Sample records for sharp dose gradients

  1. Iridium-Knife: Another knife in radiation oncology.

    PubMed

    Milickovic, Natasa; Tselis, Nikolaos; Karagiannis, Efstratios; Ferentinos, Konstantinos; Zamboglou, Nikolaos

    Intratarget dose escalation with superior conformity is a defining feature of three-dimensional (3D) iridium-192 ( 192 Ir) high-dose-rate (HDR) brachytherapy (BRT). In this study, we analyzed the dosimetric characteristics of interstitial 192 Ir HDR BRT for intrathoracic and cerebral malignancies. We examined the dose gradient sharpness of HDR BRT compared with that of linear accelerator-based stereotactic radiosurgery and stereotactic body radiation therapy, usually called X-Knife, to demonstrate that it may as well be called a Knife. Treatment plans for 10 patients with recurrent glioblastoma multiforme or intrathoracic malignancies, five of each entity, treated with X-Knife (stereotactic radiosurgery for glioblastoma multiforme and stereotactic body radiation therapy for intrathoracic malignancies) were replanned for simulated HDR BRT. For 3D BRT planning, we used identical structure sets and dose prescription as for the X-Knife planning. The indices for qualitative treatment plan analysis encompassed planning target volume coverage, conformity, dose falloff gradient, and the maximum dose-volume limits to different organs at risk. Volume coverage in HDR plans was comparable to that calculated for X-Knife plans with no statistically significant difference in terms of conformity. The dose falloff gradient-sharpness-of the HDR plans was considerably steeper compared with the X-Knife plans. Both 3D 192 Ir HDR BRT and X-Knife are effective means for intratarget dose escalation with HDR BRT achieving at least equal conformity and a steeper dose falloff at the target volume margin. In this sense, it can reasonably be argued that 3D 192 Ir HDR BRT deserves also to be called a Knife, namely Iridium-Knife. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  2. Single-energy intensity modulated proton therapy

    NASA Astrophysics Data System (ADS)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-09-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described. The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods. It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan. When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  3. Single-energy intensity modulated proton therapy.

    PubMed

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-10-07

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  4. Technical Note: The impact of deformable image registration methods on dose warping.

    PubMed

    Qin, An; Liang, Jian; Han, Xiao; O'Connell, Nicolette; Yan, Di

    2018-03-01

    The purpose of this study was to investigate the clinical-relevant discrepancy between doses warped by pure image based deformable image registration (IM-DIR) and by biomechanical model based DIR (BM-DIR) on intensity-homogeneous organs. Ten patients (5Head&Neck, 5Prostate) were included. A research DIR tool (ADMRIE_v1.12) was utilized for IM-DIR. After IM-DIR, BM-DIR was carried out for organs (parotids, bladder, and rectum) which often encompass sharp dose gradient. Briefly, high-quality tetrahedron meshes were generated and deformable vector fields (DVF) from IM-DIR were interpolated to the surface nodes of the volume meshes as boundary condition. Then, a FEM solver (ABAQUS_v6.14) was used to simulate the displacement of internal nodes, which were then interpolated to image-voxel grids to get the more physically plausible DVF. Both geometrical and subsequent dose warping discrepancies were quantified between the two DIR methods. Target registration discrepancy(TRD) was evaluated to show the geometry difference. The re-calculated doses on second CT were warped to the pre-treatment CT via two DIR. Clinical-relevant dose parameters and γ passing rate were compared between two types of warped dose. The correlation was evaluated between parotid shrinkage and TRD/dose discrepancy. The parotid shrunk to 75.7% ± 9% of its pre-treatment volume and the percentage of volume with TRD>1.5 mm) was 6.5% ± 4.7%. The normalized mean-dose difference (NMDD) of IM-DIR and BM-DIR was -0.8% ± 1.5%, with range (-4.7% to 1.5%). 2 mm/2% passing rate was 99.0% ± 1.4%. A moderate correlation was found between parotid shrinkage and TRD and NMDD. The bladder had a NMDD of -9.9% ± 9.7%, with BM-DIR warped dose systematically higher. Only minor deviation was observed for rectum NMDD (0.5% ± 1.1%). Impact of DIR method on treatment dose warping is patient and organ-specific. Generally, intensity-homogeneous organs, which undergo larger deformation/shrinkage during treatment and encompass sharp dose gradient, will have greater dose warping uncertainty. For these organs, BM-DIR could be beneficial to the evaluation of DIR/dose-warping uncertainty. © 2018 American Association of Physicists in Medicine.

  5. Sharpening peripheral dose gradient via beam number enhancement from patient head tilt for stereotactic brain radiosurgery

    NASA Astrophysics Data System (ADS)

    Chiu, Joshua; Pierce, Marlon; Braunstein, Steve E.; Theodosopoulos, Philip V.; McDermott, Michael W.; Sneed, Penny K.; Ma, Lijun

    2016-10-01

    Sharp dose fall-off is the hallmark of brain radiosurgery for the purpose of delivering high dose radiation to the target while minimizing peripheral dose to regional normal brain tissue. In this study, a technique was developed to enhance the peripheral dose gradient by magnifying the total number of beams focused toward each isocenter through pre-programmed patient head tilting. This technique was tested in clinical settings on a dedicated brain radiosurgical system (GKPFX, Gamma Knife Perfexion, Elekta Oncology) by comparing dosimetry as well as delivery efficiency for 20 radiosurgical cases previously treated with the system. The 3-fold beam number enhancement (BNE) treatment plans were found to produce nearly identical target volume coverage (absolute value  <  0.5%, P  >  0.2) and dose conformity (BNE CI  =  1.41  ±  0.22 versus 1.41  ±  0.11, P  >  0.99) as the original treatment plans. The total beam-on time for the 3-fold BNE treatment plans were also found to be comparable (<0.5 min or 2%) with those of the original treatment plans for all the cases. However, BNE treatment plans significantly improved the mean gradient index (BNE GI  =  2.94  ±  0.27 versus original GI  =  2.98  ±  0.28 P  <  0.0001) and low-level isodose volumes, e.g. 20-50% prescribed isodose volumes, by 1.7%-3.9% (P  <  0.03). With further 4-5-fold increase in the total number of beams, the absolute gradient index can decrease by as much as  -0.5 in absolute value or  -20% for a treatment. In conclusion, BNE via patient head tilt has been demonstrated to be a clinically suitable and efficient technique for physically sharpening the peripheral dose gradient for brain radiosurgery. This work was presented in part at the 2015 ISRS Congress in Yokohama Japan.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acar, H; Cebe, M; Mabhouti, H

    Purpose: Stereotactic body radiosurgery (SBRT) for spine metastases involves irradiation using a single high dose fraction. The purpose of this study was to investigate a Hybrid VMAT/IMRT technique which combines volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) for spine SBRT in terms of its dosimetric quality and treatment efficiency using Radiation Therapy Oncology Group (RTOG) 0631 guidelines. Methods: 7 fields IMRT, 2 full arcs VMAT and Hybrid VMAT/IMRT were created for ten previously treated patients. The Hybrid VMAT/IMRT technique consisted of 1 full VMAT arc and 5 IMRT fields. Hybrid VMAT/IMRT plans were compared with IMRTmore » and VMAT plans in terms of the dose distribution, spinal cord sparing, homogeneity, conformity and gradient indexies, monitor unit (MU) and beam on time (BOT). RTOG 0631 recommendations were applied for treatment planning. All plans were normalized and prescribed to deliver 18.0 Gy in a single fraction to 90% of the target volume. Results: The Hybrid VMAT/IMRT technique significantly improved target dose homogeneity and conformity compared with IMRT and VMAT techniques. Providing sharp dose gradient Hybrid VMAT/IMRT plans spare the spinal cord and healthy tissue more effectively. Although, both MU and BOT slightly increased in Hybrid VMAT/IMRT plans there is no statistically meaningful difference between VMAT and Hybrid VMAT/IMRT plans. Conclusion: In IMRT, a smaller volume of healthy tissue can be irradiated in the low dose region, VMAT plans provide better target volume coverage, favorable dose gradient, conformity and better OAR sparing and also they require a much smaller number of MUs and thus a shorter treatment time than IMRT plans. Hybrid plan offers a sinergy through combination of these two techniques with slightly increased number of MU and thus more treatment time.« less

  7. Kuroshio Graduate Student Support

    DTIC Science & Technology

    2018-06-06

    875 North Randolph Street Arlington, VA 22203-1995 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY ...strong horizontal density gradients (e.g., midlatitude subtropical gyres), with a small fraction occurring in regions of deep mixed layers (e.g., high ...Society homogenous in the presence of sharp horizontal density contrasts (e.g., Fig. 1a). These sharp gradients provide a source of available

  8. Design of a modulated orthovoltage stereotactic radiosurgery system.

    PubMed

    Fagerstrom, Jessica M; Bender, Edward T; Lawless, Michael J; Culberson, Wesley S

    2017-07-01

    To achieve stereotactic radiosurgery (SRS) dose distributions with sharp gradients using orthovoltage energy fluence modulation with inverse planning optimization techniques. A pencil beam model was used to calculate dose distributions from an orthovoltage unit at 250 kVp. Kernels for the model were derived using Monte Carlo methods. A Genetic Algorithm search heuristic was used to optimize the spatial distribution of added tungsten filtration to achieve dose distributions with sharp dose gradients. Optimizations were performed for depths of 2.5, 5.0, and 7.5 cm, with cone sizes of 5, 6, 8, and 10 mm. In addition to the beam profiles, 4π isocentric irradiation geometries were modeled to examine dose at 0.07 mm depth, a representative skin depth, for the low energy beams. Profiles from 4π irradiations of a constant target volume, assuming maximally conformal coverage, were compared. Finally, dose deposition in bone compared to tissue in this energy range was examined. Based on the results of the optimization, circularly symmetric tungsten filters were designed to modulate the orthovoltage beam across the apertures of SRS cone collimators. For each depth and cone size combination examined, the beam flatness and 80-20% and 90-10% penumbrae were calculated for both standard, open cone-collimated beams as well as for optimized, filtered beams. For all configurations tested, the modulated beam profiles had decreased penumbra widths and flatness statistics at depth. Profiles for the optimized, filtered orthovoltage beams also offered decreases in these metrics compared to measured linear accelerator cone-based SRS profiles. The dose at 0.07 mm depth in the 4π isocentric irradiation geometries was higher for the modulated beams compared to unmodulated beams; however, the modulated dose at 0.07 mm depth remained <0.025% of the central, maximum dose. The 4π profiles irradiating a constant target volume showed improved statistics for the modulated, filtered distribution compared to the standard, open cone-collimated distribution. Simulations of tissue and bone confirmed previously published results that a higher energy beam (≥ 200 keV) would be preferable, but the 250 kVp beam was chosen for this work because it is available for future measurements. A methodology has been described that may be used to optimize the spatial distribution of added filtration material in an orthovoltage SRS beam to result in dose distributions with decreased flatness and penumbra statistics compared to standard open cones. This work provides the mathematical foundation for a novel, orthovoltage energy fluence-modulated SRS system. © 2017 American Association of Physicists in Medicine.

