by monarch butterflies. Summer prescribed fire generated a newly emergent population of A. viridis that was absent in other areas. Pre-migrant monarch butterflies laid eggs on A. viridis in summer burned plots in late August and September, allowing adequate time for a new generation of adult monarchs to emerge and migrate south to their overwintering grounds. Thus, summer prescribed fire may provide host plant patches and/or corridors for pre-migrant monarchs during a time when host plant availability may be limited in other areas. PMID:22859559
RNA mobility in parasitic plant – host interactions
Kim, Gunjune
2017-01-01
ABSTRACT The parasitic plant Cuscuta exchanges mRNAs with its hosts. Systemic mobility of mRNAs within plants is well documented, and has gained increasing attention as studies using grafted plant systems have revealed new aspects of mobile mRNA regulation and function. But parasitic plants take this phenomenon to a new level by forming seamless connections to a wide range of host species, and raising questions about how mRNAs might function after transfer to a different species. Cuscuta and other parasitic plant species also take siRNAs from their hosts, indicating that multiple types of RNA are capable of trans-specific movement. Parasitic plants are intriguing systems for studying RNA mobility, in part because such exchange opens new possibilities for control of parasitic weeds, but also because they provide a fresh perspective into understanding roles of RNAs in inter-organismal communication. PMID:28277936
Brévault, T; Carletto, J; Tribot, J; Vanlerberghe-Masutti, F
2011-08-01
Field populations of the cotton aphid, Aphis gossypii Glover, are structured into geographically widespread host races. In the cotton-producing regions of West and Central Africa (WCA), two genotypes have been repeatedly detected within the cotton host race, one of which (Burk1) is prevalent (>90%) and resistant to several insecticides, as opposed to the second one (Ivo). Here, we conducted whole plant and field cage experiments to test hypotheses for such low genetic diversity, including selection from insecticide treatments, interclonal competition and adaptation to host plant, or climatic conditions. To assess the genetic diversity of immigrant aphids, alatae were trapped and collected on cotton and relay host plants (okra and roselle) in the early cropping season. Individuals were genotyped at eight specific microsatellite loci and characterized by a multilocus genotype (MLG). When independently transferred from cotton (Gossypium hirustum L.) leaf discs to whole plants (G. hirsutum and G. arboreum, roselle and okra), Ivo and Burk1 performed equally well. When concurrently transferred from cotton leaf discs to the same plant species, Ivo performed better than Burk1, indicating that competition favoured Ivo. This was also the case on G. hirsutum growing outdoors. Conversely, Burk1 prevailed when cotton plants were sprayed with insecticides. In experiments where aphids were allowed to move to neighbouring plants, Burk1 was better represented than Ivo on low-populated plants, suggesting that dispersal may be a way to avoid competition on crowded plants. Most cotton aphids collected on cotton or relay host plants in the early cropping season were Burk1 (>90%), indicating high dispersal ability and, probably reflecting high frequency on host plants from which they dispersed. In the agricultural landscape of WCA, the use of broad-range insecticides on both cotton and relay host plants has led to the prevalence of one genotype of A. gossypii resistant to different classes of insecticides. Deployment of widespread and integrated pest management strategies are needed to restore cotton aphid control.
Rumor has it...: relay communication of stress cues in plants.
Falik, Omer; Mordoch, Yonat; Quansah, Lydia; Fait, Aaron; Novoplansky, Ariel
2011-01-01
Recent evidence demonstrates that plants are able not only to perceive and adaptively respond to external information but also to anticipate forthcoming hazards and stresses. Here, we tested the hypothesis that unstressed plants are able to respond to stress cues emitted from their abiotically-stressed neighbors and in turn induce stress responses in additional unstressed plants located further away from the stressed plants. Pisum sativum plants were subjected to drought while neighboring rows of five unstressed plants on both sides, with which they could exchange different cue combinations. On one side, the stressed plant and its unstressed neighbors did not share their rooting volumes (UNSHARED) and thus were limited to shoot communication. On its other side, the stressed plant shared one of its rooting volumes with its nearest unstressed neighbor and all plants shared their rooting volumes with their immediate neighbors (SHARED), allowing both root and shoot communication. Fifteen minutes following drought induction, significant stomatal closure was observed in both the stressed plants and their nearest unstressed SHARED neighbors, and within one hour, all SHARED neighbors closed their stomata. Stomatal closure was not observed in the UNSHARED neighbors. The results demonstrate that unstressed plants are able to perceive and respond to stress cues emitted by the roots of their drought-stressed neighbors and, via 'relay cuing', elicit stress responses in further unstressed plants. Further work is underway to study the underlying mechanisms of this new mode of plant communication and its possible adaptive implications for the anticipation of forthcoming abiotic stresses by plants.
Cryptic speciation and host-race formation in a purportedly generalist tumbling flower beetle.
Blair, Catherine P; Abrahamson, Warren G; Jackman, John A; Tyrrell, Lynn
2005-02-01
Host-race formation remains controversial as a source of herbivorous insect diversity, and examples of host races are still fairly scarce. In this study, analysis of five enzyme loci in the ostensibly generalist tumbling flower beetle Mordellistena convicta (Coleoptera: Mordellidae) revealed hidden host-plant and plant-organ related genetic differentiation. Mordellistena convicta turned out to be a complex of cryptomorphic species, each with fewer hosts than the nominal species. These cryptic species, in turn, were divided into taxa that showed host-race characteristics: samples from different host plants and organs exhibited (1) genetic indications of partial reproductive isolation, (2) differences in size and emergence timing that suggested divergent host-related selection, and (3) among-host selective differences in mortality from parasitoids. Host-race formation in M. convicta, which has a somewhat different life history from the well-studied host races, enlarges the group of insects considered likely to undergo this process. The widespread sympatry of the M. convicta species complex, along with its spectrum of host-correlated genetic differentiation, suggests that these host specialist taxa developed in sympatry.
2016-01-01
Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. PMID:27482077
Genomes of three facultatively symbiotic Frankia sp. strainsreflect host plant biogeography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Normand, Philippe; Lapierre, Pascal; Tisa, Louis S.
2006-02-01
Filamentous actinobacteria from the genus Frankia anddiverse woody trees and shrubs together form N2-fixing actinorhizal rootnodule symbioses that are a major source of new soil nitrogen in widelydiverse biomes 1. Three major clades of Frankia sp. strains are defined;each clade is associated with a defined subset of plants from among theeight actinorhizal plant families 2,3. The evolution arytrajectoriesfollowed by the ancestors of both symbionts leading to current patternsof symbiont compatibility are unknown. Here we show that the competingprocesses of genome expansion and contraction have operated in differentgroups of Frankia strains in a manner that can be related to thespeciation ofmore » the plant hosts and their geographic distribution. Wesequenced and compared the genomes from three Frankia sp. strains havingdifferent host plant specificities. The sizes of their genomes variedfrom 5.38 Mbp for a narrow host range strain (HFPCcI3) to 7.50Mbp for amedium host range strain (ACN14a) to 9.08 Mbp for a broad host rangestrain (EAN1pec.) This size divergence is the largest yet reported forsuch closely related bacteria. Since the order of divergence of thestrains is known, the extent of gene deletion, duplication andacquisition could be estimated and was found to be inconcert with thebiogeographic history of the symbioses. Host plant isolation favoredgenome contraction, whereas host plant diversification favored genomeexpansion. The results support the idea that major genome reductions aswell as expansions can occur in facultatively symbiotic soil bacteria asthey respond to new environments in the context of theirsymbioses.« less
Sikes, Benjamin A; Maherali, Hafiz; Klironomos, John N
2014-04-01
Soil factors and host plant identity can both affect the growth and functioning of mycorrhizal fungi. Both components change during primary succession, but it is unknown if their relative importance to mycorrhizas also changes. This research tested how soil type and host plant differences among primary successional stages determine the growth and plant effects of arbuscular mycorrhizal (AM) fungal communities. Mycorrhizal fungal community, plant identity, and soil conditions were manipulated among three stages of a lacustrine sand dune successional series in a fully factorial greenhouse experiment. Late succession AM fungi produced more arbuscules and soil hyphae when grown in late succession soils, although the community was from the same narrow phylogenetic group as those in intermediate succession. AM fungal growth did not differ between host species, and plant growth was similarly unaffected by different AM fungal communities. These results indicate that though ecological filtering and/or adaptation of AM fungi occurs during this primary dune succession, it more strongly reflects matching between fungi and soils, rather than interactions between fungi and host plants. Thus, AM fungal performance during this succession may not depend directly on the sequence of plant community succession.
Forest species diversity reduces disease risk in a generalist plant pathogen invasion
Haas, Sarah E.; Hooten, Mevin B.; Rizzo, David M.; Meentemeyer, Ross K.
2011-01-01
Empirical evidence suggests that biodiversity loss can increase disease transmission, yet our understanding of the 'diversity-disease hypothesis' for generalist pathogens in natural ecosystems is limited. We used a landscape epidemiological approach to examine two scenarios regarding diversity effects on the emerging plant pathogen Phytophthora ramorum across a broad, heterogeneous ecoregion: (1) an amplification effect exists where disease risk is greater in areas with higher plant diversity due to the pathogen's wide host range, or (2) a dilution effect where risk is reduced with increasing diversity due to lower competency of alternative hosts. We found evidence for pathogen dilution, whereby disease risk was lower in sites with higher species diversity, after accounting for potentially confounding effects of host density and landscape heterogeneity. Our results suggest that although nearly all plants in the ecosystem are hosts, alternative hosts may dilute disease transmission by competent hosts, thereby buffering forest health from infectious disease.
Hewezi, Tarek
2015-10-01
Plant-parasitic cyst and root-knot nematodes synthesize and secrete a suite of effector proteins into infected host cells and tissues. These effectors are the major virulence determinants mediating the transformation of normal root cells into specialized feeding structures. Compelling evidence indicates that these effectors directly hijack or manipulate refined host physiological processes to promote the successful parasitism of host plants. Here, we provide an update on recent progress in elucidating the molecular functions of nematode effectors. In particular, we emphasize how nematode effectors modify plant cell wall structure, mimic the activity of host proteins, alter auxin signaling, and subvert defense signaling and immune responses. In addition, we discuss the emerging evidence suggesting that nematode effectors target and recruit various components of host posttranslational machinery in order to perturb the host signaling networks required for immunity and to regulate their own activity and subcellular localization. © 2015 American Society of Plant Biologists. All Rights Reserved.
Odour maps in the brain of butterflies with divergent host-plant preferences.
Carlsson, Mikael A; Bisch-Knaden, Sonja; Schäpers, Alexander; Mozuraitis, Raimondas; Hansson, Bill S; Janz, Niklas
2011-01-01
Butterflies are believed to use mainly visual cues when searching for food and oviposition sites despite that their olfactory system is morphologically similar to their nocturnal relatives, the moths. The olfactory ability in butterflies has, however, not been thoroughly investigated. Therefore, we performed the first study of odour representation in the primary olfactory centre, the antennal lobes, of butterflies. Host plant range is highly variable within the butterfly family Nymphalidae, with extreme specialists and wide generalists found even among closely related species. Here we measured odour evoked Ca(2+) activity in the antennal lobes of two nymphalid species with diverging host plant preferences, the specialist Aglais urticae and the generalist Polygonia c-album. The butterflies responded with stimulus-specific combinations of activated glomeruli to single plant-related compounds and to extracts of host and non-host plants. In general, responses were similar between the species. However, the specialist A. urticae responded more specifically to its preferred host plant, stinging nettle, than P. c-album. In addition, we found a species-specific difference both in correlation between responses to two common green leaf volatiles and the sensitivity to these compounds. Our results indicate that these butterflies have the ability to detect and to discriminate between different plant-related odorants.
Odour Maps in the Brain of Butterflies with Divergent Host-Plant Preferences
Schäpers, Alexander; Mozuraitis, Raimondas; Hansson, Bill S.; Janz, Niklas
2011-01-01
Butterflies are believed to use mainly visual cues when searching for food and oviposition sites despite that their olfactory system is morphologically similar to their nocturnal relatives, the moths. The olfactory ability in butterflies has, however, not been thoroughly investigated. Therefore, we performed the first study of odour representation in the primary olfactory centre, the antennal lobes, of butterflies. Host plant range is highly variable within the butterfly family Nymphalidae, with extreme specialists and wide generalists found even among closely related species. Here we measured odour evoked Ca2+ activity in the antennal lobes of two nymphalid species with diverging host plant preferences, the specialist Aglais urticae and the generalist Polygonia c-album. The butterflies responded with stimulus-specific combinations of activated glomeruli to single plant-related compounds and to extracts of host and non-host plants. In general, responses were similar between the species. However, the specialist A. urticae responded more specifically to its preferred host plant, stinging nettle, than P. c-album. In addition, we found a species-specific difference both in correlation between responses to two common green leaf volatiles and the sensitivity to these compounds. Our results indicate that these butterflies have the ability to detect and to discriminate between different plant-related odorants. PMID:21901154
Infection of non-host model plant species with the narrow-host-range Cacao swollen shoot virus.
Friscina, Arianna; Chiappetta, Laura; Jacquemond, Mireille; Tepfer, Mark
2017-02-01
Cacao swollen shoot virus (CSSV) is a major pathogen of cacao (Theobroma cacao) in Africa, and long-standing efforts to limit its spread by the culling of infected trees have had very limited success. CSSV is a particularly difficult virus to study, as it has a very narrow host range, limited to several tropical tree species. Furthermore, the virus is not mechanically transmissible, and its insect vector can only be used with difficulty. Thus, the only efficient means to infect cacao plants that have been experimentally described so far are by particle bombardment or the agroinoculation of cacao plants with an infectious clone. We have genetically transformed three non-host species with an infectious form of the CSSV genome: two experimental hosts widely used in plant virology (Nicotiana tabacum and N. benthamiana) and the model species Arabidopsis thaliana. In transformed plants of all three species, the CSSV genome was able to replicate, and, in tobacco, CSSV particles could be observed by immunosorbent electron microscopy, demonstrating that the complete virus cycle could be completed in a non-host plant. These results will greatly facilitate the preliminary testing of CSSV control strategies using plants that are easy to raise and to transform genetically. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Ancient class of translocated oomycete effectors targets the host nucleus.
Schornack, Sebastian; van Damme, Mireille; Bozkurt, Tolga O; Cano, Liliana M; Smoker, Matthew; Thines, Marco; Gaulin, Elodie; Kamoun, Sophien; Huitema, Edgar
2010-10-05
Pathogens use specialized secretion systems and targeting signals to translocate effector proteins inside host cells, a process that is essential for promoting disease and parasitism. However, the amino acid sequences that determine host delivery of eukaryotic pathogen effectors remain mostly unknown. The Crinkler (CRN) proteins of oomycete plant pathogens, such as the Irish potato famine organism Phytophthora infestans, are modular proteins with predicted secretion signals and conserved N-terminal sequence motifs. Here, we provide direct evidence that CRN N termini mediate protein transport into plant cells. CRN host translocation requires a conserved motif that is present in all examined plant pathogenic oomycetes, including the phylogenetically divergent species Aphanomyces euteiches that does not form haustoria, specialized infection structures that have been implicated previously in delivery of effectors. Several distinct CRN C termini localized to plant nuclei and, in the case of CRN8, required nuclear accumulation to induce plant cell death. These results reveal a large family of ubiquitous oomycete effector proteins that target the host nucleus. Oomycetes appear to have acquired the ability to translocate effector proteins inside plant cells relatively early in their evolution and before the emergence of haustoria. Finally, this work further implicates the host nucleus as an important cellular compartment where the fate of plant-microbe interactions is determined.
Generalists at the interface: Nematode transmission between wild and domestic ungulates.
Walker, Josephine G; Morgan, Eric R
2014-12-01
Many parasitic nematode species are generalists capable of infecting multiple host species. The complex life cycle of nematodes, involving partial development outside of the host, facilitates transmission of these parasites between host species even when there is no direct contact between hosts. Infective nematode larvae persist in the environment, and where grazing or water sources are shared ingestion of parasite larvae deposited by different host species is likely. In this paper we examine the extent to which nematode parasite species have been observed in sympatric wild and domestic ungulates. First, using existing host-parasite databases, we describe expected overlap of 412 nematode species between 76 wild and 8 domestic ungulate host species. Our results indicate that host-specific parasites make up less than half of the nematode parasites infecting any particular ungulate host species. For wild host species, between 14% (for common warthog) and 76% (for mouflon) of parasitic nematode species are shared with domestic species. For domestic host species, between 42% (for horse) and 77% (for llamas/alpacas) of parasitic nematode species are shared with wild species. We also present an index of liability to describe the risk of cross-boundary parasites to each host species. We then examine specific examples from the literature in which transmission of nematode parasites between domestic and wild ungulates is described. However, there are many limitations in the existing data due to geographical bias and certain host species being studied more frequently than others. Although we demonstrate that many species of parasitic nematode are found in both wild and domestic hosts, little work has been done to demonstrate whether transmission is occurring between species or whether similar strains circulate separately. Additional research on cross-species transmission, including the use of models and of genetic methods to define strains, will provide evidence to answer this question.
Feng, Yi; Wratten, Steve; Sandhu, Harpinder; Keller, Michael
2015-01-01
The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions among habitats.
Sedivy, Claudio; Praz, Christophe J; Müller, Andreas; Widmer, Alex; Dorn, Silvia
2008-10-01
To trace the evolution of host-plant choice in bees of the genus Chelostoma (Megachilidae), we assessed the host plants of 35 Palearctic, North American and Indomalayan species by microscopically analyzing the pollen loads of 634 females and reconstructed their phylogenetic history based on four genes and a morphological dataset, applying both parsimony and Bayesian methods. All species except two were found to be strict pollen specialists at the level of plant family or genus. These oligolectic species together exploit the flowers of eight different plant orders that are distributed among all major angiosperm lineages. Based on ancestral state reconstruction, we found that oligolecty is the ancestral state in Chelostoma and that the two pollen generalists evolved from oligolectic ancestors. The distinct pattern of host broadening in these two polylectic species, the highly conserved floral specializations within the different clades, the exploitation of unrelated hosts with a striking floral similarity as well as a recent report on larval performance on nonhost pollen in two Chelostoma species clearly suggest that floral host choice is physiologically or neurologically constrained in bees of the genus Chelostoma. Based on this finding, we propose a new hypothesis on the evolution of host range in bees.
USDA-ARS?s Scientific Manuscript database
MEDHOST,Version 2.0 is the second revision of:"MEDHOST: An encyclopedic bibliography of the host plants of the Mediterranean fruit fly,Ceratitis capitata(Wiedemann),Version 1.0," which was released in 1998 as a Windows-based executable database and listed all plant species reported as hosts of Medit...
USDA-ARS?s Scientific Manuscript database
In the absence of pheromone attractants, host-plant volatiles offer the most likely means of improving capture levels of Asian citrus psyllid (ACP) with sticky cards and other types of visual traps. However, developing scent lures that can compete with the attractiveness of actual host-plants, espe...
Plant-bacterial pathogen interactions mediated by type III effectors.
Feng, Feng; Zhou, Jian-Min
2012-08-01
Effectors secreted by the bacterial type III system play a central role in the interaction between Gram-negative bacterial pathogens and their host plants. Recent advances in the effector studies have helped cementing several key concepts concerning bacterial pathogenesis, plant immunity, and plant-pathogen co-evolution. Type III effectors use a variety of biochemical mechanisms to target specific host proteins or DNA for pathogenesis. The identifications of their host targets led to the identification of novel components of plant innate immune system. Key modules of plant immune signaling pathways such as immune receptor complexes and MAPK cascades have emerged as a major battle ground for host-pathogen adaptation. These modules are attacked by multiple type III effectors, and some components of these modules have evolved to actively sense the effectors and trigger immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Buono, Lorenza; López-Villavicencio, Manuela; Shykoff, Jacqui A.; Snirc, Alodie; Giraud, Tatiana
2014-01-01
The level of parasite virulence, i.e., the decrease in host's fitness due to a pathogen, is expected to depend on several parameters, such as the type of the disease (e.g., castrating or host-killing) and the prevalence of multiple infections. Although these parameters have been extensively studied theoretically, few empirical data are available to validate theoretical predictions. Using the anther smut castrating disease on Silene latifolia caused by Microbotryum lychnidis-dioicae, we studied the dynamics of multiple infections and of different components of virulence (host death, non-recovery and percentage of castrated stems) during the entire lifespan of the host in an experimental population. We monitored the number of fungal genotypes within plants and their relatedness across five years, using microsatellite markers, as well as the rates of recovery and host death in the population. The mean relatedness among genotypes within plants remained at a high level throughout the entire host lifespan despite the dynamics of the disease, with recurrent new infections. Recovery was lower for plants with multiple infections compared to plants infected by a single genotype. As expected for castrating parasites, M. lychnidis-dioicae did not increase host mortality. Mortality varied across years but was generally lower for plants that had been diseased the preceding year. This is one of the few studies to have empirically verified theoretical expectations for castrating parasites, and to show particularly i) that castrated hosts live longer, suggesting that parasites can redirect resources normally used in reproduction to increase host lifespan, lengthening their transmission phase, and ii) that multiple infections increase virulence, here in terms of non-recovery and host castration. PMID:24892951
Competition between feeding guilds on cotton plants is species specific and likely plant-mediated.
