The cutoff phenomenon in finite Markov chains.
Diaconis, P
1996-01-01
Natural mixing processes modeled by Markov chains often show a sharp cutoff in their convergence to long-time behavior. This paper presents problems where the cutoff can be proved (card shuffling, the Ehrenfests' urn). It shows that chains with polynomial growth (drunkard's walk) do not show cutoffs. The best general understanding of such cutoffs (high multiplicity of second eigenvalues due to symmetry) is explored. Examples are given where the symmetry is broken but the cutoff phenomenon persists. PMID:11607633
NASA Astrophysics Data System (ADS)
Alsing, Justin; Silva, Hector O.; Berti, Emanuele
2018-04-01
We infer the mass distribution of neutron stars in binary systems using a flexible Gaussian mixture model and use Bayesian model selection to explore evidence for multi-modality and a sharp cut-off in the mass distribution. We find overwhelming evidence for a bimodal distribution, in agreement with previous literature, and report for the first time positive evidence for a sharp cut-off at a maximum neutron star mass. We measure the maximum mass to be 2.0M⊙ < mmax < 2.2M⊙ (68%), 2.0M⊙ < mmax < 2.6M⊙ (90%), and evidence for a cut-off is robust against the choice of model for the mass distribution and to removing the most extreme (highest mass) neutron stars from the dataset. If this sharp cut-off is interpreted as the maximum stable neutron star mass allowed by the equation of state of dense matter, our measurement puts constraints on the equation of state. For a set of realistic equations of state that support >2M⊙ neutron stars, our inference of mmax is able to distinguish between models at odds ratios of up to 12: 1, whilst under a flexible piecewise polytropic equation of state model our maximum mass measurement improves constraints on the pressure at 3 - 7 × the nuclear saturation density by ˜30 - 50% compared to simply requiring mmax > 2M⊙. We obtain a lower bound on the maximum sound speed attained inside the neutron star of c_s^max > 0.63c (99.8%), ruling out c_s^max < c/√{3} at high significance. Our constraints on the maximum neutron star mass strengthen the case for neutron star-neutron star mergers as the primary source of short gamma-ray bursts.
Unjamming in models with analytic pairwise potentials
NASA Astrophysics Data System (ADS)
Kooij, Stefan; Lerner, Edan
2017-06-01
Canonical models for studying the unjamming scenario in systems of soft repulsive particles assume pairwise potentials with a sharp cutoff in the interaction range. The sharp cutoff renders the potential nonanalytic but makes it possible to describe many properties of the solid in terms of the coordination number z , which has an unambiguous definition in these cases. Pairwise potentials without a sharp cutoff in the interaction range have not been studied in this context, but should in fact be considered to understand the relevance of the unjamming phenomenology in systems where such a cutoff is not present. In this work we explore two systems with such interactions: an inverse power law and an exponentially decaying pairwise potential, with the control parameters being the exponent (of the inverse power law) for the former and the number density for the latter. Both systems are shown to exhibit the characteristic features of the unjamming transition, among which are the vanishing of the shear-to-bulk modulus ratio and the emergence of an excess of low-frequency vibrational modes. We establish a relation between the pressure-to-bulk modulus ratio and the distance to unjamming in each of our model systems. This allows us to predict the dependence of other key observables on the distance to unjamming. Our results provide the means for a quantitative estimation of the proximity of generic glass-forming models to the unjamming transition in the absence of a clear-cut definition of the coordination number and highlight the general irrelevance of nonaffine contributions to the bulk modulus.
Unjamming in models with analytic pairwise potentials.
Kooij, Stefan; Lerner, Edan
2017-06-01
Canonical models for studying the unjamming scenario in systems of soft repulsive particles assume pairwise potentials with a sharp cutoff in the interaction range. The sharp cutoff renders the potential nonanalytic but makes it possible to describe many properties of the solid in terms of the coordination number z, which has an unambiguous definition in these cases. Pairwise potentials without a sharp cutoff in the interaction range have not been studied in this context, but should in fact be considered to understand the relevance of the unjamming phenomenology in systems where such a cutoff is not present. In this work we explore two systems with such interactions: an inverse power law and an exponentially decaying pairwise potential, with the control parameters being the exponent (of the inverse power law) for the former and the number density for the latter. Both systems are shown to exhibit the characteristic features of the unjamming transition, among which are the vanishing of the shear-to-bulk modulus ratio and the emergence of an excess of low-frequency vibrational modes. We establish a relation between the pressure-to-bulk modulus ratio and the distance to unjamming in each of our model systems. This allows us to predict the dependence of other key observables on the distance to unjamming. Our results provide the means for a quantitative estimation of the proximity of generic glass-forming models to the unjamming transition in the absence of a clear-cut definition of the coordination number and highlight the general irrelevance of nonaffine contributions to the bulk modulus.
NASA Astrophysics Data System (ADS)
Wang, Yang; Zhou, Lin; Zheng, Qinghui; Lu, Hong; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia
2017-05-01
Spectrally selective absorbers (SSA) with high selectivity of absorption and sharp cut-off between high absorptivity and low emissivity are critical for efficient solar energy conversion. Here, we report the semiconductor nanowire enabled SSA with not only high absorption selectivity but also temperature dependent sharp absorption cut-off. By taking advantage of the temperature dependent bandgap of semiconductors, we systematically demonstrate that the absorption cut-off profile of the semiconductor-nanowire-based SSA can be flexibly tuned, which is quite different from most of the other SSA reported so far. As an example, silicon nanowire based selective absorbers are fabricated, with the measured absorption efficiency above (below) bandgap ˜97% (15%) combined with an extremely sharp absorption cut-off (transition region ˜200 nm), the sharpest SSA demonstrated so far. The demonstrated semiconductor-nanowire-based SSA can enable a high solar thermal efficiency of ≳86% under a wide range of operating conditions, which would be competitive candidates for the concentrated solar energy utilizations.
NASA Astrophysics Data System (ADS)
Alsing, Justin; Silva, Hector O.; Berti, Emanuele
2018-07-01
We infer the mass distribution of neutron stars in binary systems using a flexible Gaussian mixture model and use Bayesian model selection to explore evidence for multimodality and a sharp cut-off in the mass distribution. We find overwhelming evidence for a bimodal distribution, in agreement with previous literature, and report for the first time positive evidence for a sharp cut-off at a maximum neutron star mass. We measure the maximum mass to be 2.0 M⊙ < mmax < 2.2 M⊙ (68 per cent), 2.0 M⊙ < mmax < 2.6 M⊙ (90 per cent), and evidence for a cut-off is robust against the choice of model for the mass distribution and to removing the most extreme (highest mass) neutron stars from the data set. If this sharp cut-off is interpreted as the maximum stable neutron star mass allowed by the equation of state of dense matter, our measurement puts constraints on the equation of state. For a set of realistic equations of state that support >2 M⊙ neutron stars, our inference of mmax is able to distinguish between models at odds ratios of up to 12:1, whilst under a flexible piecewise polytropic equation-of-state model our maximum mass measurement improves constraints on the pressure at 3-7× the nuclear saturation density by ˜ 30-50 per cent compared to simply requiring mmax > 2 M⊙. We obtain a lower bound on the maximum sound speed attained inside the neutron star of c_ s^max > 0.63c (99.8 per cent), ruling out c_ s^max < c/√{3} at high significance. Our constraints on the maximum neutron star mass strengthen the case for neutron star-neutron star mergers as the primary source of short gamma-ray bursts.
NASA Astrophysics Data System (ADS)
Grigorian, H.
2007-05-01
We describe the basic formulation of the parametrization scheme for the instantaneous nonlocal chiral quark model in the three-flavor case. We choose to discuss the Gaussian, Lorentzian-type, Woods-Saxon, and sharp cutoff (NJL) functional forms of the momentum dependence for the form factor of the separable interaction. The four parameters, light and strange quark masses and coupling strength (G S) and range of the interaction (Λ), have been fixed by the same phenomenological inputs: pion and kaon masses and the pion decay constant and light quark mass in vacuum. The Woods-Saxon and Lorentzian-type form factors are suitable for an interpolation between sharp cutoff and soft momentum dependence. Results are tabulated for applications in models of hadron structure and quark matter at finite temperatures and chemical potentials, where separable models have been proven successfully.
On the numerical treatment of Coulomb forces in scattering problems
NASA Astrophysics Data System (ADS)
Randazzo, J. M.; Ancarani, L. U.; Colavecchia, F. D.; Gasaneo, G.; Frapiccini, A. L.
2012-11-01
We investigate the limiting procedures to obtain Coulomb interactions from short-range potentials. The application of standard techniques used for the two-body case (exponential and sharp cutoff) to the three-body break-up problem is illustrated numerically by considering the Temkin-Poet (TP) model of e-H processes.
ERIC Educational Resources Information Center
Wing, Coady; Cook, Thomas D.
2013-01-01
The sharp regression discontinuity design (RDD) has three key weaknesses compared to the randomized clinical trial (RCT). It has lower statistical power, it is more dependent on statistical modeling assumptions, and its treatment effect estimates are limited to the narrow subpopulation of cases immediately around the cutoff, which is rarely of…
Achieving uniform efficient illumination with multiple asymmetric compound parabolic luminaires
NASA Astrophysics Data System (ADS)
Gordon, Jeffrey M.; Kashin, Peter
1994-01-01
Luminaire designs based on multiple asymmetric nonimaging compound parabolic reflectors are proposed for 2-D illumination applications that require highly uniform far-field illuminance, while ensuring maximal lighting efficiency and sharp angular cutoffs. The new designs derive from recent advances in nonimaging secondary concentrators for line-focus solar collectors. The light source is not treated as a single entity, but rather is divided into two or more separate adjoining sources. An asymmetric compound parabolic luminaire is then designed around each half-source. Attaining sharp cutoffs requires relatively large reflectors. However, severe truncation of the reflectors renders these devices as compact as many conventional luminaires, at the penalty of a small fraction of the radiation being emitted outside the nominal cutoff. The configurations that maximize the uniformity of far-field illuminance offer significant improvements in flux homogeneity relative to alternative designs to date.
Achieving uniform efficient illumination with multiple asymmetric compound parabolic luminaires
NASA Astrophysics Data System (ADS)
Gordon, Jeffrey M.; Kashin, Peter
1993-11-01
Luminaire designs based on multiple asymmetric nonimaging compound parabolic reflectors are proposed for 2-D illumination applications that require highly uniform far-field illuminance, while insuring maximal lighting efficiency and sharp angular cutoffs. The new designs derive from recent advances in nonimaging secondary concentrators for line-focus solar collectors. The light source is not treated as a single entity, but rather is divided into two or more separate adjoining sources. An asymmetric Compound Parabolic Luminaire is then designed around each half-source. Attaining sharp cutoffs requires relatively large reflectors. However, severe truncation of the reflectors renders these devices as compact as many conventional luminaires, at the penalty of a small fraction of the radiation being emitted outside the nominal cutoff. The configurations that maximize the uniformity of far-field illumination offer significant improvements in flux homogeneity relative to alternative designs to date.
Digging for the Truth: Photon Archeology with GLAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stecker, F. W.
2007-07-12
Stecker, Malkan and Scully, have shown how ongoing deep surveys of galaxy luminosity functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities for energies from 0.03 eV to the Lyman limit at 13.6 eV and for redshifts out to 6 (called here the intergalactic background light or IBL). From these calculations of the IBL at various redshifts, they predict the present and past optical depth of the universe to high energy {gamma}-rays owing to interactions with photons of the IBL and the 2.7 K CMB.more » We discuss here how this proceedure can be reversed by looking for sharp cutoffs in the spectra of extragalactic {gamma}-ray sources such as blazars at high redshifts in the multi-GeV energy range with GLAST (Gamma-Ray Large Are Space Telescope). By determining the cutoff energies of sources with known redshifts, we can refine our determination of the IBL photon densities in the past, i.e., the archeo-IBL, and therefore get a better measure of the past history of the total star formation rate. Conversely, observations of sharp high energy cutoffs in the {gamma}-ray spectra of sources at unknown redshifts can be used instead of spectral lines to give a measure of their redshifts.« less
Radius anomaly in the diffraction model for heavy-ion elastic scattering
NASA Astrophysics Data System (ADS)
Pandey, L. N.; Mukherjee, S. N.
1984-04-01
The elastic scattering of heavy ions, 20Ne on 208Pb, 20Ne on 235U, 84Kr on 208Pb, and 84Kr on 232Th, is examined within the framework of Frahn's diffraction model. An analysis of the experiment using the "quarter point recipe" of the expected Fresnel cross sections yields a larger radius for 208Pb than the radii for 235U and 232Th. It is shown that inclusion of the nuclear deformation in the model removes the above anomaly in the radii, and the assumption of smooth cutoff of the angular momentum simultaneously leads to a better fit to elastic scattering data, compared to those obtained by the earlier workers on the assumption of sharp cutoff. [NUCLEAR REACTIONS Elastic scattering, 20Ne+208Pb (161.2 MeV), 20Ne+235U (175 MeV), 84Kr+208Pb (500 MeV), 84Kr+232Th (500 MeV), diffraction model, nuclear deformation.
Euclidean scalar field theory in the bilocal approximation
NASA Astrophysics Data System (ADS)
Nagy, S.; Polonyi, J.; Steib, I.
2018-04-01
The blocking step of the renormalization group method is usually carried out by restricting it to fluctuations and to local blocked action. The tree-level, bilocal saddle point contribution to the blocking, defined by the infinitesimal decrease of the sharp cutoff in momentum space, is followed within the three dimensional Euclidean ϕ6 model in this work. The phase structure is changed, new phases and relevant operators are found, and certain universality classes are restricted by the bilocal saddle point.
Imaging, cutting, and collecting instrument and method
Tench, Robert J.; Siekhaus, Wigbert J.; Balooch, Mehdi; Balhorn, Rodney L.; Allen, Michael J.
1995-01-01
Instrumentation and techniques to image small objects, such as but not limited to individual human chromosomes, with nanometer resolution, to cut-off identified parts of such objects, to move around and manipulate such cut-off parts on the substrate on which they are being imaged to predetermined locations on the substrate, and to remove the cut-off parts from the substrate. This is accomplished using an atomic force microscope (AFM) and by modification of the conventional cantilever stylus assembly of an AFM, such that plural cantilevers are used with either sharp-tips or knife-edges thereon. In addition, the invention can be utilized for measuring hardness of materials.
TeV gamma rays from 3C 279 - A possible probe of origin and intergalactic infrared radiation fields
NASA Technical Reports Server (NTRS)
Stecker, F. W.; De Jager, O. C.; Salamon, M. H.
1992-01-01
The gamma-ray spectrum of 3C 279 during 1991 June exhibited a near-perfect power law between 50 MeV and over 5 GeV with a differential spectral index of -(2.02 +/- 0.07). If extrapolated, the gamma-ray spectrum of 3C 279 should be easily detectable with first-generation air Cerenkov detectors operating above about 0.3 TeV provided there is no intergalactic absorption. However, by using model-dependent lower and upper limits for the extragalactic infrared background radiation field, a sharp cutoff of the 3C 279 spectrum is predicted at between about 0.1 and about 1 TeV. The sensitivity of present air Cerenkov detectors is good enough to measure such a cutoff, which would provide the first opportunity to obtain a measurement of the extragalactic background infrared radiation field.
Imaging, cutting, and collecting instrument and method
Tench, R.J.; Siekhaus, W.J.; Balooch, M.; Balhorn, R.L.; Allen, M.J.
1995-10-31
Instrumentation and techniques are described to image small objects, such as but not limited to individual human chromosomes, with nanometer resolution. This instrument and method are also used to cut-off identified parts of objects, to move around and manipulate the cut-off parts on the substrate on which they are being imaged to predetermined locations on the substrate, and to remove the cut-off parts from the substrate. This is accomplished using an atomic force microscope (AFM) and by modification of the conventional cantilever stylus assembly of an AFM. The plural cantilevers are used with either sharp-tips or knife-edges. In addition, the invention can be utilized for measuring the hardness of materials. 10 figs.
NASA Astrophysics Data System (ADS)
Buzzicotti, M.; Linkmann, M.; Aluie, H.; Biferale, L.; Brasseur, J.; Meneveau, C.
2018-02-01
The effects of different filtering strategies on the statistical properties of the resolved-to-subfilter scale (SFS) energy transfer are analysed in forced homogeneous and isotropic turbulence. We carry out a-priori analyses of the statistical characteristics of SFS energy transfer by filtering data obtained from direct numerical simulations with up to 20483 grid points as a function of the filter cutoff scale. In order to quantify the dependence of extreme events and anomalous scaling on the filter, we compare a sharp Fourier Galerkin projector, a Gaussian filter and a novel class of Galerkin projectors with non-sharp spectral filter profiles. Of interest is the importance of Galilean invariance and we confirm that local SFS energy transfer displays intermittency scaling in both skewness and flatness as a function of the cutoff scale. Furthermore, we quantify the robustness of scaling as a function of the filtering type.
Shifts in Summertime Precipitation Accumulation Distributions over the US
NASA Astrophysics Data System (ADS)
Martinez-Villalobos, C.; Neelin, J. D.
2016-12-01
Precipitation accumulations, i.e., the amount of precipitation integrated over the course of an event, is a variable with both important physical and societal implications. Previous observational studies show that accumulation distributions have a characteristic shape, with an approximately power law decrease at first, followed by a sharp decrease at a characteristic large event cutoff scale. This cutoff scale is important as it limits the biggest accumulation events. Stochastic prototypes show that the resulting distributions, and importantly the large event cutoff scale, can be understood as a result of the interplay between moisture loss by precipitation and changes in moisture sinks/sources due to fluctuations in moisture divergence over the course of a precipitation event. The strength of this fluctuating moisture sink/source term is expected to increase under global warming, with both theory and climate model simulations predicting a concomitant increase in the large event cutoff scale. This cutoff scale increase has important consequences as it implies an approximately exponential increase for the largest accumulation events. Given its importance, in this study we characterize and track changes in the distribution of precipitation events accumulations over the contiguous US. Accumulation distributions are calculated using hourly precipitation data from 1700 stations, covering the 1974-2013 period over May-October. The resulting distributions largely follow the aforementioned shape, with individual cutoff scales depending on the local climate. An increase in the large event cutoff scale over this period is observed over several regions over the US, most notably over the eastern third of the US. In agreement with the increase in the cutoff, almost exponential increases in the highest accumulation percentiles occur over these regions, with increases in the 99.9 percentile in the Northeast of 70% for example. The relationship to changes in daily precipitation that have previously been noted and to changes in the moisture budget over this period are examined.
Shifts in Summertime Precipitation Accumulation Distributions over the US
NASA Astrophysics Data System (ADS)
Martinez-Villalobos, C.; Neelin, J. D.
2017-12-01
Precipitation accumulations, i.e., the amount of precipitation integrated over the course of an event, is a variable with both important physical and societal implications. Previous observational studies show that accumulation distributions have a characteristic shape, with an approximately power law decrease at first, followed by a sharp decrease at a characteristic large event cutoff scale. This cutoff scale is important as it limits the biggest accumulation events. Stochastic prototypes show that the resulting distributions, and importantly the large event cutoff scale, can be understood as a result of the interplay between moisture loss by precipitation and changes in moisture sinks/sources due to fluctuations in moisture divergence over the course of a precipitation event. The strength of this fluctuating moisture sink/source term is expected to increase under global warming, with both theory and climate model simulations predicting a concomitant increase in the large event cutoff scale. This cutoff scale increase has important consequences as it implies an approximately exponential increase for the largest accumulation events. Given its importance, in this study we characterize and track changes in the distribution of precipitation events accumulations over the contiguous US. Accumulation distributions are calculated using hourly precipitation data from 1700 stations, covering the 1974-2013 period over May-October. The resulting distributions largely follow the aforementioned shape, with individual cutoff scales depending on the local climate. An increase in the large event cutoff scale over this period is observed over several regions over the US, most notably over the eastern third of the US. In agreement with the increase in the cutoff, almost exponential increases in the highest accumulation percentiles occur over these regions, with increases in the 99.9 percentile in the Northeast of 70% for example. The relationship to changes in daily precipitation that have previously been noted and to changes in the moisture budget over this period are examined.
Improving the Slepton Reach through Cascade Decay at the LHC
NASA Astrophysics Data System (ADS)
Eckel, Jonathan; Su, Shufang; Shepherd, William
2011-10-01
LHC studies on the slepton sector have mostly been focused on direct slepton Drell-Yan pair production. We analyzed the case when the left-handed sleptons are lighter than winos and can appear in the on-shell decay of those particles. The invariant mass of the lepton pairs, Mll, from the neutralino decay has a distinctive triangle shape with a sharp cutoff. We discuss the utilization of the triangle shape in the Mll distribution to identify the slepton signal. We studied the trilepton signal and obtained the σxBR xacceptance that is needed for a 5 σ discovery as a function of the cutoff mass for the LHC with center of mass energy 14 TeV and 100 fb-1 integrated luminosity. Our results are model independent such that they could be applied to other models with similar decay topology. When applied to the MSSM case, it is found that with 30 (100) fb-1, the left-handed slepton mass of about 500 (600) GeV could be reached, which extends far beyond the slepton mass reach in the usual Drell-Yan study.
Athermal brittle-to-ductile transition in amorphous solids.
Dauchot, Olivier; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques
2011-10-01
Brittle materials exhibit sharp dynamical fractures when meeting Griffith's criterion, whereas ductile materials blunt a sharp crack by plastic responses. Upon continuous pulling, ductile materials exhibit a necking instability that is dominated by a plastic flow. Usually one discusses the brittle to ductile transition as a function of increasing temperature. We introduce an athermal brittle to ductile transition as a function of the cutoff length of the interparticle potential. On the basis of extensive numerical simulations of the response to pulling the material boundaries at a constant speed we offer an explanation of the onset of ductility via the increase in the density of plastic modes as a function of the potential cutoff length. Finally we can resolve an old riddle: In experiments brittle materials can be strained under grip boundary conditions and exhibit a dynamic crack when cut with a sufficiently long initial slot. Mysteriously, in molecular dynamics simulations it appeared that cracks refused to propagate dynamically under grip boundary conditions, and continuous pulling was necessary to achieve fracture. We argue that this mystery is removed when one understands the distinction between brittle and ductile athermal amorphous materials.
Yang, Rui; Hu, Bowei; Zhang, Aofang; Gao, Dongxing; Wang, Hui; Shi, Ayuan; Lei, Zhenya; Yang, Pei
2017-03-21
Transmission properties through sharp rectangular waveguide bends are investigated to determine the cut-off bending angles of the wave propagation. We show that a simple metallic diaphragm at the bending corner with properly devised sub-wavelength defect apertures of C-slits would be readily to turn on the transmissions with scarce reflections of the propagating modes, while preserving the integrity of the transmitting fields soon after the bends. In particularly, our design also demonstrates the capability of eliminating all the unwanted cavity resonant transmissions that exist in the three-dimensional cascade sharp waveguide bends, and solely let the desired signals travel along the whole passage of the waveguide. The present approach, using C-slit diaphragms to support the sharp bending behaviors of the guided waves with greatly enhanced transmissions, would be especially effective in constructing novel waveguides and pave the way for the development of more compact and miniaturized electromagnetic systems that exploit these waveguide bends.
NASA Astrophysics Data System (ADS)
Dybalski, Wojciech; Pizzo, Alessandro
2018-02-01
Let $H_{P,\\sigma}$ be the single-electron fiber Hamiltonians of the massless Nelson model at total momentum $P$ and infrared cut-off $\\sigma>0$. We establish detailed regularity properties of the corresponding $n$-particle ground state wave functions $f^n_{P,\\sigma}$ as functions of $P$ and $\\sigma$. In particular, we show that \\[ |\\partial_{P^j}f^{n}_{P,\\sigma}(k_1,\\ldots, k_n)|, \\ \\ |\\partial_{P^j} \\partial_{P^{j'}} f^{n}_{P,\\sigma}(k_1,\\ldots, k_n)| \\leq \\frac{1}{\\sqrt{n!}} \\frac{(c\\lambda_0)^n}{\\sigma^{\\delta_{\\lambda_0}}} \\prod_{i=1}^n\\frac{ \\chi_{[\\sigma,\\kappa)}(k_i)}{|k_i|^{3/2}}, \\] where $c$ is a numerical constant, $\\lambda_0\\mapsto \\delta_{\\lambda_0}$ is a positive function of the maximal admissible coupling constant which satisfies $\\lim_{\\lambda_0\\to 0}\\delta_{\\lambda_0}=0$ and $\\chi_{[\\sigma,\\kappa)}$ is the (approximate) characteristic function of the energy region between the infrared cut-off $\\sigma$ and the ultraviolet cut-off $\\kappa$. While the analysis of the first derivative is relatively straightforward, the second derivative requires a new strategy. By solving a non-commutative recurrence relation we derive a novel formula for $f^n_{P,\\sigma}$ with improved infrared properties. In this representation $\\partial_{P^{j'}}\\partial_{P^{j}}f^n_{P,\\sigma}$ is amenable to sharp estimates obtained by iterative analytic perturbation theory in part II of this series of papers. The bounds stated above are instrumental for scattering theory of two electrons in the Nelson model, as explained in part I of this series.
Pulsar observations with the MAGIC Telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, M.; Contreras, J. L.; Otte, N.
2007-07-12
Pulsars were detected by EGRET up to energies below 20 GeV. Observations at higher energies with ground-based experiments, including MAGIC, so far failed to detect pulsars, indicating a sharp cutoff of the pulsed emission. Here we present, in particular, the results of the search for very high {gamma}-ray emission from the pulsar PSR B1951+32.
Gamma Radiation from PSR B1055-52
NASA Technical Reports Server (NTRS)
Thompson, D. J.; Bailes, M.; Bertsch, D. L.; Cordes, J.; DAmico, N. D.; Esposito, J. A.; Finley, J.; Hartman, R. C.; Hermsen, W.; Kanbach, G.;
1998-01-01
The telescopes on the Compton Gamma Ray Observatory (CCRO) have observed PSR B1055-52 a number of times between 1991 and 1998. From these data, a more detailed picture of the gamma radiation from this source has been developed, showing several characteristics which distinguish this pulsar: the light curve is complex; there is no detectable unpulsed emission; the energy spectrum is flat, with no evidence of a sharp high-energy cutoff up to greater than 4 GeV. Comparisons of the gamma-ray data with observations at longer wavelengths show that no two of the known gamma-ray pulsars have quite the same characteristics; this diversity makes interpretation in terms of theoretical models difficult.
Gamma Radiation from PSR B1055-52
NASA Technical Reports Server (NTRS)
Thompson, D. J.; Bailes, M.; Bertsch, D. L.; Cordes, J.; DAmico, N.; Esposito, J. A.; Finley, J.; Hartman, R. C.; Hermsen, W.; Kanbach, G.;
1999-01-01
The telescopes on the Compton Gamma Ray Observatory (CGRO) have observed PSR B1055-52 a number of times between 1991 and 1998. From these data, a more detailed picture of the gamma radiation from this source has been developed, showing several characteristics which distinguish this pulsar: the light curve is complex; there is no detectable unpulsed emission; the energy spectrum is flat, with no evidence of a sharp high-energy cutoff up to greater than 4 GeV. Comparisons of the gamma-ray data with observations at longer wavelengths show that no two of the known gamma-ray pulsars have quite the same characteristics; this diversity makes interpretation in terms of theoretical models difficult.
In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbielini, G; Bastieri, D.; Bechtol, K.; Bellazzini, R.;
2012-01-01
The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron- plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between approx. 6 and approx. 13 GeV with an estimated uncertainty of approx. 2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.
In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Ajello, M.
The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in themore » Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.« less
Making High-Pass Filters For Submillimeter Waves
NASA Technical Reports Server (NTRS)
Siegel, Peter H.; Lichtenberger, John A.
1991-01-01
Micromachining-and-electroforming process makes rigid metal meshes with cells ranging in size from 0.002 in. to 0.05 in. square. Series of steps involving cutting, grinding, vapor deposition, and electroforming creates self-supporting, electrically thick mesh. Width of holes typically 1.2 times cutoff wavelength of dominant waveguide mode in hole. To obtain sharp frequency-cutoff characteristic, thickness of mesh made greater than one-half of guide wavelength of mode in hole. Meshes used as high-pass filters (dichroic plates) for submillimeter electromagnetic waves. Process not limited to square silicon wafers. Round wafers also used, with slightly more complication in grinding periphery. Grid in any pattern produced in electroforming mandrel. Any platable metal or alloy used for mesh.
Binary model of Circinus X-1. I - Eccentricity from combined X-ray and radio observations
NASA Technical Reports Server (NTRS)
Murdin, P.; Jauncey, D. L.; Lerche, I.; Nicolson, G. D.; Kaluzienski, L. J.; Holt, S. S.; Haynes, R. F.
1980-01-01
A binary star model is used to account for the 16.59-d flaring behavior of the X-ray emission from Circinus X-1. The orbital eccentricity of 0.8 + or - 0.1 is derived from the X-ray light curve by assuming that the sharp X-ray cut-off every 16.59-d is a result of bound-free absorption in the primary star's stellar wind. The shape of the light curve has changed over the last eight years, and this is interpreted as due to orbital precession of the binary system. Simultaneous radio and X-ray observations of the flare from Circinus X-1 on February 1-5, 1978 are reported. These are accounted for within the framework of the model. The radio observations at 5 GHz are used independently to derive a high value of the orbital eccentricity (e = 0.7).
Oblique H.F. radiowave propagation in the main trough region of the ionosphere
NASA Astrophysics Data System (ADS)
Lockwood, M.; Mitchell, V. B.
1980-12-01
The propagation of 7.335 MHz, CW signals over a 5212 km subauroral, west-east path is studied. Measurements and semiempirical predictions are made of the amplitude distributions and Doppler shifts of the received signals. The observed amplitude distribution is fitted with a numerical fading model, yielding the power losses suffered by the signals during propagation via the predominating modes. The mid-latitude trough in the F2 peak ionization density is predicted by a statistical model to be at the latitudes of this path at these times and at low K sub p values; a sharp cut-off in low-power losses at a mean K sub p of 2.75 strongly implicates the trough in the propagation of these signals. It is shown that a simple extension of this model to allow for the trough can reproduce the form of the observed diurnal variation.
NASA Astrophysics Data System (ADS)
Briggs, P. J.; Walker, A. B.; Herbert, D. C.
1998-05-01
A one-dimensional self-consistent bipolar Monte Carlo simulation code has been used to model carrier mobilities in strained doped SiGe and the base-collector region of Si/SiGe/Si and SiC/Si heterojunction bipolar transistors (HBTs) with wide collectors, to study the variation of the cutoff frequency 0268-1242/13/5/005/img6 with collector current density 0268-1242/13/5/005/img7. Our results show that while the presence of strain enhances the electron mobility, the scattering from alloy disorder and from ionized impurities reduces the electron mobility so much that it is less than that of Si at the same doping level, leading to larger base transit times 0268-1242/13/5/005/img8 and hence poorer 0268-1242/13/5/005/img6 performance for large 0268-1242/13/5/005/img7 for an Si/SiGe/Si HBT than for an SiC/Si HBT. At high values of 0268-1242/13/5/005/img7, we demonstrate the formation of a parasitic electron barrier at the base-collector interface which causes a sharp increase in 0268-1242/13/5/005/img8 and hence a dramatic reduction in 0268-1242/13/5/005/img6. Based on a comparison of the height of this parasitic barrier with estimates from an analytical model, we suggest a physical mechanism for base pushout after barrier formation that differs somewhat from that given for the analytical model.
Decaying leptophilic dark matter at IceCube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boucenna, Sofiane M.; Chianese, Marco; INFN, Sezione di Napoli, Complesso Univ. Monte S. Angelo,Via Cinthia, Napoli, I-80126
2015-12-29
We present a novel interpretation of IceCube high energy neutrino events (with energy larger than 60 TeV) in terms of an extraterrestrial flux due to two different contributions: a flux originated by known astrophysical sources and dominating IceCube observations up to few hundreds TeV, and a new flux component where the most energetic neutrinos come from the leptophilic three-body decays of dark matter particles with a mass of few PeV. Differently from other approaches, we provide two examples of elementary particle models that do not require extremely tiny coupling constants. We find the compatibility of the theoretical predictions with themore » IceCube results when the astrophysical flux has a cutoff of the order of 100 TeV (broken power law). In this case the most energetic part of the spectrum (PeV neutrinos) is due to an extra component such as the decay of a very massive dark matter component. Due to the low statistics at our disposal we have considered for simplicity the equivalence between deposited and neutrino energy, however such approximation does not affect dramatically the qualitative results. Of course, a purely astrophysical origin of the neutrino flux (no cutoff in energy below the PeV scale — unbroken power law) is still allowed. If future data will confirm the presence of a sharp cutoff above few PeV this would be in favor of a dark matter interpretation.« less
Decaying leptophilic dark matter at IceCube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boucenna, Sofiane M.; Chianese, Marco; Miele, Gennaro
2015-12-01
We present a novel interpretation of IceCube high energy neutrino events (with energy larger than 60 TeV) in terms of an extraterrestrial flux due to two different contributions: a flux originated by known astrophysical sources and dominating IceCube observations up to few hundreds TeV, and a new flux component where the most energetic neutrinos come from the leptophilic three-body decays of dark matter particles with a mass of few PeV. Differently from other approaches, we provide two examples of elementary particle models that do not require extremely tiny coupling constants. We find the compatibility of the theoretical predictions with themore » IceCube results when the astrophysical flux has a cutoff of the order of 100 TeV (broken power law). In this case the most energetic part of the spectrum (PeV neutrinos) is due to an extra component such as the decay of a very massive dark matter component. Due to the low statistics at our disposal we have considered for simplicity the equivalence between deposited and neutrino energy, however such approximation does not affect dramatically the qualitative results. Of course, a purely astrophysical origin of the neutrino flux (no cutoff in energy below the PeV scale—unbroken power law) is still allowed. If future data will confirm the presence of a sharp cutoff above few PeV this would be in favor of a dark matter interpretation.« less
Phase-field modeling of stress-induced instabilities
NASA Astrophysics Data System (ADS)
Kassner, Klaus; Misbah, Chaouqi; Müller, Judith; Kappey, Jens; Kohlert, Peter
2001-03-01
A phase-field approach describing the dynamics of a strained solid in contact with its melt is developed. Using a formulation that is independent of the state of reference chosen for the displacement field, we write down the elastic energy in an unambiguous fashion, thus obtaining an entire class of models. According to the choice of reference state, the particular model emerging from this class will become equivalent to one of the two independently constructed models on which brief accounts have been given recently [J. Müller and M. Grant, Phys. Rev. Lett. 82, 1736 (1999); K. Kassner and C. Misbah, Europhys. Lett. 46, 217 (1999)]. We show that our phase-field approach recovers the sharp-interface limit corresponding to the continuum model equations describing the Asaro-Tiller-Grinfeld instability. Moreover, we use our model to derive hitherto unknown sharp-interface equations for a situation including a field of body forces. The numerical utility of the phase-field approach is demonstrated by reproducing some known results and by comparison with a sharp-interface simulation. We then proceed to investigate the dynamics of extended systems within the phase-field model which contains an inherent lower length cutoff, thus avoiding cusp singularities. It is found that a periodic array of grooves generically evolves into a superstructure which arises from a series of imperfect period doublings. For wave numbers close to the fastest-growing mode of the linear instability, the first period doubling can be obtained analytically. Both the dynamics of an initially periodic array and a random initial structure can be described as a coarsening process with winning grooves temporarily accelerating whereas losing ones decelerate and even reverse their direction of motion. In the absence of gravity, the end state of a laterally finite system is a single groove growing at constant velocity, as long as no secondary instabilities arise (that we have not been able to see with our code). With gravity, several grooves are possible, all of which are bound to stop eventually. A laterally infinite system approaches a scaling state in the absence of gravity and probably with gravity, too.
NASA Astrophysics Data System (ADS)
Rey, Michael; Nikitin, Andrei V.; Tyuterev, Vladimir G.
2017-10-01
Modeling atmospheres of hot exoplanets and brown dwarfs requires high-T databases that include methane as the major hydrocarbon. We report a complete theoretical line list of 12CH4 in the infrared range 0-13,400 cm-1 up to T max = 3000 K computed via a full quantum-mechanical method from ab initio potential energy and dipole moment surfaces. Over 150 billion transitions were generated with the lower rovibrational energy cutoff 33,000 cm-1 and intensity cutoff down to 10-33 cm/molecule to ensure convergent opacity predictions. Empirical corrections for 3.7 million of the strongest transitions permitted line position accuracies of 0.001-0.01 cm-1. Full data are partitioned into two sets. “Light lists” contain strong and medium transitions necessary for an accurate description of sharp features in absorption/emission spectra. For a fast and efficient modeling of quasi-continuum cross sections, billions of tiny lines are compressed in “super-line” libraries according to Rey et al. These combined data will be freely accessible via the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru), which provides a user-friendly interface for simulations of absorption coefficients, cross-sectional transmittance, and radiance. Comparisons with cold, room, and high-T experimental data show that the data reported here represent the first global theoretical methane lists suitable for high-resolution astrophysical applications.
Numerical investigation of rarefaction effects in the vicinity of a sharp leading edge
NASA Astrophysics Data System (ADS)
Pan, Shaowu; Gao, Zhenxun; Lee, Chunhian
2014-12-01
This paper presents a study of rarefaction effect on hypersonic flow over a sharp leading edge. Both continuum approach and kinetic method: a widely spread commercial Computational Fluid Dynamics-Navior-Stokes-Fourier (CFD-NSF) software - Fluent together with a direct simulation Monte Carlo (DSMC) code developed by the authors are employed for simulation of transition regime with Knudsen number ranging from 0.005 to 0.2. It is found that Fluent can predict the wall fluxes in the case of hypersonic argon flow over the sharp leading edge for the lowest Kn case (Kn = 0.005) in current paper while for other cases it also has a good agreement with DSMC except at the location near the sharp leading edge. Among all of the wall fluxes, it is found that coefficient of pressure is the most sensitive to rarefaction while heat transfer is the least one. A parameter based on translational nonequilibrium and a cut-off value of 0.34 is proposed for continuum breakdown in this paper. The structure of entropy and velocity profile in boundary layer is analyzed. Also, it is found that the ratio of heat transfer coefficient to skin friction coefficient remains uniform along the surface for the four cases in this paper.
Transformation of Waves Across the Surf Zone.
1981-03-01
Kuo is more realis- tic but still results in a sharp cut-off of the distribution at the breaking heights. 5. Goda Distribution Goda (1975) derived a...J.I., "Probabilities of Breaking Wave Characteris- tics ," Proc. 12th Coastal Engineering Conf., pp. 399- 412, 1970. Chakrabarty, S.K. and R.P. Cooley...Spring, MD 20910 21. Director 2 Instituto Oceanografico de la Armada Guayaquil, Ecuador 22. Director de Educacion de la Armada Comandancia General de
Implication of the Observable Spectral Cutoff Energy Evolution in XTE J1550-564
NASA Technical Reports Server (NTRS)
Titarchuk, Lev; Shaposhnikov, Nikolai
2010-01-01
The physical mechanisms responsible for production of the non-thermal emission in accreting black holes should be imprinted in the observational appearances of the power law tails in the X-ray spectra from these objects. Variety of spectral states observed from galactic black hole binaries by it Rossi X-ray Timing Explorer (RXTE) allow examination of the photon upscattering under different accretion regimes. We revisit of RXTE data collected from the black hole X-ray binary XTE J1550-564 during two periods of X-ray activity in 1998 and 2000 focusing on the behavior of the high energy cutoff of the power law part of the spectrum. For the 1998 outburst the Iran- sition from the low-hard state to the intermediate state was accompanied by a gradual decrease in the cutoff energy which then showed a sharp reversal to a clear increasing trend during the further evolution towards the very high and high-soft states. However, the 2000 outburst showed only the decreasing part of this pattern. Notably, the photon indexes corresponding to the cutoff increase for the 1998 event are much higher than the index values reached during the 2000 rise transition. We attribute this difference in the cutoff' energy behav- for to the different partial contributions of the thermal and non-thermal (bulk motion) Comptonization in photon upscattering. Namely, during the 1998 event the higher accretion rate presumably provided more cooling to the Comptonizing media and thus reducing the effectiveness of the thermal upscattering process. Under these conditions the bulk motion takes a leading role in boosting the input soft photons. Monte Carlo simulations of the The physical mechanisms responsible for production of the non-thermal emission in accreting black holes should be imprinted in the observational apperances of the power law tails in the X-ray spectra from these objects. Variety of spectral states observed from galactic black hole binaries by it Rossi X-ray Timing Explorer (RXTE) allow examination of the photon upscattering under different accretion regimes. We revisit of RXTE data collected from the black hole X-ray binary XTE J1550-564 during two periods of X-ray activity in 1998 and 2000 focusing on the behavior of the high energy cutoff of the power law part of the spectrum. For the 1998 outburst the Iran- sition from the low-hard state to the intermediate state was accompanied by a gradual decrease in the cutoff energy which then showed a sharp reversal to a clear increasing trend during the further evolution towards the very high and high-soft states. However, the 2000 outburst showed only the decreasing part of this pattern. Notably, the photon indexes corresponding to the cutoff increase for the 1998 event are much higher than the index values reached during the 2000 rise transition. We attribute this difference in the cutoff' energy behav- for to the different partial contributions of the thermal and non-thermal (bulk motion) Comptonization in photon upscattering. Namely, during the 1998 event the higher accretion rate presumably provided more cooling to the Comptonizing media and thus reducing the effectiveness of the thermal upscattering process. Under these conditions the bulk motion takes a leading role in boosting the input soft photons. Monte Carlo simulations of the Comptonization in a bulk motion region near an accreting black hole by Laurent & Titarchuk (2010) strongly support this scenario. strongly support this scenario
NASA Astrophysics Data System (ADS)
Guo, Hengxiao; Malkan, Matthew A.; Gu, Minfeng; Li, Linlin; Prochaska, J. Xavier; Ma, Jingzhe; You, Bei; Zafar, Tayyaba; Liao, Mai
2016-08-01
We have collected near-infrared to X-ray data of 20 multi-epoch heavily reddened SDSS quasars to investigate the physical mechanism of reddening. Of these, J2317+0005 is found to be a UV cutoff quasar. Its continuum, which usually appears normal, decreases by a factor 3.5 at 3000 Å, compared to its more typical bright state during an interval of 23 days. During this sudden continuum cut-off the broad emission line fluxes do not change, perhaps due to the large size of the broad-line region (BLR), r \\gt 23/(1+z) days. The UV continuum may have suffered a dramatic drop out. However, there are some difficulties with this explanation. Another possibility is that the intrinsic continuum did not change but was temporarily blocked out, at least toward our line of sight. As indicated by X-ray observations, the continuum rapidly recovers after 42 days. A comparison of the bright state and dim states would imply an eclipse by a dusty cloud with a reddening curve having a remarkably sharp rise shortward of 3500 Å. Under the assumption of being eclipsed by a Keplerian dusty cloud, we characterized the cloud size with our observations, however, which is a little smaller than the 3000 Å continuum-emitting size inferred from accretion disk models. Therefore, we speculate that this is due to a rapid outflow or inflow with a dusty cloud passing through our line of sight to the center.
Grooved impactor and inertial trap for sampling inhalable particulate matter
Loo, Billy W.
1984-01-01
An inertial trap and grooved impactor for providing a sharp cutoff for particles over 15 microns from entering an inhalable particulate sampler. The impactor head has a tapered surface and is provided with V-shaped grooves. The tapered surface functions for reducing particle blow-off or reentrainment while the grooves prevent particle bounce. Water droplets and any resuspended material over the 15 micron size are collected by the inertial trap and deposited in a reservoir associated with the impactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rey, Michael; Tyuterev, Vladimir G.; Nikitin, Andrei V., E-mail: michael.rey@univ-reims.fr
Modeling atmospheres of hot exoplanets and brown dwarfs requires high- T databases that include methane as the major hydrocarbon. We report a complete theoretical line list of {sup 12}CH{sub 4} in the infrared range 0–13,400 cm{sup −1} up to T {sub max} = 3000 K computed via a full quantum-mechanical method from ab initio potential energy and dipole moment surfaces. Over 150 billion transitions were generated with the lower rovibrational energy cutoff 33,000 cm{sup −1} and intensity cutoff down to 10{sup −33} cm/molecule to ensure convergent opacity predictions. Empirical corrections for 3.7 million of the strongest transitions permitted line positionmore » accuracies of 0.001–0.01 cm{sup −1}. Full data are partitioned into two sets. “Light lists” contain strong and medium transitions necessary for an accurate description of sharp features in absorption/emission spectra. For a fast and efficient modeling of quasi-continuum cross sections, billions of tiny lines are compressed in “super-line” libraries according to Rey et al. These combined data will be freely accessible via the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru), which provides a user-friendly interface for simulations of absorption coefficients, cross-sectional transmittance, and radiance. Comparisons with cold, room, and high- T experimental data show that the data reported here represent the first global theoretical methane lists suitable for high-resolution astrophysical applications.« less
Slepton discovery in electroweak cascade decay
NASA Astrophysics Data System (ADS)
Eckel, Jonathan; Shepherd, William; Su, Shufang
2012-05-01
The LHC studies on the MSSM slepton sector have mostly been focused on direct slepton Drell-Yan pair production. In this paper, we analyze the case when the sleptons are lighter than heavy neutralinos and can appear in the on-shell decay of neutralino states. In particular, we have studied the χ_1^{± }χ_2^0 associated production, with the consequent decays of χ_1^{± } → {ν_{ℓ}}ℓ χ_1^0 and χ_2^0 → ℓ ℓ χ_1^0 via on-shell sleptons. The invariant mass of the lepton pairs, m ℓℓ , from the neutralino decay has a distinctive triangle shape with a sharp kinematic cutoff. We discuss the utilization of this triangle shape in m ℓℓ distribution to identify the slepton signal. We studied the trilepton plus missing E T signal and obtained the effective cross section, σ × BR × acceptance, that is needed for a 5 σ discovery as a function of the cutoff mass for the LHC with center of mass energy 14 TeV and 100 fb-1 integrated luminosity. Our results are model independent such that they could be applied to other models with similar decay topology. When applied to the MSSM under simple assumptions, it is found that with 100 fb-1 integrated luminosity, a discovery reach in the left-handed slepton mass of about 600 GeV could be reached, which extends far beyond the slepton mass reach in the usual Drell-Yan studies.
Electromagnetic radiation trapped in the magnetosphere above the plasma frequency
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Shaw, R. R.
1973-01-01
An electromagnetic noise band is frequently observed in the outer magnetosphere by the Imp 6 spacecraft at frequencies from about 5 to 20 kHz. This noise band generally extends throughout the region from near the plasmapause boundary to near the magnetopause boundary. The noise typically has a broadband field strength of about 5 microvolts/meter. The noise band often has a sharp lower cutoff frequency at about 5 to 10 kHz, and this cutoff has been identified as the local electron plasma frequency. Since the plasma frequency in the plasmasphere and solar wind is usually above 20 kHz, it is concluded that this noise must be trapped in the low-density region between the plasmapause and magnetopause boundaries. The noise bands often contain a harmonic frequency structure which suggests that the radiation is associated with harmonics of the electron cyclotron frequency.
Saturn's ionosphere - Inferred electron densities
NASA Technical Reports Server (NTRS)
Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.
1984-01-01
During the two Voyager encounters with Saturn, radio bursts were detected which appear to have originated from atmospheric lightning storms. Although these bursts generally extended over frequencies from as low as 100 kHz to the upper detection limit of the instrument, 40 MHz, they often exhibited a sharp but variable low frequency cutoff below which bursts were not detected. We interpret the variable low-frequency extent of these bursts to be due to the reflection of the radio waves as they propagate through an ionosphere which varies with local time. We obtain estimates of electron densities at a variety of latitude and local time locations. These compare well with the dawn and dusk densities measured by the Pioneer 11 Voyager Radio Science investigations, and with model predictions for dayside densities. However, we infer a two-order-of-magnitude diurnal variation of electron density, which had not been anticipated by theoretical models of Saturn's ionosphere, and an equally dramatic extinction of ionospheric electron density by Saturn's rings. Previously announced in STAR as N84-17102
Saturn's ionosphere: Inferred electron densities
NASA Technical Reports Server (NTRS)
Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.
1983-01-01
During the two Voyager encounters with Saturn, radio bursts were detected which appear to have originated from atmospheric lightning storms. Although these bursts generally extended over frequencies from as low as 100 kHz to the upper detection limit of the instrument, 40 MHz, they often exhibited a sharp but variable low frequency cutoff below which bursts were not detected. We interpret the variable low-frequency extent of these bursts to be due to the reflection of the radio waves as they propagate through an ionosphere which varies with local time. We obtain estimates of electron densities at a variety of latitude and local time locations. These compare well with the dawn and dusk densitis measured by the Pioneer 11 Voyager Radio Science investigations, and with model predictions for dayside densities. However, we infer a two-order-of-magnitude diurnal variation of electron density, which had not been anticipated by theoretical models of Saturn's ionosphere, and an equally dramatic extinction of ionospheric electron density by Saturn's rings.
NASA Astrophysics Data System (ADS)
Taut, A.; Berger, L.; Drews, C.; Bower, J.; Keilbach, D.; Lee, M. A.; Moebius, E.; Wimmer-Schweingruber, R. F.
2017-12-01
Complementary to the direct neutral particle measurements performed by e.g. IBEX, the measurement of PickUp Ions (PUIs) constitutes a diagnostic tool to investigate the local interstellar medium. PUIs are former neutral particles that have been ionized in the inner heliosphere. Subsequently, they are picked up by the solar wind and its frozen-in magnetic field. Due to this process, a characteristic Velocity Distribution Function (VDF) with a sharp cutoff evolves, which carries information about the PUI's injection speed and thus the former neutral particle velocity. The symmetry of the injection speed about the interstellar flow vector is used to derive the interstellar flow longitude from PUI measurements. Using He PUI data obtained by the PLASTIC sensor on STEREO A, we investigate how this concept may be affected by systematic errors. The PUI VDF strongly depends on the orientation of the local interplanetary magnetic field. Recently injected PUIs with speeds just below the cutoff speed typically form a highly anisotropic torus distribution in velocity space, which leads to a longitudinal transport for certain magnetic field orientation. Therefore, we investigate how the selection of magnetic field configurations in the data affects the result for the interstellar flow longitude that we derive from the PUI cutoff. Indeed, we find that the results follow a systematic trend with the filtered magnetic field angles that can lead to a shift of the result up to 5°. In turn, this means that every value for the interstellar flow longitude derived from the PUI cutoff is affected by a systematic error depending on the utilized magnetic field orientations. Here, we present our observations, discuss possible reasons for the systematic trend we discovered, and indicate selections that may minimize the systematic errors.
NASA Astrophysics Data System (ADS)
Alaoui, Meriem; Holman, Gordon D.
2017-12-01
Hard X-ray (HXR) spectral breaks are explained in terms of a one-dimensional model with a cospatial return current. We study 19 flares observed by the Ramaty High Energy Solar Spectroscopic Imager with strong spectral breaks at energies around a few deka-keV, which cannot be explained by isotropic albedo or non-uniform ionization alone. We identify these breaks at the HXR peak time, but we obtain 8 s cadence spectra of the entire impulsive phase. Electrons with an initially power-law distribution and a sharp low-energy cutoff lose energy through return-current losses until they reach the thick target, where they lose their remaining energy through collisions. Our main results are as follows. (1) The return-current collisional thick-target model provides acceptable fits for spectra with strong breaks. (2) Limits on the plasma resistivity are derived from the fitted potential drop and deduced electron-beam flux density, assuming the return current is a drift current in the ambient plasma. These resistivities are typically 2–3 orders of magnitude higher than the Spitzer resistivity at the fitted temperature, and provide a test for the adequacy of classical resistivity and the stability of the return current. (3) Using the upper limit of the low-energy cutoff, the return current is always stable to the generation of ion-acoustic and electrostatic ion-cyclotron instabilities when the electron temperature is nine times lower than the ion temperature. (4) In most cases, the return current is most likely primarily carried by runaway electrons from the tail of the thermal distribution rather than by the bulk drifting thermal electrons. For these cases, anomalous resistivity is not required.
NASA Astrophysics Data System (ADS)
Wu, Yuechen; Chrysler, Benjamin; Kostuk, Raymond K.
2018-01-01
The technique of designing, optimizing, and fabricating broadband volume transmission holograms using dichromate gelatin (DCG) is summarized for solar spectrum-splitting applications. The spectrum-splitting photovoltaic (PV) system uses a series of single-bandgap PV cells that have different spectral conversion efficiency properties to more fully utilize the solar spectrum. In such a system, one or more high-performance optical filters are usually required to split the solar spectrum and efficiently send them to the corresponding PV cells. An ideal spectral filter should have a rectangular shape with sharp transition wavelengths. A methodology of designing and modeling a transmission DCG hologram using coupled wave analysis for different PV bandgap combinations is described. To achieve a broad diffraction bandwidth and sharp cutoff wavelength, a cascaded structure of multiple thick holograms is described. A search algorithm is then developed to optimize both single- and two-layer cascaded holographic spectrum-splitting elements for the best bandgap combinations of two- and three-junction spectrum-splitting photovoltaic (SSPV) systems illuminated under the AM1.5 solar spectrum. The power conversion efficiencies of the optimized systems are found to be 42.56% and 48.41%, respectively, using the detailed balance method, and show an improvement compared with a tandem multijunction system. A fabrication method for cascaded DCG holographic filters is also described and used to prototype the optimized filter for the three-junction SSPV system.
Leng, Shuai; Rajendran, Kishore; Gong, Hao; Zhou, Wei; Halaweish, Ahmed F; Henning, Andre; Kappler, Steffen; Baer, Matthias; Fletcher, Joel G; McCollough, Cynthia H
2018-05-28
The aims of this study were to quantitatively assess two new scan modes on a photon-counting detector computed tomography system, each designed to maximize spatial resolution, and to qualitatively demonstrate potential clinical impact using patient data. This Health Insurance Portability Act-compliant study was approved by our institutional review board. Two high-spatial-resolution scan modes (Sharp and UHR) were evaluated using phantoms to quantify spatial resolution and image noise, and results were compared with the standard mode (Macro). Patients were scanned using a conventional energy-integrating detector scanner and the photon-counting detector scanner using the same radiation dose. In first patient images, anatomic details were qualitatively evaluated to demonstrate potential clinical impact. Sharp and UHR modes had a 69% and 87% improvement in in-plane spatial resolution, respectively, compared with Macro mode (10% modulation-translation-function values of 16.05, 17.69, and 9.48 lp/cm, respectively). The cutoff spatial frequency of the UHR mode (32.4 lp/cm) corresponded to a limiting spatial resolution of 150 μm. The full-width-at-half-maximum values of the section sensitivity profiles were 0.41, 0.44, and 0.67 mm for the thinnest image thickness for each mode (0.25, 0.25, and 0.5 mm, respectively). At the same in-plane spatial resolution, Sharp and UHR images had up to 15% lower noise than Macro images. Patient images acquired in Sharp mode demonstrated better delineation of fine anatomic structures compared with Macro mode images. Phantom studies demonstrated superior resolution and noise properties for the Sharp and UHR modes relative to the standard Macro mode and patient images demonstrated the potential benefit of these scan modes for clinical practice.
Photoemission from buried interfaces in SrTiO3/LaTiO3 superlattices.
Takizawa, M; Wadati, H; Tanaka, K; Hashimoto, M; Yoshida, T; Fujimori, A; Chikamatsu, A; Kumigashira, H; Oshima, M; Shibuya, K; Mihara, T; Ohnishi, T; Lippmaa, M; Kawasaki, M; Koinuma, H; Okamoto, S; Millis, A J
2006-08-04
We have measured photoemission spectra of SrTiO3/LaTiO3 superlattices with a topmost SrTiO3 layer of variable thickness. A finite coherent spectral weight with a clear Fermi cutoff was observed at chemically abrupt SrTiO3/LaTiO3 interfaces, indicating that an "electronic reconstruction" occurs at the interface between the Mott insulator LaTiO3 and the band insulator SrTiO3. For SrTiO3/LaTiO3 interfaces annealed at high temperatures (approximately 1000 degrees C), which leads to Sr/La atomic interdiffusion and hence to the formation of La(1-x)Sr(x)TiO3-like material, the intensity of the incoherent part was found to be dramatically reduced whereas the coherent part with a sharp Fermi cutoff was enhanced due to the spread of charge. These important experimental features are well reproduced by layer dynamical-mean-field-theory calculation.
Tunneling dynamics in relativistic and nonrelativistic wave equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado, F.; Muga, J. G.; Ruschhaupt, A.
2003-09-01
We obtain the solution of a relativistic wave equation and compare it with the solution of the Schroedinger equation for a source with a sharp onset and excitation frequencies below cutoff. A scaling of position and time reduces to a single case all the (below cutoff) nonrelativistic solutions, but no such simplification holds for the relativistic equation, so that qualitatively different ''shallow'' and ''deep'' tunneling regimes may be identified relativistically. The nonrelativistic forerunner at a position beyond the penetration length of the asymptotic stationary wave does not tunnel; nevertheless, it arrives at the traversal (semiclassical or Buettiker-Landauer) time {tau}. Themore » corresponding relativistic forerunner is more complex: it oscillates due to the interference between two saddle-point contributions and may be characterized by two times for the arrival of the maxima of lower and upper envelopes. There is in addition an earlier relativistic forerunner, right after the causal front, which does tunnel. Within the penetration length, tunneling is more robust for the precursors of the relativistic equation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanz, J.; Betti, R.
A sharp boundary model for the deceleration phase of imploding capsules in inertial confinement fusion, in both direct and indirect drive, has been developed. The model includes heat conduction, local {alpha}-particle energy deposition, and shell compressibility effects. A differential equation for the temporal evolution of the modal amplitude interface is obtained. It is found that the {alpha}-particle energy has a strong influence on the evolution of the low l modes, via the compressibility of the shell. The modes are damped by vorticity convection, fire polishing, and {alpha}-particle energy deposition. The existence of a cutoff l number arises from the highmore » blow of velocity into the hot region (rocket effect) if density gradient scale length effects are taken into account at the interface. The differential equation for the modal amplitude is used as a postprocessor to the results of 1D-SARA code [J. J. Honrubia, J. Quant. Spectrosc. Radiat. Transfer. 49, 491 (1993)] in a typical capsule for indirect-drive ignition designed on the National Ignition Facility. It is found that modes with l>180 are completely stabilized. The results are in agreement with two-dimensional simulations.« less
From stable to unstable anomaly-induced inflation
NASA Astrophysics Data System (ADS)
Netto, Tibério de Paula; Pelinson, Ana M.; Shapiro, Ilya L.; Starobinsky, Alexei A.
2016-10-01
Quantum effects derived through conformal anomaly lead to an inflationary model that can be either stable or unstable. The unstable version requires a large dimensionless coefficient of about 5× {10}^8 in front of the {R}^2 term that results in the inflationary regime in the R+{R}^2 ("Starobinsky") model being a generic intermediate attractor. In this case the non-local terms in the effective action are practically irrelevant, and there is a `graceful exit' to a low curvature matter-like dominated stage driven by high-frequency oscillations of R - scalarons, which later decay to pairs of all particles and antiparticles, with the amount of primordial scalar (density) perturbations required by observations. The stable version is a genuine generic attractor, so there is no exit from it. We discuss a possible transition from stable to unstable phases of inflation. It is shown that this transition is automatic if the sharp cut-off approximation is assumed for quantum corrections in the period of transition. Furthermore, we describe two different quantum mechanisms that may provide a required large {R}^2-term in the transition period.
Appplication of statistical mechanical methods to the modeling of social networks
NASA Astrophysics Data System (ADS)
Strathman, Anthony Robert
With the recent availability of large-scale social data sets, social networks have become open to quantitative analysis via the methods of statistical physics. We examine the statistical properties of a real large-scale social network, generated from cellular phone call-trace logs. We find this network, like many other social networks to be assortative (r = 0.31) and clustered (i.e., strongly transitive, C = 0.21). We measure fluctuation scaling to identify the presence of internal structure in the network and find that structural inhomogeneity effectively disappears at the scale of a few hundred nodes, though there is no sharp cutoff. We introduce an agent-based model of social behavior, designed to model the formation and dissolution of social ties. The model is a modified Metropolis algorithm containing agents operating under the basic sociological constraints of reciprocity, communication need and transitivity. The model introduces the concept of a social temperature. We go on to show that this simple model reproduces the global statistical network features (incl. assortativity, connected fraction, mean degree, clustering, and mean shortest path length) of the real network data and undergoes two phase transitions, one being from a "gas" to a "liquid" state and the second from a liquid to a glassy state as function of this social temperature.
The energy balance of wind waves and the remote sensing problem
NASA Technical Reports Server (NTRS)
Hasselmann, K.
1972-01-01
Measurements of wave growth indicate an energy balance of the wave spectrum governed primarily by input from the atmosphere, nonlinear transfer to shorter and longer waves, and advection. The pronounced spectral peak and sharp low frequency cut-off characteristic of fetch-limited spectra are explained as a self-stabilizing feature of the nonlinear wave-wave interactions. The momentum transferred from the atmosphere to the wind waves accounts for a large part of the wind drag. These findings are relevant for remote microwave sensing of the sea surface by backscatter and passive radiometry methods.
NASA Technical Reports Server (NTRS)
Winckelmans, G. S.; Lund, T. S.; Carati, D.; Wray, A. A.
1996-01-01
Subgrid-scale models for Large Eddy Simulation (LES) in both the velocity-pressure and the vorticity-velocity formulations were evaluated and compared in a priori tests using spectral Direct Numerical Simulation (DNS) databases of isotropic turbulence: 128(exp 3) DNS of forced turbulence (Re(sub(lambda))=95.8) filtered, using the sharp cutoff filter, to both 32(exp 3) and 16(exp 3) synthetic LES fields; 512(exp 3) DNS of decaying turbulence (Re(sub(Lambda))=63.5) filtered to both 64(exp 3) and 32(exp 3) LES fields. Gaussian and top-hat filters were also used with the 128(exp 3) database. Different LES models were evaluated for each formulation: eddy-viscosity models, hyper eddy-viscosity models, mixed models, and scale-similarity models. Correlations between exact versus modeled subgrid-scale quantities were measured at three levels: tensor (traceless), vector (solenoidal 'force'), and scalar (dissipation) levels, and for both cases of uniform and variable coefficient(s). Different choices for the 1/T scaling appearing in the eddy-viscosity were also evaluated. It was found that the models for the vorticity-velocity formulation produce higher correlations with the filtered DNS data than their counterpart in the velocity-pressure formulation. It was also found that the hyper eddy-viscosity model performs better than the eddy viscosity model, in both formulations.
[Perceptual sharpness metric for visible and infrared color fusion images].
Gao, Shao-Shu; Jin, Wei-Qi; Wang, Xia; Wang, Ling-Xue; Luo, Yuan
2012-12-01
For visible and infrared color fusion images, objective sharpness assessment model is proposed to measure the clarity of detail and edge definition of the fusion image. Firstly, the contrast sensitivity functions (CSF) of the human visual system is used to reduce insensitive frequency components under certain viewing conditions. Secondly, perceptual contrast model, which takes human luminance masking effect into account, is proposed based on local band-limited contrast model. Finally, the perceptual contrast is calculated in the region of interest (contains image details and edges) in the fusion image to evaluate image perceptual sharpness. Experimental results show that the proposed perceptual sharpness metrics provides better predictions, which are more closely matched to human perceptual evaluations, than five existing sharpness (blur) metrics for color images. The proposed perceptual sharpness metrics can evaluate the perceptual sharpness for color fusion images effectively.
The life of a meander bend: Connecting shape and dynamics via analysis of a numerical model
NASA Astrophysics Data System (ADS)
Schwenk, Jon; Lanzoni, Stefano; Foufoula-Georgiou, Efi
2015-04-01
Analysis of bend-scale meandering river dynamics is a problem of theoretical and practical interest. This work introduces a method for extracting and analyzing the history of individual meander bends from inception until cutoff (called "atoms") by tracking backward through time the set of two cutoff nodes in numerical meander migration models. Application of this method to a simplified yet physically based model provides access to previously unavailable bend-scale meander dynamics over long times and at high temporal resolutions. We find that before cutoffs, the intrinsic model dynamics invariably simulate a prototypical cutoff atom shape we dub simple. Once perturbations from cutoffs occur, two other archetypal cutoff planform shapes emerge called long and round that are distinguished by a stretching along their long and perpendicular axes, respectively. Three measures of meander migration—growth rate, average migration rate, and centroid migration rate—are introduced to capture the dynamic lives of individual bends and reveal that similar cutoff atom geometries share similar dynamic histories. Specifically, through the lens of the three shape types, simples are seen to have the highest growth and average migration rates, followed by rounds, and finally longs. Using the maximum average migration rate as a metric describing an atom's dynamic past, we show a strong connection between it and two metrics of cutoff geometry. This result suggests both that early formative dynamics may be inferred from static cutoff planforms and that there exists a critical period early in a meander bend's life when its dynamic trajectory is most sensitive to cutoff perturbations. An example of how these results could be applied to Mississippi River oxbow lakes with unknown historic dynamics is shown. The results characterize the underlying model and provide a framework for comparisons against more complex models and observed dynamics.
Design and optimization of cascaded DCG based holographic elements for spectrum-splitting PV systems
NASA Astrophysics Data System (ADS)
Wu, Yuechen; Chrysler, Benjamin; Pelaez, Silvana Ayala; Kostuk, Raymond K.
2017-09-01
In this work, the technique of designing and optimizing broadband volume transmission holograms using dichromate gelatin (DCG) is summarized for solar spectrum-splitting application. Spectrum splitting photovoltaic system uses a series of single bandgap PV cells that have different spectral conversion efficiency properties to more fully utilize the solar spectrum. In such a system, one or more high performance optical filters are usually required to split the solar spectrum and efficiently send them to the corresponding PV cells. An ideal spectral filter should have a rectangular shape with sharp transition wavelengths. DCG is a near ideal holographic material for solar applications as it can achieve high refractive index modulation, low absorption and scattering properties and long-term stability to solar exposure after sealing. In this research, a methodology of designing and modeling a transmission DCG hologram using coupled wave analysis for different PV bandgap combinations is described. To achieve a broad diffraction bandwidth and sharp cut-off wavelength, a cascaded structure of multiple thick holograms is described. A search algorithm is also developed to optimize both single and two-layer cascaded holographic spectrum splitters for the best bandgap combinations of two- and three-junction SSPV systems illuminated under the AM1.5 solar spectrum. The power conversion efficiencies of the optimized systems under the AM1.5 solar spectrum are then calculated using the detailed balance method, and shows an improvement compared with tandem structure.
Study of the use of a nonlinear, rate limited, filter on pilot control signals
NASA Technical Reports Server (NTRS)
Adams, J. J.
1977-01-01
The use of a filter on the pilot's control output could improve the performance of the pilot-aircraft system. What is needed is a filter with a sharp high frequency cut-off, no resonance peak, and a minimum of lag at low frequencies. The present investigation studies the usefulness of a nonlinear, rate limited, filter in performing the needed function. The nonlinear filter is compared with a linear, first order filter, and no filter. An analytical study using pilot models and a simulation study using experienced test pilots was performed. The results showed that the nonlinear filter does promote quick, steady maneuvering. It is shown that the nonlinear filter attenuates the high frequency remnant and adds less phase lag to the low frequency signal than does the linear filter. It is also shown that the rate limit in the nonlinear filter can be set to be too restrictive, causing an unstable pilot-aircraft system response.
The effect of CT technical factors on quantification of lung fissure integrity
NASA Astrophysics Data System (ADS)
Chong, D.; Brown, M. S.; Ochs, R.; Abtin, F.; Brown, M.; Ordookhani, A.; Shaw, G.; Kim, H. J.; Gjertson, D.; Goldin, J. G.
2009-02-01
A new emphysema treatment uses endobronchial valves to perform lobar volume reduction. The degree of fissure completeness may predict treatment efficacy. This study investigated the behavior of a semiautomated algorithm for quantifying lung fissure integrity in CT with respect to reconstruction kernel and dose. Raw CT data was obtained for six asymptomatic patients from a high-risk population for lung cancer. The patients were scanned on either a Siemens Sensation 16 or 64, using a low-dose protocol of 120 kVp, 25 mAs. Images were reconstructed using kernels ranging from smooth to sharp (B10f, B30f, B50f, B70f). Research software was used to simulate an even lower-dose acquisition of 15 mAs, and images were generated at the same kernels resulting in 8 series per patient. The left major fissure was manually contoured axially at regular intervals, yielding 37 contours across all patients. These contours were read into an image analysis and pattern classification system which computed a Fissure Integrity Score (FIS) for each kernel and dose. FIS values were analyzed using a mixed-effects model with kernel and dose as fixed effects and patient as random effect to test for difference due to kernel and dose. Analysis revealed no difference in FIS between the smooth kernels (B10f, B30f) nor between sharp kernels (B50f, B70f), but there was a significant difference between the sharp and smooth groups (p = 0.020). There was no significant difference in FIS between the two low-dose reconstructions (p = 0.882). Using a cutoff of 90%, the number of incomplete fissures increased from 5 to 10 when the imaging protocol changed from B50f to B30f. Reconstruction kernel has a significant effect on quantification of fissure integrity in CT. This has potential implications when selecting patients for endobronchial valve therapy.
NASA Astrophysics Data System (ADS)
Monteiller, Vadim; Chevrot, Sébastien; Komatitsch, Dimitri; Wang, Yi
2015-08-01
We present a method for high-resolution imaging of lithospheric structures based on full waveform inversion of teleseismic waveforms. We model the propagation of seismic waves using our recently developed direct solution method/spectral-element method hybrid technique, which allows us to simulate the propagation of short-period teleseismic waves through a regional 3-D model. We implement an iterative quasi-Newton method based upon the L-BFGS algorithm, where the gradient of the misfit function is computed using the adjoint-state method. Compared to gradient or conjugate-gradient methods, the L-BFGS algorithm has a much faster convergence rate. We illustrate the potential of this method on a synthetic test case that consists of a crustal model with a crustal discontinuity at 25 km depth and a sharp Moho jump. This model contains short- and long-wavelength heterogeneities along the lateral and vertical directions. The iterative inversion starts from a smooth 1-D model derived from the IASP91 reference Earth model. We invert both radial and vertical component waveforms, starting from long-period signals filtered at 10 s and gradually decreasing the cut-off period down to 1.25 s. This multiscale algorithm quickly converges towards a model that is very close to the true model, in contrast to inversions involving short-period waveforms only, which always get trapped into a local minimum of the cost function.
NASA Astrophysics Data System (ADS)
Marghany, Maged; Ibrahim, Zelina; Van Genderen, Johan
2002-11-01
The present work is used to operationalize the azimuth cut-off concept in the study of significant wave height. Three ERS-1 images have been used along the coastal waters of Terengganu, Malaysia. The quasi-linear transform was applied to map the SAR wave spectra into real ocean wave spectra. The azimuth cut-off was then used to model the significant wave height. The results show that azimuth cut-off varied with the different period of the ERS-1 images. This is because of the fact that the azimuth cut-off is a function of wind speed and significant wave height. It is of interest to find that the significant wave height modeled from azimuth cut-off is in good relation with ground wave conditions. It can be concluded that ERS-1 can be used as a monitoring tool in detecting the significant wave height variation. The azimuth cut-off can be used to model the significant wave height. This means that the quasi-linear transform could be a good application to significant wave height variation during different seasons.
The Development of a Dynamic Geomagnetic Cutoff Rigidity Model for the International Space Station
NASA Technical Reports Server (NTRS)
Smart, D. F.; Shea, M. A.
1999-01-01
We have developed a computer model of geomagnetic vertical cutoffs applicable to the orbit of the International Space Station. This model accounts for the change in geomagnetic cutoff rigidity as a function of geomagnetic activity level. This model was delivered to NASA Johnson Space Center in July 1999 and tested on the Space Radiation Analysis Group DEC-Alpha computer system to ensure that it will properly interface with other software currently used at NASA JSC. The software was designed for ease of being upgraded as other improved models of geomagnetic cutoff as a function of magnetic activity are developed.
Accretion shock geometries in the magnetic variables
NASA Technical Reports Server (NTRS)
Stockman, H. S.
1988-01-01
The first self consistent shock models for the AM Herculis-type systems successfully identified the dominant physical processes and their signatures. These homogenous shock models predict unpolarized, Rayleigh-Jeans optical spectra with sharp cutoffs and rising polarizations as the shocks become optically thin in the ultraviolet. However, the observed energy distributions are generally flat with intermediate polarizations over a broad optical band. These and other observational evidence support a non-homogenous accretion profile which may extend over a considerable fraction of the stellar surface. Both the fundamental assumptions underlying the canonical 1-D shock model and the extension of this model to inhomogenous accretion shocks were identified, for both radial and linear structures. The observational evidence was also examined for tall shocks and little evidence was found for relative shock heights in excess of h/R(1) greater than or equal to 0.1. For several systems, upper limits to the shock height can be obtained from either x ray or optical data. These lie in the region h/R(1) is approximately 0.01 and are in general agreement with the current physical picture for these systems. The quasi-periodic optical variations observed in several magnetic variables may eventually prove to be a major aid in further understanding their accretion shock geometries.
Properties of γ -decaying isomers and isomeric ratios in the 100Sn region
NASA Astrophysics Data System (ADS)
Park, J.; Krücken, R.; Lubos, D.; Gernhäuser, R.; Lewitowicz, M.; Nishimura, S.; Ahn, D. S.; Baba, H.; Blank, B.; Blazhev, A.; Boutachkov, P.; Browne, F.; Čeliković, I.; de France, G.; Doornenbal, P.; Faestermann, T.; Fang, Y.; Fukuda, N.; Giovinazzo, J.; Goel, N.; Górska, M.; Grawe, H.; Ilieva, S.; Inabe, N.; Isobe, T.; Jungclaus, A.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Lorusso, G.; Moschner, K.; Murai, D.; Nishizuka, I.; Patel, Z.; Rajabali, M. M.; Rice, S.; Sakurai, H.; Schaffner, H.; Shimizu, Y.; Sinclair, L.; Söderström, P.-A.; Steiger, K.; Sumikama, T.; Suzuki, H.; Takeda, H.; Wang, Z.; Watanabe, H.; Wu, J.; Xu, Z. Y.
2017-10-01
Half-lives and energies of γ rays emitted in the decay of isomeric states of nuclei in the vicinity of the doubly magic 100Sn were measured in a decay spectroscopy experiment at Rikagaku Kenkyusho (The Institute of Physical and Chemical Research) of Japan Nishina Center. The measured half-lives, some with improved precision, are consistent with literature values. Three new results include a 55-keV E 2 γ ray from a new (4+) isomer with T1 /2=0.23 (6 ) μ s in 92Rh, a 44-keV E 2 γ ray from the (15+) isomer in 96Ag, and T1 /2(6+) =13 (2 ) ns in 98Cd. Shell-model calculations of electromagnetic transition strengths in the (p1 /2,g9 /2) model space agree with the experimental results. In addition, experimental isomeric ratios were compared to the theoretical predictions derived with an abrasion-ablation model and the sharp cutoff model. The results agreed within a factor of 2 for most isomers. From the nonobservation of time-delayed γ rays in 100Sn, new constraints on the T1 /2, γ -ray energy, and internal conversion coefficients are proposed for the hypothetical isomer in 100Sn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Destri, C.; Vega, H. J. de; Observatoire de Paris, LERMA, Laboratoire Associe au CNRS UMR 8112, 61, Avenue de l'Observatoire, 75014 Paris
Generically, the classical evolution of the inflaton has a brief fast-roll stage that precedes the slow-roll regime. The fast-roll stage leads to a purely attractive potential in the wave equations of curvature and tensor perturbations (while the potential is purely repulsive in the slow-roll stage). This attractive potential leads to a depression of the CMB quadrupole moment for the curvature and B-mode angular power spectra. A single new parameter emerges in this way in the early universe model: the comoving wave number k{sub 1} characteristic scale of this attractive potential. This mode k{sub 1} happens to exit the horizon preciselymore » at the transition from the fast-roll to the slow-roll stage. The fast-roll stage dynamically modifies the initial power spectrum by a transfer function D(k). We compute D(k) by solving the inflaton evolution equations. D(k) effectively suppresses the primordial power for k
Chris Maple, P A; Gray, Jim; Brown, Kevin; Brown, David
2009-04-01
Infection by Varicella Zoster virus (VZV) during pregnancy has been associated with adverse foetal development and more severe disease in the mother. Accurate determination of VZV immunity in pregnant women exposed to VZV, with no history of chickenpox, guides therapeutic interventions. The accepted gold standard assay for the determination of immunity/protection against Varicella Zoster virus was for many years the fluorescent antibody to membrane antigen (FAMA) assay which is labour intensive and subjective. A validated alternative is the Merck glycoprotein EIA (Merck Sharp & Dohme Research Laboratories, West Point, PA, USA) which reports VZV IgG levels in enzyme units per ml (EU/ml) because an internal, non-international reference serum is used as calibrator. Comparison of different VZV IgG detection assays is hampered by a lack of an agreed cut-off in standardised units. A time resolved fluorescence immunoassay (TRFIA) for VZV IgG using British Standard VZV antibody has been developed and standardised. The limit of detection of VZV IgG by this assay was of the order 39-78mIU/ml. Following comparison with the Merck glycoprotein EIA and the application of the USA Advisory Committee on Immunization Practices recommended 5.0EU/ml cut-off the following standardised cut-offs in mIU/ml are proposed. A VZV TRFIA IgG cut-off of less than 100mIU/ml VZV IgG equates with susceptibility and an equivocal range of 100mIU/ml to less than 150mIU/ml is proposed. VZV IgG levels of 150mIU/ml, or greater, are indicative of natural infection at some time and the ability to mount a protective immune response is inferred.