  9. SU-F-T-648: Sharpening Dose Fall-Off Via Beam Number Enhancements For Stereotactic Brain Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, J; Braunstein, S; McDermott, M

    Purpose: Sharp dose fall-off is the hallmark of brain radiosurgery to deliver a high dose of radiation to the target while minimizing dose to normal brain tissue. In this study, we developed a technique for the purpose of enhancing the peripheral dose gradient by magnifying the total number of beams focused toward each isocenter via patient head tilt and simultaneous beam intensity modulations. Methods: Computer scripting for the proposed beam number enhancement (BNE) technique was developed. The technique was tested and then implemented on a clinical treatment planning system for a dedicated brain radiosurgical system (GK Perfexion, Elekta Oncology). Tomore » study technical feasibility and dosimetric advantages of the technique, we compared treatment planning quality and delivery efficiency for 20 radiosurgical cases previously treated at our institution. These cases included relatively complex treatments such as acoustic schwannoma, meningioma, brain metastasis and mesial temporal lobe epilepsy. Results: The BNE treatment plans were found to produce nearly identical target volume coverage (absolute value < 0.5%, P > 0.2) and dose conformity (BNE CI= 1.41±0.15 versus 1.41±0.20, P>0.9) as the original treatment plans. The total beam-on time for theBNE treatment plans were comparable (within 1.0 min or 1.8%) with those of the original treatment plans for all the cases. However, BNE treatment plans significantly improved the mean gradient index (BNE GI = 2.9±0.3 versus original GI =3.0±0.3 p<0.0001) and low-level isodose volumes, e.g. 20-50% prescribed isodose volumes, by 2.0% to 5.0% (p<0.02). Furthermore, with 4 to 5-fold increase in the total number of beams, the GI decreased by as much as 20% or 0.5 in absolute values. Conclusion: BNE via head tilt and simultaneous beam intensity modulation is an effective and efficient technique that physically sharpens the peripheral dose gradient for brain radiosurgery.« less

  10. A spatiotemporally controllable chemical gradient generator via acoustically oscillating sharp-edge structures.

    PubMed

    Huang, Po-Hsun; Chan, Chung Yu; Li, Peng; Nama, Nitesh; Xie, Yuliang; Wei, Cheng-Hsin; Chen, Yuchao; Ahmed, Daniel; Huang, Tony Jun

    2015-11-07

    The ability to generate stable, spatiotemporally controllable concentration gradients is critical for resolving the dynamics of cellular response to a chemical microenvironment. Here we demonstrate an acoustofluidic gradient generator based on acoustically oscillating sharp-edge structures, which facilitates in a step-wise fashion the rapid mixing of fluids to generate tunable, dynamic chemical gradients. By controlling the driving voltage of a piezoelectric transducer, we demonstrated that the chemical gradient profiles can be conveniently altered (spatially controllable). By adjusting the actuation time of the piezoelectric transducer, moreover, we generated pulsatile chemical gradients (temporally controllable). With these two characteristics combined, we have developed a spatiotemporally controllable gradient generator. The applicability and biocompatibility of our acoustofluidic gradient generator are validated by demonstrating the migration of human dermal microvascular endothelial cells (HMVEC-d) in response to a generated vascular endothelial growth factor (VEGF) gradient, and by preserving the viability of HMVEC-d cells after long-term exposure to an acoustic field. Our device features advantages such as simple fabrication and operation, compact and biocompatible device, and generation of spatiotemporally tunable gradients.

  11. Dosimetric impact of daily setup variations during treatment of canine nasal tumors using intensity-modulated radiation therapy.

    PubMed

    Deveau, Michael A; Gutiérrez, Alonso N; Mackie, Thomas R; Tomé, Wolfgang A; Forrest, Lisa J

    2010-01-01

    Intensity-modulated radiation therapy (IMRT) can be employed to yield precise dose distributions that tightly conform to targets and reduce high doses to normal structures by generating steep dose gradients. Because of these sharp gradients, daily setup variations may have an adverse effect on clinical outcome such that an adjacent normal structure may be overdosed and/or the target may be underdosed. This study provides a detailed analysis of the impact of daily setup variations on optimized IMRT canine nasal tumor treatment plans when variations are not accounted for due to the lack of image guidance. Setup histories of ten patients with nasal tumors previously treated using helical tomotherapy were replanned retrospectively to study the impact of daily setup variations on IMRT dose distributions. Daily setup shifts were applied to IMRT plans on a fraction-by-fraction basis. Using mattress immobilization and laser alignment, mean setup error magnitude in any single dimension was at least 2.5 mm (0-10.0 mm). With inclusions of all three translational coordinates, mean composite offset vector was 5.9 +/- 3.3 mm. Due to variations, a loss of equivalent uniform dose for target volumes of up to 5.6% was noted which corresponded to a potential loss in tumor control probability of 39.5%. Overdosing of eyes and brain was noted by increases in mean normalized total dose and highest normalized dose given to 2% of the volume. Findings suggest that successful implementation of canine nasal IMRT requires daily image guidance to ensure accurate delivery of precise IMRT distributions when non-rigid immobilization techniques are utilized. Unrecognized geographical misses may result in tumor recurrence and/or radiation toxicities to the eyes and brain.

  12. DOSIMETRIC IMPACT OF DAILY SETUP VARIATIONS DURING TREATMENT OF CANINE NASAL TUMORS USING INTENSITY-MODULATED RADIATION THERAPY

    PubMed Central

    Deveau, Michael A.; Gutiérrez, Alonso N.; Mackie, Thomas R.; Tomé, Wolfgang A.; Forrest, Lisa J.

    2009-01-01

    Intensity-modulated radiation therapy (IMRT) can be employed to yield precise dose distributions that tightly conform to targets and reduce high doses to normal structures by generating steep dose gradients. Because of these sharp gradients, daily setup variations may have an adverse effect on clinical outcome such that an adjacent normal structure may be overdosed and/or the target may be underdosed. This study provides a detailed analysis of the impact of daily setup variations on optimized IMRT canine nasal tumor treatment plans when variations are not accounted for due to the lack of image guidance. Setup histories of ten patients with nasal tumors previously treated using helical tomotherapy were replanned retrospectively to study the impact of daily setup variations on IMRT dose distributions. Daily setup shifts were applied to IMRT plans on a fraction-by-fraction basis. Using mattress immobilization and laser alignment, mean setup error magnitude in any single dimension was at least 2.5mm (0-10.0mm). With inclusions of all three translational coordinates, mean composite offset vector was 5.9±3.3mm. Due to variations, a loss of equivalent uniform dose (EUD) for target volumes of up to 5.6% was noted which corresponded to a potential loss in TCP of 39.5%. Overdosing of eyes and brain was noted by increases in mean normalized total dose (NTDmean) and highest normalized dose given to 2% of the volume (NTD2%). Findings suggest that successful implementation of canine nasal IMRT requires daily image guidance to ensure accurate delivery of precise IMRT distributions when non-rigid immobilization techniques are utilized. Unrecognized geographical misses may result in tumor recurrence and/or radiation toxicities to the eyes and brain. PMID:20166402

  13. Gradient Augmented Level Set Method for Two Phase Flow Simulations with Phase Change

    NASA Astrophysics Data System (ADS)

    Anumolu, C. R. Lakshman; Trujillo, Mario F.

    2016-11-01

    A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient Augmented Levelset method is coupled with the two-phase momentum and energy equations to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is adopted for velocity to discretize the advection and diffusion terms in the interfacial region. Furthermore, the GFM is employed to treat the discontinuity in the stress tensor, velocity, and temperature gradient yielding an accurate treatment in handling jump conditions. Thermal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a sharp treatment for the energy solution. This sharp treatment is extended to estimate the interfacial mass transfer rate. At the computational cell, a d-cubic Hermite interpolating polynomial is employed to describe the interface location, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodology for treating various interfacial processes with a high degree of sharpness. The ability to predict the interface and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analytical solutions.

  14. Gradient of γ rays and β particles irradiation’s energy produced by accelerator and its use in radiotherapy of cancer diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastrati, Labinot, E-mail: labinotkastrati82@gmail.com; Nafezi, Gazmend, E-mail: gazmend-nafezi@hotmail.com; Shehi, Gëzim, E-mail: gezimshehi@yahoo.com

    2016-03-25

    The Ionising irradiations used mostly in the treatment of tumoral diseases are: X, γ, β and e irradiations. The discussion will be about radiations, produced in accelerators, with photon energy 6 MV and 15 MV and electron energy from 5 MeV to 15 MeV. Due to the differences between γ and β radiations, their absorbtion in living tissues will be different. It is important to know, the absorption performance before and after the electronic equilibrium. For these purposes, we’ve use the function of dose gradient, for irradiations γ and β. It represents the velocity of dose change as a function of depthmore » in tissue. From skin to maximum dose value, the increase of G-function is more accentuated for γ-rays than for β-particles, while after that the G-function decreasing is less sharp for γ-rays, while for β-particles, it is almost promptly. This fact allow us to use in radiotherapy, not only γ-rays but β-particles, too. The lasts, represents, a much more efficient tool, especially in terms of radiation protection, of health adjacent tissues and organs. Finally, we’ll to discus, about the advantages in terms of radiation protection of both, γ-rays and β-particles used in radiotherapy.« less

  15. A High Order Finite Difference Scheme with Sharp Shock Resolution for the Euler Equations

    NASA Technical Reports Server (NTRS)

    Gerritsen, Margot; Olsson, Pelle

    1996-01-01

    We derive a high-order finite difference scheme for the Euler equations that satisfies a semi-discrete energy estimate, and present an efficient strategy for the treatment of discontinuities that leads to sharp shock resolution. The formulation of the semi-discrete energy estimate is based on a symmetrization of the Euler equations that preserves the homogeneity of the flux vector, a canonical splitting of the flux derivative vector, and the use of difference operators that satisfy a discrete analogue to the integration by parts procedure used in the continuous energy estimate. Around discontinuities or sharp gradients, refined grids are created on which the discrete equations are solved after adding a newly constructed artificial viscosity. The positioning of the sub-grids and computation of the viscosity are aided by a detection algorithm which is based on a multi-scale wavelet analysis of the pressure grid function. The wavelet theory provides easy to implement mathematical criteria to detect discontinuities, sharp gradients and spurious oscillations quickly and efficiently.

  16. Regularized magnetotelluric inversion based on a minimum support gradient stabilizing functional

    NASA Astrophysics Data System (ADS)

    Xiang, Yang; Yu, Peng; Zhang, Luolei; Feng, Shaokong; Utada, Hisashi

    2017-11-01

    Regularization is used to solve the ill-posed problem of magnetotelluric inversion usually by adding a stabilizing functional to the objective functional that allows us to obtain a stable solution. Among a number of possible stabilizing functionals, smoothing constraints are most commonly used, which produce spatially smooth inversion results. However, in some cases, the focused imaging of a sharp electrical boundary is necessary. Although past works have proposed functionals that may be suitable for the imaging of a sharp boundary, such as minimum support and minimum gradient support (MGS) functionals, they involve some difficulties and limitations in practice. In this paper, we propose a minimum support gradient (MSG) stabilizing functional as another possible choice of focusing stabilizer. In this approach, we calculate the gradient of the model stabilizing functional of the minimum support, which affects both the stability and the sharp boundary focus of the inversion. We then apply the discrete weighted matrix form of each stabilizing functional to build a unified form of the objective functional, allowing us to perform a regularized inversion with variety of stabilizing functionals in the same framework. By comparing the one-dimensional and two-dimensional synthetic inversion results obtained using the MSG stabilizing functional and those obtained using other stabilizing functionals, we demonstrate that the MSG results are not only capable of clearly imaging a sharp geoelectrical interface but also quite stable and robust. Overall good performance in terms of both data fitting and model recovery suggests that this stabilizing functional is effective and useful in practical applications.[Figure not available: see fulltext.

  17. UHTC Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.

    2011-01-01

    For enhanced aerodynamic performance. Materials for sharp leading edges can be reusable but need different properties because of geometry and very high temperatures. Require materials with significantly higher temperature capabilities, but for short duration. Current shuttle RCC leading edge materials: T approx. 1650 C. Materials for vehicles with sharp leading edges: T>2000 C. >% Figure depicts: High Temperature at Tip and Steep Temperature Gradient. Passive cooling is simplest option to manage the intense heating on sharp leading edges.

  18. Evaluation of the dosimetric properties of a diode detector for small field proton radiosurgery.

    PubMed

    McAuley, Grant A; Teran, Anthony V; Slater, Jerry D; Slater, James M; Wroe, Andrew J

    2015-11-08

    The small fields and sharp gradients typically encountered in proton radiosurgery require high spatial resolution dosimetric measurements, especially below 1-2 cm diameters. Radiochromic film provides high resolution, but requires postprocessing and special handling. Promising alternatives are diode detectors with small sensitive volumes (SV) that are capable of high resolution and real-time dose acquisition. In this study we evaluated the PTW PR60020 proton dosimetry diode using radiation fields and beam energies relevant to radiosurgery applications. Energies of 127 and 157 MeV (9.7 to 15 cm range) and initial diameters of 8, 10, 12, and 20mm were delivered using single-stage scattering and four modulations (0, 15, 30, and 60mm) to a water tank in our treatment room. Depth dose and beam profile data were compared with PTW Markus N23343 ionization chamber, EBT2 Gafchromic film, and Monte Carlo simulations. Transverse dose profiles were measured using the diode in "edge-on" orientation or EBT2 film. Diode response was linear with respect to dose, uniform with dose rate, and showed an orientation-dependent (i.e., beam parallel to, or perpendicular to, detector axis) response of less than 1%. Diodevs. Markus depth-dose profiles, as well as Markus relative dose ratio vs. simulated dose-weighted average lineal energy plots, suggest that any LET-dependent diode response is negligible from particle entrance up to the very distal portion of the SOBP for the energies tested. Finally, while not possible with the ionization chamber due to partial volume effects, accurate diode depth-dose measurements of 8, 10, and 12 mm diameter beams were obtained compared to Monte Carlo simulations. Because of the small SV that allows measurements without partial volume effects and the capability of submillimeter resolution (in edge-on orientation) that is crucial for small fields and high-dose gradients (e.g., penumbra, distal edge), as well as negligible LET dependence over nearly the full the SOBP, the PTW proton diode proved to be a useful high-resolution, real-time metrology device for small proton field radiation measurements such as would be encountered in radiosurgery applications.