USDA-ARS?s Scientific Manuscript database
Interspecific competition among herbivorous insects is often mediated by a common host plant. Changes in the common host plant induced by one herbivore species may make the plant less preferred or nutritious to another herbivore. We suggest that these interactions can be quite specific. We examine...
Dutta, Bhabesh; Gitaitis, Ronald; Smith, Samuel; Langston, David
2014-01-01
The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea) to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean) and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1×106 colony forming units (CFUs)/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion). Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO) assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating), respectively and they were not significantly different (P = 0.67). The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating) and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03). None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be colonized by compatible/incompatible/null-interacting bacteria to higher populations; however, the level of colonization differed significantly depending on the type of bacterial species used. PMID:24936863
Cellular and Molecular Interactions of Rhabdoviruses with their Insect and Plant Hosts
USDA-ARS?s Scientific Manuscript database
The rhabdoviruses form a large family (Rhabdoviridae) whose host ranges include humans, other vertebrates, invertebrates, and plants. There are about 75 plant-infecting rhabdoviruses described, several of which are economically important pathogens that are persistently transmitted to their plant ho...
Eshraghi, Aria; Dixon, Shandee D; Tamilselvam, Batcha; Kim, Emily Jin-Kyung; Gargi, Amandeep; Kulik, Julia C; Damoiseaux, Robert; Blanke, Steven R; Bradley, Kenneth A
2014-07-01
Intracellular acting protein exotoxins produced by bacteria and plants are important molecular determinants that drive numerous human diseases. A subset of these toxins, the cytolethal distending toxins (CDTs), are encoded by several Gram-negative pathogens and have been proposed to enhance virulence by allowing evasion of the immune system. CDTs are trafficked in a retrograde manner from the cell surface through the Golgi apparatus and into the endoplasmic reticulum (ER) before ultimately reaching the host cell nucleus. However, the mechanism by which CDTs exit the ER is not known. Here we show that three central components of the host ER associated degradation (ERAD) machinery, Derlin-2 (Derl2), the E3 ubiquitin-protein ligase Hrd1, and the AAA ATPase p97, are required for intoxication by some CDTs. Complementation of Derl2-deficient cells with Derl2:Derl1 chimeras identified two previously uncharacterized functional domains in Derl2, the N-terminal 88 amino acids and the second ER-luminal loop, as required for intoxication by the CDT encoded by Haemophilus ducreyi (Hd-CDT). In contrast, two motifs required for Derlin-dependent retrotranslocation of ERAD substrates, a conserved WR motif and an SHP box that mediates interaction with the AAA ATPase p97, were found to be dispensable for Hd-CDT intoxication. Interestingly, this previously undescribed mechanism is shared with the plant toxin ricin. These data reveal a requirement for multiple components of the ERAD pathway for CDT intoxication and provide insight into a Derl2-dependent pathway exploited by retrograde trafficking toxins.
Eshraghi, Aria; Dixon, Shandee D.; Tamilselvam, Batcha; Kim, Emily Jin-Kyung; Gargi, Amandeep; Kulik, Julia C.; Damoiseaux, Robert; Blanke, Steven R.; Bradley, Kenneth A.
2014-01-01
Intracellular acting protein exotoxins produced by bacteria and plants are important molecular determinants that drive numerous human diseases. A subset of these toxins, the cytolethal distending toxins (CDTs), are encoded by several Gram-negative pathogens and have been proposed to enhance virulence by allowing evasion of the immune system. CDTs are trafficked in a retrograde manner from the cell surface through the Golgi apparatus and into the endoplasmic reticulum (ER) before ultimately reaching the host cell nucleus. However, the mechanism by which CDTs exit the ER is not known. Here we show that three central components of the host ER associated degradation (ERAD) machinery, Derlin-2 (Derl2), the E3 ubiquitin-protein ligase Hrd1, and the AAA ATPase p97, are required for intoxication by some CDTs. Complementation of Derl2-deficient cells with Derl2:Derl1 chimeras identified two previously uncharacterized functional domains in Derl2, the N-terminal 88 amino acids and the second ER-luminal loop, as required for intoxication by the CDT encoded by Haemophilus ducreyi (Hd-CDT). In contrast, two motifs required for Derlin-dependent retrotranslocation of ERAD substrates, a conserved WR motif and an SHP box that mediates interaction with the AAA ATPase p97, were found to be dispensable for Hd-CDT intoxication. Interestingly, this previously undescribed mechanism is shared with the plant toxin ricin. These data reveal a requirement for multiple components of the ERAD pathway for CDT intoxication and provide insight into a Derl2-dependent pathway exploited by retrograde trafficking toxins. PMID:25078082
Poot-Pech, M A; Ruiz-Sánchez, E; Ballina-Gómez, H S; Gamboa-Angulo, M M; Reyes-Ramírez, A
2016-08-01
The Central American locust (CAL) Schistocerca piceifrons piceifrons Walker is one of the most harmful plant pests in the Yucatan Peninsula, where an important gregarious zone is located. The olfactory response and host plant acceptance by the CAL have not been studied in detail thus far. In this work, the olfactory response of the CAL to odor of various plant species was evaluated using an olfactometer test system. In addition, the host plant acceptance was assessed by the consumption of leaf area. Results showed that the CAL was highly attracted to odor of Pisonia aculeata. Evaluation of host plant acceptance showed that the CAL fed on Leucaena glauca and Waltheria americana, but not on P. aculeata or Guazuma ulmifolia. Analysis of leaf thickness, and leaf content of nitrogen (N) and carbon (C) showed that the CAL was attracted to plant species with low leaf C content.
Leaf bacterial diversity mediates plant diversity and ecosystem function relationships.
Laforest-Lapointe, Isabelle; Paquette, Alain; Messier, Christian; Kembel, Steven W
2017-06-01
Research on biodiversity and ecosystem functioning has demonstrated links between plant diversity and ecosystem functions such as productivity. At other trophic levels, the plant microbiome has been shown to influence host plant fitness and function, and host-associated microbes have been proposed to influence ecosystem function through their role in defining the extended phenotype of host organisms However, the importance of the plant microbiome for ecosystem function has not been quantified in the context of the known importance of plant diversity and traits. Here, using a tree biodiversity-ecosystem functioning experiment, we provide strong support for the hypothesis that leaf bacterial diversity is positively linked to ecosystem productivity, even after accounting for the role of plant diversity. Our results also show that host species identity, functional identity and functional diversity are the main determinants of leaf bacterial community structure and diversity. Our study provides evidence of a positive correlation between plant-associated microbial diversity and terrestrial ecosystem productivity, and a new mechanism by which models of biodiversity-ecosystem functioning relationships can be improved.
Host-Plant Selectivity of Rhizobacteria in a Crop/Weed Model System
Zeller, Simon L.; Brandl, Helmut; Schmid, Bernhard
2007-01-01
Belowground microorganisms are known to influence plants' performance by altering the soil environment. Plant pathogens such as cyanide-producing strains of the rhizobacterium Pseudomonas may show strong host-plant selectivity. We analyzed interactions between different host plants and Pseudomonas strains and tested if these can be linked to the cyanide sensitivity of host plants, the cyanide production of bacterial strains or the plant identity from which strains had been isolated. Eight strains (four cyanide producing) were isolated from roots of four weed species and then re-inoculated on the four weed and two additional crop species. Bacterial strain composition varied strongly among the four weed species. Although all six plant species showed different reductions in root growth when cyanide was artificially applied to seedlings, they were generally not negatively affected by inoculation with cyanide-producing bacterial strains. We found a highly significant plant species x bacterial strain interaction. Partitioning this interaction into contrasts showed that it was entirely due to a strongly negative effect of a bacterial strain (Pseudomonas kilonensis/brassicacearum, isolated from Galium mollugo) on Echinochloa crus-galli. This exotic weed may not have become adapted to the bacterial strain isolated from a native weed. Our findings suggest that host-specific rhizobacteria hold some promise as biological weed-control agents. PMID:17786217
2017-01-01
Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M. persicae-host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. PMID:28100451
Yan, Hui; Xie, Jian Bo; Ji, Zhao Jun; Yuan, Na; Tian, Chang Fu; Ji, Shou Kun; Wu, Zhong Yu; Zhong, Liang; Chen, Wen Xin; Du, Zheng Lin; Wang, En Tao; Chen, Wen Feng
2017-01-01
Mesorhizobium species are the main microsymbionts associated with the medicinal or sand-fixation plants Astragalus membranaceus and Caragana intermedia (AC) in temperate regions of China, while all the Mesorhizobium strains isolated from each of these plants could nodulate both of them. However, Rhizobium yanglingense strain CCBAU01603 could nodulate AC plants and it's a high efficiency symbiotic and competitive strain with Caragana . Therefore, the common features shared by these symbiotic rhizobia in genera of Mesorhizobium and Rhizobium still remained undiscovered. In order to study the genomic background influencing the host preference of these AC symbiotic strains, the whole genomes of two ( M. silamurunense CCBAU01550, M. silamurunense CCBAU45272) and five representative strains ( M. septentrionale CCBAU01583, M. amorphae CCBAU01570, M. caraganae CCBAU01502, M. temperatum CCBAU01399, and R. yanglingense CCBAU01603) originally isolated from AC plants were sequenced, respectively. As results, type III secretion systems (T3SS) of AC rhizobia evolved in an irregular pattern, while an evolutionarily specific region including nodE, nodO , T1SS, and a hydrogenase system was detected to be conserved in all these AC rhizobia. Moreover, nodO was verified to be prevalently distributed in other AC rhizobia and was presumed as a factor affecting the nodule formation process. In conclusion, this research interpreted the multifactorial features of the AC rhizobia that may be associated with their host specificity at cross-nodulation group, including nodE, nodZ , T1SS as the possible main determinants; and nodO , hydrogenase system, and T3SS as factors regulating the bacteroid formation or nitrogen fixation efficiency.
Tasset, Céline; Bernoux, Maud; Jauneau, Alain; Pouzet, Cécile; Brière, Christian; Kieffer-Jacquinod, Sylvie; Rivas, Susana; Marco, Yves; Deslandes, Laurent
2010-11-18
Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as "guards". The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity.
Same host-plant, different sterols: variation in sterol metabolism in an insect herbivore community.
Janson, Eric M; Grebenok, Robert J; Behmer, Spencer T; Abbot, Patrick
2009-11-01
Insects lack the ability to synthesize sterols de novo, which are required as cell membrane inserts and as precursors for steroid hormones. Herbivorous insects typically utilize cholesterol as their primary sterol. However, plants rarely contain cholesterol, and herbivorous insects must, therefore, produce cholesterol by metabolizing plant sterols. Previous studies have shown that insects generally display diversity in phytosterol metabolism. Despite the biological importance of sterols, there has been no investigation of their metabolism in a naturally occurring herbivorous insect community. Therefore, we determined the neutral sterol profile of Solidago altissima L., six taxonomically and ecologically diverse herbivorous insect associates, and the fungal symbiont of one herbivore. Our results demonstrated that S. altissima contained Delta(7)-sterols (spinasterol, 22-dihydrospinasterol, avenasterol, and 24-epifungisterol), and that 85% of the sterol pool existed in a conjugated form. Despite feeding on a shared host plant, we observed significant variation among herbivores in terms of their qualitative tissue sterol profiles and significant variation in the cholesterol content. Cholesterol was absent in two dipteran gall-formers and present at extremely low levels in a beetle. Cholesterol content was highly variable in three hemipteran phloem feeders; even species of the same genus showed substantial differences in their cholesterol contents. The fungal ectosymbiont of a dipteran gall former contained primarily ergosterol and two ergosterol precursors. The larvae and pupae of the symbiotic gall-former lacked phytosterols, phytosterol metabolites, or cholesterol, instead containing an ergosterol metabolite in addition to unmetabolized ergosterol and erogsterol precursors, thus demonstrating the crucial role that a fungal symbiont plays in their nutritional ecology. These data are discussed in the context of sterol physiology and metabolism in insects, and the potential ecological and evolutionary implications.
Lacroix, Christelle; Seabloom, Eric W.; Borer, Elizabeth T.
2017-01-01
Ecological stoichiometry and resource competition theory both predict that nutrient rates and ratios can alter infectious disease dynamics. Pathogens such as viruses hijack nutrient rich host metabolites to complete multiple steps of their epidemiological cycle. As the synthesis of these molecules requires nitrogen (N) and phosphorus (P), environmental supply rates, and ratios of N and P to hosts can directly limit disease dynamics. Environmental nutrient supplies also may alter virus epidemiology indirectly by changing host phenotype or the dynamics of coinfecting pathogens. We tested whether host nutrient supplies and coinfection control pathogen growth within hosts and transmission to new hosts, either directly or through modifications of plant tissue chemistry (i.e., content and stoichiometric ratios of nutrients), host phenotypic traits, or among-pathogen interactions. We examined two widespread plant viruses (BYDV-PAV and CYDV-RPV) in cultivated oats (Avena sativa) grown along a range of N and of P supply rates. N and P supply rates altered plant tissue chemistry and phenotypic traits; however, environmental nutrient supplies and plant tissue content and ratios of nutrients did not directly alter virus titer. Infection with CYDV-RPV altered plant traits and resulted in thicker plant leaves (i.e., higher leaf mass per area) and there was a positive correlation between CYDV-RPV titer and leaf mass per area. CYDV-RPV titer was reduced by the presence of a competitor, BYDV-PAV, and higher CYDV-RPV titer led to more severe chlorotic symptoms. In our experimental conditions, virus transmission was unaffected by nutrient supply rates, co-infection, plant stoichiometry, or plant traits, although nutrient supply rates have been shown to increase infection and coinfection rates. This work provides a robust test of the role of plant nutrient content and ratios in the dynamics of globally important pathogens and reveals a more complex relationship between within-host virus growth and alterations of plant traits. A deeper understanding of the differential effects of environmental nutrient supplies on virus epidemiology and ecology is particularly relevant given the rapid increase of nutrients flowing into Earth's ecosystems as a result of human activities. PMID:29163408
Repeat-containing protein effectors of plant-associated organisms
Mesarich, Carl H.; Bowen, Joanna K.; Hamiaux, Cyril; Templeton, Matthew D.
2015-01-01
Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms. PMID:26557126
Repeat-containing protein effectors of plant-associated organisms.
Mesarich, Carl H; Bowen, Joanna K; Hamiaux, Cyril; Templeton, Matthew D
2015-01-01
Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.
Imo, Miriam; Maixner, Michael; Johannesen, Jes
2013-04-01
The epidemiology of vector transmitted plant diseases is highly influenced by dispersal and the host-plant range of the vector. Widening the vector's host range may increase transmission potential, whereas specialization may induce specific disease cycles. The process leading to a vector's host shift and its epidemiological outcome is therefore embedded in the frameworks of sympatric evolution vs. immigration of preadapted populations. In this study, we analyse whether a host shift of the stolbur phytoplasma vector, Hyalesthes obsoletus from field bindweed to stinging nettle in its northern distribution range evolved sympatrically or by immigration. The exploitation of stinging nettle has led to outbreaks of the grapevine disease bois noir caused by a stinging nettle-specific phytoplasma strain. Microsatellite data from populations from northern and ancestral ranges provide strong evidence for sympatric host-race evolution in the northern range: Host-plant associated populations were significantly differentiated among syntopic sites (0.054 < F(HT) < 0.098) and constant over 5 years. While gene flow was asymmetric from the old into the predicted new host race, which had significantly reduced genetic diversity, the genetic identity between syntopic host-race populations in the northern range was higher than between these populations and syntopic populations in ancestral ranges, where there was no evidence for genetic host races. Although immigration was detected in the northern field bindweed population, it cannot explain host-race diversification but suggests the introduction of a stinging nettle-specific phytoplasma strain by plant-unspecific vectors. The evolution of host races in the northern range has led to specific vector-based bois noir disease cycles. © 2013 Blackwell Publishing Ltd.
Vickerman, Danel B.; Bromley, Robin E.; Russell, Stephanie A.; Hartman, John R.; Morano, Lisa D.; Stouthamer, Richard
2013-01-01
The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 “non-IHR” isolates, 2 minimally recombinant “intermediate” ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): “almond,” “peach,” and “oak” types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity. PMID:23354698
Nunney, Leonard; Vickerman, Danel B; Bromley, Robin E; Russell, Stephanie A; Hartman, John R; Morano, Lisa D; Stouthamer, Richard
2013-04-01
The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 "non-IHR" isolates, 2 minimally recombinant "intermediate" ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): "almond," "peach," and "oak" types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity.
Alvarenga, Júlio Miguel; Vieira, Cecília Rodrigues; Godinho, Leandro Braga; Campelo, Pedro Henrique; Pitts, James Purser; Colli, Guarino Rinaldi
2017-01-01
Understanding how and why biological communities are organized over space and time is a major challenge and can aid biodiversity conservation in times of global changes. Herein, spatial-temporal variation in the structure of velvet ant communities was examined along a forest-savanna gradient in the Brazilian Cerrado to assess the roles of environmental filters and interspecific interactions upon community assembly. Velvet ants were sampled using 25 arrays of Y-shaped pitfall traps with drift fences for one year along an environmental gradient from cerrado sensu stricto (open canopy, warmer, drier) to cerradão (closed canopy, cooler, moister). Dataloggers installed on each trap recorded microclimate parameters throughout the study period. The effects of spatial distances, microclimate parameters and shared ancestry on species abundances and turnover were assessed with canonical correspondence analysis, generalized dissimilarity modelling and variance components analysis. Velvet ant diversity and abundance were higher in the cerrado sensu stricto and early in the wet season. There was pronounced compositional turnover along the environmental gradient, and temporal variation in richness and abundance was stronger than spatial variation. The dry season blooming of woody plant species fosters host abundance and, subsequently, velvet ant captures. Species were taxonomically clustered along the gradient with Sphaeropthalmina (especially Traumatomutilla spp.) and Pseudomethocina more associated, respectively, with cerrado sensu stricto and cerradão. This suggests a predominant role of environmental filters on community assemble, with physiological tolerances and host preferences being shared among members of the same lineages. Induced environmental changes in Cerrado can impact communities of wasps and their hosts with unpredictable consequences upon ecosystem functioning and services.
Godinho, Leandro Braga; Campelo, Pedro Henrique; Pitts, James Purser; Colli, Guarino Rinaldi
2017-01-01
Understanding how and why biological communities are organized over space and time is a major challenge and can aid biodiversity conservation in times of global changes. Herein, spatial-temporal variation in the structure of velvet ant communities was examined along a forest-savanna gradient in the Brazilian Cerrado to assess the roles of environmental filters and interspecific interactions upon community assembly. Velvet ants were sampled using 25 arrays of Y-shaped pitfall traps with drift fences for one year along an environmental gradient from cerrado sensu stricto (open canopy, warmer, drier) to cerradão (closed canopy, cooler, moister). Dataloggers installed on each trap recorded microclimate parameters throughout the study period. The effects of spatial distances, microclimate parameters and shared ancestry on species abundances and turnover were assessed with canonical correspondence analysis, generalized dissimilarity modelling and variance components analysis. Velvet ant diversity and abundance were higher in the cerrado sensu stricto and early in the wet season. There was pronounced compositional turnover along the environmental gradient, and temporal variation in richness and abundance was stronger than spatial variation. The dry season blooming of woody plant species fosters host abundance and, subsequently, velvet ant captures. Species were taxonomically clustered along the gradient with Sphaeropthalmina (especially Traumatomutilla spp.) and Pseudomethocina more associated, respectively, with cerrado sensu stricto and cerradão. This suggests a predominant role of environmental filters on community assemble, with physiological tolerances and host preferences being shared among members of the same lineages. Induced environmental changes in Cerrado can impact communities of wasps and their hosts with unpredictable consequences upon ecosystem functioning and services. PMID:29077763
Generalists at the interface: Nematode transmission between wild and domestic ungulates
Walker, Josephine G.; Morgan, Eric R.