Understanding the Impact of Return-Current Losses on the X-Ray Emission from Solar Flares
NASA Technical Reports Server (NTRS)
Holman, Gordon D.
2012-01-01
I obtain and examine the implications of one-dimensional analytic solutions for return-current losses on an initially power-law distribution of energetic electrons with a sharp low-energy cutoff in flare plasma with classical (collisional) resistivity. These solutions show, for example, that return-current losses are not sensitive to plasma density, but are sensitive to plasma temperature and the low energy cutoff of the injected nonthermal electron distribution. A characteristic distance from the electron injection site, x(sub rc), is derived. At distances less than x(sub rc) the electron flux density is not reduced by return-current losses, but plasma heating can be substantial in this region, in the upper, coronal part of the flare loop. Before the electrons reach the collisional thick-target region of the flare loop, an injected power-law electron distribution with a low-energy cutoff maintains that structure, but with a flat energy distribution below the cutoff energy, which is now determined by the total potential drop experienced by the electrons. Modifications due to the presence of collisional losses are discussed. I compare these results with earlier analytical results and with more recent numerical simulations. Emslie's 1980 conjecture that there is a maximum integrated X-ray source brightness on the order of 10(exp -15) photons per square centimeter per second per square centimeter is examined. I find that this is not actually a maximum brightness and its value is parameter dependent, but it is nevertheless a valuable benchmark for identifying return-current losses in hard X-ray spectra. I discuss an observational approach to identifying return-current losses in flare data, including identification of a return-current "bump" in X-ray light curves at low photon energies.
Open pit mining profit maximization considering selling stage and waste rehabilitation cost
NASA Astrophysics Data System (ADS)
Muttaqin, B. I. A.; Rosyidi, C. N.
2017-11-01
In open pit mining activities, determination of the cut-off grade becomes crucial for the company since the cut-off grade affects how much profit will be earned for the mining company. In this study, we developed a cut-off grade determination mode for the open pit mining industry considering the cost of mining, waste removal (rehabilitation) cost, processing cost, fixed cost, and selling stage cost. The main goal of this study is to develop a model of cut-off grade determination to get the maximum total profit. Secondly, this study is also developed to observe the model of sensitivity based on changes in the cost components. The optimization results show that the models can help mining company managers to determine the optimal cut-off grade and also estimate how much profit that can be earned by the mining company. To illustrate the application of the models, a numerical example and a set of sensitivity analysis are presented. From the results of sensitivity analysis, we conclude that the changes in the sales price greatly affects the optimal cut-off value and the total profit.
Approximation to cutoffs of higher modes of Rayleigh waves for a layered earth model
Xu, Y.; Xia, J.; Miller, R.D.
2009-01-01
A cutoff defines the long-period termination of a Rayleigh-wave higher mode and, therefore is a key characteristic of higher mode energy relationship to several material properties of the subsurface. Cutoffs have been used to estimate the shear-wave velocity of an underlying half space of a layered earth model. In this study, we describe a method that replaces the multilayer earth model with a single surface layer overlying the half-space model, accomplished by harmonic averaging of velocities and arithmetic averaging of densities. Using numerical comparisons with theoretical models validates the single-layer approximation. Accuracy of this single-layer approximation is best defined by values of the calculated error in the frequency and phase velocity estimate at a cutoff. Our proposed method is intuitively explained using ray theory. Numerical results indicate that a cutoffs frequency is controlled by the averaged elastic properties within the passing depth of Rayleigh waves and the shear-wave velocity of the underlying half space. ?? Birkh??user Verlag, Basel 2009.
The Galactic Center: A Petaelectronvolt Cosmic-ray Acceleration Factory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yi-Qing; Tian, Zhen; Wang, Zhen
2017-02-20
The multiteraelectronvolt γ -rays from the galactic center (GC) have a cutoff at tens of teraelectronvolts, whereas the diffuse emission has no such cutoff, which is regarded as an indication of petaelectronvolt proton acceleration by the HESS experiment. It is important to understand the inconsistency and study the possibility that petaelectronvolt cosmic-ray acceleration could account for the apparently contradictory point and diffuse γ -ray spectra. In this work, we propose that the cosmic rays are accelerated up to greater than petaelectronvolts in the GC. The interaction between cosmic rays and molecular clouds is responsible for the multiteraelectronvolt γ -ray emissionsmore » from both the point and diffuse sources today. Enhanced by the small volume filling factor (VFF) of the clumpy structure, the absorption of the γ -rays leads to a sharp cutoff spectrum at tens of teraelectronvolts produced in the GC. Away from the GC, the VFF grows, and the absorption enhancement becomes negligible. As a result, the spectra of γ -ray emissions for both point and diffuse sources can be successfully reproduced under such a self-consistent picture. In addition, a “surviving tail” at ∼100 TeV is expected from the point source, which can be observed by future projects CTA and LHAASO. Neutrinos are simultaneously produced during proton-proton (PP) collision. With 5–10 years of observations, the KM3Net experiment will be able to detect the petaelectronvolt source according to our calculation.« less
Hill, Mary C.
1988-01-01
Simulated results of the coupled freshwater-saltwater sharp interface and convective-dispersive numerical models are compared by using steady-state cross-sectional simulations. The results indicate that in some aquifers the calculated sharp interface is located further landward than would be expected.
Li, Bo; Zhao, Yanxiang
2013-01-01
Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation.
A Sharp methodology for VLSI layout
NASA Astrophysics Data System (ADS)
Bapat, Shekhar
1993-01-01
The layout problem for VLSI circuits is recognized as a very difficult problem and has been traditionally decomposed into the several seemingly independent sub-problems of placement, global routing, and detailed routing. Although this structure achieves a reduction in programming complexity, it is also typically accompanied by a reduction in solution quality. Most current placement research recognizes that the separation is artificial, and that the placement and routing problems should be solved ideally in tandem. We propose a new interconnection model, Sharp and an associated partitioning algorithm. The Sharp interconnection model uses a partitioning shape that roughly resembles the musical sharp 'number sign' and makes extensive use of pre-computed rectilinear Steiner trees. The model is designed to generate strategic routing information along with the partitioning results. Additionally, the Sharp model also generates estimates of the routing congestion. We also propose the Sharp layout heuristic that solves the layout problem in its entirety. The Sharp layout heuristic makes extensive use of the Sharp partitioning model. The use of precomputed Steiner tree forms enables the method to model accurately net characteristics. For example, the Steiner tree forms can model both the length of the net and more importantly its route. In fact, the tree forms are also appropriate for modeling the timing delays of nets. The Sharp heuristic works to minimize both the total layout area by minimizing total net length (thus reducing the total wiring area), and the congestion imbalances in the various channels (thus reducing the unused or wasted channel area). Our heuristic uses circuit element movements amongst the different partitioning blocks and selection of alternate minimal Steiner tree forms to achieve this goal. The objective function for the algorithm can be modified readily to include other important circuit constraints like propagation delays. The layout technique first computes a very high-level approximation of the layout solution (i.e., the positions of the circuit elements and the associated net routes). The approximate solution is alternately refined, objective function. The technique creates well defined sub-problems and offers intermediary steps that can be solved in parallel, as well as a parallel mechanism to merge the sub-problem solutions.
EGRET/COMPTEL Observations of an Unusual, Steep-Spectrum Gamma-Ray Source
NASA Technical Reports Server (NTRS)
Thompson, D. J.; Bertsch, D. L.; Hartman, R. C.; Collmar, W.; Johnson, W. N.
1999-01-01
During analysis of sources below the threshold of the third EGRET catalog, we have discovered a source, named GRO J1400-3956 based on the best position, with a remarkably steep spectrum. Archival analysis of COMPTEL data shows that the spectrum must have a strong turn-over in the energy range between COMPTEL and EGRET. The EGRET data show some evidence of time variability, suggesting an AGN, but the spectral change of slope is larger than that seen for most gamma-ray blazars. The sharp cutoff resembles the high-energy spectral breaks seen in some gamma-ray pulsars. There have as yet been no OSSE observations of this source.
Measurement and analysis of electron-neutral collision frequency in the calibrated cutoff probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, K. H.; Seo, B. H.; Kim, J. H.
2016-03-15
As collisions between electrons and neutral particles constitute one of the most representative physical phenomena in weakly ionized plasma, the electron-neutral (e-n) collision frequency is a very important plasma parameter as regards understanding the physics of this material. In this paper, we measured the e-n collision frequency in the plasma using a calibrated cutoff-probe. A highly accurate reactance spectrum of the plasma/cutoff-probe system, which is expected based on previous cutoff-probe circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], is obtained using the calibrated cutoff-probe method, and the e-n collision frequency is calculated based on the cutoff-probe circuitmore » model together with the high-frequency conductance model. The measured e-n collision frequency (by the calibrated cutoff-probe method) is compared and analyzed with that obtained using a Langmuir probe, with the latter being calculated from the measured electron-energy distribution functions, in wide range of gas pressure.« less
A spectral radiance comparison of a noise tube and a HgXe arc lamp between 60 GHz and 600 GHz
NASA Technical Reports Server (NTRS)
Heaney, J. B.; Stewart, K. P.; Boucarut, R. A.; Moller, K. D.; Zoeller, R.
1987-01-01
The relative spectral radiance of a noise tube, model TN-167, designed for the frequency range 90-140 GHz (3.3 mm to 2.1 mm) was compared to that from a 200-watt high pressure HgXe arc lamp over the wavelength region from 0.5 to about 5 mm. A Michelson Fourier transform spectrometer and a lamellar grating instrument were used in conjunction with liquid helium-cooled bolometers of NEP 10 to the -12th to 10 to the -14th watt/(Hz) exp 1/2 to measure relative spectral radiant power. With this instrumental arrangement, the noise tube exhibited a very sharp low frequency cutoff at about 2.2/cm. The HgXe arc lamp emitted more radiant power than the noise tube in the wavelength region below 3 mm (100 GHz) down to 0.5 mm. Above 3 mm, the noise tube had a stronger output. The noise tube spectral radiance shifted to lower frequencies when the input current was lowered from 125 mA to 50 mA.
Spin correlations in quantum wires
NASA Astrophysics Data System (ADS)
Sun, Chen; Pokrovsky, Valery L.
2015-04-01
We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Y. Q.; Shemon, E. R.; Mahadevan, Vijay S.
SHARP, developed under the NEAMS Reactor Product Line, is an advanced modeling and simulation toolkit for the analysis of advanced nuclear reactors. SHARP is comprised of three physics modules currently including neutronics, thermal hydraulics, and structural mechanics. SHARP empowers designers to produce accurate results for modeling physical phenomena that have been identified as important for nuclear reactor analysis. SHARP can use existing physics codes and take advantage of existing infrastructure capabilities in the MOAB framework and the coupling driver/solver library, the Coupled Physics Environment (CouPE), which utilizes the widely used, scalable PETSc library. This report aims at identifying the coupled-physicsmore » simulation capability of SHARP by introducing the demonstration example called sahex in advance of the SHARP release expected by Mar 2016. sahex consists of 6 fuel pins with cladding, 1 control rod, sodium coolant and an outer duct wall that encloses all the other components. This example is carefully chosen to demonstrate the proof of concept for solving more complex demonstration examples such as EBR II assembly and ABTR full core. The workflow of preparing the input files, running the case and analyzing the results is demonstrated in this report. Moreover, an extension of the sahex model called sahex_core, which adds six homogenized neighboring assemblies to the full heterogeneous sahex model, is presented to test homogenization capabilities in both Nek5000 and PROTEUS. Some primary information on the configuration and build aspects for the SHARP toolkit, which includes capability to auto-download dependencies and configure/install with optimal flags in an architecture-aware fashion, is also covered by this report. A step-by-step instruction is provided to help users to create their cases. Details on these processes will be provided in the SHARP user manual that will accompany the first release.« less
High sensitivity of p-modes near the acoustic cutoff frequency to solar model parameters
NASA Technical Reports Server (NTRS)
Guenther, D. B.
1991-01-01
The p-mode frequencies of low l have been calculated for solar models with initial helium mass fraction varying from Y = 0.2753-0.2875. The differences in frequency of the p-modes in the frequency range, 2500-4500 microHz, do not exceed 1-5 microHz among the models. But in the vicinity of the acoustic cutoff frequency, near 5000 microHz the p-mode frequency differences are enhanced by a factor of 4. The enhanced sensitivity of p-modes near the acoustic cutoff frequency was further tested by calculating and comparing p-mode frequencies of low l for two solar models one incorporating the Eddington T-tau relation and the other the Krishna Swamy T-tau relation. Again, it is found that p-modes with frequencies near the acoustic cutoff frequency show a significant increase in sensitivity to the different T-tau relations, compared to lower frequency p-modes. It is noted that frequencies above the acoustic cutoff frequency are complex, hence, cannot be modeled by the adiabatic pulsation code (assumes real eigenfrequencies) used in these calculations.
Design of High Performance Microstrip LPF with Analytical Transfer Function
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Mohammad Hadi; Raziani, Saeed; Falihi, Ali
2017-12-01
By exploiting butterfly and T-shaped resonators, a new design of microstrip lowpass filter (LPF) is proposed and analyzed. The LPF is investigated in four sections. Analyzing initial resonator and its equation in detail, providing a sharp skirt by using series configuration, suppressing in middle frequencies and suppressing in high frequencies are focused in each section, respectively. To present a theoretical design, LC equivalent circuit and transfer function are precisely calculated. The measured insertion loss of the LPF is less that 0.4 dB in frequency range from DC up to 1.25 GHz, and the return loss is better than 16 dB. A narrow transition band of 217 MHz and a roll-off rate of 170.5 dB /GHz are indicative of a sharp skirt. By utilizing T-shaped and modified T-shaped resonators in the third and fourth sections, respectively, a relative stopband bandwidth (RSB) of 166 % is obtained. Furthermore, the proposed LPF occupies a small circuit of 0.116{λ _g} × 0.141{λ _g}, where {λ _g} is the guided wavelength at cut-off frequency (1.495 GHz). Finally, the proposed LPF is fabricated and the measured results agree well with the simulated ones.
Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision
Kwon, MiYoung; Legge, Gordon E.
2011-01-01
It is well known that object recognition requires spatial frequencies exceeding some critical cutoff value. People with central scotomas who rely on peripheral vision have substantial difficulty with reading and face recognition. Deficiencies of pattern recognition in peripheral vision, might result in higher cutoff requirements, and may contribute to the functional problems of people with central-field loss. Here we asked about differences in spatial-cutoff requirements in central and peripheral vision for letter and face recognition. The stimuli were the 26 letters of the English alphabet and 26 celebrity faces. Each image was blurred using a low-pass filter in the spatial frequency domain. Critical cutoffs (defined as the minimum low-pass filter cutoff yielding 80% accuracy) were obtained by measuring recognition accuracy as a function of cutoff (in cycles per object). Our data showed that critical cutoffs increased from central to peripheral vision by 20% for letter recognition and by 50% for face recognition. We asked whether these differences could be accounted for by central/peripheral differences in the contrast sensitivity function (CSF). We addressed this question by implementing an ideal-observer model which incorporates empirical CSF measurements and tested the model on letter and face recognition. The success of the model indicates that central/peripheral differences in the cutoff requirements for letter and face recognition can be accounted for by the information content of the stimulus limited by the shape of the human CSF, combined with a source of internal noise and followed by an optimal decision rule. PMID:21854800
Importance of the cutoff value in the quadratic adaptive integrate-and-fire model.
Touboul, Jonathan
2009-08-01
The quadratic adaptive integrate-and-fire model (Izhikevich, 2003 , 2007 ) is able to reproduce various firing patterns of cortical neurons and is widely used in large-scale simulations of neural networks. This model describes the dynamics of the membrane potential by a differential equation that is quadratic in the voltage, coupled to a second equation for adaptation. Integration is stopped during the rise phase of a spike at a voltage cutoff value V(c) or when it blows up. Subsequently the membrane potential is reset, and the adaptation variable is increased by a fixed amount. We show in this note that in the absence of a cutoff value, not only the voltage but also the adaptation variable diverges in finite time during spike generation in the quadratic model. The divergence of the adaptation variable makes the system very sensitive to the cutoff: changing V(c) can dramatically alter the spike patterns. Furthermore, from a computational viewpoint, the divergence of the adaptation variable implies that the time steps for numerical simulation need to be small and adaptive. However, divergence of the adaptation variable does not occur for the quartic model (Touboul, 2008 ) and the adaptive exponential integrate-and-fire model (Brette & Gerstner, 2005 ). Hence, these models are robust to changes in the cutoff value.
Gravitational Lenses and the Structure and Evolution of Galaxies
NASA Technical Reports Server (NTRS)
Kochanek, Christopher
2003-01-01
The grant has supported the completion of 16 papers and 4 conference proceedings to date. During the first year of the project we completed five papers, each of which represents a new direction in the theory and interpretation of gravitational lenses. In the first paper, "The Importance of Einstein Rings", we developed the first theory for the formation and structure of the Einstein rings formed by lensing extended sources like the host galaxies of quasar and radio sources. We applied the theory to three lenses with lensed host galaxies. For the time delay lens PG 1115+080 we found that the structure of the Einstein ring ruled out models of the gravitational potential which permitted a large Hubble constant (70 km/s Mpc). In the second paper, :Cusped Mass Models Of Gravitational Lenses", we introduced a new class of lens models where the central density is characterized by a cusp ( rho proportional to tau(sup -gamma), 1 less than gamma less than 2) as in most modern models and theories of galaxies rather than a finite core radius. In the third paper, "Global Probes of the Impact of Baryons on Dark Matter Halos", we made the first globally consistent models for the separation distribution of gravitational lenses including both galaxy and cluster lenses. We show that the key physics for the origin of the sharp separation cutoff in the separation distribution near 3 arc sec is the effect of the cooling baryons in galaxies on the density structure of the system.
Investigation of micromixing by acoustically oscillated sharp-edges
Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco
2016-01-01
Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel. PMID:27158292
Investigation of micromixing by acoustically oscillated sharp-edges.
Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco
2016-03-01
Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, John M., E-mail: jrobertson@beaumont.ed; Soehn, Matthias; Yan Di
Purpose: Understanding the dose-volume relationship of small bowel irradiation and severe acute diarrhea may help reduce the incidence of this side effect during adjuvant treatment for rectal cancer. Methods and Materials: Consecutive patients treated curatively for rectal cancer were reviewed, and the maximum grade of acute diarrhea was determined. The small bowel was outlined on the treatment planning CT scan, and a dose-volume histogram was calculated for the initial pelvic treatment (45 Gy). Logistic regression models were fitted for varying cutoff-dose levels from 5 to 45 Gy in 5-Gy increments. The model with the highest LogLikelihood was used to developmore » a cutoff-dose normal tissue complication probability (NTCP) model. Results: There were a total of 152 patients (48% preoperative, 47% postoperative, 5% other), predominantly treated prone (95%) with a three-field technique (94%) and a protracted venous infusion of 5-fluorouracil (78%). Acute Grade 3 diarrhea occurred in 21%. The largest LogLikelihood was found for the cutoff-dose logistic regression model with 15 Gy as the cutoff-dose, although the models for 20 Gy and 25 Gy had similar significance. According to this model, highly significant correlations (p <0.001) between small bowel volumes receiving at least 15 Gy and toxicity exist in the considered patient population. Similar findings applied to both the preoperatively (p = 0.001) and postoperatively irradiated groups (p = 0.001). Conclusion: The incidence of Grade 3 diarrhea was significantly correlated with the volume of small bowel receiving at least 15 Gy using a cutoff-dose NTCP model.« less
Edge Sharpness Assessment by Parametric Modeling: Application to Magnetic Resonance Imaging.
Ahmad, R; Ding, Y; Simonetti, O P
2015-05-01
In biomedical imaging, edge sharpness is an important yet often overlooked image quality metric. In this work, a semi-automatic method to quantify edge sharpness in the presence of significant noise is presented with application to magnetic resonance imaging (MRI). The method is based on parametric modeling of image edges. First, an edge map is automatically generated and one or more edges-of-interest (EOI) are manually selected using graphical user interface. Multiple exclusion criteria are then enforced to eliminate edge pixels that are potentially not suitable for sharpness assessment. Second, at each pixel of the EOI, an image intensity profile is read along a small line segment that runs locally normal to the EOI. Third, the profiles corresponding to all EOI pixels are individually fitted with a sigmoid function characterized by four parameters, including one that represents edge sharpness. Last, the distribution of the sharpness parameter is used to quantify edge sharpness. For validation, the method is applied to simulated data as well as MRI data from both phantom imaging and cine imaging experiments. This method allows for fast, quantitative evaluation of edge sharpness even in images with poor signal-to-noise ratio. Although the utility of this method is demonstrated for MRI, it can be adapted for other medical imaging applications.
Financial Distress Prediction Using Discrete-time Hazard Model and Rating Transition Matrix Approach
NASA Astrophysics Data System (ADS)
Tsai, Bi-Huei; Chang, Chih-Huei
2009-08-01
Previous studies used constant cut-off indicator to distinguish distressed firms from non-distressed ones in the one-stage prediction models. However, distressed cut-off indicator must shift according to economic prosperity, rather than remains fixed all the time. This study focuses on Taiwanese listed firms and develops financial distress prediction models based upon the two-stage method. First, this study employs the firm-specific financial ratio and market factors to measure the probability of financial distress based on the discrete-time hazard models. Second, this paper further focuses on macroeconomic factors and applies rating transition matrix approach to determine the distressed cut-off indicator. The prediction models are developed by using the training sample from 1987 to 2004, and their levels of accuracy are compared with the test sample from 2005 to 2007. As for the one-stage prediction model, the model in incorporation with macroeconomic factors does not perform better than that without macroeconomic factors. This suggests that the accuracy is not improved for one-stage models which pool the firm-specific and macroeconomic factors together. In regards to the two stage models, the negative credit cycle index implies the worse economic status during the test period, so the distressed cut-off point is adjusted to increase based on such negative credit cycle index. After the two-stage models employ such adjusted cut-off point to discriminate the distressed firms from non-distressed ones, their error of misclassification becomes lower than that of one-stage ones. The two-stage models presented in this paper have incremental usefulness in predicting financial distress.
Fox, Carrie; Bernardino, Lourdes; Cochran, Jill; Essig, Mary; Bridges, Kristie Grove
2017-11-01
Assessing pediatric patients for insulin resistance is one way to identify those who are at a high risk of developing type 2 diabetes mellitus. The homoeostasis model assessment (HOMA) is a measure of insulin resistance based on fasting blood glucose and insulin levels. Although this measure is widely used in research, cutoff values for pediatric populations have not been established. To assess the validity of HOMA cutoff values used in pediatric studies published in peer-reviewed journals. Studies published from January 2010 to December 2015 were identified through MEDLINE. Initial screening of abstracts was done to select studies that were conducted in pediatric populations and used HOMA to assess insulin resistance. Subsequent full-text review narrowed the list to only those studies that used a specific HOMA score to diagnose insulin resistance. Each study was classified as using a predetermined fixed HOMA cutoff value or a cutoff that was a percentile specific to that population. For studies that used a predetermined cutoff value, the references cited to provide evidence in support of that cutoff were evaluated. In the 298 articles analyzed, 51 different HOMA cutoff values were used to classify patients as having insulin resistance. Two hundred fifty-five studies (85.6%) used a predetermined fixed cutoff value, but only 72 (28.2%) of those studies provided a reference that supported its use. One hundred ten studies (43%) that used a fixed cutoff either cited a study that did not mention HOMA or provided no reference at all. Tracing of citation history indicated that the most commonly used cutoff values were ultimately based on studies that did not validate their use for defining insulin resistance. Little evidence exists to support HOMA cutoff values commonly used to define insulin resistance in pediatric studies. These findings highlight the importance of validating study design elements when training medical students and novice investigators. Using available data to generate population ranges for HOMA would improve its clinical utility.
A general equation to obtain multiple cut-off scores on a test from multinomial logistic regression.
Bersabé, Rosa; Rivas, Teresa
2010-05-01
The authors derive a general equation to compute multiple cut-offs on a total test score in order to classify individuals into more than two ordinal categories. The equation is derived from the multinomial logistic regression (MLR) model, which is an extension of the binary logistic regression (BLR) model to accommodate polytomous outcome variables. From this analytical procedure, cut-off scores are established at the test score (the predictor variable) at which an individual is as likely to be in category j as in category j+1 of an ordinal outcome variable. The application of the complete procedure is illustrated by an example with data from an actual study on eating disorders. In this example, two cut-off scores on the Eating Attitudes Test (EAT-26) scores are obtained in order to classify individuals into three ordinal categories: asymptomatic, symptomatic and eating disorder. Diagnoses were made from the responses to a self-report (Q-EDD) that operationalises DSM-IV criteria for eating disorders. Alternatives to the MLR model to set multiple cut-off scores are discussed.
NASA Astrophysics Data System (ADS)
Ding, Yu; Chung, Yiu-Cho; Raman, Subha V.; Simonetti, Orlando P.
2009-06-01
Real-time dynamic magnetic resonance imaging (MRI) typically sacrifices the signal-to-noise ratio (SNR) to achieve higher spatial and temporal resolution. Spatial and/or temporal filtering (e.g., low-pass filtering or averaging) of dynamic images improves the SNR at the expense of edge sharpness. We describe the application of a temporal filter for dynamic MR image series based on the Karhunen-Loeve transform (KLT) to remove random noise without blurring stationary or moving edges and requiring no training data. In this paper, we present several properties of this filter and their effects on filter performance, and propose an automatic way to find the filter cutoff based on the autocorrelation of the eigenimages. Numerical simulation and in vivo real-time cardiac cine MR image series spanning multiple cardiac cycles acquired using multi-channel sensitivity-encoded MRI, i.e., parallel imaging, are used to validate and demonstrate these properties. We found that in this application, the noise standard deviation was reduced to 42% of the original with no apparent image blurring by using the proposed filter cutoff. Greater noise reduction can be achieved by increasing the length of the image series. This advantage of KLT filtering provides flexibility in the form of another scan parameter to trade for SNR.
Interlenghi, Gabriela S; Reichenheim, Michael E; Segall-Corrêa, Ana M; Pérez-Escamilla, Rafael; Moraes, Claudia L; Salles-Costa, Rosana
2017-07-01
Background: This is the second part of a model-based approach to examine the suitability of the current cutoffs applied to the raw score of the Brazilian Household Food Insecurity Measurement Scale [Escala Brasileira de Insegurança Alimentar (EBIA)]. The approach allows identification of homogeneous groups who correspond to severity levels of food insecurity (FI) and, by extension, discriminant cutoffs able to accurately distinguish these groups. Objective: This study aims to examine whether the model-based approach for identifying optimal cutoffs first implemented in a local sample is replicated in a countrywide representative sample. Methods: Data were derived from the Brazilian National Household Sample Survey of 2013 ( n = 116,543 households). Latent class factor analysis (LCFA) models from 2 to 5 classes were applied to the scale's items to identify the number of underlying FI latent classes. Next, identification of optimal cutoffs on the overall raw score was ascertained from these identified classes. Analyses were conducted in the aggregate data and by macroregions. Finally, model-based classifications (latent classes and groupings identified thereafter) were contrasted to the traditionally used classification. Results: LCFA identified 4 homogeneous groups with a very high degree of class separation (entropy = 0.934-0.975). The following cutoffs were identified in the aggregate data: between 1 and 2 (1/2), 5 and 6 (5/6), and 10 and 11 (10/11) in households with children and/or adolescents <18 y of age (score range: 0-14), and 1/2, between 4 and 5 (4/5), and between 6 and 7 (6/7) in adult-only households (range: 0-8). With minor variations, the same cutoffs were also identified in the macroregions. Although our findings confirm, in general, the classification currently used, the limit of 1/2 (compared with 0/1) for separating the milder from the baseline category emerged consistently in all analyses. Conclusions: Nationwide findings corroborate previous local evidence that households with an overall score of 1 are more akin to those scoring negative on all items. These results may contribute to guide experts' and policymakers' decisions on the most appropriate EBIA cutoffs. © 2017 American Society for Nutrition.
Fernandez, Melissa Anne; Kubow, Stan; Gray-Donald, Katherine; Knight, JaDon; Gaskin, Pamela S
2015-12-01
To examine overweight and obesity (OWOB), changes in prevalence and potential risk factors in Barbadian children. A cross-section of students were weighed and measured. The WHO BMI-for-age growth references (BAZ), the International Obesity Task Force cut-offs and the US Centers for Disease Control and Prevention growth percentiles were used to determine OWOB prevalence. Harvard weight-for-height-for-age growth standards were used to estimate differences in OWOB prevalence from 1981 to 2010. Samples of parents and students were interviewed to describe correlates of OWOB. Barbados. Public-school students (n 580) in class 3. Based on WHO BAZ, the overall prevalence of OWOB was 34·8 % (95 % CI 30·9, 38·7 %). A trend of higher OWOB prevalence was seen for girls across cut-offs, with significant sex differences noted using the International Obesity Task Force cut-offs. According to Harvard growth standards, OWOB has increased dramatically, from 8·52 % to 32·5 %. Children were more likely to be OWOB when annual household income was below BBD 9000 (OR=2·69; 95 % CI 1·21, 5·99). Eating dinner with the family every night was associated with a lower prevalence of OWOB (OR=0·56; 95 % CI 0·36, 0·87). The sharp increase of OWOB rates in Barbados warrants attention. Sex disparities in OWOB prevalence may emerge at a young age. Promoting family meals may be a feasible option for OWOB prevention. Understanding familial and sociodemographic factors influencing OWOB will be useful in planning successful intervention or prevention programmes in Barbados.
The Role of Nonlocal Heat Flow in Hohlraums
NASA Astrophysics Data System (ADS)
Town, R. P. J.; Short, R. W.; Verdon, C. P.; Afeyan, B. B.; Glenzer, S. H.; Suter, L. J.
1997-11-01
Glenzer,(Submitted to Physical Review Letters.)* using the Thomson scattering technique, has measured the time evolution of the electron temperature in scale-1 hohlraums. The measured peak electron temperature was 5 keV. Lasnex simulations, using a flux-limited Spitzer heat diffusion model with the standard sharp-cutoff flux limiter of 0.05, gave a peak electron temperature of only 3 keV. Good agreement between simulation and experiment was found when Lasnex simulations employed a time-varying flux limiter, which had a value of 0.01 when the main drive came on. The need to severly inhibit heat transport over the entire volume of hot plasma at late time suggests that nonlocal heat flow could be important in explaining these experimental observations. In this presentation we will report on Fokker--Planck calculations of idealized hohlraums and compare them to standard hydrodynamic calculations using flux-limited Spitzer heat flow. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460. Also, work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.
Cutoff Probe for Tokamak SOL Measurement
NASA Astrophysics Data System (ADS)
Na, Byung-Keun; You, Kwang-Ho; Kim, Dae-Woong; You, Shin-Jae; Kim, Jung-Hyung; Chang, Hong-Young
2013-09-01
Since a cutoff probe was developed, there have been a lot of improvements in methodology and analysis for low temperature plasmas. However, in order to apply the cutoff probe to the Tokamak scrape-off layer (SOL), three important issues should be solved - speed, thermal protection, and short-distance (a few mm) wave propagation in magnetized plasmas. In this presentation, the improvement of cutoff probe for Tokamak is shown. The above problems can be solved using the following methods: (a) the cutoff probe can be used with short impulse of a few nano-seconds for speed improvement. (b) Ceramic covers were used for thermal protection. (c) In magnetized plasmas, the cutoff peak can be analyzed using circuit modeling and CST Microwave studio. To verify the proposed methods, the cutoff probe was applied to a Helicon plasma, and the results were compared to laser Thomson scattering results. Based on the result in the Helicon plasma, the cutoff probe will be applied to far-SOL region at the KSTAR 2013 campaign, and SOL region at the later campaign.
Clump detections and limits on moons in Jupiter's ring system.
Showalter, Mark R; Cheng, Andrew F; Weaver, Harold A; Stern, S Alan; Spencer, John R; Throop, Henry B; Birath, Emma M; Rose, Debi; Moore, Jeffrey M
2007-10-12
The dusty jovian ring system must be replenished continuously from embedded source bodies. The New Horizons spacecraft has performed a comprehensive search for kilometer-sized moons within the system, which might have revealed the larger members of this population. No new moons were found, however, indicating a sharp cutoff in the population of jovian bodies smaller than 8-kilometer-radius Adrastea. However, the search revealed two families of clumps in the main ring: one close pair and one cluster of three to five. All orbit within a brighter ringlet just interior to Adrastea. Their properties are very different from those of the few other clumpy rings known; the origin and nonrandom distribution of these features remain unexplained, but resonant confinement by Metis may play a role.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, H. L.; Mei, Z. X.; Zhang, Q. H.
2011-05-30
High-quality wurtzite MgZnO film was deposited on Si(111) substrate via a delicate interface engineering using BeO, by which solar-blind ultraviolet photodetectors were fabricated on the n-MgZnO(0001)/p-Si(111) heterojunction. A thin Be layer was deposited on clean Si surface with subsequent in situ oxidation processes, which provides an excellent template for high-Mg-content MgZnO growth. The interface controlling significantly improves the device performance, as the photodetector demonstrates a sharp cutoff wavelength at 280 nm, consistent with the optical band gap of the epilayer. Our experimental results promise potential applications of this technique in integration of solar-blind ultraviolet optoelectronic device with Si microelectronic technologies.
Numerical analysis of mixing by sharp-edge-based acoustofluidic micromixer
NASA Astrophysics Data System (ADS)
Nama, Nitesh; Huang, Po-Hsun; Jun Huang, Tony; Costanzo, Francesco
2015-11-01
Recently, acoustically oscillated sharp-edges have been employed to realize rapid and homogeneous mixing at microscales (Huang, Lab on a Chip, 13, 2013). Here, we present a numerical model, qualitatively validated by experimental results, to analyze the acoustic mixing inside a sharp-edge-based micromixer. We extend our previous numerical model (Nama, Lab on a Chip, 14, 2014) to combine the Generalized Lagrangian Mean (GLM) theory with the convection-diffusion equation, while also allowing for the presence of a background flow as observed in a typical sharp-edge-based micromixer. We employ a perturbation approach to divide the flow variables into zeroth-, first- and second-order fields which are successively solved to obtain the Lagrangian mean velocity. The Langrangian mean velocity and the background flow velocity are further employed with the convection-diffusion equation to obtain the concentration profile. We characterize the effects of various operational and geometrical parameters to suggest potential design changes for improving the mixing performance of the sharp-edge-based micromixer. Lastly, we investigate the possibility of generation of a spatio-temporally controllable concentration gradient by placing sharp-edge structures inside the microchannel.
Lock-in of elastically mounted airfoils at a 90° angle of attack
NASA Astrophysics Data System (ADS)
Ehrmann, R. S.; Loftin, K. M.; Johnson, S.; White, E. B.
2014-01-01
Reducing vortex-induced vibration (VIV) of elastically mounted cylinders has applications to petroleum, nuclear, and civil engineering. One simple method is streamlining the cylinder into an airfoil shape. However, if flow direction changes, an elastic airfoil could experience similar oscillations with even more drag. To better understand a general airfoil's response, three elastically mounted airfoil shapes are tested at a 90° angle of attack in a 3 ft by 4 ft wind tunnel. The shapes are a NACA 0018, a sharp leading- and trailing-edge (sharp-sharp) model, and a round leading- and trailing-edge (round-round) model. Mass-damping ranges from 0.96 to 1.44. For comparison to canonical VIV research, a cylinder is also tested. Since lock-in occurs near Rec=125×103, the models are also tested with a trip strip. The NACA 0018 and sharp-sharp configuration show nearly identical responses. The cylinder and round-round airfoil have responses five to eight times larger. Thus, the existence of a single sharp edge is sufficient to greatly reduce VIV at 90° angle of attack. Whereas the cylinder and round-round maximum response amplitudes are similar, cylinder lock-in occurs over a velocity range three times larger than the round-round. The tripped cylinder and round-round models' response is attenuated by 70% compared to their respective clean configurations. Hysteresis is only observed in the circular cylinder and round-round models. Hotwire data indicates the clean cylinder has a unique vortex pattern compared to the other configurations.
Force Modelling in Orthogonal Cutting Considering Flank Wear Effect
NASA Astrophysics Data System (ADS)
Rathod, Kanti Bhikhubhai; Lalwani, Devdas I.
2017-05-01
In the present work, an attempt has been made to provide a predictive cutting force model during orthogonal cutting by combining two different force models, that is, a force model for a perfectly sharp tool plus considering the effect of edge radius and a force model for a worn tool. The first force model is for a perfectly sharp tool that is based on Oxley's predictive machining theory for orthogonal cutting as the Oxley's model is for perfectly sharp tool, the effect of cutting edge radius (hone radius) is added and improve model is presented. The second force model is based on worn tool (flank wear) that was proposed by Waldorf. Further, the developed combined force model is also used to predict flank wear width using inverse approach. The performance of the developed combined total force model is compared with the previously published results for AISI 1045 and AISI 4142 materials and found reasonably good agreement.
Impact of age cutoffs on a lynch syndrome screening program.
Gudgeon, James M; Belnap, Thomas W; Williams, Janet L; Williams, Marc S
2013-07-01
To determine the impact of applying an age cutoff to tumor-based Lynch syndrome (LS) screening, specifically focusing on changes in relative effectiveness, efficiency, and cost. The project was undertaken to answer questions about implementation of the LS screening program in an integrated health care delivery system. Clinical data extracted from an internal cancer registry, previous modeling efforts, published literature, and gray data were used to populate decision models designed to answer questions about the impact of age cutoffs in LS screening. Patients with colorectal cancer (CRC) were stratified at 10-year intervals from ages 50 to 80 years and compared with no age cutoff. Outcomes are reported for a cohort of 325 patients screened and includes total cost to screen, LS cases present in the cutoff category, number of LS cases expected to be identified by screening, cost per LS case detected, and total number and percentage of LS cases missed. Applying an age cutoff to an LS screening program has considerable potential for decreasing total screening costs and increasing efficiency, but at a loss of effectiveness. Imposing an age cutoff of 50 years reduces the cost of the screening program to 16% of a program with no age cutoff, but at the expense of missing more than half of the cases. Failure to identify LS cases is magnified by a cascade effect in family members. The results of this analysis influenced the final policy in our system.
Freeman, Daniel K.; Jeng, Jed S.; Kelly, Shawn K.; Hartveit, Espen; Fried, Shelley I.
2011-01-01
Extracellular electric stimulation with sinusoidal waveforms has been shown to allow preferential activation of individual types of retinal neurons by varying stimulus frequency. It is important to understand the mechanisms underlying this frequency dependence as a step towards improving methods of preferential activation. In order to elucidate these mechanisms, we implemented a morphologically realistic model of a retinal bipolar cell and measured the response to extracellular stimulation with sinusoidal waveforms. We compared the frequency response of a passive membrane model to the kinetics of voltage-gated calcium channels that mediate synaptic release. The passive electrical properties of the membrane exhibited lowpass filtering with a relatively high cutoff frequency (nominal value = 717 Hz). This cutoff frequency was dependent on intra-axonal resistance, with shorter and wider axons yielding higher cutoff frequencies. However, we found that the cutoff frequency of bipolar cell synaptic release was primarily limited by the relatively slow opening kinetics of Land T-type calcium channels. The cutoff frequency of calcium currents depended nonlinearly on stimulus amplitude, but remained lower than the cutoff frequency of the passive membrane model for a large range of membrane potential fluctuations. These results suggest that while it may be possible to modulate the membrane potential of bipolar cells over a wide range of stimulus frequencies, synaptic release will only be initiated at the lower end of this range. PMID:21628768
NASA Astrophysics Data System (ADS)
Ali, H.; Yilbas, B. S.
2016-09-01
Phonon cross-plane transport across silicon and diamond thin films pair is considered, and thermal boundary resistance across the films pair interface is examined incorporating the cut-off mismatch and diffusive mismatch models. In the cut-off mismatch model, phonon frequency mismatch for each acoustic branch is incorporated across the interface of the silicon and diamond films pair in line with the dispersion relations of both films. The frequency-dependent and transient solution of the Boltzmann transport equation is presented, and the equilibrium phonon intensity ratios at the silicon and diamond film edges are predicted across the interface for each phonon acoustic branch. Temperature disturbance across the edges of the films pair is incorporated to assess the phonon transport characteristics due to cut-off and diffusive mismatch models across the interface. The effect of heat source size, which is allocated at high-temperature (301 K) edge of the silicon film, on the phonon transport characteristics at the films pair interface is also investigated. It is found that cut-off mismatch model predicts higher values of the thermal boundary resistance across the films pair interface as compared to that of the diffusive mismatch model. The ratio of equilibrium phonon intensity due to the cut-off mismatch over the diffusive mismatch models remains >1 at the silicon edge, while it becomes <1 at the diamond edge for all acoustic branches.
Lee, Byeong-Ju; Zhou, Yaoyao; Lee, Jae Soung; Shin, Byeung Kon; Seo, Jeong-Ah; Lee, Doyup; Kim, Young-Suk
2018-01-01
The ability to determine the origin of soybeans is an important issue following the inclusion of this information in the labeling of agricultural food products becoming mandatory in South Korea in 2017. This study was carried out to construct a prediction model for discriminating Chinese and Korean soybeans using Fourier-transform infrared (FT-IR) spectroscopy and multivariate statistical analysis. The optimal prediction models for discriminating soybean samples were obtained by selecting appropriate scaling methods, normalization methods, variable influence on projection (VIP) cutoff values, and wave-number regions. The factors for constructing the optimal partial-least-squares regression (PLSR) prediction model were using second derivatives, vector normalization, unit variance scaling, and the 4000–400 cm–1 region (excluding water vapor and carbon dioxide). The PLSR model for discriminating Chinese and Korean soybean samples had the best predictability when a VIP cutoff value was not applied. When Chinese soybean samples were identified, a PLSR model that has the lowest root-mean-square error of the prediction value was obtained using a VIP cutoff value of 1.5. The optimal PLSR prediction model for discriminating Korean soybean samples was also obtained using a VIP cutoff value of 1.5. This is the first study that has combined FT-IR spectroscopy with normalization methods, VIP cutoff values, and selected wave-number regions for discriminating Chinese and Korean soybeans. PMID:29689113
Censored Glauber Dynamics for the Mean Field Ising Model
NASA Astrophysics Data System (ADS)
Ding, Jian; Lubetzky, Eyal; Peres, Yuval
2009-11-01
We study Glauber dynamics for the Ising model on the complete graph on n vertices, known as the Curie-Weiss Model. It is well known that at high temperature ( β<1) the mixing time is Θ( nlog n), whereas at low temperature ( β>1) it is exp ( Θ( n)). Recently, Levin, Luczak and Peres considered a censored version of this dynamics, which is restricted to non-negative magnetization. They proved that for fixed β>1, the mixing-time of this model is Θ( nlog n), analogous to the high-temperature regime of the original dynamics. Furthermore, they showed cutoff for the original dynamics for fixed β<1. The question whether the censored dynamics also exhibits cutoff remained unsettled. In a companion paper, we extended the results of Levin et al. into a complete characterization of the mixing-time for the Curie-Weiss model. Namely, we found a scaling window of order 1/sqrt{n} around the critical temperature β c =1, beyond which there is cutoff at high temperature. However, determining the behavior of the censored dynamics outside this critical window seemed significantly more challenging. In this work we answer the above question in the affirmative, and establish the cutoff point and its window for the censored dynamics beyond the critical window, thus completing its analogy to the original dynamics at high temperature. Namely, if β=1+ δ for some δ>0 with δ 2 n→∞, then the mixing-time has order ( n/ δ)log ( δ 2 n). The cutoff constant is (1/2+[2(ζ2 β/ δ-1)]-1), where ζ is the unique positive root of g( x)=tanh ( β x)- x, and the cutoff window has order n/ δ.
Modelling the luminosity function of long gamma-ray bursts using Swift and Fermi
NASA Astrophysics Data System (ADS)
Paul, Debdutta
2018-01-01
I have used a sample of long gamma-ray bursts (GRBs) common to both Swift and Fermi to re-derive the parameters of the Yonetoku correlation. This allowed me to self-consistently estimate pseudo-redshifts of all the bursts with unknown redshifts. This is the first time such a large sample of GRBs from these two instruments is used, both individually and in conjunction, to model the long GRB luminosity function. The GRB formation rate is modelled as the product of the cosmic star formation rate and a GRB formation efficiency for a given stellar mass. An exponential cut-off power-law luminosity function fits the data reasonably well, with ν = 0.6 and Lb = 5.4 × 1052 ergs- 1, and does not require a cosmological evolution. In the case of a broken power law, it is required to incorporate a sharp evolution of the break given by Lb ∼ 0.3 × 1052(1 + z)2.90 erg s- 1, and the GRB formation efficiency (degenerate up to a beaming factor of GRBs) decreases with redshift as ∝ (1 + z)-0.80. However, it is not possible to distinguish between the two models. The derived models are then used as templates to predict the distribution of GRBs detectable by CZT Imager onboard AstroSat as a function of redshift and luminosity. This demonstrates that via a quick localization and redshift measurement of even a few CZT Imager GRBs, AstroSat will help in improving the statistics of GRBs both typical and peculiar.
Reheating-volume measure for random-walk inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winitzki, Sergei; Yukawa Institute of Theoretical Physics, Kyoto University, Kyoto
2008-09-15
The recently proposed 'reheating-volume' (RV) measure promises to solve the long-standing problem of extracting probabilistic predictions from cosmological multiverse scenarios involving eternal inflation. I give a detailed description of the new measure and its applications to generic models of eternal inflation of random-walk type. For those models I derive a general formula for RV-regulated probability distributions that is suitable for numerical computations. I show that the results of the RV cutoff in random-walk type models are always gauge invariant and independent of the initial conditions at the beginning of inflation. In a toy model where equal-time cutoffs lead to themore » 'youngness paradox', the RV cutoff yields unbiased results that are distinct from previously proposed measures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Y. Q.; Shemon, E. R.; Thomas, J. W.
SHARP is an advanced modeling and simulation toolkit for the analysis of nuclear reactors. It is comprised of several components including physical modeling tools, tools to integrate the physics codes for multi-physics analyses, and a set of tools to couple the codes within the MOAB framework. Physics modules currently include the neutronics code PROTEUS, the thermal-hydraulics code Nek5000, and the structural mechanics code Diablo. This manual focuses on performing multi-physics calculations with the SHARP ToolKit. Manuals for the three individual physics modules are available with the SHARP distribution to help the user to either carry out the primary multi-physics calculationmore » with basic knowledge or perform further advanced development with in-depth knowledge of these codes. This manual provides step-by-step instructions on employing SHARP, including how to download and install the code, how to build the drivers for a test case, how to perform a calculation and how to visualize the results. Since SHARP has some specific library and environment dependencies, it is highly recommended that the user read this manual prior to installing SHARP. Verification tests cases are included to check proper installation of each module. It is suggested that the new user should first follow the step-by-step instructions provided for a test problem in this manual to understand the basic procedure of using SHARP before using SHARP for his/her own analysis. Both reference output and scripts are provided along with the test cases in order to verify correct installation and execution of the SHARP package. At the end of this manual, detailed instructions are provided on how to create a new test case so that user can perform novel multi-physics calculations with SHARP. Frequently asked questions are listed at the end of this manual to help the user to troubleshoot issues.« less
Beyond the excised ensemble: modelling elliptic curve L-functions with random matrices
NASA Astrophysics Data System (ADS)
Cooper, I. A.; Morris, Patrick W.; Snaith, N. C.
2016-02-01
The ‘excised ensemble’, a random matrix model for the zeros of quadratic twist families of elliptic curve L-functions, was introduced by Dueñez et al (2012 J. Phys. A: Math. Theor. 45 115207) The excised model is motivated by a formula for central values of these L-functions in a paper by Kohnen and Zagier (1981 Invent. Math. 64 175-98). This formula indicates that for a finite set of L-functions from a family of quadratic twists, the central values are all either zero or are greater than some positive cutoff. The excised model imposes this same condition on the central values of characteristic polynomials of matrices from {SO}(2N). Strangely, the cutoff on the characteristic polynomials that results in a convincing model for the L-function zeros is significantly smaller than that which we would obtain by naively transferring Kohnen and Zagier’s cutoff to the {SO}(2N) ensemble. In this current paper we investigate a modification to the excised model. It lacks the simplicity of the original excised ensemble, but it serves to explain the reason for the unexpectedly low cutoff in the original excised model. Additionally, the distribution of central L-values is ‘choppier’ than the distribution of characteristic polynomials, in the sense that it is a superposition of a series of peaks: the characteristic polynomial distribution is a smooth approximation to this. The excised model did not attempt to incorporate these successive peaks, only the initial cutoff. Here we experiment with including some of the structure of the L-value distribution. The conclusion is that a critical feature of a good model is to associate the correct mass to the first peak of the L-value distribution.
Unravelling the Drivers of Chute Cutoff and the Commonality of Oxbow Production
NASA Astrophysics Data System (ADS)
Constantine, J. A.; Edmonds, D. A.; David, S.
2017-12-01
Chute cutoff is the principal means of channel shortening along steep, sparsely vegetated, or perturbed meandering river floodplains. Although flood waters are capable of unravelling the floodplain in a variety of ways, only a small number of mechanisms of chute cutoff have been observed in nature, each with seemingly different controls on their occurrence. The complexity of these controls partly explains the difficulty of deterministically incorporating chute cutoff into channel evolution models. Despite the challenges, recent field observations have allowed us not only to identify particular mechanisms but also to highlight first-order controls. We provide a summary of these findings and describe the processes that drive the various mechanisms of cutoff and their resulting oxbow lakes. For example, many agricultural floodplains show evidence of pervasive gully incision as a precursor to chute cutoff. And perhaps surprising given the diversity of cutoff mechanisms, oxbows globally share characteristic dimensions that are a function of the sinuosity and width of the rivers from which they are derived. Our results suggest that, in spite of the many processes involved, aspects of the mechanisms of chute cutoff can be generalised, providing a means for improving cutoff prediction and for assessing the impacts of cutoffs on the meandering river floodplain.
Mathematical analysis of a sharp-diffuse interfaces model for seawater intrusion
NASA Astrophysics Data System (ADS)
Choquet, C.; Diédhiou, M. M.; Rosier, C.
2015-10-01
We consider a new model mixing sharp and diffuse interface approaches for seawater intrusion phenomena in free aquifers. More precisely, a phase field model is introduced in the boundary conditions on the virtual sharp interfaces. We thus include in the model the existence of diffuse transition zones but we preserve the simplified structure allowing front tracking. The three-dimensional problem then reduces to a two-dimensional model involving a strongly coupled system of partial differential equations of parabolic type describing the evolution of the depths of the two free surfaces, that is the interface between salt- and freshwater and the water table. We prove the existence of a weak solution for the model completed with initial and boundary conditions. We also prove that the depths of the two interfaces satisfy a coupled maximum principle.
Study of guided modes in three-dimensional composites
NASA Astrophysics Data System (ADS)
Baste, S.; Gerard, A.
The propagation of elastic waves in a three-dimensional carbon-carbon composite is modeled with a mixed variational method, using the Bloch or Floquet theories and the Hellinger-Reissner function for two independent fields. The model of the equivalent homogeneous material only exists below a cut-off frequency of about 600 kHz. The existence below the cut-off frequency of two guided waves can account for the presence of a slow guided wave on either side of the cut-off frequency. Optical modes are generated at low frequencies, and can attain high velocites (rapid guided modes of 15,000 m/sec).
Effects of excitation frequency on high-order terahertz sideband generation in semiconductors
NASA Astrophysics Data System (ADS)
Xie, Xiao-Tao; Zhu, Bang-Fen; Liu, Ren-Bao
2013-10-01
We theoretically investigate the effects of the excitation frequency on the plateau of high-order terahertz sideband generation (HSG) in semiconductors driven by intense terahertz (THz) fields. We find that the plateau of the sideband spectrum strongly depends on the detuning between the near-infrared laser field and the band gap. We use the quantum trajectory theory (three-step model) to understand the HSG. In the three-step model, an electron-hole pair is first excited by a weak laser, then driven by the strong THz field, and finally recombined to emit a photon with energy gain. When the laser is tuned below the band gap (negative detuning), the electron-hole generation is a virtual process that requires quantum tunneling to occur. When the energy gained by the electron-hole pair from the THz field is less than 3.17 times the ponderomotive energy (Up), the electron and the hole can be driven to the same position and recombined without quantum tunneling, so that the HSG will have large probability amplitude. This leads to a plateau feature of the HSG spectrum with a high-frequency cutoff at about 3.17Up above the band gap. Such a plateau feature is similar to the case of high-order harmonics generation in atoms where electrons have to overcome the binding energy to escape the atomic core. A particularly interesting excitation condition in HSG is that the laser can be tuned above the band gap (positive detuning), corresponding to the unphysical ‘negative’ binding energy in atoms for high-order harmonic generation. Now the electron-hole pair is generated by real excitation, but the recombination process can be real or virtual depending on the energy gained from the THz field, which determines the plateau feature in HSG. Both the numerical calculation and the quantum trajectory analysis reveal that for positive detuning, the HSG plateau cutoff depends on the frequency of the excitation laser. In particular, when the laser is tuned more than 3.17Up above the band gap, the HSG spectrum presents no plateau feature but instead sharp peaks near the band edge and near the excitation frequency.
Huang, W.; Zheng, Lingyun; Zhan, X.
2002-01-01
Accurate modelling of groundwater flow and transport with sharp moving fronts often involves high computational cost, when a fixed/uniform mesh is used. In this paper, we investigate the modelling of groundwater problems using a particular adaptive mesh method called the moving mesh partial differential equation approach. With this approach, the mesh is dynamically relocated through a partial differential equation to capture the evolving sharp fronts with a relatively small number of grid points. The mesh movement and physical system modelling are realized by solving the mesh movement and physical partial differential equations alternately. The method is applied to the modelling of a range of groundwater problems, including advection dominated chemical transport and reaction, non-linear infiltration in soil, and the coupling of density dependent flow and transport. Numerical results demonstrate that sharp moving fronts can be accurately and efficiently captured by the moving mesh approach. Also addressed are important implementation strategies, e.g. the construction of the monitor function based on the interpolation error, control of mesh concentration, and two-layer mesh movement. Copyright ?? 2002 John Wiley and Sons, Ltd.
Reilly, T.E.; Frimpter, M.H.; LeBlanc, D.R.; Goodman, A.S.
1987-01-01
Sharp interface methods have been used successfully to describe the physics of upconing. A finite-element model is developed to simulate a sharp interface for determination of the steady-state position of the interface and maximum permissible well discharges. The model developed is compared to previous published electric-analog model results of Bennett and others (1968). -from Authors
Dietrich, Scott; Mayer, William; Byrnes, Sean; ...
2015-02-20
The effects of microwave radiation on transport properties of atomically thin La 2-xSr xCuO₄ films were studied in the 0.1-20 GHz frequency range. Resistance changes induced by microwaves were investigated at different temperatures (8–15 K) near the superconducting transition. A strong decrease of the nonlinear response is observed within a few GHz of a cutoff frequency ν cut ≈ 2GHz. The expected frequency dependence vastly underestimates the sharpness of this drop. Numerical simulations that assume ac response to follow dc V-I characteristics of the films reproduce well the low frequency behavior, but fail above ν cut. Thus, high-frequency radiation ismore » much less effective in inducing vortex-antivortex dissociation in the oscillating superconducting condensate.« less
New results on the generation of broadband electrostatic waves in the magnetotail
NASA Technical Reports Server (NTRS)
Grabbe, C. L.
1985-01-01
The theory of the generation of broadband electrostatic noise (BEN) in the magnetotail is extended through numerical solution of the dispersion relation under conditions that exist in the plasma sheet boundary layer. It is found that the low-frequency portion of the spectrum has a broad angular spectrum but a fairly sharp peak near 75 deg with respect to the magnetic field, while the high-frequency portion has a narrower angular spectrum that is strongly concentrated along the magnetic field line. These results are in excellent agreement with observations of the broadband wave spectrum and a recent measurement of the propagation direction. The effect of a second cold component of electrons is analyzed, and it is found that it can increase the upper cutoff frequency of BEN to the observed value at about the plasma frequency.
Ultrafast propagation of Schroedinger waves in absorbing media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado, F.; Muga, J.G.; Ruschhaupt, A.
2004-02-01
We show that the temporal peak of a quantum wave may arrive at different locations simultaneously in an absorbing medium. The arrival occurs at the lifetime of the particle in the medium from the instant when a point source with a sharp onset is turned on. We also identify other characteristic times. In particular, the 'traversal' or 'Buettiker-Landauer' time (which grows linearly with the distance to the source) for the Hermitian, non-absorbing case is substituted by several characteristic quantities in the absorbing case. The simultaneous arrival due to absorption, unlike the Hartman effect, occurs for carrier frequencies under or abovemore » the cutoff, and for arbitrarily large distances. It holds also in a relativistic generalization but limited by causality. A possible physical realization is proposed by illuminating a two-level atom with a detuned laser.« less
How the Hilbert integral theorem inspired flow lines
NASA Astrophysics Data System (ADS)
Winston, Roland; Jiang, Lun
2017-09-01
Nonimaging Optics has been shown to achieve the theoretical limits constrained only by thermodynamic principles. The designing principles of nonimaging optics allow a non-conventional way of thinking about and generating new optical devices. Compared to conventional imaging optics which rarely utilizes the framework of thermodynamic arguments, nonimaging optics chooses to map etendue instead of rays. This fundamental shift of design paradigm frees the optics design from ray based designs which heavily relies on error tolerance analysis. Instead, the underlying thermodynamic principles guide the nonimaging design to be naturally constructed for extended light source for illumination, non-tracking concentrators and sensors that require sharp cut-off angles. We argue in this article that such optical devices which has enabled a multitude of applications depends on probabilities, geometric flux field and radiative heat transfer while "optics" in the conventional sense recedes into the background.
Heterogeneous sharpness for cross-spectral face recognition
NASA Astrophysics Data System (ADS)
Cao, Zhicheng; Schmid, Natalia A.
2017-05-01
Matching images acquired in different electromagnetic bands remains a challenging problem. An example of this type of comparison is matching active or passive infrared (IR) against a gallery of visible face images, known as cross-spectral face recognition. Among many unsolved issues is the one of quality disparity of the heterogeneous images. Images acquired in different spectral bands are of unequal image quality due to distinct imaging mechanism, standoff distances, or imaging environment, etc. To reduce the effect of quality disparity on the recognition performance, one can manipulate images to either improve the quality of poor-quality images or to degrade the high-quality images to the level of the quality of their heterogeneous counterparts. To estimate the level of discrepancy in quality of two heterogeneous images a quality metric such as image sharpness is needed. It provides a guidance in how much quality improvement or degradation is appropriate. In this work we consider sharpness as a relative measure of heterogeneous image quality. We propose a generalized definition of sharpness by first achieving image quality parity and then finding and building a relationship between the image quality of two heterogeneous images. Therefore, the new sharpness metric is named heterogeneous sharpness. Image quality parity is achieved by experimentally finding the optimal cross-spectral face recognition performance where quality of the heterogeneous images is varied using a Gaussian smoothing function with different standard deviation. This relationship is established using two models; one of them involves a regression model and the other involves a neural network. To train, test and validate the model, we use composite operators developed in our lab to extract features from heterogeneous face images and use the sharpness metric to evaluate the face image quality within each band. Images from three different spectral bands visible light, near infrared, and short-wave infrared are considered in this work. Both error of a regression model and validation error of a neural network are analyzed.
Natural Covariant Planck Scale Cutoffs and the Cosmic Microwave Background Spectrum.
Chatwin-Davies, Aidan; Kempf, Achim; Martin, Robert T W
2017-07-21
We calculate the impact of quantum gravity-motivated ultraviolet cutoffs on inflationary predictions for the cosmic microwave background spectrum. We model the ultraviolet cutoffs fully covariantly to avoid possible artifacts of covariance breaking. Imposing these covariant cutoffs results in the production of small, characteristically k-dependent oscillations in the spectrum. The size of the effect scales linearly with the ratio of the Planck to Hubble lengths during inflation. Consequently, the relative size of the effect could be as large as one part in 10^{5}; i.e., eventual observability may not be ruled out.
ERIC Educational Resources Information Center
Marsh, Herbert W.; Hau, Kit-Tai; Wen, Zhonglin
2004-01-01
Goodness-of-fit (GOF) indexes provide "rules of thumb"?recommended cutoff values for assessing fit in structural equation modeling. Hu and Bentler (1999) proposed a more rigorous approach to evaluating decision rules based on GOF indexes and, on this basis, proposed new and more stringent cutoff values for many indexes. This article discusses…
NASA Astrophysics Data System (ADS)
Li, Z.; Garcia, M. H.
2017-12-01
Unlike neck cutoffs, which are caused by meander migration to an over-mature stage, a chute cutoff is governed by many more factors. A chute cutoff always occurs when there is over-bank flow caused by floods. During this process, the river-floodplain system characteristics will determine the newly formed cutoff channel location and extent. Hence, a comprehensive study of the influence which different active factors have on a cutoff channel is necessary. Numerical experiments are well suited in this case because of the possibility of studying a large number of scenarios and also the practical and econocmical challenges of collecting high quality data during floods in the field. Numerical simulations were performed using the open TELEMAC-MASCARET modeling suite, which can solve the two-dimensional Shallow Water Equations, the three-dimensional, Reynolds-averaged Navier-Stokes equations (RANS). It can also be coupled with sediment transport equations. It is implemented on unstructured meshes using the Finite Element Method (FEM). The modeling results show the great detail the morphodynamic response attributed to each active factor (flow magnitude, sediment erosive properties, channel sinuosity, etc.), as well as paving the way and showing how to use the dimensionless relations obtained with the numerical experiments.
Global warming precipitation accumulation increases above the current-climate cutoff scale
Sahany, Sandeep; Stechmann, Samuel N.; Bernstein, Diana N.
2017-01-01
Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff. PMID:28115693
Global warming precipitation accumulation increases above the current-climate cutoff scale
NASA Astrophysics Data System (ADS)
Neelin, J. David; Sahany, Sandeep; Stechmann, Samuel N.; Bernstein, Diana N.
2017-02-01
Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.
de Andrade, Maria Izabel Siqueira; Oliveira, Juliana Souza; Leal, Vanessa Sá; da Lima, Niedja Maria Silva; Costa, Emília Chagas; de Aquino, Nathalia Barbosa; de Lira, Pedro Israel Cabral
2016-01-01
Abstract Objective: To identify cutoff points of the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index established for adolescents and discuss their applicability for the diagnosis of insulin resistance in Brazilian adolescents. Data source: A systematic review was performed in the PubMed, Lilacs and SciELO databases, using the following descriptors: "adolescents", "insulin resistance" and "Receiver Operating Characteristics Curve". Original articles carried out with adolescents published between 2005 and 2015 in Portuguese, English or Spanish languages, which included the statistical analysis using Receiver Operating Characteristics Curve to determine the index cutoff (HOMA-IR) were included. Data synthesis: A total of 184 articles were identified and after the study phases were applied, seven articles were selected for the review. All selected studies established their cutoffs using a Receiver Operating Characteristics Curve, with the lowest observed cutoff of 1.65 for girls and 1.95 for boys and the highest of 3.82 for girls and 5.22 for boys. Of the studies analyzed, one proposed external validity, recommending the use of the HOMA-IR cutoff>2.5 for both genders. Conclusions: The HOMA-IR index constitutes a reliable method for the detection of insulin resistance in adolescents, as long as it uses cutoffs that are more adequate for the reality of the study population, allowing early diagnosis of insulin resistance and enabling multidisciplinary interventions aiming at health promotion of this population. PMID:26559605
Andrade, Maria Izabel Siqueira de; Oliveira, Juliana Souza; Leal, Vanessa Sá; Lima, Niedja Maria da Silva; Costa, Emília Chagas; Aquino, Nathalia Barbosa de; Lira, Pedro Israel Cabral de
2016-06-01
To identify cutoff points of the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index established for adolescents and discuss their applicability for the diagnosis of insulin resistance in Brazilian adolescents. A systematic review was performed in the PubMed, Lilacs and SciELO databases, using the following descriptors: "Adolescents", "insulin resistance" and "ROC curve". Original articles carried out with adolescents published between 2005 and 2015 in Portuguese, English or Spanish languages, which included the statistical analysis using ROC curve to determine the index cutoff (HOMA-IR) were included. A total of 184 articles were identified and after the study phases were applied, seven articles were selected for the review. All selected studies established their cutoffs using a ROC curve, with the lowest observed cutoff of 1.65 for girls and 1.95 for boys and the highest of 3.82 for girls and 5.22 for boys. Of the studies analyzed, one proposed external validity, recommending the use of the HOMA-IR cutoff >2.5 for both genders. The HOMA-IR index constitutes a reliable method for the detection of insulin resistance in adolescents, as long as it uses cutoffs that are more adequate for the reality of the study population, allowing early diagnosis of insulin resistance and enabling multidisciplinary interventions aiming at health promotion of this population. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
Global warming precipitation accumulation increases above the current-climate cutoff scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neelin, J. David; Sahany, Sandeep; Stechmann, Samuel N.
Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing withmore » event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.« less
Global warming precipitation accumulation increases above the current-climate cutoff scale.
Neelin, J David; Sahany, Sandeep; Stechmann, Samuel N; Bernstein, Diana N
2017-02-07
Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing with event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.
Global warming precipitation accumulation increases above the current-climate cutoff scale
Neelin, J. David; Sahany, Sandeep; Stechmann, Samuel N.; ...
2017-01-23
Precipitation accumulations, integrated over rainfall events, can be affected by both intensity and duration of the storm event. Thus, although precipitation intensity is widely projected to increase under global warming, a clear framework for predicting accumulation changes has been lacking, despite the importance of accumulations for societal impacts. Theory for changes in the probability density function (pdf) of precipitation accumulations is presented with an evaluation of these changes in global climate model simulations. We show that a simple set of conditions implies roughly exponential increases in the frequency of the very largest accumulations above a physical cutoff scale, increasing withmore » event size. The pdf exhibits an approximately power-law range where probability density drops slowly with each order of magnitude size increase, up to a cutoff at large accumulations that limits the largest events experienced in current climate. The theory predicts that the cutoff scale, controlled by the interplay of moisture convergence variance and precipitation loss, tends to increase under global warming. Thus, precisely the large accumulations above the cutoff that are currently rare will exhibit increases in the warmer climate as this cutoff is extended. This indeed occurs in the full climate model, with a 3 °C end-of-century global-average warming yielding regional increases of hundreds of percent to >1,000% in the probability density of the largest accumulations that have historical precedents. The probabilities of unprecedented accumulations are also consistent with the extension of the cutoff.« less
Observation of frequency cutoff for self-excited dust acoustic waves
NASA Astrophysics Data System (ADS)
Nosenko, V.; Zhdanov, S. K.; Morfill, G. E.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.
2009-11-01
Complex (dusty) plasmas consist of fine solid particles suspended in a weakly ionized gas. Complex plasmas are excellent model systems to study wave phenomena down to the level of individual ``atoms''. Spontaneously excited dust acoustic waves were observed with high temporal resolution in a suspension of micron-size kaolin particles in a dc discharge in argon. Wave activity was found at frequencies as high as 400 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency fc instead. The value of fc declined with distance from the anode. We propose a simple model that explains the observed cutoff by particle confinement in plasma. The existence of a cutoff frequency is very important for the propagation of waves: the waves excited above fc are propagating, and those below fc are evanescent.
Crystallization kinetics, optical and dielectric properties of Li2OṡCdOṡBi2O3ṡSiO2 glasses
NASA Astrophysics Data System (ADS)
Rani, Saroj; Sanghi, Sujata; Ahlawat, Neetu; Agarwal, Ashish
2015-10-01
Crystallization kinetics, optical absorption and electrical behavior of lithium cadmium silicate glasses with different amount of bismuth oxide were investigated using non-isothermal crystallization approach, UV-VIS-NIR spectroscopy and impedance spectroscopy, respectively. These glasses were synthesized by normal melt quenching technique. Variation in physical properties, viz. density, molar volume with Bi2O3:SiO2 ratio were related to the structural changes occurring in the glasses. The glass transition temperature (Tg), crystalline peak temperature (Tp) and melting temperature (Tm) of these glasses were determined using differential scanning calorimeter at various heating rates. The dependence of Tg and Tp on heating rate has been used for the determination of the activation energy of glass transition and crystallization. Thermal stability parameters have revealed high stability of the glass prepared with 40 mol% of Bi2O3 content. The crystallization kinetics for the glasses was studied by using the Kissinger and modified Ozawa equations. Appearance of a sharp cut-off and a wide and reasonable transmission in VIS-NIR region makes these glasses suitable for IR transmission window. The cut-off wavelength, optical band gap and Urbach's energy have been analyzed and discussed in terms of changes in the glass structure. By analyzing the impedance spectra, the ac and dc conductivities, activation energy for dc conduction (Edc) and for relaxation (EM″) were calculated. The results obtained from dc conductivity confirm the network forming role of Cd2+ ion in the glasses. The scaling of the conductivity spectra has been used to interpret the temperature dependence of the relaxation dynamics. The observed conductivity spectra follows power law with exponent 's' which decreases with temperature and satisfies the correlated barrier hopping (CBH) model. The perfect overlying of normalized plots of electrical modulus on a single 'master curve' depicts temperature as well as composition independent dynamical process at several frequencies.
Shahmoradi, Ali; Reinecke, Lisa; Kroos, Christina; Wichert, Sven P.; Oster, Henrik; Wehr, Michael C.; Taneja, Reshma; Hirrlinger, Johannes; Rossner, Moritz J.
2014-01-01
Increasing evidence suggests that clock genes may be implicated in a spectrum of psychiatric diseases, including sleep and mood related disorders as well as schizophrenia. The bHLH transcription factors SHARP1/DEC2/BHLHE41 and SHARP2/DEC1/BHLHE40 are modulators of the circadian system and SHARP1/DEC2/BHLHE40 has been shown to regulate homeostatic sleep drive in humans. In this study, we characterized Sharp1 and Sharp2 double mutant mice (S1/2-/-) using online EEG recordings in living animals, behavioral assays and global gene expression profiling. EEG recordings revealed attenuated sleep/wake amplitudes and alterations of theta oscillations. Increased sleep in the dark phase is paralleled by reduced voluntary activity and cortical gene expression signatures reveal associations with psychiatric diseases. S1/2-/- mice display alterations in novelty induced activity, anxiety and curiosity. Moreover, mutant mice exhibit impaired working memory and deficits in prepulse inhibition resembling symptoms of psychiatric diseases. Network modeling indicates a connection between neural plasticity and clock genes, particularly for SHARP1 and PER1. Our findings support the hypothesis that abnormal sleep and certain (endo)phenotypes of psychiatric diseases may be caused by common mechanisms involving components of the molecular clock including SHARP1 and SHARP2. PMID:25340473
Surface Composition of Trojan Asteroids from Thermal-Infrared Spectroscopy
NASA Astrophysics Data System (ADS)
Martin, A.; Emery, J. P.; Lindsay, S. S.
2017-12-01
Asteroid origins provide an effective means of constraining the events that dynamically shaped the solar system. Jupiter Trojan asteroids (hereafter Trojans) may help in determining the extent of radial mixing that occurred during giant planet migration. Previous studies aimed at characterizing surface composition show that Trojans have low albedo surfaces and fall into two distinct spectral groups the near infrared (NIR). Though, featureless in this spectral region, NIR spectra of Trojans either exhibit a red or less-red slope. Typically, red-sloped spectra are associated with organics, but it has been shown that Trojans are not host to much, if any, organic material. Instead, the red slope is likely due to anhydrous silicates. The thermal infrared (TIR) wavelength range has advantages for detecting silicates on low albedo asteroids such as Trojans. The 10 µm region exhibits strong features due to the Si-O fundamental molecular vibrations. We hypothesize that the two Trojan spectral groups have different compositions (silicate mineralogy). With TIR spectra from the Spitzer Space Telescope, we identify mineralogical features from the surface of 11 Trojan asteroids, five red and six less-red. Preliminary results from analysis of the 10 µm region indicate red-sloped Trojans have a higher spectral contrast compared to less-red-sloped Trojans. Fine-grain mixtures of crystalline pyroxene and olivine exhibit a 10 µm feature with sharp cutoffs between about 9 µm and 12 µm, which create a broad flat plateau. Amorphous phases, when present, smooth the sharp emission features, resulting in a dome-like shape. Further spectral analysis in the 10 µm, 18 µm, and 30 µm band region will be performed for a more robust analysis. If all Trojans come from the same region, it is expected that they share spectral and compositional characteristics. Therefore, if spectral analysis in the TIR reinforce the NIR spectral slope dichotomy, it is likely that Trojans were sourced from two different regions of the solar system. This result would provide new constraints for dynamical models that explain giant planet migration.
ERIC Educational Resources Information Center
Shulruf, Boaz; Turner, Rolf; Poole, Phillippa; Wilkinson, Tim
2013-01-01
The decision to pass or fail a medical student is a "high stakes" one. The aim of this study is to introduce and demonstrate the feasibility and practicality of a new objective standard-setting method for determining the pass/fail cut-off score from borderline grades. Three methods for setting up pass/fail cut-off scores were compared: the…
NuSTAR constraints on coronal cutoffs in Swift-BAT selected Seyfert 1 AGN
NASA Astrophysics Data System (ADS)
Kamraj, Nikita; Harrison, Fiona; Balokovic, Mislav; Brightman, Murray; Stern, Daniel
2017-08-01
The continuum X-ray emission from Active Galactic Nuclei (AGN) is believed to originate in a hot, compact corona above the accretion disk. Compton upscattering of UV photons from the inner accretion disk by coronal electrons produces a power law X-ray continuum with a cutoff at energies determined by the electron temperature. The NuSTAR observatory, with its high sensitivity in hard X-rays, has enabled detailed broadband modeling of the X-ray spectra of AGN, thereby allowing tight constraints to be placed on the high-energy cutoff of the X-ray continuum. Recent detections of low cutoff energies in Seyfert 1 AGN in the NuSTAR band have motivated us to pursue a systematic search for low cutoff candidates in Swift-BAT detected Seyfert 1 AGN that have been observed with NuSTAR. We use our constraints on the cutoff energy to map out the location of these sources on the compactness - temperature diagram for AGN coronae, and discuss the implications of low cutoff energies for the cooling and thermalization mechanisms in the corona.
Thermal cut-off response modelling of universal motors
NASA Astrophysics Data System (ADS)
Thangaveloo, Kashveen; Chin, Yung Shin
2017-04-01
This paper presents a model to predict the thermal cut-off (TCO) response behaviour in universal motors. The mathematical model includes the calculations of heat loss in the universal motor and the flow characteristics around the TCO component which together are the main parameters for TCO response prediction. In order to accurately predict the TCO component temperature, factors like the TCO component resistance, the effect of ambient, and the flow conditions through the motor are taken into account to improve the prediction accuracy of the model.