  19. The Galapagos archipelago: A natural laboratory to examine sharp hydroclimatic, geologic and anthropogenic gradients

    USGS Publications Warehouse

    Percy, Madelyn; Schmitt, Sarah; Riveros-Iregui, Diego; Mirus, Benjamin B.

    2016-01-01

    Poor understanding of the water cycle in tropical ecosystems has the potential to exacerbate water shortages and water crises in the region. We suggest that the Galápagos Islands provide an excellent proxy to regions across the tropics as a result of sharp hydroclimatic, anthropogenic, and pedohydrologic gradients across the archipelago. Hydroclimatic and pedohydrologic gradients are found across different elevations on single islands, as well as across the archipelago, whereas anthropogenic gradients reflect land use and land cover change across islands as population and growth in tourism have affected individual islands differently. This article highlights specific opportunities to further examine our understanding of the interactions between water and critical zone processes in tropical ecosystems, making connections between the Galápagos archipelago and much of the understudied tropics. The Galápagos archipelago offers a natural laboratory through which we can examine current threats to freshwater security as well as the dynamics of coupled natural and human systems.

  20. Nanogravity gradiometer based on a sharp optical nonlinearity in a levitated particle optomechanical system

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Zhu, Ka-Di

    2017-02-01

    In the present paper, we provide a scheme to probe the gradient of gravity at the nanoscale in a levitated nanomechanical resonator coupled to a cavity via two-field optical control. The enhanced sharp peak on the probe spectrum will suffer a distinct shift with the nonuniform force being taken into consideration. The nonlinear optics with very narrow bandwidth (10-8 Hz ) resulting from the extremely high-quality factor will lead to a superresolution of 10-20 N /m for the measurement of gravity gradient. The improved sensitivity may offer new opportunities for detecting Yukawa moduli forces and Kaluza-Klein gravitons in extra dimensions.

  1. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences.

    PubMed

    Li, Haisen S; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S; Chetty, Indrin J

    2014-01-06

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  2. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences

    NASA Astrophysics Data System (ADS)

    Li, Haisen S.; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S.; Chetty, Indrin J.

    2014-01-01

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  3. Dose gradient curve: A new tool for evaluating dose gradient.

    PubMed

    Sung, KiHoon; Choi, Young Eun

    2018-01-01

    Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice.

  4. Experience of micromultileaf collimator linear accelerator based single fraction stereotactic radiosurgery: Tumor dose inhomogeneity, conformity, and dose fall off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Linda X.; Garg, Madhur; Lasala, Patrick

    2011-03-15

    Purpose: Sharp dose fall off outside a tumor is essential for high dose single fraction stereotactic radiosurgery (SRS) plans. This study explores the relationship among tumor dose inhomogeneity, conformity, and dose fall off in normal tissues for micromultileaf collimator (mMLC) linear accelerator (LINAC) based cranial SRS plans. Methods: Between January 2007 and July 2009, 65 patients with single cranial lesions were treated with LINAC-based SRS. Among them, tumors had maximum diameters {<=}20 mm: 31; between 20 and 30 mm: 21; and >30 mm: 13. All patients were treated with 6 MV photons on a Trilogy linear accelerator (Varian Medical Systems,more » Palo Alto, CA) with a tertiary m3 high-resolution mMLC (Brainlab, Feldkirchen, Germany), using either noncoplanar conformal fixed fields or dynamic conformal arcs. The authors also created retrospective study plans with identical beam arrangement as the treated plan but with different tumor dose inhomogeneity by varying the beam margins around the planning target volume (PTV). All retrospective study plans were normalized so that the minimum PTV dose was the prescription dose (PD). Isocenter dose, mean PTV dose, RTOG conformity index (CI), RTOG homogeneity index (HI), dose gradient index R{sub 50}-R{sub 100} (defined as the difference between equivalent sphere radius of 50% isodose volume and prescription isodose volume), and normal tissue volume (as a ratio to PTV volume) receiving 50% prescription dose (NTV{sub 50}) were calculated. Results: HI was inversely related to the beam margins around the PTV. CI had a ''V'' shaped relationship with HI, reaching a minimum when HI was approximately 1.3. Isocenter dose and mean PTV dose (as percentage of PD) increased linearly with HI. R{sub 50}-R{sub 100} and NTV{sub 50} initially declined with HI and then reached a plateau when HI was approximately 1.3. These trends also held when tumors were grouped according to their maximum diameters. The smallest tumor group (maximum diameters {<=}20 mm) had the most HI dependence for dose fall off. For treated plans, CI averaged 2.55{+-}0.79 with HI 1.23{+-}0.06; the average R{sub 50}-R{sub 100} was 0.41{+-}0.08, 0.55{+-}0.10, and 0.65{+-}0.09 cm, respectively, for tumors {<=}20 mm, between 20 and 30 mm, and >30 mm. Conclusions: Tumor dose inhomogeneity can be used as an important and convenient parameter to evaluate mMLC LINAC-based SRS plans. Sharp dose fall off in the normal tissue is achieved with sufficiently high tumor dose inhomogeneity. By adjusting beam margins, a homogeneity index of approximately 1.3 would provide best conformity for the authors' SRS system.« less

  5. Advances and Limitations of Atmospheric Boundary Layer Observations with GPS Occultation over Southeast Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Xie, F.; Wu, D. L.; Ao, C. O.; Mannucci, A. J.; Kursinski, E. R.

    2012-01-01

    The typical atmospheric boundary layer (ABL) over the southeast (SE) Pacific Ocean is featured with a strong temperature inversion and a sharp moisture gradient across the ABL top. The strong moisture and temperature gradients result in a sharp refractivity gradient that can be precisely detected by the Global Positioning System (GPS) radio occultation (RO) measurements. In this paper, the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) GPS RO soundings, radiosondes and the high-resolution ECMWF analysis over the SE Pacific are analyzed. COSMIC RO is able to detect a wide range of ABL height variations (1-2 kilometer) as observed from the radiosondes. However, the ECMWF analysis systematically underestimates the ABL heights. The sharp refractivity gradient at the ABL top frequently exceeds the critical refraction (e.g., -157 N-unit per kilometer) and becomes the so-called ducting condition, which results in a systematic RO refractivity bias (or called N-bias) inside the ABL. Simulation study based on radiosonde profiles reveals the magnitudes of the N-biases are vertical resolution dependent. The N-bias is also the primary cause of the systematically smaller refractivity gradient (rarely exceeding -110 N-unit per kilometer) at the ABL top from RO measurement. However, the N-bias seems not affect the ABL height detection. Instead, the very large RO bending angle and the sharp refractivity gradient due to ducting allow reliable detection of the ABL height from GPS RO. The seasonal mean climatology of ABL heights derived from a nine-month composite of COSMIC RO soundings over the SE Pacific reveals significant differences from the ECMWF analysis. Both show an increase of ABL height from the shallow stratocumulus near the coast to a much higher trade wind inversion further off the coast. However, COSMIC RO shows an overall deeper ABL and reveals different locations of the minimum and maximum ABL heights as compared to the ECMWF analysis. At low latitudes, despite the decreasing number of COSMIC RO soundings and the lower percentage of soundings that penetrate into the lowest 500-m above the mean-sea-level, there are small sampling errors in the mean ABL height climatology. The difference of ABL height climatology between COSMIC RO and ECMWF analysis over SE Pacific is significant and requires further studies.

  6. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances (Invited)

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2015-01-01

    Boundary-layer receptivity to two-dimensional acoustic and vortical disturbances for hypersonic flows over two-dimensional and axi-symmetric geometries were numerically investigated. The role of bluntness, wall cooling, and pressure gradients on the receptivity and stability were analyzed and compared with the sharp nose cases. It was found that for flows over sharp nose geometries in adiabatic wall conditions the instability waves are generated in the leading-edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. The computations confirmed the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary layer transition. The receptivity coefficients in flows over blunt bodies are orders of magnitude smaller than that for the sharp cone cases. Wall cooling stabilizes the first mode strongly and destabilizes the second mode. However, the receptivity coefficients are also much smaller compared to the adiabatic case. The adverse pressure gradients increased the unstable second mode regions.

  7. Dose gradient curve: A new tool for evaluating dose gradient

    PubMed Central

    Choi, Young Eun

    2018-01-01

    Purpose Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. Methods The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Results Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. Conclusions The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice. PMID:29698471

  8. Computational trigonometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, K.

    1994-12-31

    By means of the author`s earlier theory of antieigenvalues and antieigenvectors, a new computational approach to iterative methods is presented. This enables an explicit trigonometric understanding of iterative convergence and provides new insights into the sharpness of error bounds. Direct applications to Gradient descent, Conjugate gradient, GCR(k), Orthomin, CGN, GMRES, CGS, and other matrix iterative schemes will be given.

  9. High-Resolution Autoradiography

    DTIC Science & Technology

    1955-01-01

    alloy the tungsten concontrationl of it 1-mnicron culbe is: (8,9 gmI) (8.88 mcg m1-2nl/micron gradient will probably not be so sharp am fit( gradients ...phases of Ilite work: (a) Applicattion and( develop- lie( iiirkeh used. ment (If the( wet-process autorodiographic method will (b)i Trwo methods exist...34 concentration gradients are sufficiently large, the same solution since the range of beta particles in water Wet-process autoradiography as developed for

  10. The Case for Using Blunt-Tipped Lightning Rods as Strike Receptors.

    NASA Astrophysics Data System (ADS)

    Moore, C. B.; Aulich, G. D.; Rison, William

    2003-07-01

    Conventional lightning rods used in the United States have sharp tips, a practice derived from Benjamin Franklin's discovery of a means to obtain protection from lightning. However, the virtue of sharp tips for strike reception has never been established. An examination of the relevant physics shows that very strong electric fields are required above the tips of rods in order that they function as strike receptors but that the gradients of the field strength over sharp-tipped rods are so great that, at distances of a few millimeters, the local fields are often too weak for the development of upward-going streamers. In field tests, rods with rounded tips have been found to be better strike receptors than were nearby sharp-tipped rods.

  11. A modified Holly-Preissmann scheme for simulating sharp concentration fronts in streams with steep velocity gradients using RIV1Q

    NASA Astrophysics Data System (ADS)

    Liu, Zhao-wei; Zhu, De-jun; Chen, Yong-can; Wang, Zhi-gang

    2014-12-01

    RIV1Q is the stand-alone water quality program of CE-QUAL-RIV1, a hydraulic and water quality model developed by U.S. Army Corps of Engineers Waterways Experiment Station. It utilizes an operator-splitting algorithm and the advection term in governing equation is treated using the explicit two-point, fourth-order accurate, Holly-Preissmann scheme, in order to preserve numerical accuracy for advection of sharp gradients in concentration. In the scheme, the spatial derivative of the transport equation, where the derivative of velocity is included, is introduced to update the first derivative of dependent variable. In the stream with larger cross-sectional variation, steep velocity gradient can be easily found and should be estimated correctly. In the original version of RIV1Q, however, the derivative of velocity is approximated by a finite difference which is first-order accurate. Its leading truncation error leads to the numerical error of concentration which is related with the velocity and concentration gradients and increases with the decreasing Courant number. The simulation may also be unstable when a sharp velocity drop occurs. In the present paper, the derivative of velocity is estimated with a modified second-order accurate scheme and the corresponding numerical error of concentration decreases. Additionally, the stability of the simulation is improved. The modified scheme is verified with a hypothetical channel case and the results demonstrate that satisfactory accuracy and stability can be achieved even when the Courant number is very low. Finally, the applicability of the modified scheme is discussed.

  12. Intense deformation field at oceanic front inferred from directional sea surface roughness observations

    NASA Astrophysics Data System (ADS)

    Rascle, Nicolas; Molemaker, Jeroen; Marié, Louis; Nouguier, Frédéric; Chapron, Bertrand; Lund, Björn; Mouche, Alexis

    2017-06-01

    Fine-scale current gradients at the ocean surface can be observed by sea surface roughness. More specifically, directional surface roughness anomalies are related to the different horizontal current gradient components. This paper reports results from a dedicated experiment during the Lagrangian Submesoscale Experiment (LASER) drifter deployment. A very sharp front, 50 m wide, is detected simultaneously in drifter trajectories, sea surface temperature, and sea surface roughness. A new observational method is applied, using Sun glitter reflections during multiple airplane passes to reconstruct the multiangle roughness anomaly. This multiangle anomaly is consistent with wave-current interactions over a front, including both cross-front convergence and along-front shear with cyclonic vorticity. Qualitatively, results agree with drifters and X-band radar observations. Quantitatively, the sharpness of roughness anomaly suggests intense current gradients, 0.3 m s-1 over the 50 m wide front. This work opens new perspectives for monitoring intense oceanic fronts using drones or satellite constellations.