2014-01-01
Many parasitic nematode species are generalists capable of infecting multiple host species. The complex life cycle of nematodes, involving partial development outside of the host, facilitates transmission of these parasites between host species even when there is no direct contact between hosts. Infective nematode larvae persist in the environment, and where grazing or water sources are shared ingestion of parasite larvae deposited by different host species is likely. In this paper we examine the extent to which nematode parasite species have been observed in sympatric wild and domestic ungulates. First, using existing host–parasite databases, we describe expected overlap of 412 nematode species between 76 wild and 8 domestic ungulate host species. Our results indicate that host-specific parasites make up less than half of the nematode parasites infecting any particular ungulate host species. For wild host species, between 14% (for common warthog) and 76% (for mouflon) of parasitic nematode species are shared with domestic species. For domestic host species, between 42% (for horse) and 77% (for llamas/alpacas) of parasitic nematode species are shared with wild species. We also present an index of liability to describe the risk of cross-boundary parasites to each host species. We then examine specific examples from the literature in which transmission of nematode parasites between domestic and wild ungulates is described. However, there are many limitations in the existing data due to geographical bias and certain host species being studied more frequently than others. Although we demonstrate that many species of parasitic nematode are found in both wild and domestic hosts, little work has been done to demonstrate whether transmission is occurring between species or whether similar strains circulate separately. Additional research on cross-species transmission, including the use of models and of genetic methods to define strains, will provide evidence to answer this question. PMID:25426420
Parasite Removal, but Not Herbivory, Deters Future Parasite Attachment on Tomato
Tjiurutue, Muvari Connie; Palmer-Young, Evan C.; Adler, Lynn S.
2016-01-01
Plants face many antagonistic interactions that occur sequentially. Often, plants employ defense strategies in response to the initial damage that are highly specific and can affect interactions with subsequent antagonists. In addition to herbivores and pathogens, plants face attacks by parasitic plants, but we know little about how prior herbivory compared to prior parasite attachment affects subsequent host interactions. If host plants can respond adaptively to these different damage types, we predict that prior parasitism would have a greater deterrent effect on subsequent parasites than would prior herbivory. To test the effects of prior parasitism and prior herbivory on subsequent parasitic dodder (Cuscuta spp.) preference, we conducted two separate greenhouse studies with tomato hosts (Solanum lycopersicum). In the first experiment, we tested the effects of previous dodder attachment on subsequent dodder preference on tomato hosts using three treatments: control plants that had no previous dodder attachment; dodder-removed plants that had an initial dodder seedling attached, removed and left in the same pot to simulate parasite death; and dodder-continuous plants with an initial dodder seedling that remained attached. In the second experiment, we tested the effects of previous caterpillar damage (Spodoptera exigua) and mechanical damage on future dodder attachment on tomato hosts. Dodder attached most slowly to tomato hosts that had dodder plants previously attached and then removed, compared to control plants or plants with continuous dodder attachment. In contrast, herbivory did not affect subsequent dodder attachment rate. These results indicate that dodder preference depended on the identity and the outcome of the initial attack, suggesting that early-season interactions have the potential for profound impacts on subsequent community dynamics. PMID:27529694
Yang, Haishui; Zang, Yanyan; Yuan, Yongge; Tang, Jianjun; Chen, Xin
2012-04-12
Arbuscular mycorrhizal fungi (AMF) can form obligate symbioses with the vast majority of land plants, and AMF distribution patterns have received increasing attention from researchers. At the local scale, the distribution of AMF is well documented. Studies at large scales, however, are limited because intensive sampling is difficult. Here, we used ITS rDNA sequence metadata obtained from public databases to study the distribution of AMF at continental and global scales. We also used these sequence metadata to investigate whether host plant is the main factor that affects the distribution of AMF at large scales. We defined 305 ITS virtual taxa (ITS-VTs) among all sequences of the Glomeromycota by using a comprehensive maximum likelihood phylogenetic analysis. Each host taxonomic order averaged about 53% specific ITS-VTs, and approximately 60% of the ITS-VTs were host specific. Those ITS-VTs with wide host range showed wide geographic distribution. Most ITS-VTs occurred in only one type of host functional group. The distributions of most ITS-VTs were limited across ecosystem, across continent, across biogeographical realm, and across climatic zone. Non-metric multidimensional scaling analysis (NMDS) showed that AMF community composition differed among functional groups of hosts, and among ecosystem, continent, biogeographical realm, and climatic zone. The Mantel test showed that AMF community composition was significantly correlated with plant community composition among ecosystem, among continent, among biogeographical realm, and among climatic zone. The structural equation modeling (SEM) showed that the effects of ecosystem, continent, biogeographical realm, and climatic zone were mainly indirect on AMF distribution, but plant had strongly direct effects on AMF. The distribution of AMF as indicated by ITS rDNA sequences showed a pattern of high endemism at large scales. This pattern indicates high specificity of AMF for host at different scales (plant taxonomic order and functional group) and high selectivity from host plants for AMF. The effects of ecosystemic, biogeographical, continental and climatic factors on AMF distribution might be mediated by host plants.
Coleman-Derr, Devin; Desgarennes, Damaris; Fonseca-Garcia, Citlali; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; North, Gretchen; Visel, Axel; Partida-Martinez, Laila P; Tringe, Susannah G
2016-01-01
Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions. No claim to US Government works. New Phytologist © 2015 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman-Derr, Devin; Desgarennes, Damaris; Fonseca-Garcia, Citlali
Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves,more » through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions.« less
Coleman-Derr, Devin; Desgarennes, Damaris; Fonseca-Garcia, Citlali; ...
2015-10-15
Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves,more » through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions.« less
An analysis of the coexistence of two host species with a shared pathogen.
Chen, Zhi-Min; Price, W G
2008-06-01
Population dynamics of two-host species under direct transmission of an infectious disease or a pathogen is studied based on the Holt-Pickering mathematical model, which accounts for the influence of the pathogen on the population of the two-host species. Through rigorous analysis and a numerical scheme of study, circumstances are specified under which the shared pathogen leads to the coexistence of the two-host species in either a persistent or periodic form. This study shows the importance of intrinsic growth rates or the differences between birth rates and death rates of the two host susceptible in controlling these circumstances. It is also demonstrated that the periodicity may arise when the positive intrinsic growth rates are very small, but the periodicity is very weak which may not be observed in an empirical investigation.
Doorenweerd, Camiel; van Nieukerken, Erik J.; Menken, Steph B. J.
2015-01-01
Background Host association patterns in Ectoedemia (Lepidoptera: Nepticulidae) are also encountered in other insect groups with intimate plant relationships, including a high degree of monophagy, a preference for ecologically dominant plant families (e.g. Fagaceae, Rosaceae, Salicaceae, and Betulaceae) and a tendency for related insect species to feed on related host plant species. The evolutionary processes underlying these patterns are only partly understood, we therefore assessed the role of allopatry and host plant family shifts in speciation within Ectoedemia. Methodology Six nuclear and mitochondrial DNA markers with a total aligned length of 3692 base pairs were used to infer phylogenetic relationships among 92 species belonging to the subgenus Ectoedemia of the genus Ectoedemia, representing a thorough taxon sampling with a global coverage. The results support monophyletic species groups that are congruent with published findings based on morphology. We used the obtained phylogeny to explore host plant family association and geographical distribution to investigate if host shifts and allopatry have been instrumental in the speciation of these leafmining insects. Significance We found that, even though most species within species groups commonly feed on plants from one family, shifts to a distantly related host family have occasionally occurred throughout the phylogeny and such shifts are most commonly observed towards Betulaceae. The largest radiations have occurred within species groups that feed on Fagaceae, Rosaceae, and Salicaceae. Most species are restricted to one of the seven global biogeographic regions, but within species groups representatives are commonly found in different biogeographic regions. Although we find general patterns with regard to host use and biogeography, there are differences between clades that suggest that different drivers of speciation, and perhaps drivers that we did not examine, have shaped diversity patterns in different clades. PMID:25785630
Congruence and diversity of butterfly-host plant associations at higher taxonomic levels.
Ferrer-Paris, José R; Sánchez-Mercado, Ada; Viloria, Ángel L; Donaldson, John
2013-01-01
We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1) is there a general correlation between host diversity and butterfly species richness?, (2) has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3) what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea) and 1,193 genera (66.3%). The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp.) from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae), and Satyrinae (42.6% of all Nymphalidae). We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test) was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids), but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages.
Effects of host-plant population size and plant sex on a specialist leaf-miner
NASA Astrophysics Data System (ADS)
Bañuelos, María-José; Kollmann, Johannes
2011-03-01
Animal population density has been related to resource patch size through various hypotheses such as those derived from island biogeography and resource concentration theory. This theoretical framework can be also applied to plant-herbivore interactions, and it can be modified by the sex of the host-plant, and density-dependent relationships. Leaf-miners are specialised herbivores that leave distinct traces on infested leaves in the form of egg scars, mines, signs of predation and emergence holes. This allows the life cycle of the insect to be reconstructed and the success at the different stages to be estimated. The main stages of the leaf-miner Phytomyza ilicis were recorded in eleven populations of the evergreen host Ilex aquifolium in Denmark. Survival rates were calculated and related to population size, sex of the host plant, and egg and mine densities. Host population size was negatively related to leaf-miner prevalence, with larger egg and mine densities in small populations. Percentage of eggs hatching and developing into mines, and percentage of adult flies emerging from mines also differed among host populations, but were not related to population size or host cover. Feeding punctures left by adults were marginally more frequent on male plants, whereas egg scars and mines were more common on females. Overall survival rate from egg stage to adult emergence was higher on female plants. Egg density was negatively correlated with hatching, while mine density was positively correlated with emergence of the larvae. The inverse effects of host population size were not in line with predictions based on island biogeography and resource concentration theory. We discuss how a thorough knowledge of the immigration behaviour of this fly might help to understand the patterns found.
Congruence and Diversity of Butterfly-Host Plant Associations at Higher Taxonomic Levels
Ferrer-Paris, José R.; Sánchez-Mercado, Ada; Viloria, Ángel L.; Donaldson, John
2013-01-01
We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1) is there a general correlation between host diversity and butterfly species richness?, (2) has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3) what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea) and 1,193 genera (66.3%). The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp.) from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae), and Satyrinae (42.6% of all Nymphalidae). We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test) was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids), but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages. PMID:23717448
Buteler, Micaela; Peterson, Robert K D; Hofland, Megan L; Weaver, David K
2015-12-01
This study investigated the dynamics of parasitism, host plant resistance, pathogens, and predation on the demography of wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), developing in susceptible (hollow stem) and resistant (solid stem) wheat hosts. This study is also the first to investigate the prevalence and impact of cannibalism on wheat stem sawfly mortality. Wheat stem sawflies were sampled in two commercial wheat fields over 4 yr from the egg stage through adult emergence, and multiple decrement life tables were constructed and analyzed. Cannibalism, host plant resistance, or unknown factors were the most prevalent factors causing egg mortality. Summer mortality of prediapause larvae ranged from 28 to 84%, mainly due to parasitism by Bracon cephi (Gahan) and Bracon lissogaster Muesebeck, cannibalism, and host plant resistance. Winter mortality ranged from 6 to 54% of the overwintering larvae, mainly due to unknown factors or pathogens. Cannibalism is a major cause of irreplaceable mortality because it is absolute, with only a single survivor in every multiple infested stem. Subsequent to obligate cannibalism, mortality of feeding larvae due to host plant resistance was lower in hollow stem wheat than in solid stem wheat. Mortality from host plant resistance was largely irreplaceable. Irreplaceable mortality due to parasitoids was greater in hollow stem wheat than in solid stem wheat. Host plant resistance due to stem solidness and parasitism in hollow stems cause substantial mortality in populations of actively feeding larvae responsible for all crop losses. Therefore, enhancing these mortality factors is vital to effective integrated pest management of wheat stem sawfly. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Shaw, Liam; Ribeiro, Andre L R; Levine, Adam P; Pontikos, Nikolas; Balloux, Francois; Segal, Anthony W; Roberts, Adam P; Smith, Andrew M
2017-09-12
The human microbiome is affected by multiple factors, including the environment and host genetics. In this study, we analyzed the salivary microbiomes of an extended family of Ashkenazi Jewish individuals living in several cities and investigated associations with both shared household and host genetic similarities. We found that environmental effects dominated over genetic effects. While there was weak evidence of geographical structuring at the level of cities, we observed a large and significant effect of shared household on microbiome composition, supporting the role of the immediate shared environment in dictating the presence or absence of taxa. This effect was also seen when including adults who had grown up in the same household but moved out prior to the time of sampling, suggesting that the establishment of the salivary microbiome earlier in life may affect its long-term composition. We found weak associations between host genetic relatedness and microbiome dissimilarity when using family pedigrees as proxies for genetic similarity. However, this association disappeared when using more-accurate measures of kinship based on genome-wide genetic markers, indicating that the environment rather than host genetics is the dominant factor affecting the composition of the salivary microbiome in closely related individuals. Our results support the concept that there is a consistent core microbiome conserved across global scales but that small-scale effects due to a shared living environment significantly affect microbial community composition. IMPORTANCE Previous research shows that the salivary microbiomes of relatives are more similar than those of nonrelatives, but it remains difficult to distinguish the effects of relatedness and shared household environment. Furthermore, pedigree measures may not accurately measure host genetic similarity. In this study, we include genetic relatedness based on genome-wide single nucleotide polymorphisms (SNPs) (rather than pedigree measures) and shared environment in the same analysis. We quantify the relative importance of these factors by studying the salivary microbiomes in members of a large extended Ashkenazi Jewish family living in different locations. We find that host genetics plays no significant role and that the dominant factor is the shared environment at the household level. We also find that this effect appears to persist in individuals who have moved out of the parental household, suggesting that aspects of salivary microbiome composition established during upbringing can persist over a time scale of years. Copyright © 2017 Shaw et al.
Host specificity in parasitic plants-perspectives from mistletoes.
Okubamichael, Desale Y; Griffiths, Megan E; Ward, David
2016-01-01
Host specificity has been investigated for centuries in mistletoes, viruses, insects, parasitoids, lice and flukes, yet it is poorly understood. Reviewing the numerous studies on mistletoe host specificity may contribute to our understanding of these plants and put into context the dynamics at work in root parasitic plants and animal parasites. The mechanisms that determine host specificity in mistletoes are not as well documented and understood as those in other groups of parasites. To rectify this, we synthesized the available literature and analyzed data compiled from herbaria, published monographs and our own field studies in South Africa. As for other groups of parasites, multiple factors influence mistletoe host specificity. Initially, pollination affects gene flow. Subsequently, seed dispersal vectors (birds and marsupials), host abundance and compatibility (genetic, morphological, physiological and chemical), history and environmental conditions affect the interaction of mistletoes and their hosts and determine host specificity. Mistletoe-host network analyses and a geographic mosaic approach combined with long-term monitoring of reciprocal transplant experiments, genetic analyses of confined mistletoe populations and comparative phylogenetic studies could provide further insights to our understanding of host specificity. Some of these approaches have been used to study animal-plant interactions and could be adopted to test and evaluate host specificity in mistletoes at local and larger geographic scales. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.
Implications of bioactive solute transfer from hosts to parasitic plants.
Smith, Jason D; Mescher, Mark C; De Moraes, Consuelo M
2013-08-01
Parasitic plants--which make their living by extracting nutrients and other resources from other plants--are important components of many natural ecosystems; and some parasitic species are also devastating agricultural pests. To date, most research on plant parasitism has focused on nutrient transfer from host to parasite and the impacts of parasites on host plants. Far less work has addressed potential effects of the translocation of bioactive non-nutrient solutes-such as phytohormones, secondary metabolites, RNAs, and proteins-on the development and physiology of parasitic plants and on their subsequent interactions with other organisms such as insect herbivores. A growing number of recent studies document the transfer of such molecules from hosts to parasites and suggest that they may have significant impacts on parasite physiology and ecology. We review this literature and discuss potential implications for management and priorities for future research. Copyright © 2013 Elsevier Ltd. All rights reserved.
Luijckx, Pepijn; Duneau, David; Andras, Jason P; Ebert, Dieter
2014-02-01
A parasite's host range can have important consequences for ecological and evolutionary processes but can be difficult to infer. Successful infection depends on the outcome of multiple steps and only some steps of the infection process may be critical in determining a parasites host range. To test this hypothesis, we investigated the host range of the bacterium Pasteuria ramosa, a Daphnia parasite, and determined the parasites success in different stages of the infection process. Multiple genotypes of Daphnia pulex, Daphnia longispina and Daphnia magna were tested with four Pasteuria genotypes using infection trials and an assay that determines the ability of the parasite to attach to the hosts esophagus. We find that attachment is not specific to host species but is specific to host genotype. This may suggest that alleles on the locus controlling attachment are shared among different host species that diverged 100 million year. However, in our trials, Pasteuria was never able to reproduce in nonnative host species, suggesting that Pasteuria infecting different host species are different varieties, each with a narrow host range. Our approach highlights the explanatory power of dissecting the steps of the infection process and resolves potentially conflicting reports on parasite host ranges. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
USDA-ARS?s Scientific Manuscript database
Diatraea lineolata and Diatraea saccharalis (Lepidoptera: Crambidae) are moths with stemboring larvae that feed and develop on economically important grasses. This study investigated whether these moths have diverged from a native host plant, corn, onto introduced crop plants including sorghum, suga...
GARCÍA-ROBLEDO, CARLOS; HORVITZ, CAROL C.
2011-01-01
One explanation for the widespread host specialization of insect herbivores is the “Jack of all trades-master of none” principle, which states that genotypes with high performance on one host will perform poorly on other hosts. This principle predicts that cross-host correlation in performance of genotypes will be negative. In this study we experimentally explored cross-host correlations and performance among families in four species (two generalist and two specialist) of leaf beetles (Cephaloleia spp.) that are currently expanding their diets from native to exotic plants. All four species displayed similar responses in body size, developmental rates and mortality rates to experimentally controlled diets. When raised on novel hosts, body size of larvae, pupae and adults were reduced. Development times were longer and larval mortality was higher on novel hosts. Genotype × host plant interactions were not detected for most traits. All significant cross-host correlations were positive. These results indicate very different ecological and evolutionary dynamics than those predicted by the “Jack of all trades-master of none” principle. PMID:22022877
Li, Wei-zheng; Teng, Xiao-hui; Zhang, Hong-fei; Liu, Ting; Wang, Qiong; Guo, Xian-ru
2017-01-01
We tested the behavioral responses of ovipositing females and natal larvae of two sibling species, a generalist Helicoverpa armigera (Hübner) and a specialist Helicoverpa assulta (Guenée), to odor sources emitted from different combinations of six plant species (tobacco, Nicotiana tabacum; hot pepper, Capsicum annuum; tomato, Solanum esculentum; cotton, Gossypium hirsutum; peanut, Arachis hypogaea; maize, Zea mays). Under the conditions of plant materials versus corresponding controls, both stages of both species could find their corresponding host plants. However, H. assulta females and larvae exhibited a supersensitive and an insensitive response, respectively. Under the conditions of tobacco paired with each plant species, H. assulta females exhibited more specialized ovipositional response to tobacco than its sibling. When each plant species were combined with tobacco and tested against tobacco reference, peanut played an opposite role in the two species in their ovipositional responses to tobacco, and cotton can enhance the approaching response of H. armigera larvae when combined with tobacco. It seems that two attractive host plants also can act antagonistically with respect to host selection of the generalist via volatile exchange. Tomato should better be excluded from host list of H. assulta. PMID:28182679
Spoligotype diversity and 5-year trends of bovine tuberculosis in Extremadura, southern Spain.