Flocking of the Motsch-Tadmor Model with a Cut-Off Interaction Function
NASA Astrophysics Data System (ADS)
Jin, Chunyin
2018-04-01
In this paper, we study the flocking behavior of the Motsch-Tadmor model with a cut-off interaction function. Our analysis shows that connectedness is important for flocking of this kind of model. Fortunately, we get a sufficient condition imposed only on the model parameters and initial data to guarantee the connectedness of the neighbor graph associated with the system. Then we present a theoretical analysis for flocking, and show that the system achieves consensus at an exponential rate.
Crust-core properties of neutron stars in the Nambu–Jona-Lasinio model
NASA Astrophysics Data System (ADS)
Wei, Si-Na; Yang, Rong-Yao; Jiang, Wei-Zhou
2018-05-01
We adopt the Nambu–Jona-Lasinio (NJL) model to study the crust-core transition properties in neutron stars (NSs). For a given momentum cutoff and symmetry energy of saturation density in the NJL model, decreasing the slope of the symmetry energy gives rise to an increase in the crust-core transition density and transition pressure. Given the slope of the symmetry energy at saturation density, the transition density and corresponding transition pressure increase with increasing symmetry energy. The increasing trend between the fraction of the crustal moment of inertia and the slope of symmetry energy at saturation density indicates that a relatively large momentum cutoff of the NJL model is preferred. For a momentum cutoff of 500 MeV, the fraction of the crustal moment of inertia clearly increases with the slope of symmetry energy at saturation density. Thus, at the required fraction (7%) of the crustal moment of inertia, the NJL model with momentum cutoff of 500 MeV and a large slope of the symmetry energy of saturation density can give the upper limit of the mass of the Vela pulsar to be above 1.40 {M}ȯ . Supported by National Natural Science Foundation of China (11775049, 11275048) and the China Jiangsu Provincial Natural Science Foundation (BK20131286)
Augmenting groundwater monitoring networks near landfills with slurry cutoff walls.
Hudak, Paul F
2004-01-01
This study investigated the use of slurry cutoff walls in conjunction with monitoring wells to detect contaminant releases from a solid waste landfill. The 50 m wide by 75 m long landfill was oriented oblique to regional groundwater flow in a shallow sand aquifer. Computer models calculated flow fields and the detection capability of six monitoring networks, four including a 1 m wide by 50 m long cutoff wall at various positions along the landfill's downgradient boundaries and upgradient of the landfill. Wells were positioned to take advantage of convergent flow induced downgradient of the cutoff walls. A five-well network with no cutoff wall detected 81% of contaminant plumes originating within the landfill's footprint before they reached a buffer zone boundary located 50 m from the landfill's downgradient corner. By comparison, detection efficiencies of networks augmented with cutoff walls ranged from 81 to 100%. The most efficient network detected 100% of contaminant releases with four wells, with a centrally located, downgradient cutoff wall. In general, cutoff walls increased detection efficiency by delaying transport of contaminant plumes to the buffer zone boundary, thereby allowing them to increase in size, and by inducing convergent flow at downgradient areas, thereby funneling contaminant plumes toward monitoring wells. However, increases in detection efficiency were too small to offset construction costs for cutoff walls. A 100% detection efficiency was also attained by an eight-well network with no cutoff wall, at approximately one-third the cost of the most efficient wall-augmented network.
Surface-enhanced Raman scattering on periodic metal nanotips with tunable sharpness.
Linn, Nicholas C; Sun, Chih-Hung; Arya, Ajay; Jiang, Peng; Jiang, Bin
2009-06-03
This paper reports on a scalable bottom-up technology for producing periodic gold nanotips with tunable sharpness as surface-enhanced Raman scattering (SERS) substrates. Inverted silicon pyramidal pits, which are templated from non-close-packed colloidal crystals prepared by a spin-coating technology, are used as structural templates to replicate arrays of polymer nanopyramids with nanoscale sharp tips. The deposition of a thin layer of gold on the polymer nanopyramids leads to the formation of SERS-active substrates with a high enhancement factor (up to 10(8)). The thickness of the deposited metal determines the sharpness of the nanotips and the resulting Raman enhancement factor. Finite-element electromagnetic modeling shows that the nanotips can significantly enhance the local electromagnetic field and the sharpness of nanotips greatly affects the SERS enhancement.
Sediment Scaling for Mud Mountain Fish Barrier Structure
2017-06-28
2nd Int. Conf. on the Application of Physical Modeling to Port and Coastal Protection – Coastlab ’08, International Association for Hydro...Structure by Jeremy A. Sharp, Gary L. Brown, and Gary L. Bell PURPOSE: This Coastal and Hydraulics Laboratory technical note describes the process of... Coastal and Hydraulics Laboratory. Questions about this technical note can be addressed to Mr. Sharp at 601-634-4212 or Jeremy.A.Sharp@usace.army.mil
Direct handling of sharp interfacial energy for microstructural evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández–Rivera, Efraín; Tikare, Veena; Noirot, Laurence
In this study, we introduce a simplification to the previously demonstrated hybrid Potts–phase field (hPPF), which relates interfacial energies to microstructural sharp interfaces. The model defines interfacial energy by a Potts-like discrete interface approach of counting unlike neighbors, which we use to compute local curvature. The model is compared to the hPPF by studying interfacial characteristics and grain growth behavior. The models give virtually identical results, while the new model allows the simulator more direct control of interfacial energy.
Direct handling of sharp interfacial energy for microstructural evolution
Hernández–Rivera, Efraín; Tikare, Veena; Noirot, Laurence; ...
2014-08-24
In this study, we introduce a simplification to the previously demonstrated hybrid Potts–phase field (hPPF), which relates interfacial energies to microstructural sharp interfaces. The model defines interfacial energy by a Potts-like discrete interface approach of counting unlike neighbors, which we use to compute local curvature. The model is compared to the hPPF by studying interfacial characteristics and grain growth behavior. The models give virtually identical results, while the new model allows the simulator more direct control of interfacial energy.
Ejection of Metal Particles into Superfluid 4He by Laser Ablation.
Buelna, Xavier; Freund, Adam; Gonzalez, Daniel; Popov, Evgeny; Eloranta, Jussi
2016-10-05
The dynamics following laser ablation of a metal target immersed in superfluid $^4$He is studied by time-resolved shadowgraph photography. The delayed ejection of hot micrometer-sized particles from the target surface into the liquid was indirectly observed by monitoring the formation and growth of gaseous bubbles around the particles. The experimentally determined particle average velocity distribution appears similar as previously measured in vacuum but exhibits a sharp cutoff at the speed of sound of the liquid. The propagation of the subsonic particles terminates in slightly elongated non-spherical gas bubbles residing near the target whereas faster particles reveal an unusual hydrodynamic response of the liquid. Based on the previously established semi-empirical model developed for macroscopic objects, the ejected transonic particles exhibit supercavitating flow to reduce their hydrodynamic drag. Supersonic particles appear to follow a completely different propagation mechanism as they leave discrete and semi-continuous bubble trails in the liquid. The relatively low number density of the observed non-spherical gas bubbles indicates that only large micron-sized particles are visualized in the experiments. Although the unique properties of superfluid helium allow a detailed characterization of these processes, the developed technique can be used to study the hydrodynamic response of any liquid to fast propagating objects on the micrometer-scale.
The interrupted power law and the size of shadow banking.
Fiaschi, Davide; Kondor, Imre; Marsili, Matteo; Volpati, Valerio
2014-01-01
Using public data (Forbes Global 2000) we show that the asset sizes for the largest global firms follow a Pareto distribution in an intermediate range, that is "interrupted" by a sharp cut-off in its upper tail, where it is totally dominated by financial firms. This flattening of the distribution contrasts with a large body of empirical literature which finds a Pareto distribution for firm sizes both across countries and over time. Pareto distributions are generally traced back to a mechanism of proportional random growth, based on a regime of constant returns to scale. This makes our findings of an "interrupted" Pareto distribution all the more puzzling, because we provide evidence that financial firms in our sample should operate in such a regime. We claim that the missing mass from the upper tail of the asset size distribution is a consequence of shadow banking activity and that it provides an (upper) estimate of the size of the shadow banking system. This estimate-which we propose as a shadow banking index-compares well with estimates of the Financial Stability Board until 2009, but it shows a sharper rise in shadow banking activity after 2010. Finally, we propose a proportional random growth model that reproduces the observed distribution, thereby providing a quantitative estimate of the intensity of shadow banking activity.
Cole-Davidson dynamics of simple chain models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dotson, Taylor C.; McCoy, John Dwane; Adolf, Douglas Brian
2008-10-01
Rotational relaxation functions of the end-to-end vector of short, freely jointed and freely rotating chains were determined from molecular dynamics simulations. The associated response functions were obtained from the one-sided Fourier transform of the relaxation functions. The Cole-Davidson function was used to fit the response functions with extensive use being made of Cole-Cole plots in the fitting procedure. For the systems studied, the Cole-Davidson function provided remarkably accurate fits [as compared to the transform of the Kohlrausch-Williams-Watts (KWW) function]. The only appreciable deviations from the simulation results were in the high frequency limit and were due to ballistic or freemore » rotation effects. The accuracy of the Cole-Davidson function appears to be the result of the transition in the time domain from stretched exponential behavior at intermediate time to single exponential behavior at long time. Such a transition can be explained in terms of a distribution of relaxation times with a well-defined longest relaxation time. Since the Cole-Davidson distribution has a sharp cutoff in relaxation time (while the KWW function does not), it makes sense that the Cole-Davidson would provide a better frequency-domain description of the associated response function than the KWW function does.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, Debaprasad; Bhattacharjee, Sudeep
2012-09-15
Localized wave-induced resonances are created by microwaves launched directly into a multicusp (MC) plasma device in the k Up-Tack B mode, where k is the wave vector and B is the static magnetic field. The resonance zone is identified as upper hybrid resonance (UHR), and lies r = {approx}22 mm away from the MC boundary. Measurement of radial wave electric field intensity confirms the right hand cutoff of the wave (r = 22.5-32.1 mm) located near the UHR zone. A sharp rise in the corresponding electron temperature in the resonance region by {approx}13 eV from its value away from resonancemore » at r = 0, is favorable for the generation of vibrationally excited molecules of hydrogen. A transverse magnetic filter allows cold electrons ({approx}1-2 eV) to pass into the downstream region where they generate negative ions by dissociative attachment. Measurements of electron energy distribution function (EEDF) support the viewpoint. H{sup -} current density of {approx}0.26 mA/cm{sup 2} is obtained at a wave power density of {approx}3 W/cm{sup 2} at 2.0 mTorr pressure, which agrees reasonably well with results obtained from a steady state model using particle balance equations.« less
Measurement of electron density using reactance cutoff probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, K. H.; Seo, B. H.; Kim, J. H.
2016-05-15
This paper proposes a new measurement method of electron density using the reactance spectrum of the plasma in the cutoff probe system instead of the transmission spectrum. The highly accurate reactance spectrum of the plasma-cutoff probe system, as expected from previous circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], was measured using the full two-port error correction and automatic port extension methods of the network analyzer. The electron density can be obtained from the analysis of the measured reactance spectrum, based on circuit modeling. According to the circuit simulation results, the reactance cutoff probe can measure themore » electron density more precisely than the previous cutoff probe at low densities or at higher pressure. The obtained results for the electron density are presented and discussed for a wide range of experimental conditions, and this method is compared with previous methods (a cutoff probe using the transmission spectrum and a single Langmuir probe).« less
Pearce, B.D.; Grove, J.; Bonney, E.A.; Bliwise, N.; Dudley, D.J.; Schendel, D.E.; Thorsen, P.
2010-01-01
Background/Aims To examine the relationship of biological mediators (cytokines, stress hormones), psychosocial, obstetric history, and demographic factors in the early prediction of preterm birth (PTB) using a comprehensive logistic regression model incorporating diverse risk factors. Methods In this prospective case-control study, maternal serum biomarkers were quantified at 9–23 weeks’ gestation in 60 women delivering at <37 weeks compared to 123 women delivering at term. Biomarker data were combined with maternal sociodemographic factors and stress data into regression models encompassing 22 preterm risk factors and 1st-order interactions. Results Among individual biomarkers, we found that macrophage migration inhibitory factor (MIF), interleukin-10, C-reactive protein (CRP), and tumor necrosis factor-α were statistically significant predictors of PTB at all cutoff levels tested (75th, 85th, and 90th percentiles). We fit multifactor models for PTB prediction at each biomarker cutoff. Our best models revealed that MIF, CRP, risk-taking behavior, and low educational attainment were consistent predictors of PTB at all biomarker cutoffs. The 75th percentile cutoff yielded the best predicting model with an area under the ROC curve of 0.808 (95% CI 0.743–0.874). Conclusion Our comprehensive models highlight the prominence of behavioral risk factors for PTB and point to MIF as a possible psychobiological mediator. PMID:20160447
Pearce, B D; Grove, J; Bonney, E A; Bliwise, N; Dudley, D J; Schendel, D E; Thorsen, P
2010-01-01
To examine the relationship of biological mediators (cytokines, stress hormones), psychosocial, obstetric history, and demographic factors in the early prediction of preterm birth (PTB) using a comprehensive logistic regression model incorporating diverse risk factors. In this prospective case-control study, maternal serum biomarkers were quantified at 9-23 weeks' gestation in 60 women delivering at <37 weeks compared to 123 women delivering at term. Biomarker data were combined with maternal sociodemographic factors and stress data into regression models encompassing 22 preterm risk factors and 1st-order interactions. Among individual biomarkers, we found that macrophage migration inhibitory factor (MIF), interleukin-10, C-reactive protein (CRP), and tumor necrosis factor-alpha were statistically significant predictors of PTB at all cutoff levels tested (75th, 85th, and 90th percentiles). We fit multifactor models for PTB prediction at each biomarker cutoff. Our best models revealed that MIF, CRP, risk-taking behavior, and low educational attainment were consistent predictors of PTB at all biomarker cutoffs. The 75th percentile cutoff yielded the best predicting model with an area under the ROC curve of 0.808 (95% CI 0.743-0.874). Our comprehensive models highlight the prominence of behavioral risk factors for PTB and point to MIF as a possible psychobiological mediator. Copyright (c) 2010 S. Karger AG, Basel.
Climatological Features of Cutoff Low Systems in the Northern Hemisphere.
NASA Astrophysics Data System (ADS)
Nieto, Raquel; Gimeno, Luis; de La Torre, Laura; Ribera, Pedro; Gallego, David; García-Herrera, Ricardo; Agustín García, José; Nuñez, Marcelino; Redaño, Angel; Lorente, Jerónimo
2005-08-01
This study presents the first multidecadal climatology of cutoff low systems in the Northern Hemisphere. The climatology was constructed by using 41 yr (1958-98) of NCEP-NCAR reanalysis data and identifying cutoff lows by means of an objective method based on imposing the three main physical characteristics of the conceptual model of cutoff low (the 200-hPa geopotential minimum, cutoff circulation, and the specific structure of both equivalent thickness and thermal front parameter fields).Several results were confirmed and climatologically validated: 1) the existence of three preferred areas of cutoff low occurrence (the first one extends through southern Europe and the eastern Atlantic coast, the second one is the eastern North Pacific, and the third one is the northern China-Siberian region extending to the northwestern Pacific coast; the European area is the most favored region); 2) the known seasonal cycle, with cutoff lows forming much more frequently in summer than in winter; 3) the short lifetime of cutoff lows, most cutoff lows lasted 2-3 days and very few lasted more than 5 days; and 4) the mobility of the system, with few cutoff lows being stationary. Furthermore, the long study period has made it possible (i) to find a bimodal distribution in the geographical density of cutoff lows for the European sector in all the seasons (with the exception of winter), a summer displacement to the ocean in the American region, and a summer extension to the continent in the Asian region, and (ii) to detect northward and westward motion especially in the transitions from the second to third day of occurrence and from the third to fourth day of occurrence.The long-term cutoff low database built in this study is appropriate to study the interannual variability of cutoff low occurrence and the links between cutoff lows and jet stream systems, blocking, or major modes of climate variability as well as the global importance of cutoff low in the stratosphere-troposphere exchange mechanism, which will be the focus of a subsequent paper.
Stream-power model of meander cutoff in gravel beds
NASA Astrophysics Data System (ADS)
Pannone, M.; De Vincenzo, A.
2016-12-01
In the present study we propose a one-dimensional model for the prediction of the large-time evolution of river meanders (pre-cutoff conditions) characterized by gravel bed and negligible suspended load. Due to its relatively simple structure, it may be a fast and easy tool to forecast the time evolution of a bend when the symptoms of an incipient instability suggest quantifying the time left for river exploitation as a naturalistic or a commercial resource and timely planning, if needed, the site management and restoration. Most of the previous research on meandering rivers focused on linearized theories that apply to very small bend amplitudes and very large radii of curvature. The dynamics of meander growth and cutoff was typically afforded by case-sensitive numerical simulations or by descriptive methods aimed at deriving purely empirical laws relating the hydraulics to some geomorphological parameters. The present approach combines the immediacy of a general analytical model with the accuracy of a fluid-mechanical background. The model focuses on energetic principles and interprets the mechanism of meander cutoff as the achievement of limit conditions in terms of river stream power. The corresponding analytical solution, which consists in a 1-D deterministic integro-differential equation governing the meander pre-cutoff phase, accounts for the influence of the morphological and sedimentological parameters by the downstream migration rate and the radius of the meander osculating circle. The results, expressed in terms of instable meander lifetime, are in good agreement with the data obtained from a number of field surveys documented in literature. Additionally, the proposed fluid-mechanical model allows identifying the physical mechanisms responsible for some peculiarities of large-time meander evolution like the decreasing skewness and asymmetry.
The Detection of an Extremely Bright Fast Radio Burst in a Phased Array Feed Survey
NASA Astrophysics Data System (ADS)
Bannister, K. W.; Shannon, R. M.; Macquart, J.-P.; Flynn, C.; Edwards, P. G.; O'Neill, M.; Osłowski, S.; Bailes, M.; Zackay, B.; Clarke, N.; D'Addario, L. R.; Dodson, R.; Hall, P. J.; Jameson, A.; Jones, D.; Navarro, R.; Trinh, J. T.; Allison, J.; Anderson, C. S.; Bell, M.; Chippendale, A. P.; Collier, J. D.; Heald, G.; Heywood, I.; Hotan, A. W.; Lee-Waddell, K.; Madrid, J. P.; Marvil, J.; McConnell, D.; Popping, A.; Voronkov, M. A.; Whiting, M. T.; Allen, G. R.; Bock, D. C.-J.; Brodrick, D. P.; Cooray, F.; DeBoer, D. R.; Diamond, P. J.; Ekers, R.; Gough, R. G.; Hampson, G. A.; Harvey-Smith, L.; Hay, S. G.; Hayman, D. B.; Jackson, C. A.; Johnston, S.; Koribalski, B. S.; McClure-Griffiths, N. M.; Mirtschin, P.; Ng, A.; Norris, R. P.; Pearce, S. E.; Phillips, C. J.; Roxby, D. N.; Troup, E. R.; Westmeier, T.
2017-05-01
We report the detection of an ultra-bright fast radio burst (FRB) from a modest, 3.4-day pilot survey with the Australian Square Kilometre Array Pathfinder. The survey was conducted in a wide-field fly’s-eye configuration using the phased-array-feed technology deployed on the array to instantaneously observe an effective area of 160 deg2, and achieve an exposure totaling 13200 deg2 hr . We constrain the position of FRB 170107 to a region 8\\prime × 8\\prime in size (90% containment) and its fluence to be 58 ± 6 Jy ms. The spectrum of the burst shows a sharp cutoff above 1400 MHz, which could be due to either scintillation or an intrinsic feature of the burst. This confirms the existence of an ultra-bright (> 20 Jy ms) population of FRBs.
Series-counterpulse repetitive-pulse inductive storage circuit
Honig, E.M.
1984-06-05
A high-power series-counterpulse repetitive-pulse inductive energy storage and transfer circuit includes an opening switch, a main energy storage coil, and a counterpulse capacitor. The local pulse is initiated simultaneously with the initiation of the counterpulse used to turn the opening switch off. There is no delay from command to output pulse. During the load pulse, the counterpulse capacitor is automatically charged with sufficient energy to accomplish the load counterpulse which terminates the load pulse and turns the load switch off. When the main opening switch is reclosed to terminate the load pulse, the counterpulse capacitor discharges through the load, causing a rapid, sharp cutoff of the load pulse as well as recovering any energy remaining in the load inductance. The counterpulse capacitor is recharged to its original condition by the main energy storage coil after the load pulse is over, not before it begins.
Sample Skewness as a Statistical Measurement of Neuronal Tuning Sharpness
Samonds, Jason M.; Potetz, Brian R.; Lee, Tai Sing
2014-01-01
We propose using the statistical measurement of the sample skewness of the distribution of mean firing rates of a tuning curve to quantify sharpness of tuning. For some features, like binocular disparity, tuning curves are best described by relatively complex and sometimes diverse functions, making it difficult to quantify sharpness with a single function and parameter. Skewness provides a robust nonparametric measure of tuning curve sharpness that is invariant with respect to the mean and variance of the tuning curve and is straightforward to apply to a wide range of tuning, including simple orientation tuning curves and complex object tuning curves that often cannot even be described parametrically. Because skewness does not depend on a specific model or function of tuning, it is especially appealing to cases of sharpening where recurrent interactions among neurons produce sharper tuning curves that deviate in a complex manner from the feedforward function of tuning. Since tuning curves for all neurons are not typically well described by a single parametric function, this model independence additionally allows skewness to be applied to all recorded neurons, maximizing the statistical power of a set of data. We also compare skewness with other nonparametric measures of tuning curve sharpness and selectivity. Compared to these other nonparametric measures tested, skewness is best used for capturing the sharpness of multimodal tuning curves defined by narrow peaks (maximum) and broad valleys (minima). Finally, we provide a more formal definition of sharpness using a shape-based information gain measure and derive and show that skewness is correlated with this definition. PMID:24555451
Brekke, Mette; Rekdal, Magne; Straand, Jørund
2007-06-01
To assess level of cardiovascular risk factors in a non-selected, middle-aged population. To estimate the proportion target for risk intervention according to present guidelines and according to different cut-off levels for two risk algorithms. Population survey, modelling study. The Norwegian Hordaland Health Study (HUSK) 1997-99. A total of 22 289 persons born in 1950-57. Own and relatives' cardiovascular morbidity, antihypertensive and lipid-lowering treatment, smoking, blood pressure, cholesterol. Framingham and Systematic Coronary Risk Evaluation (SCORE) algorithms. The European guidelines on CVD prevention in clinical practice were applied to estimate size of risk groups. Some 9.7% of men and 7.6% of women had CVD, diabetes mellitus, a high level of one specific risk factor, or received lipid-lowering or antihypertensive treatment. Applying a SCORE (60 years) cut-off level at 5% to the rest of the population selected 52.4% of men and 0.8% of women into a primary prevention group, while a cut-off level at 8% included 22.0% and 0.06% respectively. A cut-off level for the Framingham score (60 years) of 20% selected 43.6% of men and 4.7% of women, while a cut-off level of 25% selected 25.6% of men and 1.8% of women. The findings illustrate how choices regarding risk estimation highly affect the size of the target population. Modelling studies are important when preparing guidelines, to address implications for resource allocation and risk of medicalization. The population share to be targeted for primary prevention ought to be estimated, including the impact of various cut-off points for risk algorithms on the size of the risk population.
Pérez-Santiago, Josué; Ouchi, Dan; Urrea, Victor; Carrillo, Jorge; Cabrera, Cecilia; Villà-Freixa, Jordi; Puig, Jordi; Paredes, Roger; Negredo, Eugènia; Clotet, Bonaventura; Massanella, Marta; Blanco, Julià
2016-01-01
Background: The failure to increase CD4+ T-cell counts in some antiretroviral therapy suppressed participants (immunodiscordance) has been related to perturbed CD4+ T-cell homeostasis and impacts clinical evolution. Methods: We evaluated different definitions of immunodiscordance based on CD4+ T-cell counts (cutoff) or CD4+ T-cell increases from nadir value (ΔCD4) using supervised random forest classification of 74 immunological and clinical variables from 196 antiretroviral therapy suppressed individuals. Unsupervised clustering was performed using relevant variables identified in the supervised approach from 191 individuals. Results: Cutoff definition of CD4+ cell count 400 cells/μl performed better than any other definition in segregating immunoconcordant and immunodiscordant individuals (85% accuracy), using markers of activation, nadir and death of CD4+ T cells. Unsupervised clustering of relevant variables using this definition revealed large heterogeneity between immunodiscordant individuals and segregated participants into three distinct subgroups with distinct production, programmed cell-death protein-1 (PD-1) expression, activation and death of T cells. Surprisingly, a nonnegligible number of immunodiscordant participants (22%) showed high frequency of recent thymic emigrants and low CD4+ T-cell activation and death, very similar to immunoconcordant participants. Notably, human leukocyte antigen - antigen D related (HLA-DR) PD-1 and CD45RA expression in CD4+ T cells allowed reproducing subgroup segregation (81.4% accuracy). Despite sharp immunological differences, similar and persistently low CD4+ values were maintained in these participants over time. Conclusion: A cutoff value of CD4+ T-cell count 400 cells/μl classified better immunodiscordant and immunoconcordant individuals than any ΔCD4 classification. Immunodiscordance may present several, even opposite, immunological patterns that are identified by a simple immunological follow-up. Subgroup classification may help clinicians to delineate diverse approaches that may be needed to boost CD4+ T-cell recovery. PMID:27427875
Level density inputs in nuclear reaction codes and the role of the spin cutoff parameter
Voinov, A. V.; Grimes, S. M.; Brune, C. R.; ...
2014-09-03
Here, the proton spectrum from the 57Fe(α,p) reaction has been measured and analyzed with the Hauser-Feshbach model of nuclear reactions. Different input level density models have been tested. It was found that the best description is achieved with either Fermi-gas or constant temperature model functions obtained by fitting them to neutron resonance spacing and to discrete levels and using the spin cutoff parameter with much weaker excitation energy dependence than it is predicted by the Fermi-gas model.
Babusa, Bernadett; Czeglédi, Edit; Túry, Ferenc; Mayville, Stephen B; Urbán, Róbert
2015-01-01
Muscle dysmorphia (MD) is a body image disturbance characterized by a pathological preoccupation with muscularity. The study aimed to differentiate the levels of risk for MD among weightlifters and to define a tentative cut-off score for the Muscle Appearance Satisfaction Scale (MASS) for the identification of high risk MD cases. Hungarian male weightlifters (n=304) completed the MASS, the Exercise Addiction Inventory, and specific exercise and body image related questions. For the differentiation of MD, factor mixture modeling was performed, resulting in three independent groups: low-, moderate-, and high risk MD groups. The estimated prevalence of high risk MD in this sample of weightlifters was 15.1%. To determine a cut-off score for the MASS, sensitivity and specificity analyses were performed and a cut-off point of 63 was suggested. The proposed cut-off score for the MASS can be useful for the early detection of high risk MD. Copyright © 2014 Elsevier Ltd. All rights reserved.
Signal propagation in cortical networks: a digital signal processing approach.
Rodrigues, Francisco Aparecido; da Fontoura Costa, Luciano
2009-01-01
This work reports a digital signal processing approach to representing and modeling transmission and combination of signals in cortical networks. The signal dynamics is modeled in terms of diffusion, which allows the information processing undergone between any pair of nodes to be fully characterized in terms of a finite impulse response (FIR) filter. Diffusion without and with time decay are investigated. All filters underlying the cat and macaque cortical organization are found to be of low-pass nature, allowing the cortical signal processing to be summarized in terms of the respective cutoff frequencies (a high cutoff frequency meaning little alteration of signals through their intermixing). Several findings are reported and discussed, including the fact that the incorporation of temporal activity decay tends to provide more diversified cutoff frequencies. Different filtering intensity is observed for each community in those networks. In addition, the brain regions involved in object recognition tend to present the highest cutoff frequencies for both the cat and macaque networks.
The Hubble IR cutoff in holographic ellipsoidal cosmologies
NASA Astrophysics Data System (ADS)
Cataldo, Mauricio; Cruz, Norman
2018-01-01
It is well known that for spatially flat FRW cosmologies, the holographic dark energy disfavors the Hubble parameter as a candidate for the IR cutoff. For overcoming this problem, we explore the use of this cutoff in holographic ellipsoidal cosmological models, and derive the general ellipsoidal metric induced by a such holographic energy density. Despite the drawbacks that this cutoff presents in homogeneous and isotropic universes, based on this general metric, we developed a suitable ellipsoidal holographic cosmological model, filled with a dark matter and a dark energy components. At late time stages, the cosmic evolution is dominated by a holographic anisotropic dark energy with barotropic equations of state. The cosmologies expand in all directions in accelerated manner. Since the ellipsoidal cosmologies given here are not asymptotically FRW, the deviation from homogeneity and isotropy of the universe on large cosmological scales remains constant during all cosmic evolution. This feature allows the studied holographic ellipsoidal cosmologies to be ruled by an equation of state ω =p/ρ , whose range belongs to quintessence or even phantom matter.
Eisenhofer, Graeme; Lattke, Peter; Herberg, Maria; Siegert, Gabriele; Qin, Nan; Därr, Roland; Hoyer, Jana; Villringer, Arno; Prejbisz, Aleksander; Januszewicz, Andrzej; Remaley, Alan; Martucci, Victoria; Pacak, Karel; Ross, H Alec; Sweep, Fred C G J; Lenders, Jacques W M
2013-01-01
Measurements of plasma normetanephrine and metanephrine provide a useful diagnostic test for phaeochromocytoma, but this depends on appropriate reference intervals. Upper cut-offs set too high compromise diagnostic sensitivity, whereas set too low, false-positives are a problem. This study aimed to establish optimal reference intervals for plasma normetanephrine and metanephrine. Blood samples were collected in the supine position from 1226 subjects, aged 5-84 y, including 116 children, 575 normotensive and hypertensive adults and 535 patients in whom phaeochromocytoma was ruled out. Reference intervals were examined according to age and gender. Various models were examined to optimize upper cut-offs according to estimates of diagnostic sensitivity and specificity in a separate validation group of 3888 patients tested for phaeochromocytoma, including 558 with confirmed disease. Plasma metanephrine, but not normetanephrine, was higher (P < 0.001) in men than in women, but reference intervals did not differ. Age showed a positive relationship (P < 0.0001) with plasma normetanephrine and a weaker relationship (P = 0.021) with metanephrine. Upper cut-offs of reference intervals for normetanephrine increased from 0.47 nmol/L in children to 1.05 nmol/L in subjects over 60 y. A curvilinear model for age-adjusted compared with fixed upper cut-offs for normetanephrine, together with a higher cut-off for metanephrine (0.45 versus 0.32 nmol/L), resulted in a substantial gain in diagnostic specificity from 88.3% to 96.0% with minimal loss in diagnostic sensitivity from 93.9% to 93.6%. These data establish age-adjusted cut-offs of reference intervals for plasma normetanephrine and optimized cut-offs for metanephrine useful for minimizing false-positive results.
Eisenhofer, Graeme; Lattke, Peter; Herberg, Maria; Siegert, Gabriele; Qin, Nan; Därr, Roland; Hoyer, Jana; Villringer, Arno; Prejbisz, Aleksander; Januszewicz, Andrzej; Remaley, Alan; Martucci, Victoria; Pacak, Karel; Ross, H Alec; Sweep, Fred C G J; Lenders, Jacques W M
2016-01-01
Background Measurements of plasma normetanephrine and metanephrine provide a useful diagnostic test for phaeochromocytoma, but this depends on appropriate reference intervals. Upper cut-offs set too high compromise diagnostic sensitivity, whereas set too low, false-positives are a problem. This study aimed to establish optimal reference intervals for plasma normetanephrine and metanephrine. Methods Blood samples were collected in the supine position from 1226 subjects, aged 5–84 y, including 116 children, 575 normotensive and hypertensive adults and 535 patients in whom phaeochromocytoma was ruled out. Reference intervals were examined according to age and gender. Various models were examined to optimize upper cut-offs according to estimates of diagnostic sensitivity and specificity in a separate validation group of 3888 patients tested for phaeochromocytoma, including 558 with confirmed disease. Results Plasma metanephrine, but not normetanephrine, was higher (P < 0.001) in men than in women, but reference intervals did not differ. Age showed a positive relationship (P < 0.0001) with plasma normetanephrine and a weaker relationship (P = 0.021) with metanephrine. Upper cut-offs of reference intervals for normetanephrine increased from 0.47 nmol/L in children to 1.05 nmol/L in subjects over 60 y. A curvilinear model for age-adjusted compared with fixed upper cut-offs for normetanephrine, together with a higher cut-off for metanephrine (0.45 versus 0.32 nmol/L), resulted in a substantial gain in diagnostic specificity from 88.3% to 96.0% with minimal loss in diagnostic sensitivity from 93.9% to 93.6%. Conclusions These data establish age-adjusted cut-offs of reference intervals for plasma normetanephrine and optimized cut-offs for metanephrine useful for minimizing false-positive results. PMID:23065528
Esteghamati, Alireza; Ashraf, Haleh; Khalilzadeh, Omid; Zandieh, Ali; Nakhjavani, Manouchehr; Rashidi, Armin; Haghazali, Mehrdad; Asgari, Fereshteh
2010-04-07
We have recently determined the optimal cut-off of the homeostatic model assessment of insulin resistance for the diagnosis of insulin resistance (IR) and metabolic syndrome (MetS) in non-diabetic residents of Tehran, the capital of Iran. The aim of the present study is to establish the optimal cut-off at the national level in the Iranian population with and without diabetes. Data of the third National Surveillance of Risk Factors of Non-Communicable Diseases, available for 3,071 adult Iranian individuals aging 25-64 years were analyzed. MetS was defined according to the Adult Treatment Panel III (ATPIII) and International Diabetes Federation (IDF) criteria. HOMA-IR cut-offs from the 50th to the 95th percentile were calculated and sensitivity, specificity, and positive likelihood ratio for MetS diagnosis were determined. The receiver operating characteristic (ROC) curves of HOMA-IR for MetS diagnosis were depicted, and the optimal cut-offs were determined by two different methods: Youden index, and the shortest distance from the top left corner of the curve. The area under the curve (AUC) (95%CI) was 0.650 (0.631-0.670) for IDF-defined MetS and 0.683 (0.664-0.703) with the ATPIII definition. The optimal HOMA-IR cut-off for the diagnosis of IDF- and ATPIII-defined MetS in non-diabetic individuals was 1.775 (sensitivity: 57.3%, specificity: 65.3%, with ATPIII; sensitivity: 55.9%, specificity: 64.7%, with IDF). The optimal cut-offs in diabetic individuals were 3.875 (sensitivity: 49.7%, specificity: 69.6%) and 4.325 (sensitivity: 45.4%, specificity: 69.0%) for ATPIII- and IDF-defined MetS, respectively. We determined the optimal HOMA-IR cut-off points for the diagnosis of MetS in the Iranian population with and without diabetes.
Gina, Agarwal; Ying, Jiang; Susan, Rogers Van Katwyk; Chantal, Lemieux; Heather, Orpana; Yang, Mao; Brandan, Hanley; Karen, Davis; Laurel, Leuschen; Howard, Morrison
2018-01-01
Abstract Introduction: First Nations/Métis populations develop diabetes earlier and at higher rates than other Canadians. The Canadian diabetes risk questionnaire (CANRISK) was developed as a diabetes screening tool for Canadians aged 40 years or over. The primary aim of this paper is to assess the effectiveness of the existing CANRISK tool and risk scores in detecting dysglycemia in First Nations/Métis participants, including among those under the age of 40. A secondary aim was to determine whether alternative waist circumference (WC) and body mass index (BMI) cut-off points improved the predictive ability of logistic regression models using CANRISK variables to predict dysglycemia. Methods: Information from a self-administered CANRISK questionnaire, anthropometric measurements, and results of a standard oral glucose tolerance test (OGTT) were collected from First Nations and Métis participants (n = 1479). Sensitivity and specificity of CANRISK scores using published risk score cut-off points were calculated. Logistic regression was conducted with alternative ethnicity-specific BMI and WC cut-off points to predict dysglycemia using CANRISK variables. Results: Compared with OGTT results, using a CANRISK score cut-off point of 33, the sensitivity and specificity of CANRISK was 68% and 63% among individuals aged 40 or over; it was 27% and 87%, respectively among those under 40. Using a lower cut-off point of 21, the sensitivity for individuals under 40 improved to 77% with a specificity of 44%. Though specificity at this threshold was low, the higher level of sensitivity reflects the importance of the identification of high risk individuals in this population. Despite altered cut-off points of BMI and WC, logistic regression models demonstrated similar predictive ability. Conclusion: CANRISK functioned well as a preliminary step for diabetes screening in a broad age range of First Nations and Métis in Canada, with an adjusted CANRISK cutoff point for individuals under 40, and with no incremental improvement from using alternative BMI/WC cut-off points. PMID:29443485
Numerical Modeling of Compressible Flow and Its Control
2014-03-01
surface just outbound of the fin . This impinging jet is believed to be responsible for the high surface pressure, skin friction, and heat transfer in...and fine grid simulations over predict the heat transfer by roughly 13% for this case. E. LF12 Case, Sharp Fin at 12° In the LF12 case, a sharp...Dolling, D. S., and Knight, D. D., “An Experimental/Computational Study of Heat Transfer in Sharp Fin Induced Turbulent Interactions at Mach 5,” AIAA
To Model Chemical Reactivity in Heterogeneous Emulsions, Think Homogeneous Microemulsions.
Bravo-Díaz, Carlos; Romsted, Laurence Stuart; Liu, Changyao; Losada-Barreiro, Sonia; Pastoriza-Gallego, Maria José; Gao, Xiang; Gu, Qing; Krishnan, Gunaseelan; Sánchez-Paz, Verónica; Zhang, Yongliang; Dar, Aijaz Ahmad
2015-08-25
Two important and unsolved problems in the food industry and also fundamental questions in colloid chemistry are how to measure molecular distributions, especially antioxidants (AOs), and how to model chemical reactivity, including AO efficiency in opaque emulsions. The key to understanding reactivity in organized surfactant media is that reaction mechanisms are consistent with a discrete structures-separate continuous regions duality. Aggregate structures in emulsions are determined by highly cooperative but weak organizing forces that allow reactants to diffuse at rates approaching their diffusion-controlled limit. Reactant distributions for slow thermal bimolecular reactions are in dynamic equilibrium, and their distributions are proportional to their relative solubilities in the oil, interfacial, and aqueous regions. Our chemical kinetic method is grounded in thermodynamics and combines a pseudophase model with methods for monitoring the reactions of AOs with a hydrophobic arenediazonium ion probe in opaque emulsions. We introduce (a) the logic and basic assumptions of the pseudophase model used to define the distributions of AOs among the oil, interfacial, and aqueous regions in microemulsions and emulsions and (b) the dye derivatization and linear sweep voltammetry methods for monitoring the rates of reaction in opaque emulsions. Our results show that this approach provides a unique, versatile, and robust method for obtaining quantitative estimates of AO partition coefficients or partition constants and distributions and interfacial rate constants in emulsions. The examples provided illustrate the effects of various emulsion properties on AO distributions such as oil hydrophobicity, emulsifier structure and HLB, temperature, droplet size, surfactant charge, and acidity on reactant distributions. Finally, we show that the chemical kinetic method provides a natural explanation for the cut-off effect, a maximum followed by a sharp reduction in AO efficiency with increasing alkyl chain length of a particular AO. We conclude with perspectives and prospects.
Modeling Interfacial Thermal Boundary Conductance of Engineered Interfaces
2014-08-31
melting / recrystallization of the subsurface Ag/Cu interface. Observed the formation of a novel, lattice-mismatched interfacial microstruc- ture...calculations were converged within 1 × 10−4 Ryd with respect to wave function cutoff energy, energy density cutoff, and k- point sampling. The A-EAM
Overview of the relevant CFD work at Thiokol Corporation
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Loh, Hai-Tien
1992-01-01
An in-house developed proprietary advanced computational fluid dynamics code called SHARP (Trademark) is a primary tool for many flow simulations and design analyses. The SHARP code is a time dependent, two dimensional (2-D) axisymmetric numerical solution technique for the compressible Navier-Stokes equations. The solution technique in SHARP uses a vectorizable implicit, second order accurate in time and space, finite volume scheme based on an upwind flux-difference splitting of a Roe-type approximated Riemann solver, Van Leer's flux vector splitting, and a fourth order artificial dissipation scheme with a preconditioning to accelerate the flow solution. Turbulence is simulated by an algebraic model, and ultimately the kappa-epsilon model. Some other capabilities of the code are 2-D two-phase Lagrangian particle tracking and cell blockages. Extensive development and testing has been conducted on the 3-D version of the code with flow, combustion, and turbulence interactions. The emphasis here is on the specific applications of SHARP in Solid Rocket Motor design. Information is given in viewgraph form.
Modeling the Geologic History of Mt. Sharp
NASA Technical Reports Server (NTRS)
Pascuzzo, A.; Allen, C.
2015-01-01
Gale is an approximately 155 km diameter crater located on the martian dichotomy boundary (5 deg S 138 deg E). Gale is estimated to have formed 3.8 - 3.5 Gya, in the late Noachian or early Hesperian. Mt. Sharp, at the center of Gale Crater, is a crescent shaped sedimentary mound that rises 5.2 km above the crater floor. Gale is one of the few craters that has a peak reaching higher than the rim of the crater wall. The Curiosity rover is currently fighting to find its way across a dune field at the northwest base of the mound searching for evidence of habitability. This study used orbital images and topographic data to refine models for the geologic history of Mt. Sharp by analyzing its morphological features. In addition, it assessed the possibility of a peak ring in Gale. The presence of a peak ring can offer important information to how Mt. Sharp was formed and eroded early in Gale's history.
Li, Zhe-Xuan; Huang, Lei-Lei; Liu, Cong; Formichella, Luca; Zhang, Yang; Wang, Yu-Mei; Zhang, Lian; Ma, Jun-Ling; Liu, Wei-Dong; Ulm, Kurt; Wang, Jian-Xi; Zhang, Lei; Bajbouj, Monther; Li, Ming; Vieth, Michael; Quante, Michael; Zhou, Tong; Wang, Le-Hua; Suchanek, Stepan; Soutschek, Erwin; Schmid, Roland; Classen, Meinhard; You, Wei-Cheng; Gerhard, Markus; Pan, Kai-Feng
2017-05-18
The performance of diagnostic tests in intervention trials of Helicobacter pylori (H.pylori) eradication is crucial, since even minor inaccuracies can have major impact. To determine the cut-off point for 13 C-urea breath test ( 13 C-UBT) and to assess if it can be further optimized by serologic testing, mathematic modeling, histopathology and serologic validation were applied. A finite mixture model (FMM) was developed in 21,857 subjects, and an independent validation by modified Giemsa staining was conducted in 300 selected subjects. H.pylori status was determined using recomLine H.pylori assay in 2,113 subjects with a borderline 13 C-UBT results. The delta over baseline-value (DOB) of 3.8 was an optimal cut-off point by a FMM in modelling dataset, which was further validated as the most appropriate cut-off point by Giemsa staining (sensitivity = 94.53%, specificity = 92.93%). In the borderline population, 1,468 subjects were determined as H.pylori positive by recomLine (69.5%). A significant correlation between the number of positive H.pylori serum responses and DOB value was found (r s = 0.217, P < 0.001). A mathematical approach such as FMM might be an alternative measure in optimizing the cut-off point for 13 C-UBT in community-based studies, and a second method to determine H.pylori status for subjects with borderline value of 13 C-UBT was necessary and recommended.
Study of Proton cutoffs during geomagnetically disturbed times
NASA Astrophysics Data System (ADS)
Kanekal, S. G.; Looper, M. D.; Baker, D. N.; Blake, J. B.
2005-12-01
It is currently believed that solar energetic particles (SEP) may be accelerated at solar flares and/or at interplanetary shocks driven by coronal mass ejections (CMEs). CMEs also cause intense geomagnetic storms during which the geomagnetic field can be highly distorted.SEP fluxes penetrate the terrestrial magnetosphere and reach specific regions depending upon the geomagnetic field configuration. The cutoff latitude is a well defined latitude below which a charged particle of a given rigidity (momentum per unit charge) arriving from a given direction cannot penetrate. SEP cutoff location can therefore be potentially useful in determining the geomagnetic field configuration. This paper reports on the measurements of solar energetic proton cutoffs made by two satellites, SAMPEX and Polar during geomagnetically disturbed times. We study select SEP events and compare our measurements with cutoffs calculated by a charged particle tracing code which utilizes several currently used models of the geomagnetic field. The measured SEP proton cutoffs cover a wide range of rigidities and are obtained at high-altitudes by the HIST detector onboard Polar and at low-altitudes by the PET detctor onboard SAMPEX.
ERIC Educational Resources Information Center
Heene, Moritz; Hilbert, Sven; Draxler, Clemens; Ziegler, Matthias; Buhner, Markus
2011-01-01
Fit indices are widely used in order to test the model fit for structural equation models. In a highly influential study, Hu and Bentler (1999) showed that certain cutoff values for these indices could be derived, which, over time, has led to the reification of these suggested thresholds as "golden rules" for establishing the fit or other aspects…
DC and small-signal physical models for the AlGaAs/GaAs high electron mobility transistor
NASA Technical Reports Server (NTRS)
Sarker, J. C.; Purviance, J. E.
1991-01-01
Analytical and numerical models are developed for the microwave small-signal performance, such as transconductance, gate-to-source capacitance, current gain cut-off frequency and the optimum cut-off frequency of the AlGaAs/GaAs High Electron Mobility Transistor (HEMT), in both normal and compressed transconductance regions. The validated I-V characteristics and the small-signal performances of four HeMT's are presented.
Ononamadu, Chimaobi James; Ezekwesili, Chinwe Nonyelum; Onyeukwu, Onyemaechi Faith; Umeoguaju, Uchenna Francis; Ezeigwe, Obiajulu Christian; Ihegboro, Godwin Okwudiri
Obesity is a well-established independent risk factor for hypertension and other cardiometabolic disorders. However, the best anthropometric index of obesity that predicts or associates strongly with hypertension and related conditions remains controversial and inconclusive. This study compared the performance of eight anthropometric indices of obesity: body mass index (BMI), ponderal index (PI), waist circumference (WC), hip circumference (HC), waist-hip ratio (WHR), waist-height ratio (WHtR), body adiposity index (BAI) and conicity index (CI) as correlates and potential predictors of risk of hypertension and prehypertension in a Nigerian population, and also the possible effect of combining two or more indices in that regard. This church-based, cross-sectional study was conducted in Anambra state, south-eastern Nigeria from 2012 to 2013. A total of 912 persons (436 male and 476 female) drawn randomly from three major cities (Awka, Onitsha and Nnewi) in the state participated in the study. Information on demography, medical history and lifestyle were obtained using a well-structured and validated questionnaire. The systolic/diastolic blood pressure and anthropometric measurements were taken by well-trained personnel. The resulting data were analysed using descriptive statistics, logistic regression, Poisson regression and receiver operating characteristic curve analysis. The mean values of all the anthropometric indices studied increased from normotension, through prehypertension to hypertension in both genders. BMI, WC, HC and CI were significantly higher (p < 0.05) in females than males. All the anthropometric indices studied were significantly (p < 0.001 except for CI) correlated with systolic and diastolic blood pressure. BMI, WHtR, WC and PI (with higher correlation coefficients for blood pressure) showed the best potential to predict hypertension and prehypertension in the study: BMI (cut-off = 24.49, AUC = 0.698; cut-off = 23.62, AUC = 0.659), WHtR (cut-off = 0.55, AUC = 0.682; cut-off = 0.5, AUC = 0.636), WC (cut-off = 91.44, AUC = 0.692; cut-off = 82.55, AUC = 0.645), PI (cut-off = 14.45, AUC = 0.670; cut-off = 13.69, AUC = 0.639), in males; and BMI (cut-off = 24.44, AUC = 0.622; cut-off = 28.01, AUC = 0.609), WHtR (cut-off = 0.51, AUC = 0.624; cut-off = 0.6, AUC = 0.572), WC ( cut-off = 96.62, AUC = 0.616; cut-off = 96.52, AUC = 0.584), PI ( cut-off = 16.38, AUC = 0.619; cut-off = 17.65, AUC = 0.599), in females for hypertension and prehypertension, respectively. In predicting hypertension risk, WC and WHtR did not significantly improve the performance of BMI in the models when included using our decision rule. Overall, CI had a very poor discriminatory power for both conditions in this study. BMI, WHtR, WC and PI emerged the best predictors of hypertension risk, and BMI, WC and PI of prehypertension risk in this study. The combination of high-performing anthropometric indices in a model did not improve their performance. Therefore we recommend the simultaneous but independent use of BMI and either WC or WHtR for predicting hypertension, and BMI and WC for prehypertension risk, bearing in mind that both types of index (abdominal and general obesity) account for different forms of obesity.
Ononamadu, Chimaobi James; Ihegboro, Godwin Okwudiri; Ezekwesili, Chinwe Nonyelum; Onyeukwu, Onyemaechi Faith; Umeoguaju,, Uchenna Francis; Ezeigwe, Obiajulu Christian
2017-01-01
Summary Background: Obesity is a well-established independent risk factor for hypertension and other cardiometabolic disorders. However, the best anthropometric index of obesity that predicts or associates strongly with hypertension and related conditions remains controversial and inconclusive. Objective: This study compared the performance of eight anthropometric indices of obesity: body mass index (BMI), ponderal index (PI), waist circumference (WC), hip circumference (HC), waist–hip ratio (WHR), waist–height ratio (WHtR), body adiposity index (BAI) and conicity index (CI) as correlates and potential predictors of risk of hypertension and prehypertension in a Nigerian population, and also the possible effect of combining two or more indices in that regard. Methods: This church-based, cross-sectional study was conducted in Anambra state, south-eastern Nigeria from 2012 to 2013. A total of 912 persons (436 male and 476 female) drawn randomly from three major cities (Awka, Onitsha and Nnewi) in the state participated in the study. Information on demography, medical history and lifestyle were obtained using a well-structured and validated questionnaire. The systolic/diastolic blood pressure and anthropometric measurements were taken by well-trained personnel. The resulting data were analysed using descriptive statistics, logistic regression, Poisson regression and receiver operating characteristic curve analysis. Results: The mean values of all the anthropometric indices studied increased from normotension, through prehypertension to hypertension in both genders. BMI, WC, HC and CI were significantly higher (p < 0.05) in females than males. All the anthropometric indices studied were significantly (p < 0.001 except for CI) correlated with systolic and diastolic blood pressure. BMI, WHtR, WC and PI (with higher correlation coefficients for blood pressure) showed the best potential potential to predict hypertension and prehypertension in the study: BMI (cut-off = 24.49, AUC = 0.698; cut-off = 23.62, AUC = 0.659), WHtR (cut-off = 0.55, AUC = 0.682; cut-off = 0.5, AUC = 0.636), WC (cut-off = 91.44, AUC = 0.692; cut-off = 82.55, AUC = 0.645), PI (cut-off = 14.45, AUC = 0.670; cut-off = 13.69, AUC = 0.639), in males; and BMI (cut-off = 24.44, AUC = 0.622; cut-off = 28.01, AUC = 0.609), WHtR (cut-off = 0.51, AUC = 0.624; cut-off = 0.6, AUC = 0.572), WC (cut-off = 96.62, AUC = 0.616; cut-off = 96.52, AUC = 0.584), PI (cut-off = 16.38, AUC = 0.619; cut-off = 17.65, AUC = 0.599), in females for hypertension and prehypertension, respectively. In predicting hypertension risk, WC and WHtR did not significantly improve the performance of BMI in the models when included using our decision rule. Overall, CI had a very poor discriminatory power for both conditions in this study. Conclusion: BMI, WHtR, WC and PI emerged the best predictors of hypertension risk, and BMI, WC and PI of prehypertension risk in this study. The combination of high-performing anthropometric indices in a model did not improve their performance. Therefore we recommend the simultaneous but independent use of BMI and either WC or WHtR for predicting hypertension, and BMI and WC for prehypertension risk, bearing in mind that both types of index (abdominal and general obesity) account for different forms of obesity. PMID:27701484
NASA Astrophysics Data System (ADS)
Ganguly, S.; Lubetzky, E.; Martinelli, F.
2015-05-01
The East process is a 1 d kinetically constrained interacting particle system, introduced in the physics literature in the early 1990s to model liquid-glass transitions. Spectral gap estimates of Aldous and Diaconis in 2002 imply that its mixing time on L sites has order L. We complement that result and show cutoff with an -window. The main ingredient is an analysis of the front of the process (its rightmost zero in the setup where zeros facilitate updates to their right). One expects the front to advance as a biased random walk, whose normal fluctuations would imply cutoff with an -window. The law of the process behind the front plays a crucial role: Blondel showed that it converges to an invariant measure ν, on which very little is known. Here we obtain quantitative bounds on the speed of convergence to ν, finding that it is exponentially fast. We then derive that the increments of the front behave as a stationary mixing sequence of random variables, and a Stein-method based argument of Bolthausen (`82) implies a CLT for the location of the front, yielding the cutoff result. Finally, we supplement these results by a study of analogous kinetically constrained models on trees, again establishing cutoff, yet this time with an O(1)-window.
A new smooth-k space filter approach to calculate halo abundances
NASA Astrophysics Data System (ADS)
Leo, Matteo; Baugh, Carlton M.; Li, Baojiu; Pascoli, Silvia
2018-04-01
We propose a new filter, a smooth-k space filter, to use in the Press-Schechter approach to model the dark matter halo mass function which overcomes shortcomings of other filters. We test this against the mass function measured in N-body simulations. We find that the commonly used sharp-k filter fails to reproduce the behaviour of the halo mass function at low masses measured from simulations of models with a sharp truncation in the linear power spectrum. We show that the predictions with our new filter agree with the simulation results over a wider range of halo masses for both damped and undamped power spectra than is the case with the sharp-k and real-space top-hat filters.
Overview of the SHARP campaign: Motivation, design, and major outcomes
NASA Astrophysics Data System (ADS)
Olaguer, Eduardo P.; Kolb, Charles E.; Lefer, Barry; Rappenglück, Bernhard; Zhang, Renyi; Pinto, Joseph P.
2014-03-01
The Study of Houston Atmospheric Radical Precursors (SHARP) was a field campaign developed by the Houston Advanced Research Center on behalf of the Texas Environmental Research Consortium. SHARP capitalized on previous research associated with the Second Texas Air Quality Study and the development of the State Implementation Plan (SIP) for the Houston-Galveston-Brazoria (HGB) ozone nonattainment area. These earlier studies pointed to an apparent deficit in ozone production in the SIP attainment demonstration model despite the enhancement of simulated emissions of highly reactive volatile organic compounds in accordance with the findings of the original Texas Air Quality Study in 2000. The scientific hypothesis underlying the SHARP campaign was that there are significant undercounted primary and secondary sources of the radical precursors, formaldehyde, and nitrous acid, in both heavily industrialized and more typical urban areas of Houston. These sources, if properly taken into account, could increase the production of ozone in the SIP model and the simulated efficacy of control strategies designed to bring the HGB area into ozone attainment. This overview summarizes the precursor studies and motivations behind SHARP, as well as the overall experimental design and major findings of the 2009 field campaign. These findings include significant combustion sources of formaldehyde at levels greater than accounted for in current point source emission inventories; the underestimation of formaldehyde and nitrous acid emissions, as well as CO/NOx and NO2/NOx ratios, by mobile source models; and the enhancement of nitrous acid by atmospheric organic aerosol.
Elongation cutoff technique armed with quantum fast multipole method for linear scaling.
Korchowiec, Jacek; Lewandowski, Jakub; Makowski, Marcin; Gu, Feng Long; Aoki, Yuriko
2009-11-30
A linear-scaling implementation of the elongation cutoff technique (ELG/C) that speeds up Hartree-Fock (HF) self-consistent field calculations is presented. The cutoff method avoids the known bottleneck of the conventional HF scheme, that is, diagonalization, because it operates within the low dimension subspace of the whole atomic orbital space. The efficiency of ELG/C is illustrated for two model systems. The obtained results indicate that the ELG/C is a very efficient sparse matrix algebra scheme. Copyright 2009 Wiley Periodicals, Inc.
Essaid, Hedeff I.
1990-01-01
A quasi three-dimensional, finite difference model, that simulates freshwater and saltwater flow separated by a sharp interface, has been developed to study layered coastal aquifer systems. The model allows for regional simulation of coastal groundwater conditions, including the effects of saltwater dynamics on the freshwater system. Vertically integrated freshwater and saltwater flow equations incorporating the interface boundary condition are solved within each aquifer. Leakage through confining layers is calculated by Darcy's law, accounting for density differences across the layer. The locations of the interface tip and toe, within grid blocks, are tracked by linearly extrapolating the position of the interface. The model has been verified using available analytical solutions and experimental results. Application of the model to the Soquel-Aptos basin, Santa Cruz County, California, illustrates the use of the quasi three-dimensional, sharp interface approach for the examination of freshwater-saltwater dynamics in regional systems. Simulation suggests that the interface, today, is still responding to long-term Pleistocene sea level fluctuations and has not achieved equilibrium with present day sea level conditions.
Primordial power spectrum features and consequences
NASA Astrophysics Data System (ADS)
Goswami, G.
2014-03-01
The present Cosmic Microwave Background (CMB) temperature and polarization anisotropy data is consistent with not only a power law scalar primordial power spectrum (PPS) with a small running but also with the scalar PPS having very sharp features. This has motivated inflationary models with such sharp features. Recently, even the possibility of having nulls in the power spectrum (at certain scales) has been considered. The existence of these nulls has been shown in linear perturbation theory. What shall be the effect of higher order corrections on such nulls? Inspired by this question, we have attempted to calculate quantum radiative corrections to the Fourier transform of the 2-point function in a toy field theory and address the issue of how these corrections to the power spectrum behave in models in which the tree-level power spectrum has a sharp dip (but not a null). In particular, we have considered the possibility of the relative enhancement of radiative corrections in a model in which the tree-level spectrum goes through a dip in power at a certain scale. The mode functions of the field (whose power spectrum is to be evaluated) are chosen such that they undergo the kind of dynamics that leads to a sharp dip in the tree level power spectrum. Next, we have considered the situation in which this field has quartic self interactions, and found one loop correction in a suitably chosen renormalization scheme. Thus, we have attempted to answer the following key question in the context of this toy model (which is as important in the realistic case): In the chosen renormalization scheme, can quantum radiative corrections be enhanced relative to tree-level power spectrum at scales, at which sharp dips appear in the tree-level spectrum?
Protein docking by the interface structure similarity: how much structure is needed?
Sinha, Rohita; Kundrotas, Petras J; Vakser, Ilya A
2012-01-01
The increasing availability of co-crystallized protein-protein complexes provides an opportunity to use template-based modeling for protein-protein docking. Structure alignment techniques are useful in detection of remote target-template similarities. The size of the structure involved in the alignment is important for the success in modeling. This paper describes a systematic large-scale study to find the optimal definition/size of the interfaces for the structure alignment-based docking applications. The results showed that structural areas corresponding to the cutoff values <12 Å across the interface inadequately represent structural details of the interfaces. With the increase of the cutoff beyond 12 Å, the success rate for the benchmark set of 99 protein complexes, did not increase significantly for higher accuracy models, and decreased for lower-accuracy models. The 12 Å cutoff was optimal in our interface alignment-based docking, and a likely best choice for the large-scale (e.g., on the scale of the entire genome) applications to protein interaction networks. The results provide guidelines for the docking approaches, including high-throughput applications to modeled structures.
Dittmar, John C.; Pierce, Steven; Rothstein, Rodney; Reid, Robert J. D.
2013-01-01
Genome-wide experiments often measure quantitative differences between treated and untreated cells to identify affected strains. For these studies, statistical models are typically used to determine significance cutoffs. We developed a method termed “CLIK” (Cutoff Linked to Interaction Knowledge) that overlays biological knowledge from the interactome on screen results to derive a cutoff. The method takes advantage of the fact that groups of functionally related interacting genes often respond similarly to experimental conditions and, thus, cluster in a ranked list of screen results. We applied CLIK analysis to five screens of the yeast gene disruption library and found that it defined a significance cutoff that differed from traditional statistics. Importantly, verification experiments revealed that the CLIK cutoff correlated with the position in the rank order where the rate of true positives drops off significantly. In addition, the gene sets defined by CLIK analysis often provide further biological perspectives. For example, applying CLIK analysis retrospectively to a screen for cisplatin sensitivity allowed us to identify the importance of the Hrq1 helicase in DNA crosslink repair. Furthermore, we demonstrate the utility of CLIK to determine optimal treatment conditions by analyzing genome-wide screens at multiple rapamycin concentrations. We show that CLIK is an extremely useful tool for evaluating screen quality, determining screen cutoffs, and comparing results between screens. Furthermore, because CLIK uses previously annotated interaction data to determine biologically informed cutoffs, it provides additional insights into screen results, which supplement traditional statistical approaches. PMID:23589890
Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides.
Beck, David A C; Armen, Roger S; Daggett, Valerie
2005-01-18
The correct treatment of van der Waals and electrostatic nonbonded interactions in molecular force fields is essential for performing realistic molecular dynamics (MD) simulations of solvated polypeptides. The most computationally tractable treatment of nonbonded interactions in MD utilizes a spherical distance cutoff (typically, 8-12 A) to reduce the number of pairwise interactions. In this work, we assess three spherical atom-based cutoff approaches for use with all-atom explicit solvent MD: abrupt truncation, a CHARMM-style electrostatic shift truncation, and our own force-shifted truncation. The chosen system for this study is an end-capped 17-residue alanine-based alpha-helical peptide, selected because of its use in previous computational and experimental studies. We compare the time-averaged helical content calculated from these MD trajectories with experiment. We also examine the effect of varying the cutoff treatment and distance on energy conservation. We find that the abrupt truncation approach is pathological in its inability to conserve energy. The CHARMM-style shift truncation performs quite well but suffers from energetic instability. On the other hand, the force-shifted spherical cutoff method conserves energy, correctly predicts the experimental helical content, and shows convergence in simulation statistics as the cutoff is increased. This work demonstrates that by using proper and rigorous techniques, it is possible to correctly model polypeptide dynamics in solution with a spherical cutoff. The inherent computational advantage of spherical cutoffs over Ewald summation (and related) techniques is essential in accessing longer MD time scales.
NASA Astrophysics Data System (ADS)
Gets, A. V.; Krainov, V. P.
2018-01-01
The yield of spontaneous photons at the tunneling ionization of atoms by intense low-frequency laser radiation near the classical cut-off is estimated analytically by using the three-step model. The Bell-shaped dependence in the universal photon spectrum is explained qualitatively.
Microscopic study of spin cut-off factors of nuclear level densities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholami, M.; Kildir, M.; Behkami, A. N.
Level densities and spin cut-off factors have been investigated within the microscopic approach based on the BCS Hamiltonian. In particular, the spin cut-off parameters have been calculated at neutron binding energies over a large range of nuclear mass using the BCS theory. The spin cut-off parameters {sigma}{sup 2}(E) have also been obtained from the Gilbert and Cameron expression and from rigid body calculations. The results were compared with their corresponding macroscopic values. It was found that the values of {sigma}{sup 2}(E) did not increase smoothly with A as expected based on macroscopic theory. Instead, the values of {sigma}{sup 2}(E) showmore » structure reflecting the angular momentum of the shell model orbitals near the Fermi energy.« less
Application of the SHARP Toolkit to Sodium-Cooled Fast Reactor Challenge Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shemon, E. R.; Yu, Y.; Kim, T. K.
The Simulation-based High-efficiency Advanced Reactor Prototyping (SHARP) toolkit is under development by the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign of the U.S. Department of Energy, Office of Nuclear Energy. To better understand and exploit the benefits of advanced modeling simulations, the NEAMS Campaign initiated the “Sodium-Cooled Fast Reactor (SFR) Challenge Problems” task, which include the assessment of hot channel factors (HCFs) and the demonstration of zooming capability using the SHARP toolkit. If both challenge problems are resolved through advanced modeling and simulation using the SHARP toolkit, the economic competitiveness of a SFR can be significantly improved. The effortsmore » in the first year of this project focused on the development of computational models, meshes, and coupling procedures for multi-physics calculations using the neutronics (PROTEUS) and thermal-hydraulic (Nek5000) components of the SHARP toolkit, as well as demonstration of the HCF calculation capability for the 100 MWe Advanced Fast Reactor (AFR-100) design. Testing the feasibility of the SHARP zooming capability is planned in FY 2018. The HCFs developed for the earlier SFRs (FFTF, CRBR, and EBR-II) were reviewed, and a subset of these were identified as potential candidates for reduction or elimination through high-fidelity simulations. A one-way offline coupling method was used to evaluate the HCFs where the neutronics solver PROTEUS computes the power profile based on an assumed temperature, and the computational fluid dynamics solver Nek5000 evaluates the peak temperatures using the neutronics power profile. If the initial temperature profile used in the neutronics calculation is reasonably accurate, the one-way offline method is valid because the neutronics power profile has weak dependence on small temperature variation. In order to get more precise results, the proper temperature profile for initial neutronics calculations was obtained from the STAR-CCM+ calculations. The HCFs of the peak temperatures at cladding outer surface, cladding inner wall surface, and fuel centerline induced by cladding manufacturing tolerance and uncertainties on the cladding, coolant, and fuel properties were evaluated for the AFR-100. Some assessment on the effect of wire wrap configuration and size of the bundle shows that it is practical to use the 7-pin bare rod bundle to calculate the HCFs. The resulting HCFs obtained from the high-fidelity SHARP calculations are generally smaller than those developed for the earlier SFRs because the most uncertainties involved in the modeling and simulations were disappeared. For completeness, additional investigations are planned in FY 2018, which will use random sampling techniques.« less
Blair, Alden Hooper; Pearce, Margo Ellen; Katamba, Achilles; Malamba, Samuel S; Muyinda, Herbert; Schechter, Martin T; Spittal, Patricia M
2017-05-01
Despite increased use of the Alcohol Use Disorders Identification Test (AUDIT) in sub-Saharan Africa, few studies have assessed its underlying conceptual framework, and none have done so in post-conflict settings. Further, significant inconsistencies exist between definitions used for problematic consumption. Such is the case in Uganda, facing one of the highest per-capita alcohol consumption levels regionally, which is thought to be hindering rebuilding in the North after two decades of civil war. This study explores the impact of varying designation cutoff thresholds in the AUDIT as well as its conceptual factor structure in a representative sample of the population. In all, 1720 Cango Lyec Project participants completed socio-economic and mental health questionnaires, provided blood samples and took the AUDIT. Participant characteristics and consumption designations were compared at AUDIT summary score thresholds of ≥3, ≥5 and ≥8. Confirmatory factor analyses (CFA) explored one-, two- and three-factor level models overall and by sex with relative and absolute fit indicators. There were no significant differences in participant demographic characteristics between thresholds. At higher cutoffs, the test increased in specificity to identify those with hazardous drinking, disordered drinking and suffering from alcohol-related harms. All conceptual models indicated good fit, with three-factor models superior overall and within both sexes. In Northern Uganda, a three-factor AUDIT model best explores alcohol use in the population and is appropriate for use in both sexes. Lower cutoff thresholds are recommended to identify those with potentially disordered drinking to best plan effective interventions and treatments. A CFA of the AUDIT showed good fit for one-, two, and three-factor models overall and by sex in a representative sample in post-conflict Northern Uganda. A three-plus total AUDIT cutoff score is suggested to screen for hazardous drinking in this or similar populations. © The Author 2016. Medical Council on Alcohol and Oxford University Press. All rights reserved.
Hsu, Chia-Yang; Liu, Po-Hong; Lee, Yun-Hsuan; Hsia, Cheng-Yuan; Huang, Yi-Hsiang; Lin, Han-Chieh; Chiou, Yi-You; Lee, Fa-Yauh; Huo, Teh-Ia
2015-01-01
Background and Aims The prognostic ability of α-fetoprotein (AFP) for patients with hepatocellular carcinoma (HCC) was examined by using different cutoff values. The optimal AFP cutoff level is still unclear. Methods A total of 2579 HCC patients were consecutively enrolled in Taiwan, where hepatitis B is the major etiology of chronic liver disease. Four frequently used AFP cutoff levels, 20, 200, 400, 1000 ng/mL, were investigated. One-to-one matched pairs between patients having AFP higher and lower than the cutoffs were selected by using the propensity model. The adjusted hazard ratios of survival difference were calculated with Cox proportional hazards model. Results Patients with a higher AFP level were associated with more severe cirrhosis, more frequent vascular invasion, higher tumor burden and poorer performance status (all p<0.0001). In the propensity model, 4 groups of paired patients were selected, and there was no difference found in the comparison of baseline characteristics (all p>0.05). Patients with AFP <20 ng/mL had significantly better long-term survival than patients with AFP ≧20 ng/mL (p<0.0001), and patients with AFP <400 ng/mL had significantly better overall outcome than patients with AFP ≧400 ng/mL (p = 0.0186). There was no difference of long-term survival between patients divided by AFP levels of 200 and 1000 ng/mL. The adjusted hazard ratios of AFP ≧20 ng/mL and AFP ≧400 ng/mL were 1.545 and 1.471 (95% confidence interval: 1.3–1.838 and 1.178–1.837), respectively. Conclusions This study shows the independently predictive ability of baseline serum AFP level in HCC patients. AFP levels of 20 and 400 ng/mL are considered feasible cutoffs to predict long-term outcome in unselected HCC patients. PMID:25738614
Towards a sharp-interface volume-of-fluid methodology for modeling evaporation
NASA Astrophysics Data System (ADS)
Pathak, Ashish; Raessi, Mehdi
2017-11-01
In modeling evaporation, the diffuse-interface (one-domain) formulation yields inaccurate results. Recent efforts approaching the problem via a sharp-interface (two-domain) formulation have shown significant improvements. The reasons behind their better performance are discussed in the present work. All available sharp-interface methods, however, exclusively employ the level-set. In the present work, we develop a sharp-interface evaporation model in a volume-of-fluid (VOF) framework in order to leverage its mass-conserving property as well as its ability to handle large topographical changes. We start with a critical review of the assumptions underlying the mathematical equations governing evaporation. For example, it is shown that the assumption of incompressibility can only be applied in special circumstances. The famous D2 law used for benchmarking is valid exclusively to steady-state test problems. Transient is present over significant lifetime of a micron-size droplet. Therefore, a 1D spherical fully transient model is developed to provide a benchmark transient solution. Finally, a 3D Cartesian Navier-Stokes evaporation solver is developed. Some preliminary validation test-cases are presented for static and moving drop evaporation. This material is based upon work supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy and the Department of Defense, Tank and Automotive Research, Development, and Engineering Center, under Award Number DEEE0007292.
García-Jacas, C R; Marrero-Ponce, Y; Barigye, S J; Hernández-Ortega, T; Cabrera-Leyva, L; Fernández-Castillo, A
2016-12-01
Novel N-tuple topological/geometric cutoffs to consider specific inter-atomic relations in the QuBiLS-MIDAS framework are introduced in this manuscript. These molecular cutoffs permit the taking into account of relations between more than two atoms by using (dis-)similarity multi-metrics and the concepts related with topological and Euclidean-geometric distances. To this end, the kth two-, three- and four-tuple topological and geometric neighbourhood quotient (NQ) total (or local-fragment) spatial-(dis)similarity matrices are defined, to represent 3D information corresponding to the relations between two, three and four atoms of the molecular structures that satisfy certain cutoff criteria. First, an analysis of a diverse chemical space for the most common values of topological/Euclidean-geometric distances, bond/dihedral angles, triangle/quadrilateral perimeters, triangle area and volume was performed in order to determine the intervals to take into account in the cutoff procedures. A variability analysis based on Shannon's entropy reveals that better distribution patterns are attained with the descriptors based on the cutoffs proposed (QuBiLS-MIDAS NQ-MDs) with regard to the results obtained when all inter-atomic relations are considered (QuBiLS-MIDAS KA-MDs - 'Keep All'). A principal component analysis shows that the novel molecular cutoffs codify chemical information captured by the respective QuBiLS-MIDAS KA-MDs, as well as information not captured by the latter. Lastly, a QSAR study to obtain deeper knowledge of the contribution of the proposed methods was carried out, using four molecular datasets (steroids (STER), angiotensin converting enzyme (ACE), thermolysin inhibitors (THER) and thrombin inhibitors (THR)) widely used as benchmarks in the evaluation of several methodologies. One to four variable QSAR models based on multiple linear regression were developed for each compound dataset following the original division into training and test sets. The results obtained reveal that the novel cutoff procedures yield superior performances relative to those of the QuBiLS-MIDAS KA-MDs in the prediction of the biological activities considered. From the results achieved, it can be suggested that the proposed N-tuple topological/geometric cutoffs constitute a relevant criteria for generating MDs codifying particular atomic relations, ultimately useful in enhancing the modelling capacity of the QuBiLS-MIDAS 3D-MDs.
Fracture Mechanical Analysis of Open Cell Ceramic Foams Under Thermal Shock Loading
NASA Astrophysics Data System (ADS)
Settgast, C.; Abendroth, M.; Kuna, M.
2016-11-01
Ceramic foams made by replica techniques containing sharp-edged cavities, which are potential crack initiators and therefore have to be analyzed using fracture mechanical methods. The ceramic foams made of novel carbon bonded alumina are used as filters in metal melt filtration applications, where the filters are exposed to a thermal shock. During the casting process the filters experience a complex thermo-mechanical loading, which is difficult to measure. Modern numerical methods allow the simulation of such complex processes. As a simplified foam structure an open Kelvin cell is used as a representative volume element. A three-dimensional finite element model containing realistic sharp-edged cavities and three-dimensional sub-models along these sharp edges are used to compute the transient temperature, stress and strain fields at the Kelvin foam. The sharp edges are evaluated using fracture mechanical methods like the J-integral technique. The results of this study describe the influence of the pore size, relative density of the ceramic foam, the heat transfer and selected material parameters on the fracture mechanical behaviour.
Heo, Moonseong; Wylie-Rosett, Judith; Pietrobelli, Angelo; Kabat, Geoffrey C.; Rohan, Thomas E.; Faith, Myles S.
2013-01-01
Objective Four body mass index (BMI) metrics—BMI, BMI z-score, BMI percentile, and BMI%—are commonly used as proxy measures for children's adiposity. We sought to determine a BMI metric that is most strongly associated with measured percentage of body fat (%BF) in the US pediatric population stratified by sex, age and race/ethnicity, and to determine cutoffs that maximize the association for each BMI metric. Subjects, Design and Methods %BF was measured by DXA among N=6120 US boys and girls aged 8.0 to 17.9 years old from NHANES 1999-2004. We fit piece-wise linear regression models with cutoffs to %BF data using each BMI metric as the predictor stratified by sex, race/ethnicity and age. The slopes were modeled differently before and after the cutoffs which were determined based on grid searches. Results BMI z-score was in general most strongly associated with %BF for both boys and girls. The associations of the four BMI metrics were lowest for boys aged 12-13.9 years and girls aged 16-17.9 years, and strongest for Mexican-American boys and for non-Hispanic black girls. Overall, the associations were stronger for girls than for boys. In boys, BMI had the lowest association with %BF (R2=0.39) for all ages combined. The fold changes in slopes before and after cutoffs were greatest in general for BMI percentiles regardless of age, sex and race/ethnicity. BMI z-score cutoffs were 0.4 for both boys and girls for all ages combined. Except for BMI, the slopes after the cutoffs were in general greater than those before. Conclusions All BMI metrics were strongly associated with %BF when stratified by age and race/ethnicity except that BMI was the least associated with %BF in boys for all ages combined. Overall, BMI z-score was superior for evaluation of %BF, and its cutoff of 0.4 can also serve as a threshold for careful monitoring of weight status. PMID:23887060
Heo, M; Wylie-Rosett, J; Pietrobelli, A; Kabat, G C; Rohan, T E; Faith, M S
2014-01-01
Four body mass index (BMI) metrics--BMI, BMI z-score, BMI percentile and BMI%--are commonly used as proxy measures for children's adiposity. We sought to determine a BMI metric that is most strongly associated with measured percentage of body fat (%BF) in the US pediatric population stratified by sex, age and race/ethnicity, and to determine cutoffs that maximize the association for each BMI metric. SUBJECTS, DESIGN AND METHODS: %BF was measured by dual-energy X-ray absorptiometry among N=6120 US boys and girls aged 8.0-17.9 years old from the National Health and Nutrition Examination Survey 1999-2004. We fit piecewise linear regression models with cutoffs to %BF data using each BMI metric as the predictor stratified by sex, race/ethnicity and age. The slopes were modeled differently before and after the cutoffs which were determined on the basis of grid searches. BMI z-score was in general most strongly associated with %BF for both boys and girls. The associations of the four BMI metrics were lowest for boys aged 12-13.9 years and girls aged 16-17.9 years, and strongest for Mexican-American boys and for non-Hispanic Black girls. Overall, the associations were stronger for girls than for boys. In boys, BMI had the lowest association with %BF (R(2)=0.39) for all ages combined. The fold changes in slopes before and after cutoffs were greatest in general for BMI percentiles regardless of age, sex and race/ethnicity. BMI z-score cutoffs were 0.4 for both boys and girls for all ages combined. Except for BMI, the slopes after the cutoffs were in general greater than those before. All BMI metrics were strongly associated with %BF when stratified by age and race/ethnicity except that BMI was the least associated with %BF in boys for all ages combined. Overall, BMI z-score was superior for evaluation of %BF, and its cutoff of 0.4 can also serve as a threshold for careful monitoring of weight status.