  13. Graphene-edge dielectrophoretic tweezers for trapping of biomolecules.

    PubMed

    Barik, Avijit; Zhang, Yao; Grassi, Roberto; Nadappuram, Binoy Paulose; Edel, Joshua B; Low, Tony; Koester, Steven J; Oh, Sang-Hyun

    2017-11-30

    The many unique properties of graphene, such as the tunable optical, electrical, and plasmonic response make it ideally suited for applications such as biosensing. As with other surface-based biosensors, however, the performance is limited by the diffusive transport of target molecules to the surface. Here we show that atomically sharp edges of monolayer graphene can generate singular electrical field gradients for trapping biomolecules via dielectrophoresis. Graphene-edge dielectrophoresis pushes the physical limit of gradient-force-based trapping by creating atomically sharp tweezers. We have fabricated locally backgated devices with an 8-nm-thick HfO 2 dielectric layer and chemical-vapor-deposited graphene to generate 10× higher gradient forces as compared to metal electrodes. We further demonstrate near-100% position-controlled particle trapping at voltages as low as 0.45 V with nanodiamonds, nanobeads, and DNA from bulk solution within seconds. This trapping scheme can be seamlessly integrated with sensors utilizing graphene as well as other two-dimensional materials.

  14. Magnetic Turbulence, Fast Magnetic Field line Diffusion and Small Magnetic Structures in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Zimbardo, G.; Pommois, P.; Veltri, P.

    2003-09-01

    The influence of magnetic turbulence on magnetic field line diffusion has been known since the early days of space and plasma physics. However, the importance of ``stochastic diffusion'' for energetic particles has been challenged on the basis of the fact that sharp gradients of either energetic particles or ion composition are often observed in the solar wind. Here we show that fast transverse field line and particle diffusion can coexist with small magnetic structures, sharp gradients, and with long lived magnetic flux tubes. We show, by means of a numerical realization of three dimensional magnetic turbulence and by use of the concepts of deterministic chaos and turbulent transport, that turbulent diffusion is different from Gaussian diffusion, and that transport can be inhomogeneous even if turbulence homogeneously fills the heliosphere. Several diagnostics of field line transport and flux tube evolution are shown, and the size of small magnetic structures in the solar wind, like gradient scales and flux tube thickness, are estimated and compared to the observations.

  15. Evaluation of the dosimetric properties of a diode detector for small field proton radiosurgery

    PubMed Central

    Teran, Anthony V.; Slater, Jerry D.; Slater, James M.; Wroe, Andrew J.

    2015-01-01

    The small fields and sharp gradients typically encountered in proton radiosurgery require high spatial resolution dosimetric measurements, especially below 1–2 cm diameters. Radiochromic film provides high resolution, but requires postprocessing and special handling. Promising alternatives are diode detectors with small sensitive volumes (SV) that are capable of high resolution and real‐time dose acquisition. In this study we evaluated the PTW PR60020 proton dosimetry diode using radiation fields and beam energies relevant to radiosurgery applications. Energies of 127 and 157 MeV (9.7 to 15 cm range) and initial diameters of 8, 10, 12, and 20 mm were delivered using single‐stage scattering and four modulations (0, 15, 30, and 60 mm) to a water tank in our treatment room. Depth dose and beam profile data were compared with PTW Markus N23343 ionization chamber, EBT2 Gafchromic film, and Monte Carlo simulations. Transverse dose profiles were measured using the diode in "edge‐on" orientation or EBT2 film. Diode response was linear with respect to dose, uniform with dose rate, and showed an orientation‐dependent (i.e., beam parallel to, or perpendicular to, detector axis) response of less than 1%. Diode vs. Markus depth‐dose profiles, as well as Markus relative dose ratio vs. simulated dose‐weighted average lineal energy plots, suggest that any LET‐dependent diode response is negligible from particle entrance up to the very distal portion of the SOBP for the energies tested. Finally, while not possible with the ionization chamber due to partial volume effects, accurate diode depth‐dose measurements of 8, 10, and 12 mm diameter beams were obtained compared to Monte Carlo simulations. Because of the small SV that allows measurements without partial volume effects and the capability of submillimeter resolution (in edge‐on orientation) that is crucial for small fields and high‐dose gradients (e.g., penumbra, distal edge), as well as negligible LET dependence over nearly the full the SOBP, the PTW proton diode proved to be a useful high‐resolution, real‐time metrology device for small proton field radiation measurements such as would be encountered in radiosurgery applications. PACS numbers: 87.56.‐v, 87.56.jf, 87.56.Fc PMID:26699554

  16. Formation of large-scale structures with sharp density gradient through Rayleigh-Taylor growth in a two-dimensional slab under the two-fluid and finite Larmor radius effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, R.; Hatori, T.; Miura, H., E-mail: miura.hideaki@nifs.ac.jp

    Two-fluid and the finite Larmor effects on linear and nonlinear growth of the Rayleigh-Taylor instability in a two-dimensional slab are studied numerically with special attention to high-wave-number dynamics and nonlinear structure formation at a low β-value. The two effects stabilize the unstable high wave number modes for a certain range of the β-value. In nonlinear simulations, the absence of the high wave number modes in the linear stage leads to the formation of the density field structure much larger than that in the single-fluid magnetohydrodynamic simulation, together with a sharp density gradient as well as a large velocity difference. Themore » formation of the sharp velocity difference leads to a subsequent Kelvin-Helmholtz-type instability only when both the two-fluid and finite Larmor radius terms are incorporated, whereas it is not observed otherwise. It is shown that the emergence of the secondary instability can modify the outline of the turbulent structures associated with the primary Rayleigh-Taylor instability.« less

  17. Dispersion, Mixing, and Combustion in Uniform- and Variable-Density Air-Breathing High-Speed Propulsion Flows

    DTIC Science & Technology

    2013-08-28

    and dispersion whose behavior is relevant to fuel-injection in propulsion devices. The latter investigations were conducted in water that allows...initially sharp scalar gradients in this high Schmidt-number fluid medium ( water : ⁄ ). Generally, such scalar plumes re reported to exhibit... Flowmetering : The Characteristics of Cylindrical Nozzles with Sharp Upstream Edges. Int. J. Heat and Fluid Flow 1(3):123-132. 3. Research personnel

  18. A Rigorous Sharp Interface Limit of a Diffuse Interface Model Related to Tumor Growth

    NASA Astrophysics Data System (ADS)

    Rocca, Elisabetta; Scala, Riccardo

    2017-06-01

    In this paper, we study the rigorous sharp interface limit of a diffuse interface model related to the dynamics of tumor growth, when a parameter ɛ, representing the interface thickness between the tumorous and non-tumorous cells, tends to zero. More in particular, we analyze here a gradient-flow-type model arising from a modification of the recently introduced model for tumor growth dynamics in Hawkins-Daruud et al. (Int J Numer Math Biomed Eng 28:3-24, 2011) (cf. also Hilhorst et al. Math Models Methods Appl Sci 25:1011-1043, 2015). Exploiting the techniques related to both gradient flows and gamma convergence, we recover a condition on the interface Γ relating the chemical and double-well potentials, the mean curvature, and the normal velocity.

  19. Correction of respiratory motion for IMRT using aperture adaptive technique and visual guidance: A feasibility study

    NASA Astrophysics Data System (ADS)

    Chen, Ho-Hsing; Wu, Jay; Chuang, Keh-Shih; Kuo, Hsiang-Chi

    2007-07-01

    Intensity-modulated radiation therapy (IMRT) utilizes nonuniform beam profile to deliver precise radiation doses to a tumor while minimizing radiation exposure to surrounding normal tissues. However, the problem of intrafraction organ motion distorts the dose distribution and leads to significant dosimetric errors. In this research, we applied an aperture adaptive technique with a visual guiding system to toggle the problem of respiratory motion. A homemade computer program showing a cyclic moving pattern was projected onto the ceiling to visually help patients adjust their respiratory patterns. Once the respiratory motion becomes regular, the leaf sequence can be synchronized with the target motion. An oscillator was employed to simulate the patient's breathing pattern. Two simple fields and one IMRT field were measured to verify the accuracy. Preliminary results showed that after appropriate training, the amplitude and duration of volunteer's breathing can be well controlled by the visual guiding system. The sharp dose gradient at the edge of the radiation fields was successfully restored. The maximum dosimetric error in the IMRT field was significantly decreased from 63% to 3%. We conclude that the aperture adaptive technique with the visual guiding system can be an inexpensive and feasible alternative without compromising delivery efficiency in clinical practice.

  20. Constraints on Lateral S Wave Velocity Gradients around the Pacific Superplume

    NASA Astrophysics Data System (ADS)

    To, A.; Romanowicz, B.

    2006-12-01

    Global shear velocity tomographic models show two large-scale low velocity structures in the lower mantle, under southern Africa and under the mid-Pacific. While tomographic models show the shape of the structures, the gradient and amplitude of the anomalies are yet to be constrained. By forward modelling of Sdiffracted phases using the Coupled Spectral ELement Method (C-SEM, Capdeville et al., 2003), we have previously shown that observed secondary phases following the Sdiff can be explained by interaction of the wavefield with sharp boundaries of the superplumes in the south Indian and south Pacific ocean (To et al., 2005). Here, we search for further constrains on velocity gradients at the border of the Pacific superplume all around the Pacific using a multi-step approach applied to a large dataset of Sdiffracted travel times and waveforms which are sensitive to the lower most mantle. We first apply our finite frequency tomographic inversion methodology (NACT, Li and Romanowicz, 1996) which provides a good starting 3D model, which in particular allows us to position the fast and slow anomalies and their boundaries quite well, as has been shown previously, but underestimates the gradients and velocity contrasts. We then perform forward modelling of Sdiff travel times, taking into account finite frequency effects, to refine the velocity contrasts and gradients and provides the next iteration 3D model. We then perform forward modelling of waveforms, down to a frequency of 0.06Hz, using C-SEM which provides final adjustments to the model. We present a model which shows that we can constrain sharp gradients on the southern and northern edges of the Pacific Superplume. To, A., B. Romanowicz, Y. Capdeville and N. Takeuchi (2005) 3D effects of sharp boundaries at the borders of the African and Pacific Superplumes: Observation and modeling. Earth and Planetary Sceince Letters, 233: 137-153 Capdeville, Y., A. To and B. Romanowicz (2003) Coupling spectral elements and modes in a spherical earth: an extension to the "sandwich" case. Geophys. J. Int., 154: 44-57 Li, X.D. and B. Romanowicz (1996) Global mantle shear velocity model developed using nonlinear asymptotic coupling theory, J. Geophys. Res., 101, 22,245-22,273

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kieselmann, J; Bartzsch, S; Oelfke, U

    Purpose: Microbeam Radiation Therapy is a preclinical method in radiation oncology that modulates radiation fields on a micrometre scale. Dose calculation is challenging due to arising dose gradients and therapeutically important dose ranges. Monte Carlo (MC) simulations, often used as gold standard, are computationally expensive and hence too slow for the optimisation of treatment parameters in future clinical applications. On the other hand, conventional kernel based dose calculation leads to inaccurate results close to material interfaces. The purpose of this work is to overcome these inaccuracies while keeping computation times low. Methods: A point kernel superposition algorithm is modified tomore » account for tissue inhomogeneities. Instead of conventional ray tracing approaches, methods from differential geometry are applied and the space around the primary photon interaction is locally warped. The performance of this approach is compared to MC simulations and a simple convolution algorithm (CA) for two different phantoms and photon spectra. Results: While peak doses of all dose calculation methods agreed within less than 4% deviations, the proposed approach surpassed a simple convolution algorithm in accuracy by a factor of up to 3 in the scatter dose. In a treatment geometry similar to possible future clinical situations differences between Monte Carlo and the differential geometry algorithm were less than 3%. At the same time the calculation time did not exceed 15 minutes. Conclusion: With the developed method it was possible to improve the dose calculation based on the CA method with respect to accuracy especially at sharp tissue boundaries. While the calculation is more extensive than for the CA method and depends on field size, the typical calculation time for a 20×20 mm{sup 2} field on a 3.4 GHz and 8 GByte RAM processor remained below 15 minutes. Parallelisation and optimisation of the algorithm could lead to further significant calculation time reductions.« less

  2. Dosimetric assessment of static and helical TomoTherapy in the clinical implementation of breast cancer treatments.

    PubMed

    Reynders, Truus; Tournel, Koen; De Coninck, Peter; Heymann, Steve; Vinh-Hung, Vincent; Van Parijs, Hilde; Duchateau, Michaël; Linthout, Nadine; Gevaert, Thierry; Verellen, Dirk; Storme, Guy

    2009-10-01

    Investigation of the use of TomoTherapy and TomoDirect versus conventional radiotherapy for the treatment of post-operative breast carcinoma. This study concentrates on the evaluation of the planning protocol for the TomoTherapy and TomoDirect TPS, dose verification and the implementation of in vivo dosimetry. Eight patients with different breast cancer indications (left/right tumor, axillary nodes involvement (N+)/no nodes (N0), tumorectomy/mastectomy) were enrolled. TomoTherapy, TomoDirect and conventional plans were generated for prone and supine positions leading to six or seven plans per patient. Dose prescription was 42Gy in 15 fractions over 3weeks. Dose verification of a TomoTherapy plan is performed using TLDs and EDR2 film inside a home-made wax breast phantom fixed on a rando-alderson phantom. In vivo dosimetry was performed with TLDs. It is possible to create clinically acceptable plans with TomoTherapy and TomoDirect. TLD calibration protocol with a water equivalent phantom is accurate. TLD verification with the phantom shows measured over calculated ratios within 2.2% (PTV). An overresponse of the TLDs was observed in the low dose regions (<0.1Gy). The film measurements show good agreement for high and low dose regions inside the phantom. A sharp gradient can be created to the thoracic wall. In vivo dosimetry with TLDs was clinically feasible. The TomoTherapy and TomoDirect modalities can deliver dose distributions which the radiotherapist judges to be equal to or better than conventional treatment of breast carcinoma according to the organ to be protected.