García-Jiménez, Waldo L; Cortés, María; Benítez-Medina, José M; Hurtado, Inés; Martínez, Remigio; García-Sánchez, Alfredo; Risco, David; Cerrato, Rosario; Sanz, Cristina; Hermoso-de-Mendoza, Miguel; Fernández-Llario, Pedro; Hermoso-de-Mendoza, Javier
2016-12-01
Bovine tuberculosis (bTB) causes significant losses to farming economies worldwide. A better understanding on the epidemiology of this disease and the role that the different hosts develop in the maintenance and spread of bTB is vital to control this zoonotic disease. This study reports the spoligotype diversity and temporal evolution of Mycobacterium tuberculosis Complex (MTBC) isolates obtained from Extremadura (southern Spain). Genotyping data of Mycobacterium bovis (n = 2102) and Mycobacterium caprae (n = 96) isolates from cattle and wildlife species, collected between 2008 and 2012, were used in this study. The isolates resulted clustered into 88 spoligotypes which varied largely in frequency and occurrence in the three hosts. The 20 most frequent patterns represented 91.99 % of the isolates, the spoligotype SB0121 being the clearly predominant and most widely dispersed geographically. The major variety of the spoligotype patterns (78 out of 88) was isolated from the cattle, in fact 50 (56.83 %) of the patterns were found only in this species. Within the spoligotypes shared between the cattle and wildlife species, 17 patterns (1747 isolates) were shared with wild boar and Iberian red deer, 10 patterns (308 isolates) were exclusively shared with wild boar, and only one pattern (two isolates) was shared exclusively with Iberian red deer. The significant number of spoligotypes shared between the three hosts (79.49 %) highlights the components of the multi-host system that allows the bTB maintenance in our study area. The greater percentage of isolates shared by the wild boar and cattle (93.50 %) supports the role of wild boar as main maintenance host for bTB in cattle. These results could be extrapolated to areas with a similar epidemiological scenario and could be helpful for other countries where wild reservoirs represent a handicap for the successful eradication of bTB from livestock.
USDA-ARS?s Scientific Manuscript database
Assessment of host plant specificity is a critical step in the evaluation of classical biological control agents of weeds, which is necessary for avoiding possible damage to nontarget plants. Volatile organic compounds (VOC) emitted by plants likely play an important role in determining which plant...
USDA-ARS?s Scientific Manuscript database
Bactrocera latifrons (Hendel)(Diptera: Tephritidae) infests many solanaceous plant species, some of which are important horticultural crop species. It has also been found to infest a number of cucurbitaceous plant species as well as a few plant species in other plant families. Bactrocera latifrons i...
Species associations among larval helminths in an amphipod intermediate host.
Dezfuli, B S; Giari, L; Poulin, R
2000-10-01
Larval helminths that share the same intermediate host may or may not also share the same definitive hosts. If one or more of these helminth species can manipulate the phenotype of the intermediate host, there can be great advantages or severe costs for other helminths resulting from co-occurring with a manipulator, depending on whether they have the same definitive host or not. Among 2372 specimens of the amphipod Echinogammarus stammeri collected from the river Brenta, northern Italy, there was a positive association between two acanthocephalan species with the same fish definitive hosts, the relatively common Pomphorhynchus laevis and the much less prevalent Acanthocephalus clavula. The number of cystacanths of P. laevis per infected amphipod, which ranged from one to five, did not influence the likelihood that the amphipod would also host A. clavula. A third acanthocephalan species, Polymorphus minutus,which matures in birds, showed no association with either of the two other species. These results show that associations among helminth species in intermediate hosts are not random, and are instead the product of selection favouring certain pathways of transmission.
Towards a new paradigm for species association dynamics
USDA-ARS?s Scientific Manuscript database
Parasite-host and insect-plant research have very divergent traditions despite the fact that many phytophagous insects live parasitically on their host plants. In parasitology it is a traditional assumption that parasites are typically highly specialized. Cospeciation between parasites and hosts is ...
VanWeelden, M T; Wilson, B E; Beuzelin, J M; Reagan, T E; Way, M O
2017-08-01
Oviposition preference and host suitability of the Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae), on bioenergy and conventional cultivars of sugarcane, Saccharum spp., and sorghum, Sorghum spp., were examined in a series of greenhouse experiments. Two energycane cultivars, two sugarcane cultivars, two high-biomass sorghum cultivars, and one sweet sorghum cultivar were assessed at two phenological stages (immature and mature). Mature plants possessed greater availability of dry leaf material compared with immature plants, and all E. loftini eggs were observed exclusively on dry leaves. Oviposition did not vary among host combinations (cultivar by phenological stage); however, eggs per plant and eggs per oviposition event were numerically greater on mature plants than immature plants. In a no-choice experiment, survival from egg to adult did not vary among host combinations, with <2.0% of E. loftini larvae surviving to adulthood. Failed establishment by neonates on plants was 13.4- to 53.9-fold greater than successful establishment across all host combinations. Results from this study suggest that plant physical characteristics continue to play an important role in host selection, but further evaluations will be needed to quantify other characteristics which influence host suitability. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Cui, Songkui; Wada, Syogo; Tobimatsu, Yuki; Takeda, Yuri; Saucet, Simon B; Takano, Toshiyuki; Umezawa, Toshiaki; Shirasu, Ken; Yoshida, Satoko
2018-04-01
Parasitic plants in the family Orobanchaceae are destructive weeds of agriculture worldwide. The haustorium, an essential parasitic organ used by these plants to penetrate host tissues, is induced by host-derived phenolic compounds called haustorium-inducing factors (HIFs). The origin of HIFs remains unknown, although the structures of lignin monomers resemble that of HIFs. Lignin is a natural phenylpropanoid polymer, commonly found in secondary cell walls of vascular plants. We therefore investigated the possibility that HIFs are derived from host lignin. Various lignin-related phenolics, quinones and lignin polymers, together with nonhost and host plants that have different lignin compositions, were tested for their haustorium-inducing activity in two Orobanchaceae species, a facultative parasite, Phtheirospermum japonicum, and an obligate parasite, Striga hermonthica. Lignin-related compounds induced haustoria in P. japonicum and S. hermonthica with different specificities. High concentrations of lignin polymers induced haustorium formation. Treatment with laccase, a lignin degradation enzyme, promoted haustorium formation at low concentrations. The distinct lignin compositions of the host and nonhost plants affected haustorium induction, correlating with the response of the different parasitic plants to specific types of lignin-related compounds. Our study provides valuable insights into the important roles of lignin biosynthesis and degradation in the production of HIFs. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Esquivel, J F; Esquivel, S V
2009-06-01
The cotton fleahopper, Pseudatomoscelis seriatus (Reuter), is an early-season pest of developing cotton in Central Texas and other regions of the Cotton Belt. Cotton fleahopper populations develop on spring weed hosts and move to cotton as weed hosts senesce or if other weed hosts are not readily available. To identify weed hosts that were seasonably available for the cotton fleahopper in Central Texas, blooming weed species were sampled during early-season (17 March-31 May), mid-season (1 June-14 August), late-season (15 August-30 November), and overwintering (1 December-16 March) periods. The leading hosts for cotton fleahopper adults and nymphs were evening primrose (Oenothera speciosa T. Nuttall) and Mexican hat [Ratibida columnifera (T. Nuttall) E. Wooton and P. Standley], respectively, during the early season. During the mid-season, silver-leaf nightshade (Solanum elaeagnifolium A. Cavanilles) was consistently a host for fleahopper nymphs and adults. Woolly croton (Croton capitatus A. Michaux) was a leading host during the late season. Cotton fleahoppers were not collected during the overwintering period. Other suitable hosts were available before previously reported leading hosts became available. Eight previously unreported weed species were documented as temporary hosts. A compendium of reported hosts, which includes >160 plant species representing 35 families, for the cotton fleahopper is provided for future research addressing insect-host plant associations. Leading plant families were Asteraceae, Lamiaceae, and Onagraceae. Results presented here indicate a strong argument for assessing weed species diversity and abundance for the control of the cotton fleahopper in the Cotton Belt.
Nagy, Peter D; Pogany, Judit
2010-01-01
The success of RNA viruses as pathogens of plants, animals, and humans depends on their ability to reprogram the host cell metabolism to support the viral infection cycle and to suppress host defense mechanisms. Plus-strand (+)RNA viruses have limited coding potential necessitating that they co-opt an unknown number of host factors to facilitate their replication in host cells. Global genomics and proteomics approaches performed with Tomato bushy stunt virus (TBSV) and yeast (Saccharomyces cerevisiae) as a model host have led to the identification of 250 host factors affecting TBSV RNA replication and recombination or bound to the viral replicase, replication proteins, or the viral RNA. The roles of a dozen host factors involved in various steps of the replication process have been validated in yeast as well as a plant host. Altogether, the large number of host factors identified and the great variety of cellular functions performed by these factors indicate the existence of a truly complex interaction between TBSV and the host cell. This review summarizes the advantages of using a simple plant virus and yeast as a model host to advance our understanding of virus-host interactions at the molecular and cellular levels. The knowledge of host factors gained can potentially be used to inhibit virus replication via gene silencing, expression of dominant negative mutants, or design of specific chemical inhibitors leading to novel specific or broad-range resistance and antiviral tools against (+)RNA plant viruses. Copyright © 2010 Elsevier Inc. All rights reserved.
Saad, Khalid A; Mohamad Roff, M N; Hallett, Rebecca H; Idris, A B
2015-09-03
The sweetpotato whitefly (WF), Bemisia tabaci, is a major pest that damages a wide range of vegetable crops in Malaysia. WF infestation is influenced by a variety of factors, including previous infestation of the host plant by other insect pests. This study investigated the effects of previous infestation of host chilli plants by the green peach aphid (Myzus persicae) on the olfactory behavioural response of B. tabaci, using free-choice bioassay with a Y-tube olfactometer. We analysed volatile organic compounds (VOCs) emitted by non-infested and M. persicae-infested chilli plants using solid-phase microextraction and gas chromatography-mass spectrometry. Our results showed that female WFs preferred non-infested to pre-infested plants. Collection and analysis of volatile compounds emitted by infested plants confirmed that there were significant increases in the production of monoterpenes (cymene; 1,8-cineole), sesquiterpenes (β-cadinene, α-copaene), and methyl salicylate (MeSA) compared to non-infested plants. Our results suggest that host plant infestation by aphids may induce production of secondary metabolites that deter B. tabaci from settling on its host plants. These results provide important information for understanding WF host selection and dispersal among crops, and also for manipulating WF behaviour to improve IPM in chilli.
Alakonya, Amos; Kumar, Ravi; Koenig, Daniel; Kimura, Seisuke; Townsley, Brad; Runo, Steven; Garces, Helena M.; Kang, Julie; Yanez, Andrea; David-Schwartz, Rakefet; Machuka, Jesse; Sinha, Neelima
2012-01-01
Infection of crop species by parasitic plants is a major agricultural hindrance resulting in substantial crop losses worldwide. Parasitic plants establish vascular connections with the host plant via structures termed haustoria, which allow acquisition of water and nutrients, often to the detriment of the infected host. Despite the agricultural impact of parasitic plants, the molecular and developmental processes by which host/parasitic interactions are established are not well understood. Here, we examine the development and subsequent establishment of haustorial connections by the parasite dodder (Cuscuta pentagona) on tobacco (Nicotiana tabacum) plants. Formation of haustoria in dodder is accompanied by upregulation of dodder KNOTTED-like homeobox transcription factors, including SHOOT MERISTEMLESS-like (STM). We demonstrate interspecific silencing of a STM gene in dodder driven by a vascular-specific promoter in transgenic host plants and find that this silencing disrupts dodder growth. The reduced efficacy of dodder infection on STM RNA interference transgenics results from defects in haustorial connection, development, and establishment. Identification of transgene-specific small RNAs in the parasite, coupled with reduced parasite fecundity and increased growth of the infected host, demonstrates the efficacy of interspecific small RNA–mediated silencing of parasite genes. This technology has the potential to be an effective method of biological control of plant parasite infection. PMID:22822208
Alakonya, Amos; Kumar, Ravi; Koenig, Daniel; Kimura, Seisuke; Townsley, Brad; Runo, Steven; Garces, Helena M; Kang, Julie; Yanez, Andrea; David-Schwartz, Rakefet; Machuka, Jesse; Sinha, Neelima
2012-07-01
Infection of crop species by parasitic plants is a major agricultural hindrance resulting in substantial crop losses worldwide. Parasitic plants establish vascular connections with the host plant via structures termed haustoria, which allow acquisition of water and nutrients, often to the detriment of the infected host. Despite the agricultural impact of parasitic plants, the molecular and developmental processes by which host/parasitic interactions are established are not well understood. Here, we examine the development and subsequent establishment of haustorial connections by the parasite dodder (Cuscuta pentagona) on tobacco (Nicotiana tabacum) plants. Formation of haustoria in dodder is accompanied by upregulation of dodder KNOTTED-like homeobox transcription factors, including SHOOT MERISTEMLESS-like (STM). We demonstrate interspecific silencing of a STM gene in dodder driven by a vascular-specific promoter in transgenic host plants and find that this silencing disrupts dodder growth. The reduced efficacy of dodder infection on STM RNA interference transgenics results from defects in haustorial connection, development, and establishment. Identification of transgene-specific small RNAs in the parasite, coupled with reduced parasite fecundity and increased growth of the infected host, demonstrates the efficacy of interspecific small RNA-mediated silencing of parasite genes. This technology has the potential to be an effective method of biological control of plant parasite infection.
Using NextRAD sequencing to infer movement of herbivores among host plants.
Fu, Zhen; Epstein, Brendan; Kelley, Joanna L; Zheng, Qi; Bergland, Alan O; Castillo Carrillo, Carmen I; Jensen, Andrew S; Dahan, Jennifer; Karasev, Alexander V; Snyder, William E
2017-01-01
Herbivores often move among spatially interspersed host plants, tracking high-quality resources through space and time. This dispersal is of particular interest for vectors of plant pathogens. Existing molecular tools to track such movement have yielded important insights, but often provide insufficient genetic resolution to infer spread at finer spatiotemporal scales. Here, we explore the use of Nextera-tagmented reductively-amplified DNA (NextRAD) sequencing to infer movement of a highly-mobile winged insect, the potato psyllid (Bactericera cockerelli), among host plants. The psyllid vectors the pathogen that causes zebra chip disease in potato (Solanum tuberosum), but understanding and managing the spread of this pathogen is limited by uncertainty about the insect's host plant(s) outside of the growing season. We identified 1,978 polymorphic loci among psyllids separated spatiotemporally on potato or in patches of bittersweet nightshade (S. dulcumara), a weedy plant proposed to be the source of potato-colonizing psyllids. A subset of the psyllids on potato exhibited genetic similarity to insects on nightshade, consistent with regular movement between these two host plants. However, a second subset of potato-collected psyllids was genetically distinct from those collected on bittersweet nightshade; this suggests that a currently unrecognized source, i.e., other nightshade patches or a third host-plant species, could be contributing to psyllid populations in potato. Oftentimes, dispersal of vectors of pathogens must be tracked at a fine scale in order to understand, predict, and manage disease spread. We demonstrate that emerging sequencing technologies that detect genome-wide SNPs of a vector can be used to infer such localized movement.
Host Plant Use by the Invasive Halyomorpha halys (Stål) on Woody Ornamental Trees and Shrubs
Bergmann, Erik J.; Venugopal, P. Dilip; Martinson, Holly M.; Raupp, Michael J.; Shrewsbury, Paula M.
2016-01-01
The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is an invasive plant-feeding insect native to eastern Asia. This herbivore is highly polyphagous, feeding on and damaging diverse plants, including field crops, vegetables, tree fruits, and ornamentals. Woody ornamental plants provide early- and late-season resources for adults emerging from and returning to overwintering sites, as well as feeding and breeding sites for H. halys throughout the growing season. In this study, we quantify the use of diverse plants by H. halys in two commercial nurseries in Maryland, recording data on the abundance of egg masses, early and late instar nymphs, and adults over a three-year study period. Our specific goals were to provide a quantitative comparison of the use of diverse plant species and cultivated varieties, identify non-hosts that could be used to create landscapes refractory to H. halys, and determine whether the use of plants varied across life stages of H. halys or the taxonomic status of plants. We found broad use of diverse plants in this study, identifying 88 host plants used by all life stages of H. halys. We also highlight the 43 plant taxa that did not support any life stage of H. halys and are thus classified as non-hosts. Interestingly, some of these plants were congeners of highly-used plants, underscoring high intrageneric and intraspecific variation in the use of plants by this polyphagous herbivore. We discuss how the selective planting of non-hosts, especially gymnosperms, may aid in reducing the agricultural and nuisance pest status of this invasive insect. PMID:26906399
Host Plant Use by the Invasive Halyomorpha halys (Stål) on Woody Ornamental Trees and Shrubs.
Bergmann, Erik J; Venugopal, P Dilip; Martinson, Holly M; Raupp, Michael J; Shrewsbury, Paula M
2016-01-01
The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is an invasive plant-feeding insect native to eastern Asia. This herbivore is highly polyphagous, feeding on and damaging diverse plants, including field crops, vegetables, tree fruits, and ornamentals. Woody ornamental plants provide early- and late-season resources for adults emerging from and returning to overwintering sites, as well as feeding and breeding sites for H. halys throughout the growing season. In this study, we quantify the use of diverse plants by H. halys in two commercial nurseries in Maryland, recording data on the abundance of egg masses, early and late instar nymphs, and adults over a three-year study period. Our specific goals were to provide a quantitative comparison of the use of diverse plant species and cultivated varieties, identify non-hosts that could be used to create landscapes refractory to H. halys, and determine whether the use of plants varied across life stages of H. halys or the taxonomic status of plants. We found broad use of diverse plants in this study, identifying 88 host plants used by all life stages of H. halys. We also highlight the 43 plant taxa that did not support any life stage of H. halys and are thus classified as non-hosts. Interestingly, some of these plants were congeners of highly-used plants, underscoring high intrageneric and intraspecific variation in the use of plants by this polyphagous herbivore. We discuss how the selective planting of non-hosts, especially gymnosperms, may aid in reducing the agricultural and nuisance pest status of this invasive insect.
Mann, Krin S; Dietzgen, Ralf G
2014-08-01
Rhabdoviruses are taxonomically classified in the family Rhabdoviridae, order Mononegavirales. As a group, rhabdoviruses can infect plants, invertebrates and vertebrates. Plant cyto- and nucleorhabdoviruses infect a wide variety of species across both monocot and dicot families, including agriculturally important crops such as lettuce, wheat, barley, rice, maize, potato and tomato. Plant rhabdoviruses are transmitted by and replicate in hemipteran insects such as aphids (Aphididae), leafhoppers (Cicadellidae), or planthoppers (Delphacidae). These specific interactions between plants, viruses and insects offer new insights into host adaptation and molecular virus evolution. This review explores recent advances as well as knowledge gaps in understanding of replication, RNA silencing suppression and movement of plant rhabdoviruses with respect to both plant and insect hosts.
Plant hormones as signals in arbuscular mycorrhizal symbiosis.
Miransari, Mohammad; Abrishamchi, A; Khoshbakht, K; Niknam, V
2014-06-01
Arbuscular mycorrhizal (AM) fungi are non-specific symbionts developing mutual and beneficial symbiosis with most terrestrial plants. Because of the obligatory nature of the symbiosis, the presence of the host plant during the onset and proceeding of symbiosis is necessary. However, AM fungal spores are able to germinate in the absence of the host plant. The fungi detect the presence of the host plant through some signal communications. Among the signal molecules, which can affect mycorrhizal symbiosis are plant hormones, which may positively or adversely affect the symbiosis. In this review article, some of the most recent findings regarding the signaling effects of plant hormones, on mycorrhizal fungal symbiosis are reviewed. This may be useful for the production of plants, which are more responsive to mycorrhizal symbiosis under stress.
Zhu, Feng; Weldegergis, Berhane T; Lhie, Boris; Harvey, Jeffrey A; Dicke, Marcel; Poelman, Erik H
2014-09-01
Foraging success of parasitoids depends on the utilization of reliable information on the presence of their often, inconspicuous hosts. These parasitic wasps use herbivore-induced plant volatiles (HIPVs) that provide reliable cues on host presence. However, host searching of hyperparasitoids, a group of parasitoids that parasitize the larvae and pupae of other parasitoids, is more constrained. Their hosts do not feed on plants, and often are even concealed inside the body of the herbivore host. Hyperparasitoids recently have been found to use HIPVs of plants damaged by herbivore hosts in which the parasitoid larvae develop. However, hyperparasitoids that search for these parasitoid larvae may be confronted with healthy and parasitized caterpillars on the same plant, further complicating their host location. In this study, we addressed whether the primary hyperparasitoid Baryscapus galactopus uses caterpillar body odors to discriminate between unparasitized herbivores and herbivores carrying larvae of parasitoid hosts. We show that the hyperparasitoids made faster first contact and spent a longer mounting time with parasitized caterpillars. Moreover, although the three parasitoid hosts conferred different fitness values for the development of B. galactopus, the hyperparasitoids showed similar behavioral responses to caterpillar hosts carrying different primary parasitoid hosts. In addition, a two-chamber olfactometer assay revealed that volatiles emitted by parasitized caterpillars were more attractive to the hyperparasitoids than those emitted by unparasitized caterpillars. Analysis of volatiles revealed that body odors of parasitized caterpillars differ from unparasitized caterpillars, allowing the hyperparasitoids to detect their parasitoid host.