Enhancements to the SHARP Build System and NEK5000 Coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaskey, Alex; Bennett, Andrew R.; Billings, Jay Jay
The SHARP project for the Department of Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program provides a multiphysics framework for coupled simulations of advanced nuclear reactor designs. It provides an overall coupling environment that utilizes custom interfaces to couple existing physics codes through a common spatial decomposition and unique solution transfer component. As of this writing, SHARP couples neutronics, thermal hydraulics, and structural mechanics using PROTEUS, Nek5000, and Diablo respectively. This report details two primary SHARP improvements regarding the Nek5000 and Diablo individual physics codes: (1) an improved Nek5000 coupling interface that lets SHARP achieve a vast increase inmore » overall solution accuracy by manipulating the structure of the internal Nek5000 spatial mesh, and (2) the capability to seamlessly couple structural mechanics calculations into the framework through improvements to the SHARP build system. The Nek5000 coupling interface now uses a barycentric Lagrange interpolation method that takes the vertex-based power and density computed from the PROTEUS neutronics solver and maps it to the user-specified, general-order Nek5000 spectral element mesh. Before this work, SHARP handled this vertex-based solution transfer in an averaging-based manner. SHARP users can now achieve higher levels of accuracy by specifying any arbitrary Nek5000 spectral mesh order. This improvement takes the average percentage error between the PROTEUS power solution and the Nek5000 interpolated result down drastically from over 23 % to just above 2 %, and maintains the correct power profile. We have integrated Diablo into the SHARP build system to facilitate the future coupling of structural mechanics calculations into SHARP. Previously, simulations involving Diablo were done in an iterative manner, requiring a large amount manual work, and left only as a task for advanced users. This report will detail a new Diablo build system that was implemented using GNU Autotools, mirroring much of the current SHARP build system, and easing the use of structural mechanics calculations for end-users of the SHARP multiphysics framework. It lets users easily build and use Diablo as a stand-alone simulation, as well as fully couple with the other SHARP physics modules. The top-level SHARP build system was modified to allow Diablo to hook in directly. New dependency handlers were implemented to let SHARP users easily build the framework with these new simulation capabilities. The remainder of this report will describe this work in full, with a detailed discussion of the overall design philosophy of SHARP, the new solution interpolation method introduced, and the Diablo integration work. We will conclude with a discussion of possible future SHARP improvements that will serve to increase solution accuracy and framework capability.« less
The Universal Stellar Mass-Stellar Metallicity Relation for Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra; Cheng, Lucy; Bullock, James S.; Gallazzi, Anna
2013-12-01
We present spectroscopic metallicities of individual stars in seven gas-rich dwarf irregular galaxies (dIrrs), and we show that dIrrs obey the same mass-metallicity relation as the dwarf spheroidal (dSph) satellites of both the Milky Way and M31: Z_* \\propto M_*^{0.30+/- 0.02}. The uniformity of the relation is in contradiction to previous estimates of metallicity based on photometry. This relationship is roughly continuous with the stellar mass-stellar metallicity relation for galaxies as massive as M * = 1012 M ⊙. Although the average metallicities of dwarf galaxies depend only on stellar mass, the shapes of their metallicity distributions depend on galaxy type. The metallicity distributions of dIrrs resemble simple, leaky box chemical evolution models, whereas dSphs require an additional parameter, such as gas accretion, to explain the shapes of their metallicity distributions. Furthermore, the metallicity distributions of the more luminous dSphs have sharp, metal-rich cut-offs that are consistent with the sudden truncation of star formation due to ram pressure stripping. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
The Interrupted Power Law and the Size of Shadow Banking
Fiaschi, Davide; Kondor, Imre; Marsili, Matteo; Volpati, Valerio
2014-01-01
Using public data (Forbes Global 2000) we show that the asset sizes for the largest global firms follow a Pareto distribution in an intermediate range, that is “interrupted” by a sharp cut-off in its upper tail, where it is totally dominated by financial firms. This flattening of the distribution contrasts with a large body of empirical literature which finds a Pareto distribution for firm sizes both across countries and over time. Pareto distributions are generally traced back to a mechanism of proportional random growth, based on a regime of constant returns to scale. This makes our findings of an “interrupted” Pareto distribution all the more puzzling, because we provide evidence that financial firms in our sample should operate in such a regime. We claim that the missing mass from the upper tail of the asset size distribution is a consequence of shadow banking activity and that it provides an (upper) estimate of the size of the shadow banking system. This estimate–which we propose as a shadow banking index–compares well with estimates of the Financial Stability Board until 2009, but it shows a sharper rise in shadow banking activity after 2010. Finally, we propose a proportional random growth model that reproduces the observed distribution, thereby providing a quantitative estimate of the intensity of shadow banking activity. PMID:24728096
Kim, Da-Eun; Yang, Hyeri; Jang, Won-Hee; Jung, Kyoung-Mi; Park, Miyoung; Choi, Jin Kyu; Jung, Mi-Sook; Jeon, Eun-Young; Heo, Yong; Yeo, Kyung-Wook; Jo, Ji-Hoon; Park, Jung Eun; Sohn, Soo Jung; Kim, Tae Sung; Ahn, Il Young; Jeong, Tae-Cheon; Lim, Kyung-Min; Bae, SeungJin
2016-01-01
In order for a novel test method to be applied for regulatory purposes, its reliability and relevance, i.e., reproducibility and predictive capacity, must be demonstrated. Here, we examine the predictive capacity of a novel non-radioisotopic local lymph node assay, LLNA:BrdU-FCM (5-bromo-2'-deoxyuridine-flow cytometry), with a cutoff approach and inferential statistics as a prediction model. 22 reference substances in OECD TG429 were tested with a concurrent positive control, hexylcinnamaldehyde 25%(PC), and the stimulation index (SI) representing the fold increase in lymph node cells over the vehicle control was obtained. The optimal cutoff SI (2.7≤cutoff <3.5), with respect to predictive capacity, was obtained by a receiver operating characteristic curve, which produced 90.9% accuracy for the 22 substances. To address the inter-test variability in responsiveness, SI values standardized with PC were employed to obtain the optimal percentage cutoff (42.6≤cutoff <57.3% of PC), which produced 86.4% accuracy. A test substance may be diagnosed as a sensitizer if a statistically significant increase in SI is elicited. The parametric one-sided t-test and non-parametric Wilcoxon rank-sum test produced 77.3% accuracy. Similarly, a test substance could be defined as a sensitizer if the SI means of the vehicle control, and of the low, middle, and high concentrations were statistically significantly different, which was tested using ANOVA or Kruskal-Wallis, with post hoc analysis, Dunnett, or DSCF (Dwass-Steel-Critchlow-Fligner), respectively, depending on the equal variance test, producing 81.8% accuracy. The absolute SI-based cutoff approach produced the best predictive capacity, however the discordant decisions between prediction models need to be examined further. Copyright © 2015 Elsevier Inc. All rights reserved.
Consideration of vision and picture quality: psychological effects induced by picture sharpness
NASA Astrophysics Data System (ADS)
Kusaka, Hideo
1989-08-01
A psychological hierarchy model of human vision(1)(2) suggests that the visual signals are processed in a serial manner from lower to higher stages: that is "sensation" - "perception" - "emotion." For designing a future television system, it is important to find out what kinds of physical factors affect the "emotion" experienced by an observer in front of the display. This paper describes the psychological effects induced by the sharpness of the picture. The subjective picture quality was evaluated for the same pictures with five different levels of sharpness. The experiment was performed on two kinds of printed pictures: (A) a woman's face, and (B) a town corner. From these experiments, it was found that the amount of high-frequency peaking (physical value of the sharpness) which psychologically gives the best picture quality, differs between pictures (A) and (B). That is, the optimum picture sharpness differs depending on the picture content. From these results, we have concluded that the psychophysical sharpness of the picture is not only determined at the stage of "perception" (e.g., resolution or signal to noise ratio, which everyone can judge immediately), but also at the stage of "emotion" (e.g., sensation of reality or beauty).
NASA Astrophysics Data System (ADS)
Abanador, Paul M.; Mauger, François; Lopata, Kenneth; Gaarde, Mette B.; Schafer, Kenneth J.
2018-04-01
Using a model molecular system (A2) with two active electrons restricted to one dimension, we examine high-order harmonic generation (HHG) enhanced by rescattering. Our results show that even at intensities well below the single ionization saturation, harmonics generated from the cation (A2+ ) can be significantly enhanced due to the rescattering of the electron that is initially ionized. This two-electron effect is manifested by the appearance of a secondary plateau and cutoff in the HHG spectrum, extending beyond the predicted cutoff in the single active electron approximation. We use our molecular model to investigate the wavelength dependence of rescattering enhanced HHG, which was first reported in a model atomic system [I. Tikhomirov, T. Sato, and K. L. Ishikawa, Phys. Rev. Lett. 118, 203202 (2017), 10.1103/PhysRevLett.118.203202]. We demonstrate that the HHG yield in the secondary cutoff is highly sensitive to the available electron rescattering energies as indicated by a dramatic scaling with respect to driving wavelength.
Cost-effectiveness analysis of a quantitative immunochemical test for colorectal cancer screening.
Wilschut, Janneke A; Hol, Lieke; Dekker, Evelien; Jansen, Jan B; Van Leerdam, Monique E; Lansdorp-Vogelaar, Iris; Kuipers, Ernst J; Habbema, J Dik F; Van Ballegooijen, Marjolein
2011-11-01
Two European randomized trials (N = 30,000) compared guaiac fecal occult blood testing with quantitative fecal immunochemical testing (FIT) and showed better attendance rates and test characteristics for FIT. We aimed to identify the most cost-effective FIT cutoff level for referral to colonoscopy based on data from these trials and allowing for differences in screening ages. We used the validated MIcrosimulation SCreening ANalysis (MISCAN)-Colon microsimulation model to estimate costs and effects of different screening strategies for FIT cutoff levels of 50, 75, 100, 150, and 200 ng/mL hemoglobin. For each cutoff level, screening strategies were assessed with various age ranges and screening intervals. We assumed sufficient colonoscopy capacity for all strategies. At all cost levels, FIT screening was most effective with the 50 ng/mL cutoff level. The incremental cost-effectiveness ratio of biennial screening between ages 55 and 75 years using FIT at 50 ng/mL, for example, was 3900 euro per life year gained. Annual screening had an incremental cost-effectiveness ratio of 14,900 euro per life year gained, in combination with a wider age range (between ages 45 and 80 years). In the sensitivity analysis, 50 ng/mL remained the preferred cutoff level. FIT screening is more cost-effective at a cutoff level of 50 ng/mL than at higher cutoff levels. This supports the recommendation to use FIT at a cutoff level of 50 ng/mL, which is considerably lower than the values used in current practice. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Uncertainties in (E)UV model atmosphere fluxes
NASA Astrophysics Data System (ADS)
Rauch, T.
2008-04-01
Context: During the comparison of synthetic spectra calculated with two NLTE model atmosphere codes, namely TMAP and TLUSTY, we encounter systematic differences in the EUV fluxes due to the treatment of level dissolution by pressure ionization. Aims: In the case of Sirius B, we demonstrate an uncertainty in modeling the EUV flux reliably in order to challenge theoreticians to improve the theory of level dissolution. Methods: We calculated synthetic spectra for hot, compact stars using state-of-the-art NLTE model-atmosphere techniques. Results: Systematic differences may occur due to a code-specific cutoff frequency of the H I Lyman bound-free opacity. This is the case for TMAP and TLUSTY. Both codes predict the same flux level at wavelengths lower than about 1500 Å for stars with effective temperatures (T_eff) below about 30 000 K only, if the same cutoff frequency is chosen. Conclusions: The theory of level dissolution in high-density plasmas, which is available for hydrogen only should be generalized to all species. Especially, the cutoff frequencies for the bound-free opacities should be defined in order to make predictions of UV fluxes more reliable.
NASA Astrophysics Data System (ADS)
Bernstein, L. S.; Shroll, R. M.; Galazutdinov, G. A.; Beletsky, Y.
2018-06-01
We explore the common-carrier hypothesis for the 6196 and 6614 Å diffuse interstellar bands (DIBs). The observed DIB spectra are sharpened using a spectral deconvolution algorithm. This reveals finer spectral features that provide tighter constraints on candidate carriers. We analyze a deconvolved λ6614 DIB spectrum and derive spectroscopic constants that are then used to model the λ6196 spectra. The common-carrier spectroscopic constants enable quantitative fits to the contrasting λ6196 and λ6614 spectra from two sightlines. Highlights of our analysis include (1) sharp cutoffs for the maximum values of the rotational quantum numbers, J max = K max, (2) the λ6614 DIB consisting of a doublet and a red-tail component arising from different carriers, (3) the λ6614 doublet and λ6196 DIBs sharing a common carrier, (4) the contrasting shapes of the λ6614 doublet and λ6196 DIBs arising from different vibration–rotation Coriolis coupling constants that originate from transitions from a common ground state to different upper electronic state degenerate vibrational levels, and (5) the different widths of the two DIBs arising from different effective rotational temperatures associated with principal rotational axes that are parallel and perpendicular to the highest-order symmetry axis. The analysis results suggest a puckered oblate symmetric top carrier with a dipole moment aligned with the highest-order symmetry axis. An example candidate carrier consistent with these specifications is corannulene (C20H10), or one of its symmetric ionic or dehydrogenated forms, whose rotational constants are comparable to those obtained from spectral modeling of the DIB profiles.
Lee, Byeong-Ju; Kim, Hye-Youn; Lim, Sa Rang; Huang, Linfang; Choi, Hyung-Kyoon
2017-01-01
Panax ginseng C.A. Meyer is a herb used for medicinal purposes, and its discrimination according to cultivation age has been an important and practical issue. This study employed Fourier-transform infrared (FT-IR) spectroscopy with multivariate statistical analysis to obtain a prediction model for discriminating cultivation ages (5 and 6 years) and three different parts (rhizome, tap root, and lateral root) of P. ginseng. The optimal partial-least-squares regression (PLSR) models for discriminating ginseng samples were determined by selecting normalization methods, number of partial-least-squares (PLS) components, and variable influence on projection (VIP) cutoff values. The best prediction model for discriminating 5- and 6-year-old ginseng was developed using tap root, vector normalization applied after the second differentiation, one PLS component, and a VIP cutoff of 1.0 (based on the lowest root-mean-square error of prediction value). In addition, for discriminating among the three parts of P. ginseng, optimized PLSR models were established using data sets obtained from vector normalization, two PLS components, and VIP cutoff values of 1.5 (for 5-year-old ginseng) and 1.3 (for 6-year-old ginseng). To our knowledge, this is the first study to provide a novel strategy for rapidly discriminating the cultivation ages and parts of P. ginseng using FT-IR by selected normalization methods, number of PLS components, and VIP cutoff values.
Lim, Sa Rang; Huang, Linfang
2017-01-01
Panax ginseng C.A. Meyer is a herb used for medicinal purposes, and its discrimination according to cultivation age has been an important and practical issue. This study employed Fourier-transform infrared (FT-IR) spectroscopy with multivariate statistical analysis to obtain a prediction model for discriminating cultivation ages (5 and 6 years) and three different parts (rhizome, tap root, and lateral root) of P. ginseng. The optimal partial-least-squares regression (PLSR) models for discriminating ginseng samples were determined by selecting normalization methods, number of partial-least-squares (PLS) components, and variable influence on projection (VIP) cutoff values. The best prediction model for discriminating 5- and 6-year-old ginseng was developed using tap root, vector normalization applied after the second differentiation, one PLS component, and a VIP cutoff of 1.0 (based on the lowest root-mean-square error of prediction value). In addition, for discriminating among the three parts of P. ginseng, optimized PLSR models were established using data sets obtained from vector normalization, two PLS components, and VIP cutoff values of 1.5 (for 5-year-old ginseng) and 1.3 (for 6-year-old ginseng). To our knowledge, this is the first study to provide a novel strategy for rapidly discriminating the cultivation ages and parts of P. ginseng using FT-IR by selected normalization methods, number of PLS components, and VIP cutoff values. PMID:29049369
Verschueren, Sabine M. P.; Degens, Hans; Morse, Christopher I.; Onambélé, Gladys L.
2017-01-01
Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual’s physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry. PMID:29155839
Wullems, Jorgen A; Verschueren, Sabine M P; Degens, Hans; Morse, Christopher I; Onambélé, Gladys L
2017-01-01
Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual's physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry.
Heo, Moonseong; Faith, Myles S; Pietrobelli, Angelo; Heymsfield, Steven B
2012-03-01
To date, there is no consensus regarding adult cutoffs of percentage of body fat or estimated cutoffs on the basis of nationally representative samples with rigorous body-composition measurements. We developed cutoffs of percentage of body fat on the basis of the relation between dual-energy x-ray absorptiometry-measured fat mass and BMI (in kg/m(2)) stratified by sex, age, and race-ethnicity by using 1999-2004 NHANES data. A simple regression (percentage of body fat = β(0) + β(1) × 1 ÷ BMI) was fit for each combination of sex (men and women), 3 age groups (18-29, 30-49, and 50-84 y of age), and 3 race-ethnicity groups (non-Hispanic whites, non-Hispanic blacks, and Mexican Americans). Model fitting included a consideration of complex survey design and multiple imputations. Cutoffs of percentage of body fat were computed that corresponded to BMI cutoffs of 18.5, 25, 30, 35, and 40 on the basis of estimated prediction equations. R(2) ranged from 0.54 to 0.72 for men (n = 6544) and 0.58 to 0.79 for women (n = 6362). In men, the percentage of body fat that corresponded to a BMI of 18.5, 25, 30, 35, and 40 across age and racial-ethnic groups ranged from 12.2% to 19.0%, 22.6% to 28.0%, 27.5% to 32.3%, 31.0% to 35.3%, and 33.6% to 37.6%, respectively; the corresponding ranges in women were from 24.6% to 32.3%, 35.0% to 40.2%, 39.9% to 44.1%, 43.4% to 47.1%, and 46.1% to 49.4%, respectively. The oldest age group had the highest cutoffs of percentage of body fat. Non-Hispanic blacks had the lowest cutoffs of percentage of body fat. Cutoffs of percentage of body fat were higher in women than in men. Cutoffs of percentage of body fat that correspond to the current US BMI cutoffs are a function of sex, age, and race-ethnicity. These factors should be taken into account when considering the appropriateness of levels of percentage of body fat.
Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merzari, E.; Shemon, E. R.; Yu, Y. Q.
This report describes to employ SHARP to perform a first-of-a-kind analysis of the core radial expansion phenomenon in an SFR. This effort required significant advances in the framework Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit used to drive the coupled simulations, manipulate the mesh in response to the deformation of the geometry, and generate the necessary modified mesh files. Furthermore, the model geometry is fairly complex, and consistent mesh generation for the three physics modules required significant effort. Fully-integrated simulations of a 7-assembly mini-core test problem have been performed, and the results are presented here. Physics models ofmore » a full-core model of the Advanced Burner Test Reactor have also been developed for each of the three physics modules. Standalone results of each of the three physics modules for the ABTR are presented here, which provides a demonstration of the feasibility of the fully-integrated simulation.« less
Properties of infrared extrapolations in a harmonic oscillator basis
Coon, Sidney A.; Kruse, Michael K. G.
2016-02-22
Here, the success and utility of effective field theory (EFT) in explaining the structure and reactions of few-nucleon systems has prompted the initiation of EFT-inspired extrapolations to larger model spaces in ab initio methods such as the no-core shell model (NCSM). In this contribution, we review and continue our studies of infrared (ir) and ultraviolet (uv) regulators of NCSM calculations in which the input is phenomenological NN and NNN interactions fitted to data. We extend our previous findings that an extrapolation in the ir cutoff with the uv cutoff above the intrinsic uv scale of the interaction is quite successful,more » not only for the eigenstates of the Hamiltonian but also for expectation values of operators, such as r 2, considered long range. The latter results are obtained with Hamiltonians transformed by the similarity renormalization group (SRG) evolution. On the other hand, a possible extrapolation of ground state energies in the uv cutoff when the ir cutoff is below the intrinsic ir scale is not robust and does not agree with the ir extrapolation of the same data or with independent calculations using other methods.« less
Traub, Roger D.; Schmitz, Dietmar; Maier, Nikolaus; Whittington, Miles A.; Draguhn, Andreas
2012-01-01
Evidence has been presented that CA1 pyramidal cells, during spontaneous in vitro sharp wave/ripple (SPW-R) complexes, generate somatic action potentials that originate in axons. ‘Participating’ (somatically firing) pyramidal cells fire (almost always) at most once during a particular SPW-R whereas non-participating cells virtually never fire during an SPW-R. Somatic spikelets were small or absent, while ripple-frequency EPSCs and IPSCs occurred during the SPW-R in pyramidal neurons. These experimental findings could be replicated with a network model in which electrical coupling was present between small pyramidal cell axonal branches. Here, we explore this model in more depth. Factors that influence somatic participation include: (i) the diameter of axonal branches that contain coupling sites to other axons, because firing in larger branches injects more current into the main axon, increasing antidromic firing probability; (ii) axonal K+ currents; and (iii) somatic hyperpolarization and shunting. We predict that portions of axons fire at high frequency during SPW-R, while somata fire much less. In the model, somatic firing can occur by occasional generation of full action potentials in proximal axonal branches, which are excited by high-frequency spikelets. When the network contains phasic synaptic inhibition, at the axonal gap junction site, gamma oscillations result, again with more frequent axonal firing than somatic firing. Combining the models, so as to generate gamma followed by sharp waves, leads to strong overlap between the population of cells firing during gamma the population of cells firing during a subsequent sharp wave, as observed in vivo. PMID:22697272
Electronic structure of clean and Ag-covered single-crystalline Bi2Sr2CuO6
NASA Astrophysics Data System (ADS)
Lindberg, P. A. P.; Shen, Z.-X.; Wells, B. O.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.
1989-11-01
Photoemission studies of single-crystalline samples of Bi2Sr2CuO6 show clear resemblance to the corresponding data for single crystals of Bi2Sr2CaCu2O8. In particular, a sharp Fermi-level cutoff, giving evidence of metallic conductivity at room temperature, as well as single-component O 1s emission and Cu 2p satellites with a strength amounting to about 50% of that of the main Cu 2p line, are observed. An analysis of the relative core-level photoemission intensities shows that the preferential cleavage plane of single-crystalline Bi2Sr2CuO6 is between adjacent Bi-O layers. Deposition of Ag adatoms causes only weak reaction with the Bi and O ions of the Bi2Sr2CuO6 substrate, while the Cu states rapidly react with the Ag adatoms, as monitored by a continuous reduction of the Cu 2p satellite intensity as the Ag overlayer becomes thicker.
An optical spectrum of the afterglow of a gamma-ray burst at a redshift of z = 6.295.
Kawai, N; Kosugi, G; Aoki, K; Yamada, T; Totani, T; Ohta, K; Iye, M; Hattori, T; Aoki, W; Furusawa, H; Hurley, K; Kawabata, K S; Kobayashi, N; Komiyama, Y; Mizumoto, Y; Nomoto, K; Noumaru, J; Ogasawara, R; Sato, R; Sekiguchi, K; Shirasaki, Y; Suzuki, M; Takata, T; Tamagawa, T; Terada, H; Watanabe, J; Yatsu, Y; Yoshida, A
2006-03-09
The prompt gamma-ray emission from gamma-ray bursts (GRBs) should be detectable out to distances of z > 10 (ref. 1), and should therefore provide an excellent probe of the evolution of cosmic star formation, reionization of the intergalactic medium, and the metal enrichment history of the Universe. Hitherto, the highest measured redshift for a GRB has been z = 4.50 (ref. 5). Here we report the optical spectrum of the afterglow of GRB 050904 obtained 3.4 days after the burst; the spectrum shows a clear continuum at the long-wavelength end of the spectrum with a sharp cut-off at around 9,000 A due to Lyman alpha absorption at z approximately 6.3 (with a damping wing). A system of absorption lines of heavy elements at z = 6.295 +/- 0.002 was also detected, yielding the precise measurement of the redshift. The Si ii fine-structure lines suggest a dense, metal-enriched environment around the progenitor of the GRB.
Silambarasan, A; Rajesh, P; Ramasamy, P
2014-01-24
The organic single crystals of 4-nitroaniline 4-aminobenzoic acid (4NAABA) were grown from ethanol solvent. The lattice parameters of the grown crystal have been confirmed from single crystal XRD analysis. The powder XRD pattern shows the various planes of grown crystal. The FTIR and (1)H NMR spectral analysis confirm the presence of various functional groups and the placement of proton in 4NAABA compound respectively. The UV absorption was carried out which shows the cutoff wavelength around 459 nm. The optical band gap of the crystal has been evaluated from the transmission spectra and absorption coefficient by extrapolation technique. In addition, a fluorescence spectral analysis is carried out for 4NAABA crystals. The thermal properties of crystals were evaluated from thermogravimetrical analysis. It shows that the grown crystal is stable up to 160°C and the crystal has sharp melting point at 151°C. Copyright © 2013 Elsevier B.V. All rights reserved.
Advanced optical systems for ultra high energy cosmic rays detection
NASA Astrophysics Data System (ADS)
Gambicorti, L.; Pace, E.; Mazzinghi, P.
2017-11-01
A new advanced optical system is proposed and analysed in this work with the purpose to improve the photons collection efficiency of Multi-AnodePhotoMultipliers (MAPMT) detectors, which will be used to cover large focal surface of instruments dedicated to the Ultra High Energy Cosmic Rays (UHECRs, above 1019eV) and Ultra High Energy Neutrino (UHEN) detection. The employment of the advanced optical system allows to focus all photons inside the sensitive area of detectors and to improve the signal-to-noise ratios in the wavelength range of interest (300-400nm), thus coupling imaging and filtering capability. Filter is realised with a multilayer coating to reach high transparency in UV range and with a sharp cut-off outside. In this work the applications on different series of PMTs have been studied and results of simulations are shown. First prototypes have been realised. Finally, this paper proposes another class of adapters to be optically coupled on each pixel of MAPMT detector selected, consisting of non-imaging concentrators as Winston cones.
Epitaxial VO2 thin-film-based radio-frequency switches with electrical activation
NASA Astrophysics Data System (ADS)
Lee, Jaeseong; Lee, Daesu; Cho, Sang June; Seo, Jung-Hun; Liu, Dong; Eom, Chang-Beom; Ma, Zhenqiang
2017-09-01
Vanadium dioxide (VO2) is a correlated material exhibiting a sharp insulator-to-metal phase transition (IMT) caused by temperature change and/or bias voltage. We report on the demonstration of electrically triggered radio-frequency (RF) switches based on epitaxial VO2 thin films. The highly epitaxial VO2 and SnO2 template layer was grown on a (001) TiO2 substrate by pulsed laser deposition (PLD). A resistance change of the VO2 thin films of four orders of magnitude was achieved with a relatively low threshold voltage, as low as 13 V, for an IMT phase transition. VO2 RF switches also showed high-frequency responses of insertion losses of -3 dB at the on-state and return losses of -4.3 dB at the off-state over 27 GHz. Furthermore, an intrinsic cutoff frequency of 17.4 THz was estimated for the RF switches. The study on electrical IMT dynamics revealed a phase transition time of 840 ns.
Series-counterpulse repetitive-pulse inductive storage circuit
Honig, Emanuel M.
1986-01-01
A high-power series-counterpulse repetitive-pulse inductive energy storage and transfer circuit includes an opening switch, a main energy storage coil, and a counterpulse capacitor. The load pulse is initiated simultaneously with the initiation of the counterpulse which is used to turn the opening switch off. There is no delay from command to output pulse. During the load pulse, the counterpulse capacitor is first discharged and then recharged in the opposite polarity with sufficient energy to accomplish the load counterpulse which terminates the load pulse and turns the load switch off. When the main opening switch is triggered closed again to terminate the load pulse, the counterpulse capacitor discharges in the reverse direction through the load switch and through the load, causing a rapid, sharp cutoff of the load pulse as well as recovering any energy remaining in the load inductance. The counterpulse capacitor is recharged to its original condition by the main energy storage coil after the load pulse is over, not before it begins.
Shulruf, Boaz; Turner, Rolf; Poole, Phillippa; Wilkinson, Tim
2013-05-01
The decision to pass or fail a medical student is a 'high stakes' one. The aim of this study is to introduce and demonstrate the feasibility and practicality of a new objective standard-setting method for determining the pass/fail cut-off score from borderline grades. Three methods for setting up pass/fail cut-off scores were compared: the Regression Method, the Borderline Group Method, and the new Objective Borderline Method (OBM). Using Year 5 students' OSCE results from one medical school we established the pass/fail cut-off scores by the abovementioned three methods. The comparison indicated that the pass/fail cut-off scores generated by the OBM were similar to those generated by the more established methods (0.840 ≤ r ≤ 0.998; p < .0001). Based on theoretical and empirical analysis, we suggest that the OBM has advantages over existing methods in that it combines objectivity, realism, robust empirical basis and, no less importantly, is simple to use.
Distribution in energies and acceleration times in DSA, and their effect on the cut-off
NASA Astrophysics Data System (ADS)
Brooks, A.; Protheroe, R. J.
2001-08-01
We have conducted Monte Carlo simulations of diffusive shock acceleration (DSA) to determine the distribution of times since injection taken to reach energy E > E0. This distribution of acceleration times for the case of momentum dependent diffusion is compared with that given by Drury and Forman (1983) based on extrapolation of the exact result (Toptygin 1980) for the case of the diffusion coefficient being independent of momentum. As a result of this distribution we find, as suggested by Drury et al. (1999), that Monte Carlo simulations result in smoother cut-offs and pile-ups in spectra of accelerated particles than expected from simple "box model" treatments of shock acceleration (e.g., Protheroe and Stanev 1999, Drury et al. 1999). This is particularly so for the case synchrotron pile-ups, which we find are replaced by a small bump at an energy about a factor of 2 below the expected cut-off, followed by a smooth cut-off with particles extending to energies well beyond the expected cut-off energy.
The critical wave speed for the Fisher Kolmogorov Petrowskii Piscounov equation with cut-off
NASA Astrophysics Data System (ADS)
Dumortier, Freddy; Popovic, Nikola; Kaper, Tasso J.
2007-04-01
The Fisher-Kolmogorov-Petrowskii-Piscounov (FKPP) equation with cut-off was introduced in (Brunet and Derrida 1997 Shift in the velocity of a front due to a cut-off Phys. Rev. E 56 2597-604) to model N-particle systems in which concentrations less than ɛ = 1/N are not attainable. It was conjectured that the cut-off function, which sets the reaction terms to zero if the concentration is below the small threshold ɛ, introduces a substantial shift in the propagation speed of the corresponding travelling waves. In this paper, we prove the conjecture of Brunet and Derrida, showing that the speed of propagation is given by c_crit(\\varepsilon)=2-{\\pi^2}/{(\\ln\\varepsilon)^2}+\\cal{O}((\\ln\\varepsilon)^{-3}) , as ɛ → 0, for a large class of cut-off functions. Moreover, we extend this result to a more general family of scalar reaction-diffusion equations with cut-off. The main mathematical techniques used in our proof are the geometric singular perturbation theory and the blow-up method, which lead naturally to the identification of the reasons for the logarithmic dependence of ccrit on ɛ as well as for the universality of the corresponding leading-order coefficient (π2).
IMM tracking of a theater ballistic missile during boost phase
NASA Astrophysics Data System (ADS)
Hutchins, Robert G.; San Jose, Anthony
1998-09-01
Since the SCUD launches in the Gulf War, theater ballistic missile (TBM) systems have become a growing concern for the US military. Detection, tracking and engagement during boost phase or shortly after booster cutoff are goals that grow in importance with the proliferation of weapons of mass destruction. This paper addresses the performance of tracking algorithms for TBMs during boost phase and across the transition to ballistic flight. Three families of tracking algorithms are examined: alpha-beta-gamma trackers, Kalman-based trackers, and the interactive multiple model (IMM) tracker. In addition, a variation on the IMM to include prior knowledge of a booster cutoff parameter is examined. Simulated data is used to compare algorithms. Also, the IMM tracker is run on an actual ballistic missile trajectory. Results indicate that IMM trackers show significant advantage in tracking through the model transition represented by booster cutoff.
Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake
NASA Astrophysics Data System (ADS)
Heidelberg, Laurence J.; Hall, David G.
1993-01-01
Comprehensive measurements of the spinning acoustic mode structure in the inlet of the Advanced Ducted Propeller (ADP) have been completed. These measurements were taken using a unique and previously untried method which was first proposed by T.G. Sofrin. A continuously rotating microphone system was employed. The ADP model was designed and built by Pratt & Whitney and tested in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Three inlet configurations were tested with cut-on and cutoff stator vane sets. The cutoff stator was designed to suppress all modes at the blade passing frequency. Rotating rake measurements indicate that several extraneous circumferential modes were active. The mode orders suggest that their source was an interaction between the rotor and small interruptions in the casing tip treatment. The cut-on stator produced the expected circumferential modes plus higher levels of the unexpected modes seen with the cutoff stator.
Acoustic Mode Measurements in the Inlet of a Model Turbofan Using a Continuously Rotating Rake
NASA Technical Reports Server (NTRS)
Heidelberg, Laurence J.; Hall, David G.
1992-01-01
Comprehensive measurements of the spinning acoustic mode structure in the inlet of the Advanced Ducted Propeller (ADP) have been completed. These measurements were taken using a unique and previously untried method which was first proposed by T.G. Sofrin. A continuously rotating microphone system was employed. The ADP model was designed and built by Pratt & Whitney and tested in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Three inlet configurations were tested with cut-on and cutoff stator vane sets. The cutoff stator was designed to suppress all modes at the blade passing frequency. Rotating rake measurements indicate that several extraneous circumferential modes were active. The mode orders suggest that their source was an interaction between the rotor and small interruptions in the casing tip treatment. The cut-on stator produced the expected circumferential modes plus higher levels of the unexpected modes seen with the cutoff stator.
Well-posedness and Scattering for the Boltzmann Equations: Soft Potential with Cut-off
NASA Astrophysics Data System (ADS)
He, Lingbing; Jiang, Jin-Cheng
2017-07-01
We prove the global existence of the unique mild solution for the Cauchy problem of the cut-off Boltzmann equation for soft potential model γ =2-N with initial data small in L^N_{x,v} where N=2,3 is the dimension. The proof relies on the existing inhomogeneous Strichartz estimates for the kinetic equation by Ovcharov (SIAM J Math Anal 43(3):1282-1310, 2011) and convolution-like estimates for the gain term of the Boltzmann collision operator by Alonso et al. (Commun Math Phys 298:293-322, 2010). The global dynamics of the solution is also characterized by showing that the small global solution scatters with respect to the kinetic transport operator in L^N_{x,v}. Also the connection between function spaces and cut-off soft potential model -N<γ <2-N is characterized in the local well-posedness result for the Cauchy problem with large initial data.
Random bearings and their stability.
Mahmoodi Baram, Reza; Herrmann, Hans J
2005-11-25
Self-similar space-filling bearings have been proposed some time ago as models for the motion of tectonic plates and appearance of seismic gaps. These models have two features which, however, seem unrealistic, namely, high symmetry in the arrangement of the particles, and lack of a lower cutoff in the size of the particles. In this work, an algorithm for generating random bearings in both two and three dimensions is presented. Introducing a lower cutoff for the sizes of the particles, the instabilities of the bearing under an external force such as gravity, are studied.
NASA Astrophysics Data System (ADS)
Liu, Jing; Shao, Yimin
2017-06-01
Rotor bearing systems (RBSs) play a very valuable role for wind turbine gearboxes, aero-engines, high speed spindles, and other rotational machinery. An in-depth understanding of vibrations of the RBSs is very useful for condition monitoring and diagnosis applications of these machines. A new twelve-degree-of-freedom dynamic model for rigid RBSs with a localized defect (LOD) is proposed. This model can formulate the housing support stiffness, interfacial frictional moments including load dependent and load independent components, time-varying displacement excitation caused by a LOD, additional deformations at the sharp edges of the LOD, and lubricating oil film. The time-varying displacement model is determined by a half-sine function. A new method for calculating the additional deformations at the sharp edges of the LOD is analytical derived based on an elastic quarter-space method presented in the literature. The proposed dynamic model is utilized to analyze the influences of the housing support stiffness and LOD sizes on the vibration characteristics of the rigid RBS, which cannot be predicted by the previous dynamic models in the literature. The results show that the presented method can give a new dynamic modeling method for vibration formulation for a rigid RBS with and without the LOD on the races.
Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes.
Uhl, Jonathan T; Pathak, Shivesh; Schorlemmer, Danijel; Liu, Xin; Swindeman, Ryan; Brinkman, Braden A W; LeBlanc, Michael; Tsekenis, Georgios; Friedman, Nir; Behringer, Robert; Denisov, Dmitry; Schall, Peter; Gu, Xiaojun; Wright, Wendelin J; Hufnagel, Todd; Jennings, Andrew; Greer, Julia R; Liaw, P K; Becker, Thorsten; Dresen, Georg; Dahmen, Karin A
2015-11-17
Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or "quakes". We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects "tuned critical" behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.
Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes
Uhl, Jonathan T.; Pathak, Shivesh; Schorlemmer, Danijel; Liu, Xin; Swindeman, Ryan; Brinkman, Braden A. W.; LeBlanc, Michael; Tsekenis, Georgios; Friedman, Nir; Behringer, Robert; Denisov, Dmitry; Schall, Peter; Gu, Xiaojun; Wright, Wendelin J.; Hufnagel, Todd; Jennings, Andrew; Greer, Julia R.; Liaw, P. K.; Becker, Thorsten; Dresen, Georg; Dahmen, Karin A.
2015-01-01
Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes. PMID:26572103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhl, Jonathan T.; Pathak, Shivesh; Schorlemmer, Danijel
Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simplemore » mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stressdependent cutoff function. In conclusion, the results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.« less
Bryant, M; Santorelli, G; Lawlor, D A; Farrar, D; Tuffnell, D; Bhopal, R; Wright, J
2014-03-01
To describe how maternal obesity prevalence varies by established international and South Asian specific body mass index (BMI) cut-offs in women of Pakistani origin and investigate whether different BMI thresholds can help to identify women at risk of adverse pregnancy and birth outcomes. Prospective bi-ethnic birth cohort study (the Born in Bradford (BiB) cohort). Bradford, a deprived city in the North of the UK. A total of 8478 South Asian and White British pregnant women participated in the BiB cohort study. Maternal obesity prevalence; prevalence of known obesity-related adverse pregnancy outcomes: mode of birth, hypertensive disorders of pregnancy (HDP), gestational diabetes, macrosomia and pre-term births. Application of South Asian BMI cut-offs increased prevalence of obesity in Pakistani women from 18.8 (95% confidence interval (CI) 17.6-19.9) to 30.9% (95% CI 29.5-32.2). With the exception of pre-term births, there was a positive linear relationship between BMI and prevalence of adverse pregnancy and birth outcomes, across almost the whole BMI distribution. Risk of gestational diabetes and HDP increased more sharply in Pakistani women after a BMI threshold of at least 30 kg m(-2), but there was no evidence of a sharp increase in any risk factors at the new, lower thresholds suggested for use in South Asian women. BMI was a good single predictor of outcomes (area under the receiver operating curve: 0.596-0.685 for different outcomes); prediction was more discriminatory and accurate with BMI as a continuous variable than as a binary variable for any possible cut-off point. Applying the new South Asian threshold to pregnant women would markedly increase those who were referred for monitoring and lifestyle advice. However, our results suggest that lowering the BMI threshold in South Asian women would not improve the predictive ability for identifying those who were at risk of adverse pregnancy outcomes.
von Laffert, Maximilian; Stenzinger, Albrecht; Hummel, Michael; Weichert, Wilko; Lenze, Dido; Warth, Arne; Penzel, Roland; Herbst, Hermann; Kellner, Udo; Jurmeister, Philipp; Schirmacher, Peter; Dietel, Manfred; Klauschen, Frederick
2015-12-01
Fluorescence in-situ hybridization (FISH) for the detection of ALK-rearrangements in non-small cell lung cancer (NSCLC) is based on at first sight clear cut-off criteria (≥15% of tumor cells) for split signals (SS) and single red signals (SRS). However, NSCLC with SS-counts around the cut-off may cause interpretation problems. Tissue microarrays containing 753 surgically resected NSCLCs were independently tested for ALK-alterations by FISH and immunohistochemistry (IHC). Our analysis focused on samples with SS/SRS in the range between 10% and 20% (ALK-FISH borderline group). To better understand the role of these samples in routine diagnostics, we performed statistical analyses to systematically estimate the probability of ALK-FISH-misclassification (false negative or positive) for different numbers of evaluated tumor cell nuclei (30, 50, 100, and 200). 94.3% (710/753) of the cases were classified as unequivocally (<10% or ≥20%) ALK-FISH-negative (93%; 700/753) or positive (1.3%; 10/753) and showed concordant IHC results. 5.7% (43/753) of the samples showed SS/SRS between 10% and 20% of the tumor cells. Out of these, 7% (3/43; ALK-FISH: 14%, 18% and 20%) were positive by ALK-IHC, while 93% (40/43) had no detectable expression of the ALK-protein. Statistical analysis showed that ALK-FISH misclassifications occur frequently for samples with rearrangements between 10% and 20% if ALK-characterization is based on a sharp cut-off point (15%). If results in this interval are defined as equivocal (borderline), statistical sampling-related ALK-FISH misclassifications will occur in less than 1% of the cases if 100 tumor cells are evaluated. While ALK status can be determined robustly for the majority of NSCLC by FISH our analysis showed that ∼6% of the cases belong to a borderline group for which ALK-FISH evaluation has only limited reliability due to statistical sampling effects. These cases should be considered equivocal and therapy decisions should include additional tests and clinical considerations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Modified kinetic theory applied to the shear flows of granular materials
Duan, Yifei; Feng, Zhi -Gang; Michaelides, Efstathios E.; ...
2017-04-11
Here, granular materials are characterized by large collections of discrete particles, where the particle-particle interactions are significantly more important than the particle-fluid interactions. The current kinetic theory captures fairly accurately the granular flow behavior in the dilute case, when only binary interactions are significant, but is not accurate at all in the dense flow regime, where multi-particle interactions and contacts must be modeled. To improve the kinetic theory results for granular flows in the dense flow regime, we propose a Modified Kinetic Theory (MKT) model that utilizes the contact duration or cut-off time to account for the complex particle-particle interactionsmore » in the dense regime. The contact duration model, also called TC model, is originally proposed by Luding and McNamara to solve the inelastic collapse issue existing in the Inelastic Hard Sphere (IHS) model. This model defines a cut-off time t c such that dissipation is not counted if the time between two consecutive contacts is less than t c. As shown in their study, the use of a cut-off time t c can also reduce the dissipation during multi-particle contacts. In this paper we relate the TC model with the Discrete Element Method (DEM) by choosing the cut-off time t c to be the duration of contact calculated from the linear-spring-dashpot soft-sphere model of the DEM. We examine two types of granular flows: simple shear flow and the plane shear flow, and compare the results of the classical Kinetic Theory (KT) model, the present MKT model, and the DEM model. Here, we show that the MKT model entails a significant improvement over the KT model for simple shear flows at inertial regimes. With the MKT model the calculations are close to the DEM results at solid fractions as high as 0.57. Even for the plane shear flows, where shear rate and solid fraction are inhomogeneous, the results of the MKT model agree very well with the DEM results.« less
Modified kinetic theory applied to the shear flows of granular materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Yifei; Feng, Zhi -Gang; Michaelides, Efstathios E.
Here, granular materials are characterized by large collections of discrete particles, where the particle-particle interactions are significantly more important than the particle-fluid interactions. The current kinetic theory captures fairly accurately the granular flow behavior in the dilute case, when only binary interactions are significant, but is not accurate at all in the dense flow regime, where multi-particle interactions and contacts must be modeled. To improve the kinetic theory results for granular flows in the dense flow regime, we propose a Modified Kinetic Theory (MKT) model that utilizes the contact duration or cut-off time to account for the complex particle-particle interactionsmore » in the dense regime. The contact duration model, also called TC model, is originally proposed by Luding and McNamara to solve the inelastic collapse issue existing in the Inelastic Hard Sphere (IHS) model. This model defines a cut-off time t c such that dissipation is not counted if the time between two consecutive contacts is less than t c. As shown in their study, the use of a cut-off time t c can also reduce the dissipation during multi-particle contacts. In this paper we relate the TC model with the Discrete Element Method (DEM) by choosing the cut-off time t c to be the duration of contact calculated from the linear-spring-dashpot soft-sphere model of the DEM. We examine two types of granular flows: simple shear flow and the plane shear flow, and compare the results of the classical Kinetic Theory (KT) model, the present MKT model, and the DEM model. Here, we show that the MKT model entails a significant improvement over the KT model for simple shear flows at inertial regimes. With the MKT model the calculations are close to the DEM results at solid fractions as high as 0.57. Even for the plane shear flows, where shear rate and solid fraction are inhomogeneous, the results of the MKT model agree very well with the DEM results.« less
A Hele-Shaw-Cahn-Hilliard Model for Incompressible Two-Phase Flows with Different Densities
NASA Astrophysics Data System (ADS)
Dedè, Luca; Garcke, Harald; Lam, Kei Fong
2017-07-01
Topology changes in multi-phase fluid flows are difficult to model within a traditional sharp interface theory. Diffuse interface models turn out to be an attractive alternative to model two-phase flows. Based on a Cahn-Hilliard-Navier-Stokes model introduced by Abels et al. (Math Models Methods Appl Sci 22(3):1150013, 2012), which uses a volume-averaged velocity, we derive a diffuse interface model in a Hele-Shaw geometry, which in the case of non-matched densities, simplifies an earlier model of Lee et al. (Phys Fluids 14(2):514-545, 2002). We recover the classical Hele-Shaw model as a sharp interface limit of the diffuse interface model. Furthermore, we show the existence of weak solutions and present several numerical computations including situations with rising bubbles and fingering instabilities.
Heo, Moonseong; Kabat, Geoffrey C; Strickler, Howard D; Lin, Juan; Hou, Lifang; Stefanick, Marcia L; Anderson, Garnet L; Rohan, Thomas E
2015-03-01
Obesity is a risk factor for several cancers in postmenopausal women. We attempted to determine cutoffs of adiposity measures in relation to risk of obesity-related cancers among postmenopausal women and to examine the effects of hormone therapy (HT) use on the cutoffs, neither of which has been broadly studied. We used data from the Women's Health Initiative cohort (n=144,701) and applied Cox-proportional hazards regressions to each combination of 17 cancer types and 6 anthropometric measures (weight, body mass index [BMI], weight to height ratio, waist circumference, waist to hip ratio [WHR], and waist to height ratio). Interactions between the anthropometric measures and HT use were also examined. Cutoffs were determined by applying a grid search followed by a two-fold cross validation method. Survival ROC analysis of 5- and 10-year incidence followed. Breast, colorectal, colon, endometrium, kidney, and all cancers combined were significantly positively associated with all six anthropometric measures, whereas lung cancer among ever smokers was significantly inversely associated with all measures except WHR. The derived cutoffs of each obesity measure varied across cancers (e.g., BMI cutoffs for breast and endometrium cancers were 30 kg/m(2) and 34 kg/m(2), respectively), and also depended on HT use. The Youden indices of the cutoffs for predicting 5- and 10-year cancer incidence were higher among HT never users. Using a panel of different anthropometric measures, we derived optimal cut-offs categorizing populations into high- and low-risk groups, which differed by cancer type and HT use. Although the discrimination abilities of these risk categories were generally poor, the results of this study could serve as a starting point from which to determine adiposity cutoffs for inclusion in risk prediction models for specific cancer types.
Effects of increasing the PSA cutoff to perform additional biomarker tests before prostate biopsy.
Nordström, Tobias; Adolfsson, Jan; Grönberg, Henrik; Eklund, Martin
2017-10-03
Multi-step testing might enhance performance of the prostate cancer diagnostic pipeline. Using PSA >1 ng/ml for first-line risk stratification and the Stockholm 3 Model (S3M) blood-test >10% risk of Gleason Score > 7 prostate cancer to inform biopsy decisions has been suggested. We aimed to determine the effects of changing the PSA cutoff to perform reflex testing with S3M and the subsequent S3M cutoff to recommend prostate biopsy while maintaining the sensitivity to detect Gleason Score ≥ 7 prostate cancer. We used data from the prospective, population-based, paired, diagnostic Stockholm 3 (STHLM3) study with participants invited by date of birth from the Swedish Population Register during 2012-2014. All participants underwent testing with PSA and S3M (a combination of plasma protein biomarkers [PSA, free PSA, intact PSA, hK2, MSMB, MIC1], genetic polymorphisms, and clinical variables [age, family, history, previous prostate biopsy, prostate exam]). Of 47,688 men in the STHLM3 main study, we used data from 3133 men with S3M >10% and prostate biopsy data. Logistic regression models were used to calculate prostate cancer detection rates and proportion saved biopsies. 44.2%, 62.5% and 67.9% of the participants had PSA <1, <1.5 and <1.7 ng/ml, respectively. Increasing the PSA cut-off for additional work-up from 1 ng/ml to 1.5 ng/ml would thus save 18.3% of the performed tests, 4.9% of the biopsies and 1.3% (10/765) of Gleason Grade ≥ 7 cancers would be un-detected. By lowering the S3M cutoff to recommend biopsy, sensitivity to high-grade prostate cancer can be restored, to the cost of increasing the number of performed biopsies modestly. The sensitivity to detect prostate cancer can be maintained when using different PSA cutoffs to perform additional testing. Biomarker cut-offs have implications on number of tests and prostate biopsies performed. A PSA cutoff of 1.5 ng/ml to perform additional testing such as the S3M test might be considered. ISRCTN84445406 .
Modelling of Electron and Proton Beams in a White-light Solar Flare
NASA Astrophysics Data System (ADS)
Milligan, R. O.; Procházka, O.; Reid, A.; Allred, J. C.; Mathioudakis, M.
2017-12-01
Observations of an X1 class WL solar flare on 2014 June 11 showed a surprisingly weak emission in both higher order Balmer and Lyman lines and continua. The flare was observed by RHESSI but low energy cut-off of non-thermal component was indeterminable due to the unusually hard electron spectrum (delta = 3). An estimate of power in non-thermal electron beams together with an area of WL emission observed by HMI yielded to an upper and lower estimate of flux 1E9 and 3E10 erg/cm2/s, respectively. We performed a grid of models using a radiative hydrodynamic code RADYN in order to compare synthetic spectra with observations. For low energy cut-off we chose a range from 20 to 120 keV with a step of 20 keV and delta parameter equal to 3. Electron beam-driven models show that higher low energy cut-off is more likely to produce an absorption Balmer line profile, if the total energy flux remains relatively low. On the other hand a detectable rise of HMI continuum (617 nm) lays a lower limit on the beam flux. Proton beam-driven models with equivalent fluxes indicate a greater penetration depth, while the Balmer lines reveal significantly weaker emission. Atmospheric temperature profiles show that for higher values of low energy cut-off the energy of the beam is deposited lower in chromosphere or even in temperature minimum region. This finding suggests, that suppressed hydrogen emission can indicate a formation of white-light continuum below chromosphere.
A comprehensive numerical analysis of background phase correction with V-SHARP.
Özbay, Pinar Senay; Deistung, Andreas; Feng, Xiang; Nanz, Daniel; Reichenbach, Jürgen Rainer; Schweser, Ferdinand
2017-04-01
Sophisticated harmonic artifact reduction for phase data (SHARP) is a method to remove background field contributions in MRI phase images, which is an essential processing step for quantitative susceptibility mapping (QSM). To perform SHARP, a spherical kernel radius and a regularization parameter need to be defined. In this study, we carried out an extensive analysis of the effect of these two parameters on the corrected phase images and on the reconstructed susceptibility maps. As a result of the dependence of the parameters on acquisition and processing characteristics, we propose a new SHARP scheme with generalized parameters. The new SHARP scheme uses a high-pass filtering approach to define the regularization parameter. We employed the variable-kernel SHARP (V-SHARP) approach, using different maximum radii (R m ) between 1 and 15 mm and varying regularization parameters (f) in a numerical brain model. The local root-mean-square error (RMSE) between the ground-truth, background-corrected field map and the results from SHARP decreased towards the center of the brain. RMSE of susceptibility maps calculated with a spatial domain algorithm was smallest for R m between 6 and 10 mm and f between 0 and 0.01 mm -1 , and for maps calculated with a Fourier domain algorithm for R m between 10 and 15 mm and f between 0 and 0.0091 mm -1 . We demonstrated and confirmed the new parameter scheme in vivo. The novel regularization scheme allows the use of the same regularization parameter irrespective of other imaging parameters, such as image resolution. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kruse Christensen, Nikolaj; Ferre, Ty Paul A.; Fiandaca, Gianluca; Christensen, Steen
2017-03-01
We present a workflow for efficient construction and calibration of large-scale groundwater models that includes the integration of airborne electromagnetic (AEM) data and hydrological data. In the first step, the AEM data are inverted to form a 3-D geophysical model. In the second step, the 3-D geophysical model is translated, using a spatially dependent petrophysical relationship, to form a 3-D hydraulic conductivity distribution. The geophysical models and the hydrological data are used to estimate spatially distributed petrophysical shape factors. The shape factors primarily work as translators between resistivity and hydraulic conductivity, but they can also compensate for structural defects in the geophysical model. The method is demonstrated for a synthetic case study with sharp transitions among various types of deposits. Besides demonstrating the methodology, we demonstrate the importance of using geophysical regularization constraints that conform well to the depositional environment. This is done by inverting the AEM data using either smoothness (smooth) constraints or minimum gradient support (sharp) constraints, where the use of sharp constraints conforms best to the environment. The dependency on AEM data quality is also tested by inverting the geophysical model using data corrupted with four different levels of background noise. Subsequently, the geophysical models are used to construct competing groundwater models for which the shape factors are calibrated. The performance of each groundwater model is tested with respect to four types of prediction that are beyond the calibration base: a pumping well's recharge area and groundwater age, respectively, are predicted by applying the same stress as for the hydrologic model calibration; and head and stream discharge are predicted for a different stress situation. As expected, in this case the predictive capability of a groundwater model is better when it is based on a sharp geophysical model instead of a smoothness constraint. This is true for predictions of recharge area, head change, and stream discharge, while we find no improvement for prediction of groundwater age. Furthermore, we show that the model prediction accuracy improves with AEM data quality for predictions of recharge area, head change, and stream discharge, while there appears to be no accuracy improvement for the prediction of groundwater age.
Relativistic bound-state problem in the light-front Yukawa model
NASA Astrophysics Data System (ADS)
Głazek, Stanisław; Harindranath, Avaroth; Pinsky, Stephen; Shigemitsu, Junko; Wilson, Kenneth
1993-02-01
We study the renormalization problem on the light front for the two-fermion bound state in the (3+1)-dimensional Yukawa model, working within the lowest-order Tamm-Dancoff approximation. In addition to traditional mass and wave-function renormalization, new types of counterterms are required. These are nonlocal and involve arbitrary functions of the longitudinal momenta. Their appearance is consistent with general power-counting arguments on the light front. We estimate the ``arbitrary function'' in two ways: (1) by using perturbation theory as a guide and (2) by considering the asymptotic large transverse momentum behavior of the kernel in the bound-state equations. The latter method, as it is currently implemented, is applicable only to the helicity-zero sector of the theory. Because of triviality, in the Yukawa model one must retain a finite cutoff Λ in order to have a nonvanishing renormalized coupling. For the range of renormalized couplings (and cutoffs) allowed by triviality, one finds that the perturbative counterterm does a good job in eliminating cutoff dependence in the low-energy spectrum (masses <<Λ).
New holographic dark energy model inspired by the DGP braneworld
NASA Astrophysics Data System (ADS)
Sheykhi, A.; Dehghani, M. H.; Ghaffari, S.
2016-11-01
The energy density of the holographic dark energy (HDE) is based on the area law of entropy, and thus any modification of the area law leads to a modified holographic energy density. Inspired by the entropy expression associated with the apparent horizon of a Friedmann-Robertson-Walker (FRW) universe in DGP braneworld, we propose a new model for the HDE in the framework of DGP brane cosmology. We investigate the cosmological consequences of this new model and calculate the equation of state (EoS) parameter by choosing the Hubble radius, L = H-1, as the system’s IR cutoff. Our study show that, due to the effects of the extra dimension (bulk), the identification of IR cutoff with Hubble radius, can reproduce the present acceleration of the universe expansion. This is in contrast to the ordinary HDE in standard cosmology which leads to the zero EoS parameter in the case of choosing the Hubble radius as system’s IR cutoff in the absence of interaction between dark matter (DM) and dark energy (DE).
Robb, Paul D; Finnie, Michael; Craven, Alan J
2012-07-01
High angle annular dark field (HAADF) image simulations were performed on a series of AlAs/GaAs interfacial models using the frozen-phonon multislice method. Three general types of models were considered-perfect, vicinal/sawtooth and diffusion. These were chosen to demonstrate how HAADF image measurements are influenced by different interfacial structures in the technologically important III-V semiconductor system. For each model, interfacial sharpness was calculated as a function of depth and compared to aberration-corrected HAADF experiments of two types of AlAs/GaAs interfaces. The results show that the sharpness measured from HAADF imaging changes in a complicated manner with thickness for complex interfacial structures. For vicinal structures, it was revealed that the type of material that the probe projects through first of all has a significant effect on the measured sharpness. An increase in the vicinal angle was also shown to generate a wider interface in the random step model. The Moison diffusion model produced an increase in the interface width with depth which closely matched the experimental results of the AlAs-on-GaAs interface. In contrast, the interface width decreased as a function of depth in the linear diffusion model. Only in the case of the perfect model was it possible to ascertain the underlying structure directly from HAADF image analysis. Copyright © 2012 Elsevier B.V. All rights reserved.
Covariant generalized holographic dark energy and accelerating universe
NASA Astrophysics Data System (ADS)
Nojiri, Shin'ichi; Odintsov, S. D.
2017-08-01
We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F( R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy.
Kim, Sang-Woo; Nishimura, Jun; Tsuchiya, Asato
2012-01-06
We reconsider the matrix model formulation of type IIB superstring theory in (9+1)-dimensional space-time. Unlike the previous works in which the Wick rotation was used to make the model well defined, we regularize the Lorentzian model by introducing infrared cutoffs in both the spatial and temporal directions. Monte Carlo studies reveal that the two cutoffs can be removed in the large-N limit and that the theory thus obtained has no parameters other than one scale parameter. Moreover, we find that three out of nine spatial directions start to expand at some "critical time," after which the space has SO(3) symmetry instead of SO(9).
Lo, Wen-Yen; Chiou, Shu-Ti; Huang, Nicole; Chien, Li-Yin
2016-12-01
Needlestick and sharps injuries are prevalent work-related injuries among nurses. Safety devices prevent only one-quarter of related injuries. More studies of modifiable risk factors are needed. To examine whether long work hours and chronic insomnia are associated with needlestick and sharps injuries among hospital nurses in Taiwan. Cross-sectional survey. This analysis included 19,386 full-time bedside nurses working in 104 hospitals across Taiwan. Participants filled out an anonymous questionnaire from July to September 2014. Chronic insomnia, needlestick injuries, and sharps injuries during the past year were each measured by a yes/no question. Multivariate logistic regression models were applied to examine the effects of long work hours and chronic insomnia on needlestick and sharps injuries, given with control for sex, marital status, educational level, age, years of practice, work unit, and hospital level in the model. More than 70% of study nurses worked long hours during the previous week (>50h: 27.5%; 41-50h: 43.2%), and 15.5% of nurses reported chronic insomnia. The percentage of sharps injuries (38.8%) was higher than that for needlestick injuries (22.4%) during the previous year among nurses. After adjusting for potential confounders, logistic regression yielded significant results showing that those who worked 41 to 50h per week, >50h per week, and had chronic insomnia were 1.17 times (95% C.I.=1.04-1.32), 1.51 times (95% C.I.=1.32-1.72), and 1.45 times (95% C.I.=1.25-1.68) more likely to experience needlestick injuries, and 1.29 times (95% C.I.=1.17-1.42), 1.37 times (95% C.I.=1.23-1.53), and 1.56 times (95% C.I.=1.37-1.77) more likely to experience sharps injuries, respectively, than those who worked fewer hours and did not have insomnia. This nationwide nurse survey showed that high rates of needlestick and sharps injuries persist in hospital nurses in Taiwan. The common problems of long work hours and chronic insomnia increase the risk of these injuries. We suggest that hospital managers follow regulations on work hours and optimize shift schedules for nurses to decrease related injuries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantifying flood duration controls on chute cutoff formation in a wandering gravel-bed river
NASA Astrophysics Data System (ADS)
Sawyer, A.; Wilcox, A. C.
2014-12-01
Chute cutoffs, which occur when a bypass or "chute" channel incises across a point or braid bar, distribute water and sediment, regulate sinuosity, and create off-channel habitat in wandering gravel-bed rivers. Cutoffs have been hypothesized to occur by progressive migration preparing a bend for cutoff, after which overbank flow events provide a trigger to excavate new channels. This trigger may depend on the magnitude and duration of floods and their associated sediment fluxes. Here we investigated how overbank flow duration impacts cutoff formation in a wandering gravel-bed river. To explore this, we applied a two-dimensional hydrodynamic model to a recently reconstructed reach of the Clark Fork River in western Montana that experienced chute cutoffs during a long-duration flood event in 2011. Hydrographs exceeding bankfull and with varying durations were simulated to constrain the role of overbank flow duration on erosional work in chute cutoff channels. For each magnitude-frequency-duration combination, cumulative excess shear stress (i.e., above the threshold of sediment mobilization) was quantified for in-channel and overbank areas. Locations of shear stress divergence associated with morphological change were identified along chute pathways. Preliminary results suggest that overbank areas containing concentrated flowpaths such as swales follow cumulative excess shear stress curve patterns similar to in-channel areas. This work describes a dynamic system characteristic of wandering gravel-bed rivers in the Pacific Northwest, and has implications for understanding morphodynamic evolution, river restoration targeting off-channel habitat for fish, and geomorphic flow regime management in regulated rivers.
Trinh, Oanh T H; Nguyen, Nguyen D; Phongsavan, Philayrath; Dibley, Michael J; Bauman, Adrian E
2009-01-01
To determine the prevalence and factors associated with overweight/obesity among adults in Ho Chi Minh City (HCMC) using Caucasian and Asian cut-offs. A cross-sectional survey. In 2005, 1,971 adults aged 25-64 years in HCMC were randomly selected using a proportional to population size sampling method to estimate the prevalence of overweight and obesity, measured by body mass index (BMI) and waist circumference. Multivariable logistic models were used to examine associations between overweight/obesity and socioeconomic status, health-related behaviors, and biochemical indices of chronic disease risk. The prevalence of overweight and obesity using the Caucasian BMI cut-offs were 13.9% and 1.8% respectively, and those with the Asian BMI cut-offs were 27.5% and 5.7%, respectively. The abdominal adiposity rates were higher than the BMI overweight and obesity rates in women, but not in men. Increasing age, low education, high household wealth index, high levels of sitting and reclining time, cholesterol and high blood pressure were significantly associated with overweight and obesity. Current smoking and sedentary leisure time was significantly negatively associated with this status in men. Associations between overweight/obesity and metabolic disorders were evident using both cut-offs. Asian cut-offs identified more risk factors and therefore could be considered for defining at-risk groups. The results highlight the importance of intervention programs to prevent overweight/obesity in young adults.
Study of Proton cutoffs during geomagnetically disturbed times
NASA Astrophysics Data System (ADS)
Kanekal, S. G.; Looper, M. D.; Baker, D. N.; Blake, J. B.
Solar energetic particles SEP are currently classified into impulsive and gradual events The former are understood be accelerated at solar flares and the latter at interplanetary shocks driven by coronal mass ejections CMEs It is well known that CMEs also cause intense geomagnetic storms during which the geomagnetic field can be highly distorted During these times SEP fluxes penetrate the terrestrial magnetosphere and reach regions which may not be normally accessible to them The SEP access is of course controlled by the geomagnetic field configuration The cutoff latitude is a well defined latitude below which a charged particle of a given rigidity momentum per unit charge arriving from a given direction cannot penetrate SEPs constitute a radiation hazard to spacecraft and humans and measurement and prediction of the cutoff location are an important aspect of space weather This paper reports on the measurements of solar energetic proton cutoffs made by two satellites SAMPEX and Polar during geomagnetically disturbed times We study select SEP events occuring during the period 1996 to 2005 when both SAMPEX and Polar provide high quality data We will compare our measurements with cutoffs calculated by a charged particle tracing code which utilizes several currently used models of the geomagnetic field The measured SEP proton cutoffs cover a range of rigidities and are obtained at high-altitudes by the HIST detector onboard Polar and at low-altitudes by the PET and HILT detctors onboard SAMPEX
Szigeti, Krisztián; Szabó, Tibor; Korom, Csaba; Czibak, Ilona; Horváth, Ildikó; Veres, Dániel S; Gyöngyi, Zoltán; Karlinger, Kinga; Bergmann, Ralf; Pócsik, Márta; Budán, Ferenc; Máthé, Domokos
2016-02-11
Lung diseases (resulting from air pollution) require a widely accessible method for risk estimation and early diagnosis to ensure proper and responsive treatment. Radiomics-based fractal dimension analysis of X-ray computed tomography attenuation patterns in chest voxels of mice exposed to different air polluting agents was performed to model early stages of disease and establish differential diagnosis. To model different types of air pollution, BALBc/ByJ mouse groups were exposed to cigarette smoke combined with ozone, sulphur dioxide gas and a control group was established. Two weeks after exposure, the frequency distributions of image voxel attenuation data were evaluated. Specific cut-off ranges were defined to group voxels by attenuation. Cut-off ranges were binarized and their spatial pattern was associated with calculated fractal dimension, then abstracted by the fractal dimension -- cut-off range mathematical function. Nonparametric Kruskal-Wallis (KW) and Mann-Whitney post hoc (MWph) tests were used. Each cut-off range versus fractal dimension function plot was found to contain two distinctive Gaussian curves. The ratios of the Gaussian curve parameters are considerably significant and are statistically distinguishable within the three exposure groups. A new radiomics evaluation method was established based on analysis of the fractal dimension of chest X-ray computed tomography data segments. The specific attenuation patterns calculated utilizing our method may diagnose and monitor certain lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, tuberculosis or lung carcinomas.
Tension Cutoff and Parameter Identification for the Viscoplastic Cap Model.
1983-04-01
computer program "VPDRVR" which employs a Crank-Nicolson time integration scheme and a Newton-Raphson iterative solution procedure. Numerical studies were...parameters was illustrated for triaxial stress and uniaxial strain loading for a well- studied sand material (McCormick Ranch Sand). Lastly, a finite element...viscoplastic tension-cutoff cri- terion and to establish parameter identification techniques with experimental data. Herein lies the impetus of this study
Predicting the cosmological constant with the scale-factor cutoff measure
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Simone, Andrea; Guth, Alan H.; Salem, Michael P.
2008-09-15
It is well known that anthropic selection from a landscape with a flat prior distribution of cosmological constant {lambda} gives a reasonable fit to observation. However, a realistic model of the multiverse has a physical volume that diverges with time, and the predicted distribution of {lambda} depends on how the spacetime volume is regulated. A very promising method of regulation uses a scale-factor cutoff, which avoids a number of serious problems that arise in other approaches. In particular, the scale-factor cutoff avoids the 'youngness problem' (high probability of living in a much younger universe) and the 'Q and G catastrophes'more » (high probability for the primordial density contrast Q and gravitational constant G to have extremely large or small values). We apply the scale-factor cutoff measure to the probability distribution of {lambda}, considering both positive and negative values. The results are in good agreement with observation. In particular, the scale-factor cutoff strongly suppresses the probability for values of {lambda} that are more than about 10 times the observed value. We also discuss qualitatively the prediction for the density parameter {omega}, indicating that with this measure there is a possibility of detectable negative curvature.« less
Miller, Joshua D; Lynam, Donald R; Rolland, Jean-Pierre; De Fruyt, Filip; Reynolds, Sarah K; Pham-Scottez, Alexandra; Baker, Spencer R; Bagby, R Michael
2008-10-01
Five-Factor Model (FFM) personality disorder (PD) counts have demonstrated significant convergent and discriminant validity with DSM-IV PD symptoms. However, these FFM PD counts are of limited clinical use without normative data because it is difficult to determine what a specific score means with regard to the relative level of elevation. The current study presents data from three large normative samples that can be used as norms for the FFM PD counts in the respective countries: United States (N = 1,000), France (N = 801), and Belgium-Netherlands (N = 549). The present study also examines the performance, with regard to diagnostic efficiency, of statistically-defined cut-offs at 1.5 standard deviations above the mean (T > or = 65) versus previously identified cut-offs using receiver-operator characteristics (ROC) analyses. These cut-offs are tested in three clinical samples-one from each of the aforementioned countries. In general, the T > or = 65 cut-offs performed similarly to those identified using ROC analyses and manifested properties relevant to a screening instrument. These normative data allow FFM data to be used in a flexible and comprehensive manner, which may include scoring this type of personality data in order to screen for DSM-IV PD constructs.
NASA Astrophysics Data System (ADS)
Mangeard, Pierre-Simon; Clem, John; Evenson, Paul; Pyle, Roger; Mitthumsiri, Warit; Ruffolo, David; Sáiz, Alejandro; Nutaro, Tanin
2018-05-01
Solar modulation refers to Galactic cosmic-ray variations with the ∼11 yr sunspot cycle and ∼22 yr solar magnetic cycle and is relevant to the space radiation environment and effects on Earth’s atmosphere. Its complicated dependence on solar and heliospheric conditions is only roughly understood and has been empirically modeled in terms of a single modulation parameter. Most analyses of solar modulation use neutron monitor (NM) data from locations with relatively low geomagnetic cutoff rigidity, i.e., the threshold for cosmic rays to penetrate Earth’s magnetic field. The Princess Sirindhorn Neutron Monitor at Doi Inthanon, Thailand, has the world’s highest cutoff rigidity (≈17 GV) where observations span a complete solar modulation cycle (since late 2007). The pattern of solar modulation at Doi Inthanon during 2011–2014 was qualitatively very different from that at a low geomagnetic cutoff and is not well described by the same modulation parameter. At other times, NM count rates from Doi Inthanon and McMurdo, Antarctica (cutoff ∼1 GV), were linearly correlated and confirm the observation from latitude surveys in the previous solar cycle that the slope of the correlation changes with solar magnetic polarity. Low solar magnetic tilt angles (<40° at negative polarity) were well correlated with variations at both NM stations, as predicted by drift models. At a higher tilt angle, the Doi Inthanon count rate is well correlated with the interplanetary magnetic field, which is consistent with an increase in diffusion at high rigidity short-circuiting the effects of drifts and the heliospheric current sheet.
Atomistic minimal model for estimating profile of electrodeposited nanopatterns
NASA Astrophysics Data System (ADS)
Asgharpour Hassankiadeh, Somayeh; Sadeghi, Ali
2018-06-01
We develop a computationally efficient and methodologically simple approach to realize molecular dynamics simulations of electrodeposition. Our minimal model takes into account the nontrivial electric field due a sharp electrode tip to perform simulations of the controllable coating of a thin layer on a surface with an atomic precision. On the atomic scale a highly site-selective electrodeposition of ions and charged particles by means of the sharp tip of a scanning probe microscope is possible. A better understanding of the microscopic process, obtained mainly from atomistic simulations, helps us to enhance the quality of this nanopatterning technique and to make it applicable in fabrication of nanowires and nanocontacts. In the limit of screened inter-particle interactions, it is feasible to run very fast simulations of the electrodeposition process within the framework of the proposed model and thus to investigate how the shape of the overlayer depends on the tip-sample geometry and dielectric properties, electrolyte viscosity, etc. Our calculation results reveal that the sharpness of the profile of a nano-scale deposited overlayer is dictated by the normal-to-sample surface component of the electric field underneath the tip.
Terahertz frequency superconductor-nanocomposite photonic band gap
NASA Astrophysics Data System (ADS)
Elsayed, Hussein A.; Aly, Arafa H.
2018-02-01
In the present work, we discuss the transmittance properties of one-dimensional (1D) superconductor nanocomposite photonic crystals (PCs) in THz frequency regions. Our modeling is essentially based on the two-fluid model, Maxwell-Garnett model and the characteristic matrix method. The numerical results investigate the appearance of the so-called cutoff frequency. We have obtained the significant effect of some parameters such as the volume fraction, the permittivity of the host material, the size of the nanoparticles and the permittivity of the superconductor material on the properties of the cutoff frequency. The present results may be useful in the optical communications and photonic applications to act as tunable antenna in THz, reflectors and high-pass filter.
A Rigorous Sharp Interface Limit of a Diffuse Interface Model Related to Tumor Growth
NASA Astrophysics Data System (ADS)
Rocca, Elisabetta; Scala, Riccardo
2017-06-01
In this paper, we study the rigorous sharp interface limit of a diffuse interface model related to the dynamics of tumor growth, when a parameter ɛ, representing the interface thickness between the tumorous and non-tumorous cells, tends to zero. More in particular, we analyze here a gradient-flow-type model arising from a modification of the recently introduced model for tumor growth dynamics in Hawkins-Daruud et al. (Int J Numer Math Biomed Eng 28:3-24, 2011) (cf. also Hilhorst et al. Math Models Methods Appl Sci 25:1011-1043, 2015). Exploiting the techniques related to both gradient flows and gamma convergence, we recover a condition on the interface Γ relating the chemical and double-well potentials, the mean curvature, and the normal velocity.
Kink Waves in Non-isothermal Stratified Solar Waveguides: Effect of the External Magnetic Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopin, I.; Nagorny, I., E-mail: lopin78@mail.ru
We study the effect of an external magnetic field on the properties of kink waves, propagating along a thin non-isothermal stratified and diverging magnetic flux tube. A wave equation, governing the propagation of kink waves under the adopted model is derived. It is shown that the vertical gradient of temperature introduces a spatially local cut-off frequency ω {sub c}. The vertical distribution of the cut-off frequency is calculated for the reference VAL-C model of the solar atmosphere and for different values of a ratio of external to internal magnetic fields. The results show that the cut-off frequency is negative belowmore » the temperature minimum due to the negative temperature gradient. In the chromosphere the cut-off frequency at a given height is smaller for a stronger external magnetic field. For the appropriate range of a ratio B{sub e} / B{sub i} ≈ 0–0.8, the cutoff lies in the range ω{sub c} ≈ 0.003–0.010 s{sup −1} (periods 600 < P{sub c} < 2000 s). The estimate of the cut-off frequency in the transition region is provided as well. In the propagating wave regime, the effective wave energy flux in the non-isothermal diverging flux tubes is the same as in the straight and homogeneous cylindrical waveguides. The obtained wave equation in the limit β = 0 is used to study the kink oscillations of non-isothermal coronal loops. It is found that the gradient of temperature along the coronal loops reduces the frequency ratio of the first overtone to the fundamental mode, i.e., ω{sub 2}/ ω{sub 1} < 2. This reduction grows for a larger ratio of temperature at the loop top to the temperature at the footpoints. Moreover, the effect of reduction is most pronounced for the steeper temperature profiles.« less
A policy model of cardiovascular disease in moderate-to-advanced chronic kidney disease.