  3. Numerical analysis of mixing by sharp-edge-based acoustofluidic micromixer

    NASA Astrophysics Data System (ADS)

    Nama, Nitesh; Huang, Po-Hsun; Jun Huang, Tony; Costanzo, Francesco

    2015-11-01

    Recently, acoustically oscillated sharp-edges have been employed to realize rapid and homogeneous mixing at microscales (Huang, Lab on a Chip, 13, 2013). Here, we present a numerical model, qualitatively validated by experimental results, to analyze the acoustic mixing inside a sharp-edge-based micromixer. We extend our previous numerical model (Nama, Lab on a Chip, 14, 2014) to combine the Generalized Lagrangian Mean (GLM) theory with the convection-diffusion equation, while also allowing for the presence of a background flow as observed in a typical sharp-edge-based micromixer. We employ a perturbation approach to divide the flow variables into zeroth-, first- and second-order fields which are successively solved to obtain the Lagrangian mean velocity. The Langrangian mean velocity and the background flow velocity are further employed with the convection-diffusion equation to obtain the concentration profile. We characterize the effects of various operational and geometrical parameters to suggest potential design changes for improving the mixing performance of the sharp-edge-based micromixer. Lastly, we investigate the possibility of generation of a spatio-temporally controllable concentration gradient by placing sharp-edge structures inside the microchannel.

  4. Image reconstruction algorithm for optically stimulated luminescence 2D dosimetry using laser-scanned Al2O3:C and Al2O3:C,Mg films

    NASA Astrophysics Data System (ADS)

    Ahmed, M. F.; Schnell, E.; Ahmad, S.; Yukihara, E. G.

    2016-10-01

    The objective of this work was to develop an image reconstruction algorithm for 2D dosimetry using Al2O3:C and Al2O3:C,Mg optically stimulated luminescence (OSL) films imaged using a laser scanning system. The algorithm takes into account parameters associated with detector properties and the readout system. Pieces of Al2O3:C films (~8 mm  ×  8 mm  ×  125 µm) were irradiated and used to simulate dose distributions with extreme dose gradients (zero and non-zero dose regions). The OSLD film pieces were scanned using a custom-built laser-scanning OSL reader and the data obtained were used to develop and demonstrate a dose reconstruction algorithm. The algorithm includes corrections for: (a) galvo hysteresis, (b) photomultiplier tube (PMT) linearity, (c) phosphorescence, (d) ‘pixel bleeding’ caused by the 35 ms luminescence lifetime of F-centers in Al2O3, (e) geometrical distortion inherent to Galvo scanning system, and (f) position dependence of the light collection efficiency. The algorithm was also applied to 6.0 cm  ×  6.0 cm  ×  125 μm or 10.0 cm  ×  10.0 cm  ×  125 µm Al2O3:C and Al2O3:C,Mg films exposed to megavoltage x-rays (6 MV) and 12C beams (430 MeV u-1). The results obtained using pieces of irradiated films show the ability of the image reconstruction algorithm to correct for pixel bleeding even in the presence of extremely sharp dose gradients. Corrections for geometric distortion and position dependence of light collection efficiency were shown to minimize characteristic limitations of this system design. We also exemplify the application of the algorithm to more clinically relevant 6 MV x-ray beam and a 12C pencil beam, demonstrating the potential for small field dosimetry. The image reconstruction algorithm described here provides the foundation for laser-scanned OSL applied to 2D dosimetry.

  5. Radiation dose and second cancer risk in patients treated for cancer of the cervix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boice, J.D. Jr.; Engholm, G.; Kleinerman, R.A.

    1988-10-01

    The risk of cancer associated with a broad range of organ doses was estimated in an international study of women with cervical cancer. Among 150,000 patients reported to one of 19 population-based cancer registries or treated in any of 20 oncology clinics, 4188 women with second cancers and 6880 matched controls were selected for detailed study. Radiation doses for selected organs were reconstructed for each patient on the basis of her original radiotherapy records. Very high doses, on the order of several hundred gray, were found to increase the risk of cancers of the bladder (relative risk (RR) = 4.0),more » rectum (RR = 1.8), vagina (RR = 2.7), and possibly bone (RR = 1.3), uterine corpus (RR = 1.3), cecum (RR = 1.5), and non-Hodgkin's lymphoma (RR = 2.5). For all female genital cancers taken together, a sharp dose-response gradient was observed, reaching fivefold for doses more than 150 Gy. Several gray increased the risk of stomach cancer (RR = 2.1) and leukemia (RR = 2.0). Although cancer of the pancreas was elevated, there was no evidence of a dose-dependent risk. Cancer of the kidney was significantly increased among 15-year survivors. A nonsignificant twofold risk of radiogenic thyroid cancer was observed following an average dose of only 0.11 Gy. Breast cancer was not increased overall, despite an average dose of 0.31 Gy and 953 cases available for evaluation (RR = 0.9); there was, however, a weak suggestion of a dose response among women whose ovaries had been surgically removed. Doses greater than 6 Gy to the ovaries reduced breast cancer risk by 44%. A significant deficit of ovarian cancer was observed within 5 years of radiotherapy; in contrast, a dose response was suggested among 10-year survivors.« less

  6. Steep, Transient Density Gradients in the Martian Ionosphere Similar to the Ionopause at Venus

    NASA Astrophysics Data System (ADS)

    Duru, Firdevs; Gurnett, Donald; Frahm, Rudy; Winningham, D. L.; Morgan, David; Howes, Gregory

    Using Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the Mars Express (MEX) spacecraft, the electron density can be measured by two methods: from the excitation of local plasma oscillations and from remote sounding. A study of the local electron density versus time for 1664 orbits revealed that in 132 orbits very sharp gradients in the electron density occurred that are similar to the ionopause boundary commonly observed at Venus. In 40 of these cases, remote sounding data have also confirmed identical locations of steep ionopause-like density gradients. Measurements from the Analyzer of Space Plasma and Energetic Atoms (ASPERA-3) Electron Spectrometer (ELS) and Ion Mass Analyzer (IMA) instruments (also on Mars Express) verify that these sharp decreases in the electron density occur somewhere between the end of the region where ionospheric photoelectrons are dominant and the magnetosheath. Combined studies of the two experiments reveal that the steep density gradients define a boundary where the magnetic fields change from open to closed. This study shows that, although the individual cases are from a wide range of altitudes, the average altitude of the boundary as a function of solar zenith angle is almost constant. The average altitude is approximately 500 km up to solar zenith angles of 60o, after which it shows a slight increase. The average thickness of the boundary is about 22 km according to remote sounding measurements. The altitude of the steep gradients shows an increase at locations with strong crustal magnetic fields.

  7. Synthesis and materialization of a reaction-diffusion French flag pattern

    NASA Astrophysics Data System (ADS)

    Zadorin, Anton S.; Rondelez, Yannick; Gines, Guillaume; Dilhas, Vadim; Urtel, Georg; Zambrano, Adrian; Galas, Jean-Christophe; Estevez-Torres, André

    2017-10-01

    During embryo development, patterns of protein concentration appear in response to morphogen gradients. These patterns provide spatial and chemical information that directs the fate of the underlying cells. Here, we emulate this process within non-living matter and demonstrate the autonomous structuration of a synthetic material. First, we use DNA-based reaction networks to synthesize a French flag, an archetypal pattern composed of three chemically distinct zones with sharp borders whose synthetic analogue has remained elusive. A bistable network within a shallow concentration gradient creates an immobile, sharp and long-lasting concentration front through a reaction-diffusion mechanism. The combination of two bistable circuits generates a French flag pattern whose 'phenotype' can be reprogrammed by network mutation. Second, these concentration patterns control the macroscopic organization of DNA-decorated particles, inducing a French flag pattern of colloidal aggregation. This experimental framework could be used to test reaction-diffusion models and fabricate soft materials following an autonomous developmental programme.

  8. Directional Bleb Formation in Spherical Cells under Temperature Gradient

    PubMed Central

    Oyama, Kotaro; Arai, Tomomi; Isaka, Akira; Sekiguchi, Taku; Itoh, Hideki; Seto, Yusuke; Miyazaki, Makito; Itabashi, Takeshi; Ohki, Takashi; Suzuki, Madoka; Ishiwata, Shin'ichi

    2015-01-01

    Living cells sense absolute temperature and temporal changes in temperature using biological thermosensors such as ion channels. Here, we reveal, to our knowledge, a novel mechanism of sensing spatial temperature gradients within single cells. Spherical mitotic cells form directional membrane extensions (polar blebs) under sharp temperature gradients (≥∼0.065°C μm−1; 1.3°C temperature difference within a cell), which are created by local heating with a focused 1455-nm laser beam under an optical microscope. On the other hand, multiple nondirectional blebs are formed under gradual temperature gradients or uniform heating. During heating, the distribution of actomyosin complexes becomes inhomogeneous due to a break in the symmetry of its contractile force, highlighting the role of the actomyosin complex as a sensor of local temperature gradients. PMID:26200871

  9. A single-gradient junction technique to replace multiple-junction shifts for craniospinal irradiation treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Austin; Ding, George X., E-mail: george.ding@vanderbilt.edu

    2014-01-01

    Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup error–induced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fieldsmore » and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of ± 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans.« less

  10. Hydro morphodynamic modelling in Mediterranean storms: errors and uncertainties under sharp gradients

    NASA Astrophysics Data System (ADS)

    Sánchez-Arcilla, A.; Gracia, V.; García, M.

    2014-02-01

    This paper deals with the limits in hydrodynamic and morphodynamic predictions for semi-enclosed coastal domains subject to sharp gradients (in bathymetry, topography, sediment transport and coastal damages). It starts with an overview of wave prediction limits (based on satellite images) in a restricted domain such as is the Mediterranean basin, followed by an in-depth analysis of the Catalan coast, one of the land boundaries of such a domain. The morphodynamic modeling for such gradient regions is next illustrated with the simulation of the largest recorded storm in the Catalan coast, whose morphological impact is a key element of the storm impact. The driving wave and surge conditions produce a morphodynamic response that is validated against the pre and post storm beach state, recovered from two LIDAR images. The quality of the fit is discussed in terms of the physical processes and the suitability of the employed modeling equations. Some remarks about the role of the numerical discretization and boundary conditions are also included in the analysis. From here an assessment of errors and uncertainties is presented, with the aim of establishing the prediction limits for coastal engineering flooding and erosion analyses.

  11. The use of spatial dose gradients and probability density function to evaluate the effect of internal organ motion for prostate IMRT treatment planning

    NASA Astrophysics Data System (ADS)

    Jiang, Runqing; Barnett, Rob B.; Chow, James C. L.; Chen, Jeff Z. Y.