Scheffer, S J; Davies, K A; Taylor, G S; Thornhill, A H; Lewis, M L; Winkler, I S; Yeates, D K; Purcell, M F; Makinson, J; Giblin-Davis, R M
2017-10-01
This study investigated host-specificity and phylogenetic relationships in Australian galling flies, Fergusonina Malloch (Diptera: Fergusoninidae), in order to assess diversity and explore the evolutionary history of host plant affiliation and gall morphology. A DNA barcoding approach using COI data from 203 Fergusonina specimens from 5gall types on 56 host plant species indicated 85 presumptive fly species. These exhibited a high degree of host specificity; of the 40 species with multiple representatives, each fed only on a single host genus, 29 (72.5%) were strictly monophagous, and 11 (27.5%) were reared from multiple closely related hosts. COI variation within species was not correlated with either sample size or geographic distance. However variation was greater within oligophagous species, consistent with expectations of the initial stages of host-associated divergence during speciation. Phylogenetic analysis using both nuclear and mitochondrial genes revealed host genus-restricted clades but also clear evidence of multiple colonizations of both host plant genus and host species. With the exception of unilocular peagalls, evolution of gall type was somewhat constrained, but to a lesser degree than host plant association. Unilocular peagalls arose more often than any other gall type, were primarily located at the tips of the phylogeny, and did not form clades comprising more than a few species. For ecological reasons, species of this gall type are predicted to harbor substantially less genetic variation than others, possibly reducing evolutionary flexibility resulting in reduced diversification in unilocular gallers. Published by Elsevier Inc.
Severino, Valeria; Farina, Annarita; Fleischmann, Frank; Dalio, Ronaldo J D; Di Maro, Antimo; Scognamiglio, Monica; Fiorentino, Antonio; Parente, Augusto; Osswald, Wolfgang; Chambery, Angela
2014-01-01
The understanding of molecular mechanisms underlying host-pathogen interactions in plant diseases is of crucial importance to gain insights on different virulence strategies of pathogens and unravel their role in plant immunity. Among plant pathogens, Phytophthora species are eliciting a growing interest for their considerable economical and environmental impact. Plant infection by Phytophthora phytopathogens is a complex process coordinated by a plethora of extracellular signals secreted by both host plants and pathogens. The characterization of the repertoire of effectors secreted by oomycetes has become an active area of research for deciphering molecular mechanisms responsible for host plants colonization and infection. Putative secreted proteins by Phytophthora species have been catalogued by applying high-throughput genome-based strategies and bioinformatic approaches. However, a comprehensive analysis of the effective secretome profile of Phytophthora is still lacking. Here, we report the first large-scale profiling of P. plurivora secretome using a shotgun LC-MS/MS strategy. To gain insight on the molecular signals underlying the cross-talk between plant pathogenic oomycetes and their host plants, we also investigate the quantitative changes of secreted protein following interaction of P. plurivora with the root exudate of Fagus sylvatica which is highly susceptible to the root pathogen. We show that besides known effectors, the expression and/or secretion levels of cell-wall-degrading enzymes were altered following the interaction with the host plant root exudate. In addition, a characterization of the F. sylvatica root exudate was performed by NMR and amino acid analysis, allowing the identification of the main released low-molecular weight components, including organic acids and free amino acids. This study provides important insights for deciphering the extracellular network involved in the highly susceptible P. plurivora-F. sylvatica interaction.
Pandey, Prachi; Ramegowda, Venkategowda; Senthil-Kumar, Muthappa
2015-01-01
In field conditions, plants are often simultaneously exposed to multiple biotic and abiotic stresses resulting in substantial yield loss. Plants have evolved various physiological and molecular adaptations to protect themselves under stress combinations. Emerging evidences suggest that plant responses to a combination of stresses are unique from individual stress responses. In addition, plants exhibit shared responses which are common to individual stresses and stress combination. In this review, we provide an update on the current understanding of both unique and shared responses. Specific focus of this review is on heat–drought stress as a major abiotic stress combination and, drought–pathogen and heat–pathogen as examples of abiotic–biotic stress combinations. We also comprehend the current understanding of molecular mechanisms of cross talk in relation to shared and unique molecular responses for plant survival under stress combinations. Thus, the knowledge of shared responses of plants from individual stress studies and stress combinations can be utilized to develop varieties with broad spectrum stress tolerance. PMID:26442037
The Haustorium, a Specialized Invasive Organ in Parasitic Plants.
Yoshida, Satoko; Cui, Songkui; Ichihashi, Yasunori; Shirasu, Ken
2016-04-29
Parasitic plants thrive by infecting other plants. Flowering plants evolved parasitism independently at least 12 times, in all cases developing a unique multicellular organ called the haustorium that forms upon detection of haustorium-inducing factors derived from the host plant. This organ penetrates into the host stem or root and connects to its vasculature, allowing exchange of materials such as water, nutrients, proteins, nucleotides, pathogens, and retrotransposons between the host and the parasite. In this review, we focus on the formation and function of the haustorium in parasitic plants, with a specific emphasis on recent advances in molecular studies of root parasites in the Orobanchaceae and stem parasites in the Convolvulaceae.
Plants that attack plants: molecular elucidation of plant parasitism.
Yoshida, Satoko; Shirasu, Ken
2012-12-01
Obligate parasitic plants in the family Orobanchaceae, such as Striga and Orobanche (including Phelipanche) spp., parasitize important crops and cause severe agricultural damage. Recent molecular studies have begun to reveal how these parasites have adapted to hosts in a parasitic lifecycle. The parasites detect nearby host roots and germinate by a mechanism that seems to have evolved from a conserved germination system found in non-parasites. The development of a specialized infecting organ called a haustorium is a unique feature of plant parasites and is triggered by host compounds and redox signals. Newly developed genomic and genetic resources will facilitate more rapid progress toward a molecular understanding of plant parasitism. Copyright © 2012 Elsevier Ltd. All rights reserved.
Host structural carbohydrate induces vector transmission of a bacterial plant pathogen.
Killiny, Nabil; Almeida, Rodrigo P P
2009-12-29
Many insect-borne pathogens have complex life histories because they must colonize both hosts and vectors for successful dissemination. In addition, the transition from host to vector environments may require changes in gene expression before the pathogen's departure from the host. Xylella fastidiosa is a xylem-limited plant-pathogenic bacterium transmitted by leafhopper vectors that causes diseases in a number of economically important plants. We hypothesized that factors of host origin, such as plant structural polysaccharides, are important in regulating X. fastidiosa gene expression and mediating vector transmission of this pathogen. The addition of pectin and glucan to a simple defined medium resulted in dramatic changes in X. fastidiosa's phenotype and gene-expression profile. Cells grown in the presence of pectin became more adhesive than in other media tested. In addition, the presence of pectin and glucan in media resulted in significant changes in the expression of several genes previously identified as important for X. fastidiosa's pathogenicity in plants. Furthermore, vector transmission of X. fastidiosa was induced in the presence of both polysaccharides. Our data show that host structural polysaccharides mediate gene regulation in X. fastidiosa, which results in phenotypic changes required for vector transmission. A better understanding of how vector-borne pathogens transition from host to vector, and vice versa, may lead to previously undiscovered disease-control strategies.
Scheper, Jeroen; Reemer, Menno; van Kats, Ruud; Ozinga, Wim A; van der Linden, Giel T J; Schaminée, Joop H J; Siepel, Henk; Kleijn, David
2014-12-09
Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species.
Scheper, Jeroen; Reemer, Menno; van Kats, Ruud; Ozinga, Wim A.; van der Linden, Giel T. J.; Schaminée, Joop H. J.; Siepel, Henk; Kleijn, David
2014-01-01
Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species. PMID:25422416
Pain, Rachel E; Shaw, Ruth G; Sheth, Seema N
2018-05-16
Mutualistic relationships with microbes may aid plants in overcoming environmental stressors and increase the range of abiotic environments where plants can persist. Rhizobia, nitrogen-fixing bacteria associated with legumes, often confer fitness benefits to their host plants by increasing access to nitrogen in nitrogen-limited soils, but effects of rhizobia on host fitness under other stresses, such as drought, remain unclear. In this greenhouse study, we varied the application of rhizobia (Bradyrhizobium sp.) inoculum and drought to examine whether the fitness benefits of rhizobia to their host, partridge pea (Chamaecrista fasciculata), would differ between drought and well-watered conditions. Plants were harvested 9 weeks after seeds were sown. Young C. fasciculata plants that had been inoculated had lower biomass, leaf relative growth rate, and stem relative growth rate compared to young uninoculated plants in both drought and well-watered environments. Under the conditions of this study, the rhizobial interaction imposed a net cost to their hosts early in development. Potential reasons for this cost include allocating more carbon to nodule and root development than to aboveground growth and a geographic mismatch between the source populations of host plants and rhizobia. If developing plants incur such costs from rhizobia in nature, they may suffer an early disadvantage relative to other plants, whether conspecifics lacking rhizobia or heterospecifics. © 2018 Botanical Society of America.
Dourado, Manuella Nóbrega; Andreote, Fernando Dini; Dini-Andreote, Francisco; Conti, Raphael; Araújo, Janete Magali; Araújo, Welington Luiz
2012-01-01
The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant. PMID:22481887
Dourado, Manuella Nóbrega; Andreote, Fernando Dini; Dini-Andreote, Francisco; Conti, Raphael; Araújo, Janete Magali; Araújo, Welington Luiz
2012-01-01
The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant.
Macromolecule exchange in Cuscuta-host plant interactions.
Kim, Gunjune; Westwood, James H
2015-08-01
Cuscuta species (dodders) are parasitic plants that are able to grow on many different host plants and can be destructive to crops. The connections between Cuscuta and its hosts allow movement of not only water and small nutrients, but also macromolecules including mRNA, proteins and viruses. Recent studies show that RNAs move bidirectionally between hosts and parasites and involve a large number of different genes. Although the function of mobile mRNAs has not been demonstrated in this system, small RNAs are also transmitted and a silencing construct expressed in hosts is able to affect expression of the target gene in the parasite. High throughput sequencing of host-parasite associations has the potential to greatly accelerate understanding of this remarkable interaction. Copyright © 2015 Elsevier Ltd. All rights reserved.
McQuate, Grant T.; Vargas, Roger I.
2007-01-01
The use of toxic protein bait sprays to suppress melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), populations typically involves application to vegetation bordering agricultural host areas where the adults seek shelter (“roost”). Although bait spray applications for suppression of oriental fruit fly, Bactrocera dorsalis (Hendel), populations have traditionally been applied to the host crop, rather than to crop borders, roosting by oriental fruit flies in borders of some crop species, such as papaya, Carica papaya L. (Brassicales: Caricaceae), suggests that bait spray applications to crop borders could also help in suppression of B. dorsalis populations. In order to develop improved recommendations for application of bait sprays to border plants for suppression of melon fly and oriental fruit fly populations, the relative attractiveness of a range of plant species, in a vegetative (non-flowering) stage, was tested to wild melon fly and oriental fruit fly populations established in a papaya orchard in Hawaii. A total of 20 plant species were evaluated, divided into four categories: 1) border plants, including corn, Zea mays L. (Poales: Poaceae), windbreaks and broad-leaved ornamentals, 7 species; 2) weed plants commonly found in agricultural fields in Hawaii, 6 species; 3) host crop plants, 1 species- zucchini, Cucurbita pepo L. (Violales: Curcurbitaceae), and 4) locally grown fruit trees, 6 species. Plants were established in pots and placed in an open field, in clusters encircling protein bait traps, 20 m away from the papaya orchard. Castor bean, Ricinus communis L. (Euphorbiales: Euphorbiaceae), panax, Polyscias guilfoylei (Bull) Bailey (Apiales: Araliaceae), tiger's claw, Erythnna variegata L. (Fabales: Fabaceae), and guava, Psidium guajava L. (Myrtales: Myrtaceae) were identified as preferred roosting hosts for the melon fly, and tiger's claw, panax, castor bean, Canada cocklebur, Xanthium strumarium L. (Asterales: Asteraceae), Brazilian pepper tree, Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae), ti plant, Cordyline terminate (L.) Chev.(Liliales: Liliaceae), guava and several Citrus spp. were identified as preferred roosting hosts for oriental fruit fly. Guava had not previously been identified as a preferred roosting host for melon fly. Other than for the use of panax as a roosting host, there has previously been little attention to roosting hosts for oriental fruit fly. Establishment of preferred roosting hosts as crop borders may help to improve suppression of both fruit fly species by providing sites for bait spray applications. Further research is needed to assess the use of vegetation bordering other host crops as roosting hosts, especially for oriental fruit fly. PMID:20334596
Dong, Yanhan; Li, Ying; Qi, Zhongqiang; Zheng, Xiaobo; Zhang, Zhengguang
2016-02-01
Plant diseases cause extensive yield loss of crops worldwide, and secretory 'warfare' occurs between plants and pathogenic organisms all the time. Filamentous plant pathogens have evolved the ability to manipulate host processes and facilitate colonization through secreting effectors inside plant cells. The stresses from hosts and environment can drive the genome dynamics of plant pathogens. Remarkable advances in plant pathology have been made owing to these adaptable genome regions of several lineages of filamentous phytopathogens. Characterization new effectors and interaction analyses between pathogens and plants have provided molecular insights into the plant pathways perturbed during the infection process. In this mini-review, we highlight promising approaches of identifying novel effectors based on the genome plasticity. We also discuss the interaction mechanisms between plants and their filamentous pathogens and outline the possibilities of effector gene expression under epigenetic control that will be future directions for research.
Rotylenchulus reniformis on Greenhouse-grown Foliage Plants: Host Range and Sources of Inoculum.
Starr, J L
1991-10-01
Two sources of inoculum of reniform nematodes, Rotylenchulus reniformis, were identified for infestation of ornamental foliage plants in commercial greenhouses. These were water from a local canal system and rooted cuttings purchased from other sources. Eight ornamental plant species were identified as good hosts for the reniform nematode, with each species supporting a reniform population density equal to or greater than that supported by 'Rutgers' tomato and a reproduction factor of greater than 1.0. Nine other plant species were identified as poor hosts.
Rotylenchulus reniformis on Greenhouse-grown Foliage Plants: Host Range and Sources of Inoculum
Starr, J. L.
1991-01-01
Two sources of inoculum of reniform nematodes, Rotylenchulus reniformis, were identified for infestation of ornamental foliage plants in commercial greenhouses. These were water from a local canal system and rooted cuttings purchased from other sources. Eight ornamental plant species were identified as good hosts for the reniform nematode, with each species supporting a reniform population density equal to or greater than that supported by 'Rutgers' tomato and a reproduction factor of greater than 1.0. Nine other plant species were identified as poor hosts. PMID:19283176
Independently evolved virulence effectors converge onto hubs in a plant immune system network.
Mukhtar, M Shahid; Carvunis, Anne-Ruxandra; Dreze, Matija; Epple, Petra; Steinbrenner, Jens; Moore, Jonathan; Tasan, Murat; Galli, Mary; Hao, Tong; Nishimura, Marc T; Pevzner, Samuel J; Donovan, Susan E; Ghamsari, Lila; Santhanam, Balaji; Romero, Viviana; Poulin, Matthew M; Gebreab, Fana; Gutierrez, Bryan J; Tam, Stanley; Monachello, Dario; Boxem, Mike; Harbort, Christopher J; McDonald, Nathan; Gai, Lantian; Chen, Huaming; He, Yijian; Vandenhaute, Jean; Roth, Frederick P; Hill, David E; Ecker, Joseph R; Vidal, Marc; Beynon, Jim; Braun, Pascal; Dangl, Jeffery L
2011-07-29
Plants generate effective responses to infection by recognizing both conserved and variable pathogen-encoded molecules. Pathogens deploy virulence effector proteins into host cells, where they interact physically with host proteins to modulate defense. We generated an interaction network of plant-pathogen effectors from two pathogens spanning the eukaryote-eubacteria divergence, three classes of Arabidopsis immune system proteins, and ~8000 other Arabidopsis proteins. We noted convergence of effectors onto highly interconnected host proteins and indirect, rather than direct, connections between effectors and plant immune receptors. We demonstrated plant immune system functions for 15 of 17 tested host proteins that interact with effectors from both pathogens. Thus, pathogens from different kingdoms deploy independently evolved virulence proteins that interact with a limited set of highly connected cellular hubs to facilitate their diverse life-cycle strategies.
The lipid language of plant-fungal interactions.
Christensen, Shawn A; Kolomiets, Michael V
2011-01-01
Lipid mediated cross-kingdom communication between hosts and pathogens is a rapidly emerging field in molecular plant-fungal interactions. Amidst our growing understanding of fungal and plant chemical cross-talk lies the distinct, yet little studied, role for a group of oxygenated lipids derived from polyunsaturated fatty acids, termed oxylipins. Endogenous fungal oxylipins are known for their roles in carrying out pathogenic strategies to successfully colonize their host, reproduce, and synthesize toxins. While plant oxylipins also have functions in reproduction and development, they are largely recognized as agents that facilitate resistance to pathogen attack. Here we review the composition and endogenous functions of oxylipins produced by both plants and fungi and introduce evidence which suggests that fungal pathogens exploit host oxylipins to facilitate their own virulence and pathogenic development. Specifically, we describe how fungi induce plant lipid metabolism to utilize plant oxylipins in order to promote G-protein-mediated regulation of sporulation and mycotoxin production in the fungus. The use of host-ligand mimicry (i.e. coronatine) to manipulate plant defense responses that benefit the fungus are also implicated. Published by Elsevier Inc.
Rodriguez, R.; Redman, R.
2008-01-01
All plants in natural ecosystems are thought to be symbiotic with mycorrhizal and/or endophytic fungi. Collectively, these fungi express different symbiotic lifestyles ranging from parasitism to mutualism. Analysis of Colletotrichum species indicates that individual isolates can express either parasitic or mutualistic lifestyles depending on the host genotype colonized. The endophyte colonization pattern and lifestyle expression indicate that plants can be discerned as either disease, non-disease, or non-hosts. Fitness benefits conferred by fungi expressing mutualistic lifestyles include biotic and abiotic stress tolerance, growth enhancement, and increased reproductive success. Analysis of plant-endophyte associations in high stress habitats revealed that at least some fungal endophytes confer habitat-specific stress tolerance to host plants. Without the habitat-adapted fungal endophytes, the plants are unable to survive in their native habitats. Moreover, the endophytes have a broad host range encompassing both monocots and eudicots, and confer habitat-specific stress tolerance to both plant groups. ?? The Author [2008]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.
A lack of crowding? Body size does not decrease with density for two behavior-manipulating parasites
Weinersmith, KL; Warinner, Chloe B.; Tan, Virgina; Harris, David J.; Mora, Adrienne B.; Kuris, Armand M.; Lafferty, Kevin D.; Hechinger, Ryan F.
2014-01-01
For trophically transmitted parasites that manipulate the phenotype of their hosts, whether the parasites do or do not experience resource competition depends on such factors as the size of the parasites relative to their hosts, the intensity of infection, the extent to which parasites share the cost of defending against the host’s immune system or manipulating their host, and the extent to which parasites share transmission goals. Despite theoretical expectations for situations in which either no, or positive, or negative density-dependence should be observed, most studies document only negative density-dependence for trophically transmitted parasites. However, this trend may be an artifact of most studies having focused on systems in which parasites are large relative to their hosts. Yet, systems are common where parasites are small relative to their hosts, and these trophically transmitted parasites may be less likely to experience resource limitation. We looked for signs of density-dependence in Euhaplorchis californiensis (EUHA) and Renicola buchanani (RENB), two manipulative trematode parasites infecting wild-caught California killifish (Fundulus parvipinnis). These parasites are small relative to killifish (suggesting resources are not limiting), and are associated with changes in killifish behavior that are dependent on parasite-intensity and that increase predation rates by the parasites’ shared final host (indicating the possibility for cost sharing). We did not observe negative density-dependence in either species, indicating that resources are not limiting. In fact, observed patterns indicate possible mild positive density-dependence for EUHA. Although experimental confirmation is required, our findings suggest that some behavior-manipulating parasites suffer no reduction in size, and may even benefit when "crowded" by conspecifics.
NASA Astrophysics Data System (ADS)
Mims, C. W.; Celio, Gail J.; Richardson, Elizabeth A.