Schlackow, Iryna; Kent, Seamus; Herrington, William; Emberson, Jonathan; Haynes, Richard; Reith, Christina; Wanner, Christoph; Fellström, Bengt; Gray, Alastair; Landray, Martin J; Baigent, Colin; Mihaylova, Borislava
2017-12-01
To present a long-term policy model of cardiovascular disease (CVD) in moderate-to-advanced chronic kidney disease (CKD). A Markov model with transitions between CKD stages (3B, 4, 5, on dialysis, with kidney transplant) and cardiovascular events (major atherosclerotic events, haemorrhagic stroke, vascular death) was developed with individualised CKD and CVD risks estimated using the 5 years' follow-up data of the 9270 patients with moderate-to-severe CKD in the Study of Heart and Renal Protection (SHARP) and multivariate parametric survival analysis. The model was assessed in three further CKD cohorts and compared with currently used risk scores. Higher age, previous cardiovascular events and advanced CKD were the main contributors to increased individual disease risks. CKD and CVD risks predicted by the state-transition model corresponded well to risks observed in SHARP and external cohorts. The model's predictions of vascular risk and progression to end-stage renal disease were better than, or comparable to, those produced by other risk scores. As an illustration, at age 60-69 years, projected survival for SHARP participants in CKD stage 3B was 13.5 years (10.6 quality-adjusted life years (QALYs)) in men and 14.8 years (10.7 QALYs) in women. Corresponding projections for participants on dialysis were 7.5 (5.6 QALYs) and 7.8 years (5.4 QALYs). A non-fatal major atherosclerotic event reduced life expectancy by about 2 years in stage 3B and by 1 year in dialysis. The SHARP CKD-CVD model is a novel resource for evaluating health outcomes and cost-effectiveness of interventions in CKD. NCT00125593 and ISRCTN54137607; Post-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Maximum Energies of Shock-Accelerated Electrons in Young Shell Supernova Remnants
NASA Technical Reports Server (NTRS)
Reynolds, Stephen P.; Keohane, Jonathan W.; White, Nicholas E. (Technical Monitor)
1999-01-01
Young supernova remnants (SNRs) are often assumed to be the source of cosmic rays up to energies approaching the slight steepening in the cosmic ray spectrum at around 1000 TeV, known as the "knee." We show that the observed X-ray emission of 14 radio-bright shell remnants, including all five historical shells, can be used to put limits on E(sub max), the energy at which the electron energy distribution must steepen from its slope at radio-emitting energies. Most of the remnants show thermal spectra, so any synchrotron component must fall below the observed X-ray fluxes. We obtain upper limits on E(sub max) by considering the most rapid physically plausible cutoff in the relativistic electron distribution, an exponential, which is as sharp or sharper than found in any more elaborate models. This maximally curved model then gives us the highest possible E(sub max) consistent with not exceeding observed X-rays. Our results are thus independent of particular models for the electron spectrum in SNRs. Assuming homogeneous emitting volumes with a constant magnetic field strength of 10 uG, no object could reach 1000 TeV, and only one, Kes 73, has an upper limit on E(sub max), above 100 TeV. All the other remnants have limits at or below 80 TeV. E(sub max) is probably set by the finite remnant lifetime rather than by synchrotron losses for remnants younger than a few thousand years, so that an observed electron steepening should be accompanied by steepening at the same energy for protons. More complicated, inhomogeneous models could allow higher values of E(sub max) in parts of the remnant, but the emission-weighted average value, that characteristic of typical electrons, should obey these limits. The young remnants are not expected to improve much over their remaining lives at producing the highest energy Galactic cosmic rays; if they cannot, this picture of cosmic-ray origin may need major alteration.
Solute transport by flow yields geometric shocks in shape evolution
NASA Astrophysics Data System (ADS)
Huang, Jinzi (Mac); Davies Wykes, Megan; Hajjar, George; Ristroph, Leif; Shelley, Michael
2017-11-01
Geological processes such as erosion and dissolution of surfaces often lead to striking shapes with strikingly sharp features. We present observations of such features forming in dissolution under gravity. In our experiment, a dissolving body with initially smooth surface evolves into an increasingly sharp needle shape. A mathematical model of its shape dynamics, derived from a boundary layer theory, predicts that a geometric shock forms at the tip of dissolved body, with the tip curvature becoming infinite in finite time. We further discuss the model's application to similar processes, such as flow driven erosion which can yield corners.
Convex Regression with Interpretable Sharp Partitions
Petersen, Ashley; Simon, Noah; Witten, Daniela
2016-01-01
We consider the problem of predicting an outcome variable on the basis of a small number of covariates, using an interpretable yet non-additive model. We propose convex regression with interpretable sharp partitions (CRISP) for this task. CRISP partitions the covariate space into blocks in a data-adaptive way, and fits a mean model within each block. Unlike other partitioning methods, CRISP is fit using a non-greedy approach by solving a convex optimization problem, resulting in low-variance fits. We explore the properties of CRISP, and evaluate its performance in a simulation study and on a housing price data set. PMID:27635120
Kintner, Eileen; Cook, Gwendolyn; Marti, C. Nathan; Stoddard, Debbie; Gomes, Melissa; Harmon, Phyllis; Van Egeren, Laurie A.
2018-01-01
Asthma morbidity and mortality is higher among older school-age children and early adolescents than other age groups across the lifespan. NIH recommended expanding asthma education to schools and community settings to meet cognitive outcomes that have an impact on morbidity and mortality. Guided by the acceptance of asthma model, an evidence-guided, comprehensive school-based academic health education and counseling program, Staying Healthy—Asthma Responsible & Prepared™ (SHARP), was developed. The program complements existing school curricula by integrating biology, psychology, and sociology content with related spelling, math, and reading and writing assignments. Feasibility, benefits, and efficacy have been established. We compared the effectiveness of SHARP to a non-academic program, Open Airways for Schools, in improving asthma knowledge and reasoning about symptom management. A two-group, cluster-randomized, single-blinded design was used with a sample of 205 students in grades 4–5 with asthma and their caregivers. Schools were matched prior to randomization. The unit of analysis was the student. Certified elementary school teachers delivered the programs during instructional time. Data were collected from student/caregiver dyads at baseline and at 1, 12, and 24 months after the intervention. In multilevel modeling, students enrolled in the academic SHARP program demonstrated significant (p<.001) improvement in asthma knowledge and reasoning over students enrolled in the non-academic program. Knowledge advantages were retained at 24 months. Findings support delivery in schools of the SHARP academic health education program for students with asthma. PMID:26296595
Kintner, Eileen; Cook, Gwendolyn; Marti, C Nathan; Stoddard, Debbie; Gomes, Melissa; Harmon, Phyllis; Van Egeren, Laurie A
2015-12-01
Asthma morbidity and mortality is higher among older school-age children and early adolescents than other age groups across the lifespan. NIH recommended expanding asthma education to schools and community settings to meet cognitive outcomes that have an impact on morbidity and mortality. Guided by the acceptance of asthma model, an evidence-guided, comprehensive school-based academic health education and counseling program, Staying Healthy-Asthma Responsible & Prepared™ (SHARP), was developed. The program complements existing school curricula by integrating biology, psychology, and sociology content with related spelling, math, and reading and writing assignments. Feasibility, benefits, and efficacy have been established. We compared the effectiveness of SHARP to a non-academic program, Open Airways for Schools, in improving asthma knowledge and reasoning about symptom management. A two-group, cluster-randomized, single-blinded design was used with a sample of 205 students in grades 4-5 with asthma and their caregivers. Schools were matched prior to randomization. The unit of analysis was the student. Certified elementary school teachers delivered the programs during instructional time. Data were collected from student/caregiver dyads at baseline and at 1, 12, and 24 months after the intervention. In multilevel modeling, students enrolled in the academic SHARP program demonstrated significant (p< .001) improvement in asthma knowledge and reasoning over students enrolled in the non-academic program. Knowledge advantages were retained at 24 months. Findings support delivery in schools of the SHARP academic health education program for students with asthma. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Seiller, G.; Anctil, F.; Roy, R.
2017-09-01
This paper outlines the design and experimentation of an Empirical Multistructure Framework (EMF) for lumped conceptual hydrological modeling. This concept is inspired from modular frameworks, empirical model development, and multimodel applications, and encompasses the overproduce and select paradigm. The EMF concept aims to reduce subjectivity in conceptual hydrological modeling practice and includes model selection in the optimisation steps, reducing initial assumptions on the prior perception of the dominant rainfall-runoff transformation processes. EMF generates thousands of new modeling options from, for now, twelve parent models that share their functional components and parameters. Optimisation resorts to ensemble calibration, ranking and selection of individual child time series based on optimal bias and reliability trade-offs, as well as accuracy and sharpness improvement of the ensemble. Results on 37 snow-dominated Canadian catchments and 20 climatically-diversified American catchments reveal the excellent potential of the EMF in generating new individual model alternatives, with high respective performance values, that may be pooled efficiently into ensembles of seven to sixty constitutive members, with low bias and high accuracy, sharpness, and reliability. A group of 1446 new models is highlighted to offer good potential on other catchments or applications, based on their individual and collective interests. An analysis of the preferred functional components reveals the importance of the production and total flow elements. Overall, results from this research confirm the added value of ensemble and flexible approaches for hydrological applications, especially in uncertain contexts, and open up new modeling possibilities.
Studies of cluster X-ray sources, energy spectra for the Perseus, Virgo, and Coma clusters
NASA Technical Reports Server (NTRS)
Kellogg, E.; Baldwin, J. R.; Koch, D.
1975-01-01
Final Uhuru X-ray differential-energy spectra are presented for the Perseus, Virgo, and Coma clusters. Power-law and isothermal bremsstrahlung model spectra with low-energy cutoffs are given, and the energy-dependent Gaunt factor is calculated for the bremsstrahlung. The spectra, which are best fits to the Uhuru data between 2 and 10 keV, are compared with previous observations of these sources in the energy range from 0.1 to 100 keV. The problem of parameter estimation is discussed, error bars with 68% confidence are given for the independently determined slope and cutoff parameters, and the 68% confidence limits are plotted for the fitted spectral functions. The data for Perseus above 20 keV marginally favor the bremsstrahlung fit, those for Virgo between 0.25 and 1.0 keV clearly favor that curve, and those for Coma indicate a low-energy turnover or cutoff. Implications of such a cutoff are briefly discussed.
Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes
Uhl, Jonathan T.; Pathak, Shivesh; Schorlemmer, Danijel; ...
2015-11-17
Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simplemore » mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stressdependent cutoff function. In conclusion, the results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.« less
NASA Astrophysics Data System (ADS)
Grieco, G.; Nirchio, F.; Montuori, A.; Migliaccio, M.; Lin, W.; Portabella, M.
2016-08-01
The dependency of the azimuth wavelength cut-off on the wind speed has been studied through a dataset of Sentinel-1 multi look SAR images co-located with wind speed measurements, significant wave height and mean wave direction from ECMWF operational output.A Geophysical Model Function (GMF) has been fitted and a retrieval exercise has been done comparing the results to a set of independent wind speed scatterometer measurements of the Chinese mission HY-2A. The preliminary results show that the dependency of the azimuth cut-off on the wind speed is linear only for fully developed sea states and that the agreement between the retrieved values and the measurements is good especially for high wind speed.A similar approach has been used to assess the dependency of the azimuth cut-off also for X-band COSMO-SkyMed data. The dataset is still incomplete but the preliminary results show a similar trend.
Miedema, H M; Oudshoorn, C G
2001-01-01
We present a model of the distribution of noise annoyance with the mean varying as a function of the noise exposure. Day-night level (DNL) and day-evening-night level (DENL) were used as noise descriptors. Because the entire annoyance distribution has been modeled, any annoyance measure that summarizes this distribution can be calculated from the model. We fitted the model to data from noise annoyance studies for aircraft, road traffic, and railways separately. Polynomial approximations of relationships implied by the model for the combinations of the following exposure and annoyance measures are presented: DNL or DENL, and percentage "highly annoyed" (cutoff at 72 on a scale of 0-100), percentage "annoyed" (cutoff at 50 on a scale of 0-100), or percentage (at least) "a little annoyed" (cutoff at 28 on a scale of 0-100). These approximations are very good, and they are easier to use for practical calculations than the model itself, because the model involves a normal distribution. Our results are based on the same data set that was used earlier to establish relationships between DNL and percentage highly annoyed. In this paper we provide better estimates of the confidence intervals due to the improved model of the relationship between annoyance and noise exposure. Moreover, relationships using descriptors other than DNL and percentage highly annoyed, which are presented here, have not been established earlier on the basis of a large dataset. PMID:11335190
The acoustical cues to sound location in the Guinea pig (cavia porcellus)
Greene, Nathanial T; Anbuhl, Kelsey L; Williams, Whitney; Tollin, Daniel J.
2014-01-01
There are three main acoustical cues to sound location, each attributable to space-and frequency-dependent filtering of the propagating sound waves by the outer ears, head, and torso: Interaural differences in time (ITD) and level (ILD) as well as monaural spectral shape cues. While the guinea pig has been a common model for studying the anatomy, physiology, and behavior of binaural and spatial hearing, extensive measurements of their available acoustical cues are lacking. Here, these cues were determined from directional transfer functions (DTFs), the directional components of the head-related transfer functions, for eleven adult guinea pigs. In the frontal hemisphere, monaural spectral notches were present for frequencies from ~10 to 20 kHz; in general, the notch frequency increased with increasing sound source elevation and in azimuth toward the contralateral ear. The maximum ITDs calculated from low-pass filtered (2 kHz cutoff frequency) DTFs were ~250 µs, whereas the maximum ITD measured with low frequency tone pips was over 320 µs. A spherical head model underestimates ITD magnitude under normal conditions, but closely approximates values when the pinnae were removed. Interaural level differences (ILDs) strongly depended on location and frequency; maximum ILDs were < 10 dB for frequencies < 4 kHz and were as large as 40 dB for frequencies > 10 kHz. Removal of the pinna reduced the depth and sharpness of spectral notches, altered the acoustical axis, and reduced the acoustical gain, ITDs, and ILDs; however, spectral shape features and acoustical gain were not completely eliminated, suggesting a substantial contribution of the head and torso in altering the sounds present at the tympanic membrane. PMID:25051197
Artigas, Jose M; Felipe, Adelina; Navea, Amparo; Artigas, Cristina; García-Domene, Maria C
2011-01-01
To compare the spectral transmission of different intraocular lenses (IOLs) with either ultraviolet (UV) or blue-light filters, and to analyze the performance of these filters with artificial light sources as well as sunlight. Experimental study. The spectral transmission curve of 10 IOLs was measured using a PerkinElmer Lambda 800 UV/VIS spectrometer (Waltham, MA). Different filtering simulations were performed using the D65 standard illuminant as daylight and standard incandescent lamp and fluorescent bulb illuminants. Spectral transmittance of the IOLs. All the IOLs studied provide good UVC (200-280 nm) and UVB (280-315 nm) protection, except for one that presented an appreciable window at 270 nm. Nevertheless, both natural and artificial sources have practically no emission under 300 nm. In the UVA (315-380 nm) range the curves of the different IOLs manifested different degrees of absorption. Not all the UV filters incorporated in different IOLs protect equally. The filters that provide greater photoprotection against UV radiation, even blue light, are yellow and orange. Then, yellow and orange IOL filters may be best suited for cases requiring special retinal protection. The filters that favor better photoreception of visible light (380-780 nm) are those that transmit this radiation close to 100%. Artificial illumination practically does not emit in the UV range, but its levels of illumination are very low when compared with solar light. A possible balance between photoprotection and photoreception could be a sharp cutoff filter with the cutoff wavelength near 400 nm and a maximum transmittance around 100%. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Duarte, Ricardo Luiz de Menezes; Magalhães-da-Silveira, Flavio José
2015-01-01
Objective: To identify the main predictive factors for obtaining a diagnosis of obstructive sleep apnea (OSA) in patients awaiting bariatric surgery. Methods: Retrospective study of consecutive patients undergoing pre-operative evaluation for bariatric surgery and referred for in-laboratory polysomnography. Eight variables were evaluated: sex, age, neck circumference (NC), BMI, Epworth Sleepiness Scale (ESS) score, snoring, observed apnea, and hypertension. We employed ROC curve analysis to determine the best cut-off value for each variable and multiple linear regression to identify independent predictors of OSA severity. Results: We evaluated 1,089 patients, of whom 781 (71.7%) were female. The overall prevalence of OSA-defined as an apnea/hypopnea index (AHI) ≥ 5.0 events/h-was 74.8%. The best cut-off values for NC, BMI, age, and ESS score were 42 cm, 42 kg/m2, 37 years, and 10 points, respectively. All eight variables were found to be independent predictors of a diagnosis of OSA in general, and all but one were found to be independent predictors of a diagnosis of moderate/severe OSA (AHI ≥ 15.0 events/h), the exception being hypertension. We devised a 6-item model, designated the NO-OSAS model (NC, Obesity, Observed apnea, Snoring, Age, and Sex), with a cut-off value of ≥ 3 for identifying high-risk patients. For a diagnosis of moderate/severe OSA, the model showed 70.8% accuracy, 82.8% sensitivity, and 57.9% specificity. Conclusions: In our sample of patients awaiting bariatric surgery, there was a high prevalence of OSA. At a cut-off value of ≥ 3, the proposed 6-item model showed good accuracy for a diagnosis of moderate/severe OSA. PMID:26578136
Yun, Kyung-Jin; Han, Kyungdo; Kim, Mee Kyoung; Park, Yong-Moon; Baek, Ki-Hyun; Song, Ki-Ho; Kwon, Hyuk-Sang
2016-01-01
Background We sought to identify the distribution and cut-off value of the ‘homeostasis model assessment of insulin resistance’ (HOMA-IR) according to gender and menopausal status for metabolic syndrome in Koreans. Methods Data were from the Korean National Health and Nutrition Examination Survey in 2008–2010. The subjects included adults aged 20 years or older. We excluded participants who had diabetes or fasting serum glucose ≥ 7 mmol/L. Finally, 11,121 subjects (4,911 men, 3,597 premenopausal women, 2,613 postmenopausal women) were enrolled. The modified Adult Treatment Panel III criteria were used to define metabolic syndrome. Results The mean HOMA-IR was 2.11 (2.07–2.15) for men, 2.0 (1.97–2.04) for premenopausal women, and 2.14 (2.2–2.19) for postmenopausal women. The first cut-off values in men, premenopausal women, and postmenopausal women were 2.23 (sensitivity 70.6%, specificity 66.9%), 2.39 (sensitivity 72.3%, specificity 76.4%), and 2.48 (sensitivity 51.9%, specificity 80.2%), respectively. Based on the first HOMA-IR cut-off value, the prevalence of metabolic syndrome was 22.9% in men, 13.7% in premenopausal women, and 51.6% in postmenopausal women. The second cut-off value was around 3.2 in all three groups. Based on the second HOMA-IR cut-off value, the prevalence of metabolic syndrome was 50.8% in men, 42.5% in premenopausal women, and 71.6% in postmenopausal women. Conclusion In conclusion, the first cut-off values for HOMA-IR were 2.2–2.5 and the second cut-off value was 3.2 in Korea. The distribution of HOMA-IR showed differences according to gender and menopausal status. When we apply HOMA-IR, we should consider gender, menopausal status, and the prevalence of metabolic syndrome. PMID:27128847
Motamed, Nima; Miresmail, Seyed Javad Haji; Rabiee, Behnam; Keyvani, Hossein; Farahani, Behzad; Maadi, Mansooreh; Zamani, Farhad
2016-03-01
The present study was carried out to determine the optimal cutoff points for homeostatic model assessment (HOMA-IR) and quantitative insulin sensitivity check index (QUICKI) in the diagnosis of metabolic syndrome (MetS) and non-alcoholic fatty liver disease (NAFLD). The baseline data of 5511 subjects aged ≥18years of a cohort study in northern Iran were utilized to analyze. Receiver operating characteristic (ROC) analysis was conducted to determine the discriminatory capability of HOMA-IR and QUICKI in the diagnosis of MetS and NAFLD. Youden index was utilized to determine the optimal cutoff points of HOMA-IR and QUICKI in the diagnosis of MetS and NAFLD. The optimal cutoff points for HOMA-IR in the diagnosis of MetS and NAFLD were 2.0 [sensitivity=64.4%, specificity=66.8%] and 1.79 [sensitivity=66.2%, specificity=62.2%] in men and were 2.5 [sensitivity=57.6%, specificity=67.9%] and 1.95 [sensitivity=65.1%, specificity=54.7%] in women respectively. Furthermore, the optimal cutoff points for QUICKI in the diagnosis of MetS and NAFLD were 0.343 [sensitivity=63.7%, specificity=67.8%] and 0.347 [sensitivity=62.9%, specificity=65.0%] in men and were 0.331 [sensitivity=55.7%, specificity=70.7%] and 0.333 [sensitivity=53.2%, specificity=67.7%] in women respectively. Not only the optimal cutoff points of HOMA-IR and QUICKI were different for MetS and NAFLD, but also different cutoff points were obtained for men and women for each of these two conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
Raven, Stijn; Hautvast, Jeannine; Steenbergen, Jim van; Akkermans, Reinier; Weykamp, Cas; Smits, Francis; Hoebe, Christian; Vossen, Ann
2017-02-01
Post-vaccination testing after hepatitis B vaccination is indispensable to evaluate long-term immunological protection. Using a threshold level of antibodies against hepatitis B surface antigen (anti-HBs) to define serological protection, implies reproducible and valid measurements of different diagnostic assays. In this study we assess the performance of currently used anti-HBs assays. In 2013, 45 laboratories participated in an external quality assessment program using pooled anti-HBs serum samples around the cutoff values 10IU/l and 100IU/l. Laboratories used either Axsym (Abbott Laboratories), Architect (Abbott Laboratories), Access (Beckman-Coulter), ADVIA Centaur anti-HBs2 (Siemens Healthcare Diagnostics), Elecsys, Modular or Cobas (Roche Diagnostics) or Vidas Total Quick (Biomerieux) for anti-HBs titre quantification. We analysed covariance using mixed-model repeated measures. To assess sensitivity/specificity and agreement, a true positive or true negative result was defined as an anti-HBs titre respectively above or below the cutoff value by ≥4 of 6 assays. Different anti-HBs assays were associated with statistically significant (P<0.05) differences in anti-HBs titres in all dilutions. Sensitivity and specificity ranged respectively from 64%-100% and 95%-100%. Agreement between assays around an anti-HBs titre cutoff value of 10IU/l ranged from 93%-100% and was 44% for a cutoff value of 100IU/l. Around a cutoff value of 10IU/l use of the Access assay may result in false-negative results. Concerning the cutoff value of 100IU/l, a sample being classified below or above this cutoff relied heavily on the specific assay used, with both the Architect and the Access resulting in false-negative results. Copyright © 2016 Elsevier B.V. All rights reserved.
Quadratic dissipation effect on the moonpool resonance
NASA Astrophysics Data System (ADS)
Liu, Heng-xu; Chen, Hai-long; Zhang, Liang; Zhang, Wan-chao; Liu, Ming
2017-12-01
This paper adopted a semi-analytical method based on eigenfunction matching to solve the problem of sharp resonance of cylindrical structures with a moonpool that has a restricted entrance. To eliminate the sharp resonance and to measure the viscous effect, a quadratic dissipation is introduced by assuming an additional dissipative disk at the moonpool entrance. The fluid domain is divided into five cylindrical subdomains, and the velocity potential in each subdomain is obtained by meeting the Laplace equation as well as the boundary conditions. The free-surface elevation at the center of the moonpool, along with the pressure and velocity at the restricted entrance for first-order wave are evaluated. By choosing appropriate dissipation coefficients, the free-surface elevation calculated at the center of the moonpool is in coincidence with the measurements in model tests both at the peak period and amplitude at resonance. It is shown that the sharp resonance in the potential flow theory can be eliminated and the viscous effect can be estimated with a simple method in some provided hydrodynamic models.
Study of hydrodynamic characteristics of a Sharp Eagle wave energy converter
NASA Astrophysics Data System (ADS)
Zhang, Ya-qun; Sheng, Song-wei; You, Ya-ge; Huang, Zhen-xin; Wang, Wen-sheng
2017-06-01
According to Newton's Second Law and the microwave theory, mechanical analysis of multiple buoys which form Sharp Eagle wave energy converter (WEC) is carried out. The movements of every buoy in three modes couple each other when they are affected with incident waves. Based on the above, mechanical models of the WEC are established, which are concerned with fluid forces, damping forces, hinge forces, and so on. Hydrodynamic parameters of one buoy are obtained by taking the other moving buoy as boundary conditions. Then, by taking those hydrodynamic parameters into the mechanical models, the optimum external damping and optimal capture width ratio are calculated out. Under the condition of the optimum external damping, a plenty of data are obtained, such as the displacements amplitude of each buoy in three modes (sway, heave, pitch), damping forces, hinge forces, and speed of the hydraulic cylinder. Research results provide theoretical references and basis for Sharp Eagle WECs in the design and manufacture.
New Holographic Chaplygin Gas Model of Dark Energy
NASA Astrophysics Data System (ADS)
Malekjani, M.; Khodam-Mohammadi, A.
In this work, we investigate the holographic dark energy model with a new infrared cutoff (new HDE model), proposed by Granda and Oliveros. Using this new definition for the infrared cutoff, we establish the correspondence between the new HDE model and the standard Chaplygin gas (SCG), generalized Chaplygin gas (GCG) and modified Chaplygin gas (MCG) scalar field models in a nonflat universe. The potential and dynamics for these scalar field models, which describe the accelerated expansion of the universe, are reconstructed. According to the evolutionary behavior of the new HDE model, we derive the same form of dynamics and potential for the different SCG, GCG and MCG models. We also calculate the squared sound speed of the new HDE model as well as the SCG, GCG and MCG models, and investigate the new HDE Chaplygin gas models from the viewpoint of linear perturbation theory. In addition, all results in the nonflat universe are discussed in the limiting case of the flat universe, i.e. k = 0.
NASA Astrophysics Data System (ADS)
Melikhov, V. I.; Melikhov, O. I.; Nerovnov, A. A.; Nikonov, S. M.
2018-01-01
Processing of experimental data on the pressure difference across a submerged perforated sheet (SPS) revealed that, at sufficiently high void fractions under SPS, the pressure difference across it became less than the pressure difference for the pure steam stream with the same flowrate. To find the cause of this, the effect of a liquid film, which can be formed on the SPS upstream surface as a result of water droplets' impact and can smooth over sharp edges of holes in SDS, was examined. This can decrease the pressure drop across the sharp edges of holes. This assumption was checked through numerical solution to several model problems in the axisymmetric formulation for a steam flow in a round pipe with an orifice. The flow of steam and water was modeled using the viscous incompressible liquid approximation, while the turbulence was described by the k-ɛ model. The evolution of the interfacial area was modeled using the VOF model. The following model problems of steam flow through an orifice were studied: a single-phase flow, a flow through the orifice with a liquid film on its upstream surface, a flow through a chamfered hole, and a flow through the orifice with a liquid film on its upstream surface without liquid supply to the film. The predictions demonstrate that even the approximate account of the liquid film effect on the steam flow yields a considerable decrease in the pressure drop across the hole (from 8 to 24%) due to smoothing its sharp outlet edges over. This makes it possible to make a conclusion that the cause of a decrease in the pressure drop across SPS observed in the experiments at high void fractions is the formation of a liquid film, which smooths the sharp edges of the hole.
NASA Astrophysics Data System (ADS)
Oberländer, Sophie; Langematz, Ulrike; Kubin, Anne; Abalichin, Janna; Meul, Stefanie; Jöckel, Patrick; Brühl, Christoph
2010-05-01
First results of research performed within the new DFG Research Unit Stratospheric Change and its Role for Climate Prediction (SHARP) will be presented. SHARP investigates past and future changes in stratospheric dynamics and composition to improve the understanding of global climate change and the accuracy of climate change predictions. SHARP combines the efforts of eight German research institutes and expertise in state-of-the-art climate modelling and observations. Within the scope of the scientific sub-project SHARP-BDC (Brewer-Dobson-Circulation) the past and future evolution of the BDC in an atmosphere with changing composition will be analysed. Radiosonde data show an annual mean cooling of the tropical lower stratosphere over the past few decades (Thompson and Solomon, 2005). Several independent model simulations indicate an acceleration of the BDC due to higher greenhouse gas (GHG) concentrations with direct impact on the exchange of air masses between the troposphere and stratosphere (e.g., Butchart et al, 2006). In contrast, from balloon-born measurements no significant acceleration in the BDC could be identified (Engel et al, 2008). This disagreement between observations and model analyses motivates further studies. For the future, expected changes in planetary wave generation and propagation in an atmosphere with increasing GHG concentrations are a major source of uncertainty for predicting future levels of stratospheric composition. To analyse and interpret the past and future evolution of the BDC, results from a transient multi-decadal simulation with the Chemistry-Climate Model (CCM) EMAC will be presented. The model has been integrated from 1960 to 2100 following the SCN2d scenario recommendations of the SPARC CCMVal initiative for the temporal evolution of GHGs, ozone depleting substances and sea surface temperatures as well as sea ice. The role of increasing GHG concentrations for the BDC will be assessed by comparing the SCN2d-results with a ‘non-climate change' (NCC) simulation, in which greenhouse gases have been kept fixed at their 1960 concentrations.
NASA Astrophysics Data System (ADS)
Niemand, C.; Kuhn, K.; Schwarze, R.
2010-12-01
SHARP is a European INTERREG IVc Program. It focuses on the exchange of innovative technologies to protect groundwater resources for future generations by considering the climate change and the different geological and geographical conditions. Regions involved are Austria, United Kingdom, Poland, Italy, Macedonia, Malta, Greece and Germany. They will exchange practical know-how and also determine know-how demands concerning SHARP’s key contents: general groundwater management tools, artificial groundwater recharge technologies, groundwater monitoring systems, strategic use of groundwater resources for drinking water, irrigation and industry, techniques to save water quality and quantity, drinking water safety plans, risk management tools and water balance models. SHARP Outputs & results will influence the regional policy in the frame of sustainable groundwater management to save and improve the quality and quantity of groundwater reservoirs for future generations. The main focus of the Saxon State Office for Environment, Agriculture and Landscape in this project is the enhancement and purposive use of water balance models. Already since 1992 scientists compare different existing water balance models on different scales and coupled with groundwater models. For example in the KLIWEP (Assessment of Impacts of Climate Change Projections on Water and Matter Balance for the Catchment of River Parthe in Saxony) project the coupled model WaSiM-ETH - PCGEOFIM® has been used to study the impact of climate change on water balance and water supplies. The project KliWES (Assessment of the Impacts of Climate Change Projections on Water and Matter Balance for Catchment Areas in Saxony) still running, comprises studies of fundamental effects of climate change on catchments in Saxony. Project objective is to assess Saxon catchments according to the vulnerability of their water resources towards climate change projections in order to derive region-specific recommendations for management actions. The model comparisons within reference areas showed significant differences in outcome. The values of water balance components calculated with different models partially fluctuate by a multiple of their value. The SHARP project was prepared in several previous projects that were testing suitable water balance models and is now able to assist the knowledge transfer.
Lera, Lydia; Ángel, Bárbara; Sánchez, Hugo; Picrin, Yaisy; Hormazabal, María José; Quiero, Andrea; Albala, Cecilia
2014-09-28
To estimate and validate cut-off points of skeletal muscle mass index (SMI) in Chilean population, for using in an algorithm for a diagnosis of sarcopenia developed by European Working Group on Sarcopenia in Older People (EWGSOP). Secondary analysis of Cross-sectional data in 440 Chilean older subjects to estimate cut-off points of SMI determined by DEXA and predicted by an anthropometric equation. Afterward a cross-sectional validation in a sample of 164 older people was performed. Anthropometric measures, self-reported health status, physical performance tests and DEXA were carried out. Decreased muscle strength was defined as handgrip strength <15 kg in women and <27 kg in male. Cut-off points of SMI were defined as values under 20th percentile for DEXA measures and estimated through ROC curves for the anthropometric model. Biological validity of the algorithm was tested by contrasting the diagnosis with physical performance tests and functionality. Cut-off points of SMI obtained by DEXA were 7.19 kg/m² in men and 5.77 kg/m² in women and 7.45 kg/ m² and 5.88 kg/m², respectively for the predicted by the model. Sensibility and specificity of estimations vs DEXA measures were 80% and 92% in men and 77% and 89% in women. We obtained cut-off points of SMI for DEXA and for a prediction equation for older adults Chilean, with good sensibility and specificity for the measurement by DEXA. It will allow to apply the EWGSOP algorithm to the early diagnosis of sarcopenia and to develop programs for prevention, delay or reversion this syndrome. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Rise time of proton cut-off energy in 2D and 3D PIC simulations
NASA Astrophysics Data System (ADS)
Babaei, J.; Gizzi, L. A.; Londrillo, P.; Mirzanejad, S.; Rovelli, T.; Sinigardi, S.; Turchetti, G.
2017-04-01
The Target Normal Sheath Acceleration regime for proton acceleration by laser pulses is experimentally consolidated and fairly well understood. However, uncertainties remain in the analysis of particle-in-cell simulation results. The energy spectrum is exponential with a cut-off, but the maximum energy depends on the simulation time, following different laws in two and three dimensional (2D, 3D) PIC simulations so that the determination of an asymptotic value has some arbitrariness. We propose two empirical laws for the rise time of the cut-off energy in 2D and 3D PIC simulations, suggested by a model in which the proton acceleration is due to a surface charge distribution on the target rear side. The kinetic energy of the protons that we obtain follows two distinct laws, which appear to be nicely satisfied by PIC simulations, for a model target given by a uniform foil plus a contaminant layer that is hydrogen-rich. The laws depend on two parameters: the scaling time, at which the energy starts to rise, and the asymptotic cut-off energy. The values of the cut-off energy, obtained by fitting 2D and 3D simulations for the same target and laser pulse configuration, are comparable. This suggests that parametric scans can be performed with 2D simulations since 3D ones are computationally very expensive, delegating their role only to a correspondence check. In this paper, the simulations are carried out with the PIC code ALaDyn by changing the target thickness L and the incidence angle α, with a fixed a0 = 3. A monotonic dependence, on L for normal incidence and on α for fixed L, is found, as in the experimental results for high temporal contrast pulses.
Tsallis holographic dark energy
NASA Astrophysics Data System (ADS)
Tavayef, M.; Sheykhi, A.; Bamba, Kazuharu; Moradpour, H.
2018-06-01
Employing the modified entropy-area relation suggested by Tsallis and Cirto [1], and the holographic hypothesis, a new holographic dark energy (HDE) model is proposed. Considering a flat Friedmann-Robertson-Walker (FRW) universe in which there is no interaction between the cosmos sectors, the cosmic implications of the proposed HDE are investigated. Interestingly enough, we find that the identification of IR-cutoff with the Hubble radius, can lead to the late time accelerated Universe even in the absence of interaction between two dark sectors of the Universe. This is in contrast to the standard HDE model with Hubble cutoff, which does not imply the accelerated expansion, unless the interaction is taken into account.
Frankenstein, L; Goode, K; Ingle, L; Remppis, A; Schellberg, D; Nelles, M; Katus, H A; Clark, A L; Cleland, J G F; Zugck, C
2011-02-17
It is unclear whether risk prediction strategies in chronic heart failure (CHF) need to be specific for sex or beta-blockers. We examined this problem and developed and validated the consequent risk models based on 6-minute-walk-test and NT-proBNP. The derivation cohort comprised 636 German patients with systolic dysfunction. They were validated against 676 British patients with similar aetiology. ROC-curves for 1-year mortality identified cut-off values separately for specificity (none, sex, beta-blocker, both). Patients were grouped according to number of cut-offs met (group I/II/III - 0/1/2 cut-offs). Widest separation between groups was achieved with sex- and beta-blocker-specific cut offs. In the derivation population, 1-year mortality was 0%, 8%, 31% for group I, II and III, respectively. In the validation population, 1-year rates in the three risk groups were 2%, 7%, 14%, respectively, after application of the same cut-offs. Risk stratification for CHF should perhaps take sex and beta-blocker usage into account. We derived and independently validated relevant risk models based on 6-minute-walk-tests and NT-proBNP. Specifying sex and use of beta-blockers identified three distinct sub-groups with widely differing prognosis. In clinical practice, it may be appropriate to tailor the intensity of follow-up and/or the treatment strategy according to the risk-group. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.
A geomorphic explanation for a meander cutoff following channel relocation of a coarse-bedded river.
Thompson, Douglas M
2003-03-01
The Veteran's Fishing section of the Blackledge River in central Connecticut was relocated in the late 1950s. The relocation resulted in an unstable channel despite extensive efforts to prevent erosion. Overbank erosion and meander cutoffs were investigated using detailed survey data, characterizations of sediment deposits, flow modeling, and a moment-stability analysis. Limited reworking of revetment boulders indicate that riprap bank material was immobile during a 1979 flood event responsible for the formation of the cutoff channel. A moment-stability analysis factor-of-safety value of 1.1 supports the conclusion that riprap was not directly eroded from the banks. Alluvial particles with d(95) values ranging up to 120 mm were deposited along a bar downstream from the cutoff channel at flows estimated to be below a 1.5-year recurrence interval flow. Development of the bar deposit resulted in locally elevated water surfaces at high flow. The resulting overbank flow across the meander neck to the adjacent downstream bend led to the creation of an upstream migrating knickpoint, the erosion of approximately 16,000-year-old sediments, and the subsequent meander cutoff. The results of the study indicate that traditional erosion-control measures cannot prevent extreme channel adjustments if the geomorphic processes that control sediment continuity also are not considered.
Campanini, Isabella; Mastrangelo, Stefano; Bargellini, Annalisa; Bassoli, Agnese; Bosi, Gabriele; Lombardi, Francesco; Tolomelli, Stefano; Lusuardi, Mirco; Merlo, Andrea
2018-01-11
Falls are a common adverse event in both elderly inpatients and patients admitted to rehabilitation units. The Hendrich Fall Risk Model II (HIIFRM) has been already tested in all hospital wards with high fall rates, with the exception of the rehabilitation setting. This study's aim is to address the feasibility and predictive performances of HIIFRM in a hospital rehabilitation department. A 6 months prospective study in a Italian rehabilitation department with patients from orthopaedic, pulmonary, and neurological rehabilitation wards. All admitted patients were enrolled and assessed within 24 h of admission by means of the HIIFRM. The occurrence of falls was checked and recorded daily. HIIFRM feasibility was assessed as the percentage of successful administrations at admission. HIIFRM predictive performance was determined in terms of area under the Receiver Operating Characteristic (ROC) curve (AUC), best cutoff, sensitivity, specificity, positive and negative predictive values, along with their asymptotic 95% confidence intervals (95% CI). One hundred ninety-one patents were admitted. HIIFRM was feasible in 147 cases (77%), 11 of which suffered a fall (7.5%). Failures in administration were mainly due to bedridden patients (e.g. minimally conscious state, vegetative state). AUC was 0.779(0.685-0.873). The original HIIFRM cutoff of 5 led to a sensitivity of 100% with a mere specificity of 49%(40-57%), thus suggesting using higher cutoffs. Moreover, the median score for non-fallers at rehabilitation units was higher than that reported in literature for geriatric non fallers. The best trade-off between sensitivity and specificity was obtained by using a cutoff of 8. This lead to sensitivity = 73%(46-99%), specificity = 72%(65-80%), positive predictive value = 17% and negative predictive value = 97%. These results support the use of the HIIFRM as a predictive tool. The HIIFRM showed satisfactory feasibility and predictive performances in rehabilitation wards. Based on both available literature and these results, the prediction of falls among all hospital wards, with high risk of falling, could be achieved by means of a unique tool and two different cutoffs: a standard cutoff of 5 in geriatric wards and an adjusted higher cutoff in rehabilitation units, with predictive performances similar to those of the best-preforming pathology specific tools for fall-risk assessment.
On the stress calculation within phase-field approaches: a model for finite deformations
NASA Astrophysics Data System (ADS)
Schneider, Daniel; Schwab, Felix; Schoof, Ephraim; Reiter, Andreas; Herrmann, Christoph; Selzer, Michael; Böhlke, Thomas; Nestler, Britta
2017-08-01
Numerical simulations based on phase-field methods are indispensable in order to investigate interesting and important phenomena in the evolution of microstructures. Microscopic phase transitions are highly affected by mechanical driving forces and therefore the accurate calculation of the stresses in the transition region is essential. We present a method for stress calculations within the phase-field framework, which satisfies the mechanical jump conditions corresponding to sharp interfaces, although the sharp interface is represented as a volumetric region using the phase-field approach. This model is formulated for finite deformations, is independent of constitutive laws, and allows using any type of phase inherent inelastic strains.
Consistency relations for sharp features in the primordial spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooij, Sander; Palma, Gonzalo A.; Panotopoulos, Grigoris
We study the generation of sharp features in the primordial spectra within the framework of effective field theory of inflation, wherein curvature perturbations are the consequence of the dynamics of a single scalar degree of freedom. We identify two sources in the generation of features: rapid variations of the sound speed c{sub s} (at which curvature fluctuations propagate) and rapid variations of the expansion rate H during inflation. With this in mind, we propose a non-trivial relation linking these two quantities that allows us to study the generation of sharp features in realistic scenarios where features are the result ofmore » the simultaneous occurrence of these two sources. This relation depends on a single parameter with a value determined by the particular model (and its numerical input) responsible for the rapidly varying background. As a consequence, we find a one-parameter consistency relation between the shape and size of features in the bispectrum and features in the power spectrum. To substantiate this result, we discuss several examples of models for which this one-parameter relation (between c{sub s} and H) holds, including models in which features in the spectra are both sudden and resonant.« less
Deciphering the role of CA1 inhibitory circuits in sharp wave-ripple complexes.
Cutsuridis, Vassilis; Taxidis, Jiannis
2013-01-01
Sharp wave-ripples (SWRs) are population oscillatory patterns in hippocampal LFPs during deep sleep and immobility, involved in the replay of memories acquired during wakefulness. SWRs have been extensively studied, but their exact generation mechanism is still unknown. A computational model has suggested that fast perisomatic inhibition may generate the high frequency ripples (~200 Hz). Another model showed how replay of memories can be controlled by various classes of inhibitory interneurons targeting specific parts of pyramidal cells (PC) and firing at particular SWR phases. Optogenetic studies revealed new roles for interneuronal classes and rich dynamic interplays between them, shedding new light in their potential role in SWRs. Here, we integrate these findings in a conceptual model of how dendritic and somatic inhibition may collectively contribute to the SWR generation. We suggest that sharp wave excitation and basket cell (BC) recurrent inhibition synchronises BC spiking in ripple frequencies. This rhythm is imposed on bistratified cells which prevent pyramidal bursting. Axo-axonic and stratum lacunosum/moleculare interneurons are silenced by inhibitory inputs originating in the medial septum. PCs receiving rippling inhibition in both dendritic and perisomatic areas and excitation in their apical dendrites, exhibit sparse ripple phase-locked spiking.
Dibaryons with Strangeness in Quark Models
NASA Astrophysics Data System (ADS)
Chen, Mei; Gong, Fang; Huang, Hongxia; Ping, Jialun
The extended quark delocalization color screening model, which incorporates Goldstone-boson-exchange with soft cutoff, and chiral quark model are employed to do a systematic dynamical calculation of six-quark systems with strangeness. The two models give similar results, although they have different attraction mechanisms. Comparing with the previous calculation of the extended quark delocalization color screening model, in which the Goldstone-bosons are introduced with hard cutoff, the present calculation obtains a little large binding energies for most of the states. However, the conclusions are the same. The calculations show that NΩ state with IJ = 1/2, 2 is a good dibaryon candidate with narrow width, and ΩΩ state with IJ = 00 is a stable dibaryon against the strong interaction. The calculations also reveal several other possible dibaryon candidates with high angular momentum, ΔΣ*(1/2, 3), ΔΞ*(1, 3), etc. These states may have too wide width to be observed experimentally.
The Soft-X-Ray Emission of Ark 120. XMM-Newton, NuSTAR, and the Importance of Taking the Broad View
NASA Technical Reports Server (NTRS)
Matt, G.; Marinucci, A.; Guainazzi, M.; Brenneman, L. W.; Elvis, M.; Lohfink, A.; Arevalo, P.; Boggs, S. E.; Cappi, M.; Stern, D.;
2014-01-01
We present simultaneous XMM-Newton and NuSTAR observations of the 'bare' Seyfert 1 galaxy, Ark 120, a system in which ionized absorption is absent. The NuSTAR hard-X-ray spectral coverage allows us to constrain different models for the excess soft-X-ray emission. Among phenomenological models, a cutoff power law best explains the soft-X-ray emission. This model likely corresponds to Comptonization of the accretion disc seed UV photons by a population of warm electrons: using Comptonization models, a temperature of approximately 0.3 kiloelectronvolts and an optical depth of approximately 13 are found. If the UV-to-X-ray OPTXAGNF model is applied, the UV fluxes from the XMM-Newton Optical Monitor suggest an intermediate black hole spin. Contrary to several other sources observed by NuSTAR, no high-energy cutoff is detected with a lower limit of 190 kiloelectronvolts.
Shen, Yue-Xiao; Song, Woochul C; Barden, D Ryan; Ren, Tingwei; Lang, Chao; Feroz, Hasin; Henderson, Codey B; Saboe, Patrick O; Tsai, Daniel; Yan, Hengjing; Butler, Peter J; Bazan, Guillermo C; Phillip, William A; Hickey, Robert J; Cremer, Paul S; Vashisth, Harish; Kumar, Manish
2018-06-12
Synthetic polymer membranes, critical to diverse energy-efficient separations, are subject to permeability-selectivity trade-offs that decrease their overall efficacy. These trade-offs are due to structural variations (e.g., broad pore size distributions) in both nonporous membranes used for Angstrom-scale separations and porous membranes used for nano to micron-scale separations. Biological membranes utilize well-defined Angstrom-scale pores to provide exceptional transport properties and can be used as inspiration to overcome this trade-off. Here, we present a comprehensive demonstration of such a bioinspired approach based on pillar[5]arene artificial water channels, resulting in artificial water channel-based block copolymer membranes. These membranes have a sharp selectivity profile with a molecular weight cutoff of ~ 500 Da, a size range challenging to achieve with current membranes, while achieving a large improvement in permeability (~65 L m -2 h -1 bar -1 compared with 4-7 L m -2 h -1 bar -1 ) over similarly rated commercial membranes.
Ben-David, Adi; Oren, Yoram; Freger, Viatcheslav
2006-11-15
The paper analyzes the mechanism of partitioning and rejection of organic solutes by polyamide membranes for reverse osmosis and nanofiltration. The partitioning of homologous series of alcohols and polyols, in which polarity changes with size in opposite ways, was measured using attenuated total reflection IR spectroscopy. The results show that the partitioning of polyols monotonously decreases with size, whereas for alcohols it is not monotonous and slightly decreases for small C1-C3 alcohols followed by a sharp increase for larger alcohols. These results may be explained by assuming a heterogeneous structure of polyamide comprising a hydrophobic polyamide matrix and a polar internal aqueous phase. The partitioning data could consistently explain the results of rejection in standard filtration experiments. They clearly demonstrate that high/low partitioning may play a significant role in achieving a low/high rejection of organics. In particular, this points to the need to account for the partitioning effect while using molecular probes such as polyols or sugars for estimating the effective "pore" size or molecular weight cutoff of a membrane and for choosing/developing organic-rejecting membranes.
NASA Astrophysics Data System (ADS)
Yu, Fei; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Xu, Zhuo; Qu, Shaobo
2016-04-01
In this paper, we demonstrate a dual-band bandpass all-dielectric frequency selective surface (FSS), the building elements of which are high-permittivity ceramic particles rather than metallic patterns. With proper structural design and parameter adjustment, the resonant frequency can be tuned at will. Dual-band bandpass response can be realized due to the coupling between electric and magnetic resonances. As an example, a dual-band bandpass FSS is designed in Ku band, which is composed of two-dimensional periodic arrays of complementary quatrefoil structures (CQS) cut from dielectric plates. Moreover, cylindrical dielectric resonators are introduced and placed in the center of each CQS to broaden the bandwidth and to sharpen the cut-off frequency. Theoretical analysis shows that the bandpass response arises from impedance matching caused by electric and magnetic resonances. In addition, effective electromagnetic parameters and dynamic field distributions are presented to explain the mechanism of impedance matching. The proposed FSS has the merits of polarization independence, stable transmission, and sharp roll-off frequency. The method can also be used to design all-dielectric FSSs with continuum structures at other frequencies.
Insight into carrier lifetime impact on band-modulation devices
NASA Astrophysics Data System (ADS)
Parihar, Mukta Singh; Lee, Kyung Hwa; Park, Hyung Jin; Lacord, Joris; Martinie, Sébastien; Barbé, Jean-Charles; Xu, Yue; El Dirani, Hassan; Taur, Yuan; Cristoloveanu, Sorin; Bawedin, Maryline
2018-05-01
A systematic study to model and characterize the band-modulation Z2-FET device is developed bringing light to the relevance of the carrier lifetime influence. This work provides guidelines to optimize the Z2-FETs for sharp switching, ESD protection, and 1T-DRAM applications. Lower carrier lifetime in the Z2-FET helps in attaining the sharp switch. We provide new insights into the correlation between generation/recombination, diffusion, electrostatic barriers and carrier lifetime.
Smith, Matthew I.; de Lusignan, Simon; Mullett, David; Correa, Ana; Tickner, Jermaine; Jones, Simon
2016-01-01
Introduction Falls are the leading cause of injury in older people. Reducing falls could reduce financial pressures on health services. We carried out this research to develop a falls risk model, using routine primary care and hospital data to identify those at risk of falls, and apply a cost analysis to enable commissioners of health services to identify those in whom savings can be made through referral to a falls prevention service. Methods Multilevel logistical regression was performed on routinely collected general practice and hospital data from 74751 over 65’s, to produce a risk model for falls. Validation measures were carried out. A cost-analysis was performed to identify at which level of risk it would be cost-effective to refer patients to a falls prevention service. 95% confidence intervals were calculated using a Monte Carlo Model (MCM), allowing us to adjust for uncertainty in the estimates of these variables. Results A risk model for falls was produced with an area under the curve of the receiver operating characteristics curve of 0.87. The risk cut-off with the highest combination of sensitivity and specificity was at p = 0.07 (sensitivity of 81% and specificity of 78%). The risk cut-off at which savings outweigh costs was p = 0.27 and the risk cut-off with the maximum savings was p = 0.53, which would result in referral of 1.8% and 0.45% of the over 65’s population respectively. Above a risk cut-off of p = 0.27, costs do not exceed savings. Conclusions This model is the best performing falls predictive tool developed to date; it has been developed on a large UK city population; can be readily run from routine data; and can be implemented in a way that optimises the use of health service resources. Commissioners of health services should use this model to flag and refer patients at risk to their falls service and save resources. PMID:27448280
2008-03-01
bonded potentials used. The interactions between the beads were described using 6-12 Lennard - Jones (LJ) potential (Equation (1)) with a 2.5 d cutoff...in Lennard - Jones potential for the non-bonded interactions is at 1.12 d in line with the second peak. The remainder of the g(r)chain-chain has...Simulator). 40 Lennard - Jones and Coulombic interactions for pairs of organic atoms were computed using a switching function with inner and outer cutoffs of
NASA Astrophysics Data System (ADS)
Orozco Cortés, Luis Fernando; Fernández García, Nicolás
2014-05-01
A method to obtain the general solution of any constant piecewise potential is presented, this is achieved by means of the analysis of the transfer matrices in each cutoff. The resonance phenomenon together with the supersymmetric quantum mechanics technique allow us to construct a wide family of complex potentials which can be used as theoretical models for optical systems. The method is applied to the particular case for which the potential function has six cutoff points.
A Hybrid Model for Multiscale Laser Plasma Simulations with Detailed Collisional Physics
2016-11-29
quantum calculations with corrections for low temperature NIST Cutoff • Starts with LANL and assumes higher excited states are ionized • Cutoff... NIST Grouping • Boltzmann or Uniform grouping • Saves 20-30% over Electron Splitting • Case by case basis 11Distribution A – Approved for public release...Temperature: 0.035 eV • Atomic Density: 1020 1/m3 • Ionization fraction: 10-13 • Electron Temperature: 10 & 100 eV • t = [0,106] seconds Groupings • NIST
Lin, Yu-Hsuan; Pan, Yuan-Chien; Lin, Sheng-Hsuan; Chen, Sue-Huei
2017-06-01
Smartphone addiction is considered a form of technological addiction that has attracted increasing attention. The present study developed and validated the short-form Smartphone Addiction Inventory (SPAI-SF) and established cutoff point for screening smartphone addiction based on diagnostic criteria established by psychiatric interview. A total of 268 participants completed an online survey that collected demographic data, smartphone use behaviours, and responses to the 26-item SPAI. Each participant also completed a psychiatric interview. Confirmatory factor analysis (CFA) revealed that the 10-item SPAI-SF replicated the structure of original 26-item SPAI accurately, yielding a four-factor model consisting of compulsive behaviour, functional impairment, withdrawal, and tolerance. For maximal diagnostic accuracy, a cutoff point of 24/25 best discriminated cases of smartphone addiction from diagnostic negatives. The present findings suggest that both the 26-item SPAI and SPAI-SF manifest the four constructs of behavioural addiction and the characteristics of smartphone addiction. The cutoff point determined by psychiatrists' diagnostic interview will be useful for clinical screening and epidemiologic research. Copyright © 2016 John Wiley & Sons, Ltd.
Markkanen, Pia; Galligan, Catherine; Laramie, Angela; Fisher, June; Sama, Susan; Quinn, Margaret
2015-04-11
Home healthcare is one of the fastest growing sectors in the United States. Percutaneous injuries from sharp medical devices (sharps) are a source of bloodborne pathogen infections among home healthcare workers and community members. Sharps use and disposal practices in the home are highly variable and there is no comprehensive analysis of the system of sharps procurement, use and disposal in home healthcare. This gap is a barrier to effective public health interventions. The objectives of this study were to i) identify the full range of pathways by which sharps enter and exit the home, stakeholders involved, and barriers for using sharps with injury prevention features; and ii) assess the leverage points for preventive interventions. This study employed qualitative research methods to develop two systems maps of the use of sharps and prevention of sharps injuries in home healthcare. Twenty-six in-depth interview sessions were conducted including home healthcare agency clinicians, public health practitioners, sharps device manufacturers, injury prevention advocates, pharmacists and others. Interview transcripts were audio-recorded and analyzed thematically using NVIVO qualitative research analysis software. Analysis of supporting archival material also was conducted. All findings guided development of the two maps. Sharps enter the home via multiple complex pathways involving home healthcare providers and home users. The providers reported using sharps with injury prevention features. However, home users' sharps seldom had injury prevention features and sharps were commonly re-used for convenience and cost-savings. Improperly discarded sharps present hazards to caregivers, waste handlers, and community members. The most effective intervention potential exists at the beginning of the sharps systems maps where interventions can eliminate or minimize sharps injuries, in particular with needleless treatment methods and sharps with injury prevention features. Manufacturers and insurance providers can improve safety with more affordable and accessible sharps with injury prevention features for home users. Sharps disposal campaigns, free-of-charge disposal containers, and convenient disposal options remain essential. Sharps injuries are preventable through public health actions that promote needleless treatment methods, sharps with injury prevention features, and safe disposal practices. Communication about hazards regarding sharps is needed for all home healthcare stakeholders.
A model for explaining fusion suppression using classical trajectory method
NASA Astrophysics Data System (ADS)
Phookan, C. K.; Kalita, K.
2015-01-01
We adopt a semi-classical approach for explanation of projectile breakup and above barrier fusion suppression for the reactions 6Li+152Sm and 6Li+144Sm. The cut-off impact parameter for fusion is determined by employing quantum mechanical ideas. Within this cut-off impact parameter for fusion, the fraction of projectiles undergoing breakup is determined using the method of classical trajectory in two-dimensions. For obtaining the initial conditions of the equations of motion, a simplified model of the 6Li nucleus has been proposed. We introduce a simple formula for explanation of fusion suppression. We find excellent agreement between the experimental and calculated fusion cross section. A slight modification of the above formula for fusion suppression is also proposed for a three-dimensional model.
Congdon, Nathan G; Patel, Nita; Esteso, Paul; Chikwembani, Florence; Webber, Fiona; Msithini, Robert Bongi; Ratcliffe, Amy
2008-01-01
To evaluate different refractive cutoffs for spectacle provision with regards to their impact on visual improvement and spectacle compliance. Prospective study of visual improvement and spectacle compliance. South African school children aged 6-19 years receiving free spectacles in a programme supported by Helen Keller International. Refractive error, age, gender, urban versus rural residence, presenting and best-corrected vision were recorded for participants. Spectacle wear was observed directly at an unannounced follow-up examination 4-11 months after initial provision of spectacles. The association between five proposed refractive cutoff protocols and visual improvement and spectacle compliance were examined in separate multivariate models. Refractive cutoffs for spectacle distribution which would effectively identify children with improved vision, and those more likely to comply with spectacle wear. Among 8520 children screened, 810 (9.5%) received spectacles, of whom 636 (79%) were aged 10-14 years, 530 (65%) were girls, 324 (40%) had vision improvement > or = 3 lines, and 483 (60%) were examined 6.4+/-1.5 (range 4.6 to 10.9) months after spectacle dispensing. Among examined children, 149 (31%) were wearing or carrying their glasses. Children meeting cutoffs < or = -0.75 D of myopia, > or = +1.00 D of hyperopia and > or = +0.75 D of astigmatism had significantly greater improvement in vision than children failing to meet these criteria, when adjusting for age, gender and urban versus rural residence. None of the proposed refractive protocols discriminated between children wearing and not wearing spectacles. Presenting vision and improvement in vision were unassociated with subsequent spectacle wear, but girls (p < or = 0.0006 for all models) were more likely to be wearing glasses than were boys. To the best of our knowledge, this is the first suggested refractive cutoff for glasses dispensing validated with respect to key programme outcomes. The lack of association between spectacle retention and either refractive error or vision may have been due to the relatively modest degree of refractive error in this African population.
Yarkovsky footprints in the Eos family
NASA Astrophysics Data System (ADS)
Vokrouhlický, D.; Brož, M.; Morbidelli, A.; Bottke, W. F.; Nesvorný, D.; Lazzaro, D.; Rivkin, A. S.
2006-05-01
The Eos asteroid family is the third most populous, after Themis and Koronis, and one of the largest non-random groups of asteroids in the main belt. It has been known and studied for decades, but its structure and history still presented difficulties to understand. We first revise the Eos family identification as a statistical cluster in the space of proper elements. Using the most to-date catalogue of proper elements we determine a nominal Eos family, defined by us using the hierarchical-clustering method with the cut-off velocity of 55 m/s, contains some 4400 members. This unforeseen increase in known Eos asteroids allows us to perform a much more detailed study than was possible so far. We show, in particular, that most of the previously thought peculiar features are explained within the following model: (i) collisional disruption of the parent body leads to formation of a compact family in the proper element space (with characteristic escape velocities of the observed asteroids of tens of meters per second, compatible with hydrocode simulations), and (ii) as time goes, the family dynamically evolves due to a combination of the thermal effects and planetary perturbations. This model allows us to explain sharp termination of the family at the J7/3 mean motion resonance with Jupiter, uneven distribution of family members about the J9/4 mean motion resonance with Jupiter, semimajor axis distribution of large vs small members in the family and anomalous residence of Eos members inside the high-order secular resonance z. Our dynamical method also allows us to estimate Eos family age to 1.3-0.2+0.15 Gyr. Several formal members of the Eos family are in conflict with our model and these are suspected interlopers. We use spectroscopic observations, whose results are also reported here, and results of 5-color wide-band Sloan Digital Sky Survey photometry to prove some of them are indeed spectrally incompatible with the family.
Model selection and constraints from holographic dark energy scenarios
NASA Astrophysics Data System (ADS)
Akhlaghi, I. A.; Malekjani, M.; Basilakos, S.; Haghi, H.
2018-07-01
In this study, we combine the expansion and the growth data in order to investigate the ability of the three most popular holographic dark energy models, namely event future horizon, Ricci scale, and Granda-Oliveros IR cutoffs, to fit the data. Using a standard χ2 minimization method, we place tight constraints on the free parameters of the models. Based on the values of the Akaike and Bayesian information criteria, we find that two out of three holographic dark energy models are disfavoured by the data, because they predict a non-negligible amount of fractional dark energy density at early enough times. Although the growth rate data are relatively consistent with the holographic dark energy models which are based on Ricci scale and Granda-Oliveros IR cutoffs, the combined analysis provides strong indications against these models. Finally, we find that the model for which the holographic dark energy is related with the future horizon is consistent with the combined observational data.
2012-01-01
Background Staphylococcus aureus is one of the most common causes of intramammary infections in dairy cows at dry off. Reliable identification is important for disease management on herd level and for antimicrobial treatment of infected animals. Our objective was to evaluate the test characteristics of PathoProof ™ Mastitis PCR Assay and bacteriological culture (BC) in diagnosing bovine intramammary infections caused by S. aureus at dry off at different PCR cycle threshold (Ct)-value cut-offs. Methods Sterile quarter samples and non-sterile composite samples from 140 animals in seven herds were collected in connection with the dairy herd improvement (DHI) milk recording. All quarter samples were analyzed using BC whereas all composite samples were analyzed with PathoProof ™ Mastitis PCR Assay. Latent class analysis was used to estimate test properties for PCR and BC in the absence of a perfect reference test. The population was divided into two geographically divided subpopulations and the Hui-Walter 2-test 2-populations model applied to estimate Se, Sp for the two tests, and prevalence for the two subpopulations. Results The Se for PCR increased with increasing Ct-value cut-off, accompanied by a small decrease in Sp. For BC the Se decreased and Sp increased with increasing Ct-value cut-off. Most optimal test estimates for the real-time PCR assay were at a Ct-value cut-off of 37; 0.93 [95% posterior probability interval (PPI) 0.60-0.99] for Se and 0.95 [95% PPI 0.95-0.99] for Sp. At the same Ct-value cut-off, Se and Sp for BC were 0.83 [95% PPI 0.66-0.99] and 0.97 [95% PPI 0.91-0.99] respectively. Depending on the chosen PCR Ct-value cut-off, the prevalence in the subpopulations varied; the prevalence increased with increasing PCR Ct-value cut-offs. Conclusion Neither BC nor real-time PCR is a perfect test in detecting IMI in dairy cows at dry off. The changes in sensitivity and prevalence at different Ct-value cut-offs for both PCR and BC may indicate a change in the underlying disease definition. At low PCR Ct-value cut-offs the underlying disease definition may be a truly/heavily infected cow, whereas at higher PCR Ct-value cut-offs the disease definition may be a S. aureus positive cow. PMID:23164432
Predicting thermally stressful events in rivers with a strategy to evaluate management alternatives
Maloney, K.O.; Cole, J.C.; Schmid, M.
2016-01-01
Water temperature is an important factor in river ecology. Numerous models have been developed to predict river temperature. However, many were not designed to predict thermally stressful periods. Because such events are rare, traditionally applied analyses are inappropriate. Here, we developed two logistic regression models to predict thermally stressful events in the Delaware River at the US Geological Survey gage near Lordville, New York. One model predicted the probability of an event >20.0 °C, and a second predicted an event >22.2 °C. Both models were strong (independent test data sensitivity 0.94 and 1.00, specificity 0.96 and 0.96) predicting 63 of 67 events in the >20.0 °C model and all 15 events in the >22.2 °C model. Both showed negative relationships with released volume from the upstream Cannonsville Reservoir and positive relationships with difference between air temperature and previous day's water temperature at Lordville. We further predicted how increasing release volumes from Cannonsville Reservoir affected the probabilities of correctly predicted events. For the >20.0 °C model, an increase of 0.5 to a proportionally adjusted release (that accounts for other sources) resulted in 35.9% of events in the training data falling below cutoffs; increasing this adjustment by 1.0 resulted in 81.7% falling below cutoffs. For the >22.2 °C these adjustments resulted in 71.1% and 100.0% of events falling below cutoffs. Results from these analyses can help managers make informed decisions on alternative release scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Yu.V., E-mail: yutarasov@ire.kharkov.ua; Shostenko, L.D.
A unified theory for the conductance of an infinitely long multimode quantum wire whose finite segment has randomly rough lateral boundaries is developed. It enables one to rigorously take account of all feasible mechanisms of wave scattering, both related to boundary roughness and to contacts between the wire rough section and the perfect leads within the same technical frameworks. The rough part of the conducting wire is shown to act as a mode-specific randomly modulated effective potential barrier whose height is governed essentially by the asperity slope. The mean height of the barrier, which is proportional to the average slopemore » squared, specifies the number of conducting channels. Under relatively small asperity amplitude this number can take on arbitrary small, up to zero, values if the asperities are sufficiently sharp. The consecutive channel cut-off that arises when the asperity sharpness increases can be regarded as a kind of localization, which is not related to the disorder per se but rather is of entropic or (equivalently) geometric origin. The fluctuating part of the effective barrier results in two fundamentally different types of guided wave scattering, viz., inter- and intramode scattering. The intermode scattering is shown to be for the most part very strong except in the cases of (a) extremely smooth asperities, (b) excessively small length of the corrugated segment, and (c) the asperities sharp enough for only one conducting channel to remain in the wire. Under strong intermode scattering, a new set of conducting channels develops in the corrugated waveguide, which have the form of asymptotically decoupled extended modes subject to individual solely intramode random potentials. In view of this fact, two transport regimes only are realizable in randomly corrugated multimode waveguides, specifically, the ballistic and the localized regime, the latter characteristic of one-dimensional random systems. Two kinds of localization are thus shown to coexist in waveguide-like systems with randomly corrugated boundaries, specifically, the entropic localization and the one-dimensional Anderson (disorder-driven) localization. If the particular mode propagates across the rough segment ballistically, the Fabry–Pérot-type oscillations should be observed in the conductance, which are suppressed for the mode transferred in the Anderson-localized regime.« less
Aurrekoetxea, Juan J; Murcia, Mario; Rebagliato, Marisa; López, María José; Castilla, Ane Miren; Santa-Marina, Loreto; Guxens, Mónica; Fernández-Somoano, Ana; Espada, Mercedes; Lertxundi, Aitana; Tardón, Adonina; Ballester, Ferran
2013-01-01
Objectives To estimate the prevalence and factors associated with smoking and misclassification in pregnant women from INMA (INfancia y Medio Ambiente, Environment and Childhood) project, Spain, and to assess the optimal cut-offs for urinary cotinine (UC) that best distinguish daily and occasional smokers with varying levels of second-hand smoke (SHS) exposure. Design We used logistic regression models to study the relationship between sociodemographic variables and self-reported smoking and misclassification (self-reported non-smokers with UC >50 ng/ml). Receiver operating characteristic (ROC) curves were used to calculate the optimal cut-off point for discriminating smokers. The cut-offs were also calculated after stratification among non-smokers by the number of sources of SHS exposure. The cut-off points used to discriminate smoking status were the level of UC given by Youden's index and for 50 and 100 ng/ml for daily smokers, or 25 and 50 ng/ml for occasional smokers. Participants At the third trimester of pregnancy, 2263 pregnant women of the INMA Project were interviewed between 2004 and 2008 and a urine sample was collected. Results Prevalence of self-reported smokers at the third trimester of pregnancy was 18.5%, and another 3.9% misreported their smoking status. Variables associated with self-reported smoking and misreporting were similar, including born in Europe, educational level and exposure to SHS. The optimal cut-off was 82 ng/ml (95% CI 42 to 133), sensitivity 95.2% and specificity 96.6%. The area under the ROC curve was 0.986 (95% CI 0.982 to 0.990). The cut-offs varied according to the SHS exposure level being 42 (95% CI 27 to 57), 82 (95% CI 46 to 136) and 106 ng/ml (95% CI 58 to 227) for not being SHS exposed, exposed to one, and to two or more sources of SHS, respectively. The optimal cut-off for discriminating occasional smokers from non-smokers was 27 ng/ml (95% CI 11 to 43). Conclusions Prevalence of smoking during pregnancy in Spain remains high. UC is a reliable biomarker for classifying pregnant women according to their smoking status. However, cut-offs would differ based on baseline exposure to SHS. PMID:23355667
Aurrekoetxea, Juan J; Murcia, Mario; Rebagliato, Marisa; López, María José; Castilla, Ane Miren; Santa-Marina, Loreto; Guxens, Mónica; Fernández-Somoano, Ana; Espada, Mercedes; Lertxundi, Aitana; Tardón, Adonina; Ballester, Ferran
2013-01-24
To estimate the prevalence and factors associated with smoking and misclassification in pregnant women from INMA (INfancia y Medio Ambiente, Environment and Childhood) project, Spain, and to assess the optimal cut-offs for urinary cotinine (UC) that best distinguish daily and occasional smokers with varying levels of second-hand smoke (SHS) exposure. We used logistic regression models to study the relationship between sociodemographic variables and self-reported smoking and misclassification (self-reported non-smokers with UC >50 ng/ml). Receiver operating characteristic (ROC) curves were used to calculate the optimal cut-off point for discriminating smokers. The cut-offs were also calculated after stratification among non-smokers by the number of sources of SHS exposure. The cut-off points used to discriminate smoking status were the level of UC given by Youden's index and for 50 and 100 ng/ml for daily smokers, or 25 and 50 ng/ml for occasional smokers. At the third trimester of pregnancy, 2263 pregnant women of the INMA Project were interviewed between 2004 and 2008 and a urine sample was collected. Prevalence of self-reported smokers at the third trimester of pregnancy was 18.5%, and another 3.9% misreported their smoking status. Variables associated with self-reported smoking and misreporting were similar, including born in Europe, educational level and exposure to SHS. The optimal cut-off was 82 ng/ml (95% CI 42 to 133), sensitivity 95.2% and specificity 96.6%. The area under the ROC curve was 0.986 (95% CI 0.982 to 0.990). The cut-offs varied according to the SHS exposure level being 42 (95% CI 27 to 57), 82 (95% CI 46 to 136) and 106 ng/ml (95% CI 58 to 227) for not being SHS exposed, exposed to one, and to two or more sources of SHS, respectively. The optimal cut-off for discriminating occasional smokers from non-smokers was 27 ng/ml (95% CI 11 to 43). Prevalence of smoking during pregnancy in Spain remains high. UC is a reliable biomarker for classifying pregnant women according to their smoking status. However, cut-offs would differ based on baseline exposure to SHS.
How Accurately Can We Map SEP Observations Using L*?
NASA Astrophysics Data System (ADS)
Young, S. L.; Kress, B. T.
2016-12-01
In a dipole the cutoff rigidities at a given location are inversely proportional to L2. Smart and Shea, 1967 showed that this was approximately true at low altitudes using the McIlwain L parameter (Lm) in realistic magnetospheric models and provided heuristic evidence that it was also true at high altitudes. Later models developed by Smart and Shea and others (Ogliore et al., 2001, Neal et al., 2013, Selesnick et al., 2015) also use this relationship at low altitudes. Only the Smart and Shea model (Smart and Shea, 2006) uses this relationship to extrapolate to high altitudes, but they introduce a correction that yields a 1 MeV proton vertical cutoff at geosynchronous. Recent work mapped POES observations to the Van Allen Probes locations as a function of L* (Young et al., 2015). The comparison between mapped and observed was reasonably good, but this mapping was along L* and only attempted to account for differences in shielding between high and low latitude. No attempt was made to map across L* so the inverse squared relationship was not tested. These previous results suggest that L* may be useful for mapping flux observations between satellites at high altitudes. In this study we calculate cutoffs and L* shells in a Tsyganenko 2005 + IGRF magnetic field model to examine how accurately L* based mapping can be used in different regions of the magnetosphere.
Optimizing signal recycling for detecting a stochastic gravitational-wave background
NASA Astrophysics Data System (ADS)
Tao, Duo; Christensen, Nelson
2018-06-01
Signal recycling is applied in laser interferometers such as the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) to increase their sensitivity to gravitational waves. In this study, signal recycling configurations for detecting a stochastic gravitational wave background are optimized based on aLIGO parameters. Optimal transmission of the signal recycling mirror (SRM) and detuning phase of the signal recycling cavity under a fixed laser power and low-frequency cutoff are calculated. Based on the optimal configurations, the compatibility with a binary neutron star (BNS) search is discussed. Then, different laser powers and low-frequency cutoffs are considered. Two models for the dimensionless energy density of gravitational waves , the flat model and the model, are studied. For a stochastic background search, it is found that an interferometer using signal recycling has a better sensitivity than an interferometer not using it. The optimal stochastic search configurations are typically found when both the SRM transmission and the signal recycling detuning phase are low. In this region, the BNS range mostly lies between 160 and 180 Mpc. When a lower laser power is used the optimal signal recycling detuning phase increases, the optimal SRM transmission increases and the optimal sensitivity improves. A reduced low-frequency cutoff gives a better sensitivity limit. For both models of , a typical optimal sensitivity limit on the order of 10‑10 is achieved at a reference frequency of Hz.
2006-11-01
Broad Crested Weir 0.70 to 0.90 Sharp Crested Weir with Straight Slope Face 1.05 Sharp Crested Weir with Vertical Face 0.80 Sluice Gates with...Reaeration by turbulent flow over a dam Reaeration will occur when water falls over a dam, weir , or other structure in the stream. The amount of reaeration...Goulding. 1995. Phosphorus leaching from soils containing different phosphorus concentrations in the Broad - balk experiment. J. Environ. Qual. 24:904–910
Flow Control Over Sharp-Edged Wings
2007-07-01
Gad-el-Hak (2001) as the ability to actively or passively manipulate a flow field to effect a desired change. The challenge is to achieve that change...combinations. Been able to independently control both is a great challenge . These requirements may appear too stringent for the sharp- edged airfoils...06 0 08 09 lic Vlc Figure 22: Pressure distributions for Model B at a=13 °. Stations I (left); 2 (right) 1 , -2 1 F - [12 1 -6a -16 08 -08 06 -06
Modeling of Electron Transpiration Cooling for Leading Edges of Hypersonic Vehicles
NASA Astrophysics Data System (ADS)
Hanquist, Kyle Matthew
The development of aeronautics has been largely driven by the passion to fly faster. From the flight of the Wright Flyer that flew 48 km/hr to the recent advances in hypersonic flight, most notably NASA's X-43A that flew at over 3 km/s, the velocity of flight has steadily increased. However, as these hypersonic speeds are reached and increased, contradicting aerothermodynamic design requirements present themselves. For example, a hypersonic cruise vehicle requires sharp leading edges to decrease the drag in order to maximize the range. However, the aerodynamic performance gains obtained by having a sharp leading edge come at the cost of very high, localized heating rates. There is currently no ideal way to manage these heating loads for sustained hypersonic flight, especially as flight velocities continue to increase. An approach that has been recently proposed involves using thermo-electric materials on these sharp leading edges to manage the heating loads. When exposed to high convective heating rates, these materials emit a current of electrons that leads to a cooling effect of the surface of the vehicle called electron transpiration cooling (ETC). This dissertation focuses on developing a modeling approach to investigate this phenomenon. The research includes developing and implementing an approach for ETC into a computational fluid dynamics code for simulation of hypersonic flow that accounts for electron emission from the surface. Models for space-charge-limited emission are also developed and implemented in order to accurately determine the level of emission from the surface. This work involves developing analytic models and assessing them using a direct-kinetic plasma sheath solver. Electric field effects are also implemented in the modeling approach, which accounts for forced diffusion and Joule heating. Finally, the modeling approach is coupled to a material response code in order to model the heat transfer into the material surface. Using this modeling approach, ETC is investigated as a viable technology for a wide range of hypersonic operating conditions. This includes altitudes between 30 and 60 km, freestream velocities between 4 and 8 km/s, and leading edge radii between 1 mm and 10 cm. The results presented in this study show that ETC can reduce the leading edge temperature significantly for certain conditions, most notably from 3120 to 1660 K for Mach 26 flight for a sharp leading edge (1 cm). However, at lower velocities, the cooling effect can be diminished by space-charge limits in the plasma sheath. ETC is shown to be most effective at cooling hotter surfaces (e.g. high freestream velocities and sharp leading edges) and the level of ionization in the flowfield can help the emission overcome space-charge limits. The modeling approach is assessed using experiments from the 1960s where thermionic emission was investigated as a mode of power generation for reentry vehicles. The computational results produce a wide range of emitted current due to the uncertainty in the freestream conditions and material properties, but they still agree well with the experiments. Overall, this work indicates that ETC is a viable method of managing the immense heat loads on sharp leading edges during hypersonic flight for certain conditions and motivates future work in the area both computationally and experimentally.