    2007-03-01

    The aim of this study is to investigate the effects of internal organ motion on IMRT treatment planning of prostate patients using a spatial dose gradient and probability density function. Spatial dose distributions were generated from a Pinnacle3 planning system using a co-planar, five-field intensity modulated radiation therapy (IMRT) technique. Five plans were created for each patient using equally spaced beams but shifting the angular displacement of the beam by 15° increments. Dose profiles taken through the isocentre in anterior-posterior (A-P), right-left (R-L) and superior-inferior (S-I) directions for IMRT plans were analysed by exporting RTOG file data from Pinnacle. The convolution of the 'static' dose distribution D0(x, y, z) and probability density function (PDF), denoted as P(x, y, z), was used to analyse the combined effect of repositioning error and internal organ motion. Organ motion leads to an enlarged beam penumbra. The amount of percentage mean dose deviation (PMDD) depends on the dose gradient and organ motion probability density function. Organ motion dose sensitivity was defined by the rate of change in PMDD with standard deviation of motion PDF and was found to increase with the maximum dose gradient in anterior, posterior, left and right directions. Due to common inferior and superior field borders of the field segments, the sharpest dose gradient will occur in the inferior or both superior and inferior penumbrae. Thus, prostate motion in the S-I direction produces the highest dose difference. The PMDD is within 2.5% when standard deviation is less than 5 mm, but the PMDD is over 2.5% in the inferior direction when standard deviation is higher than 5 mm in the inferior direction. Verification of prostate organ motion in the inferior directions is essential. The margin of the planning target volume (PTV) significantly impacts on the confidence of tumour control probability (TCP) and level of normal tissue complication probability (NTCP). Smaller margins help to reduce the dose to normal tissues, but may compromise the dose coverage of the PTV. Lower rectal NTCP can be achieved by either a smaller margin or a steeper dose gradient between PTV and rectum. With the same DVH control points, the rectum has lower complication in the seven-beam technique used in this study because of the steeper dose gradient between the target volume and rectum. The relationship between dose gradient and rectal complication can be used to evaluate IMRT treatment planning. The dose gradient analysis is a powerful tool to improve IMRT treatment plans and can be used for QA checking of treatment plans for prostate patients.

  12. The use of spatial dose gradients and probability density function to evaluate the effect of internal organ motion for prostate IMRT treatment planning.

    PubMed

    Jiang, Runqing; Barnett, Rob B; Chow, James C L; Chen, Jeff Z Y

    2007-03-07

    The aim of this study is to investigate the effects of internal organ motion on IMRT treatment planning of prostate patients using a spatial dose gradient and probability density function. Spatial dose distributions were generated from a Pinnacle3 planning system using a co-planar, five-field intensity modulated radiation therapy (IMRT) technique. Five plans were created for each patient using equally spaced beams but shifting the angular displacement of the beam by 15 degree increments. Dose profiles taken through the isocentre in anterior-posterior (A-P), right-left (R-L) and superior-inferior (S-I) directions for IMRT plans were analysed by exporting RTOG file data from Pinnacle. The convolution of the 'static' dose distribution D0(x, y, z) and probability density function (PDF), denoted as P(x, y, z), was used to analyse the combined effect of repositioning error and internal organ motion. Organ motion leads to an enlarged beam penumbra. The amount of percentage mean dose deviation (PMDD) depends on the dose gradient and organ motion probability density function. Organ motion dose sensitivity was defined by the rate of change in PMDD with standard deviation of motion PDF and was found to increase with the maximum dose gradient in anterior, posterior, left and right directions. Due to common inferior and superior field borders of the field segments, the sharpest dose gradient will occur in the inferior or both superior and inferior penumbrae. Thus, prostate motion in the S-I direction produces the highest dose difference. The PMDD is within 2.5% when standard deviation is less than 5 mm, but the PMDD is over 2.5% in the inferior direction when standard deviation is higher than 5 mm in the inferior direction. Verification of prostate organ motion in the inferior directions is essential. The margin of the planning target volume (PTV) significantly impacts on the confidence of tumour control probability (TCP) and level of normal tissue complication probability (NTCP). Smaller margins help to reduce the dose to normal tissues, but may compromise the dose coverage of the PTV. Lower rectal NTCP can be achieved by either a smaller margin or a steeper dose gradient between PTV and rectum. With the same DVH control points, the rectum has lower complication in the seven-beam technique used in this study because of the steeper dose gradient between the target volume and rectum. The relationship between dose gradient and rectal complication can be used to evaluate IMRT treatment planning. The dose gradient analysis is a powerful tool to improve IMRT treatment plans and can be used for QA checking of treatment plans for prostate patients.

  13. Directional interstitial brachytherapy from simulation to application

    NASA Astrophysics Data System (ADS)

    Lin, Liyong

    Organs at risk (OAR) are sometimes adjacent to or embedded in or overlap with the clinical target volume (CTV) to be treated. The purpose of this PhD study is to develop directionally low energy gamma-emitting interstitial brachytherapy sources. These sources can be applied between OAR to selectively reduce hot spots in the OARs and normal tissues. The reduction of dose over undesired regions can expand patient eligibility or reduce toxicities for the treatment by conventional interstitial brachytherapy. This study covers the development of a directional source from design optimization to construction of the first prototype source. The Monte Carlo code MCNP was used to simulate the radiation transport for the designs of directional sources. We have made a special construction kit to assemble radioactive and gold-shield components precisely into D-shaped titanium containers of the first directional source. Directional sources have a similar dose distribution as conventional sources on the treated side but greatly reduced dose on the shielded side, with a sharp dose gradient between them. A three-dimensional dose deposition kernel for the 125I directional source has been calculated. Treatment plans can use both directional and conventional 125I sources at the same source strength for low-dose-rate (LDR) implants to optimize the dose distributions. For prostate tumors, directional 125I LDR brachytherapy can potentially reduce genitourinary and gastrointestinal toxicities and improve potency preservation for low risk patients. The combination of better dose distribution of directional implants and better therapeutic ratio between tumor response and late reactions enables a novel temporary LDR treatment, as opposed to permanent or high-dose-rate (HDR) brachytherapy for the intermediate risk T2b and high risk T2c tumors. Supplemental external-beam treatments can be shortened with a better brachytherapy boost for T3 tumors. In conclusion, we have successfully finished the design optimization and construction of the first prototype directional source. Potential clinical applications and potential benefits of directional sources have been shown for prostate and breast tumors.

  14. Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization

    PubMed Central

    Teichtmeister, S.; Aldakheel, F.

    2016-01-01

    This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic–plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. PMID:27002069

  15. Ordering pathway of block copolymers under dynamic thermal gradients studied by in situ GISAXS

    DOE PAGES

    Samant, Saumil; Strzalka, Joseph; Yager, Kevin G.; ...

    2016-10-31

    Dynamic thermal gradient-based processes for directed self-assembly of block copolymer (BCP) thin films such as cold zone annealing (CZA) have demonstrated much potential for rapidly fabricating highly ordered patterns of BCP domains with facile orientation control. As a demonstration, hexagonally packed predominantly vertical cylindrical morphology, technologically relevant for applications such as membranes and lithography, was achieved in 1 μm thick cylinder-forming PS-b-PMMA (cBCP) films by applying sharp thermal gradients (CZA-Sharp) at optimum sample sweep rates. A thorough understanding of the molecular level mechanisms and pathways of the BCP ordering that occur during this CZA-S process is presented, useful to fullymore » exploit the potential of CZA-S for large-scale BCP-based device fabrication. To that end, we developed a customized CZA-S assembly to probe the dynamic structure evolution and ordering of the PS-b-PMMA cBCP film in situ as it undergoes the CZA-S process using the grazing incidence small-angle X-ray scattering (GISAXS) technique. Four distinct regimes of BCP ordering were observed within the gradient that include microphase separation from an “as cast” unordered state (Regime I), evolution of vertical cylinders under a thermally imposed strain gradient (Regime II), reorientation of a fraction of cylinders due to preferential substrate interactions (Regime III), and finally grain-coarsening on the cooling edge (Regime IV). The ordering pathway in the different regimes is further described within the framework of an energy landscape. A novel aspect of this study is the identification of a grain-coarsening regime on the cooling edge of the gradient, previously obscure in zone annealing studies of BCPs. Furthermore, such insights into the development of highly ordered BCP nanostructures under template-free thermal gradient fields can potentially have important ramifications in the field of BCP-directed self-assembly and self-assembling polymer systems more broadly.« less

  16. Investigation of micromixing by acoustically oscillated sharp-edges

    PubMed Central

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2016-01-01

    Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel. PMID:27158292

  17. Investigation of micromixing by acoustically oscillated sharp-edges.

    PubMed

    Nama, Nitesh; Huang, Po-Hsun; Huang, Tony Jun; Costanzo, Francesco

    2016-03-01

    Recently, acoustically oscillated sharp-edges have been utilized to achieve rapid and homogeneous mixing in microchannels. Here, we present a numerical model to investigate acoustic mixing inside a sharp-edge-based micromixer in the presence of a background flow. We extend our previously reported numerical model to include the mixing phenomena by using perturbation analysis and the Generalized Lagrangian Mean (GLM) theory in conjunction with the convection-diffusion equation. We divide the flow variables into zeroth-order, first-order, and second-order variables. This results in three sets of equations representing the background flow, acoustic response, and the time-averaged streaming flow, respectively. These equations are then solved successively to obtain the mean Lagrangian velocity which is combined with the convection-diffusion equation to predict the concentration profile. We validate our numerical model via a comparison of the numerical results with the experimentally obtained values of the mixing index for different flow rates. Further, we employ our model to study the effect of the applied input power and the background flow on the mixing performance of the sharp-edge-based micromixer. We also suggest potential design changes to the previously reported sharp-edge-based micromixer to improve its performance. Finally, we investigate the generation of a tunable concentration gradient by a linear arrangement of the sharp-edge structures inside the microchannel.

  18. Enhanced proton acceleration from an ultrathin target irradiated by laser pulses with plateau ASE.

    PubMed

    Wang, Dahui; Shou, Yinren; Wang, Pengjie; Liu, Jianbo; Li, Chengcai; Gong, Zheng; Hu, Ronghao; Ma, Wenjun; Yan, Xueqing

    2018-02-07

    We report a simulation study on proton acceleration driven by ultraintense laser pulses with normal contrast (10 7 -10 9 ) containing nanosecond plateau amplified spontaneous emission (ASE). It's found in hydrodynamic simulations that if the thickness of the targets lies in the range of hundreds nanometer matching the intensity and duration of ASE, the ablation pressure would push the whole target in the forward direction with speed exceeding the expansion velocity of plasma, resulting in a plasma density profile with a long extension at the target front and a sharp gradient at the target rear. When the main pulse irradiates the plasma, self-focusing happens at the target front, producing highly energetic electrons through direct laser acceleration(DLA) building the sheath field. The sharp plasma gradient at target rear ensures a strong sheath field. 2D particle-in-cell(PIC) simulations reveal that the proton energy can be enhanced by a factor of 2 compared to the case of using micrometer-thick targets.

  19. The Impact of Different Levels of Adaptive Iterative Dose Reduction 3D on Image Quality of 320-Row Coronary CT Angiography: A Clinical Trial

    PubMed Central

    Feger, Sarah; Rief, Matthias; Zimmermann, Elke; Martus, Peter; Schuijf, Joanne Désirée; Blobel, Jörg; Richter, Felicitas; Dewey, Marc

    2015-01-01

    Purpose The aim of this study was the systematic image quality evaluation of coronary CT angiography (CTA), reconstructed with the 3 different levels of adaptive iterative dose reduction (AIDR 3D) and compared to filtered back projection (FBP) with quantum denoising software (QDS). Methods Standard-dose CTA raw data of 30 patients with mean radiation dose of 3.2 ± 2.6 mSv were reconstructed using AIDR 3D mild, standard, strong and compared to FBP/QDS. Objective image quality comparison (signal, noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), contour sharpness) was performed using 21 measurement points per patient, including measurements in each coronary artery from proximal to distal. Results Objective image quality parameters improved with increasing levels of AIDR 3D. Noise was lowest in AIDR 3D strong (p≤0.001 at 20/21 measurement points; compared with FBP/QDS). Signal and contour sharpness analysis showed no significant difference between the reconstruction algorithms for most measurement points. Best coronary SNR and CNR were achieved with AIDR 3D strong. No loss of SNR or CNR in distal segments was seen with AIDR 3D as compared to FBP. Conclusions On standard-dose coronary CTA images, AIDR 3D strong showed higher objective image quality than FBP/QDS without reducing contour sharpness. Trial Registration Clinicaltrials.gov NCT00967876 PMID:25945924

  20. Magnetic Cobalt Ferrite Nanocrystals For an Energy Storage Concentration Cell.

    PubMed

    Dai, Qilin; Patel, Ketan; Donatelli, Greg; Ren, Shenqiang

    2016-08-22

    Energy-storage concentration cells are based on the concentration gradient of redox-active reactants; the increased entropy is transformed into electric energy as the concentration gradient reaches equilibrium between two half cells. A recyclable and flow-controlled magnetic electrolyte concentration cell is now presented. The hybrid inorganic-organic nanocrystal-based electrolyte, consisting of molecular redox-active ligands adsorbed on the surface of magnetic nanocrystals, leads to a magnetic-field-driven concentration gradient of redox molecules. The energy storage performance of concentration cells is dictated by magnetic characteristics of cobalt ferrite nanocrystal carriers. The enhanced conductivity and kinetics of redox-active electrolytes could further induce a sharp concentration gradient to improve the energy density and voltage switching of magnetic electrolyte concentration cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Surface-from-gradients without discrete integrability enforcement: A Gaussian kernel approach.