2003-12-01
This article reports on the use of high pressure freezing followed by freeze substitution (HPF/FS) to study ultrastructural details of host pathogen interactions in fungal diseases of plants. The specific host pathogen systems discussed here include a powdery mildew infection of poinsettia and rust infections of daylily and Indian strawberry. The three pathogens considered here all attack the leaves of their hosts and produce specialized hyphal branches known as haustoria that invade individual host cells without killing them. We found that HPF/FS provided excellent preservation of both haustoria and host cells for all three host pathogen systems. Preservation of fungal and host cell membranes was particularly good and greatly facilitated the detailed study of host pathogen interfaces. In some instances, HPF/FS provided information that was not available in samples prepared for study using conventional chemical fixation. On the other hand, we did encounter various problems associated with the use of HPF/FS. Examples included freeze damage of samples, inconsistency of fixation in different samples, separation of plant cell cytoplasm from cell walls, breakage of cell walls and membranes, and splitting of thin sections. However, we believe that the outstanding preservation of ultrastructural details afforded by HPF/FS significantly outweighs these problems and we highly recommend the use of this fixation protocol for future studies of fungal host-plant interactions.
Herrera, Carlos M
2014-05-01
Genetic diversity and genotypic diversity of wild populations of the floricolous yeast Metschnikowia reukaufii exhibit a strong host-mediated component, with genotypes being nonrandomly distributed among flowers of different plant species. To unravel the causal mechanism of this pattern of host-mediated genetic diversity, this paper examines experimentally whether floral nectars of different host plants differ in their quality as a growing substrate for M. reukaufii and also whether genetically distinct yeast strains differ in their relative ability to thrive in nectars of different species (host × genotype interaction). Genetically distinct M. reukaufii strains were grown in natural nectar of different hosts under controlled conditions. Population growth varied widely among nectar hosts, revealing that different host plants provided microhabitats of different quality for M. reukaufii. Different M. reukaufii strains responded in different ways to interspecific nectar variation, and variable growth responses were significantly associated with genetic differences between strains, thus leading to a significant host × genotype interaction. Results of this study provide support for the diversifying selection hypothesis as the underlying mechanism preserving high genetic diversity in wild M. reukaufii populations and also suggest that consequences of functional plant-pollinator diversity may surpass the domain of the mutualistic organisms to implicate associated microorganisms. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Host shifts and evolutionary radiations of butterflies
Fordyce, James A.
2010-01-01
Ehrlich and Raven proposed a model of coevolution where major host plant shifts of butterflies facilitate a burst of diversification driven by their arrival to a new adaptive zone. One prediction of this model is that reconstructions of historical diversification of butterflies should indicate an increase in diversification rate following major host shifts. Using reconstructed histories of 15 butterfly groups, I tested this prediction and found general agreement with Ehrlich and Raven's model. Butterfly lineages with an inferred major historical host shift showed evidence of diversification rate variation, with a significant acceleration following the host shift. Lineages without an inferred major host shift generally agreed with a constant-rate model of diversification. These results are consistent with the view that host plant associations have played a profound role in the evolutionary history of butterflies, and show that major shifts to chemically distinct plant groups leave a historical footprint that remains detectable today. PMID:20610430
Code of Federal Regulations, 2014 CFR
2014-01-01
... processing. Hay. Host crops cut and dried for feeding to livestock. Hay cut after reaching the dough stage may contain mature kernels of the host crop. Host crops. Plants or plant parts, including grain, seed..., and a seed. Seed. Wheat (Triticum aestivum), durum wheat (Triticum durum), and triticale (Triticum...
Liao, Hui-Ling; Chen, Yuan; Vilgalys, Rytas
2016-01-01
Ectomycorrhizal fungi (EMF) represent one of the major guilds of symbiotic fungi associated with roots of forest trees, where they function to improve plant nutrition and fitness in exchange for plant carbon. Many groups of EMF exhibit preference or specificity for different plant host genera; a good example is the genus Suillus, which grows in association with the conifer family Pinaceae. We investigated genetics of EMF host-specificity by cross-inoculating basidiospores of five species of Suillus onto ten species of Pinus, and screened them for their ability to form ectomycorrhizae. Several Suillus spp. including S. granulatus, S. spraguei, and S. americanus readily formed ectomycorrhizae (compatible reaction) with white pine hosts (subgenus Strobus), but were incompatible with other pine hosts (subgenus Pinus). Metatranscriptomic analysis of inoculated roots reveals that plant and fungus each express unique gene sets during incompatible vs. compatible pairings. The Suillus-Pinus metatranscriptomes utilize highly conserved gene regulatory pathways, including fungal G-protein signaling, secretory pathways, leucine-rich repeat and pathogen resistance proteins that are similar to those associated with host-pathogen interactions in other plant-fungal systems. Metatranscriptomic study of the combined Suillus-Pinus transcriptome has provided new insight into mechanisms of adaptation and coevolution of forest trees with their microbial community, and revealed that genetic regulation of ectomycorrhizal symbiosis utilizes universal gene regulatory pathways used by other types of fungal-plant interactions including pathogenic fungal-host interactions. PMID:27736883
RNA trafficking in parasitic plant systems
LeBlanc, Megan; Kim, Gunjune; Westwood, James H.
2012-01-01
RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs, and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host–parasite connections and the potential significance of host RNAs for the parasite. Additional research on host–parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking. PMID:22936942
Ruhe, Jonas; Agler, Matthew T.; Placzek, Aleksandra; Kramer, Katharina; Finkemeier, Iris; Kemen, Eric M.
2016-01-01
Recent research suggested that plants behave differently under combined versus single abiotic and biotic stress conditions in controlled environments. While this work has provided a glimpse into how plants might behave under complex natural conditions, it also highlights the need for field experiments using established model systems. In nature, diverse microbes colonize the phyllosphere of Arabidopsis thaliana, including the obligate biotroph oomycete genus Albugo, causal agent of the common disease white rust. Biotrophic, as well as hemibiotrophic plant pathogens are characterized by efficient suppression of host defense responses. Lab experiments have even shown that Albugo sp. can suppress non-host resistance, thereby enabling otherwise avirulent pathogen growth. We asked how a pathogen that is vitally dependent on a living host can compete in nature for limited niche space while paradoxically enabling colonization of its host plant for competitors? To address this question, we used a proteomics approach to identify differences and similarities between lab and field samples of Albugo sp.-infected and -uninfected A. thaliana plants. We could identify highly similar apoplastic proteomic profiles in both infected and uninfected plants. In wild plants, however, a broad range of defense-related proteins were detected in the apoplast regardless of infection status, while no or low levels of defense-related proteins were detected in lab samples. These results indicate that Albugo sp. do not strongly affect immune responses and leave distinct branches of the immune signaling network intact. To validate our findings and to get mechanistic insights, we tested a panel of A. thaliana mutant plants with induced or compromised immunity for susceptibility to different biotrophic pathogens. Our findings suggest that the biotroph pathogen Albugo selectively interferes with host defense under different environmental and competitive pressures to maintain its ecological niche dominance. Adaptation to host immune responses while maintaining a partially active host immunity seems advantageous against competitors. We suggest a model for future research that considers not only host–microbe but in addition microbe–microbe and microbe–host environment factors. PMID:27379119
Geographical variation in parasitism shapes larval immune function in a phytophagous insect
NASA Astrophysics Data System (ADS)
Vogelweith, Fanny; Dourneau, Morgane; Thiéry, Denis; Moret, Yannick; Moreau, Jérôme
2013-12-01
Two of the central goals of immunoecology are to understand natural variation in the immune system among populations and to identify those selection pressures that shape immune traits. Maintenance of the immune system can be costly, and both food quality and parasitism selection pressure are factors potentially driving immunocompetence. In tritrophic interactions involving phytophagous insects, host plants, and natural enemies, the immunocompetence of phytophagous insects is constrained by selective forces from both the host plants and the natural enemies. Here, we assessed the roles of host plants and natural enemies as selective pressures on immune variation among natural populations of Lobesia botrana. Our results showed marked geographical variation in immune defenses and parasitism among different natural populations. Larval immune functions were dependent of the host plant quality and were positively correlated to parasitism, suggesting that parasitoids select for greater investment into immunity in moth. Furthermore, investment in immune defense was negatively correlated with body size, suggesting that it is metabolically expensive. The findings emphasize the roles of host plants and parasitoids as selective forces shaping host immune functions in natural conditions. We argue that kinds of study are central to understanding natural variations in immune functions, and the selective forces beyond.
López-Ráez, Juan A.; Verhage, Adriaan; Fernández, Iván; García, Juan M.; Azcón-Aguilar, Concepción; Flors, Victor; Pozo, María J.
2010-01-01
Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. The symbiosis significantly affects the host physiology in terms of nutrition and stress resistance. Despite the lack of host range specificity of the interaction, functional diversity between AM fungal species exists. The interaction is finely regulated according to plant and fungal characters, and plant hormones are believed to orchestrate the modifications in the host plant. Using tomato as a model, an integrative analysis of the host response to different mycorrhizal fungi was performed combining multiple hormone determination and transcriptional profiling. Analysis of ethylene-, abscisic acid-, salicylic acid-, and jasmonate-related compounds evidenced common and divergent responses of tomato roots to Glomus mosseae and Glomus intraradices, two fungi differing in their colonization abilities and impact on the host. Both hormonal and transcriptional analyses revealed, among others, regulation of the oxylipin pathway during the AM symbiosis and point to a key regulatory role for jasmonates. In addition, the results suggest that specific responses to particular fungi underlie the differential impact of individual AM fungi on plant physiology, and particularly on its ability to cope with biotic stresses. PMID:20378666
Significance of Cuscutain, a cysteine protease from Cuscuta reflexa, in host-parasite interactions
2010-01-01
Background Plant infestation with parasitic weeds like Cuscuta reflexa induces morphological as well as biochemical changes in the host and the parasite. These modifications could be caused by a change in protein or gene activity. Using a comparative macroarray approach Cuscuta genes specifically upregulated at the host attachment site were identified. Results One of the infestation specific Cuscuta genes encodes a cysteine protease. The protein and its intrinsic inhibitory peptide were heterologously expressed, purified and biochemically characterized. The haustoria specific enzyme was named cuscutain in accordance with similar proteins from other plants, e.g. papaya. The role of cuscutain and its inhibitor during the host parasite interaction was studied by external application of an inhibitor suspension, which induced a significant reduction of successful infection events. Conclusions The study provides new information about molecular events during the parasitic plant - host interaction. Inhibition of cuscutain cysteine proteinase could provide means for antagonizing parasitic plants. PMID:20964874
Significance of Cuscutain, a cysteine protease from Cuscuta reflexa, in host-parasite interactions.
Bleischwitz, Marc; Albert, Markus; Fuchsbauer, Hans-Lothar; Kaldenhoff, Ralf
2010-10-22
Plant infestation with parasitic weeds like Cuscuta reflexa induces morphological as well as biochemical changes in the host and the parasite. These modifications could be caused by a change in protein or gene activity. Using a comparative macroarray approach Cuscuta genes specifically upregulated at the host attachment site were identified. One of the infestation specific Cuscuta genes encodes a cysteine protease. The protein and its intrinsic inhibitory peptide were heterologously expressed, purified and biochemically characterized. The haustoria specific enzyme was named cuscutain in accordance with similar proteins from other plants, e.g. papaya. The role of cuscutain and its inhibitor during the host parasite interaction was studied by external application of an inhibitor suspension, which induced a significant reduction of successful infection events. The study provides new information about molecular events during the parasitic plant--host interaction. Inhibition of cuscutain cysteine proteinase could provide means for antagonizing parasitic plants.
Ogunmefun, O. T.; Fasola, T. R.; Saba, A. B.; Oridupa, O. A.
2013-01-01
Mistletoe is collected wildly on various plants and Phragmanthera incana is noted to grow on different plant hosts. This study was designed to carry out the ethnobotanical survey, phytochemical and mineral analyses of Phragmanthera incana, a species of mistletoe growing on three plant hosts namely Cocoa (Theobroma cacao), Kolanut (Cola nitida) and Bush mango (Irvingia gabonensis). Mistletoe samples were identified at the Forestry Research Institute of Nigeria Herbarium. Phragmanthera incana was screened for its phytochemical constituents and mineral cations along its hosts following standard methods and to confirm if the mistletoe species is host specific. The powdered samples of the mistletoe species (Phragmanthera incana) was used for both the phytochemical screening and the cation mineral analysis. The uses and the harvesting methods of mistletoe were also reviewed extensively in this paper. PMID:23675287
Ogunmefun, O T; Fasola, T R; Saba, A B; Oridupa, O A
2013-03-01
Mistletoe is collected wildly on various plants and Phragmanthera incana is noted to grow on different plant hosts. This study was designed to carry out the ethnobotanical survey, phytochemical and mineral analyses of Phragmanthera incana, a species of mistletoe growing on three plant hosts namely Cocoa (Theobroma cacao), Kolanut (Cola nitida) and Bush mango (Irvingia gabonensis). Mistletoe samples were identified at the Forestry Research Institute of Nigeria Herbarium. Phragmanthera incana was screened for its phytochemical constituents and mineral cations along its hosts following standard methods and to confirm if the mistletoe species is host specific. The powdered samples of the mistletoe species (Phragmanthera incana) was used for both the phytochemical screening and the cation mineral analysis. The uses and the harvesting methods of mistletoe were also reviewed extensively in this paper.
Pariaud, Bénédicte; Berg, Femke; Bosch, Frank; Powers, Stephen J; Kaltz, Oliver; Lannou, Christian
2013-02-01
Crop pathogens are notorious for their rapid adaptation to their host. We still know little about the evolution of their life cycles and whether there might be trade-offs between fitness components, limiting the evolutionary potential of these pathogens. In this study, we explored a trade-off between spore production capacity and latent period in Puccinia triticina, a fungal pathogen causing leaf rust on wheat. Using a simple multivariate (manova) technique, we showed that the covariance between the two traits is under shared control of host and pathogen, with contributions from host genotype (57%), pathogen genotype (18.4%) and genotype × genotype interactions (12.5%). We also found variation in sign and strength of genetic correlations for the pathogen, when measured on different host varieties. Our results suggest that these important pathogen life-history traits do not freely respond to directional selection and that precise evolutionary trajectories are contingent on the genetic identity of the interacting host and pathogen.
García-Robledo, Carlos; Horvitz, Carol C
2012-01-01
Specialization of insect herbivores to one or a few host plants stimulated the development of two hypotheses on how natural selection should shape oviposition preferences: The “mother knows best” principle suggests that females prefer to oviposit on hosts that increase offspring survival. The “optimal bad motherhood” principle predicts that females prefer to oviposit on hosts that increase their own longevity. In insects colonizing novel host plants, current theory predicts that initial preferences of insect herbivores should be maladaptive, leading to ecological traps. Ecological trap theory does not take into account the fact that insect lineages frequently switch hosts at both ecological and evolutionary time scales. Therefore, the behavior of insect herbivores facing novel hosts is also shaped by natural selection. Using a study system in which four Cephaloleia beetles are currently expanding their diets from native to exotic plants in the order Zingiberales, we determined if initial oviposition preferences are conservative, maladaptive, or follow the patterns predicted by the “mother knows best” or the “optimal bad motherhood” principles. Interactions with novel hosts generated parent–offspring conflicts. Larval survival was higher on native hosts. However, adult generally lived longer on novel hosts. In Cephaloleia beetles, oviposition preferences are usually associated with hosts that increase larval survival, female fecundity, and population growth. In most cases, Cephaloleia oviposition preferences follow the expectations of the “mothers knows best” principle. PMID:22957153
In situ hybridization for the detection of rust fungi in paraffin embedded plant tissue sections.
Ellison, Mitchell A; McMahon, Michael B; Bonde, Morris R; Palmer, Cristi L; Luster, Douglas G
2016-01-01
Rust fungi are obligate pathogens with multiple life stages often including different spore types and multiple plant hosts. While individual rust pathogens are often associated with specific plants, a wide range of plant species are infected with rust fungi. To study the interactions between these important pathogenic fungi and their host plants, one must be able to differentiate fungal tissue from plant tissue. This can be accomplished using the In situ hybridization (ISH) protocol described here. To validate reproducibility using the ISH protocol, samples of Chrysanthemum × morifolium infected with Puccinia horiana, Gladiolus × hortulanus infected with Uromyces transversalis and Glycine max infected with Phakopsora pachyrhizi were tested alongside uninfected leaf tissue samples. The results of these tests show that this technique clearly distinguishes between rust pathogens and their respective host plant tissues. This ISH protocol is applicable to rust fungi and potentially other plant pathogenic fungi as well. It has been shown here that this protocol can be applied to pathogens from different genera of rust fungi with no background staining of plant tissue. We encourage the use of this protocol for the study of plant pathogenic fungi in paraffin embedded sections of host plant tissue.
Code of Federal Regulations, 2011 CFR
2011-01-01
... triticale (Triticum aestivum X Secale cereale) used for consumption or processing. Hay. Host crops cut and... host crop. Host crops. Plants or plant parts, including grain, seed, or hay, of wheat (Triticum..., a vine, a cutting, a graft, a scion, a bud, a bulb, a root, and a seed. Seed. Wheat (Triticum...
Code of Federal Regulations, 2010 CFR
2010-01-01
... triticale (Triticum aestivum X Secale cereale) used for consumption or processing. Hay. Host crops cut and... host crop. Host crops. Plants or plant parts, including grain, seed, or hay, of wheat (Triticum..., a vine, a cutting, a graft, a scion, a bud, a bulb, a root, and a seed. Seed. Wheat (Triticum...
Code of Federal Regulations, 2012 CFR
2012-01-01
... triticale (Triticum aestivum X Secale cereale) used for consumption or processing. Hay. Host crops cut and... host crop. Host crops. Plants or plant parts, including grain, seed, or hay, of wheat (Triticum..., a vine, a cutting, a graft, a scion, a bud, a bulb, a root, and a seed. Seed. Wheat (Triticum...
Code of Federal Regulations, 2013 CFR
2013-01-01
... triticale (Triticum aestivum X Secale cereale) used for consumption or processing. Hay. Host crops cut and... host crop. Host crops. Plants or plant parts, including grain, seed, or hay, of wheat (Triticum..., a vine, a cutting, a graft, a scion, a bud, a bulb, a root, and a seed. Seed. Wheat (Triticum...
Influences of Plant Traits on Immune Responses of Specialist and Generalist Herbivores
Lampert, Evan
2012-01-01
Specialist and generalist insect herbivore species often differ in how they respond to host plant traits, particularly defensive traits, and these responses can include weakened or strengthened immune responses to pathogens and parasites. Accurate methods to measure immune response in the presence and absence of pathogens and parasites are necessary to determine whether susceptibility to these natural enemies is reduced or increased by host plant traits. Plant chemical traits are particularly important in that host plant metabolites may function as antioxidants beneficial to the immune response, or interfere with the immune response of both specialist and generalist herbivores. Specialist herbivores that are adapted to process and sometimes accumulate specific plant compounds may experience high metabolic demands that may decrease immune response, whereas the metabolic demands of generalist species differ due to more broad-substrate enzyme systems. However, the direct deleterious effects of plant compounds on generalist herbivores may weaken their immune responses. Further research in this area is important given that the ecological relevance of plant traits to herbivore immune responses is equally important in natural systems and agroecosystems, due to potential incompatibility of some host plant species and cultivars with biological control agents of herbivorous pests. PMID:26466545
Trans-Kingdom RNA Silencing in Plant-Fungal Pathogen Interactions.
Hua, Chenlei; Zhao, Jian-Hua; Guo, Hui-Shan
2018-02-05
Fungal pathogens represent a major group of plant invaders that are the causative agents of many notorious plant diseases. Large quantities of RNAs, especially small RNAs involved in gene silencing, have been found to transmit bidirectionally between fungal pathogens and their hosts. Although host-induced gene silencing (HIGS) technology has been developed and applied to protect crops from fungal infections, the mechanisms of RNA transmission, especially small RNAs regulating trans-kingdom RNA silencing in plant immunity, are largely unknown. In this review, we summarize and discuss recent important findings regarding trans-kingdom sRNAs and RNA silencing in plant-fungal pathogen interactions compared with the well-known RNAi mechanisms in plants and fungi. We focus on the interactions between plant and fungal pathogens with broad hosts, represented by the vascular pathogen Verticillium dahliae and non-vascular pathogen Botrytis cinerea, and discuss the known instances of natural RNAi transmission between fungal pathogens and host plants. Given that HIGS has been developed and recently applied in controlling Verticillium wilt diseases, we propose an ideal research system exploiting plant vasculature-Verticillium interaction to further study trans-kingdom RNA silencing. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
Galbraith, David A.; Grozinger, Christina M.; Felton, Gary W.