Bressloff, P C; Bressloff, N W; Cowan, J D
2000-11-01
Orientation tuning in a ring of pulse-coupled integrate-and-fire (IF) neurons is analyzed in terms of spontaneous pattern formation. It is shown how the ring bifurcates from a synchronous state to a non-phase-locked state whose spike trains are characterized by clustered but irregular fluctuations of the interspike intervals (ISIs). The separation of these clusters in phase space results in a localized peak of activity as measured by the time-averaged firing rate of the neurons. This generates a sharp orientation tuning curve that can lock to a slowly rotating, weakly tuned external stimulus. Under certain conditions, the peak can slowly rotate even to a fixed external stimulus. The ring also exhibits hysteresis due to the subcritical nature of the bifurcation to sharp orientation tuning. Such behavior is shown to be consistent with a corresponding analog version of the IF model in the limit of slow synaptic interactions. For fast synapses, the deterministic fluctuations of the ISIs associated with the tuning curve can support a coefficient of variation of order unity.
Analytical theory of mesoscopic Bose-Einstein condensation in an ideal gas
NASA Astrophysics Data System (ADS)
Kocharovsky, Vitaly V.; Kocharovsky, Vladimir V.
2010-03-01
We find the universal structure and scaling of the Bose-Einstein condensation (BEC) statistics and thermodynamics (Gibbs free energy, average energy, heat capacity) for a mesoscopic canonical-ensemble ideal gas in a trap with an arbitrary number of atoms, any volume, and any temperature, including the whole critical region. We identify a universal constraint-cutoff mechanism that makes BEC fluctuations strongly non-Gaussian and is responsible for all unusual critical phenomena of the BEC phase transition in the ideal gas. The main result is an analytical solution to the problem of critical phenomena. It is derived by, first, calculating analytically the universal probability distribution of the noncondensate occupation, or a Landau function, and then using it for the analytical calculation of the universal functions for the particular physical quantities via the exact formulas which express the constraint-cutoff mechanism. We find asymptotics of that analytical solution as well as its simple analytical approximations which describe the universal structure of the critical region in terms of the parabolic cylinder or confluent hypergeometric functions. The obtained results for the order parameter, all higher-order moments of BEC fluctuations, and thermodynamic quantities perfectly match the known asymptotics outside the critical region for both low and high temperature limits. We suggest two- and three-level trap models of BEC and find their exact solutions in terms of the cutoff negative binomial distribution (which tends to the cutoff gamma distribution in the continuous limit) and the confluent hypergeometric distribution, respectively. Also, we present an exactly solvable cutoff Gaussian model of BEC in a degenerate interacting gas. All these exact solutions confirm the universality and constraint-cutoff origin of the strongly non-Gaussian BEC statistics. We introduce a regular refinement scheme for the condensate statistics approximations on the basis of the infrared universality of higher-order cumulants and the method of superposition and show how to model BEC statistics in the actual traps. In particular, we find that the three-level trap model with matching the first four or five cumulants is enough to yield remarkably accurate results for all interesting quantities in the whole critical region. We derive an exact multinomial expansion for the noncondensate occupation probability distribution and find its high-temperature asymptotics (Poisson distribution) and corrections to it. Finally, we demonstrate that the critical exponents and a few known terms of the Taylor expansion of the universal functions, which were calculated previously from fitting the finite-size simulations within the phenomenological renormalization-group theory, can be easily obtained from the presented full analytical solutions for the mesoscopic BEC as certain approximations in the close vicinity of the critical point.
NASA Technical Reports Server (NTRS)
Pennypacker, C. R.; Smoot, G. F.; Buffington, A.; Muller, R. A.; Smith, L. H.
1973-01-01
We report a high-statistics magnetic spectrometer measurement of the geomagnetic cutoff rigidity and related effects at Palestine, Texas. The effective cutoffs we observe are in agreement with computer-calculated cutoffs. We also report measured spectra of albedo and atmospheric secondary particles that come below geomagnetic cutoff.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennypacker, C.R.; Smoot, G.F.; Buffington, A.
1973-04-01
A high-statistics magnetic spectrometer measurement of the geomagnetic cutoff rigidity and related effects at Palestine, Texas is reported. The effective cutoffs observed are in agreement with computer-calculated cutoffs. Measured spectra of albedo and atmospheric secondary particles that come below geomagnetic cutoff are also reported. (auth)
Effective classification of the prevalence of Schistosoma mansoni.
Mitchell, Shira A; Pagano, Marcello
2012-12-01
To present an effective classification method based on the prevalence of Schistosoma mansoni in the community. We created decision rules (defined by cut-offs for number of positive slides), which account for imperfect sensitivity, both with a simple adjustment of fixed sensitivity and with a more complex adjustment of changing sensitivity with prevalence. To reduce screening costs while maintaining accuracy, we propose a pooled classification method. To estimate sensitivity, we use the De Vlas model for worm and egg distributions. We compare the proposed method with the standard method to investigate differences in efficiency, measured by number of slides read, and accuracy, measured by probability of correct classification. Modelling varying sensitivity lowers the lower cut-off more significantly than the upper cut-off, correctly classifying regions as moderate rather than lower, thus receiving life-saving treatment. The classification method goes directly to classification on the basis of positive pools, avoiding having to know sensitivity to estimate prevalence. For model parameter values describing worm and egg distributions among children, the pooled method with 25 slides achieves an expected 89.9% probability of correct classification, whereas the standard method with 50 slides achieves 88.7%. Among children, it is more efficient and more accurate to use the pooled method for classification of S. mansoni prevalence than the current standard method. © 2012 Blackwell Publishing Ltd.
KOSMOS: a universal morph server for nucleic acids, proteins and their complexes.
Seo, Sangjae; Kim, Moon Ki
2012-07-01
KOSMOS is the first online morph server to be able to address the structural dynamics of DNA/RNA, proteins and even their complexes, such as ribosomes. The key functions of KOSMOS are the harmonic and anharmonic analyses of macromolecules. In the harmonic analysis, normal mode analysis (NMA) based on an elastic network model (ENM) is performed, yielding vibrational modes and B-factor calculations, which provide insight into the potential biological functions of macromolecules based on their structural features. Anharmonic analysis involving elastic network interpolation (ENI) is used to generate plausible transition pathways between two given conformations by optimizing a topology-oriented cost function that guarantees a smooth transition without steric clashes. The quality of the computed pathways is evaluated based on their various facets, including topology, energy cost and compatibility with the NMA results. There are also two unique features of KOSMOS that distinguish it from other morph servers: (i) the versatility in the coarse-graining methods and (ii) the various connection rules in the ENM. The models enable us to analyze macromolecular dynamics with the maximum degrees of freedom by combining a variety of ENMs from full-atom to coarse-grained, backbone and hybrid models with one connection rule, such as distance-cutoff, number-cutoff or chemical-cutoff. KOSMOS is available at http://bioengineering.skku.ac.kr/kosmos.
Sum rules for the uniform-background model of an atomic-sharp metal corner
NASA Astrophysics Data System (ADS)
Streitenberger, P.
1994-04-01
Analytical results are derived for the electrostatic potential of an atomic-sharp 90° metal corner in the uniform-background model. The electrostatic potential at a free jellium edge and the jellium corner, respectively, is determined exactly in terms of the energy per electron of the uniform electron gas integrated over the background density. The surface energy, the edge formation energy and the derivative of the corner formation energy with respect to the background density are given as integrals over the electrostatic potential. The present approach represents a novel approach to such sum rules, inclusive of the Budd-Vannimenus sum rules for a free jellium surface, based on general properties of linear response functions.
Simulation-Based Analysis of Reentry Dynamics for the Sharp Atmospheric Entry Vehicle
NASA Technical Reports Server (NTRS)
Tillier, Clemens Emmanuel
1998-01-01
This thesis describes the analysis of the reentry dynamics of a high-performance lifting atmospheric entry vehicle through numerical simulation tools. The vehicle, named SHARP, is currently being developed by the Thermal Protection Materials and Systems branch of NASA Ames Research Center, Moffett Field, California. The goal of this project is to provide insight into trajectory tradeoffs and vehicle dynamics using simulation tools that are powerful, flexible, user-friendly and inexpensive. Implemented Using MATLAB and SIMULINK, these tools are developed with an eye towards further use in the conceptual design of the SHARP vehicle's trajectory and flight control systems. A trajectory simulator is used to quantify the entry capabilities of the vehicle subject to various operational constraints. Using an aerodynamic database computed by NASA and a model of the earth, the simulator generates the vehicle trajectory in three-dimensional space based on aerodynamic angle inputs. Requirements for entry along the SHARP aerothermal performance constraint are evaluated for different control strategies. Effect of vehicle mass on entry parameters is investigated, and the cross range capability of the vehicle is evaluated. Trajectory results are presented and interpreted. A six degree of freedom simulator builds on the trajectory simulator and provides attitude simulation for future entry controls development. A Newtonian aerodynamic model including control surfaces and a mass model are developed. A visualization tool for interpreting simulation results is described. Control surfaces are roughly sized. A simple controller is developed to fly the vehicle along its aerothermal performance constraint using aerodynamic flaps for control. This end-to-end demonstration proves the suitability of the 6-DOF simulator for future flight control system development. Finally, issues surrounding real-time simulation with hardware in the loop are discussed.
Sharp inflaton potentials and bi-spectra: effects of smoothening the discontinuity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Jérôme; Sriramkumar, L.; Hazra, Dhiraj Kumar, E-mail: jmartin@iap.fr, E-mail: sriram@physics.iitm.ac.in, E-mail: dhiraj@apctp.org
Sharp shapes in the inflaton potentials often lead to short departures from slow roll which, in turn, result in deviations from scale invariance in the scalar power spectrum. Typically, in such situations, the scalar power spectrum exhibits a burst of features associated with modes that leave the Hubble radius either immediately before or during the epoch of fast roll. Moreover, one also finds that the power spectrum turns scale invariant at smaller scales corresponding to modes that leave the Hubble radius at later stages, when slow roll has been restored. In other words, the imprints of brief departures from slowmore » roll, arising out of sharp shapes in the inflaton potential, are usually of a finite width in the scalar power spectrum. Intuitively, one may imagine that the scalar bi-spectrum too may exhibit a similar behavior, i.e. a restoration of scale invariance at small scales, when slow roll has been reestablished. However, in the case of the Starobinsky model (viz. the model described by a linear inflaton potential with a sudden change in its slope) involving the canonical scalar field, it has been found that, a rather sharp, though short, departure from slow roll can leave a lasting and significant imprint on the bi-spectrum. The bi-spectrum in this case is found to grow linearly with the wavenumber at small scales, a behavior which is clearly unphysical. In this work, we study the effects of smoothening the discontinuity in the Starobinsky model on the scalar bi-spectrum. Focusing on the equilateral limit, we analytically show that, for smoother potentials, the bi-spectrum indeed turns scale invariant at suitably large wavenumbers. We also confirm the analytical results numerically using our newly developed code BINGO. We conclude with a few comments on certain related points.« less
Frank, Janet C; Altpeter, Mary; Damron-Rodriguez, JoAnn; Driggers, Joann; Lachenmayr, Susan; Manning, Colleen; Martinez, Dana M; Price, Rachel M; Robinson, Patricia
2014-10-01
Current public health and aging service agency personnel have little training in gerontology, and virtually no training in evidence-based health promotion and disease management programs for older adults. These programs are rapidly becoming the future of our community-based long-term care support system. The purpose of this project was to develop and test a model community college career technical education program, Skills for Healthy Aging Resources and Programs (SHARP), for undergraduate college students, current personnel in aging service and community organizations, and others interested in retraining. A multidisciplinary cross-sector team from disciplines of public health, sociology, gerontology and nursing developed four competency-based courses that focus on healthy aging, behavior change strategies, program management, an internship, and an option for leader training in the Chronic Disease Self-Management Program. To enhance implementation and fidelity, intensive faculty development training was provided to all instructors and community agency partners. Baseline and postprogram evaluation of competencies for faculty and students was conducted. Process evaluation for both groups focused on satisfaction with the curricula and suggestions for program improvement. SHARP has been piloted five times at two community colleges. Trainees (n = 113) were primarily community college students (n = 108) and current aging service personnel (n = 5). Statistically significant improvements in all competencies were found for both faculty and students. Process evaluation outcomes identified the needed logical and component adaptations to enhance the feasibility of program implementation, dissemination, and student satisfaction. The SHARP program provides a well-tested, evidence-based effective model for addressing workforce preparation in support of healthy aging service program expansion and delivery. © 2014 Society for Public Health Education.
NASA Astrophysics Data System (ADS)
Kuehl, C. Stephen
2003-08-01
Completing its final development and early deployment on the Navy's multi-role aircraft, the F/A-18 E/F Super Hornet, the SHAred Reconnaissance Pod (SHARP) provides the war fighter with the latest digital tactical reconnaissance (TAC Recce) Electro-Optical/Infrared (EO/IR) sensor system. The SHARP program is an evolutionary acquisition that used a spiral development process across a prototype development phase tightly coupled into overlapping Engineering and Manufacturing Development (EMD) and Low Rate Initial Production (LRIP) phases. Under a tight budget environment with a highly compressed schedule, SHARP challenged traditional acquisition strategies and systems engineering (SE) processes. Adopting tailored state-of-the-art systems engineering process models allowd the SHARP program to overcome the technical knowledge transition challenges imposed by a compressed program schedule. The program's original goal was the deployment of digital TAC Recce mission capabilities to the fleet customer by summer of 2003. Hardware and software integration technical challenges resulted from requirements definition and analysis activities performed across a government-industry led Integrated Product Team (IPT) involving Navy engineering and test sites, Boeing, and RTSC-EPS (with its subcontracted hardware and government furnished equipment vendors). Requirements development from a bottoms-up approach was adopted using an electronic requirements capture environment to clarify and establish the SHARP EMD product baseline specifications as relevant technical data became available. Applying Earned-Value Management (EVM) against an Integrated Master Schedule (IMS) resulted in efficiently managing SE task assignments and product deliveries in a dynamically evolving customer requirements environment. Application of Six Sigma improvement methodologies resulted in the uncovering of root causes of errors in wiring interconnectivity drawings, pod manufacturing processes, and avionics requirements specifications. Utilizing the draft NAVAIR SE guideline handbook and the ANSI/EIA-632 standard: Processes for Engineering a System, a systems engineering tailored process approach was adopted for the accelerated SHARP EMD prgram. Tailoring SE processes in this accelerated product delivery environment provided unique opportunities to be technically creative in the establishment of a product performance baseline. This paper provides an historical overview of the systems engineering activities spanning the prototype phase through the EMD SHARP program phase, the performance requirement capture activities and refinement process challenges, and what SE process improvements can be applied to future SHARP-like programs adopting a compressed, evolutionary spiral development acquisition paradigm.
Sa, Young Jo; Lee, Jongho; Jeong, Jin Yong; Choi, Moonhee; Park, Soo Seog; Sim, Sung Bo; Jo, Keon Hyon
2016-01-19
Bar displacement is one of the most common and serious complications after the Nuss procedure. However, measurements of and factors affecting bar displacement have not been reported. The objectives of this study were to develop a decision model to guide surgeons considering repeat treatment and to estimate optimal cut-off values to determine whether reoperation to correct bar displacement is warranted. From July 2011 to August 2013, ninety bars were inserted in 61 patients who underwent Nuss procedures for pectus excavatum. Group A did not need surgical intervention and Group B required reoperation for bar displacement. Bar position was measured as the distance from the posterior superior end of the sternal body to the upper border of the metal bar on lateral chest radiographs. The bar displacement index (BDI) was calculated using D0 - Dx / D0 x 100 (D0: bar position the day after surgery; Dx: minimal or maximal distance of bar position on the following postoperative days). The optimal cut-off values of BDI warranting reoperation were assessed on the basis of ROC curve analysis. Of the 61 patients, 32 had single bars inserted whereas 29 had parallel bars inserted. There was a significant difference in age (14.0 ± 7.5 vs. 23.3 ± 12.0, p = 0.0062), preoperative Haller index (HI) (4.0 ± 1.1 vs. 5.0 ± 1.0, p = 0.033), and postoperative HI (2.7 ± 0.4 vs. 3.2 ± 0.5 p = 0.006) between the two groups. The optimal cut-off value of BDI was 8.7. We developed a BDI model for surgeons considering performing reoperation after Nuss procedure. The optimal cut-off value of BDI was 8.7. This model may help surgeons to decide objectively whether corrective surgery should be performed. The main factors affecting the relationship between bar displacement and reoperation were age and preoperative HI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baloković, M.; Harrison, F. A.; Esmerian, C. J.
2015-02-10
Measurements of the high-energy cut-off in the coronal continuum of active galactic nuclei have long been elusive for all but a small number of the brightest examples. We present a direct measurement of the cut-off energy in the nuclear continuum of the nearby Seyfert 1.9 galaxy MCG-05-23-016 with unprecedented precision. The high sensitivity of NuSTAR up to 79 keV allows us to clearly disentangle the spectral curvature of the primary continuum from that of its reflection component. Using a simple phenomenological model for the hard X-ray spectrum, we constrain the cut-off energy to 116{sub −5}{sup +6} keV with 90% confidence.more » Testing for more complex models and nuisance parameters that could potentially influence the measurement, we find that the cut-off is detected robustly. We further use simple Comptonized plasma models to provide independent constraints for both the kinetic temperature of the electrons in the corona and its optical depth. At the 90% confidence level, we find kT{sub e} = 29 ± 2 keV and τ {sub e} = 1.23 ± 0.08 assuming a slab (disk-like) geometry, and kT{sub e} = 25 ± 2 keV and τ {sub e} = 3.5 ± 0.2 assuming a spherical geometry. Both geometries are found to fit the data equally well and their two principal physical parameters are correlated in both cases. With the optical depth in the τ {sub e} ≳ 1 regime, the data are pushing the currently available theoretical models of the Comptonized plasma to the limits of their validity. Since the spectral features and variability arising from the inner accretion disk have been observed previously in MCG-05-23-016, the inferred high optical depth implies that a spherical or disk-like corona cannot be homogeneous.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bache, S; Rong, J
Purpose: To quantify a radiology team’s assessment of image quality differences between two CT scanner models currently in clinical use, with emphasis on spatial resolution that could be impacted by focal spot size. Methods: Modulation Transfer Functions (MTF) measurements were performed by scanning the impulse source insert module of the Catphan 600 at 120/140 kVp with both large (LFS) and small (SFS) focal spots and reconstructed to 2.5mm and 5.0mm thicknesses on a GE Discovery CT750 HD and a LightSpeed VCT CT scanner. MTFs were calculated by summing the 2D PSF along one-dimension to obtain line-spread-function (LSF), and calculating themore » Fourier Transform of the zero-padded and background corrected LSF. Spatial resolution performance was evaluated by comparing MTF curves, 50% and 10% MTF cutoff, and total area under the MTF curve (AUC). In addition, images of the Catphan high-contrast module and a Kagaku anthropomorphic body phantom were acquired from the HD scanner for visual comparisons. Results: For each scanner model, SFS was superior to LFS spatial resolution with respect to 50%/10% MTF cutoff and AUC. For the HD, 50%/10% cutoff was 4.29/7.22cm-1 for the LFS and 4.43/7.45cm-1 for the SFS. VCT outperformed HD, with 50%/10% cutoff of 4.40/7.29 cm-1 for LFS and 4.62/7.47cm-1 for SFS. Scanner model performance in order of decreasing AUC performance was VCT SFS (7.43), HD SFS (7.20), VCT LFS (7.09) and HD LFS (6.93). Visual evaluations of Kagaku phantom images confirmed that VCT outperformed HD. Conclusion: VCT outperformed HD and small focal spot is desired for either model over large focal spot in term of spatial resolution – in agreement with radiologist feedback of overall image quality. In-depth evaluations of clinical impact and focal spot selection mechanisms is currently being assessed.« less
It Takes Two to Tango: Arctic Influence on Mid-Latitude Weather is State-Dependent
NASA Astrophysics Data System (ADS)
Francis, J. A.; Vavrus, S. J.; Cohen, J. L.
2016-12-01
Since the late 1990s the Arctic has been warming two to three times faster than mid-latitude regions, a phenomenon known as Arctic amplification (AA). During the first half of 2016, AA reached a new record high value. This disproportionate warming is expected to influence the large-scale atmospheric circulation of the northern hemisphere, but understanding exactly how, where, when, and under what conditions has been an active and controversial topic of research. Observational studies of the atmospheric response are challenged by the short record of AA in a noisy environment, while modeling efforts have produced mixed results owing in part to deficiencies in both capturing the full signal of AA and simulating highly amplified atmospheric features (such as blocks, cut-off lows, and sharp ridging). Despite these challenges, progress in understanding the effects of AA on mid-latitude weather has been steady. In this presentation, we will discuss a new hypothesis and supporting evidence suggesting that the influence of regional AA depends on the background state of the large-scale circulation. Long-lived sea-surface temperature patterns in mid-latitudes, such as the Pacific Decadal Oscillation, favor particular ridge/trough configurations that affect the magnitude of AA's influence on weather patterns. These relationships vary both regionally and seasonally. As AA continues to strengthen with unabated rising concentrations of greenhouse gases, the mechanisms by which AA affects mid-latitude weather, particularly extreme events, may become clearer. The record-breaking AA of 2016 and associated extreme mid-latitude weather events may be a preview of the "new normal" in a warmer world.
Tang, Yang; Cook, Thomas D; Kisbu-Sakarya, Yasemin
2018-03-01
In the "sharp" regression discontinuity design (RD), all units scoring on one side of a designated score on an assignment variable receive treatment, whereas those scoring on the other side become controls. Thus the continuous assignment variable and binary treatment indicator are measured on the same scale. Because each must be in the impact model, the resulting multi-collinearity reduces the efficiency of the RD design. However, untreated comparison data can be added along the assignment variable, and a comparative regression discontinuity design (CRD) is then created. When the untreated data come from a non-equivalent comparison group, we call this CRD-CG. Assuming linear functional forms, we show that power in CRD-CG is (a) greater than in basic RD; (b) less sensitive to the location of the cutoff and the distribution of the assignment variable; and that (c) fewer treated units are needed in the basic RD component within the CRD-CG so that savings can result from having fewer treated cases. The theory we develop is used to make numerical predictions about the efficiency of basic RD and CRD-CG relative to each other and to a randomized control trial. Data from the National Head Start Impact study are used to test these predictions. The obtained estimates are closer to the predicted parameters for CRD-CG than for basic RD and are generally quite close to the parameter predictions, supporting the emerging argument that CRD should be the design of choice in many applications for which basic RD is now used. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Using a Photon Beam for Thermal Nociceptive Threshold Experiments
NASA Astrophysics Data System (ADS)
Walker, Azida; Anderson, Jeffery; Sherwood, Spencer
In humans, risk of diabetes and diabetic complications increases with age and duration of prediabetic state. In an effort to understand the progression of this disease scientists have evaluated the deterioration of the nervous system. One of the current methods used in the evaluation of the deterioration of the nervous system is through thermal threshold experiments. An incremental Hot / Cold Plate Analgesia Meter (IITC Life Science,CA is used to linearly increase the plate temperature at a rate of 10 ºC min-1 with a cutoff temperature of 55 ºC. Hind limb heat pain threshold (HPT) will be defined as a plate temperature at which the animal abruptly withdraws either one of its hind feet from the plate surface in a sharp move, typically followed by licking of the lifted paw. One of the disadvantages of using this hot plate method is in determining the true temperature at which the paw was withdrawn. While the temperature of the plate is known the position of the paw on the surface may vary; occasionally being cupped resulting in a temperature differentiation between the plate and the paw. During experiments the rats may urine onto the plate changing the temperature of the surface again resulting in reduced accuracy as to the withdrawal threshold. We propose here a new method for nociceptive somatic experiments involving the heat pain threshold experiments. This design employs the use of a photon beam to detect thermal response from an animal model. The details of this design is presented. Funded by the Undergraduate Research Council at the University of Central Arkansas.
Reflectivity Spectra for Commonly Used Reflectors
NASA Astrophysics Data System (ADS)
Janecek, Martin
2012-06-01
Monte Carlo simulations play an important role in developing and evaluating the performance of radiation detection systems. To accurately model a reflector in an optical Monte Carlo simulation, the reflector's spectral response has to be known. We have measured the reflection coefficient for many commonly used reflectors for wavelengths from 250 nm to 800 nm. The reflectors were also screened for fluorescence and angular distribution changes with wavelength. The reflectors examined in this work include several polytetrafluoroethylene (PTFE) reflectors, Spectralon, GORE diffuse reflector, titanium dioxide paint, magnesium oxide, nitrocellulose filter paper, Tyvek paper, Lumirror, Melinex, ESR films, and aluminum foil. All PTFE films exhibited decreasing reflectivity with longer wavelengths due to transmission. To achieve >;0.95 reflectivity in the 380 to 500 nm range, the PTFE films have to be at least 0.5 mm thick-nitrocellulose is a good alternative if a thin diffuse reflector is needed. Several of the reflectors have sharp declines in reflectivity below a cut-off wavelength, including TiO2 (420 nm), ESR film (395 nm), nitrocellulose (330 nm), Lumirror (325 nm), and Melinex (325 nm). PTFE-like reflectors were the only examined reflectors that had reflectivity above 0.90 for wavelengths below 300 nm. Lumirror, Melinex, and ESR film exhibited fluorescence. Lumirror and Melinex are excited by wavelengths between 320 and 420 nm and have their emission peaks located at 440 nm, while ESR film is excited by wavelengths below 400 nm and the emission peak is located at 430 nm. Lumirror and Melinex also exhibited changing angular distributions with wavelength.
INFORMATIONAL STRESS AS A DEPRESSION INDUCING FACTOR (EXPERIMENTAL STUDY).
Matitaishvili, T; Domianidze, T; Burdjanadze, G; Nadareishvili, D; Khananashvili, M
2017-01-01
Chronic psychogenic stress represents the major initiating agent of psychoneural diseases including depression. We used informational stress model for the purpose of modelling chronic psychogenic stress and depression. The aim of the research was to study behavior of dominant and submissive rats at different stages of informational stress and during depression state. In order to study anxiety and depressive behavior of rats we used "forced swim", "elevated cross maze" and "open-field" tests. The obtained results showed that chronic stressing procedure performed on rats by using the mentioned "informational" stress model led to the development of depression both in dominant and submissive rats. Stressing procedure caused sharp increase of serotonin concentration in hypothalamus of dominant and submissive rats. Under behavioral depression background, sharp increase of serotonin concentration in hypothalamus has been revealed which is caused by the peculiarities of stress model (by uncontrollable stressor. Specifically, by inevitable electric painful irritation).
The formation of sharp edges in planetary rings by nearby satellites
NASA Astrophysics Data System (ADS)
Borderies, N.; Goldreich, P.; Tremaine, S.
1989-08-01
Equations are derived which govern the shapes of the perturbed streamlines near the 'sharp edge' boundaries between regions of high and low planetary ring optical depth; these are maintained by the shepherd satellites, which transfer angular momentum to and from ring particles. The results obtained by these equations' solution with a simple numerical model, whose parameters resemble those of the Encke division, are found to faithfully reproduce the sharp edges bounding the division; they imply that the ring thickness in the unperturbed regions far from the edges is of the order of 10 m, and that the angle-averaged surface density varies on a much shorter radial length scale than that over which the satellite torque is applied. This feature's relationship to the local reversal of angular momentum viscous transport, in the most strongly perturbed regions, is demonstrated.
The formation of sharp edges in planetary rings by nearby satellites
NASA Technical Reports Server (NTRS)
Borderies, Nicole; Goldreich, Peter; Tremaine, Scott
1989-01-01
Equations are derived which govern the shapes of the perturbed streamlines near the 'sharp edge' boundaries between regions of high and low planetary ring optical depth; these are maintained by the shepherd satellites, which transfer angular momentum to and from ring particles. The results obtained by these equations' solution with a simple numerical model, whose parameters resemble those of the Encke division, are found to faithfully reproduce the sharp edges bounding the division; they imply that the ring thickness in the unperturbed regions far from the edges is of the order of 10 m, and that the angle-averaged surface density varies on a much shorter radial length scale than that over which the satellite torque is applied. This feature's relationship to the local reversal of angular momentum viscous transport, in the most strongly perturbed regions, is demonstrated.
Kintner, Eileen K.; Cook, Gwendolyn; Marti, C. Nathan; Gomes, Melissa; Meeder, Linda; Van Egeren, Laurie A.
2014-01-01
Purpose The purpose was to evaluate the effectiveness of the academic asthma education and counseling SHARP program on fostering psychosocial acceptance of asthma. Design and Methods This was a phase III, two-group, cluster randomized, single-blinded, longitudinal study. Students from grades 4 and 5 (N = 205) with asthma and their caregivers completed surveys at pre-intervention and at 1, 12, and 24 months post-intervention. Analysis involved multilevel modeling. Results All students demonstrated significant improvement in aspects of acceptance; students in SHARP demonstrated significant improvement in openness to sharing and connectedness with teachers over students in the control condition. Practice Implications The SHARP program offers a well-tested, effective program for psychosocial acceptance of asthma, which is welcomed by schools. PMID:25443593
Improving medium-range ensemble streamflow forecasts through statistical post-processing
NASA Astrophysics Data System (ADS)
Mendoza, Pablo; Wood, Andy; Clark, Elizabeth; Nijssen, Bart; Clark, Martyn; Ramos, Maria-Helena; Nowak, Kenneth; Arnold, Jeffrey
2017-04-01
Probabilistic hydrologic forecasts are a powerful source of information for decision-making in water resources operations. A common approach is the hydrologic model-based generation of streamflow forecast ensembles, which can be implemented to account for different sources of uncertainties - e.g., from initial hydrologic conditions (IHCs), weather forecasts, and hydrologic model structure and parameters. In practice, hydrologic ensemble forecasts typically have biases and spread errors stemming from errors in the aforementioned elements, resulting in a degradation of probabilistic properties. In this work, we compare several statistical post-processing techniques applied to medium-range ensemble streamflow forecasts obtained with the System for Hydromet Applications, Research and Prediction (SHARP). SHARP is a fully automated prediction system for the assessment and demonstration of short-term to seasonal streamflow forecasting applications, developed by the National Center for Atmospheric Research, University of Washington, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. The suite of post-processing techniques includes linear blending, quantile mapping, extended logistic regression, quantile regression, ensemble analogs, and the generalized linear model post-processor (GLMPP). We assess and compare these techniques using multi-year hindcasts in several river basins in the western US. This presentation discusses preliminary findings about the effectiveness of the techniques for improving probabilistic skill, reliability, discrimination, sharpness and resolution.
Liles, Elizabeth G; Perrin, Nancy; Rosales, Ana G; Smith, David H; Feldstein, Adrianne C; Mosen, David M; Levin, Theodore R
2018-05-02
The fecal immunochemical test (FIT) is easier to use and more sensitive than the guaiac fecal occult blood test, but it is unclear how to optimize FIT performance. We compared the sensitivity and specificity for detecting advanced colorectal neoplasia between single-sample (1-FIT) and two-sample (2-FIT) FIT protocols at a range of hemoglobin concentration cutoffs for a positive test. We recruited 2,761 average-risk men and women ages 49-75 referred for colonoscopy within a large nonprofit, group-model health maintenance organization (HMO), and asked them to complete two separate single-sample FITs. We generated receiver-operating characteristic (ROC) curves to compare sensitivity and specificity estimates for 1-FIT and 2-FIT protocols among those who completed both FIT kits and colonoscopy. We similarly compared sensitivity and specificity between hemoglobin concentration cutoffs for a single-sample FIT. Differences in sensitivity and specificity between the 1-FIT and 2-FIT protocols were not statistically significant at any of the pre-specified hemoglobin concentration cutoffs (10, 15, 20, 25, and 30 μg/g). There was a significant difference in test performance of the one-sample FIT between 50 ng/ml (10 μg/g) and each of the higher pre-specified cutoffs. Disease prevalence was low. A two-sample FIT is not superior to a one-sample FIT in detection of advanced adenomas; the one-sample FIT at a hemoglobin concentration cutoff of 50 ng/ml (10 μg/g) is significantly more sensitive for advanced adenomas than at higher cutoffs. These findings apply to a population of younger, average-risk patients in a U.S. integrated care system with high rates of prior screening.
Scott, Jamie S; Sterling, Sarah A; To, Harrison; Seals, Samantha R; Jones, Alan E
2016-07-01
Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) has shown promise in decreasing time to identification of causative organisms compared to traditional methods; however, the utility of MALDI-TOF MS in a heterogeneous clinical setting is uncertain. To perform a systematic review on the operational performance of the Bruker MALDI-TOF MS system and evaluate published cut-off values compared to traditional blood cultures. A comprehensive literature search was performed. Studies were included if they performed direct MALDI-TOF MS analysis of blood culture specimens in human patients with suspected bacterial infections using the Bruker Biotyper software. Sensitivities and specificities of the combined studies were estimated using a hierarchical random effects linear model (REML) incorporating cut-off scores of ≥1.7 and ≥2.0. Fifty publications were identified, with 11 studies included after final review. The estimated sensitivity utilising a cut-off of ≥2.0 from the combined studies was 74.6% (95% CI = 67.9-89.3%), with an estimated specificity of 88.0% (95% CI = 74.8-94.7%). When assessing a cut-off of ≥1.7, the combined sensitivity increases to 92.8% (95% CI = 87.4-96.0%), but the estimated specificity decreased to 81.2% (95% CI = 61.9-96.6%). In this analysis, MALDI-TOF MS showed acceptable sensitivity and specificity in bacterial speciation with the current recommended cut-off point compared to blood cultures; however, lowering the cut-off point from ≥2.0 to ≥1.7 would increase the sensitivity of the test without significant detrimental effect on the specificity, which could improve clinician confidence in their results.
Kim, Jun Woo; Park, Sang Hoo; Kim, Yoojin; Im, Minji; Han, Heon-Seok
2016-09-01
The prevalence rates of metabolic syndrome (MetS) and percentile distribution of insulin resistance (IR) among Korean children and adolescents were investigated. The cutoff values of IR were calculated to identify high-risk MetS groups. Data from 3,313 Korean subjects (1,756 boys and 1,557 girls, aged 10-18 years) were included from the Korean National Health and Nutrition Examination Survey conducted during 2007-2010. Three different sets of criteria for MetS were used. Indirect measures of IR were homeostasis model assessment (HOMA-IR) and triglyceride and glucose (TyG) index. The cutoff values of the HOMA-IR and TyG index were obtained from the receiver operation characteristic curves. According to the MetS criteria of de Ferranti el al., Cook et al., and the International Diabetes Federation, the prevalence rates in males and females were 13.9% and 12.3%, 4.6% and 3.6%, and 1.4% and 1.8%, respectively. Uses these 3 criteria, the cutoff values of the HOMA-IR and TyG index were 2.94 and 8.41, 3.29 and 8.38, and 3.54 and 8.66, respectively. The cutoff values using each of the 3 criteria approximately corresponds to the 50th-75th, 75th, and 75th-90th percentiles of normal HOMA-IR and TyG index levels. This study describes the prevalence rates of MetS in Korean children and adolescents, an index of IR, and the cutoff values for MetS with the aim of detecting high-risk groups. The usefulness of these criteria needs to be verified by further evaluation.
Investigating Various Thresholds as Immunohistochemistry Cutoffs for Observer Agreement.
Ali, Asif; Bell, Sarah; Bilsland, Alan; Slavin, Jill; Lynch, Victoria; Elgoweini, Maha; Derakhshan, Mohammad H; Jamieson, Nigel B; Chang, David; Brown, Victoria; Denley, Simon; Orange, Clare; McKay, Colin; Carter, Ross; Oien, Karin A; Duthie, Fraser R
2017-10-01
Clinical translation of immunohistochemistry (IHC) biomarkers requires reliable and reproducible cutoffs or thresholds for interpretation of immunostaining. Most IHC biomarker research focuses on the clinical relevance (diagnostic, prognostic, or predictive utility) of cutoffs, with less emphasis on observer agreement using these cutoffs. From the literature, we identified 3 commonly used cutoffs of 10% positive epithelial cells, 20% positive epithelial cells, and moderate to strong staining intensity (+2/+3 hereafter) to use for investigating observer agreement. A series of 36 images of microarray cores stained for 4 different IHC biomarkers, with variable staining intensity and percentage of positive cells, was used for investigating interobserver and intraobserver agreement. Seven pathologists scored the immunostaining in each image using the 3 cutoffs for positive and negative staining. Kappa (κ) statistic was used to assess the strength of agreement for each cutoff. The interobserver agreement between all 7 pathologists using the 3 cutoffs was reasonably good, with mean κ scores of 0.64, 0.59, and 0.62, respectively, for 10%, 20%, and +2/+3 cutoffs. A good agreement was observed for experienced pathologists using the 10% cutoff, and their agreement was statistically higher than for junior pathologists (P=0.02). In addition, the mean intraobserver agreement for all 7 pathologists using the 3 cutoffs was reasonably good, with mean κ scores of 0.71, 0.60, and 0.73, respectively, for 10%, 20%, and +2/+3 cutoffs. For all 3 cutoffs, a positive correlation was observed with perceived ease of interpretation (P<0.003). Finally, cytoplasmic-only staining achieved higher agreement using all 3 cutoffs than mixed staining patterns. All 3 cutoffs investigated achieve reasonable strength of agreement, modestly decreasing interobserver and intraobserver variability in IHC interpretation. These cutoffs have previously been used in cancer pathology, and this study provides evidence that these cutoffs can be reproducible between practicing pathologists.
Lee, C. H.; Shih, A. Z. L.; Woo, Y. C.; Fong, C. H. Y.; Leung, O. Y.; Janus, E.; Cheung, B. M. Y.; Lam, K. S. L.
2016-01-01
Background The optimal reference range of homeostasis model assessment of insulin resistance (HOMA-IR) in normal Chinese population has not been clearly defined. Here we address this issue using the Hong Kong Cardiovascular Risk Factor Prevalence Study (CRISPS), a prospective population-based cohort study with long-term follow-up. Material & Methods In this study, normal glucose tolerance (NGT), impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) were defined according to the 1998 World Health Organization criteria. Dysglycemia referred to IFG, IGT or T2DM. This study comprised two parts. Part one was a cross-sectional study involving 2,649 Hong Kong Chinese subjects, aged 25–74 years, at baseline CRISPS-1 (1995–1996). The optimal HOMA-IR cut-offs for dysglycemia and T2DM were determined by the receiver-operating characteristic (ROC) curve. Part two was a prospective study involving 872 subjects who had persistent NGT at CRISPS-4 (2010–2012) after 15 years of follow-up. Results At baseline, the optimal HOMA-IR cut-offs to identify dysglyceia and T2DM were 1.37 (AUC = 0.735; 95% confidence interval [CI] = 0.713–0.758; Sensitivity [Se] = 65.6%, Specificity [Sp] = 71.3%] and 1.97 (AUC = 0.807; 95% CI = 0.777–0.886; Se = 65.5%, Sp = 82.9%) respectively. These cut-offs, derived from the cross-sectional study at baseline, corresponded closely to the 75th (1.44) and 90th (2.03) percentiles, respectively, of the HOMA-IR reference range derived from the prospective study of subjects with persistent NGT. Conclusions HOMA-IR cut-offs, of 1.4 and 2.0, which discriminated dysglycemia and T2DM respectively from NGT in Southern Chinese, can be usefully employed as references in clinical research involving the assessment of insulin resistance. PMID:27658115
Singh, Yashpal; Garg, M K; Tandon, Nikhil; Marwaha, Raman Kumar
2013-01-01
Insulin resistance (IR) and associated metabolic abnormalities are increasingly being reported in the adolescent population. Cut-off value of homeostasis model of assessment IR (HOMA-IR) as an indicator of metabolic syndrome (MS) in adolescents has not been established. This study aimed to investigate IR by HOMA-IR in urban Indian adolescents and to establish cut-off values of HOMA-IR for defining MS. A total of 691 apparently healthy adolescents (295 with normal body mass index (BMI), 205 overweight, and 199 obese) were included in this cross-sectional study. MS in adolescents was defined by International Diabetes Federation (IDF) and Adult Treatment Panel III (ATP III) criteria. IR was calculated using the HOMA model. Mean height, waist circumference (WC), waist/hip ratio (WHR), waist/height ratio (WHtR), and blood pressure were significantly higher in boys as compared to girls. The HOMA-IR values increased progressively from normal weight to obese adolescents in both sexes. Mean HOMA-IR values increased progressively according to sexual maturity rating in both sexes. HOMA-IR value of 2.5 had a sensitivity of >70% and specificity of >60% for MS. This cut-off identified larger number of adolescents with MS in different BMI categories (19.7% in normal weight, 51.7% in overweight, and 77.0% in obese subjects) as compared to the use of IDF or ATP III criteria for diagnosing MS. Odds ratio for having IR (HOMA-IR of >2.5) was highest with WHtR (4.9, p p<0.0001) and WC (4.8, p p<0.0001), compared to WHR (3.3, p p<0.0001). In Indian adolescents, HOMA-IR increased with sexual maturity and with progression from normal to obese. A HOMA-IR cut-off of 2.5 provided the maximum sensitivity and specificity in diagnosing MS in both genders as per ATP III and IDF criteria.
Singh, Yashpal; Garg, MK; Tandon, Nikhil; Marwaha, Raman Kumar
2013-01-01
Objective: Insulin resistance (IR) and associated metabolic abnormalities are increasingly being reported in the adolescent population. Cut-off value of homeostasis model of assessment IR (HOMA-IR) as an indicator of metabolic syndrome (MS) in adolescents has not been established. This study aimed to investigate IR by HOMA-IR in urban Indian adolescents and to establish cut-off values of HOMA-IR for defining MS. Methods: A total of 691 apparently healthy adolescents (295 with normal body mass index (BMI), 205 overweight, and 199 obese) were included in this cross-sectional study. MS in adolescents was defined by International Diabetes Federation (IDF) and Adult Treatment Panel III (ATP III) criteria. IR was calculated using the HOMA model. Results: Mean height, waist circumference (WC), waist/hip ratio (WHR), waist/height ratio (WHtR), and blood pressure were significantly higher in boys as compared to girls. The HOMA-IR values increased progressively from normal weight to obese adolescents in both sexes. Mean HOMA-IR values increased progressively according to sexual maturity rating in both sexes. HOMA-IR value of 2.5 had a sensitivity of >70% and specificity of >60% for MS. This cut-off identified larger number of adolescents with MS in different BMI categories (19.7% in normal weight, 51.7% in overweight, and 77.0% in obese subjects) as compared to the use of IDF or ATP III criteria for diagnosing MS. Odds ratio for having IR (HOMA-IR of >2.5) was highest with WHtR (4.9, p <0.0001) and WC (4.8, p <0.0001), compared to WHR (3.3, p <0.0001). Conclusions: In Indian adolescents, HOMA-IR increased with sexual maturity and with progression from normal to obese. A HOMA-IR cut-off of 2.5 provided the maximum sensitivity and specificity in diagnosing MS in both genders as per ATP III and IDF criteria. Conflict of interest:None declared. PMID:24379034
Lee, C H; Shih, A Z L; Woo, Y C; Fong, C H Y; Leung, O Y; Janus, E; Cheung, B M Y; Lam, K S L
The optimal reference range of homeostasis model assessment of insulin resistance (HOMA-IR) in normal Chinese population has not been clearly defined. Here we address this issue using the Hong Kong Cardiovascular Risk Factor Prevalence Study (CRISPS), a prospective population-based cohort study with long-term follow-up. In this study, normal glucose tolerance (NGT), impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) were defined according to the 1998 World Health Organization criteria. Dysglycemia referred to IFG, IGT or T2DM. This study comprised two parts. Part one was a cross-sectional study involving 2,649 Hong Kong Chinese subjects, aged 25-74 years, at baseline CRISPS-1 (1995-1996). The optimal HOMA-IR cut-offs for dysglycemia and T2DM were determined by the receiver-operating characteristic (ROC) curve. Part two was a prospective study involving 872 subjects who had persistent NGT at CRISPS-4 (2010-2012) after 15 years of follow-up. At baseline, the optimal HOMA-IR cut-offs to identify dysglyceia and T2DM were 1.37 (AUC = 0.735; 95% confidence interval [CI] = 0.713-0.758; Sensitivity [Se] = 65.6%, Specificity [Sp] = 71.3%] and 1.97 (AUC = 0.807; 95% CI = 0.777-0.886; Se = 65.5%, Sp = 82.9%) respectively. These cut-offs, derived from the cross-sectional study at baseline, corresponded closely to the 75th (1.44) and 90th (2.03) percentiles, respectively, of the HOMA-IR reference range derived from the prospective study of subjects with persistent NGT. HOMA-IR cut-offs, of 1.4 and 2.0, which discriminated dysglycemia and T2DM respectively from NGT in Southern Chinese, can be usefully employed as references in clinical research involving the assessment of insulin resistance.
Relationship between Sensory Perception and Frailty in a Community-Dwelling Elderly Population.
Somekawa, S; Mine, T; Ono, K; Hayashi, N; Obuchi, S; Yoshida, H; Kawai, H; Fujiwara, Y; Hirano, H; Kojima, M; Ihara, K; Kim, H
2017-01-01
Aging anorexia, defined as loss of appetite and/or reduced food intake, has been postulated as a risk factor for frailty. Impairments of taste and smell perception in elderly people can lead to reduced enjoyment of food and contribute to the anorexia of aging. To evaluate the relationship between frailty and taste and smell perception in elderly people living in urban areas. Data from the baseline evaluation of 768 residents aged ≥ 65 years who enrolled in a comprehensive geriatric health examination survey was analyzed. Fourteen out of 29-items of Appetite, Hunger, Sensory Perception questionnaire (AHSP), frailty, age, sex, BMI, chronic conditions and IADL were evaluated. AHSP was analyzed as the total score of 8 taste items (T) and 6 smell items (S). Frailty was diagnosed using a modified Fried's frailty criteria. The area under the receiver operator curves for detection of frailty demonstrated that T (0.715) had moderate accuracy, but S (0.657) had low accuracy. The cutoffs, sensitivity, specificity and Youden Index (YI) values for each perception were T: Cutoff 26.5 (YI: 0.350, sensitivity: 0.639, specificity: 0.711) and S: Cutoff 18.5 (YI: 0.246, sensitivity: 0.690, specificity: 0.556). Results from multiple logistic regression models, after adjusting for age, sex, IADL and chronic conditions showed that participants under the T cutoff were associated with exhaustion and those below the S cutoff were associated with slow walking speed. The adjusted logistic models for age, sex, IADL and chronic conditions showed significant association between T and frailty (OR 2.81, 95% CI 1.29-6.12), but not between S and frailty (OR 1.73, 95% CI 0.83-3.63). Taste and smell perception, particularly taste perception, were associated with a greater risk of frailty in community-dwelling elderly people. These results suggest that lower taste and smell perception may be an indicator of frailty in old age.
NASA Astrophysics Data System (ADS)
Abdo, A. A.; Abeysekara, U.; Allen, B. T.; Aune, T.; Berley, D.; Bonamente, E.; Christopher, G. E.; DeYoung, T.; Dingus, B. L.; Ellsworth, R. W.; Galbraith-Frew, J. G.; Gonzalez, M. M.; Goodman, J. A.; Hoffman, C. M.; Hüntemeyer, P. H.; Hui, C. M.; Kolterman, B. E.; Linnemann, J. T.; McEnery, J. E.; Mincer, A. I.; Morgan, T.; Nemethy, P.; Pretz, J.; Ryan, J. M.; Saz Parkinson, P. M.; Shoup, A.; Sinnis, G.; Smith, A. J.; Vasileiou, V.; Walker, G. P.; Williams, D. A.; Yodh, G. B.
2012-07-01
The Cygnus region is a very bright and complex portion of the TeV sky, host to unidentified sources and a diffuse excess with respect to conventional cosmic-ray propagation models. Two of the brightest TeV sources, MGRO J2019+37 and MGRO J2031+41, are analyzed using Milagro data with a new technique, and their emission is tested under two different spectral assumptions: a power law and a power law with an exponential cutoff. The new analysis technique is based on an energy estimator that uses the fraction of photomultiplier tubes in the observatory that detect the extensive air shower. The photon spectrum is measured in the range 1-100 TeV using the last three years of Milagro data (2005-2008), with the detector in its final configuration. An F-test indicates that MGRO J2019+37 is better fit by a power law with an exponential cutoff than by a simple power law. The best-fitting parameters for the power law with exponential cutoff model are a normalization at 10 TeV of 7+5 -2 × 10-10 s-1 m-2 TeV-1, a spectral index of 2.0+0.5 -1.0, and a cutoff energy of 29+50 -16 TeV. MGRO J2031+41 shows no evidence of a cutoff. The best-fitting parameters for a power law are a normalization of 2.1+0.6 -0.6 × 10-10 s-1 m-2 TeV-1 and a spectral index of 3.22+0.23 -0.18. The overall flux is subject to a ~30% systematic uncertainty. The systematic uncertainty on the power-law indices is ~0.1. Both uncertainties have been verified with cosmic-ray data. A comparison with previous results from TeV J2032+4130, MGRO J2031+41, and MGRO J2019+37 is also presented.
Zheng, X; Xue, Q; Mittal, R; Beilamowicz, S
2010-11-01
A new flow-structure interaction method is presented, which couples a sharp-interface immersed boundary method flow solver with a finite-element method based solid dynamics solver. The coupled method provides robust and high-fidelity solution for complex flow-structure interaction (FSI) problems such as those involving three-dimensional flow and viscoelastic solids. The FSI solver is used to simulate flow-induced vibrations of the vocal folds during phonation. Both two- and three-dimensional models have been examined and qualitative, as well as quantitative comparisons, have been made with established results in order to validate the solver. The solver is used to study the onset of phonation in a two-dimensional laryngeal model and the dynamics of the glottal jet in a three-dimensional model and results from these studies are also presented.
Estimating Solar Proton Flux at LEO From a Geomagnetic Cutoff Model
2015-07-14
simple shadow cones (using nomenclature from Stormer theory of particle motion in a dipole magnetic field [6]), that result from particles trajectories...basic Stormer theory [7]. However, in LEO the changes would be small relative to uncertainties in the model and therefore unnecessary. If the model were
Analysis of sharpness increase by image noise
NASA Astrophysics Data System (ADS)
Kurihara, Takehito; Aoki, Naokazu; Kobayashi, Hiroyuki
2009-02-01
Motivated by the reported increase in sharpness by image noise, we investigated how noise affects sharpness perception. We first used natural images of tree bark with different amounts of noise to see whether noise enhances sharpness. Although the result showed sharpness decreased as noise amount increased, some observers seemed to perceive more sharpness with increasing noise, while the others did not. We next used 1D and 2D uni-frequency patterns as stimuli in an attempt to reduce such variability in the judgment. The result showed, for higher frequency stimuli, sharpness decreased as the noise amount increased, while sharpness of the lower frequency stimuli increased at a certain noise level. From this result, we thought image noise might reduce sharpness at edges, but be able to improve sharpness of lower frequency component or texture in image. To prove this prediction, we experimented again with the natural image used in the first experiment. Stimuli were made by applying noise separately to edge or to texture part of the image. The result showed noise, when added to edge region, only decreased sharpness, whereas when added to texture, could improve sharpness. We think it is the interaction between noise and texture that sharpens image.
DSMC simulations of shock interactions about sharp double cones
NASA Astrophysics Data System (ADS)
Moss, James N.
2001-08-01
This paper presents the results of a numerical study of shock interactions resulting from Mach 10 flow about sharp double cones. Computations are made by using the direct simulation Monte Carlo (DSMC) method of Bird. The sensitivity and characteristics of the interactions are examined by varying flow conditions, model size, and configuration. The range of conditions investigated includes those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel.
DSMC Simulations of Shock Interactions About Sharp Double Cones
NASA Technical Reports Server (NTRS)
Moss, James N.
2000-01-01
This paper presents the results of a numerical study of shock interactions resulting from Mach 10 flow about sharp double cones. Computations are made by using the direct simulation Monte Carlo (DSMC) method of Bird. The sensitivity and characteristics of the interactions are examined by varying flow conditions, model size, and configuration. The range of conditions investigated includes those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel.
1983-01-01
Influence Scaling of 2D and 3D Shock/Turbulent ioundary Layer Interactions at Compression Corners." AIM Paper 81-334, January 1981. 5. Kubota, H...generating 3D shock wave/boundary layer interactions 2 Unswept sharp fin interaction and coordinate system 3 Cobra probe measurements of Peake (4) at Mach 4...were made by two Druck 50 PSI transducers, each in- stalled in a computer-controlled 48-port Model 48J4 Scani- valve and referenced to vacuum. A 250
Sharpness of interference pattern of the 3-pole wiggler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dejus, Roger J., E-mail: dejus@aps.anl.gov; Kim, Kwang-Je
2016-07-27
Due to the small emittance, radiation from neighboring poles of a strong wiggler in future multi-bend achromat-based storage rings can exhibit sharp interference patterns. The spectral-angular distributions of the 3-pole wiggler for the proposed Advanced Photon Source (APS) upgrade were computed and prominent interference patterns were found. In this paper we provide an understanding of such interference patterns. The equations governing the interference pattern are described and computed spectral-angular distributions of a modeled 3-pole wiggler magnetic field using these equations are presented.
Sharpness of Interference Pattern of the 3-Pole Wiggler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dejus, Roger J.; Kim, Kwang-Je
2016-07-02
Due to the small emittance, radiation from neighboring poles of a strong wiggler in future multi-bend achromat-based storage rings can exhibit sharp interference patterns. The spectral-angular distributions of the 3-pole wiggler for the proposed Advanced Photon Source (APS) upgrade were computed and prominent interference patterns were found. In this paper we provide an understanding of such interference patterns. The equations governing the interference pattern are described and computed spectral-angular distributions of a modeled 3-pole wiggler magnetic field using these equations are presented.
Cota, Wesley; Ferreira, Silvio C; Ódor, Géza
2016-03-01
We provide numerical evidence for slow dynamics of the susceptible-infected-susceptible model evolving on finite-size random networks with power-law degree distributions. Extensive simulations were done by averaging the activity density over many realizations of networks. We investigated the effects of outliers in both highly fluctuating (natural cutoff) and nonfluctuating (hard cutoff) most connected vertices. Logarithmic and power-law decays in time were found for natural and hard cutoffs, respectively. This happens in extended regions of the control parameter space λ(1)<λ<λ(2), suggesting Griffiths effects, induced by the topological inhomogeneities. Optimal fluctuation theory considering sample-to-sample fluctuations of the pseudothresholds is presented to explain the observed slow dynamics. A quasistationary analysis shows that response functions remain bounded at λ(2). We argue these to be signals of a smeared transition. However, in the thermodynamic limit the Griffiths effects loose their relevancy and have a conventional critical point at λ(c)=0. Since many real networks are composed by heterogeneous and weakly connected modules, the slow dynamics found in our analysis of independent and finite networks can play an important role for the deeper understanding of such systems.
Single-event effects experienced by astronauts and microelectronic circuits flown in space
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNulty, P.J.
Models developed for explaining the light flashes experienced by astronauts on Apollo and Skylab missions were used with slight modification to explain upsets observed in microelectronic circuits. Both phenomena can be explained by the simple assumption that an event occurs whenever a threshold number of ionizations or isomerizations are generated within a sensitive volume. Evidence is consistent with the threshold being sharp in both cases, but fluctuations in the physical stimuli lead to a gradual rather than sharp increase in cross section with LET. Successful use of the model requires knowledge of the dimensions of the sensitive volume and themore » value of threshold. Techniques have been developed to determine these SEU parameters in modern circuits.« less
Klein tunneling in the α -T3 model
NASA Astrophysics Data System (ADS)
Illes, E.; Nicol, E. J.
2017-06-01
We investigate Klein tunneling for the α -T3 model, which interpolates between graphene and the dice lattice via parameter α . We study transmission across two types of electrostatic interfaces: sharp potential steps and sharp potential barriers. We find both interfaces to be perfectly transparent for normal incidence for the full range of the parameter α for both interfaces. For other angles of incidence, we find that transmission is enhanced with increasing α . For the dice lattice, we find perfect, all-angle transmission across a potential step for incoming electrons with energy equal to half of the height of the potential step. This is analogous to the "super", all-angle transmission reported for the dice lattice for Klein tunneling across a potential barrier.
A Simple Model of Pulsed Ejector Thrust Augmentation
NASA Technical Reports Server (NTRS)
Wilson, Jack; Deloof, Richard L. (Technical Monitor)
2003-01-01
A simple model of thrust augmentation from a pulsed source is described. In the model it is assumed that the flow into the ejector is quasi-steady, and can be calculated using potential flow techniques. The velocity of the flow is related to the speed of the starting vortex ring formed by the jet. The vortex ring properties are obtained from the slug model, knowing the jet diameter, speed and slug length. The model, when combined with experimental results, predicts an optimum ejector radius for thrust augmentation. Data on pulsed ejector performance for comparison with the model was obtained using a shrouded Hartmann-Sprenger tube as the pulsed jet source. A statistical experiment, in which ejector length, diameter, and nose radius were independent parameters, was performed at four different frequencies. These frequencies corresponded to four different slug length to diameter ratios, two below cut-off, and two above. Comparison of the model with the experimental data showed reasonable agreement. Maximum pulsed thrust augmentation is shown to occur for a pulsed source with slug length to diameter ratio equal to the cut-off value.
LISA pathfinder appreciably constrains collapse models
NASA Astrophysics Data System (ADS)
Helou, Bassam; Slagmolen, B. J. J.; McClelland, David E.; Chen, Yanbei
2017-04-01
Spontaneous collapse models are phenomological theories formulated to address major difficulties in macroscopic quantum mechanics. We place significant bounds on the parameters of the leading collapse models, the continuous spontaneous localization (CSL) model, and the Diosi-Penrose (DP) model, by using LISA Pathfinder's measurement, at a record accuracy, of the relative acceleration noise between two free-falling macroscopic test masses. In particular, we bound the CSL collapse rate to be at most (2.96 ±0.12 ) ×10-8 s-1 . This competitive bound explores a new frequency regime, 0.7 to 20 mHz, and overlaps with the lower bound 10-8 ±2 s-1 proposed by Adler in order for the CSL collapse noise to be substantial enough to explain the phenomenology of quantum measurement. Moreover, we bound the regularization cutoff scale used in the DP model to prevent divergences to be at least 40.1 ±0.5 fm , which is larger than the size of any nucleus. Thus, we rule out the DP model if the cutoff is the size of a fundamental particle.
A Non-Parametric Item Response Theory Evaluation of the CAGE Instrument Among Older Adults.
Abdin, Edimansyah; Sagayadevan, Vathsala; Vaingankar, Janhavi Ajit; Picco, Louisa; Chong, Siow Ann; Subramaniam, Mythily
2018-02-23
The validity of the CAGE using item response theory (IRT) has not yet been examined in older adult population. This study aims to investigate the psychometric properties of the CAGE using both non-parametric and parametric IRT models, assess whether there is any differential item functioning (DIF) by age, gender and ethnicity and examine the measurement precision at the cut-off scores. We used data from the Well-being of the Singapore Elderly study to conduct Mokken scaling analysis (MSA), dichotomous Rasch and 2-parameter logistic IRT models. The measurement precision at the cut-off scores were evaluated using classification accuracy (CA) and classification consistency (CC). The MSA showed the overall scalability H index was 0.459, indicating a medium performing instrument. All items were found to be homogenous, measuring the same construct and able to discriminate well between respondents with high levels of the construct and the ones with lower levels. The item discrimination ranged from 1.07 to 6.73 while the item difficulty ranged from 0.33 to 2.80. Significant DIF was found for 2-item across ethnic group. More than 90% (CC and CA ranged from 92.5% to 94.3%) of the respondents were consistently and accurately classified by the CAGE cut-off scores of 2 and 3. The current study provides new evidence on the validity of the CAGE from the IRT perspective. This study provides valuable information of each item in the assessment of the overall severity of alcohol problem and the precision of the cut-off scores in older adult population.
Lampis, Jessica; Cataudella, Stefania; Agus, Mirian; Busonera, Alessandra; Skowron, Elizabeth A
2018-06-10
Bowen's multigenerational theory provides an account of how the internalization of experiences within the family of origin promotes development of the ability to maintain a distinct self whilst also making intimate connections with others. Differentiated people can maintain their I-position in intimate relationships. They can remain calm in conflictual relationships, resolve relational problems effectively, and reach compromises. Fusion with others, emotional cut-off, and emotional reactivity instead are common reactions to relational stress in undifferentiated people. Emotional reactivity is the tendency to react to stressors with irrational and intense emotional arousal. Fusion with others is an excessive emotional involvement in significant relationships, whilst emotional cut-off is the tendency to manage relationship anxiety through physical and emotional distance. This study is based on Bowen's theory, starting from the assumption that dyadic adjustment can be affected both by a member's differentiation of self (actor effect) and by his or her partner's differentiation of self (partner effect). We used the Actor-Partner Interdependence Model to study the relationship between differentiation of self and dyadic adjustment in a convenience sample of 137 heterosexual Italian couples (nonindependent, dyadic data). The couples completed the Differentiation of Self Inventory and the Dyadic Adjustment Scale. Men's dyadic adjustment depended only on their personal I-position, whereas women's dyadic adjustment was affected by their personal I-position and emotional cut-off as well as by their partner's I-position and emotional cut-off. The empirical and clinical implications of the results are discussed. © 2018 Family Process Institute.
NASA Astrophysics Data System (ADS)
Bellotti, Enrico; Wen, Hanqing; Dominici, Stefano; Glasmann, Andreu L.
2017-02-01
HgCdTe has been the material of choice for MWIR, and LWIR infrared sensing due to its highly tunable band gap and favorable material properties. However, HgCdTe growth and processing for the ESWIR spectral region is less developed, so alternative materials are actively researched. It is important to compare the fundamental limitations of each material to determine which offers optimal device performance. In this article, we investigate the intrinsic recombination mechanisms of ESWIR materials—InGaAs, GeSn, and HgCdTe—with cutoff wavelength near 2.5μm, and MWIR with cutoff of 5μm. First, using an empirical pseudo-potential model, we calculate the full band structure of each alloy using the virtual crystal approximation, modified to include disorder effects and spin-orbit coupling. We then evaluate the Auger and radiative recombination rates using a Green's function based model, applied to the full material band structure, yielding intrinsic carrier lifetimes for each given temperature, carrier injection, doping density, and cutoff wavelength. For example, we show that ESWIR HgCdTe has longer carrier lifetimes than InGaAs when strained or relaxed near room temperature, which is advantageous for high operating temperature photodetectors. We perform similar analyses for varying composition GeSn by comparing the calculated lifetimes with InGaAs and HgCdTe. Finally, we compare HgCdTe, InAsSb and GeSn with a cutoff in the MWIR spectral band.
Tang, Qi; Li, Xueqin; Song, Peipei; Xu, Lingzhong
2015-12-01
Diabetes mellitus (DM) appears to be increasing rapidly, threatening to reduce life expectancy for humans around the globe. The International Diabetes Federation (IDF) has estimated that there will be 642 million people living with the disease by 2040 and half as many again who will be not diagnosed. This means that pre-DM screening is a critical issue. Insulin resistance (IR) has emerged as a major pathophysiological factor in the development and progression of DM since it is evident in susceptible individuals at the early stages of DM, and particularly type 2 DM (T2DM). Therefore, assessment of IR via the homeostasis model assessment of IR (HOMA-IR) is a key index for the primary prevention of DM and is thus found in guidelines for screening of high-risk groups. However, the cut-off values of HOMA-IR differ for different races, ages, genders, diseases, complications, etc. due to the complexity of IR. This hampers the determination of specific cut-off values of HOMA-IR in different places and in different situations. China has not published an official index to gauge IR for primary prevention of T2DM in the diabetic and non-diabetic population except for children and adolescents ages 6-12 years. Hence, this article summarizes developments in research on IR, HOMA-IR, and pre-DM screening in order to provide a reference for optimal cut-off values of HOMA-IR for the diagnosis of DM in the Chinese population.
EXPERIMENTAL EVALUATION OF TWO SHARP FRONT MODELS FOR VADOSE ZONE NON-AQUEOUS PHASE LIQUID TRANSPORT
Recent research efforts on the transport of immiscible organic wastes in subsurface the development of numerical models of various levels of sophistication. Systems have focused on the site characterization data needed to obtain. However, in real field applications, the model p...
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems.
Mahadevan, Vijay S; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul
2014-08-06
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems
Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul
2014-01-01
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250
Toledo, Jon B; Bjerke, Maria; Da, Xiao; Landau, Susan M; Foster, Norman L; Jagust, William; Jack, Clifford; Weiner, Michael; Davatzikos, Christos; Shaw, Leslie M; Trojanowski, John Q
2015-05-01
Cerebrospinal fluid (CSF) and positron emission tomographic (PET) amyloid biomarkers have been proposed for the detection of Alzheimer disease (AD) pathology in living patients and for the tracking of longitudinal changes, but the relation between biomarkers needs further study. To determine the association between CSF and PET amyloid biomarkers (cross-sectional and longitudinal measures) and compare the cutoffs for these measures. Longitudinal clinical cohort study from 2005 to 2014 including 820 participants with at least 1 florbetapir F-18 (hereafter referred to as simply florbetapir)-PET scan and at least 1 CSF β-amyloid 1-42 (Aβ1-42) sample obtained within 30 days of each other (501 participants had a second PET scan after 2 years, including 150 participants with CSF Aβ1-42 measurements). Data were obtained from the Alzheimer's Disease Neuroimaging Initiative database. Four different PET scans processing pipelines from 2 different laboratories were compared. The PET cutoff values were established using a mixture-modeling approach, and different mathematical models were applied to define the association between CSF and PET amyloid measures. The values of the CSF Aβ1-42 samples and florbetapir-PET scans showed a nonlinear association (R2 = 0.48-0.66), with the strongest association for values in the middle range. The presence of a larger dynamic range of florbetapir-PET scan values in the higher range compared with the CSF Aβ1-42 plateau explained the differences in correlation with cognition (R2 = 0.36 and R2 = 0.25, respectively). The APOE genotype significantly modified the association between both biomarkers. The PET cutoff values derived from an unsupervised classifier converged with previous PET cutoff values and the established CSF Aβ1-42 cutoff levels. There was no association between longitudinal Aβ1-42 levels and standardized uptake value ratios during follow-up. The association between both biomarkers is limited to a middle range of values, is modified by the APOE genotype, and is absent for longitudinal changes; 4 different approaches in 2 different platforms converge on similar pathological Aβ cutoff levels; and different pipelines to process PET scans showed correlated but not identical results. Our findings suggest that both biomarkers measure different aspects of AD Aβ pathology.
NASA Astrophysics Data System (ADS)
Rannou, Pascal; Seignovert, Benoit; Le Mouélic, Stéphane; Sotin, Christophe
2016-10-01
The study of Titan properties with remote sensing relies on a good knowledge of the atmosphere properties. The in-situ observations made by Huygens combined with recent advances in the definition of methane properties enable to model and interpret observations with a very good accuracy. Thanks to these progresses, we can analyze in this work the observations made at the limb of Titan in order to retrieve information on the haze properties as its vertical profiles and its spectral behaviour along the VIMS/Cassini range (from 0.88 to 5.1 μm). However, for applications to real atmospheres, one need to account for the widening of the spectroscopic lines (e.g., Voigt profile) and apply an empirical cut-off of the far wings. In general, this is a multiplying function of the wavenumber, f(ν), applied to the Voigt profile that allows a faster decay of the wing profile beyond a given distance from the center of the line ν0 : f(ν)=1 if |ν- ν0| ≤ Δν, and f(ν)=exp(-|ν- ν0|/ σ) if |ν- ν0| > Δν. Although the 2-μm window is apparently straitforward to model, it appears that the standard cut-off parameters (that is Δν ~ 26 cm-1 and σ ~ 120 cm-1) which is used for other windows in Titan's atmosphere is not adequat for this window. Other sets of parameter must be used to reproduce Titan spectrum at 2 μm. However, there is no convergence of the results between these works and a large variety of cut-off parameters are used. Alternatively, it was found that some gas absorptions (ethane and another unknown gas) leave a signature around 2-μm and also affect the transparency in this window. In our study we make an exhaustive investigation on the cut-off parameters to determine which are the best couples of parameters to fit the 2-μm window. We also evaluated how gaseous absorptions can allow to reach a satisfactory agreement and, especially, if it allows to match observations with the standard cut-off. Finally, we investigate the impact of the different solutions (different cut-off, with or without supplementary absorptions) on the retrieved surface albedo.
Tamba, Marco; Caminiti, Antonino; Prosperi, Alice; Desprès, Philippe; Lelli, Davide; Galletti, Giorgio; Moreno, Ana; Paternoster, Giulia; Santi, Annalisa; Licata, Elio; Lecollinet, Sylvie; Gelmini, Luca; Rugna, Gianluca; Procopio, Anna; Lavazza, Antonio
2017-10-01
West Nile virus (WNV) and Usutu virus (USUV), genus Flavivirus, are members of the Japanese encephalitis virus antigenic complex, and are maintained primarily in an enzootic cycle between mosquitoes and birds. WNV is zoonotic, and poses a threat to public health, especially in relation to blood transfusion. Serosurveillance of wild birds is suitable for early detection of WNV circulation, although concerns remain to be addressed as regards i) the type of test used, whether ELISA, virus neutralization test (VNT), plaque reduction neutralization test (PRNT), ii) the reagents (antigens, revealing antibodies), iii) the different bird species involved, and iv) potential cross-reactions with other Flaviviruses, such as USUV. The authors developed an indirect IgG ELISA with pan-avian specificity using EDIII protein as antigen and a monoclonal antibody (mAb 1A3) with broad reactivity for avian IgG. A total of 140 serum samples were collected from juvenile European magpies (Pica pica) in areas where both WNV and USUV were co-circulating. The samples were then tested using this in-house ELISA and VNT in parallel. Estimation of test accuracy was performed using different Bayesian two latent class models. At a cut-off set at an optical density percentage (OD%) of 15, the ELISA showed a posterior median of diagnostic sensitivity (DSe) of 88% (95%PCI: 73-99%) and a diagnostic specificity (DSp) of 86% (95%PCI: 68-99%). At this cut-off, ELISA and VNT (cut-off 1/10) performances were comparable: DSe=91% (95%PCI: 79-99%), and DSp=77% (95%PCI: 59-98%). With the cut-off increased to 30 OD%, the ELISA DSe dropped to 78% (95%PCI: 52-99%), and the DSp rose to 94% (95%PCI: 83-100%). In field conditions, the cut-off that yields the best accuracy for the ELISA appears to correspond to 15 OD%. In areas where other Flaviviruses are circulating, however, it might be appropriate to raise the cut-off to 30 OD% in order to achieve higher specificity and reduce the detection of seropositive birds infected by other Flaviviruses, such as USUV. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voinov, Alexander V.; Grimes, Steven M.; Brune, Carl R.
Proton double-differential cross sections from 59Co(α,p) 62Ni, 57Fe(α,p) 60Co, 56Fe( 7Li,p) 62Ni, and 55Mn( 6Li,p) 60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtainedmore » with a Monte Carlo technique. Furthermore, excitation energy dependencies were found to be inconsistent with the Fermi-gas model.« less
KOSMOS: a universal morph server for nucleic acids, proteins and their complexes
Seo, Sangjae; Kim, Moon Ki
2012-01-01
KOSMOS is the first online morph server to be able to address the structural dynamics of DNA/RNA, proteins and even their complexes, such as ribosomes. The key functions of KOSMOS are the harmonic and anharmonic analyses of macromolecules. In the harmonic analysis, normal mode analysis (NMA) based on an elastic network model (ENM) is performed, yielding vibrational modes and B-factor calculations, which provide insight into the potential biological functions of macromolecules based on their structural features. Anharmonic analysis involving elastic network interpolation (ENI) is used to generate plausible transition pathways between two given conformations by optimizing a topology-oriented cost function that guarantees a smooth transition without steric clashes. The quality of the computed pathways is evaluated based on their various facets, including topology, energy cost and compatibility with the NMA results. There are also two unique features of KOSMOS that distinguish it from other morph servers: (i) the versatility in the coarse-graining methods and (ii) the various connection rules in the ENM. The models enable us to analyze macromolecular dynamics with the maximum degrees of freedom by combining a variety of ENMs from full-atom to coarse-grained, backbone and hybrid models with one connection rule, such as distance-cutoff, number-cutoff or chemical-cutoff. KOSMOS is available at http://bioengineering.skku.ac.kr/kosmos. PMID:22669912
Unsteady aerodynamics and vortex-sheet formation of a two-dimensional airfoil
NASA Astrophysics Data System (ADS)
Xia, X.; Mohseni, K.
2017-11-01
Unsteady inviscid flow models of wings and airfoils have been developed to study the aerodynamics of natural and man-made flyers. Vortex methods have been extensively applied to reduce the dimensionality of these aerodynamic models, based on the proper estimation of the strength and distribution of the vortices in the wake. In such modeling approaches, one of the most fundamental questions is how the vortex sheets are generated and released from sharp edges. To determine the formation of the trailing-edge vortex sheet, the classical Kutta condition can be extended to unsteady situations by realizing that a flow cannot turn abruptly around a sharp edge. This condition can be readily applied to a flat plate or an airfoil with cusped trailing edge since the direction of the forming vortex sheet is known to be tangential to the trailing edge. However, for a finite-angle trailing edge, or in the case of flow separation away from a sharp corner, the direction of the forming vortex sheet is ambiguous. To remove any ad-hoc implementation, the unsteady Kutta condition, the conservation of circulation, as well as the conservation laws of mass and momentum are coupled to analytically solve for the angle, strength, and relative velocity of the trailing-edge vortex sheet. The two-dimensional aerodynamic model together with the proposed vortex-sheet formation condition is verified by comparing flow structures and force calculations with experimental results for airfoils in steady and unsteady background flows.
NASA Technical Reports Server (NTRS)
Berger, J. A.; Schmidt, M. E.; Izawa, M. R. M.; Gellert, R.; Ming, D. W.; Rampe, E. B.; VanBommel, S. J.; McAdam, A. C.
2016-01-01
The Mars rover Curiosity has encountered silica-enriched bedrock (as strata and as veins and associated halos of alteration) in the largely basaltic Murray Fm. of Mt. Sharp in Gale Crater. Alpha Particle X-ray Spectrometer (APXS) investigations of the Murray Fm. revealed decreasing Mg, Ca, Mn, Fe, and Al, and higher S, as silica increased (Fig. 1). A positive correlation between SiO2 and TiO2 (up to 74.4 and 1.7 wt %, respectively) suggests that these two insoluble elements were retained while acidic fluids leached more soluble elements. Other evidence also supports a silica-retaining, acidic alteration model for the Murray Fm., including low trace element abundances consistent with leaching, and the presence of opaline silica and jarosite determined by CheMin. Phosphate stability is a key component of this model because PO4 3- is typically soluble in acidic water and is likely a mobile ion in diagenetic fluids (pH less than 5). However, the Murray rocks are not leached of P; they have variable P2O5 (Fig. 1) ranging from average Mars (0.9 wt%) up to the highest values in Gale Crater (2.5 wt%). Here we evaluate APXS measurements of Murray Fm. bedrock and veins with respect to phosphate stability in acidic fluids as a test of the acidic alteration model for the Lower Mt. Sharp rocks.
Alamgir, Hasanat; Cvitkovich, Yuri; Astrakianakis, George; Yu, Shicheng; Yassi, Annalee
2008-02-01
Health care workers have high risk of exposure to human blood and body fluids (BBF) from patients in acute care and residents in nursing homes or personal homes. This analysis examined the epidemiology for BBF exposure across health care settings (acute care, nursing homes, and community care). Detailed analysis of BBF exposure among the health care workforce in 3 British Columbian health regions was conducted by Poisson regression modeling, with generalized estimating equations to determine the relative risk associated with various occupations. Acute care had the majority of needlestick, sharps, and splash events with the BBF exposure rate in acute care 2 to 3 times higher compared with nursing home and community care settings. Registered nurses had the highest frequency of needlestick, sharps, and splash events. Laboratory assistants had the highest exposure rates from needlestick injuries and splashes, whereas licensed practical nurses had the highest exposure rate from sharps. Most needlestick injuries (51.3%) occurred at the patient's bedside. Sharps incidents occurred primarily in operating rooms (26.9%) and at the patient's bedside (20.9%). Splashes occurred most frequently at the patient's bedside (46.1%) and predominantly affected the eyes or face/mouth. The majority of needlestick/sharps injuries occurred during use for registered nurses, during disposal for licensed practical nurses, and after disposal for care aides. The high risk of BBF exposure for some occupations indicates there is room for improvement to reduce BBF exposure by targeting high-risk groups for prevention strategies.