    PubMed

    Ng, Heung-Sun; Wu, Tai-Pang; Tang, Chi-Keung

    2010-11-01

    Representative surface reconstruction algorithms taking a gradient field as input enforce the integrability constraint in a discrete manner. While enforcing integrability allows the subsequent integration to produce surface heights, existing algorithms have one or more of the following disadvantages: They can only handle dense per-pixel gradient fields, smooth out sharp features in a partially integrable field, or produce severe surface distortion in the results. In this paper, we present a method which does not enforce discrete integrability and reconstructs a 3D continuous surface from a gradient or a height field, or a combination of both, which can be dense or sparse. The key to our approach is the use of kernel basis functions, which transfer the continuous surface reconstruction problem into high-dimensional space, where a closed-form solution exists. By using the Gaussian kernel, we can derive a straightforward implementation which is able to produce results better than traditional techniques. In general, an important advantage of our kernel-based method is that the method does not suffer discretization and finite approximation, both of which lead to surface distortion, which is typical of Fourier or wavelet bases widely adopted by previous representative approaches. We perform comparisons with classical and recent methods on benchmark as well as challenging data sets to demonstrate that our method produces accurate surface reconstruction that preserves salient and sharp features. The source code and executable of the system are available for downloading.

  2. Universal field matching in craniospinal irradiation by a background-dose gradient-optimized method.

    PubMed

    Traneus, Erik; Bizzocchi, Nicola; Fellin, Francesco; Rombi, Barbara; Farace, Paolo

    2018-01-01

    The gradient-optimized methods are overcoming the traditional feathering methods to plan field junctions in craniospinal irradiation. In this note, a new gradient-optimized technique, based on the use of a background dose, is described. Treatment planning was performed by RayStation (RaySearch Laboratories, Stockholm, Sweden) on the CT scans of a pediatric patient. Both proton (by pencil beam scanning) and photon (by volumetric modulated arc therapy) treatments were planned with three isocenters. An 'in silico' ideal background dose was created first to cover the upper-spinal target and to produce a perfect dose gradient along the upper and lower junction regions. Using it as background, the cranial and the lower-spinal beams were planned by inverse optimization to obtain dose coverage of their relevant targets and of the junction volumes. Finally, the upper-spinal beam was inversely planned after removal of the background dose and with the previously optimized beams switched on. In both proton and photon plans, the optimized cranial and the lower-spinal beams produced a perfect linear gradient in the junction regions, complementary to that produced by the optimized upper-spinal beam. The final dose distributions showed a homogeneous coverage of the targets. Our simple technique allowed to obtain high-quality gradients in the junction region. Such technique universally works for photons as well as protons and could be applicable to the TPSs that allow to manage a background dose. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  3. SU-E-T-453: Optimization of Dose Gradient for Gamma Knife Radiosurgery.

    PubMed

    Sheth, N; Chen, Y; Yang, J

    2012-06-01

    The goals of stereotactic radiosurgery (SRS) are the ablation of target tissue and sparing of critical normal tissue. We develop tools to aid in the selection of collimation and prescription (Rx) isodose line to optimize the dose gradient for single isocenter intracranial stereotactic radiosurgery (SRS) with GammaKnife 4C utilizing the updated physics data in GammaPlan v10.1. Single isocenter intracranial SRS plans were created to treat the center of a solid water anthropomorphism head phantom for each GammaKnife collimator (4 mm, 8 mm, 14 mm, and 18 mm). The dose gradient, defined as the difference of effective radii of spheres equal to half and full Rx volumes, and Rx treatment volume was analyzed for isodoses from 99% to 20% of Rx. The dosimetric data on Rx volume and dose gradient vs. Rx isodose for each collimator was compiled into an easy to read nomogram as well as plotted graphically. The 4, 8, 14, and 18 mm collimators have the sharpest dose gradient at the 64%, 70%, 76%, and 77% Rx isodose lines, respectively. This corresponds to treating 4.77 mm, 8.86 mm, 14.78 mm, and 18.77 mm diameter targets with dose gradients radii of 1.06 mm, 1.63 mm, 2.54 mm, and 3.17 mm, respectively. We analyzed the dosimetric data for the most recent version of GammaPlan treatment planning software to develop tools that when applied clinically will aid in the selection of a collimator and Rx isodose line for optimal dose gradient and target coverage for single isocenter intracranial SRS with GammaKnife 4C. © 2012 American Association of Physicists in Medicine.

  4. SU-F-T-124: Radiation Biological Equivalent Presentations OfLEM-1 and MKM Approaches in the Carbon-Ion Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsi, W; Jiang, G; Sheng, Y

    Purpose: To study the correlations of the radiation biological equivalent doses (BED) along depth and lateral distance between LEM-1 and MKM approaches. Methods: In NIRS-MKM (Microdosimetric Kinetic Model) approach, the prescribed BED, referred as C-Eq, doses aims to present the relative biological effectiveness (RBE) for different energies of carbon-ions on a fixed 10% survival value of HCG cell with respect to convention X-ray. Instead of a fixed 10% survival, the BED doses of LEM-1 (Local Effect Model) approach, referred as X-Eq, aims to present the RBE over the whole survival curve of chordoma-like cell with alpha/beta ratio of 2.0. Themore » relationship of physical doses as a function of C-Eq and X-Eq doses were investigated along depth and lateral distance for various sizes of cubic targets in water irradiated by carbon-ions. Results: At the center of each cubic target, the trends between physical and C-Eq or X-Eq doses can be described by a linear and 2nd order polynomial functions, respectively. Using fit functions can then calculate a scaling factor between C-Eq and X-Eq doses to have similar physical doses. With equalized C-Eq and X-Eq doses at the depth of target center, over- and under-estimated X-Eq to C-Eq are seen for depths before and after the target center, respectively. Near the distal edge along depth, sharp rising of RBE value is observed for X-Eq, but sharp dropping of RBE value is observed for C-Eq. For lateral locations near and just outside 50% dose level, sharp raising of RBE value is also seen for X-Eq, while only minor increasing with fast dropping for C-Eq. Conclusion: An analytical function to model the differences between the CEq and X-Eq doses along depth and lateral distance need to further investigated to explain varied clinic outcome of specific cancers using two different approaches to calculated BED doses.« less

  5. Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization.

    PubMed

    Miehe, C; Teichtmeister, S; Aldakheel, F

    2016-04-28

    This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic-plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. © 2016 The Author(s).

  6. Pluto's Atmosphere, Then and Now

    NASA Astrophysics Data System (ADS)

    Elliot, J. L.; Buie, M.; Person, M. J.; Qu, S.

    2002-09-01

    The KAO light curve for the 1988 stellar occultation by Pluto exhibits a sharp drop just below half light, but above this level the light curve is consistent with that of an isothermal atmosphere (T = 105 +/- 8 K, with N2 as its major constituent). The sharp drop in the light curve has been interpreted as being caused by: (i) a haze layer, (ii) a large thermal gradient, or (iii) some combination of these two. Modeling Pluto's atmosphere with a haze layer yields a normal optical depth >= 0.145 (Elliot & Young 1992, AJ 103, 991). On the other hand, if Pluto's atmosphere is assumed to be clear, the occultation light curve can be inverted with a new method that avoids the large-body approximations. Inversion of the KAO light curve with this method yields an upper isothermal part, followed by a sharp thermal gradient that reaches a maximum magnitude of -3.9 +/- 0.6 K km-1 at the end of the inversion (r = 1206 +/- 10 km). Even though we do not yet understand the cause of the sharp drop, the KAO light curve can be used as a benchmark for examining subsequent Pluto occultation light curves to determine whether Pluto's atmospheric structure has changed since 1988. As an example, the Mamiña light curve for the 2002 July 20 Pluto occultation of P126A was compared with the KAO light curve by Buie et al. (this conference), who concluded that Pluto's atmospheric structure has changed significantly since 1988. Further analysis and additional light curves from this and subsequent occultations (e.g. 2002 August 21) will allow us to elucidate the nature of these changes. This work was supported, in part, by grants from NASA (NAG5-9008 and NAG5-10444) and NSF (AST-0073447).

  7. Error measure comparison of currently employed dose-modulation schemes for e-beam proximity effect control

    NASA Astrophysics Data System (ADS)

    Peckerar, Martin C.; Marrian, Christie R.

    1995-05-01

    Standard matrix inversion methods of e-beam proximity correction are compared with a variety of pseudoinverse approaches based on gradient descent. It is shown that the gradient descent methods can be modified using 'regularizers' (terms added to the cost function minimized during gradient descent). This modification solves the 'negative dose' problem in a mathematically sound way. Different techniques are contrasted using a weighted error measure approach. It is shown that the regularization approach leads to the highest quality images. In some cases, ignoring negative doses yields results which are worse than employing an uncorrected dose file.

  8. Treating convection in sequential solvers

    NASA Technical Reports Server (NTRS)

    Shyy, Wei; Thakur, Siddharth

    1992-01-01

    The treatment of the convection terms in the sequential solver, a standard procedure found in virtually all pressure based algorithms, to compute the flow problems with sharp gradients and source terms is investigated. Both scalar model problems and one-dimensional gas dynamics equations have been used to study the various issues involved. Different approaches including the use of nonlinear filtering techniques and adoption of TVD type schemes have been investigated. Special treatments of the source terms such as pressure gradients and heat release have also been devised, yielding insight and improved accuracy of the numerical procedure adopted.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samant, Saumil; Strzalka, Joseph; Yager, Kevin G.

    Dynamic thermal gradient-based processes for directed self-assembly of block copolymer (BCP) thin films such as cold zone annealing (CZA) have demonstrated much potential for rapidly fabricating highly ordered patterns of BCP domains with facile orientation control. As a demonstration, hexagonally packed predominantly vertical cylindrical morphology, technologically relevant for applications such as membranes and lithography, was achieved in 1 μm thick cylinder-forming PS-b-PMMA (cBCP) films by applying sharp thermal gradients (CZA-Sharp) at optimum sample sweep rates. A thorough understanding of the molecular level mechanisms and pathways of the BCP ordering that occur during this CZA-S process is presented, useful to fullymore » exploit the potential of CZA-S for large-scale BCP-based device fabrication. To that end, we developed a customized CZA-S assembly to probe the dynamic structure evolution and ordering of the PS-b-PMMA cBCP film in situ as it undergoes the CZA-S process using the grazing incidence small-angle X-ray scattering (GISAXS) technique. Four distinct regimes of BCP ordering were observed within the gradient that include microphase separation from an “as cast” unordered state (Regime I), evolution of vertical cylinders under a thermally imposed strain gradient (Regime II), reorientation of a fraction of cylinders due to preferential substrate interactions (Regime III), and finally grain-coarsening on the cooling edge (Regime IV). The ordering pathway in the different regimes is further described within the framework of an energy landscape. A novel aspect of this study is the identification of a grain-coarsening regime on the cooling edge of the gradient, previously obscure in zone annealing studies of BCPs. Furthermore, such insights into the development of highly ordered BCP nanostructures under template-free thermal gradient fields can potentially have important ramifications in the field of BCP-directed self-assembly and self-assembling polymer systems more broadly.« less

  10. Field-assisted synthesis of SERS-active silver nanoparticles using conducting polymers

    NASA Astrophysics Data System (ADS)

    Xu, Ping; Jeon, Sea-Ho; Mack, Nathan H.; Doorn, Stephen K.; Williams, Darrick J.; Han, Xijiang; Wang, Hsing-Lin

    2010-08-01

    A gradient of novel silver nanostructures with widely varying sizes and morphologies is fabricated on a single conducting polyaniline-graphite (P-G) membrane with the assistance of an external electric field. It is believed that the formation of such a silver gradient is a synergetic consequence of the generation of a silver ion concentration gradient along with an electrokinetic flow of silver ions in the field-assisted model, which greatly influences the nucleation and growth mechanism of Ag particles on the P-G membrane. The produced silver dendrites, flowers and microspheres, with sharp edges, intersections and bifurcations, all present strong surface enhanced Raman spectroscopy (SERS) responses toward an organic target molecule, mercaptobenzoic acid (MBA). This facile field-assisted synthesis of Ag nanoparticles via chemical reduction presents an alternative approach to nanomaterial fabrication, which can yield a wide range of unique structures with enhanced optical properties that were previously inaccessible by other synthetic routes.A gradient of novel silver nanostructures with widely varying sizes and morphologies is fabricated on a single conducting polyaniline-graphite (P-G) membrane with the assistance of an external electric field. It is believed that the formation of such a silver gradient is a synergetic consequence of the generation of a silver ion concentration gradient along with an electrokinetic flow of silver ions in the field-assisted model, which greatly influences the nucleation and growth mechanism of Ag particles on the P-G membrane. The produced silver dendrites, flowers and microspheres, with sharp edges, intersections and bifurcations, all present strong surface enhanced Raman spectroscopy (SERS) responses toward an organic target molecule, mercaptobenzoic acid (MBA). This facile field-assisted synthesis of Ag nanoparticles via chemical reduction presents an alternative approach to nanomaterial fabrication, which can yield a wide range of unique structures with enhanced optical properties that were previously inaccessible by other synthetic routes. Electronic supplementary information (ESI) available: EDAX, XRD, and SEM images. See DOI: 10.1039/c0nr00106f

  11. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakhalkar, H. S.; Oldham, M.