2017-01-01
Generalist herbivores feed on a wide array of plants and need to adapt to varying host qualities and defenses. One of the first insect derived secretions to come in contact with the plant is the saliva. Insect saliva is potentially involved in both the pre-digestion of the host plant as well as induction/suppression of plant defenses, yet how the salivary glands respond to changes in host plant at the transcriptional level is largely unknown. The objective of this study was to determine how the labial salivary gland transcriptome varies according to the host plant on which the insect is feeding. In order to determine this, cabbage looper (Trichoplusia ni) larvae were reared on cabbage, tomato, and pinto bean artificial diet. Labial glands were dissected from fifth instar larvae and used to extract RNA for RNASeq analysis. Assembly of the resulting sequencing reads resulted in a transcriptome library for T. ni salivary glands consisting of 14,037 expressed genes. Feeding on different host plant diets resulted in substantial remodeling of the gland transcriptomes, with 4,501 transcripts significantly differentially expressed across the three treatment groups. Gene expression profiles were most similar between cabbage and artificial diet, which corresponded to the two diets on which larvae perform best. Expression of several transcripts involved in detoxification processes were differentially expressed, and transcripts involved in the spliceosome pathway were significantly downregulated in tomato-reared larvae. Overall, this study demonstrates that the transcriptomes of the salivary glands of the cabbage looper are strongly responsive to diet. It also provides a foundation for future functional studies that can help us understand the role of saliva of chewing insects in plant-herbivore interactions. PMID:28792546
Ding, Tao; Melcher, Ulrich
2016-01-01
Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.
Peterson, Daniel A; Hardy, Nate B; Morse, Geoffrey E; Stocks, Ian C; Okusu, Akiko; Normark, Benjamin B
2015-10-01
A jack of all trades can be master of none-this intuitive idea underlies most theoretical models of host-use evolution in plant-feeding insects, yet empirical support for trade-offs in performance on distinct host plants is weak. Trade-offs may influence the long-term evolution of host use while being difficult to detect in extant populations, but host-use evolution may also be driven by adaptations for generalism. Here we used host-use data from insect collection records to parameterize a phylogenetic model of host-use evolution in armored scale insects, a large family of plant-feeding insects with a simple, pathogen-like life history. We found that a model incorporating positive correlations between evolutionary changes in host performance best fit the observed patterns of diaspidid presence and absence on nearly all focal host taxa, suggesting that adaptations to particular hosts also enhance performance on other hosts. In contrast to the widely invoked trade-off model, we advocate a "toolbox" model of host-use evolution in which armored scale insects accumulate a set of independent genetic tools, each of which is under selection for a single function but may be useful on multiple hosts. © 2015 The Author(s).
Sharing values, sharing a vision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-31
Teamwork, partnership and shared values emerged as recurring themes at the Third Technology Transfer/Communications Conference. The program drew about 100 participants who sat through a packed two days to find ways for their laboratories and facilities to better help American business and the economy. Co-hosts were the Lawrence Livermore National Laboratory and the Lawrence Berkeley Laboratory, where most meetings took place. The conference followed traditions established at the First Technology Transfer/Communications Conference, conceived of and hosted by the Pacific Northwest Laboratory in May 1992 in Richmond, Washington, and the second conference, hosted by the National Renewable Energy Laboratory in Januarymore » 1993 in Golden, Colorado. As at the other conferences, participants at the third session represented the fields of technology transfer, public affairs and communications. They came from Department of Energy headquarters and DOE offices, laboratories and production facilities. Continued in this report are keynote address; panel discussion; workshops; and presentations in technology transfer.« less
Plants under stress by parasitic plants.
Hegenauer, Volker; Körner, Max; Albert, Markus
2017-08-01
In addition to other biotic stresses, parasitic plants pose an additional threat to plants and cause crop losses, worldwide. Plant parasites directly connect to the vasculature of host plants thereby stealing water, nutrients, and carbohydrates consequently leading to tremendously reduced biomass and losses in seed yields of the infected host plants. Initial steps to understand the molecular resistance mechanisms and the successes in ancient and recent breeding efforts will provide fundamental knowledge to further generate crop plants that will resist attacks by plant parasites. Copyright © 2017 Elsevier Ltd. All rights reserved.
Host-plant specialization in needle-eating insects of Sweden
Christer Björkman; Stig Larsson
1991-01-01
It has been suggested that the enormous diversity of phytochemicals within the plant kingdom makes it impossible for one and the same insect species to exploit all plant species (Dethier 1954, Fraenkel 1959). Not surprisingly, the number and diversity of host plants utilized by different phytophagous insects are highly variable, and the specific selective pressures...
Schmidt, Daniel J.; Ponniah, Mark; Carini, Giovannella; Blair, David; Hughes, Jane M.
2014-01-01
Comparative phylogeography of commensal species may show congruent patterns where the species involved share a common history. Temnosewellia is a genus of flatworms, members of which live in commensal relationships with host freshwater crustaceans. By constructing phylogenetic trees based on mitochondrial COI and 28S nuclear ribosomal gene sequences, this study investigated how evolutionary history has shaped patterns of intraspecific molecular variation in two such freshwater commensals. This study concentrates on the flatworm Temnosewellia albata and its critically endangered crayfish host Euastacus robertsi, which have a narrow climatically-restricted distribution on three mountaintops. The genetic data expands upon previous studies of Euastacus that suggested several vicariance events have led to the population subdivision of Euastacus robertsi. Further, our study compared historical phylogeographic patterning of these species. Our results showed that phylogeographic patterns shared among these commensals were largely congruent, featuring a shared history of limited dispersal between the mountaintops. Several hypotheses were proposed to explain the phylogeographic points of differences between the species. This study contributes significantly to understanding evolutionary relationships of commensal freshwater taxa. PMID:25279257
Nonvolatile chemical cues affect host-plant ranking by gravid Polygonia c-album females.
Mozūraitis, Raimondas; Murtazina, Rushana; Nylin, Sören; Borg-Karlson, Anna-Karin
2012-01-01
In a multiple-choice test, the preference of egg-laying Polygonia c-album (comma butterfly) females was studied for oviposition on plants bearing surrogate leaves treated with crude methanol extracts obtained from leaves of seven host-plant species: Humulus lupulus, Urtica dioica, Ulmus glabra, Salix caprea, Ribes nigrum, Corylus avellana, and Betula pubescens. The ranking order of surrogate leaves treated with host-plant extracts corresponded well to that reported on natural foliage, except R. nigrum. Thus, host-plant choice in P. c-album seems to be highly dependent on chemical cues. Moreover, after two subsequent fractionations using reversed-phase chromatography the nonvolatile chemical cues residing in the most polar water-soluble fractions evidently provided sufficient information for egg-laying females to discriminate and rank between the samples of more and less preferred plants, since the ranking in these assays was similar to that for natural foliage or whole methanol extracts, while the physical traits of the surrogate leaves remained uniform.
Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore.
Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize
2016-09-02
The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy.
Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore
Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize
2016-01-01
The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy. PMID:27585907
Kale, Shiv D; Gu, Biao; Capelluto, Daniel G S; Dou, Daolong; Feldman, Emily; Rumore, Amanda; Arredondo, Felipe D; Hanlon, Regina; Fudal, Isabelle; Rouxel, Thierry; Lawrence, Christopher B; Shan, Weixing; Tyler, Brett M
2010-07-23
Pathogens of plants and animals produce effector proteins that are transferred into the cytoplasm of host cells to suppress host defenses. One type of plant pathogens, oomycetes, produces effector proteins with N-terminal RXLR and dEER motifs that enable entry into host cells. We show here that effectors of another pathogen type, fungi, contain functional variants of the RXLR motif, and that the oomycete and fungal RXLR motifs enable binding to the phospholipid, phosphatidylinositol-3-phosphate (PI3P). We find that PI3P is abundant on the outer surface of plant cell plasma membranes and, furthermore, on some animal cells. All effectors could also enter human cells, suggesting that PI3P-mediated effector entry may be very widespread in plant, animal and human pathogenesis. Entry into both plant and animal cells involves lipid raft-mediated endocytosis. Blocking PI3P binding inhibited effector entry, suggesting new therapeutic avenues. Copyright 2010 Elsevier Inc. All rights reserved.
Mammella, Marco A; Martin, Frank N; Cacciola, Santa O; Coffey, Michael D; Faedda, Roberto; Schena, Leonardo
2013-06-01
Genetic variation within the heterothallic cosmopolitan plant pathogen Phytophthora nicotianae was determined in 96 isolates from a wide range of hosts and geographic locations by characterizing four mitochondrial (10% of the genome) and three nuclear loci. In all, 52 single-nucleotide polymorphisms (SNPs) (an average of 1 every 58 bp) and 313 sites with gaps representing 5,450 bases enabled the identification of 50 different multilocus mitochondrial haplotypes. Similarly, 24 SNPs (an average of 1 every 69 bp), with heterozygosity observed at each locus, were observed in three nuclear regions (hyp, scp, and β-tub) differentiating 40 multilocus nuclear genotypes. Both mitochondrial and nuclear markers revealed a high level of dispersal of isolates and an inconsistent geographic structuring of populations. However, a specific association was observed for host of origin and genetic grouping with both nuclear and mitochondrial sequences. In particular, the majority of citrus isolates from Italy, California, Florida, Syria, Albania, and the Philippines clustered in the same mitochondrial group and shared at least one nuclear allele. A similar association was also observed for isolates recovered from Nicotiana and Solanum spp. The present study suggests an important role of nursery populations in increasing genetic recombination within the species and the existence of extensive phenomena of migration of isolates that have been likely spread worldwide with infected plant material.
Yang, Zhenzhen; Wafula, Eric K.; Honaas, Loren A.; Zhang, Huiting; Das, Malay; Fernandez-Aparicio, Monica; Huang, Kan; Bandaranayake, Pradeepa C.G.; Wu, Biao; Der, Joshua P.; Clarke, Christopher R.; Ralph, Paula E.; Landherr, Lena; Altman, Naomi S.; Timko, Michael P.; Yoder, John I.; Westwood, James H.; dePamphilis, Claude W.
2015-01-01
The origin of novel traits is recognized as an important process underlying many major evolutionary radiations. We studied the genetic basis for the evolution of haustoria, the novel feeding organs of parasitic flowering plants, using comparative transcriptome sequencing in three species of Orobanchaceae. Around 180 genes are upregulated during haustorial development following host attachment in at least two species, and these are enriched in proteases, cell wall modifying enzymes, and extracellular secretion proteins. Additionally, about 100 shared genes are upregulated in response to haustorium inducing factors prior to host attachment. Collectively, we refer to these newly identified genes as putative “parasitism genes.” Most of these parasitism genes are derived from gene duplications in a common ancestor of Orobanchaceae and Mimulus guttatus, a related nonparasitic plant. Additionally, the signature of relaxed purifying selection and/or adaptive evolution at specific sites was detected in many haustorial genes, and may play an important role in parasite evolution. Comparative analysis of gene expression patterns in parasitic and nonparasitic angiosperms suggests that parasitism genes are derived primarily from root and floral tissues, but with some genes co-opted from other tissues. Gene duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by regulatory neofunctionalization, was an important process in the origin of parasitic haustoria. PMID:25534030
Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael
2012-01-01
Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector. PMID:23284774
Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael
2012-01-01
Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector.
Koskimäki, Janne J; Pirttilä, Anna Maria; Ihantola, Emmi-Leena; Halonen, Outi; Frank, A Carolin
2015-03-24
Endophytes are microbes that inhabit plant tissues without any apparent signs of infection, often fundamentally altering plant phenotypes. While endophytes are typically studied in plant roots, where they colonize the apoplast or dead cells, Methylobacterium extorquens strain DSM13060 is a facultatively intracellular symbiont of the meristematic cells of Scots pine (Pinus sylvestris L.) shoot tips. The bacterium promotes host growth and development without the production of known plant growth-stimulating factors. Our objective was to examine intracellular colonization by M. extorquens DSM13060 of Scots pine and sequence its genome to identify novel molecular mechanisms potentially involved in intracellular colonization and plant growth promotion. Reporter construct analysis of known growth promotion genes demonstrated that these were only weakly active inside the plant or not expressed at all. We found that bacterial cells accumulate near the nucleus in intact, living pine cells, pointing to host nuclear processes as the target of the symbiont's activity. Genome analysis identified a set of eukaryote-like functions that are common as effectors in intracellular bacterial pathogens, supporting the notion of intracellular bacterial activity. These include ankyrin repeats, transcription factors, and host-defense silencing functions and may be secreted by a recently imported type IV secretion system. Potential factors involved in host growth include three copies of phospholipase A2, an enzyme that is rare in bacteria but implicated in a range of plant cellular processes, and proteins putatively involved in gibberellin biosynthesis. Our results describe a novel endophytic niche and create a foundation for postgenomic studies of a symbiosis with potential applications in forestry and agriculture. All multicellular eukaryotes host communities of essential microbes, but most of these interactions are still poorly understood. In plants, bacterial endophytes are found inside all tissues. M. extorquens DSM13060 occupies an unusual niche inside cells of the dividing shoot tissues of a pine and stimulates seedling growth without producing cytokinin, auxin, or other plant hormones commonly synthesized by plant-associated bacteria. Here, we tracked the bacteria using a fluorescent tag and confocal laser scanning microscopy and found that they localize near the nucleus of the plant cell. This prompted us to sequence the genome and identify proteins that may affect host growth by targeting processes in the host cytoplasm and nucleus. We found many novel genes whose products may modulate plant processes from within the plant cell. Our results open up new avenues to better understand how bacteria assist in plant growth, with broad implications for plant science, forestry, and agriculture. Copyright © 2015 Koskimäki et al.
Tropical Plant–Herbivore Networks: Reconstructing Species Interactions Using DNA Barcodes
García-Robledo, Carlos; Erickson, David L.; Staines, Charles L.; Erwin, Terry L.; Kress, W. John
2013-01-01
Plants and their associated insect herbivores, represent more than 50% of all known species on earth. The first step in understanding the mechanisms generating and maintaining this important component of biodiversity is to identify plant-herbivore associations. In this study we determined insect-host plant associations for an entire guild of insect herbivores using plant DNA extracted from insect gut contents. Over two years, in a tropical rain forest in Costa Rica (La Selva Biological Station), we recorded the full diet breadth of rolled-leaf beetles, a group of herbivores that feed on plants in the order Zingiberales. Field observations were used to determine the accuracy of diet identifications using a three-locus DNA barcode (rbcL, trnH-psbA and ITS2). Using extraction techniques for ancient DNA, we obtained high-quality sequences for two of these loci from gut contents (rbcL and ITS2). Sequences were then compared to a comprehensive DNA barcode library of the Zingiberales. The rbcL locus identified host plants to family (success/sequence = 58.8%) and genus (success/sequence = 47%). For all Zingiberales except Heliconiaceae, ITS2 successfully identified host plants to genus (success/sequence = 67.1%) and species (success/sequence = 61.6%). Kindt’s sampling estimates suggest that by collecting ca. four individuals representing each plant-herbivore interaction, 99% of all host associations included in this study can be identified to genus. For plants that amplified ITS2, 99% of the hosts can be identified to species after collecting at least four individuals representing each interaction. Our study demonstrates that host plant identifications at the species-level using DNA barcodes are feasible, cost-effective, and reliable, and that reconstructing plant-herbivore networks with these methods will become the standard for a detailed understanding of these interactions. PMID:23308128
Determinants of host species range in plant viruses.
Moury, Benoît; Fabre, Frédéric; Hébrard, Eugénie; Froissart, Rémy
2017-04-01
Prediction of pathogen emergence is an important field of research, both in human health and in agronomy. Most studies of pathogen emergence have focused on the ecological or anthropic factors involved rather than on the role of intrinsic pathogen properties. The capacity of pathogens to infect a large set of host species, i.e. to possess a large host range breadth (HRB), is tightly linked to their emergence propensity. Using an extensive plant virus database, we found that four traits related to virus genome or transmission properties were strongly and robustly linked to virus HRB. Broader host ranges were observed for viruses with single-stranded genomes, those with three genome segments and nematode-transmitted viruses. Also, two contrasted groups of seed-transmitted viruses were evidenced. Those with a single-stranded genome had larger HRB than non-seed-transmitted viruses, whereas those with a double-stranded genome (almost exclusively RNA) had an extremely small HRB. From the plant side, the family taxonomic rank appeared as a critical threshold for virus host range, with a highly significant increase in barriers to infection between plant families. Accordingly, the plant-virus infectivity matrix shows a dual structure pattern: a modular pattern mainly due to viruses specialized to infect plants of a given family and a nested pattern due to generalist viruses. These results contribute to a better prediction of virus host jumps and emergence risks.
The plant host pathogen interface: cell wall and membrane dynamics of pathogen-induced responses.
Day, Brad; Graham, Terry
2007-10-01
Perception of pathogens by their hosts is the outcome of a highly coordinated and sophisticated surveillance network, tightly regulated by both host and pathogen elicitors, effectors, and signaling processes. In this article, we focus on two relatively well-studied host-pathogens systems, one involving a bacterial-plant interaction (Pseudomonas syringae-Arabidopsis) and the other involving an oomycete-plant interaction (Phytophthora sojae-soybean). We discuss the status of current research related to events occurring at the host-pathogen interface in these two systems, and how these events influence the organization and activation of resistance responses in the respective hosts. This recent research has revealed that in addition to the previously identified resistance machinery (R-proteins, molecular chaperones, etc.), the dynamics of the cell wall, membrane trafficking, and the actin cytoskeleton are intimately associated with the activation of resistance in plants. Specifically, in Arabidopsis, a possible connection between the actin machinery and R-protein- mediated induction of disease resistance is described. In the case of the P. sojae-soybean interaction, we describe the fact that a classical basal resistance elicitor, the cell wall glucan elicitor from the pathogen, can directly activate host hypersensitive cell death, which is apparently modulated in a race-specific manner by the presence of R genes in the host.
Benefit Sharing in a Global Context: Working Towards Solutions for Implementation.
Hurst, Daniel J
2017-08-01
Due to the state of globalized clinical research, questions have been raised as to what, if any, benefits those who contribute to research should receive. One model for compensating research participants is "benefit sharing," and the basic premise is that, as a matter of justice, those who contribute to scientific research should share in its benefits. While incorporated into several international documents for over two decades, benefit sharing has only been sparsely implemented. This analysis begins by addressing the concept of benefit sharing, its historical development, and how it has been applied in the context of virus sharing for influenza research. The second portion of this analysis presents recommendations for ensuring benefit sharing. These recommendations are threefold: 1) an emphasis on social pressure, 2) the revision of international documents as means to ensure benefit sharing, and 3) greater collaboration between sponsor IRB and host country IRB. Because clinical research is a globalized industry, a global model will be proposed in the second that focuses on collaboration between the sponsor and host country. This collaboration is vital in order to ensure that proper forms of benefit sharing are accomplished as a matter of justice. © 2016 John Wiley & Sons Ltd.
Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors.
Nyasembe, Vincent O; Tchouassi, David P; Pirk, Christian W W; Sole, Catherine L; Torto, Baldwyn
2018-02-01
The global spread of vector-borne diseases remains a worrying public health threat, raising the need for development of new combat strategies for vector control. Knowledge of vector ecology can be exploited in this regard, including plant feeding; a critical resource that mosquitoes of both sexes rely on for survival and other metabolic processes. However, the identity of plant species mosquitoes feed on in nature remains largely unknown. By testing the hypothesis about selectivity in plant feeding, we employed a DNA-based approach targeting trnH-psbA and matK genes and identified host plants of field-collected Afro-tropical mosquito vectors of dengue, Rift Valley fever and malaria being among the most important mosquito-borne diseases in East Africa. These included three plant species for Aedes aegypti (dengue), two for both Aedes mcintoshi and Aedes ochraceus (Rift Valley fever) and five for Anopheles gambiae (malaria). Since plant feeding is mediated by olfactory cues, we further sought to identify specific odor signatures that may modulate host plant location. Using coupled gas chromatography (GC)-electroantennographic detection, GC/mass spectrometry and electroantennogram analyses, we identified a total of 21 antennally-active components variably detected by Ae. aegypti, Ae. mcintoshi and An. gambiae from their respective host plants. Whereas Ae. aegypti predominantly detected benzenoids, Ae. mcintoshi detected mainly aldehydes while An. gambiae detected sesquiterpenes and alkenes. Interestingly, the monoterpenes β-myrcene and (E)-β-ocimene were consistently detected by all the mosquito species and present in all the identified host plants, suggesting that they may serve as signature cues in plant location. This study highlights the utility of molecular approaches in identifying specific vector-plant associations, which can be exploited in maximizing control strategies such as such as attractive toxic sugar bait and odor-bait technology.
Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors
Nyasembe, Vincent O.; Tchouassi, David P.; Pirk, Christian W. W.; Sole, Catherine L.
2018-01-01
The global spread of vector-borne diseases remains a worrying public health threat, raising the need for development of new combat strategies for vector control. Knowledge of vector ecology can be exploited in this regard, including plant feeding; a critical resource that mosquitoes of both sexes rely on for survival and other metabolic processes. However, the identity of plant species mosquitoes feed on in nature remains largely unknown. By testing the hypothesis about selectivity in plant feeding, we employed a DNA-based approach targeting trnH-psbA and matK genes and identified host plants of field-collected Afro-tropical mosquito vectors of dengue, Rift Valley fever and malaria being among the most important mosquito-borne diseases in East Africa. These included three plant species for Aedes aegypti (dengue), two for both Aedes mcintoshi and Aedes ochraceus (Rift Valley fever) and five for Anopheles gambiae (malaria). Since plant feeding is mediated by olfactory cues, we further sought to identify specific odor signatures that may modulate host plant location. Using coupled gas chromatography (GC)-electroantennographic detection, GC/mass spectrometry and electroantennogram analyses, we identified a total of 21 antennally-active components variably detected by Ae. aegypti, Ae. mcintoshi and An. gambiae from their respective host plants. Whereas Ae. aegypti predominantly detected benzenoids, Ae. mcintoshi detected mainly aldehydes while An. gambiae detected sesquiterpenes and alkenes. Interestingly, the monoterpenes β-myrcene and (E)-β-ocimene were consistently detected by all the mosquito species and present in all the identified host plants, suggesting that they may serve as signature cues in plant location. This study highlights the utility of molecular approaches in identifying specific vector-plant associations, which can be exploited in maximizing control strategies such as such as attractive toxic sugar bait and odor-bait technology. PMID:29462150
Doubleday, Laura A D; Adler, Lynn S
2017-07-01
Dioecy, a breeding system where individual plants are exclusively male or female, has evolved repeatedly. Extensive theory describes when dioecy should arise from hermaphroditism, frequently through gynodioecy, where females and hermaphrodites coexist, and when gynodioecy should be stable. Both pollinators and herbivores often prefer the pollen-bearing sex, with sex-specific fitness effects that can affect breeding system evolution. Nursery pollination, where adult insects pollinate flowers but their larvae feed on plant reproductive tissues, is a model for understanding mutualism evolution but could also yield insights into plant breeding system evolution. We studied a recently established nursery pollination interaction between native Hadena ectypa moths and introduced gynodioecious Silene vulgaris plants in North America to assess whether oviposition was biased toward females or hermaphrodites, which traits were associated with oviposition, and the effect of oviposition on host plant fitness. Oviposition was hermaphrodite-biased and associated with deeper flowers and more stems. Sexual dimorphism in flower depth, a trait also associated with oviposition on the native host plant ( Silene stellata ), explained the hermaphrodite bias. Egg-receiving plants experienced more fruit predation than plants that received no eggs, but relatively few fruits were lost, and egg receipt did not significantly alter total fruit production at the plant level. Oviposition did not enhance pollination; egg-receiving flowers usually failed to expand and produce seeds. Together, our results suggest that H. ectypa oviposition does not exert a large fitness cost on host plants, sex-biased interactions can emerge from preferences developed on a hermaphroditic host species, and new nursery pollination interactions can arise as negative or neutral rather than as mutualistic for the plant.
Bruce, Toby J A
2015-02-01
In an environment with changing availability and quality of host plants, phytophagous insects are under selection pressure to find quality hosts. They need to maximize their fitness by locating suitable plants and avoiding unsuitable ones. Thus, they have evolved a finely tuned sensory system, for detection of host cues, and a nervous system, capable of integrating inputs from sensory neurons with a high level of spatio-temporal resolution. Insect responses to cues are not fixed but depend on the context in which they are perceived, the physiological state of the insect, and prior learning experiences. However, there are examples of insects making 'mistakes' and being attracted to poor quality hosts. While insects have evolved ways of finding hosts, plants have been under selection pressure to do precisely the opposite and evade detection or defend themselves when attacked. Once on the plant, insect-associated molecules may trigger or suppress defence depending on whether the plant or the insect is ahead in evolutionary terms. Plant volatile emission is influenced by defence responses induced by insect feeding or oviposition which can attract natural enemies but repel herbivores. Conversely, plant reproductive fitness is increased by attraction of pollinators. Interactions can be altered by other organisms associated with the plant such as other insects, plant pathogens, or mycorrhizal fungi. Plant phenotype is plastic and can be changed by epigenetic factors in adaptation to periods of biotic stress. Space and time play crucial roles in influencing the outcome of interactions between insects and plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Huang, Bin; Shi, Zhanghong; Hou, Youming
2014-01-01
Abstract Insect herbivores often have higher densities on host plants grown in monocultures than those in diverse environments. The underlying mechanisms are thought to be that polyphagous insects have difficulty in selecting food or oviposition sites when multiple host plants exist. However, this hypothesis needs to be extensively investigated. Our field experiments revealed that the population of the diamondback moths, Plutella xylostella (L.) (Lepidoptera: Plutellidae), significantly decreased in a mixed cropping field compared with a monoculture. To determine the reasons for the reduction in population in the mixed cropping field, the takeoff behavior and fecundity of females in no-choice and free-choice laboratory environments were compared by video recordings of host selection by P. xylostella . Adults displayed a significantly higher takeoff frequency in free-choice environments than those in no-choice treatments and preferred landing on Brassica campestris (L.) or Brassica juncea (Coss) plants in contrast with Brassica oleracea (L.). Female adults in the free-choice environment also laid fewer eggs compared with the monoculture. Olfaction experiments demonstrated orientation by P. xylostella to host volatiles when presented with a choice between plant odors and clean air, but females showed no preference when odors from three Brassicaceae species were presented simultaneously. We conclude that mixed cropping alters the host-finding behavior of P. xylostella resulting in reduced oviposition. PMID:25527573
Harnessing Insect-Microbe Chemical Communications To Control Insect Pests of Agricultural Systems.
Beck, John J; Vannette, Rachel L
2017-01-11
Insect pests cause serious economic, yield, and food safety problems to managed crops worldwide. Compounding these problems, insect pests often vector pathogenic or toxigenic microbes to plants. Previous work has considered plant-insect and plant-microbe interactions separately. Although insects are well-understood to use plant volatiles to locate hosts, microorganisms can produce distinct and abundant volatile compounds that in some cases strongly attract insects. In this paper, we focus on the microbial contribution to plant volatile blends, highlighting the compounds emitted and the potential for variation in microbial emission. We suggest that these aspects of microbial volatile emission may make these compounds ideal for use in agricultural applications, as they may be more specific or enhance methods currently used in insect control or monitoring. Our survey of microbial volatiles in insect-plant interactions suggests that these emissions not only signal host suitability but may indicate a distinctive time frame for optimal conditions for both insect and microbe. Exploitation of these host-specific microbe semiochemicals may provide important microbe- and host-based attractants and a basis for future plant-insect-microbe chemical ecology investigations.
Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition
Allmann, Silke; Späthe, Anna; Bisch-Knaden, Sonja; Kallenbach, Mario; Reinecke, Andreas; Sachse, Silke; Baldwin, Ian T; Hansson, Bill S
2013-01-01
The ability to decrypt volatile plant signals is essential if herbivorous insects are to optimize their choice of host plants for their offspring. Green leaf volatiles (GLVs) constitute a widespread group of defensive plant volatiles that convey a herbivory-specific message via their isomeric composition: feeding of the tobacco hornworm Manduca sexta converts (Z)-3- to (E)-2-GLVs thereby attracting predatory insects. Here we show that this isomer-coded message is monitored by ovipositing M. sexta females. We detected the isomeric shift in the host plant Datura wrightii and performed functional imaging in the primary olfactory center of M. sexta females with GLV structural isomers. We identified two isomer-specific regions responding to either (Z)-3- or (E)-2-hexenyl acetate. Field experiments demonstrated that ovipositing Manduca moths preferred (Z)-3-perfumed D. wrightii over (E)-2-perfumed plants. These results show that (E)-2-GLVs and/or specific (Z)-3/(E)-2-ratios provide information regarding host plant attack by conspecifics that ovipositing hawkmoths use for host plant selection. DOI: http://dx.doi.org/10.7554/eLife.00421.001 PMID:23682312
Molecular mimicry modulates plant host responses to pathogens.
Ronald, Pamela; Joe, Anna
2018-01-25
Pathogens often secrete molecules that mimic those present in the plant host. Recent studies indicate that some of these molecules mimic plant hormones required for development and immunity. This Viewpoint reviews the literature on microbial molecules produced by plant pathogens that functionally mimic molecules present in the plant host. This article includes examples from nematodes, bacteria and fungi with emphasis on RaxX, a microbial protein produced by the bacterial pathogen Xanthomonas oryzae pv. oryzae. RaxX mimics a plant peptide hormone, PSY (plant peptide containing sulphated tyrosine). The rice immune receptor XA21 detects sulphated RaxX but not the endogenous peptide PSY. Studies of the RaxX/XA21 system have provided insight into both host and pathogen biology and offered a framework for future work directed at understanding how XA21 and the PSY receptor(s) can be differentially activated by RaxX and endogenous PSY peptides. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Knowledge Searching and Sharing on Virtual Networks.
ERIC Educational Resources Information Center
Helokunnas, Tuija; Herrala, Juha
2001-01-01
Describes searching and sharing of knowledge on virtual networks, based on experiences gained when hosting virtual knowledge networks at Tampere University of Technology in Finland. Discusses information and knowledge management studies; role of information technology in knowledge searching and sharing; implementation and experiences of the…
Effects of Cucumber mosaic virus infection on vector and non-vector herbivores of squash.
Mauck, Kerry E; De Moraes, Consuelo M; Mescher, Mark C
2010-11-01
Plant chemicals mediating interactions with insect herbivores seem a likely target for manipulation by insectvectored plant pathogens. Yet, little is currently known about the chemical ecology of insect-vectored diseases or their effects on the ecology of vector and nonvector insects. We recently reported that a widespread plant pathogen, Cucumber mosaic virus (CMV), greatly reduces the quality of host-plants (squash) for aphid vectors, but that aphids are nevertheless attracted to the odors of infected plants-which exhibit elevated emissions of a volatile blend otherwise similar to the odor of healthy plants. This finding suggests that exaggerating existing host-location cues can be a viable vector attraction strategy for pathogens that otherwise reduce host quality for vectors. Here we report additional data regarding the effects of CMV infection on plant interactions with a common nonvector herbivore, the squash bug, Anasa tristis, which is a pest in this system. We found that adult A. tristis females preferred to oviposit on healthy plants in the field, and that healthy plants supported higher populations of nymphs. Collectively, our recent findings suggest that CMV-induced changes in host plant chemistry influence the behavior of both vector and non-vector herbivores, with significant implications both for disease spread and for broader community-level interactions.
Roy, Anirban; Spoorthi, P; Panwar, G; Bag, Manas Kumar; Prasad, T V; Kumar, Gunjeet; Gangopadhyay, K K; Dutta, M
2013-06-01
An evaluation of 70 accessions of ash gourd germplasm grown at National Bureau of Plant Genetic Resources, New Delhi, India during Kharif season (2010) showed natural occurrence of a yellow stunt disease in three accessions (IC554690, IC036330 and Pusa Ujjwal). A set of begomovirus specific primers used in PCR gave expected amplicon from all the symptomatic plants; however no betasatellite was detected. Complete genome of the begomovirus (DNA-A and DNA-B), amplified through rolling circle amplification, was cloned and sequenced. The begomovirus under study shared high sequence identities to different isolates of Tomato leaf curl New Delhi virus (ToLCNDV) and clustered with them. Among those isolates, the DNA-A and DNA-B of the present begomovirus isolate showed highest 99.6 and 96.8 % sequence identities, respectively with an isolate reported on pumpkin from India (DNA-A: AM286433, DNA-B: AM286435). Based on the sequence analysis, the begomovirus obtained from ash gourd was considered as an isolate of ToLCNDV. Thus, the present findings constitute the first report of occurrence of a new yellow stunt disease in ash gourd from India and demonstrated the association of ToLCNDV with the symptomatic samples. Occurrence of ToLCNDV in ash gourd germplasm not only adds up a new cucurbitaceous host of this virus but also raises the concern about the perpetuation of this virus in absence of its main host tomato and thus has an epidemiological relevance for understanding the rapid spread of this virus in tomato and other hosts in Indian sub-continent.
Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge
2014-01-01
The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning. We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species. Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species. We detected four and five fungal species on T. cordata and Q. petraea, respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis. For the first time, we experimentally demonstrated that for two common forestry tree species, foliar fungal pathogen richness and infestation depend on local biodiversity. Thus, local tree diversity can have positive impacts on ecosystem functioning in managed forests by decreasing the level of fungal pathogen infestation. PMID:25558092
Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge
2014-11-01
The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning.We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species.Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species.We detected four and five fungal species on T. cordata and Q. petraea , respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis . For the first time, we experimentally demonstrated that for two common forestry tree species, foliar fungal pathogen richness and infestation depend on local biodiversity. Thus, local tree diversity can have positive impacts on ecosystem functioning in managed forests by decreasing the level of fungal pathogen infestation.
Duration of emission of volatile organic compounds from mechanically damaged plant leaves
USDA-ARS?s Scientific Manuscript database
Classical biological control of invasive alien weeds depends on the use of arthropod herbivores that are sufficiently host specific to avoid risk of injuring nontarget plants. Host plant specificity is usually evaluated by using a combination of behavioral and developmental experiments under choice...
Hessian fly - associated bacteria: transmission, essentiality, and composition
USDA-ARS?s Scientific Manuscript database
Plant-feeding insects have been recently found to use microbes to manipulate host plants. Gall midges are one of the largest groups of insects that manipulate host plants extensively. In this study, we systematically analyzed for the first time bacteria associated with the Hessian fly (HF, Mayetio...
Production of phytoalexins in peanut (Arachis hypogaea) seed elicited by selected microorganisms
USDA-ARS?s Scientific Manuscript database
Plants accumulate defensive phytoalexins in response to the presence of pathogens, which in turn produce phytoalexin-detoxification enzymes for successfully invading the plant host. The detoxification of a number of phytoalexins by phytopathogenic fungi has been elucidated for various host plant fam...
NASA Astrophysics Data System (ADS)
Macias Sevde, A. S.
2012-12-01
By Alejandro Macias, Erik Hobbie, Ruth Varner, Kaitlyn Steele Hemiparasites are known to suck nutrients from nearby plants but their host specificity is not well understood. Hemiparasites are ecosystem engineers, limiting surrounding plant's growth, and decreasing local biodiversity. To better understand this phenomenon, the host specificities of two hemiparasitic angiosperms, Bartsia alpina , and Pedicularis lapponica were studied above the tree line along an elevational gradient in Sweden. B. alpina specialized in wetter environments, as indicated by their higher δ13C signature, and their growth among Salixsp.Betula nana, Bistorta vivipara, Viola biflora, Geranium sp., and Trollious europaeus. P. lapponica was common in drier, less species rich environments, known as heaths, where B. nana, Empetrum negrum, Phyllodoce coeruela, Vaccinium myrtillus and Vaccinium vitis-idaea are the most common species. P. lapponica had higher foliage δ13C due to its better water-use efficiency in a dry environment. Field survey data and δN15 values of both the foliage of the parasitic plants and their potential hosts were used to determine host specificity. Since the δN15 value of the hemiparasitic plant and its host are similar due to parasitism, it was determined that P. lapponica had a preference for plants with an ericoid mycorrhizal association, such as Vaccinium sp, and E. negrum, but not for the common P. coeruela. This does not support the idea found in the literature that P. lapponica has a preference for grasses. B. alpina was less host specific, associating with non-mycorrhizal, ericoid, and ectomycorhizal plants, such as Carex sp, Vaccinium sp., and S. lapponum. The ectomycorrhizal species, Salix sp., and B. nana, were both potential hosts for B. alpina and P. lapponica due to their presence among them. However, the isotopic data revealed that B. alpina had a preference for Salix sp., and P. lapponica had a preference for B. nana.
Biotech Information-Sharing Memorandum of Understanding
EPA, FDA, and the U.S. Department of Agriculture's Animal and Plant Health Inspection Service/Biotechnology Regulatory Services share the regulatory oversight over genetically engineered plants and the foods derived from such plants.
Ding, Tao; Melcher, Ulrich
2016-01-01
Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant’s growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species. PMID:26974817
USDA-ARS?s Scientific Manuscript database
Plant pathogenic bacteria inject a cocktail of effector proteins into host plant cells to modulate the host immune response, thereby promoting pathogenicity. How or whether these effectors work cooperatively is largely unknown. The Pseudomonas syringae DC3000 effector HopF2 suppresses the host plan...
Measuring host plant selection and retention of Halyomorpha halys by a trap crop
USDA-ARS?s Scientific Manuscript database
Trap cropping may exploit a pest’s dispersal behavior and relationship with its hosts in order to protect a desired crop. Here, we used a combination of visual sampling, immunomarking, and harmonic radar to assess host plant selection and retention time of the highly mobile and invasive Halyomorpha...
USDA-ARS?s Scientific Manuscript database
The study of the genetic basis of ecological adaptation remains in its infancy, and most studies have focused on phenotypically simple traits. Host plant use by herbivorous insects is phenotypically complex. While research has illuminated the evolutionary determinants of host use, knowledge of its...
USDA-ARS?s Scientific Manuscript database
The reniform nematode (Rotylenchulus reniformis) causes economic losses in cotton and soybean in the southeastern United States, and has the ability to reproduce on more than 300 plant species. Even when the host crop is protected through the use of nematicides or host plant resistance, the potentia...
RNA translocation between parasitic plants and their hosts.
Westwood, James H; Roney, Jeannine K; Khatibi, Piyum A; Stromberg, Verlyn K
2009-05-01
Recent research indicates that RNA translocation occurs between certain parasitic plant species and their hosts. The movement of at least 27 mRNAs has been demonstrated between hosts and Cuscuta pentagona Engelm., with the largest proportion of these being regulatory genes. Movement of RNAi signals has been documented from hosts to the parasites Triphysaria versicolor (Frisch & CA Mey) and Orobanche aegyptiaca (Pers.), demonstrating that the regulation of genes in one species can be influenced by transfer of RNA signals through a parasitic association. This review considers the implications of these findings in light of present understanding of host-parasite connections and the growing body of evidence that RNAs are able to act as signal molecules that convey regulatory information in a cell- and tissue-specific manner. Together, this suggests that parasitic plants can exchange RNAs with their hosts, and that this may be part of the coordinated growth and development that occurs during the process of parasitism. This phenomenon offers promise for new insights into parasitic plants, and new opportunities for the control of parasitic weeds.
... Local Alliance Access Community Education Resources Host a Film Screening View & Share PSAs Volunteer with Us Become ... Resources to Help Your Community Host a Community Film Screening How We’re Doing: 2016 Project Report ...
Zaltsman, Adi; Lacroix, Benoît; Gafni, Yedidya; Citovsky, Vitaly
2013-01-01
One the most intriguing, yet least studied, aspects of the bacterium–host plant interaction is the role of the host ubiquitin/proteasome system (UPS) in the infection process. Increasing evidence indicates that pathogenic bacteria subvert the host UPS to facilitate infection. Although both mammalian and plant bacterial pathogens are known to use the host UPS, the first prokaryotic F-box protein, an essential component of UPS, was identified in Agrobacterium. During its infection, which culminates in genetic modification of the host cell, Agrobacterium transfers its T-DNA—as a complex (T-complex) with the bacterial VirE2 and host VIP1 proteins—into the host cell nucleus. There the T-DNA is uncoated from its protein components before undergoing integration into the host genome. It has been suggested that the host UPS mediates this uncoating process, but there is no evidence indicating that this activity can unmask the T-DNA molecule. Here we provide support for the idea that the plant UPS uncoats synthetic T-complexes via the Skp1/Cullin/F-box protein VBF pathway and exposes the T-DNA molecule to external enzymatic activity. PMID:23248273