Shaikh, Mohammad-Ali; Jeong, Haneol S; Mastro, Andrew; Davis, Kathryn; Lysikowski, Jerzy; Kenkel, Jeffrey M
2016-04-01
Venous thromboembolism (VTE) can be a fatal outcome of plastic surgery. Risk assessment models attempt to determine a patient's risk, yet few studies have compared different models in plastic surgery patients. The authors investigated preoperative ASA physical status and 2005 Caprini scores to determine which model was more predictive of VTE. A retrospective chart review examined 1801 patients undergoing contouring and reconstructive procedures from January 2008 to January 2012. Patients were grouped into risk tiers for ASA scores (1-2 = low, 3+ = high) with 2 cutoffs for Caprini scores (1-4 = low, 5+ high; 1-5 = low, 6+ = high), then re-stratified into 3 tiers using Caprini score cutoffs (1-4 = low, 5-8 = high, 9+ = highest; 1-5 = low, 6-8 = high, 9+ = highest). Median scores of VTE patients were compared to those without VTE. Odds ratio and chi-squared analyses were performed. Of the 1598 patients included in the study, 1.50% developed VTE. Median ASA scores differed significantly between comparison groups but Caprini scores did not vary regardless of cutoff. When examining the 2-tiered Caprini scores, using low risk = 1-5 showed a significant relationship between risk tier and DVT development (P = 0.0266). The ASA system yielded the highest odds ratio of VTE development between low and high-risk patients. The Caprini model captured more patients with VTE in its high-risk category. Combining the two models for a more heuristic approach to preoperative care may identify patients at higher risk. 4 Risk. © 2015 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.
Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model
NASA Astrophysics Data System (ADS)
Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.
2011-06-01
The impact of assimilating near-surface soil moisture into the SAFRAN-ISBA-MODCOU (SIM) hydrological model over France is examined. Specifically, the root-zone soil moisture in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN analysis, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN analysis. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone soil moisture bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved soil moisture in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively). When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface soil moisture observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.
Regularized magnetotelluric inversion based on a minimum support gradient stabilizing functional
NASA Astrophysics Data System (ADS)
Xiang, Yang; Yu, Peng; Zhang, Luolei; Feng, Shaokong; Utada, Hisashi
2017-11-01
Regularization is used to solve the ill-posed problem of magnetotelluric inversion usually by adding a stabilizing functional to the objective functional that allows us to obtain a stable solution. Among a number of possible stabilizing functionals, smoothing constraints are most commonly used, which produce spatially smooth inversion results. However, in some cases, the focused imaging of a sharp electrical boundary is necessary. Although past works have proposed functionals that may be suitable for the imaging of a sharp boundary, such as minimum support and minimum gradient support (MGS) functionals, they involve some difficulties and limitations in practice. In this paper, we propose a minimum support gradient (MSG) stabilizing functional as another possible choice of focusing stabilizer. In this approach, we calculate the gradient of the model stabilizing functional of the minimum support, which affects both the stability and the sharp boundary focus of the inversion. We then apply the discrete weighted matrix form of each stabilizing functional to build a unified form of the objective functional, allowing us to perform a regularized inversion with variety of stabilizing functionals in the same framework. By comparing the one-dimensional and two-dimensional synthetic inversion results obtained using the MSG stabilizing functional and those obtained using other stabilizing functionals, we demonstrate that the MSG results are not only capable of clearly imaging a sharp geoelectrical interface but also quite stable and robust. Overall good performance in terms of both data fitting and model recovery suggests that this stabilizing functional is effective and useful in practical applications.[Figure not available: see fulltext.
Quasi-exact solvability and entropies of the one-dimensional regularised Calogero model
NASA Astrophysics Data System (ADS)
Pont, Federico M.; Osenda, Omar; Serra, Pablo
2018-05-01
The Calogero model can be regularised through the introduction of a cutoff parameter which removes the divergence in the interaction term. In this work we show that the one-dimensional two-particle regularised Calogero model is quasi-exactly solvable and that for certain values of the Hamiltonian parameters the eigenfunctions can be written in terms of Heun’s confluent polynomials. These eigenfunctions are such that the reduced density matrix of the two-particle density operator can be obtained exactly as well as its entanglement spectrum. We found that the number of non-zero eigenvalues of the reduced density matrix is finite in these cases. The limits for the cutoff distance going to zero (Calogero) and infinity are analysed and all the previously obtained results for the Calogero model are reproduced. Once the exact eigenfunctions are obtained, the exact von Neumann and Rényi entanglement entropies are studied to characterise the physical traits of the model. The quasi-exactly solvable character of the model is assessed studying the numerically calculated Rényi entropy and entanglement spectrum for the whole parameter space.
Midlatitude D region variations measured from broadband radio atmospherics
NASA Astrophysics Data System (ADS)
Han, Feng
The high power, broadband very low frequency (VLF, 3--30 kHz) and extremely low frequency (ELF, 3--3000 Hz) electromagnetic waves generated by lightning discharges and propagating in the Earth-ionosphere waveguide can be used to measure the average electron density profile of the lower ionosphere (D region) across the wave propagation path due to several reflections by the upper boundary (lower ionosphere) of the waveguide. This capability makes it possible to frequently and even continuously monitor the D region electron density profile variations over geographically large regions, which are measurements that are essentially impossible by other means. These guided waves, usually called atmospherics (or sferics for short), are recorded by our sensors located near Duke University. The purpose of this work is to develop and implement algorithms to derive the variations of D region electron density profile which is modeled by two parameters (one is height and another is sharpness), by comparing the recorded sferic spectra to a series of model simulated sferic spectra from using a finite difference time domain (FDTD) code. In order to understand the time scales, magnitudes and sources for the midlatitude nighttime D region variations, we analyzed the sferic data of July and August 2005, and extracted both the height and sharpness of the D region electron density profile. The heights show large temporal variations of several kilometers on some nights and the relatively stable behavior on others. Statistical calculations indicate that the hourly average heights during the two months range between 82.0 km and 87.2 km with a mean value of 84.9 km and a standard deviation of 1.1 km. We also observed spatial variations of height as large as 2.0 km over 5 degrees latitudes on some nights, and no spatial variation on others. In addition, the measured height variations exhibited close correlations with local lightning occurrence rate on some nights but no correlation with local lightning or displaced lightning on others. The nighttime profile sharpness during 2.5 hours in two different nights was calculated, and the results were compared to the equivalent sharpness derived from International Reference Ionosphere (IRI) models. Both the absolute values and variation trends in IRI models are different from those in broadband measurements. Based on sferic data similar to those for nighttime, we also measured the day-time D region electron density profile variations in July and August 2005 near Duke University. As expected, the solar radiation is the dominant but not the only determinant source for the daytime D region profile height temporal variations. The observed quiet time heights showed close correlations with solar zenith angle changes but unexpected spatial variations not linked to the solar zenith angle were also observed on some days, with 15% of days exhibiting regional differences larger than 0.5 km. During the solar flare, the induced height change was approximately proportional to the logarithm of the X-ray fluxes. During the rising and decaying phases of the solar flare, the height changes correlated more consistently with the short (wavelength 0.5--4 A), rather than the long (wavelength 1--8 A) X-ray flux changes. The daytime profile sharpness during morning, noontime and afternoon periods in three different days and for the solar zenith angle range 20 to 75 degrees was calculated. These broadband measured results were compared to narrowband VLF measurements, IRI models and Faraday rotation base IRI models (called FIRI). The estimated sharpness from all these sources was more consistent when the solar zenith angle was small than when it was large. By applying the nighttime and daytime measurement techniques, we also derived the D region variations during sunrise and sunset periods. The measurements showed that both the electron density profile height and sharpness decrease during the sunrise period while increase during the sunset period.
Quasi-phases and pseudo-transitions in one-dimensional models with nearest neighbor interactions
NASA Astrophysics Data System (ADS)
de Souza, S. M.; Rojas, Onofre
2018-01-01
There are some particular one-dimensional models, such as the Ising-Heisenberg spin models with a variety of chain structures, which exhibit unexpected behaviors quite similar to the first and second order phase transition, which could be confused naively with an authentic phase transition. Through the analysis of the first derivative of free energy, such as entropy, magnetization, and internal energy, a "sudden" jump that closely resembles a first-order phase transition at finite temperature occurs. However, by analyzing the second derivative of free energy, such as specific heat and magnetic susceptibility at finite temperature, it behaves quite similarly to a second-order phase transition exhibiting an astonishingly sharp and fine peak. The correlation length also confirms the evidence of this pseudo-transition temperature, where a sharp peak occurs at the pseudo-critical temperature. We also present the necessary conditions for the emergence of these quasi-phases and pseudo-transitions.
Determination of deuterium–tritium critical burn-up parameter by four temperature theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazirzadeh, M.; Ghasemizad, A.; Khanbabei, B.
Conditions for thermonuclear burn-up of an equimolar mixture of deuterium-tritium in non-equilibrium plasma have been investigated by four temperature theory. The photon distribution shape significantly affects the nature of thermonuclear burn. In three temperature model, the photon distribution is Planckian but in four temperature theory the photon distribution has a pure Planck form below a certain cut-off energy and then for photon energy above this cut-off energy makes a transition to Bose-Einstein distribution with a finite chemical potential. The objective was to develop four temperature theory in a plasma to calculate the critical burn up parameter which depends upon initialmore » density, the plasma components initial temperatures, and hot spot size. All the obtained results from four temperature theory model are compared with 3 temperature model. It is shown that the values of critical burn-up parameter calculated by four temperature theory are smaller than those of three temperature model.« less
da Silva, F; da Graça, S; Heuraux, S; Conway, G D
2010-10-01
Experimental reflectometry signals obtained in the absence of a cutoff layer, with the possibility of interferometric operation excluded, show a coherent and recurrent frequency spectrum signature similar to an Alfvén cascade signature. A possible explanation resides in the modulation of a resonant Bragg backscattering response by an Alfvén mode structure located at the center of the plasma whose frequency of oscillation modulates the backscattered signal in a conformable way. This situation is modeled and simulated using an O-mode full-wave Maxwell finite-difference time-domain code and the resulting signatures are discussed.
Polytypism in the ground state structure of the Lennard-Jonesium.
Pártay, Lívia B; Ortner, Christoph; Bartók, Albert P; Pickard, Chris J; Csányi, Gábor
2017-07-26
We present a systematic study of the stability of nineteen different periodic structures using the finite range Lennard-Jones potential model discussing the effects of pressure, potential truncation, cutoff distance and Lennard-Jones exponents. The structures considered are the hexagonal close packed (hcp), face centred cubic (fcc) and seventeen other polytype stacking sequences, such as dhcp and 9R. We found that at certain pressure and cutoff distance values, neither fcc nor hcp is the ground state structure as previously documented, but different polytypic sequences. This behaviour shows a strong dependence on the way the tail of the potential is truncated.
Picot, Laurent; Ravallec, Rozenn; Fouchereau-Péron, Martine; Vandanjon, Laurent; Jaouen, Pascal; Chaplain-Derouiniot, Maryse; Guérard, Fabienne; Chabeaud, Aurélie; Legal, Yves; Alvarez, Oscar Martinez; Bergé, Jean-Pascal; Piot, Jean-Marie; Batista, Irineu; Pires, Carla; Thorkelsson, Gudjon; Delannoy, Charles; Jakobsen, Greta; Johansson, Inez; Bourseau, Patrick
2010-08-30
Numerous studies have demonstrated that in vitro controlled enzymatic hydrolysis of fish and shellfish proteins leads to bioactive peptides. Ultrafiltration (UF) and/or nanofiltration (NF) can be used to refine hydrolysates and also to fractionate them in order to obtain a peptide population enriched in selected sizes. This study was designed to highlight the impact of controlled UF and NF on the stability of biological activities of an industrial fish protein hydrolysate (FPH) and to understand whether fractionation could improve its content in bioactive peptides. The starting fish protein hydrolysate exhibited a balanced amino acid composition, a reproducible molecular weight (MW) profile, and a low sodium chloride content, allowing the study of its biological activity. Successive fractionation on UF and NF membranes allowed concentration of peptides of selected sizes, without, however, carrying out sharp separations, some MW classes being found in several fractions. Peptides containing Pro, Hyp, Asp and Glu were concentrated in the UF and NF retentates compared to the unfractionated hydrolysate and UF permeate, respectively. Gastrin/cholecystokinin-like peptides were present in the starting FPH, UF and NF fractions, but fractionation did not increase their concentration. In contrast, quantification of calcitonin gene-related peptide (CGRP)-like peptides demonstrated an increase in CGRP-like activities in the UF permeate, relative to the starting FPH. The starting hydrolysate also showed a potent antioxidant and radical scavenging activity, and a moderate angiotensin-converting enzyme (ACE)-1 inhibitory activity, which were not increased by UF and NF fractionation. Fractionation of an FPH using membrane separation, with a molecular weight cut-off adapted to the peptide composition, may provide an effective means to concentrate CGRP-like peptides and peptides enriched in selected amino acids. The peptide size distribution observed after UF and NF fractionation demonstrates that it is misleading to characterize the fractions obtained by membrane filtration according to the MW cut-off of the membrane only, as is currently done in the literature. Copyright (c) 2010 Society of Chemical Industry.
Estella Gilbert; James A. Powell; Jesse A. Logan; Barbara J. Bentz
2004-01-01
In all organisms, phenotypic variability is an evolutionary stipulation. Because the development of poikilothermic organisms depends directly on the temperature of their habitat, environmental variability is also an integral factor in models of their phenology. In this paper we present two existing phenology models, the distributed delay model and the Sharpe and...
Optimized mid-infrared thermal emitters for applications in aircraft countermeasures
NASA Astrophysics Data System (ADS)
Lorenzo, Simón G.; You, Chenglong; Granier, Christopher H.; Veronis, Georgios; Dowling, Jonathan P.
2017-12-01
We introduce an optimized aperiodic multilayer structure capable of broad angle and high temperature thermal emission over the 3 μm to 5 μm atmospheric transmission band. This aperiodic multilayer structure composed of alternating layers of silicon carbide and graphite on top of a tungsten substrate exhibits near maximal emittance in a 2 μm wavelength range centered in the mid-wavelength infrared band traditionally utilized for atmospheric transmission. We optimize the layer thicknesses using a hybrid optimization algorithm coupled to a transfer matrix code to maximize the power emitted in this mid-infrared range normal to the structure's surface. We investigate possible applications for these structures in mimicking 800-1000 K aircraft engine thermal emission signatures and in improving countermeasure effectiveness against hyperspectral imagers. We find these structures capable of matching the Planck blackbody curve in the selected infrared range with relatively sharp cutoffs on either side, leading to increased overall efficiency of the structures. Appropriately optimized multilayer structures with this design could lead to matching a variety of mid-infrared thermal emissions. For aircraft countermeasure applications, this method could yield a flare design capable of mimicking engine spectra and breaking the lock of hyperspectral imaging systems.
NIR DLP hyperspectral imaging system for medical applications
NASA Astrophysics Data System (ADS)
Wehner, Eleanor; Thapa, Abhas; Livingston, Edward; Zuzak, Karel
2011-03-01
DLP® hyperspectral reflectance imaging in the visible range has been previously shown to quantify hemoglobin oxygenation in subsurface tissues, 1 mm to 2 mm deep. Extending the spectral range into the near infrared reflects biochemical information from deeper subsurface tissues. Unlike any other illumination method, the digital micro-mirror device, DMD, chip is programmable, allowing the user to actively illuminate with precisely predetermined spectra of illumination with a minimum bandpass of approximately 10 nm. It is possible to construct active spectral-based illumination that includes but is not limited to containing sharp cutoffs to act as filters or forming complex spectra, varying the intensity of light at discrete wavelengths. We have characterized and tested a pure NIR, 760 nm to 1600 nm, DLP hyperspectral reflectance imaging system. In its simplest application, the NIR system can be used to quantify the percentage of water in a subject, enabling edema visualization. It can also be used to map vein structure in a patient in real time. During gall bladder surgery, this system could be invaluable in imaging bile through fatty tissue, aiding surgeons in locating the common bile duct in real time without injecting any contrast agents.
Transient lateral photovoltaic effect in synthetic single crystal diamond
NASA Astrophysics Data System (ADS)
Prestopino, G.; Marinelli, M.; Milani, E.; Verona, C.; Verona-Rinati, G.
2017-10-01
A transient lateral photovoltaic effect (LPE) is reported for a metal-semiconductor structure of synthetic single crystal diamond (SCD). A SCD Schottky photodiode was specifically designed to measure a LPE under collimated irradiation from a tunable pulsed laser. A transient lateral photovoltage parallel to the Schottky junction was indeed detected. LPE on the p-type doped SCD side showed a non-linearity of 2% and a fast response time, with a rise time of 2 μs and a decay time of 12 μs. The position sensitivity (up to 30 mV/mm at a laser wavelength of 220 nm and a pulse energy density of 2.9 μJ/mm2) was measured as a function of laser wavelength, and an ultraviolet (UV)-to-visible contrast ratio of about four orders of magnitude with a sharp cutoff at 225 nm was observed. Our results demonstrate that a large LPE at UV wavelengths is achievable in synthetic single crystal diamond, potentially opening opportunities for the study and application of LPE in diamond and for the fabrication of high performance visible blind UV position sensitive detectors with high sensitivity and microsecond scale response time.
Quantum Trajectories and Their Statistics for Remotely Entangled Quantum Bits
NASA Astrophysics Data System (ADS)
Chantasri, Areeya; Kimchi-Schwartz, Mollie E.; Roch, Nicolas; Siddiqi, Irfan; Jordan, Andrew N.
2016-10-01
We experimentally and theoretically investigate the quantum trajectories of jointly monitored transmon qubits embedded in spatially separated microwave cavities. Using nearly quantum-noise-limited superconducting amplifiers and an optimized setup to reduce signal loss between cavities, we can efficiently track measurement-induced entanglement generation as a continuous process for single realizations of the experiment. The quantum trajectories of transmon qubits naturally split into low and high entanglement classes. The distribution of concurrence is found at any given time, and we explore the dynamics of entanglement creation in the state space. The distribution exhibits a sharp cutoff in the high concurrence limit, defining a maximal concurrence boundary. The most-likely paths of the qubits' trajectories are also investigated, resulting in three probable paths, gradually projecting the system to two even subspaces and an odd subspace, conforming to a "half-parity" measurement. We also investigate the most-likely time for the individual trajectories to reach their most entangled state, and we find that there are two solutions for the local maximum, corresponding to the low and high entanglement routes. The theoretical predictions show excellent agreement with the experimental entangled-qubit trajectory data.
NASA Astrophysics Data System (ADS)
Brown, J. C.; Mallik, P. C. V.; Badnell, N. R.
2010-06-01
Brown and Mallik (BM) recently claimed that non-thermal recombination (NTR) can be a dominant source of flare hard X-rays (HXRs) from hot coronal and chromospheric sources. However, major discrepancies between the thermal continua predicted by BM and by the Chianti database as well as RHESSI flare data, led us to discover substantial errors in the heuristic expression used by BM to extend the Kramers expressions beyond the hydrogenic case. Here we present the relevant corrected expressions and show the key modified results. We conclude that, in most cases, NTR emission was overestimated by a factor of 1-8 by BM but is typically still large enough (as much as 20-30% of the total emission) to be very important for electron spectral inference and detection of electron spectral features such as low energy cut-offs since the recombination spectra contain sharp edges. For extreme temperature regimes and/or if the Fe abundance were as high as some values claimed, NTR could even be the dominant source of flare HXRs, reducing the electron number and energy budget, problems such as in the extreme coronal HXR source cases reported by e.g. Krucker et al.
Sharp Interface Tracking in Rotating Microflows of Solvent Extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glimm, James; Almeida, Valmor de; Jiao, Xiangmin
2013-01-08
The objective of this project is to develop a specialized sharp interface tracking simulation capability for predicting interaction of micron-sized drops and bubbles in rotating flows relevant to optimized design of contactor devices used in solvent extraction processes of spent nuclear fuel reprocessing. The primary outcomes of this project include the capability to resolve drops and bubbles micro-hydrodynamics in solvent extraction contactors, determining from first principles continuum fluid mechanics how micro-drops and bubbles interact with each other and the surrounding shearing fluid for realistic flows. In the near term, this effort will play a central role in providing parameters andmore » insight into the flow dynamics of models that average over coarser scales, say at the millimeter unit length. In the longer term, it will prove to be the platform to conduct full-device, detailed simulations as parallel computing power reaches the exaflop level. The team will develop an accurate simulation tool for flows containing interacting droplets and bubbles with sharp interfaces under conditions that mimic those found in realistic contactor operations. The main objective is to create an off-line simulation capability to model drop and bubble interactions in a domain representative of the averaged length scale. The technical approach is to combine robust interface tracking software, subgrid modeling, validation quality experiments, powerful computational hardware, and a team with simulation modeling, physical modeling and technology integration experience. Simulations will then fully resolve the microflow of drops and bubbles at the microsecond time scale. This approach is computationally intensive but very accurate in treating important coupled physical phenomena in the vicinity of interfaces. The method makes it possible to resolve spatial scales smaller than the typical distance between bubbles and to model some non-equilibrium thermodynamic features such as finite critical tension in cavitating liquids« less
3D Surface Reconstruction and Volume Calculation of Rills
NASA Astrophysics Data System (ADS)
Brings, Christine; Gronz, Oliver; Becker, Kerstin; Wirtz, Stefan; Seeger, Manuel; Ries, Johannes B.
2015-04-01
We use the low-cost, user-friendly photogrammetric Structure from Motion (SfM) technique, which is implemented in the Software VisualSfM, for 3D surface reconstruction and volume calculation of an 18 meter long rill in Luxembourg. The images were taken with a Canon HD video camera 1) before a natural rainfall event, 2) after a natural rainfall event and before a rill experiment and 3) after a rill experiment. Recording with a video camera results compared to a photo camera not only a huge time advantage, the method also guarantees more than adequately overlapping sharp images. For each model, approximately 8 minutes of video were taken. As SfM needs single images, we automatically selected the sharpest image from 15 frame intervals. The sharpness was estimated using a derivative-based metric. Then, VisualSfM detects feature points in each image, searches matching feature points in all image pairs, recovers the camera positions and finally by triangulation of camera positions and feature points the software reconstructs a point cloud of the rill surface. From the point cloud, 3D surface models (meshes) are created and via difference calculations of the pre and post models a visualization of the changes (erosion and accumulation areas) and quantification of erosion volumes are possible. The calculated volumes are presented in spatial units of the models and so real values must be converted via references. The outputs are three models at three different points in time. The results show that especially using images taken from suboptimal videos (bad lighting conditions, low contrast of the surface, too much in-motion unsharpness), the sharpness algorithm leads to much more matching features. Hence the point densities of the 3D models are increased and thereby clarify the calculations.
Budczies, Jan; Klauschen, Frederick; Sinn, Bruno V.; Győrffy, Balázs; Schmitt, Wolfgang D.; Darb-Esfahani, Silvia; Denkert, Carsten
2012-01-01
Gene or protein expression data are usually represented by metric or at least ordinal variables. In order to translate a continuous variable into a clinical decision, it is necessary to determine a cutoff point and to stratify patients into two groups each requiring a different kind of treatment. Currently, there is no standard method or standard software for biomarker cutoff determination. Therefore, we developed Cutoff Finder, a bundle of optimization and visualization methods for cutoff determination that is accessible online. While one of the methods for cutoff optimization is based solely on the distribution of the marker under investigation, other methods optimize the correlation of the dichotomization with respect to an outcome or survival variable. We illustrate the functionality of Cutoff Finder by the analysis of the gene expression of estrogen receptor (ER) and progesterone receptor (PgR) in breast cancer tissues. This distribution of these important markers is analyzed and correlated with immunohistologically determined ER status and distant metastasis free survival. Cutoff Finder is expected to fill a relevant gap in the available biometric software repertoire and will enable faster optimization of new diagnostic biomarkers. The tool can be accessed at http://molpath.charite.de/cutoff. PMID:23251644
Geomagnetic cutoffs: A review for space dosimetry applications
NASA Astrophysics Data System (ADS)
Smart, D. F.; Shea, M. A.
1994-10-01
The earth's magnetic field acts as a shield against charged particle radiation from interplanetary space, technically described as the geomagnetic cutoff. The cutoff rigidity problem (except for the dipole special case) has 'no solution in closed form'. The dipole case yields the Stormer equation which has been repeatedly applied to the earth in hopes of providing useful approximations of cutoff rigidities. Unfortunately the earth's magnetic field has significant deviations from dipole geometry, and the Stormer cutoffs are not adequate for most applications. By application of massive digital computer power it is possible to determine realistic geomagnetic cutoffs derived from high order simulation of the geomagnetic field. Using this technique, 'world-grids' of directional cutoffs for the earth's surface and for a limited number of satellite altitudes have been derived. However, this approach is so expensive and time comsuming it is impractical for most spacecraft orbits, and approximations must be used. The world grids of cutoff rigidities are extensively used as lookup tables, normalization points and interpolation aids to estimate the effective geomagnetic cutoff rigidity of a specific location in space. We review the various options for estimating the cutoff rigidity for earth-orbiting satellites.
Origins of sharp cosmic-ray electron structures and the DAMPE excess
NASA Astrophysics Data System (ADS)
Huang, Xian-Jun; Wu, Yue-Liang; Zhang, Wei-Hong; Zhou, Yu-Feng
2018-05-01
Nearby sources may contribute to cosmic-ray electron (CRE) structures at high energies. Recently, the first DAMPE results on the CRE flux hinted at a narrow excess at energy ˜1.4 TeV . We show that in general a spectral structure with a narrow width appears in two scenarios. The first is spectrum broadening for the continuous sources with a δ -function-like injection spectrum. In this scenario, a finite width can develop after propagation through the Galaxy, which can reveal the distance of the source. Well-motivated sources include minispikes and subhalos formed by dark matter (DM) particles χs which annihilate directly into e+e- pairs. The second is phase-space shrinking for burstlike sources with a power-law-like injection spectrum. The spectrum after propagation can shrink at a cooling-related cutoff energy and form a sharp spectral peak. The peak can be more prominent due to the energy-dependent diffusion. In this scenario, the width of the excess constrains both the power index and the distance of the source. Possible such sources are pulsar wind nebulae (PWNe) and supernova remnants (SNRs). We analysis the DAMPE excess and find that the continuous DM sources should be fairly close within ˜0.3 kpc , and the annihilation cross sections are close to the thermal value. For the burstlike source, the narrow width of the excess suggests that the injection spectrum must be hard with power index significantly less than two, the distance is within ˜(3 - 4 ) kpc , and the age of the source is ˜0.16 Myr . In both scenarios, large anisotropies in the CRE flux are predicted. We identify possible candidates of minispike and PWN sources in the current Fermi-LAT 3FGL and ATNF catalog, respectively. The diffuse γ -rays from these sources can be well below the Galactic diffuse γ -ray backgrounds and less constrained by the Fermi-LAT data, if they are located at the low Galactic latitude regions.
Earth Observations taken by Expedition 38 crewmember
2013-12-30
ISS038-E-023651 (26 Dec. 2013) --- Lake Sharpe near Lower Brule, South Dakota is featured in this image photographed by an Expedition 38 crew member on the International Space Station. The Missouri River rises in the Rocky Mountains of western Montana, and flows generally to the southeast for approximately 3,767 kilometers (2,341 miles) to its confluence with the Mississippi River north of St. Louis, Missouri -- making it the longest river in North America. The river does not follow a straight southeasterly course along this distance, but includes may meander bends such as illustrated in this photograph. This particular bend is occupied by Lake Sharpe, an approximately 130-kilometer (80 miles) long reservoir formed behind the Big Bend Dam on the Missouri River. The lake surface is frozen and covered with snow, presenting a uniform white appearance in the image. As meander bends develop, they tend to assume a distinctive U-shape when viewed from above. Over time, the river channel can continue to cut into the ends of the "U", eventually bringing them so close together that the river then cuts across the gap to achieve a shorter flow path, essentially short-circuiting or cutting off the meander bend. When this happens and the meander ceases to be part of the active river channel, it may become an oxbow lake. The distance across the narrow neck of land (lower right) associated with this meander near Lower Brule, South Dakota is approximately one kilometer (0.62 miles); however, as the river flow is controlled by the Big Bend Dam downstream, the natural process of meander cutoff has been significantly slowed. The snow cover also highlights circular agricultural fields on the small peninsula within the meander bend. This type of field indicates center-pivot irrigation, where water is distributed from a central point radially outwards using sprinklers to cover the field area. Crops grown here include corn and soybeans according to data from the US Department of Agriculture's CropScape database.
Silicate Phases on the Surfaces of Trojan Asteroids
NASA Astrophysics Data System (ADS)
Martin, Audrey; Emery, Joshua P.; Lindsay, Sean S.
2017-10-01
Determining the origin of asteroids provides an effective means of constraining the solar system’s dynamic past. Jupiter Trojan asteroids (hereafter Trojans) may help in determining the amount of radial mixing that occurred during giant planet migration. Previous studies aimed at characterizing surface composition show that Trojans have low albedo surfaces and are spectrally featureless in the near infrared. The thermal infrared (TIR) wavelength range has advantages for detecting silicates on low albedo asteroids such as Trojans. The 10 μm region exhibits strong features due to the Si-O fundamental molecular vibrations. Silicates that formed in the inner solar system likely underwent thermal annealing, and thus are crystalline, whereas silicates that accreted in the outer solar system experienced less thermal processing, and therefore are more likely to have remained in an amorphous phase. We hypothesize that the Trojans formed in the outer solar system (i.e., the Kuiper Belt), and therefore will have a more dominant amorphous spectral silicate component. With TIR spectra from the Spitzer Space Telescope, we identify mineralogical features from the surface of 11 Trojan asteroids. Fine-grain mixtures of crystalline pyroxene and olivine exhibit a 10 μm feature with sharp cutoffs between about 9 μm and 12 μm, which create a broad flat plateau. Amorphous phases, when present, smooth the sharp emission features, resulting in a dome-like shape. Preliminary results indicate that the surfaces of analyzed Trojans contain primarily amorphous silicates. Emissivity spectra of asteroids 1986 WD and 4709 Ennomos include small peaks in the 10 μm region, diagnostic of small amounts of crystalline olivine. One explanation is that Trojans formed in the same region as Kuiper Belt objects, and when giant planet migration ensued, they were swept into Jupiter’s stable Lagrange points where they are found today. As such, it is possible that an ancestral group of Kuiper Belt objects were separated from Trojans during large planet migration.
Chara, Liaskou; Eleftherios, Vouzounerakis; Maria, Moirasgenti; Anastasia, Trikoupi; Chryssoula, Staikou
2014-01-01
Background and Aims: Difficult airway assessment is based on various anatomic parameters of upper airway, much of it being concentrated on oral cavity and the pharyngeal structures. The diagnostic value of tests based on neck anatomy in predicting difficult laryngoscopy was assessed in this prospective, open cohort study. Methods: We studied 341 adult patients scheduled to receive general anaesthesia. Thyromental distance (TMD), sternomental distance (STMD), ratio of height to thyromental distance (RHTMD) and neck circumference (NC) were measured pre-operatively. The laryngoscopic view was classified according to the Cormack–Lehane Grade (1-4). Difficult laryngoscopy was defined as Cormack–Lehane Grade 3 or 4. The optimal cut-off points for each variable were identified by using receiver operating characteristic analysis. Sensitivity, specificity and positive predictive value and negative predictive value (NPV) were calculated for each test. Multivariate analysis with logistic regression, including all variables, was used to create a predictive model. Comparisons between genders were also performed. Results: Laryngoscopy was difficult in 12.6% of the patients. The cut-off values were: TMD ≤7 cm, STMD ≤15 cm, RHTMD >18.4 and NC >37.5 cm. The RHTMD had the highest sensitivity (88.4%) and NPV (95.2%), while TMD had the highest specificity (83.9%). The area under curve (AUC) for the TMD, STMD, RHTMD and NC was 0.63, 0.64, 0.62 and 0.54, respectively. The predictive model exhibited a higher and statistically significant diagnostic accuracy (AUC: 0.68, P < 0.001). Gender-specific cut-off points improved the predictive accuracy of NC in women (AUC: 0.65). Conclusions: The TMD, STMD, RHTMD and NC were found to be poor single predictors of difficult laryngoscopy, while a model including all four variables had a significant predictive accuracy. Among the studied tests, gender-specific cut-off points should be used for NC. PMID:24963183
Liaskou, Chara; Chara, Liaskou; Vouzounerakis, Eleftherios; Eleftherios, Vouzounerakis; Moirasgenti, Maria; Maria, Moirasgenti; Trikoupi, Anastasia; Anastasia, Trikoupi; Staikou, Chryssoula; Chryssoula, Staikou
2014-03-01
Difficult airway assessment is based on various anatomic parameters of upper airway, much of it being concentrated on oral cavity and the pharyngeal structures. The diagnostic value of tests based on neck anatomy in predicting difficult laryngoscopy was assessed in this prospective, open cohort study. We studied 341 adult patients scheduled to receive general anaesthesia. Thyromental distance (TMD), sternomental distance (STMD), ratio of height to thyromental distance (RHTMD) and neck circumference (NC) were measured pre-operatively. The laryngoscopic view was classified according to the Cormack-Lehane Grade (1-4). Difficult laryngoscopy was defined as Cormack-Lehane Grade 3 or 4. The optimal cut-off points for each variable were identified by using receiver operating characteristic analysis. Sensitivity, specificity and positive predictive value and negative predictive value (NPV) were calculated for each test. Multivariate analysis with logistic regression, including all variables, was used to create a predictive model. Comparisons between genders were also performed. Laryngoscopy was difficult in 12.6% of the patients. The cut-off values were: TMD ≤7 cm, STMD ≤15 cm, RHTMD >18.4 and NC >37.5 cm. The RHTMD had the highest sensitivity (88.4%) and NPV (95.2%), while TMD had the highest specificity (83.9%). The area under curve (AUC) for the TMD, STMD, RHTMD and NC was 0.63, 0.64, 0.62 and 0.54, respectively. The predictive model exhibited a higher and statistically significant diagnostic accuracy (AUC: 0.68, P < 0.001). Gender-specific cut-off points improved the predictive accuracy of NC in women (AUC: 0.65). The TMD, STMD, RHTMD and NC were found to be poor single predictors of difficult laryngoscopy, while a model including all four variables had a significant predictive accuracy. Among the studied tests, gender-specific cut-off points should be used for NC.
Horneff, Gerd; Becker, Ingrid
2014-07-01
The aim of this study was to define improvement thresholds for the Juvenile Arthritis Disease Activity Score (JADAS). Physicians' and parents' judgements on treatment efficacy, the ACR paediatric response measure (PedACR) and JADAS were extracted from BIKER. Patients were categorized by baseline classes in the 10-joint JADAS (JADAS10) as low (5 to <15), moderate (15 to <25) and high (25 to ≤40). Cut-offs for defining improvement following treatment with biologics or MTX were chosen by calculating the interquartile ranges (IQRs) of the judgement groups and considering the accuracy, sensitivity and specificity of the resulting model. Differences in the change of JADAS10 by JIA category were also analysed by analysis of variance (ANOVA). Sensitivity, specificity and accuracy were calculated. A total of 1315 treatment courses were analysed. The ANOVA of the JIA categories showed no significant differences of the mean JADAS10 in all baseline classes and IQRs also showed good overall limits. Therefore all JIA categories were combined for a collective cut-off. Analysis by baseline class revealed clear cut-off points. Improvement could be defined by the minimal decrease in the JADAS10 in baseline class low by 4 (41%), moderate by 10 (53%) and high by 17 (57%). The model shows values for accuracy from 75.6 to 85.5% and comparable values for sensitivity and specificity. Improvement after 3 months can be defined efficiently by the decrease of the JADAS10, depending on the baseline JADAS10 score, which specifies low, moderate or high disease activity. Our model demonstrates clear cut-off values. The JADAS10 may be used in addition to ACR criteria in clinical trials. Also, since the JADAS10 can easily be calculated at each patient visit, it also can be used for clinical decisions. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Guenot, J.; Kollman, P. A.
1992-01-01
Although aqueous simulations with periodic boundary conditions more accurately describe protein dynamics than in vacuo simulations, these are computationally intensive for most proteins. Trp repressor dynamic simulations with a small water shell surrounding the starting model yield protein trajectories that are markedly improved over gas phase, yet computationally efficient. Explicit water in molecular dynamics simulations maintains surface exposure of protein hydrophilic atoms and burial of hydrophobic atoms by opposing the otherwise asymmetric protein-protein forces. This properly orients protein surface side chains, reduces protein fluctuations, and lowers the overall root mean square deviation from the crystal structure. For simulations with crystallographic waters only, a linear or sigmoidal distance-dependent dielectric yields a much better trajectory than does a constant dielectric model. As more water is added to the starting model, the differences between using distance-dependent and constant dielectric models becomes smaller, although the linear distance-dependent dielectric yields an average structure closer to the crystal structure than does a constant dielectric model. Multiplicative constants greater than one, for the linear distance-dependent dielectric simulations, produced trajectories that are progressively worse in describing trp repressor dynamics. Simulations of bovine pancreatic trypsin were used to ensure that the trp repressor results were not protein dependent and to explore the effect of the nonbonded cutoff on the distance-dependent and constant dielectric simulation models. The nonbonded cutoff markedly affected the constant but not distance-dependent dielectric bovine pancreatic trypsin inhibitor simulations. As with trp repressor, the distance-dependent dielectric model with a shell of water surrounding the protein produced a trajectory in better agreement with the crystal structure than a constant dielectric model, and the physical properties of the trajectory average structure, both with and without a nonbonded cutoff, were comparable. PMID:1304396
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, L.H., E-mail: Luhui.Han@tum.de; Hu, X.Y., E-mail: Xiangyu.Hu@tum.de; Adams, N.A., E-mail: Nikolaus.Adams@tum.de
In this paper we present a scale separation approach for multi-scale modeling of free-surface and two-phase flows with complex interface evolution. By performing a stimulus-response operation on the level-set function representing the interface, separation of resolvable and non-resolvable interface scales is achieved efficiently. Uniform positive and negative shifts of the level-set function are used to determine non-resolvable interface structures. Non-resolved interface structures are separated from the resolved ones and can be treated by a mixing model or a Lagrangian-particle model in order to preserve mass. Resolved interface structures are treated by the conservative sharp-interface model. Since the proposed scale separationmore » approach does not rely on topological information, unlike in previous work, it can be implemented in a straightforward fashion into a given level set based interface model. A number of two- and three-dimensional numerical tests demonstrate that the proposed method is able to cope with complex interface variations accurately and significantly increases robustness against underresolved interface structures.« less
Sharps Injuries and Other Blood and Body Fluid Exposures Among Home Health Care Nurses and Aides
Markkanen, Pia K.; Galligan, Catherine J.; Kriebel, David; Chalupka, Stephanie M.; Kim, Hyun; Gore, Rebecca J.; Sama, Susan R.; Laramie, Angela K.; Davis, Letitia
2009-01-01
Objectives. We quantified risks of sharp medical device (sharps) injuries and other blood and body fluid exposures among home health care nurses and aides, identified risk factors, assessed the use of sharps with safety features, and evaluated underreporting in workplace-based surveillance. Methods. We conducted a questionnaire survey and workplace-based surveillance, collaborating with 9 home health care agencies and 2 labor unions from 2006 to 2007. Results. Approximately 35% of nurses and 6.4% of aides had experienced at least 1 sharps injury during their home health care career; corresponding figures for other blood and body fluid exposures were 15.1% and 6.7%, respectively. Annual sharps injuries incidence rates were 5.1 per 100 full-time equivalent (FTE) nurses and 1.0 per 100 FTE aides. Medical procedures contributing to sharps injuries were injecting medications, administering fingersticks and heelsticks, and drawing blood. Other contributing factors were sharps disposal, contact with waste, and patient handling. Sharps with safety features frequently were not used. Underreporting of sharps injuries to the workplace-based surveillance system was estimated to be about 50%. Conclusions. Sharps injuries and other blood and body fluid exposures are serious hazards for home health care nurses and aides. Improvements in hazard intervention are needed. PMID:19890177
Monroe, Holly; Orengo, Ida; Rosen, Theodore
2016-01-01
Background: Needlestickand sharps injuries are the leading causes of morbidity in the dermatologicfield. Among medical specialties, surgeons and dermatologists have the highest rates of needlestickand sharps injuries.The high rates of needlestickand sharps injuries in dermatology not only apply to physicians, but also to nurses, physician assistants, and technicians in the demnatologic field. Needlestickand sharps injuries are of great concern due to the monetary, opportunity, social, and emotional costs associated with their occurrence. Objective: A review of preventative techniques and post-exposure protocols for the majortypes of sharps injuries encountered in dermatologic practice. Design: The terms “needle-stick injuryT’sharps injuryTdermatologic surgery? “post-exposure prophylaxis,”and “health-care associated injury” were used in combinations to search the PubMed database. Relevant studies were reviewed for validity and included. Results The authors discuss the major types of sharps injuries that occur in the dermatologic surgery setting and summarize preventative techniques with respect to each type of sharps injury.The authors also summarize and discuss relevant post-exposure protocols in the event of a sharps injury. Conclusion: The adoption of the discussed methods, techniques, practices, and attire can result in the elimination of the vast majority of dermatologic sharps injuries. PMID:27847548
Reproducibility of the cutoff probe for the measurement of electron density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D. W.; Oh, W. Y.; You, S. J., E-mail: sjyou@cnu.ac.kr
2016-06-15
Since a plasma processing control based on plasma diagnostics attracted considerable attention in industry, the reproducibility of the diagnostics using in this application has become a great interest. Because the cutoff probe is one of the potential candidates for this application, knowing the reproducibility of the cutoff probe measurement becomes quit important in the cutoff probe application research. To test the reproducibility of the cutoff probe measurement, in this paper, a comparative study among the different cutoff probe measurements was performed. The comparative study revealed remarkable result: the cutoff probe has a great reproducibility for the electron density measurement, i.e.,more » there are little differences among measurements by different probes made by different experimenters. The discussion including the reason for the result was addressed via this paper by using a basic measurement principle of cutoff probe and a comparative experiment with Langmuir probe.« less
Shi, Yuyan; Sears, Lindsay E; Coberley, Carter R; Pope, James E
2013-04-01
Adverse health and productivity outcomes have imposed a considerable economic burden on employers. To facilitate optimal worksite intervention designs tailored to differing employee risk levels, the authors established cutoff points for an Individual Well-Being Score (IWBS) based on a global measure of well-being. Cross-sectional associations between IWBS and adverse health and productivity outcomes, including high health care cost, emergency room visits, short-term disability days, absenteeism, presenteeism, low job performance ratings, and low intentions to stay with the employer, were studied in a sample of 11,702 employees from a large employer. Receiver operating characteristics curves were evaluated to detect a single optimal cutoff value of IWBS for predicting 2 or more adverse outcomes. More granular segmentation was achieved by computing relative risks of each adverse outcome from logistic regressions accounting for sociodemographic characteristics. Results showed strong and significant nonlinear associations between IWBS and health and productivity outcomes. An IWBS of 75 was found to be the optimal single cutoff point to discriminate 2 or more adverse outcomes. Logistic regression models found abrupt reductions of relative risk also clustered at IWBS cutoffs of 53, 66, and 88, in addition to 75, which segmented employees into high, high-medium, medium, low-medium, and low risk groups. To determine validity and generalizability, cutoff values were applied in a smaller employee population (N=1853) and confirmed significant differences between risk groups across health and productivity outcomes. The reported segmentation of IWBS into discrete cohorts based on risk of adverse health and productivity outcomes should facilitate well-being comparisons and worksite interventions.
The dust scattering halo of Cygnus X-3
NASA Astrophysics Data System (ADS)
Corrales, L. R.; Paerels, F.
2015-10-01
Dust grains scatter X-ray light through small angles, producing a diffuse halo image around bright X-ray point sources situated behind a large amount of interstellar material. We present analytic solutions to the integral for the dust scattering intensity, which allow for a Bayesian analysis of the scattering halo around Cygnus X-3. Fitting the optically thin 4-6 keV halo surface brightness profile yields the dust grain size and spatial distribution. We assume a power-law distribution of grain sizes (n ∝ a-p) and fit for p, the grain radius cut-off amax, and dust mass column. We find that a p ≈ 3.5 dust grain size distribution with amax ≈ 0.2 μm fits the halo profile relatively well, whether the dust is distributed uniformly along the line of sight or in clumps. We find that a model consisting of two dust screens, representative of foreground spiral arms, requires the foreground Perseus arm to contain 80 per cent of the total dust mass. The remaining 20 per cent of the dust, which may be associated with the outer spiral arm of the Milky Way, is located within 1 kpc of Cyg X-3. Regardless of which model was used, we found τ_sca ˜ 2 E_keV^{-2}. We examine the energy resolved haloes of Cyg X-3 from 1 to 6 keV and find that there is a sharp drop in scattering halo intensity when E < 2-3 keV, which cannot be explained with multiple scattering effects. We hypothesize that this may be caused by large dust grains or material with unique dielectric properties, causing the scattering cross-section to depart from the Rayleigh-Gans approximation that is used most often in X-ray scattering studies. The foreground Cyg OB2 association, which contains several evolved stars with large extinction values, is a likely culprit for grains of unique size or composition.
McCarter, Stuart J; St Louis, Erik K; Duwell, Ethan J; Timm, Paul C; Sandness, David J; Boeve, Bradley F; Silber, Michael H
2014-10-01
We aimed to determine whether phasic burst duration and conventional REM sleep without atonia (RSWA) methods could accurately diagnose REM sleep behavior disorder (RBD) patients with comorbid OSA. We visually analyzed RSWA phasic burst durations, phasic, "any," and tonic muscle activity by 3-s mini-epochs, phasic activity by 30-s (AASM rules) epochs, and conducted automated REM atonia index (RAI) analysis. Group RSWA metrics were analyzed and regression models fit, with receiver operating characteristic (ROC) curves determining the best diagnostic cutoff thresholds for RBD. Both split-night and full-night polysomnographic studies were analyzed. N/A. Parkinson disease (PD)-RBD (n = 20) and matched controls with (n = 20) and without (n = 20) OSA. N/A. All mean RSWA phasic burst durations and muscle activities were higher in PD-RBD patients than controls (P < 0.0001), and RSWA associations with PD-RBD remained significant when adjusting for age, gender, and REM AHI (P < 0.0001). RSWA muscle activity (phasic, "any") cutoffs for 3-s mini-epoch scorings were submentalis (SM) (15.5%, 21.6%), anterior tibialis (AT) (30.2%, 30.2%), and combined SM/AT (37.9%, 43.4%). Diagnostic cutoffs for 30-s epochs (AASM criteria) were SM 2.8%, AT 11.3%, and combined SM/AT 34.7%. Tonic muscle activity cutoff of 1.2% was 100% sensitive and specific, while RAI (SM) cutoff was 0.88. Phasic muscle burst duration cutoffs were: SM (0.65) and AT (0.79) seconds. Combining phasic burst durations with RSWA muscle activity improved sensitivity and specificity of RBD diagnosis. This study provides evidence for REM sleep without atonia diagnostic thresholds applicable in Parkinson disease-REM sleep behavior disorder (PD-RBD) patient populations with comorbid OSA that may be useful toward distinguishing PD-RBD in typical outpatient populations. © 2014 Associated Professional Sleep Societies, LLC.
A Unified Dynamic Model for Learning, Replay, and Sharp-Wave/Ripples.
Jahnke, Sven; Timme, Marc; Memmesheimer, Raoul-Martin
2015-12-09
Hippocampal activity is fundamental for episodic memory formation and consolidation. During phases of rest and sleep, it exhibits sharp-wave/ripple (SPW/R) complexes, which are short episodes of increased activity with superimposed high-frequency oscillations. Simultaneously, spike sequences reflecting previous behavior, such as traversed trajectories in space, are replayed. Whereas these phenomena are thought to be crucial for the formation and consolidation of episodic memory, their neurophysiological mechanisms are not well understood. Here we present a unified model showing how experience may be stored and thereafter replayed in association with SPW/Rs. We propose that replay and SPW/Rs are tightly interconnected as they mutually generate and support each other. The underlying mechanism is based on the nonlinear dendritic computation attributable to dendritic sodium spikes that have been prominently found in the hippocampal regions CA1 and CA3, where SPW/Rs and replay are also generated. Besides assigning SPW/Rs a crucial role for replay and thus memory processing, the proposed mechanism also explains their characteristic features, such as the oscillation frequency and the overall wave form. The results shed a new light on the dynamical aspects of hippocampal circuit learning. During phases of rest and sleep, the hippocampus, the "memory center" of the brain, generates intermittent patterns of strongly increased overall activity with high-frequency oscillations, the so-called sharp-wave/ripples. We investigate their role in learning and memory processing. They occur together with replay of activity sequences reflecting previous behavior. Developing a unifying computational model, we propose that both phenomena are tightly linked, by mutually generating and supporting each other. The underlying mechanism depends on nonlinear amplification of synchronous inputs that has been prominently found in the hippocampus. Besides assigning sharp-wave/ripples a crucial role for replay generation and thus memory processing, the proposed mechanism also explains their characteristic features, such as the oscillation frequency and the overall wave form. Copyright © 2015 the authors 0270-6474/15/3516236-23$15.00/0.
Evaluation of an auditory model for echo delay accuracy in wideband biosonar.
Sanderson, Mark I; Neretti, Nicola; Intrator, Nathan; Simmons, James A
2003-09-01
In a psychophysical task with echoes that jitter in delay, big brown bats can detect changes as small as 10-20 ns at an echo signal-to-noise ratio of approximately 49 dB and 40 ns at approximately 36 dB. This performance is possible to achieve with ideal coherent processing of the wideband echoes, but it is widely assumed that the bat's peripheral auditory system is incapable of encoding signal waveforms to represent delay with the requisite precision or phase at ultrasonic frequencies. This assumption was examined by modeling inner-ear transduction with a bank of parallel bandpass filters followed by low-pass smoothing. Several versions of the filterbank model were tested to learn how the smoothing filters, which are the most critical parameter for controlling the coherence of the representation, affect replication of the bat's performance. When tested at a signal-to-noise ratio of 36 dB, the model achieved a delay acuity of 83 ns using a second-order smoothing filter with a cutoff frequency of 8 kHz. The same model achieved a delay acuity of 17 ns when tested with a signal-to-noise ratio of 50 dB. Jitter detection thresholds were an order of magnitude worse than the bat for fifth-order smoothing or for lower cutoff frequencies. Most surprising is that effectively coherent reception is possible with filter cutoff frequencies well below any of the ultrasonic frequencies contained in the bat's sonar sounds. The results suggest that only a modest rise in the frequency response of smoothing in the bat's inner ear can confer full phase sensitivity on subsequent processing and account for the bat's fine acuity or delay.
Tachyon condensation and quark mass in the modified Sakai-Sugimoto model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhar, Avinash; High Energy Accelerator Research Organization; Nag, Partha
2008-09-15
This paper continues the investigation of the modified Sakai-Sugimoto model proposed previously [J. High Energy Phys. 01 (2008) 055]. Here we discuss in detail numerical solutions to the classical equations for the brane profile and the tachyon condensate. An ultraviolet cutoff turns out to be essential because the numerical solutions tend to rapidly diverge from the desired asymptotic solutions, beyond a sufficiently large value of the holographic coordinate. The required cutoff is determined by the non-normalizable part of the tachyon and is parametrically far smaller than that dictated by consistency of a description in terms of ten-dimensional bulk gravity. Wemore » had argued [J. High Energy Phys. 01 (2008) 055] that the solution in which the tachyon field goes to infinity at the point where the brane and antibrane meet has only one free parameter, which may be taken to be the asymptotic brane-antibrane separation. Here we present numerical evidence in favor of this observation. We also present evidence that the non-normalizable part of the asymptotic tachyon solution, which is identified with quark mass in the QCD-like boundary theory, is determined by this parameter. We show that the normalizable part of the asymptotic tachyon solution determines the quark condensate, but this requires holographic renormalization of the on-shell boundary brane action because of the presence of infinite cutoff-dependent terms. Our renormalization scheme gives an exponential dependence on the cutoff to the quark mass. We also discuss meson spectra in detail and show that the pion mass is nonzero and satisfies the Gell-Mann-Oakes-Renner relation when a small quark mass is switched on.« less
Hohtari-Kivimäki, Ulla; Salminen, Marika; Vahlberg, Tero; Kivelä, Sirkka-Liisa
2013-12-01
The aim of this study was to assess the adequacy of the short, 9-item Berg Balance Scale (BBS-9) to predict fall risk among the community-dwelling aged. The subjects (n = 519) were derived from the participants in a multifactorial fall prevention intervention conducted in Pori, Finland. Receiver operating characteristic (ROC) analysis was used to determine the cut-off score for BBS-9 (range 0-36) to classify aged people with a fall risk during a 12-month follow-up. Logistic regression was used to analyse the relationship of potential confounders with fall risk. The association between the cut-off score for BBS-9 and fall risk was tested using the Chi-square test. In determining the cut-off score of BBS-9 to classify fall risk, the highest sensitivity (0.51) and specificity (0.57) (when both presumed to be above 0.50) sum score was within the limit range 32 scores or below. The area under curve (AUC) was significantly better in the model adjusted for significant confounders (vision and the number of regularly used drugs) (AUC = 0.64) than in the unadjusted model (AUC = 0.57) (p = 0.045). Among patients who scored 32 or below in BBS-9 the incidence of multiple falls was 20.0 %, whereas among those who scored 33-36 it was 15.7 %. BBS-9 with the cut-off score of 32/33 together with data on vision and the number of regularly used drugs predicted moderately the risk of falling among the community-dwelling aged.
NASA Astrophysics Data System (ADS)
Ishiyama, Tomoaki
2015-08-01
The smallest dark matter halos are formed first in the early universe. We present results of very large cosmological N-body simulations of the hierarchical formation and evolution of halos over a wide mass range, beginning from the formation of the smallest halos. In the largest simulation, the motions of 40963 particles in comoving boxes of side lengths 400 pc and 200 pc were followed. The particle masses were 3.4 Χ 10-11 M⊙ and 4.3 Χ 10-12 M⊙, ensuring that halos at the cutoff scale were represented by ˜30,000 and ˜230,000 particles, respectively. We found that the central density cusp is much steeper in these halos than in larger halos (dwarf-galaxy-sized to cluster-sized halos), and scales as ρ ∝ r(-1.5—1.3). The cusp slope gradually becomes shallower as the halo mass increases. The slope of halos 50 times more massive than the smallest halo is approximately -1.3. No strong correlation exists between inner slope and the collapse epoch. The cusp slope of halos above the cutoff scale seems to be reduced primarily due to major merger processes. The concentration, estimated at the present universe, is predicted to be 60—70, consistent with theoretical models and earlier simulations, and ruling out simple power law mass-concentration relations. Such halos could still exist in the present universe with the same steep density profiles. Strongly depending on the subhalo mass function and the adopted concentration model, the steeper inner cusps of halos near the cutoff scale enhance the annihilation luminosity of a Milky Way sized halo between 12 to 67%.
The vela pulsar: results from the first year of FERMI lat observations
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2010-03-18
Here, we report on analysis of timing and spectroscopy of the Vela pulsar using 11 months of observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope. The intrinsic brightness of Vela at GeV energies combined with the angular resolution and sensitivity of the LAT allows us to make the most detailed study to date of the energy-dependent light curves and phase-resolved spectra, using a LAT-derived timing model. The light curve consists of two peaks (P1 and P2) connected by bridge emission containing a third peak (P3). We have confirmed the strong decrease of the P1/P2 ratiomore » with increasing energy seen with EGRET and previous Fermi LAT data, and observe that P1 disappears above 20 GeV. The increase with energy of the mean phase of the P3 component can be followed with much greater detail, showing that P3 and P2 are present up to the highest energies of pulsation. We find significant pulsed emission at phases outside the main profile, indicating that magnetospheric emission exists over 80% of the pulsar period. With increased high-energy counts the phase-averaged spectrum is seen to depart from a power law with simple exponential cutoff, and is better fit with a more gradual cutoff. The spectra in fixed-count phase bins are well fit with power laws with exponential cutoffs, revealing a strong and complex phase dependence of the cutoff energy, especially in the peaks. Finally, by combining these results with predictions of the outer magnetosphere models that map emission characteristics to phase, it will be possible to probe the particle acceleration and the structure of the pulsar magnetosphere with unprecedented detail.« less
NASA Astrophysics Data System (ADS)
Pedretti, Daniele; Bianchi, Marco
2018-03-01
Breakthrough curves (BTCs) observed during tracer tests in highly heterogeneous aquifers display strong tailing. Power laws are popular models for both the empirical fitting of these curves, and the prediction of transport using upscaling models based on best-fitted estimated parameters (e.g. the power law slope or exponent). The predictive capacity of power law based upscaling models can be however questioned due to the difficulties to link model parameters with the aquifers' physical properties. This work analyzes two aspects that can limit the use of power laws as effective predictive tools: (a) the implication of statistical subsampling, which often renders power laws undistinguishable from other heavily tailed distributions, such as the logarithmic (LOG); (b) the difficulties to reconcile fitting parameters obtained from models with different formulations, such as the presence of a late-time cutoff in the power law model. Two rigorous and systematic stochastic analyses, one based on benchmark distributions and the other on BTCs obtained from transport simulations, are considered. It is found that a power law model without cutoff (PL) results in best-fitted exponents (αPL) falling in the range of typical experimental values reported in the literature (1.5 < αPL < 4). The PL exponent tends to lower values as the tailing becomes heavier. Strong fluctuations occur when the number of samples is limited, due to the effects of subsampling. On the other hand, when the power law model embeds a cutoff (PLCO), the best-fitted exponent (αCO) is insensitive to the degree of tailing and to the effects of subsampling and tends to a constant αCO ≈ 1. In the PLCO model, the cutoff rate (λ) is the parameter that fully reproduces the persistence of the tailing and is shown to be inversely correlated to the LOG scale parameter (i.e. with the skewness of the distribution). The theoretical results are consistent with the fitting analysis of a tracer test performed during the MADE-5 experiment. It is shown that a simple mechanistic upscaling model based on the PLCO formulation is able to predict the ensemble of BTCs from the stochastic transport simulations without the need of any fitted parameters. The model embeds the constant αCO = 1 and relies on a stratified description of the transport mechanisms to estimate λ. The PL fails to reproduce the ensemble of BTCs at late time, while the LOG model provides consistent results as the PLCO model, however without a clear mechanistic link between physical properties and model parameters. It is concluded that, while all parametric models may work equally well (or equally wrong) for the empirical fitting of the experimental BTCs tails due to the effects of subsampling, for predictive purposes this is not true. A careful selection of the proper heavily tailed models and corresponding parameters is required to ensure physically-based transport predictions.
On the Effect of Sphere-Overlap on Super Coarse-Grained Models of Protein Assemblies
NASA Astrophysics Data System (ADS)
Degiacomi, Matteo T.
2018-05-01
Ion mobility mass spectrometry (IM/MS) can provide structural information on intact protein complexes. Such data, including connectivity and collision cross sections (CCS) of assemblies' subunits, can in turn be used as a guide to produce representative super coarse-grained models. These models are constituted by ensembles of overlapping spheres, each representing a protein subunit. A model is considered plausible if the CCS and sphere-overlap levels of its subunits fall within predetermined confidence intervals. While the first is determined by experimental error, the latter is based on a statistical analysis on a range of protein dimers. Here, we first propose a new expression to describe the overlap between two spheres. Then we analyze the effect of specific overlap cutoff choices on the precision and accuracy of super coarse-grained models. Finally, we propose a method to determine overlap cutoff levels on a per-case scenario, based on collected CCS data, and show that it can be applied to the characterization of the assembly topology of symmetrical homo-multimers. [Figure not available: see fulltext.
A priori testing of subgrid-scale models for large-eddy simulation of the atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Juneja, Anurag; Brasseur, James G.
1996-11-01
Subgrid-scale models are generally developed assuming homogeneous isotropic turbulence with the filter cutoff lying in the inertial range. In the surface layer and capping inversion regions of the atmospheric boundary layer, the turbulence is strongly anisotropic and, in general, influenced by both buoyancy and shear. Furthermore, the integral scale motions are under-resolved in these regions. Herein we perform direct numerical simulations of shear and buoyancy-generated homogeneous anisotropic turbulence to compute and analyze the actual subgrid-resolved-scale (SGS-RS) dynamics as the filter cutoff moves into the energy-containing scales. These are compared with the SGS-RS dynamics predicted by Smagorinsky-based models with a focus on motivating improved closures. We find that, in general, the underlying assumption of such models, that the anisotropic part of the subgrid stress tensor be aligned with the resolved strain rate tensor, is a poor approximation. Similarly, we find poor alignment between the actual and predicted stress divergence, and find low correlations between the actual and modeled subgrid-scale contribution to the pressure and pressure gradient. Details will be given in the talk.
Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France
NASA Astrophysics Data System (ADS)
Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.
2011-12-01
This study examines whether the assimilation of remotely sensed near-surface soil moisture observations might benefit an operational hydrological model, specifically Météo-France's SAFRAN-ISBA-MODCOU (SIM) model. Soil moisture data derived from ASCAT backscatter observations are assimilated into SIM using a Simplified Extended Kalman Filter (SEKF) over 3.5 years. The benefit of the assimilation is tested by comparison to a delayed cut-off version of SIM, in which the land surface is forced with more accurate atmospheric analyses, due to the availability of additional atmospheric observations after the near-real time data cut-off. However, comparing the near-real time and delayed cut-off SIM models revealed that the main difference between them is a dry bias in the near-real time precipitation forcing, which resulted in a dry bias in the root-zone soil moisture and associated surface moisture flux forecasts. While assimilating the ASCAT data did reduce the root-zone soil moisture dry bias (by nearly 50%), this was more likely due to a bias within the SEKF, than due to the assimilation having accurately responded to the precipitation errors. Several improvements to the assimilation are identified to address this, and a bias-aware strategy is suggested for explicitly correcting the model bias. However, in this experiment the moisture added by the SEKF was quickly lost from the model surface due to the enhanced surface fluxes (particularly drainage) induced by the wetter soil moisture states. Consequently, by the end of each winter, during which frozen conditions prevent the ASCAT data from being assimilated, the model land surface had returned to its original (dry-biased) climate. This highlights that it would be more effective to address the precipitation bias directly, than to correct it by constraining the model soil moisture through data assimilation.
RX and Z Mode Growth Rates and Propagation at Cavity Boundaries
NASA Astrophysics Data System (ADS)
Mutel, R. L.; Christopher, I. W.; Menietti, J. D.; Gurnett, D. A.; Pickett, J. S.; Masson, A.; Fazakerley, A.; Lucek, E.
Recent Cluster WBD observations in the Earth's auroral acceleration region have detected trapped Z mode auroral kilometric radiation while the spacecraft were entering a deep density cavity. The Z mode has a clear cutoff at the local upper hybrid resonance frequency, while RX mode radiation is detected above the RX mode cutoff frequency. The small gap between the upper hybrid resonance and the RX mode cutoff frequencies is proportional to the local electron density as expected from cold plasma theory. The width of the observed gap provides a new sensitive measure of the ambient electron density. In addition, the relative intensities of RX and Z mode radiation provide a sensitive probe of the plasma β = Ω_pe /Ω_ce at the source since the growth rates, although identical in form, have different ranges of allowed resonant radii which depend on β. In particular, the RX mode growth is favored for low β, while the Z mode is favored at higher β. The observed mode intensities and β's appear to be consistent with this model, and favor generation of Z mode at the source over models in which Z mode is generated by mode-conversion at cavity boundaries. These are the first multi-point direct measurements of mode-specific AKR propagation in the auroral acceleration region of any planet.
Statistics of the relative velocity of particles in bidisperse turbulent suspensions
NASA Astrophysics Data System (ADS)
Bhatnagar, Akshay; Gustavsson, Kristian; Mehlig, Bernhard; Mitra, Dhrubaditya
2017-11-01
We calculate the joint probability distribution function (JPDF) of relative distances (R) and velocities (V with longitudinal component VR) of a pair of bidisperse heavy inertial particles in homogeneous and isotropic turbulent flows using direct numerical simulations (DNS). A recent paper (J. Meibohm, et. al. 2017), using statistical-model simulations and mathematical analysis of an one-dimensional white-noise model, has shown that the JPDF, P (R ,VR) , for two particles with Stokes numbers, St1 and St2 , can be interpreted in terms of StM , the harmonic mean of St1 and St2 and θ ≡ | St1 - St2 | / (St1 + St2) . For small θ there emerges a small-scale cutoff Rc and a small-velocity cutoff Vc such that for VR <
Measuring Disability: Comparing the Impact of Two Data Collection Approaches on Disability Rates
Sabariego, Carla; Oberhauser, Cornelia; Posarac, Aleksandra; Bickenbach, Jerome; Kostanjsek, Nenad; Chatterji, Somnath; Officer, Alana; Coenen, Michaela; Chhan, Lay; Cieza, Alarcos
2015-01-01
The usual approach in disability surveys is to screen persons with disability upfront and then ask questions about everyday problems. The objectives of this paper are to demonstrate the impact of screeners on disability rates, to challenge the usual exclusion of persons with mild and moderate disability from disability surveys and to demonstrate the advantage of using an a posteriori cut-off. Using data of a pilot study of the WHO Model Disability Survey (MDS) in Cambodia and the polytomous Rasch model, metric scales of disability were built. The conventional screener approach based on the short disability module of the Washington City Group and the a posteriori cut-off method described in the World Disability Report were compared regarding disability rates. The screener led to imprecise rates and classified persons with mild to moderate disability as non-disabled, although these respondents already experienced important problems in daily life. The a posteriori cut-off applied to the general population sample led to a more precise disability rate and allowed for a differentiation of the performance and needs of persons with mild, moderate and severe disability. This approach can be therefore considered as an inclusive approach suitable to monitor the Convention on the Rights of Persons with Disabilities. PMID:26308039
NASA Astrophysics Data System (ADS)
Wang, Yuan-Zhu; Wang, Hao; Zhang, Shuai; Liang, Yun-Feng; Jin, Zhi-Ping; He, Hao-Ning; Liao, Neng-Hui; Fan, Yi-Zhong; Wei, Da-Ming
2017-02-01
GRB 160625B is an extremely bright outburst with well-monitored afterglow emission. The geometry-corrected energy is high, up to ˜5.2 × 1052 erg or even ˜8 × 1052 erg, rendering it the most energetic GRB prompt emission recorded so far. We analyzed the time-resolved spectra of the prompt emission and found that in some intervals there were likely thermal-radiation components and the high energy emission was characterized by significant cutoff. The bulk Lorentz factors of the outflow material are estimated accordingly. We found out that the Lorentz factors derived in the thermal-radiation model are consistent with the luminosity-Lorentz factor correlation found in other bursts, as well as in GRB 090902B for the time-resolved thermal-radiation components, while the spectral cutoff model yields much lower Lorentz factors that are in tension with the constraints set by the electron pair Compton scattering process. We then suggest that these spectral cutoffs are more likely related to the particle acceleration process and that one should be careful in estimating the Lorentz factors if the spectrum cuts at a rather low energy (e.g., ˜tens of MeV). The nature of the central engine has also been discussed, and a stellar-mass black hole is favored.
Tilting at wave beams: a new perspective on the St Andrew's Cross
NASA Astrophysics Data System (ADS)
Akylas, T. R.; Kataoka, T.; Ghaemsaidi, S. J.; Holzenberger, N.; Peacock, T.
2017-11-01
The generation of internal gravity waves by a vertically oscillating cylinder that is tilted to the horizontal in a stratified fluid of constant buoyancy frequency, is investigated theoretically and experimentally. This forcing arrangement leads to a variant of the classical St Andrew's Cross that has certain unique features: (i) radiation of wave beams is limited due to a lower cut-off frequency set by the cylinder tilt angle to the horizontal; (ii) the response is essentially three-dimensional, as end effects eventually come into play when the cut-off frequency is approached, however long a cylinder might be. These results follow from kinematic considerations and are also confirmed by laboratory experiments. The kinematic analysis, moreover, suggests a resonance phenomenon near the cut-off frequency, where viscous and nonlinear effects are likely to play an important part. This scenario is examined by an asymptotic model as well as experimentally. Supported in part by NSF Grant DMS-1512925.
Teolis, B D; Sillanpää, I; Waite, J H; Khurana, K K
2014-11-01
Sharp magnetic perturbations found by the Cassini spacecraft at the edge of the Rhea flux tube are consistent with field-aligned flux tube currents. The current system results from the difference of ion and electron gyroradii and the requirement to balance currents on the sharp Rhea surface. Differential-type hybrid codes that solve for ion velocity and magnetic field have an intrinsic difficulty modeling the plasma absorber's sharp surface. We overcome this problem by instead using integral equations to solve for ion and electron currents and obtain agreement with the magnetic perturbations at Rhea's flux tube edge. An analysis of the plasma dispersion relations and Cassini data reveals that field-guided whistler waves initiated by (1) the electron velocity anisotropy in the flux tube and (2) interaction with surface sheath electrostatic waves on topographic scales may facilitate propagation of the current system to large distances from Rhea. Current systems like those at Rhea should occur generally, for plasma absorbers of any size such as spacecraft or planetary bodies, in a wide range of space plasma environments. Motion through the plasma is not essential since the current system is thermodynamic in origin, excited by heat flow into the object. The requirements are a difference of ion and electron gyroradii and a sharp surface, i.e., without a significant thick atmosphere. Surface current balance condition yields a current system at astronomical bodiesCurrent system possible for sharp (airless) objects of any sizeCurrent system is thermoelectric and motion through the plasma nonessential.
Teolis, B D; Sillanpää, I; Waite, J H; Khurana, K K
2014-01-01
Sharp magnetic perturbations found by the Cassini spacecraft at the edge of the Rhea flux tube are consistent with field-aligned flux tube currents. The current system results from the difference of ion and electron gyroradii and the requirement to balance currents on the sharp Rhea surface. Differential-type hybrid codes that solve for ion velocity and magnetic field have an intrinsic difficulty modeling the plasma absorber's sharp surface. We overcome this problem by instead using integral equations to solve for ion and electron currents and obtain agreement with the magnetic perturbations at Rhea's flux tube edge. An analysis of the plasma dispersion relations and Cassini data reveals that field-guided whistler waves initiated by (1) the electron velocity anisotropy in the flux tube and (2) interaction with surface sheath electrostatic waves on topographic scales may facilitate propagation of the current system to large distances from Rhea. Current systems like those at Rhea should occur generally, for plasma absorbers of any size such as spacecraft or planetary bodies, in a wide range of space plasma environments. Motion through the plasma is not essential since the current system is thermodynamic in origin, excited by heat flow into the object. The requirements are a difference of ion and electron gyroradii and a sharp surface, i.e., without a significant thick atmosphere. Key Points Surface current balance condition yields a current system at astronomical bodies Current system possible for sharp (airless) objects of any size Current system is thermoelectric and motion through the plasma nonessential PMID:26167436
Frequent attendance in primary care: comparison and implications of different definitions
Luciano, Juan V; Fernández, Ana; Pinto-Meza, Alejandra; Luján, Leila; Bellón, Juan A; García-Campayo, Javier; Peñarrubia, María T; Fernández, Rita; Sanavia, Marta; Blanco, María E; Haro, Josep M; Palao, Diego J; Serrano-Blanco, Antoni
2010-01-01
Background The diversity of definitions of frequent attendance in the literature hampers comparison of their precision, validity, and associated factors. Aim To examine different definitions of frequent attendance in order to identify the sociodemographic and clinical factors associated with frequent attendance in primary care, according to each definition. Design of study One-phase cross-sectional study. Setting Seventy-seven primary care centres in Catalonia, Spain. Method A total of 3815 primary care patients were interviewed between October 2005 and March 2006. Three definitions of frequent attendance were tested: (1) frequent attenders as the top 25% and the top 10% consulting patients; (2) frequent attenders as the top 25% and the top 10% consulting patients stratified by age and sex; and (3) frequent attenders as the top 25% and the top 10% consulting patients stratified by the presence of physical/mental conditions (patients with only mental disorders, with only chronic physical conditions, with comorbid conditions, and with no condition). Multilevel logistic regressions were used. Results The following factors were systematically related to frequent attender status: being on sick leave, being born outside of Spain, reporting mental health problems as the main reason for consulting, and having arthritis/rheumatism, or bronchitis. Major depression was related to frequent attendance in two of the three definitions. The factor ‘GP’ was related to frequent attendance when the top decile cut-off point was used. The models with a 10% cut-off point were more discriminative than those with a 25% cut-off point: the area under the receiver operating characteristic curve for models with a 25% cut-off and a 10% cut-off ranged between 0.71 (95% confidence interval [CI] = 0.70 to 0.73) and 0.75 (95% CI = 0.74 to 0.77) and between 0.79 (95% CI = 0.78 to 0.81) and 0.85 (95% CI = 0.83 to 0.86), respectively. Conclusion The way frequent attendance is defined is of crucial importance. It is recommended that a more discriminative definition of frequent attendance is used (the top 10%). PMID:20132693
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdo, A. A.; Abeysekara, U.; Linnemann, J. T.
2012-07-10
The Cygnus region is a very bright and complex portion of the TeV sky, host to unidentified sources and a diffuse excess with respect to conventional cosmic-ray propagation models. Two of the brightest TeV sources, MGRO J2019+37 and MGRO J2031+41, are analyzed using Milagro data with a new technique, and their emission is tested under two different spectral assumptions: a power law and a power law with an exponential cutoff. The new analysis technique is based on an energy estimator that uses the fraction of photomultiplier tubes in the observatory that detect the extensive air shower. The photon spectrum ismore » measured in the range 1-100 TeV using the last three years of Milagro data (2005-2008), with the detector in its final configuration. An F-test indicates that MGRO J2019+37 is better fit by a power law with an exponential cutoff than by a simple power law. The best-fitting parameters for the power law with exponential cutoff model are a normalization at 10 TeV of 7{sup +5}{sub -2} Multiplication-Sign 10{sup -10} s{sup -1} m{sup -2} TeV{sup -1}, a spectral index of 2.0{sup +0.5}{sub -1.0}, and a cutoff energy of 29{sup +50}{sub -16} TeV. MGRO J2031+41 shows no evidence of a cutoff. The best-fitting parameters for a power law are a normalization of 2.1{sup +0.6}{sub -0.6} Multiplication-Sign 10{sup -10} s{sup -1} m{sup -2} TeV{sup -1} and a spectral index of 3.22{sup +0.23}{sub -0.18}. The overall flux is subject to a {approx}30% systematic uncertainty. The systematic uncertainty on the power-law indices is {approx}0.1. Both uncertainties have been verified with cosmic-ray data. A comparison with previous results from TeV J2032+4130, MGRO J2031+41, and MGRO J2019+37 is also presented.« less
NASA Technical Reports Server (NTRS)
Abdo, A. A.; Abeysekara, U.; Allen, B, T.; Aune, T.; Berley, D.; Bonamente, E.; Christopher, G. E.; DeYoung, T.; Dingus, B. L.; Ellsworth, R. W.;
2012-01-01
The Cygnus region is a very bright and complex portion of the TeV sky, host to unidentified sources and a diffuse excess with respect to conventional cosmic-ray propagation models. Two of the brightest TeV sources, MGRO J2019+37 and MGRO J2031+41, are analyzed using Milagro data with a new technique, and their emission is tested under two different spectral assumptions: a power law and a power law with an exponential cutoff. The new analysis technique is based on an energy estimator that uses the fraction of photomultiplier tubes in the observatory that detect the extensive air shower. The photon spectrum is measured in the range 1-100 TeV using the last three years of Milagro data (2005-2008), with the detector in its final configuration. An F-test indicates that MGRO J2019+37 is better fit by a power law with an exponential cutoff than by a simple power law. The best-fitting parameters for the power law with exponential cutoff model are a normalization at 10 TeV of 7(sup +5 sub -2) × 10(exp -10)/ s /sq m/ TeV, a spectral index of 2.0(sup +0.5 sub -10), and a cutoff energy of 29(sup +50 sub -16) TeV. MGRO J2031+41 shows no evidence of a cutoff. The best-fitting parameters for a power law are a normalization of 2.1(sup +0.6 sub -0.6) × 10(exp -10)/ s/sq m/ TeV and a spectral index of 3.22(sup +0.23 sub -0.18. The overall flux is subject to a approx.. 30% systematic uncertainty. The systematic uncertainty on the power-law indices is approx. 0.1. Both uncertainties have been verified with cosmic-ray data. A comparison with previous results from TeV J2032+4130, MGRO J2031+41, and MGRO J2019+37 is also presented.
Cheng, Ryan R.; Uzawa, Takanori; Plaxco, Kevin W.; Makarov, Dmitrii E.
2010-01-01
The problem of determining the rate of end-to-end collisions for polymer chains has attracted the attention of theorists and experimentalists for more than three decades. The typical theoretical approach to this problem has focused on the case where a collision is defined as any instantaneous fluctuation that brings the chain ends to within a specific capture distance. In this paper, we study the more experimentally relevant case, where the end-to-end collision dynamics are probed by measuring the excited state lifetime of a fluorophore (or other lumiphore) attached to one chain end and quenched by a quencher group attached to the other end. Under this regime, a “contact” is defined not by the chain ends approach to within some sharp cutoff but, instead, typically by an exponentially distance-dependent process. Previous theoretical models predict that, if quenching is sufficiently rapid, a diffusion-controlled limit is attained, where such measurements report on the probe-independent, intrinsic end-to-end collision rate. In contrast, our theoretical considerations, simulations, and an analysis of experimental measurements of loop closure rates in single-stranded DNA molecules all indicate that no such limit exists, and that the measured effective collision rate has a nontrivial, fractional power-law dependence on both the intrinsic quenching rate of the fluorophore and the solvent viscosity. We propose a simple scaling formula describing the effective loop closure rate and its dependence on the viscosity, chain length, and properties of the probes. Previous theoretical results are limiting cases of this more general formula. PMID:19780594
SWIFT-BAT HARD X-RAY SKY MONITORING UNVEILS THE ORBITAL PERIOD OF THE HMXB IGR J18219–1347
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Parola, V.; Cusumano, G.; Segreto, A.
2013-09-20
IGR J18219–1347 is a hard X-ray source discovered by INTEGRAL in 2010. We have analyzed the X-ray emission of this source exploiting the Burst Alert Telescope (BAT) survey data up to 2012 March and the X-Ray Telescope (XRT) data that include also an observing campaign performed in early 2012. The source is detected at a significance level of ∼13 standard deviations in the 88 month BAT survey data, and shows a strong variability along the survey monitoring, going from high intensity to quiescent states. A timing analysis on the BAT data revealed an intensity modulation with a period of Pmore » {sub 0} = 72.44 ± 0.3 days. The significance of this modulation is about seven standard deviations in Gaussian statistics. We interpret it as the orbital period of the binary system. The light curve folded at P {sub 0} shows a sharp peak covering ∼30% of the period, superimposed to a flat level roughly consistent with zero. In the soft X-rays the source is detected only in 5 out of 12 XRT observations, with the highest recorded count rate corresponding to a phase close to the BAT folded light-curve peak. The long orbital period and the evidence that the source emits only during a small fraction of the orbit suggests that the IGR J18219–1347 binary system hosts a Be star. The broadband XRT+BAT spectrum is well modeled with a flat absorbed power law with a high-energy exponential cutoff at ∼11 keV.« less
AGN coronal emission models - I. The predicted radio emission
NASA Astrophysics Data System (ADS)
Raginski, I.; Laor, Ari
2016-06-01
Accretion discs in active galactic nucleus (AGN) may be associated with coronal gas, as suggested by their X-ray emission. Stellar coronal emission includes radio emission, and AGN corona may also be a significant source for radio emission in radio quiet (RQ) AGN. We calculate the coronal properties required to produce the observed radio emission in RQ AGN, either from synchrotron emission of power-law (PL) electrons, or from cyclosynchrotron emission of hot mildly relativistic thermal electrons. We find that a flat spectrum, as observed in about half of RQ AGN, can be produced by corona with a disc or a spherical configuration, which extends from the innermost regions out to a pc scale. A spectral break to an optically thin power-law emission is expected around 300-1000 GHz, as the innermost corona becomes optically thin. In the case of thermal electrons, a sharp spectral cut-off is expected above the break. The position of the break can be measured with very long baseline interferometry observations, which exclude the cold dust emission, and it can be used to probe the properties of the innermost corona. Assuming equipartition of the coronal thermal energy density, the PL electrons energy density, and the magnetic field, we find that the energy density in a disc corona should scale as ˜R-1.3, to get a flat spectrum. In the spherical case the energy density scales as ˜R-2, and is ˜4 × 10-4 of the AGN radiation energy density. In Paper II we derive additional constraints on the coronal parameters from the Gudel-Benz relation, Lradio/LX-ray ˜ 10- 5, which RQ AGN follow.
Probing the mysteries of the X-ray binary 4U 1210-64 with ASM, PCA, MAXI, BAT, and Suzaku
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coley, Joel B.; Corbet, Robin H. D.; Mukai, Koji
2014-10-01
4U 1210-64 has been postulated to be a high-mass X-ray binary powered by the Be mechanism. X-ray observations with Suzaku, the ISS Monitor of All-sky X-ray Image (MAXI), and the Rossi X-ray Timing Explorer Proportional Counter Array (PCA) and All Sky Monitor (ASM) provide detailed temporal and spectral information on this poorly understood source. Long-term ASM and MAXI observations show distinct high and low states and the presence of a 6.7101 ± 0.0005 day modulation, interpreted as the orbital period. Folded light curves reveal a sharp dip, interpreted as an eclipse. To determine the nature of the mass donor, themore » predicted eclipse half-angle was calculated as a function of inclination angle for several stellar spectral types. The eclipse half-angle is not consistent with a mass donor of spectral type B5 V; however, stars with spectral types B0 V or B0-5 III are possible. The best-fit spectral model consists of a power law with index Γ = 1.85{sub −0.05}{sup +0.04} and a high-energy cutoff at 5.5 ± 0.2 keV modified by an absorber that fully covers the source as well as partially covering absorption. Emission lines from S XVI Kα, Fe Kα, Fe XXV Kα, and Fe XXVI Kα were observed in the Suzaku spectra. Out of eclipse, the Fe Kα line flux was strongly correlated with unabsorbed continuum flux, indicating that the Fe I emission is the result of fluorescence of cold dense material near the compact object. The Fe I feature is not detected during eclipse, further supporting an origin close to the compact object.« less
Bahrami, N; Piccioni, D; Karunamuni, R; Chang, Y-H; White, N; Delfanti, R; Seibert, T M; Hattangadi-Gluth, J A; Dale, A; Farid, N; McDonald, C R
2018-04-05
Treatment with bevacizumab is standard of care for recurrent high-grade gliomas; however, monitoring response to treatment following bevacizumab remains a challenge. The purpose of this study was to determine whether quantifying the sharpness of the fluid-attenuated inversion recovery hyperintense border using a measure derived from texture analysis-edge contrast-improves the evaluation of response to bevacizumab in patients with high-grade gliomas. MRIs were evaluated in 33 patients with high-grade gliomas before and after the initiation of bevacizumab. Volumes of interest within the FLAIR hyperintense region were segmented. Edge contrast magnitude for each VOI was extracted using gradients of the 3D FLAIR images. Cox proportional hazards models were generated to determine the relationship between edge contrast and progression-free survival/overall survival using age and the extent of surgical resection as covariates. After bevacizumab, lower edge contrast of the FLAIR hyperintense region was associated with poorer progression-free survival ( P = .009) and overall survival ( P = .022) among patients with high-grade gliomas. Kaplan-Meier curves revealed that edge contrast cutoff significantly stratified patients for both progression-free survival (log-rank χ 2 = 8.3, P = .003) and overall survival (log-rank χ 2 = 5.5, P = .019). Texture analysis using edge contrast of the FLAIR hyperintense region may be an important predictive indicator in patients with high-grade gliomas following treatment with bevacizumab. Specifically, low FLAIR edge contrast may partially reflect areas of early tumor infiltration. This study adds to a growing body of literature proposing that quantifying features may be important for determining outcomes in patients with high-grade gliomas. © 2018 by American Journal of Neuroradiology.
A novel human surrogate model of noninjurious sharp mechanical pain.
Shabes, Polina; Schloss, Natalie; Magerl, Walter; Schmahl, Christian; Treede, Rolf-Detlef; Baumgärtner, Ulf
2016-01-01
We propose a blade as a noninjurious nociceptive stimulus modeling sharp mechanical pain and yielding acute pain and hyperalgesia responses with closer proximity to incision-induced pain/hyperalgesia than punctate or blunt pressure mechanical pain models. Twenty-six healthy men and women were investigated to compare a small incision in the left forearm with noninvasive stimuli of different shapes and modalities to the right forearm. The magnitude and time course of incisional and blade-induced pain were assessed by numerical rating scales. Affective vs sensory components of pain experience were differentiated using a pain sensation questionnaire. The magnitude and time course of the axon reflex vasodilator response and of secondary hyperalgesia following a 7-second blade application were assessed. The maximum blade or incisional pain was similar (visual analogue scale [mean ± SD]: 32.9 ± 22.5 [blade] vs. 33.6 ± 29.8 [incision]), and both time courses matched closely in the first 10 seconds (paired t test; P = 0.5-1.0), whereas incision but not blade was followed by a second phase of pain, probably related to the tissue injury (decrease to half maximum pain 8 ± 2 vs. 33 ± 35 seconds; P < 0.01). Affective pain scores were significantly lower than sensory scores for all stimuli (P < 0.001). Comparing blade and incision, patterns of affective and sensory pain descriptors exhibited a remarkably similar pattern. Hence, we suggest the blade as novel model of sharp mechanical pain, which will be useful in investigating postoperative/mechanical pain and the role of self-injurious behavior in, eg, patients with borderline personality disorder.
A model for thin layer formation by delayed particle settling at sharp density gradients
NASA Astrophysics Data System (ADS)
Prairie, Jennifer C.; White, Brian L.
2017-02-01
Thin layers - regions where plankton or particles accumulate vertically on scales of a few meters or less - are common in coastal waters, and have important implications for both trophic dynamics and carbon cycling. These features can form by a variety of biological and physical mechanisms, including localized growth, shear-thinning, and directed swimming. An additional mechanism may result in the formation of thin layers of marine aggregates, which have been shown to decrease their settling velocity when passing through sharp density gradients, a behavior termed delayed settling. Here, we apply a simple vertical advection-diffusion model to predict the properties of aggregate thin layers formed by this process. We assume a constant vertical flux of particles from the surface, which is parameterized by observations from laboratory experiments with marine aggregates. The formation, maintenance, and shape of the layers are described in relation to non-dimensional numbers that depend on environmental conditions and particle settling properties. In particular, model results demonstrate layer intensity and sharpness both increase with higher Péclet number (Pe), that is, under conditions with weaker mixing relative to layer formation. Similarly, more intense and sharper layers are found when the delayed settling behavior of aggregates is characterized by a lower velocity minimum. The model also predicts layers that are vertically asymmetric and highly "peaky" when compared with a Gaussian distribution, features often seen in thin layers in natural environments. Lastly, by comparing model predictions with observations of thin layers in the field, we are able to gain some insight into the applicability of delayed settling as a thin layer formation mechanism in different environmental conditions.
Propagation characteristics of Pc 3 compressional waves generated at the dayside magnetopause
NASA Technical Reports Server (NTRS)
Zhang, X.; Comfort, R. H.; Musielak, Z. E.; Moore, T. E.; Gallagher, D. L.; Green, J. L.
1993-01-01
New, 3D ray tracing of Pc 3 compressional waves from the magnetosheath reveals that the magnetosphere can present a major propagation barrier to the penetration of these waves to the plasmasphere. This barrier is the ion-ion cutoff between the He(+) and O(+) gyroresonances. As a result of the frequency-dependent location of this cutoff, the magnetosphere behaves like a filter for Pc 3 compressional waves, and only low-frequency components of Pc 3 compressional waves can penetrate to inner magnetosphere. Results are in agreement with previous satellite observations. This 'filter action' strongly depends on the relative concentration of He(+) and O(+) and is therefore sensitive to solar and magnetic activity. Ray-tracing results are based on a cold plasma dispersion relation, a semiempirical model of plasma density, and the Mead-Fairfield (1975) magnetic field model.
NASA Astrophysics Data System (ADS)
Chen, J.; Gao, G. B.; Ünlü, M. S.; Morkoç, H.
1991-11-01
High-frequency ic- vce output characteristics of bipolar transistors, derived from calculated device cutoff frequencies, are reported. The generation of high-frequency output characteristics from device design specifications represents a novel bridge between microwave circuit design and device design: the microwave performance of simulated device structures can be analyzed, or tailored transistor device structures can be designed to fit specific circuit applications. The details of our compact transistor model are presented, highlighting the high-current base-widening (Kirk) effect. The derivation of the output characteristics from the modeled cutoff frequencies are then presented, and the computed characteristics of an AlGaAs/GaAs heterojunction bipolar transistor operating at 10 GHz are analyzed. Applying the derived output characteristics to microwave circuit design, we examine large-signal class A and class B amplification.
Characterization, modeling and simulation of fused deposition modeling fabricated part surfaces
NASA Astrophysics Data System (ADS)
Taufik, Mohammad; Jain, Prashant K.
2017-12-01
Surface roughness is generally used for characterization, modeling and simulation of fused deposition modeling (FDM) fabricated part surfaces. But the average surface roughness is not able to provide the insight of surface characteristics with sharp peaks and deep valleys. It deals in the average sense for all types of surfaces, including FDM fabricated surfaces with distinct surface profile features. The present research work shows that kurtosis and skewness can be used for characterization, modeling and simulation of FDM surfaces because these roughness parameters have the ability to characterize a surface with sharp peaks and deep valleys. It can be critical in certain application areas in tribology and biomedicine, where the surface profile plays an important role. Thus, in this study along with surface roughness, skewness and kurtosis are considered to show a novel strategy to provide new transferable knowledge about FDM fabricated part surfaces. The results suggest that the surface roughness, skewness and kurtosis are significantly different at 0° and in the range (0°, 30°], [30°, 90°] of build orientation.
Fiorentino, Marion; Sophonneary, Prak; Laillou, Arnaud; Whitney, Sophie; de Groot, Richard; Perignon, Marlène; Kuong, Khov; Berger, Jacques; Wieringa, Frank T.
2016-01-01
Background Early identification of children <5 yrs with acute malnutrition is a priority. Acute malnutrition is defined by the World Health Organization as a mid-upper-arm circumference (MUAC) <12.5 cm or a weight-for-height Z-score (WHZ) <-2. MUAC is a simple and low-cost indicator to screen for acute malnutrition in communities, but MUAC cut-offs currently recommended by WHO do not identify the majority of children with weight-for-height Z-score (<-2 (moderate malnourished) or r<-3 (severe malnourished). Also, no cut-offs for MUAC are established for children >5 yrs. Therefore, this study aimed at defining gender and age-specific cut-offs to improve sensitivity of MUAC as an indicator of acute malnutrition. Methods To establish new age and gender-specific MUAC cut-offs, pooled data was obtained for 14,173 children from 5 surveys in Cambodia (2011–2013). Sensitivity, false positive rates, and areas under receiver-operator characteristic curves (AUC) were calculated using wasting for children <5yrs and thinness for children ≥5yrs as gold standards. Among the highest values of AUC, the cut-off with the highest sensitivity and a false positive rate ≤33% was selected as the optimal cut-off. Results Optimal cut-off values increased with age. Boys had higher cut-offs than girls, except in the 8–10.9 yrs age range. In children <2yrs, the cut-off was lower for stunted children compared to non stunted children. Sensitivity of MUAC to identify WHZ<-2 and <-3 z-scores increased from 24.3% and 8.1% to >80% with the new cut-offs in comparison with the current WHO cut-offs. Conclusion Gender and age specific MUAC cut-offs drastically increased sensitivity to identify children with WHZ-score <-2 z-scores. International reference of MUAC cut-offs by age group and gender should be established to screen for acute malnutrition at the community level. PMID:26840899
The Use of Theory in School Effectiveness Research Revisited
ERIC Educational Resources Information Center
Scheerens, Jaap
2013-01-01
From an international review of 109 school effectiveness research studies, only 6 could be seen as theory driven. As the border between substantive conceptual models of educational effectiveness and theory-based models is not always very sharp, this number might be increased to 11 by including those studies that are based on models that make…
NASA Technical Reports Server (NTRS)
Atkinson, David J.; Doyle, Richard J.; James, Mark L.; Kaufman, Tim; Martin, R. Gaius
1990-01-01
A Spacecraft Health Automated Reasoning Prototype (SHARP) portability study is presented. Some specific progress is described on the portability studies, plans for technology transfer, and potential applications of SHARP and related artificial intelligence technology to telescience operations. The application of SHARP to Voyager telecommunications was a proof-of-capability demonstration of artificial intelligence as applied to the problem of real time monitoring functions in planetary mission operations. An overview of the design and functional description of the SHARP system is also presented as it was applied to Voyager.
Ridge, S E; Vizard, A L
1993-01-01
Traditionally, in order to improve diagnostic accuracy, existing tests have been replaced with newly developed diagnostic tests with superior sensitivity and specificity. However, it is possible to improve existing tests by altering the cutoff value chosen to distinguish infected individuals from uninfected individuals. This paper uses data obtained from an investigation of the operating characteristics of the Johne's Absorbed EIA to demonstrate a method of determining a preferred cutoff value from several potentially useful cutoff settings. A method of determining the financial gain from using the preferred rather than the current cutoff value and a decision analysis method to assist in determining the optimal cutoff value when critical population parameters are not known with certainty are demonstrated. The results of this study indicate that the currently recommended cutoff value for the Johne's Absorbed EIA is only close to optimal when the disease prevalence is very low and false-positive test results are deemed to be very costly. In other situations, there were considerable financial advantages to using cutoff values calculated to maximize the benefit of testing. It is probable that the current cutoff values for other diagnostic tests may not be the most appropriate for every testing situation. This paper offers methods for identifying the cutoff value that maximizes the benefit of medical and veterinary diagnostic tests. PMID:8501227
High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems
Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; ...
2014-06-30
An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in ordermore » to reduce the overall numerical uncertainty while leveraging available computational resources. Finally, the coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.« less
3D near-surface soil response from H/V ambient-noise ratios
Wollery, E.W.; Street, R.
2002-01-01
The applicability of the horizontal-to-vertical (H/V) ambient-noise spectral ratio for characterizing earthquake site effects caused by nearsurface topography and velocity structures was evaluated at sites underlain by thick (i.e. >100 m) sediment deposits near the southern-end of the New Madrid seismic zone in the central United States. Three-component ambient-noise and velocity models derived from seismic (shearwave) refraction/reflection surveys showed that a relatively horizontal, sharp shear-wave velocity interface in the soil column resulted in an H/V spectral ratio with a single well-defined peak. Observations at sites with more than one sharp shear-wave velocity contrast and horizontally arranged soil layers resulted in at least two well-defined H/V spectral ratio peaks. Furthermore, at sites where there were sharp shear-wave velocity contrasts in nonhorizontal, near-surface soil layers, the H/V spectra exhibited a broad-bandwidth, relatively low amplitude signal instead of a single well-defined peak. ?? 2002 Elsevier Science Ltd. All rights reserved.
Influence of temperature oscillations on the interface velocity during Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Stelian, Carmen; Duffar, Thierry; Santailler, Jean-Louis; Nicoara, Irina
2002-04-01
The objective of this work is the study of the effect of thermal oscillations on the interface velocity in the vertical Bridgman configuration. In order to study this effect, a transient numerical simulation of the heat transfer and melt convection is performed in a simplified geometrical model. The relation between the thermal signal amplitude and the amplitude of the velocity oscillations is investigated. When the oscillation period is varied, an asymptotic evolution of the velocity oscillation amplitude, with a cut-off period, is observed. It is shown that latent heat of solidification has a huge effect on the velocity amplitude, but not on the cut-off frequency.
Toledo, Jon B.; Bjerke, Maria; Da, Xiao; Landau, Susan M.; Foster, Norman L; Jagust, William; Jack, Clifford; Weiner, Michael; Davatzikos, Christos; Shaw, Leslie M.; Trojanowski, John Q.
2017-01-01
IMPORTANCE Cerebrospinal fluid (CSF) and positron emission tomographic (PET) amyloid biomarkers have been proposed for the detection of Alzheimer disease (AD) pathology in living patients and for the tracking of longitudinal changes, but the relation between biomarkers needs further study. OBJECTIVE To determine the association between CSF and PET amyloid biomarkers (cross-sectional and longitudinal measures) and compare the cutoffs for these measures. DESIGN, SETTING, AND PARTICIPANTS Longitudinal clinical cohort study from 2005 to 2014 including 820 participants with at least 1 florbetapir F-18 (hereafter referred to as simply florbetapir)–PET scan and at least 1 CSF β-amyloid 1–42 (Aβ1–42) sample obtained within 30 days of each other (501 participants had a second PET scan after 2 years, including 150 participants with CSF Aβ1–42 measurements). Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative database. MAIN OUTCOMES AND MEASURES Four different PET scans processing pipelines from 2 different laboratories were compared. The PET cutoff values were established using a mixture-modeling approach, and different mathematical models were applied to define the association between CSF and PET amyloid measures. RESULTS The values of the CSF Aβ1–42 samples and florbetapir-PET scans showed a nonlinear association (R2 = 0.48–0.66), with the strongest association for values in the middle range. The presence of a larger dynamic range of florbetapir-PET scan values in the higher range compared with the CSF Aβ1–42 plateau explained the differences in correlation with cognition (R2 = 0.36 and R2 = 0.25, respectively). The APOE genotype significantly modified the association between both biomarkers. The PET cutoff values derived from an unsupervised classifier converged with previous PET cutoff values and the established CSF Aβ1–42 cutoff levels. There was no association between longitudinal Aβ1–42 levels and standardized uptake value ratios during follow-up. CONCLUSIONS AND RELEVANCE The association between both biomarkers is limited to a middle range of values, is modified by the APOE genotype, and is absent for longitudinal changes; 4 different approaches in 2 different platforms converge on similar pathological Aβ cutoff levels; and different pipelines to process PET scans showed correlated but not identical results. Our findings suggest that both biomarkers measure different aspects of AD Aβ pathology. PMID:25822737
NASA Astrophysics Data System (ADS)
Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Hollender, Fabrice; Bard, Pierre-Yves; Priolo, Enrico; Klin, Peter; de Martin, Florent; Zhang, Zhenguo; Zhang, Wei; Chen, Xiaofei
2015-04-01
Differences between 3-D numerical predictions of earthquake ground motion in the Mygdonian basin near Thessaloniki, Greece, led us to define four canonical stringent models derived from the complex realistic 3-D model of the Mygdonian basin. Sediments atop an elastic bedrock are modelled in the 1D-sharp and 1D-smooth models using three homogeneous layers and smooth velocity distribution, respectively. The 2D-sharp and 2D-smooth models are extensions of the 1-D models to an asymmetric sedimentary valley. In all cases, 3-D wavefields include strongly dispersive surface waves in the sediments. We compared simulations by the Fourier pseudo-spectral method (FPSM), the Legendre spectral-element method (SEM) and two formulations of the finite-difference method (FDM-S and FDM-C) up to 4 Hz. The accuracy of individual solutions and level of agreement between solutions vary with type of seismic waves and depend on the smoothness of the velocity model. The level of accuracy is high for the body waves in all solutions. However, it strongly depends on the discrete representation of the material interfaces (at which material parameters change discontinuously) for the surface waves in the sharp models. An improper discrete representation of the interfaces can cause inaccurate numerical modelling of surface waves. For all the numerical methods considered, except SEM with mesh of elements following the interfaces, a proper implementation of interfaces requires definition of an effective medium consistent with the interface boundary conditions. An orthorhombic effective medium is shown to significantly improve accuracy and preserve the computational efficiency of modelling. The conclusions drawn from the analysis of the results of the canonical cases greatly help to explain differences between numerical predictions of ground motion in realistic models of the Mygdonian basin. We recommend that any numerical method and code that is intended for numerical prediction of earthquake ground motion should be verified through stringent models that would make it possible to test the most important aspects of accuracy.
49 CFR 229.93 - Safety cut-off device.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Safety cut-off device. 229.93 Section 229.93 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.93 Safety cut-off device. The fuel line shall have a safety cut-off device that— (a) Is...
49 CFR 229.93 - Safety cut-off device.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Safety cut-off device. 229.93 Section 229.93 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.93 Safety cut-off device. The fuel line shall have a safety cut-off device that— (a) Is...
NASA Astrophysics Data System (ADS)
Tůma, K.; Stupkiewicz, S.; Petryk, H.
2016-10-01
A finite-strain phase field model for martensitic phase transformation and twinning in shape memory alloys is developed and confronted with the corresponding sharp-interface approach extended to interfacial energy effects. The model is set in the energy framework so that the kinetic equations and conditions of mechanical equilibrium are fully defined by specifying the free energy and dissipation potentials. The free energy density involves the bulk and interfacial energy contributions, the latter describing the energy of diffuse interfaces in a manner typical for phase-field approaches. To ensure volume preservation during martensite reorientation at finite deformation within a diffuse interface, it is proposed to apply linear mixing of the logarithmic transformation strains. The physically different nature of phase interfaces and twin boundaries in the martensitic phase is reflected by introducing two order-parameters in a hierarchical manner, one as the reference volume fraction of austenite, and thus of the whole martensite, and the second as the volume fraction of one variant of martensite in the martensitic phase only. The microstructure evolution problem is given a variational formulation in terms of incremental fields of displacement and order parameters, with unilateral constraints on volume fractions explicitly enforced by applying the augmented Lagrangian method. As an application, size-dependent microstructures with diffuse interfaces are calculated for the cubic-to-orthorhombic transformation in a CuAlNi shape memory alloy and compared with the sharp-interface microstructures with interfacial energy effects.
Modeling the sharp compositional interface in the Pùu ̀Ṑō magma reservoir, Kīlauea volcano, Hawaìi
NASA Astrophysics Data System (ADS)
Mittelstaedt, Eric; Garcia, Michael O.
2007-05-01
Lavas from the early episodes of the Pu`u `Ō`ō eruption (1983-1985) of Kīlauea Volcano on the island of Hawai`i display rapid compositional variation over short periods for some episodes, especially the well-sampled episode 30 with ˜2 wt% MgO variation in <4 hours. Little chemical variation is observed within the episode 30 lavas before or after this abrupt change, suggesting a sharp compositional interface within the Pu`u `Ō`ō dike-like shallow reservoir. Cooling-induced crystal fractionation in this reservoir is thought to be the main control on intraepisode compositional variation. Potential explanations for a sharp interface, such as changing reservoir width and wall rock thermal properties, are evaluated using a simple thermal model of a dike-like body surrounded by wall rock with spatially variable thermal conductivity. The model that best reproduces the compositional data involves a change in wall rock thermal conductivity from 2.7 to 9 W m-1 C-1, which is consistent with deep drill hole data in the east rift zone. The change in thermal conductivity may indicate that fluid flow in the east rift zone is restricted to shallow depths possibly by increasing numbers of dikes acting as aquicludes and/or decreasing pore space due to formation of secondary minerals. Results suggest that wall rock thermal gradients can strongly influence magma chemistry in shallow reservoirs.
Mo, Phoenix K H; Lau, Joseph T F; Yu, Xiaonan; Gu, Jing
2015-01-01
Human immunodeficiency virus (HIV) carries a high level of stigma to the HIV-infected individuals and their family members. Children of HIV-infected parents in China are particularly affected. The present study examined the relationship between associative stigma, self-esteem, optimism, anxiety and depression among 195 children of HIV-infected parents in rural China. Findings showed that more than one-third (35.4 %) of the participants scored higher than cut-off for depression; and 23.6-67.7 % of them scored higher than cut-off for different types of anxiety disorders. Structural equation modelling revealed that associative stigma had a significant negative relationship on self-esteem and optimism, which were associated with higher levels of depression and anxiety. The indirect effects of associative stigma on depression and anxiety were significant. The overall model showed a satisfactory fit. Findings suggest that associative stigma has a significant negative impact on mental health of children affected by HIV. Interventions to reduce their associative stigma are warranted.
Influence of primary fragment excitation energy and spin distributions on fission observables
NASA Astrophysics Data System (ADS)
Litaize, Olivier; Thulliez, Loïc; Serot, Olivier; Chebboubi, Abdelaziz; Tamagno, Pierre
2018-03-01
Fission observables in the case of 252Cf(sf) are investigated by exploring several models involved in the excitation energy sharing and spin-parity assignment between primary fission fragments. In a first step the parameters used in the FIFRELIN Monte Carlo code "reference route" are presented: two parameters for the mass dependent temperature ratio law and two constant spin cut-off parameters for light and heavy fragment groups respectively. These parameters determine the initial fragment entry zone in excitation energy and spin-parity (E*, Jπ). They are chosen to reproduce the light and heavy average prompt neutron multiplicities. When these target observables are achieved all other fission observables can be predicted. We show here the influence of input parameters on the saw-tooth curve and we discuss the influence of a mass and energy-dependent spin cut-off model on gamma-rays related fission observables. The part of the model involving level densities, neutron transmission coefficients or photon strength functions remains unchanged.
Mihaylova, Borislava; Schlackow, Iryna; Herrington, William; Lozano-Kühne, Jingky; Kent, Seamus; Emberson, Jonathan; Reith, Christina; Haynes, Richard; Cass, Alan; Craig, Jonathan; Gray, Alastair; Collins, Rory; Landray, Martin J.; Baigent, Colin; Collins, R.; Baigent, C.; Landray, M.J.; Bray, C.; Chen, Y.; Baxter, A.; Young, A.; Hill, M.; Knott, C.; Cass, A.; Feldt-Rasmussen, B.; Fellström, B.; Grobbee, D.E.; Grönhagen-Riska, C.; Haas, M.; Holdaas, H.; Hooi, L.S.; Jiang, L.; Kasiske, B.; Krairittichai, U.; Levin, A.; Massy, Z.A.; Tesar, V.; Walker, R.; Wanner, C.; Wheeler, D.C.; Wiecek, A.; Dasgupta, T.; Herrington, W.; Lewis, D.; Mafham, M.; Majoni, W.; Reith, C.; Emberson, J.; Parish, S.; Simpson, D.; Strony, J.; Musliner, T.; Agodoa, L.; Armitage, J.; Chen, Z.; Craig, J.; de Zeeuw, D.; Gaziano, J.M.; Grimm, R.; Krane, V.; Neal, B.; Ophascharoensuk, V.; Pedersen, T.; Sleight, P.; Tobert, J.; Tomson, C.
2016-01-01
Background Simvastatin, 20 mg, plus ezetimibe, 10 mg, daily (simvastatin plus ezetimibe) reduced major atherosclerotic events in patients with moderate to severe chronic kidney disease (CKD) in the Study of Heart and Renal Protection (SHARP), but its cost-effectiveness is unknown. Study Design Cost-effectiveness of simvastatin plus ezetimibe in SHARP, a randomized controlled trial. Setting & Population 9,270 patients with CKD randomly assigned to simvastatin plus ezetimibe versus placebo; participants in categories by 5-year cardiovascular risk (low, <10%; medium, 10%-<20%; or high, ≥20%) and CKD stage (3, 4, 5 not on dialysis, or on dialysis therapy). Model, Perspective, & Timeline Assessment during SHARP follow-up from the UK perspective; long-term projections. Intervention Simvastatin plus ezetimibe (2015 UK £1.19 per day) during 4.9 years’ median follow-up in SHARP; scenario analyses with high-intensity statin regimens (2015 UK £0.05-£1.06 per day). Outcomes Additional health care costs per major atherosclerotic event avoided and per quality-adjusted life-year (QALY) gained. Results In SHARP, the proportional reductions per 1 mmol/L of low-density lipoprotein (LDL) cholesterol reduction with simvastatin plus ezetimibe in all major atherosclerotic events of 20% (95% CI, 6%-32%) and in the costs of vascular hospital episodes of 17% (95% CI, 4%-28%) were similar across participant categories by cardiovascular risk and CKD stage. The 5-year reduction in major atherosclerotic events per 1,000 participants ranged from 10 in low-risk to 58 in high-risk patients and from 28 in CKD stage 3 to 36 in patients on dialysis therapy. The net cost per major atherosclerotic event avoided with simvastatin plus ezetimibe compared to no LDL-lowering regimen ranged from £157,060 in patients at low risk to £15,230 in those at high risk (£30,500-£39,600 per QALY); and from £47,280 in CKD stage 3 to £28,180 in patients on dialysis therapy (£13,000-£43,300 per QALY). In scenario analyses, generic high-intensity statin regimens were estimated to yield similar benefits at substantially lower cost. Limitations High-intensity statin-alone regimens were not studied in SHARP. Conclusions Simvastatin plus ezetimibe prevented atherosclerotic events in SHARP, but other less costly statin regimens are likely to be more cost-effective for reducing cardiovascular risk in CKD. PMID:26597925
Model C Is Feasible for ESEA Title I Evaluation.
ERIC Educational Resources Information Center
Echternacht, Gary
The assertion that Model C is feasible for Elementary Secondary Education Act Title I evaluation, why it is feasible, and reasons why it is so seldom used are explained. Two assumptions must be made to use the special regression model. First, a strict cut-off must be used on the pretest to assign students to Title I and comparison groups. Second,…
Sears, Lindsay E.; Coberley, Carter R.; Pope, James E.
2013-01-01
Abstract Adverse health and productivity outcomes have imposed a considerable economic burden on employers. To facilitate optimal worksite intervention designs tailored to differing employee risk levels, the authors established cutoff points for an Individual Well-Being Score (IWBS) based on a global measure of well-being. Cross-sectional associations between IWBS and adverse health and productivity outcomes, including high health care cost, emergency room visits, short-term disability days, absenteeism, presenteeism, low job performance ratings, and low intentions to stay with the employer, were studied in a sample of 11,702 employees from a large employer. Receiver operating characteristics curves were evaluated to detect a single optimal cutoff value of IWBS for predicting 2 or more adverse outcomes. More granular segmentation was achieved by computing relative risks of each adverse outcome from logistic regressions accounting for sociodemographic characteristics. Results showed strong and significant nonlinear associations between IWBS and health and productivity outcomes. An IWBS of 75 was found to be the optimal single cutoff point to discriminate 2 or more adverse outcomes. Logistic regression models found abrupt reductions of relative risk also clustered at IWBS cutoffs of 53, 66, and 88, in addition to 75, which segmented employees into high, high-medium, medium, low-medium, and low risk groups. To determine validity and generalizability, cutoff values were applied in a smaller employee population (N=1853) and confirmed significant differences between risk groups across health and productivity outcomes. The reported segmentation of IWBS into discrete cohorts based on risk of adverse health and productivity outcomes should facilitate well-being comparisons and worksite interventions. (Population Health Management 2013;16:90–98) PMID:23013034
Novais, Rommel L R; Café, Ana Carolina C; Morais, Aisha A; Bila, Wendell C; Santos, Gilson D da S; Lopes, Carlos Alexandre de O; Belo, Vinícius S; Romano, Márcia Christina C; Lamounier, Joel A
2018-04-27
To associate intra-abdominal fat thickness measured by ultrasonography to the factors related to metabolic syndrome and to determine cutoff points of intra-abdominal fat measurement associated with a greater chance of metabolic syndrome in adolescents. This was a cross-sectional study, with 423 adolescents from public schools. Intra-abdominal fat was measured by ultrasonography. Anthropometric data were collected, and biochemical analyses were performed. Intra-abdominal fat was measured by ultrasonography, showing a statistically significant association with the diagnosis of metabolic syndrome (p=0.037), body mass index (p<0.001), elevated triglyceride levels (p=0.012), decreased plasma HDL levels (p=0.034), and increased systemic blood pressure values (p=0.023). Cutoff values of intra-abdominal fat thickness measurements were calculated by ultrasound to estimate the individuals most likely to develop metabolic syndrome. In the logistic regression models, the cutoff values that showed the highest association with metabolic syndrome in males were 4.50, 5.35, 5.46, 6.24, and 6.50cm for the ages of 14, 15, 16, 17, and 18/19 years, respectively. In the female gender, the cutoff values defined for the same age groups were 4.46, 4.55, 4.45, 4.90, and 6.46cm. In an overall analysis using the ROC curve, without gender and age stratification, the cut-off of 3.67cm showed good sensitivity, but low specificity. Ultrasonography is a useful method to estimate intra-abdominal adipose tissue in adolescents, which is associated with the main factors related to obesity and metabolic syndrome. Copyright © 2018 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Kurtoğlu, Selim; Hatipoğlu, Nihal; Mazıcıoğlu, Mümtaz; Kendirici, Mustafa; Keskin, Mehmet; Kondolot, Meda
2010-01-01
Childhood obesity is associated with an increased risk for insulin resistance. The underlying mechanism for the physiological increase in insulin levels in puberty is not clearly understood. The aim of the present study was to determine the cut-off values for homeostasis model assessment for insulin resistance (HOMA-IR) in obese children and adolescents according to gender and pubertal status. Two hundred and eight obese children and adolescents (141 girls, 127 boys) aged between 5 and 18 years were included in the study. The children were divided into prepubertal and pubertal groups. A standard oral glucose tolerance test (OGTT) was carried out in all children. A total insulin level exceeding 300 μU/mL in the blood samples, collected during the test period, was taken as the insulin resistance criterion. Cut-off values for HOMA-IR were calculated by receiver operating characteristic (ROC) analysis. In the prepubertal period, the rate of insulin resistance was found to be 37% in boys and 27.8% in girls,while in the pubertal period, this rate was 61.7% in boys and 66.7% in girls. HOMA-IR cut-off values for insulin resistance in the prepubertal period were calculated to be 2.67 (sensitivity 88.2%, specificity 65.5%) in boys and 2.22 (sensitivity 100%, specificity 42.3%) in girls, and in the pubertal period, they were 5.22 (sensitivity 56%, specificity 93.3%) in boys and 3.82 (sensitivity 77.1%, specificity 71.4%) in girls. Since gender, obesity and pubertal status are factors affecting insulin resistance, cut-off values which depend on gender and pubertal status, should be used in evaluation of insulin resistance.
A Constitutive Relationship for Gravelly Soil Considering Fine Particle Suffusion
Zhang, Yuning; Chen, Yulong
2017-01-01
Suffusion erosion may occur in sandy gravel dam foundations that use suspended cutoff walls. This erosion causes a loss of fine particles, degrades the soil strength and deformation moduli, and adversely impacts the cutoff walls of the dam foundation, as well as the overlying dam body. A comprehensive evaluation of these effects requires models that quantitatively describe the effects of fine particle losses on the stress-strain relationships of sandy gravels. In this work, we propose an experimental scheme for studying these types of models, and then perform triaxial and confined compression tests to determine the effects of particle losses on the stress-strain relationships. Considering the Duncan-Chang E-B model, quantitative expressions describing the relationship between the parameters of the model and the particle losses were derived. The results show that particle losses did not alter the qualitative stress-strain characteristics of the soils; however, the soil strength and deformation moduli were degraded. By establishing the relationship between the parameters of the model and the losses, the same model can then be used to describe the relationship between sandy gravels and erosion levels that vary in both time and space. PMID:29065532
Consistent parameter fixing in the quark-meson model with vacuum fluctuations
NASA Astrophysics Data System (ADS)
Carignano, Stefano; Buballa, Michael; Elkamhawy, Wael
2016-08-01
We revisit the renormalization prescription for the quark-meson model in an extended mean-field approximation, where vacuum quark fluctuations are included. At a given cutoff scale the model parameters are fixed by fitting vacuum quantities, typically including the sigma-meson mass mσ and the pion decay constant fπ. In most publications the latter is identified with the expectation value of the sigma field, while for mσ the curvature mass is taken. When quark loops are included, this prescription is however inconsistent, and the correct identification involves the renormalized pion decay constant and the sigma pole mass. In the present article we investigate the influence of the parameter-fixing scheme on the phase structure of the model at finite temperature and chemical potential. Despite large differences between the model parameters in the two schemes, we find that in homogeneous matter the effect on the phase diagram is relatively small. For inhomogeneous phases, on the other hand, the choice of the proper renormalization prescription is crucial. In particular, we show that if renormalization effects on the pion decay constant are not considered, the model does not even present a well-defined renormalized limit when the cutoff is sent to infinity.
Chung, Hyun Sik; Lee, Yu Jung; Jo, Yun Sung
2017-02-21
BACKGROUND Acute liver failure (ALF) is known to be a rapidly progressive and fatal disease. Various models which could help to estimate the post-transplant outcome for ALF have been developed; however, none of them have been proved to be the definitive predictive model of accuracy. We suggest a new predictive model, and investigated which model has the highest predictive accuracy for the short-term outcome in patients who underwent living donor liver transplantation (LDLT) due to ALF. MATERIAL AND METHODS Data from a total 88 patients were collected retrospectively. King's College Hospital criteria (KCH), Child-Turcotte-Pugh (CTP) classification, and model for end-stage liver disease (MELD) score were calculated. Univariate analysis was performed, and then multivariate statistical adjustment for preoperative variables of ALF prognosis was performed. A new predictive model was developed, called the MELD conjugated serum phosphorus model (MELD-p). The individual diagnostic accuracy and cut-off value of models in predicting 3-month post-transplant mortality were evaluated using the area under the receiver operating characteristic curve (AUC). The difference in AUC between MELD-p and the other models was analyzed. The diagnostic improvement in MELD-p was assessed using the net reclassification improvement (NRI) and integrated discrimination improvement (IDI). RESULTS The MELD-p and MELD scores had high predictive accuracy (AUC >0.9). KCH and serum phosphorus had an acceptable predictive ability (AUC >0.7). The CTP classification failed to show discriminative accuracy in predicting 3-month post-transplant mortality. The difference in AUC between MELD-p and the other models had statistically significant associations with CTP and KCH. The cut-off value of MELD-p was 3.98 for predicting 3-month post-transplant mortality. The NRI was 9.9% and the IDI was 2.9%. CONCLUSIONS MELD-p score can predict 3-month post-transplant mortality better than other scoring systems after LDLT due to ALF. The recommended cut-off value of MELD-p is 3.98.
Differential Equation Models for Sharp Threshold Dynamics
2012-08-01
dynamics, and the Lanchester model of armed conflict, where the loss of a key capability drastically changes dynamics. We derive and demonstrate a step...dynamics using differential equations. 15. SUBJECT TERMS Differential Equations, Markov Population Process, S-I-R Epidemic, Lanchester Model 16...infection, where a detection event drastically changes dynamics, and the Lanchester model of armed conflict, where the loss of a key capability
Multispectral processing without spectra.
Drew, Mark S; Finlayson, Graham D
2003-07-01
It is often the case that multiplications of whole spectra, component by component, must be carried out,for example when light reflects from or is transmitted through materials. This leads to particularly taxing calculations, especially in spectrally based ray tracing or radiosity in graphics, making a full-spectrum method prohibitively expensive. Nevertheless, using full spectra is attractive because of the many important phenomena that can be modeled only by using all the physics at hand. We apply to the task of spectral multiplication a method previously used in modeling RGB-based light propagation. We show that we can often multiply spectra without carrying out spectral multiplication. In previous work [J. Opt. Soc. Am. A 11, 1553 (1994)] we developed a method called spectral sharpening, which took camera RGBs to a special sharp basis that was designed to render illuminant change simple to model. Specifically, in the new basis, one can effectively model illuminant change by using a diagonal matrix rather than the 3 x 3 linear transform that results from a three-component finite-dimensional model [G. Healey and D. Slater, J. Opt. Soc. Am. A 11, 3003 (1994)]. We apply this idea of sharpening to the set of principal components vectors derived from a representative set of spectra that might reasonably be encountered in a given application. With respect to the sharp spectral basis, we show that spectral multiplications can be modeled as the multiplication of the basis coefficients. These new product coefficients applied to the sharp basis serve to accurately reconstruct the spectral product. Although the method is quite general, we show how to use spectral modeling by taking advantage of metameric surfaces, ones that match under one light but not another, for tasks such as volume rendering. The use of metamers allows a user to pick out or merge different volume structures in real time simply by changing the lighting.
Multispectral processing without spectra
NASA Astrophysics Data System (ADS)
Drew, Mark S.; Finlayson, Graham D.
2003-07-01
It is often the case that multiplications of whole spectra, component by component, must be carried out, for example when light reflects from or is transmitted through materials. This leads to particularly taxing calculations, especially in spectrally based ray tracing or radiosity in graphics, making a full-spectrum method prohibitively expensive. Nevertheless, using full spectra is attractive because of the many important phenomena that can be modeled only by using all the physics at hand. We apply to the task of spectral multiplication a method previously used in modeling RGB-based light propagation. We show that we can often multiply spectra without carrying out spectral multiplication. In previous work J. Opt. Soc. Am. A 11 , 1553 (1994) we developed a method called spectral sharpening, which took camera RGBs to a special sharp basis that was designed to render illuminant change simple to model. Specifically, in the new basis, one can effectively model illuminant change by using a diagonal matrix rather than the 33 linear transform that results from a three-component finite-dimensional model G. Healey and D. Slater, J. Opt. Soc. Am. A 11 , 3003 (1994). We apply this idea of sharpening to the set of principal components vectors derived from a representative set of spectra that might reasonably be encountered in a given application. With respect to the sharp spectral basis, we show that spectral multiplications can be modeled as the multiplication of the basis coefficients. These new product coefficients applied to the sharp basis serve to accurately reconstruct the spectral product. Although the method is quite general, we show how to use spectral modeling by taking advantage of metameric surfaces, ones that match under one light but not another, for tasks such as volume rendering. The use of metamers allows a user to pick out or merge different volume structures in real time simply by changing the lighting. 2003 Optical Society of America
A proposed cutoff point of waist-to-height ratio for metabolic risk in African township adolescents.
Kruger, H Salome; Faber, Mieke; Schutte, Aletta E; Ellis, Suria M
2013-03-01
A waist:height ratio (WHtR) higher than 0.5 has been proposed as a cutoff point for abdominal obesity in both sexes and at all ages. It is unknown if this cutoff point is appropriate for previously undernourished adolescents. We assessed the cutoff value of the WHtR associated with an increased metabolic risk in 178 black South African 14- to 18-y-old adolescents (69 boys, 109 girls). We measured weight, height, waist circumference, fasting plasma glucose and insulin levels, serum high-sensitivity C-reactive protein, and blood pressure and calculated the WHtR and homeostasis model assessment of insulin resistance (HOMA-IR). Using receiver operating characteristics curve analyses, we assessed the WHtR with the highest sensitivity and specificity to discriminate adolescents with increased fasting plasma glucose, HOMA-IR, serum high-sensitivity C-reactive protein, and blood pressure from those with "normal" values. The WHtR cutoff points derived from the receiver operating characteristics curves ranged from 0.40 to 0.41, with best diagnostic value at 0.41. A WHtR of 0.40 had 80% sensitivity and 38.5% specificity to classify adolescents with fasting blood glucose level higher than 5.6 mmol/L (area under the curve [AUC] 0.57). A WHtR of 0.41 had 64% sensitivity and 58.5% specificity for a HOMA-IR higher than 3.4 (AUC 0.66), 55% sensitivity and 55.6% specificity for a high-sensitivity C-reactive protein level higher than 1 mg/L (AUC 0.57), and 64% sensitivity and 50.2% specificity for a blood pressure higher than the age-, sex-, and height-specific 90th percentiles (AUC 0.56). Adolescents with a WHtR higher than 0.41 had an odds ratio of 2.46 (95% confidence interval 0.96-6.30) for having a HOMA-IR higher than 3.4. The WHtR cutoff to indicate metabolic risk for black South African adolescents is 0.41, which is lower than the proposed international cutoff of 0.5. The WHtR can be used for screening adolescents with components of the metabolic syndrome in intervention programs. Copyright © 2013 Elsevier Inc. All rights reserved.
10 CFR 26.163 - Cutoff levels for drugs and drug metabolites.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Cutoff levels for drugs and drug metabolites. 26.163... the Department of Health and Human Services § 26.163 Cutoff levels for drugs and drug metabolites. (a) Initial drug testing. (1) HHS-certified laboratories shall apply the following cutoff levels for initial...
10 CFR 26.163 - Cutoff levels for drugs and drug metabolites.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Cutoff levels for drugs and drug metabolites. 26.163... the Department of Health and Human Services § 26.163 Cutoff levels for drugs and drug metabolites. (a) Initial drug testing. (1) HHS-certified laboratories shall apply the following cutoff levels for initial...
10 CFR 26.163 - Cutoff levels for drugs and drug metabolites.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Cutoff levels for drugs and drug metabolites. 26.163... the Department of Health and Human Services § 26.163 Cutoff levels for drugs and drug metabolites. (a) Initial drug testing. (1) HHS-certified laboratories shall apply the following cutoff levels for initial...
10 CFR 26.163 - Cutoff levels for drugs and drug metabolites.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Cutoff levels for drugs and drug metabolites. 26.163... the Department of Health and Human Services § 26.163 Cutoff levels for drugs and drug metabolites. (a) Initial drug testing. (1) HHS-certified laboratories shall apply the following cutoff levels for initial...
10 CFR 26.163 - Cutoff levels for drugs and drug metabolites.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Cutoff levels for drugs and drug metabolites. 26.163... the Department of Health and Human Services § 26.163 Cutoff levels for drugs and drug metabolites. (a) Initial drug testing. (1) HHS-certified laboratories shall apply the following cutoff levels for initial...
40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., measurement accuracy, and cut-off. 53.53 Section 53.53 Protection of Environment ENVIRONMENTAL PROTECTION..., measurement accuracy, and cut-off. (a) Overview. This test procedure is designed to evaluate a candidate... measurement accuracy, coefficient of variability measurement accuracy, and the flow rate cut-off function. The...
NASA Astrophysics Data System (ADS)
Prasitmeeboon, Pitcha
Repetitive control (RC) is a control method that specifically aims to converge to zero tracking error of a control systems that execute a periodic command or have periodic disturbances of known period. It uses the error of one period back to adjust the command in the present period. In theory, RC can completely eliminate periodic disturbance effects. RC has applications in many fields such as high-precision manufacturing in robotics, computer disk drives, and active vibration isolation in spacecraft. The first topic treated in this dissertation develops several simple RC design methods that are somewhat analogous to PID controller design in classical control. From the early days of digital control, emulation methods were developed based on a Forward Rule, a Backward Rule, Tustin's Formula, a modification using prewarping, and a pole-zero mapping method. These allowed one to convert a candidate controller design to discrete time in a simple way. We investigate to what extent they can be used to simplify RC design. A particular design is developed from modification of the pole-zero mapping rules, which is simple and sheds light on the robustness of repetitive control designs. RC convergence requires less than 90 degree model phase error at all frequencies up to Nyquist. A zero-phase cutoff filter is normally used to robustify to high frequency model error when this limit is exceeded. The result is stabilization at the expense of failure to cancel errors above the cutoff. The second topic investigates a series of methods to use data to make real time updates of the frequency response model, allowing one to increase or eliminate the frequency cutoff. These include the use of a moving window employing a recursive discrete Fourier transform (DFT), and use of a real time projection algorithm from adaptive control for each frequency. The results can be used directly to make repetitive control corrections that cancel each error frequency, or they can be used to update a repetitive control FIR compensator. The aim is to reduce the final error level by using real time frequency response model updates to successively increase the cutoff frequency, each time creating the improved model needed to produce convergence zero error up to the higher cutoff. Non-minimum phase systems present a difficult design challenge to the sister field of Iterative Learning Control. The third topic investigates to what extent the same challenges appear in RC. One challenge is that the intrinsic non-minimum phase zero mapped from continuous time is close to the pole of repetitive controller at +1 creating behavior similar to pole-zero cancellation. The near pole-zero cancellation causes slow learning at DC and low frequencies. The Min-Max cost function over the learning rate is presented. The Min-Max can be reformulated as a Quadratically Constrained Linear Programming problem. This approach is shown to be an RC design approach that addresses the main challenge of non-minimum phase systems to have a reasonable learning rate at DC. Although it was illustrated that using the Min-Max objective improves learning at DC and low frequencies compared to other designs, the method requires model accuracy at high frequencies. In the real world, models usually have error at high frequencies. The fourth topic addresses how one can merge the quadratic penalty to the Min-Max cost function to increase robustness at high frequencies. The topic also considers limiting the Min-Max optimization to some frequencies interval and applying an FIR zero-phase low-pass filter to cutoff the learning for frequencies above that interval.
The Effects of Low- and High-Energy Cutoffs on Solar Flare Microwave and Hard X-Ray Spectra
NASA Technical Reports Server (NTRS)
Holman, G. D.; Oegerle, William (Technical Monitor)
2002-01-01
Microwave and hard x-ray spectra provide crucial information about energetic electrons and their environment in solar flares. These spectra are becoming better determined with the Owens Valley Solar Array (OVSA) and the recent launch of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The proposed Frequency Agile Solar Radiotelescope (FASR) promises even greater advances in radio observations of solar flares. Both microwave and hard x-ray spectra are sensitive to cutoffs in the electron distribution function. The determination of the high-energy cutoff from these spectra establishes the highest electron energies produced by the acceleration mechanism, while determination of the low-energy cutoff is crucial to establishing the total energy in accelerated electrons. This paper will show computations of the effects of both high- and low-energy cutoffs on microwave and hard x-ray spectra. The optically thick portion of a microwave spectrum is enhanced and smoothed by a low-energy cutoff, while a hard x-ray spectrum is flattened below the cutoff energy. A high-energy cutoff steepens the microwave spectrum and increases the wavelength at which the spectrum peaks, while the hard x-ray spectrum begins to steepen at photon energies roughly an order of magnitude below the electron cutoff energy. This work discusses how flare microwave and hard x-ray spectra can be analyzed together to determine these electron cutoff energies. This work is supported in part by the NASA Sun-Earth Connection Program.
Controls on cutoff formation along a tropical meandering river in the Amazon Basin
NASA Astrophysics Data System (ADS)
Ahmed, J.; Constantine, J. A.
2016-12-01
The termination of meander bends is an inherent part of the evolution of meandering rivers. Cutoffs are produced by one of two mechanisms: neck cutoffs occur when two adjacent meanders converge, while chute cutoffs are generated by flood-driven floodplain incision, resulting in a shorter, steeper channel path. Here we use an annually-resolved record of Landsat imagery, coupled with daily discharge data to assess the role of high-magnitude discharges (Q ≥ QBF) on cutoff formation along the Rio Beni, Bolivia. Our results suggest that despite numerous above-bankfull events, the dominant cutoff mechanism operating on the Beni is neck cutoff. Evaluating the formation of these cutoffs reveals that migration rates accelerate during years of high discharge, and eventually cause the migrating bends to breach. The density of floodplain vegetation and the medium into which the channel migrated was also responsible for the patterns of cutoff documented along this river. The presence of existing floodplain channels permitted the river to divert its flow along shorter courses thereby facilitating cutoff, and limiting sinuosity growth. Understanding the long-term evolution of meandering channels is important since their morphodynamics are responsible for the creation of highly biodiverse riparian habitats, as well as the store and release of alluvial material. Moreover, the interactions between discharge and the channel-floodplain system are integral for the functioning and long-term evolution of these landscapes, particularly in the face of global climate change.
Montreal Cognitive Assessment: One Cutoff Never Fits All.
Wong, Adrian; Law, Lorraine S N; Liu, Wenyan; Wang, Zhaolu; Lo, Eugene S K; Lau, Alexander; Wong, Lawrence K S; Mok, Vincent C T
2015-12-01
The objective of this study is to examine the discrepancy between single versus age and education corrected cutoff scores in classifying performance on the Montreal Cognitive Assessment (MoCA) in patients with stroke or transient ischemic attack. MoCA norms were collected from 794 functionally independent and stroke- and dementia-free persons aged ≥65 years. magnetic resonance imaging was used to exclude healthy controls with significant brain pathology and medial temporal lobe atrophy. Cutoff scores at 16th, 7th, and 2nd percentiles by age and education were derived for the MoCA and MoCA 5-minute Protocol. MoCA performance in 919 patients with stroke or transient ischemic attack was classified using the single and norm-derived cutoff scores. The norms for the Hong Kong version of the MoCA total and domain scores and the total score of the MoCA 5-minute protocol are described. Only 65.1% and 25.7% healthy controls and 45.2% and 19.0% patients scored above the conventional cutoff scores of 21/22 and 25/26 on the MoCA. Using classification with norm-derived cutoff scores as reference, locally derived cutoff score of 21/22 yielded a classification discrepancy of ≤42.4%. Discrepancy increased with higher age and lower education level, with the majority being false positives by single cutoffs. With the 25/26 cutoff of the original MoCA, discrepancy further increased to ≤74.3%. Conventional single cutoff scores are associated with substantially high rates of misclassification especially in older and less-educated patients with stroke. These results caution against the use of one-size-fits-all cutoffs on the MoCA. © 2015 American Heart Association, Inc.
Mach Cutoff Analysis and Results from NASA's Farfield Investigation of No-Boom Thresholds
NASA Technical Reports Server (NTRS)
Cliatt, Larry J., II; Hill, Michael A.; Haering, Edward A., Jr.
2016-01-01
In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center and the NASA Langley Research Center, in partnership with other industry organizations and academia, conducted a flight research experiment to analyze acoustic propagation in the Mach cutoff shadow zone. The effort was conducted in the fall of 2012 and named the Farfield Investigation of No-boom Thresholds (FaINT). The test helped to build a dataset that will go toward further understanding of the unique acoustic propagation characteristics below Mach cutoff altitude. FaINT was able to correlate sonic boom noise levels measured below cutoff altitude with precise airplane flight conditions, potentially increasing the accuracy over previous studies. A NASA F-18B airplane made supersonic passes such that its Mach cutoff caustic would be at varying distances above a linear 60-microphone, 7375-ft (2247.9 m) long array. A TG-14 motor glider equipped with a microphone on its wing-tip also attempted to capture the same sonic boom waves above ground, but below the Mach cutoff altitude. This paper identified an appropriate metric for sonic boom waveforms in the Mach cutoff shadow zone called Perceived Sound Exposure Level; derived an empirical relationship between Mach cutoff flight conditions and noise levels in the shadow zone; validated a safe cutoff altitude theory presented by previous studies; analyzed the sensitivity of flight below Mach cutoff to unsteady atmospheric conditions and realistic aircraft perturbations; and demonstrated the ability to record sonic boom measurements over 5000 ft (1524.0 m) above ground level, but below Mach cutoff altitude.
Burrows, R.; Correa-Burrows, P.; Reyes, M.; Blanco, E.; Albala, C.; Gahagan, S.
2015-01-01
Objective. To determine the optimal cutoff of the homeostasis model assessment-insulin resistance (HOMA-IR) for diagnosis of the metabolic syndrome (MetS) in adolescents and examine whether insulin resistance (IR), determined by this method, was related to genetic, biological, and environmental factors. Methods. In 667 adolescents (16.8 ± 0.3 y), BMI, waist circumference, glucose, insulin, adiponectin, diet, and physical activity were measured. Fat and fat-free mass were assessed by dual-energy X-ray absorptiometry. Family history of type 2 diabetes (FHDM) was reported. We determined the optimal cutoff of HOMA-IR to diagnose MetS (IDF criteria) using ROC analysis. IR was defined as HOMA-IR values above the cutoff. We tested the influence of genetic, biological, and environmental factors on IR using logistic regression analyses. Results. Of the participants, 16% were obese and 9.4 % met criteria for MetS. The optimal cutoff for MetS diagnosis was a HOMA-IR value of 2.6. Based on this value, 16.3% of participants had IR. Adolescents with IR had a significantly higher prevalence of obesity, abdominal obesity, fasting hyperglycemia, and MetS compared to those who were not IR. FHDM, sarcopenia, obesity, and low adiponectin significantly increased the risk of IR. Conclusions. In adolescents, HOMA-IR ≥ 2.6 was associated with greater cardiometabolic risk. PMID:26273675
Burrows, R; Correa-Burrows, P; Reyes, M; Blanco, E; Albala, C; Gahagan, S
2015-01-01
To determine the optimal cutoff of the homeostasis model assessment-insulin resistance (HOMA-IR) for diagnosis of the metabolic syndrome (MetS) in adolescents and examine whether insulin resistance (IR), determined by this method, was related to genetic, biological, and environmental factors. In 667 adolescents (16.8 ± 0.3 y), BMI, waist circumference, glucose, insulin, adiponectin, diet, and physical activity were measured. Fat and fat-free mass were assessed by dual-energy X-ray absorptiometry. Family history of type 2 diabetes (FHDM) was reported. We determined the optimal cutoff of HOMA-IR to diagnose MetS (IDF criteria) using ROC analysis. IR was defined as HOMA-IR values above the cutoff. We tested the influence of genetic, biological, and environmental factors on IR using logistic regression analyses. Of the participants, 16% were obese and 9.4 % met criteria for MetS. The optimal cutoff for MetS diagnosis was a HOMA-IR value of 2.6. Based on this value, 16.3% of participants had IR. Adolescents with IR had a significantly higher prevalence of obesity, abdominal obesity, fasting hyperglycemia, and MetS compared to those who were not IR. FHDM, sarcopenia, obesity, and low adiponectin significantly increased the risk of IR. In adolescents, HOMA-IR ≥ 2.6 was associated with greater cardiometabolic risk.
Bullich, Santiago; Seibyl, John; Catafau, Ana M; Jovalekic, Aleksandar; Koglin, Norman; Barthel, Henryk; Sabri, Osama; De Santi, Susan
2017-01-01
Standardized uptake value ratios (SUVRs) calculated from cerebral cortical areas can be used to categorize 18 F-Florbetaben (FBB) PET scans by applying appropriate cutoffs. The objective of this work was first to generate FBB SUVR cutoffs using visual assessment (VA) as standard of truth (SoT) for a number of reference regions (RR) (cerebellar gray matter (GCER), whole cerebellum (WCER), pons (PONS), and subcortical white matter (SWM)). Secondly, to validate the FBB PET scan categorization performed by SUVR cutoffs against the categorization made by post-mortem histopathological confirmation of the Aβ presence. Finally, to evaluate the added value of SUVR cutoff categorization to VA. SUVR cutoffs were generated for each RR using FBB scans from 143 subjects who were visually assessed by 3 readers. SUVR cutoffs were validated in 78 end-of life subjects using VA from 8 independent blinded readers (3 expert readers and 5 non-expert readers) and histopathological confirmation of the presence of neuritic beta-amyloid plaques as SoT. Finally, the number of correctly or incorrectly classified scans according to pathology results using VA and SUVR cutoffs was compared. Composite SUVR cutoffs generated were 1.43 (GCER), 0.96 (WCER), 0.78 (PONS) and 0.71 (SWM). Accuracy values were high and consistent across RR (range 83-94% for histopathology, and 85-94% for VA). SUVR cutoff performed similarly as VA but did not improve VA classification of FBB scans read either by expert readers or the majority read but provided higher accuracy than some non-expert readers. The accurate scan classification obtained in this study supports the use of VA as SoT to generate site-specific SUVR cutoffs. For an elderly end of life population, VA and SUVR cutoff categorization perform similarly in classifying FBB scans as Aβ-positive or Aβ-negative. These results emphasize the additional contribution that SUVR cutoff classification may have compared with VA performed by non-expert readers.
Toole, Allison R; Ithurburn, Matthew P; Rauh, Mitchell J; Hewett, Timothy E; Paterno, Mark V; Schmitt, Laura C
2017-11-01
Study Design Prospective cohort study. Background While meeting objective criterion cutoffs is recommended prior to return to sports following anterior cruciate ligament (ACL) reconstruction, the number of young athletes who meet recommended cutoffs and the impact of cutoffs on longitudinal sports participation are unknown. Objectives To test the hypothesis that a higher proportion of young athletes who meet recommended cutoffs will maintain the same level of sports participation over the year following return-to-sport clearance compared to those who do not meet recommended cutoffs. Methods At the time of return-to-sport clearance, the International Knee Documentation Committee Subjective Knee Evaluation Form (IKDC), quadriceps and hamstring strength limb symmetry index (LSI), and single-leg hop test LSI were assessed. Proportions of participants who met individual (IKDC score of 90 or greater; strength and hop test LSIs of 90% or greater) and combined cutoffs were calculated. Proportions of participants who continued at the same level of sports participation over the year following return-to-sport clearance (assessed using the Tegner activity scale) were compared between those who met and did not meet cutoffs. Results Participants included 115 young athletes (88 female). The proportions meeting individual cutoffs ranged from 43.5% to 78.3%. The proportions meeting cutoffs for all hop tests, all strength tests, and all combined measures were 53.0%, 27.8%, and 13.9%, respectively. A higher proportion of participants who met cutoffs for both strength tests maintained the same level of sports participation over the year following return-to-sport clearance than those who did not (81.3% versus 60.2%, P = .02). Conclusion The proportions of young athletes after ACL reconstruction recently cleared for return to sports who met the combined criterion cutoffs were low. Those who met the criterion cutoffs for both strength tests maintained the same level of sports participation at higher proportions than those who did not. Level of Evidence Prognosis, level 2b. J Orthop Sports Phys Ther 2017;47(11):825-833. Epub 7 Oct 2017. doi:10.2519/jospt.2017.7227.
This report presents the results of the verification test of the Sharpe Platinum 2013 high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the Sharpe Platinum, which is designed for use in automotive refinishing. The test coating chosen by Sharpe Manufacturi...
NASA Astrophysics Data System (ADS)
Xing, Y. F.; Wang, Y. S.; Shi, L.; Guo, H.; Chen, H.
2016-01-01
According to the human perceptional characteristics, a method combined by the optimal wavelet-packet transform and artificial neural network, so-called OWPT-ANN model, for psychoacoustical recognition is presented. Comparisons of time-frequency analysis methods are performed, and an OWPT with 21 critical bands is designed for feature extraction of a sound, as is a three-layer back-propagation ANN for sound quality (SQ) recognition. Focusing on the loudness and sharpness, the OWPT-ANN model is applied on vehicle noises under different working conditions. Experimental verifications show that the OWPT can effectively transfer a sound into a time-varying energy pattern as that in the human auditory system. The errors of loudness and sharpness of vehicle noise from the OWPT-ANN are all less than 5%, which suggest a good accuracy of the OWPT-ANN model in SQ recognition. The proposed methodology might be regarded as a promising technique for signal processing in the human-hearing related fields in engineering.
Material Data Representation of Hysteresis Loops for Hastelloy X Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Alam, Javed; Berke, Laszlo; Murthy, Pappu L. N.
1993-01-01
The artificial neural network (ANN) model proposed by Rumelhart, Hinton, and Williams is applied to develop a functional approximation of material data in the form of hysteresis loops from a nickel-base superalloy, Hastelloy X. Several different ANN configurations are used to model hysteresis loops at different cycles for this alloy. The ANN models were successful in reproducing the hysteresis loops used for its training. However, because of sharp bends at the two ends of hysteresis loops, a drift occurs at the corners of the loops where loading changes to unloading and vice versa (the sharp bends occurred when the stress-strain curves were reproduced by adding stress increments to the preceding values of the stresses). Therefore, it is possible only to reproduce half of the loading path. The generalization capability of the network was tested by using additional data for two other hysteresis loops at different cycles. The results were in good agreement. Also, the use of ANN led to a data compression ratio of approximately 22:1.
Crespo, Andrea; Álvarez, Daniel; Kheirandish-Gozal, Leila; Gutiérrez-Tobal, Gonzalo C; Cerezo-Hernández, Ana; Gozal, David; Hornero, Roberto; Del Campo, Félix
2018-02-16
A variety of statistical models based on overnight oximetry has been proposed to simplify the detection of children with suspected obstructive sleep apnea syndrome (OSAS). Despite the usefulness reported, additional thorough comparative analyses are required. This study was aimed at assessing common binary classification models from oximetry for the detection of childhood OSAS. Overnight oximetry recordings from 176 children referred for clinical suspicion of OSAS were acquired during in-lab polysomnography. Several training and test datasets were randomly composed by means of bootstrapping for model optimization and independent validation. For every child, blood oxygen saturation (SpO 2 ) was parameterized by means of 17 features. Fast correlation-based filter (FCBF) was applied to search for the optimum features. The discriminatory power of three statistical pattern recognition algorithms was assessed: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and logistic regression (LR). The performance of each automated model was evaluated for the three common diagnostic polysomnographic cutoffs in pediatric OSAS: 1, 3, and 5 events/h. Best screening performances emerged using the 1 event/h cutoff for mild-to-severe childhood OSAS. LR achieved 84.3% accuracy (95% CI 76.8-91.5%) and 0.89 AUC (95% CI 0.83-0.94), while QDA reached 96.5% PPV (95% CI 90.3-100%) and 0.91 AUC (95% CI 0.85-0.96%). Moreover, LR and QDA reached diagnostic accuracies of 82.7% (95% CI 75.0-89.6%) and 82.1% (95% CI 73.8-89.5%) for a cutoff of 5 events/h, respectively. Automated analysis of overnight oximetry may be used to develop reliable as well as accurate screening tools for childhood OSAS.
Constraints on Lateral S Wave Velocity Gradients around the Pacific Superplume
NASA Astrophysics Data System (ADS)
To, A.; Romanowicz, B.
2006-12-01
Global shear velocity tomographic models show two large-scale low velocity structures in the lower mantle, under southern Africa and under the mid-Pacific. While tomographic models show the shape of the structures, the gradient and amplitude of the anomalies are yet to be constrained. By forward modelling of Sdiffracted phases using the Coupled Spectral ELement Method (C-SEM, Capdeville et al., 2003), we have previously shown that observed secondary phases following the Sdiff can be explained by interaction of the wavefield with sharp boundaries of the superplumes in the south Indian and south Pacific ocean (To et al., 2005). Here, we search for further constrains on velocity gradients at the border of the Pacific superplume all around the Pacific using a multi-step approach applied to a large dataset of Sdiffracted travel times and waveforms which are sensitive to the lower most mantle. We first apply our finite frequency tomographic inversion methodology (NACT, Li and Romanowicz, 1996) which provides a good starting 3D model, which in particular allows us to position the fast and slow anomalies and their boundaries quite well, as has been shown previously, but underestimates the gradients and velocity contrasts. We then perform forward modelling of Sdiff travel times, taking into account finite frequency effects, to refine the velocity contrasts and gradients and provides the next iteration 3D model. We then perform forward modelling of waveforms, down to a frequency of 0.06Hz, using C-SEM which provides final adjustments to the model. We present a model which shows that we can constrain sharp gradients on the southern and northern edges of the Pacific Superplume. To, A., B. Romanowicz, Y. Capdeville and N. Takeuchi (2005) 3D effects of sharp boundaries at the borders of the African and Pacific Superplumes: Observation and modeling. Earth and Planetary Sceince Letters, 233: 137-153 Capdeville, Y., A. To and B. Romanowicz (2003) Coupling spectral elements and modes in a spherical earth: an extension to the "sandwich" case. Geophys. J. Int., 154: 44-57 Li, X.D. and B. Romanowicz (1996) Global mantle shear velocity model developed using nonlinear asymptotic coupling theory, J. Geophys. Res., 101, 22,245-22,273
Alemayehu, T; Worku, A; Assefa, N
2016-07-01
Health care workers are facing certain occupational hazards because of sharp injury and exposure to human blood and body fluids as a result of handling wastes. Though much attention is paid for the protection of these workers, the number of exposures and injuries do not show a sign of decline from time to time. To examine the occurrence of sharp injury and exposure to blood and body fluids in health care workers in health care centers in Ethiopia. In a case-control study, a randomly selected sample of 65 health facilities with 391 cases and 429 controls were studied. Data were collected through a self-administered questionnaire. Detailed analysis of exposure among the health care workers was done by logistic regression analysis with generalized estimating equations model to control correlation effects of responses within the cluster of health facilities. The number of health care workers who got sharp injury was 217 (26.5%). 296 (36.1%) had exposure to blood and body fluids. Working at Harari region (adjusted OR 0.44, 95% CI 0.26 to 0.75) and East Hararghea (adjusted OR 0.61, 95% CI 0.40 to 0.94), being male (adjusted OR 0.56, 95% CI 0.44 to 0.91), and a being nurse (adjusted OR 0.188, 95% CI 0.06 to 0.63) were independent risk factors of the exposure. Regardless of the anticipated low self-reporting for exposure status, the number of health care workers reported having sharp injury and exposure to blood and body fluids was high. Such high exposures indicate that health care workers are at high risk of acquiring blood-borne viral infections such as hepatitis B, hepatitis C, and HIV.
Uncertainty Quantification in High Throughput Screening ...
Using uncertainty quantification, we aim to improve the quality of modeling data from high throughput screening assays for use in risk assessment. ToxCast is a large-scale screening program that analyzes thousands of chemicals using over 800 assays representing hundreds of biochemical and cellular processes, including endocrine disruption, cytotoxicity, and zebrafish development. Over 2.6 million concentration response curves are fit to models to extract parameters related to potency and efficacy. Models built on ToxCast results are being used to rank and prioritize the toxicological risk of tested chemicals and to predict the toxicity of tens of thousands of chemicals not yet tested in vivo. However, the data size also presents challenges. When fitting the data, the choice of models, model selection strategy, and hit call criteria must reflect the need for computational efficiency and robustness, requiring hard and somewhat arbitrary cutoffs. When coupled with unavoidable noise in the experimental concentration response data, these hard cutoffs cause uncertainty in model parameters and the hit call itself. The uncertainty will then propagate through all of the models built on the data. Left unquantified, this uncertainty makes it difficult to fully interpret the data for risk assessment. We used bootstrap resampling methods to quantify the uncertainty in fitting models to the concentration response data. Bootstrap resampling determines confidence intervals for
Zheng, Wenjun
2010-01-01
Abstract Protein conformational dynamics, despite its significant anharmonicity, has been widely explored by normal mode analysis (NMA) based on atomic or coarse-grained potential functions. To account for the anharmonic aspects of protein dynamics, this study proposes, and has performed, an anharmonic NMA (ANMA) based on the Cα-only elastic network models, which assume elastic interactions between pairs of residues whose Cα atoms or heavy atoms are within a cutoff distance. The key step of ANMA is to sample an anharmonic potential function along the directions of eigenvectors of the lowest normal modes to determine the mean-squared fluctuations along these directions. ANMA was evaluated based on the modeling of anisotropic displacement parameters (ADPs) from a list of 83 high-resolution protein crystal structures. Significant improvement was found in the modeling of ADPs by ANMA compared with standard NMA. Further improvement in the modeling of ADPs is attained if the interactions between a protein and its crystalline environment are taken into account. In addition, this study has determined the optimal cutoff distances for ADP modeling based on elastic network models, and these agree well with the peaks of the statistical distributions of distances between Cα atoms or heavy atoms derived from a large set of protein crystal structures. PMID:20550915
77 FR 52061 - Notice of Proposed Exemption Involving Sharp HealthCare Located in San Diego, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-28
...This document contains a notice of pendency (the Notice) before the Department of Labor (the Department) of a proposed individual exemption from certain prohibited transaction restrictions of the Employee Retirement Income Security Act of 1974 (the Act or ERISA). The transactions involve the Sharp HealthCare Health and Dental Plan (the Plan). The proposed exemption, if granted, would affect the Plan, its participants and beneficiaries, Sharp Healthcare (Sharp), and the Sharp Health Plan (the HMO).
10 CFR 26.133 - Cutoff levels for drugs and drug metabolites.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Cutoff levels for drugs and drug metabolites. 26.133... § 26.133 Cutoff levels for drugs and drug metabolites. Subject to the provisions of § 26.31(d)(3)(iii), licensees and other entities may specify more stringent cutoff levels for drugs and drug metabolites than...
10 CFR 26.133 - Cutoff levels for drugs and drug metabolites.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Cutoff levels for drugs and drug metabolites. 26.133... § 26.133 Cutoff levels for drugs and drug metabolites. Subject to the provisions of § 26.31(d)(3)(iii), licensees and other entities may specify more stringent cutoff levels for drugs and drug metabolites than...
10 CFR 26.133 - Cutoff levels for drugs and drug metabolites.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Cutoff levels for drugs and drug metabolites. 26.133... § 26.133 Cutoff levels for drugs and drug metabolites. Subject to the provisions of § 26.31(d)(3)(iii), licensees and other entities may specify more stringent cutoff levels for drugs and drug metabolites than...