    2008-01-15

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of {approx}5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 {mu}m) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout frommore » the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the 'gold standard' technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few millimeters of the edge of the dosimeter, where edge artifact is predominant. Agreement of line profiles was observed, even along steep dose gradients. Dose difference plots indicated that the CCD scanner dose readout differed from the OCTOPUSscanner readout and ECLIPSE calculations by {approx}10% along steep dose gradients and by {approx}5% along moderate dose gradients. Gamma maps (3% dose-difference and 3 mm distance-to-agreement acceptance criteria) revealed agreement, except for regions within 5 mm of the edge of the dosimeter where the edge artifact occurs. In summary, the data demonstrate feasibility of using the fast, high-resolution CCD scanner for comprehensive 3D dosimetry in all applications, except where dose readout is required close to the edges of the dosimeter. Further work is ongoing to reduce this artifact.« less

  12. Sharp metric obstructions for quasi-Einstein metrics

    NASA Astrophysics Data System (ADS)

    Case, Jeffrey S.

    2013-02-01

    Using the tractor calculus to study smooth metric measure spaces, we adapt results of Gover and Nurowski to give sharp metric obstructions to the existence of quasi-Einstein metrics on suitably generic manifolds. We do this by introducing an analogue of the Weyl tractor W to the setting of smooth metric measure spaces. The obstructions we obtain can be realized as tensorial invariants which are polynomial in the Riemann curvature tensor and its divergence. By taking suitable limits of their tensorial forms, we then find obstructions to the existence of static potentials, generalizing to higher dimensions a result of Bartnik and Tod, and to the existence of potentials for gradient Ricci solitons.

  13. WE-D-BRA-03: Four-Dimensional Dose Reconstruction Through Retrospective Phase Determination Using Cine Images of Electronic Portal Imaging Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, J; Jung, J; Yi, B

    2015-06-15

    Purpose: To test a method to reconstruct a four-dimensional (4D) dose distribution using the correlation of pre-calculated 4D electronic portal imaging device (EPID) images and measured cine-EPID images. Methods: 1. A phantom designed to simulate a tumor in lung (a polystyrene block with 3.0 cm diameter embedded in cork) was placed on a sinusoidally moving platform with 2 cm amplitude and 4 sec/cycle. Ten-phase 4D CT images were acquired for treatment planning and dose reconstruction. A 6MV photon beam was irradiated on the phantom with static (field size=5×8.5 cm{sup 2}) and dynamic fields (sliding windows, 10×10 cm{sup 2}, X1 MLCmore » closing in parallel with the tumor movement). 2. 4D and 3D doses were calculated forwardly on PTV (1 cm margin). 3. Dose images on EPID under the fields were calculated for 10 phases. 4. Cine EPID images were acquired during irradiation. 5. Their acquisition times were correlated to the phases of the phantom at which irradiation occurred by inter-comparing calculated “reference” EPID images with measured images (2D gamma comparison). For the dynamic beam, the tumor was hidden under MLCs during a portion of irradiation time; the correlation performed when the tumor was visible was extrapolated. 6. Dose for each phase was reconstructed on the 4D CT images and summed over all phases. The summation was compared with forwardly calculated 4D and 3D dose distributions. Monte Carlo methods were used for all calculations. Results: For the open and dynamic beams, the 4D reconstructed doses showed the pass rates of 92.7 % and 100 %, respectively, at the isocenter plane given 3% / 3 mm criteria. The better agreement of the dynamic beam was from its dose gradient which blurred the otherwise sharp difference between forward and reconstructed doses. This also contributed slightly better agreement in DVH of PTV. Conclusion: The feasibility of 4D reconstruction was demonstrated.« less

  14. Sharp Refractory Composite Leading Edges on Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Sullivan, Brian J.

    2003-01-01

    On-going research of advanced sharp refractory composite leading edges for use on hypersonic air-breathing vehicles is presented in this paper. Intense magnitudes of heating and of heating gradients on the leading edge lead to thermal stresses that challenge the survivability of current material systems. A fundamental understanding of the problem is needed to further design development. Methodology for furthering the technology along with the use of advanced fiber architectures to improve the thermal-structural response is explored in the current work. Thermal and structural finite element analyses are conducted for several advanced fiber architectures of interest. A tailored thermal shock parameter for sharp orthotropic leading edges is identified for evaluating composite material systems. The use of the tailored thermal shock parameter has the potential to eliminate the need for detailed thermal-structural finite element analyses for initial screening of material systems being considered for a leading edge component.

  15. Statistical theory for the Kardar-Parisi-Zhang equation in (1+1) dimensions.

    PubMed

    Masoudi, A A; Shahbazi, F; Davoudi, J; Tabar, M Reza Rahimi

    2002-02-01

    The Kardar-Parisi-Zhang (KPZ) equation in (1+1) dimensions dynamically develops sharply connected valley structures within which the height derivative is not continuous. We develop a statistical theory for the KPZ equation in (1+1) dimensions driven with a random forcing that is white in time and Gaussian-correlated in space. A master equation is derived for the joint probability density function of height difference and height gradient P(h-h*, partial differential(x)h,t) when the forcing correlation length is much smaller than the system size and much larger than the typical sharp valley width. In the time scales before the creation of the sharp valleys, we find the exact generating function of h-h* and partial differential(x)h. The time scale of the sharp valley formation is expressed in terms of the force characteristics. In the stationary state, when the sharp valleys are fully developed, finite-size corrections to the scaling laws of the structure functions left angle bracket(h-h*)(n)(partial differential(x)h)(m)right angle bracket are also obtained.

  16. Dosimetric comparison of different treatment modalities for stereotactic radiotherapy.

    PubMed

    Hsu, Shih-Ming; Lai, Yuan-Chun; Jeng, Chien-Chung; Tseng, Chia-Ying

    2017-09-16

    The modalities for performing stereotactic radiotherapy (SRT) on the brain include the cone-based linear accelerator (linac), the flattening filter-free (FFF) volumetric modulated arc therapy (VMAT) linac, and tomotherapy. In this study, the cone-based linac, FFF-VMAT linac, and tomotherapy modalities were evaluated by measuring the differences in doses delivered during brain SRT and experimentally assessing the accuracy of the output radiation doses through clinical measurements. We employed a homemade acrylic dosimetry phantom representing the head, within which a thermoluminescent dosimeter (TLD) and radiochromic EBT3 film were installed. Using the conformity/gradient index (CGI) and Paddick methods, the quality of the doses delivered by the various SRT modalities was evaluated. The quality indicators included the uniformity, conformity, and gradient indices. TLDs and EBT3 films were used to experimentally assess the accuracy of the SRT dose output. The dose homogeneity indices of all the treatment modalities were lower than 1.25. The cone-based linac had the best conformity for all tumors, regardless of the tumor location and size, followed by the FFF-VMAT linac; tomography was the worst-performing treatment modality in this regard. The cone-based linac had the best gradient, regardless of the tumor location and size, whereas the FFF-VMAT linac had a better gradient than tomotherapy for a large tumor diameter (28 mm). The TLD and EBT3 measurements of the dose at the center of tumors indicated that the average difference between the measurements and the calculated dose was generally less than 4%. When the 3% 3-mm gamma passing rate metric was used, the average passing rates of all three treatment modalities exceeded 98%. Regarding the dose, the cone-based linac had the best conformity and steepest dose gradient for tumors of different sizes and distances from the brainstem. The results of this study suggest that SRT should be performed using the cone-based linac on tumors that require treatment plans with a steep dose gradient, even as the tumor is slightly irregular, we should also consider using a high dose gradient of the cone base to treat and protect the normal tissue. If normal tissues require special protection exist at positions that are superior or inferior to the tumor, we can consider using tomotherapy or Cone base with couch at 0° for treatment.

  17. Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado: Part VI. Maximum duration for mineralization of the OH vein

    USGS Publications Warehouse

    Campbell, W.R.; Barton, P.B.

    2005-01-01

    The rate at which ore deposits form is one of the least well established parameters in all of economic geology. However, increased detail in sampling, improved technology of dating, and sophistication in modeling are reducing the uncertainties and establishing that ore formation, at least for the porphyry copper-skarn-epithermal base and precious metals deposit package, may take place in surprisingly brief intervals. This contribution applies another approach to examine the duration of mineralization. The degree to which compositional gradients within single crystals has flattened through solid-state diffusion offers a measure of the thermal dose (that is temperature combined with time) that the crystals have been subjected to since deposition. Here we examine the steepness of gradients in iron content within individual single sphalerite crystals from the epithermal silver-lead-zinc deposit in the OH vein at Creede, Colorado. Two initial textures are considered: growth-banded crystals and compositionally contrasting overgrowths that succeed crosscutting dissolution or fractured surfaces. The model used estimates the maximum possible time by assuming a perfectly sharp original compositional step, and it asks how long it would take at a known temperature for the gradient measured today to have formed. Applying the experimentally determined diffusion rates of Mizuta (1988a) to compositional gradients (ranging from 0.4-2.2 mol % FeS/??m) measured by the electron microprobe in 2-??m steps on banded sphalerite formed early in the paragenetic history yields a maximum duration of less than ???10,000 yr. Sphalerite from a solution unconformity in a position midway through the paragenetic sequence is indistinguishable from instantaneous deposition, supporting the conclusion of rapid ore formation. While this formation interval seems very brief, it is consistent with less well constrained estimates using entirely different criteria. ?? 2005 Society of Economic Geologists, Inc.

  18. Forest snail diversity and its environmental predictors along a sharp climatic gradient in southern Siberia

    NASA Astrophysics Data System (ADS)

    Horsák, Michal; Juřičková, Lucie; Horsáková, Veronika; Pokorná, Adéla; Pokorný, Petr; Šizling, Arnošt L.; Chytrý, Milan

    2018-04-01

    Diversity patterns of forest snail assemblages have been studied mainly in Europe. Siberian snail faunas have different evolutionary history and colonization dynamics than European faunas, but studies of forest snail diversity are almost missing from Siberia. Therefore, we collected snails at 173 forest sites in the Russian Altai and adjacent areas, encompassing broad variation in climate and forest types. We found 51 species, with a maximum of 15 and an average of seven species per site. The main gradient in species composition was related to soil pH, a variable that also positively correlates with snail abundances. The second gradient was associated with climate characteristics of winter. We observed significant differences in both species richness and composition among six forest types defined based on vegetation classification. Hemiboreal continental forests were the poorest of these types but hosted several species characteristic of European full-glacial stages of the Late Pleistocene. A high snow cover in Temperate coniferous and mixed forests, protecting the soil from freezing, allowed the frost-sensitive large-bodied (>10 mm) species to inhabit this forest type. In contrast to most of the European snail assemblages studied so far we found that the factors responsible for the variation in species richness differed from those driving species composition. This may be attributed to the sharp climatic gradient and the presence of the cold-adapted species typical of the Pleistocene cold stages. We suggest that southern Siberian forests hosting these species can serve as modern analogues of full-glacial forests in periglacial Central and Eastern Europe.

  19. Quantification of interplay and gradient effects for lung stereotactic ablative radiotherapy (SABR) treatments.

    PubMed

    Tyler, Madelaine K

    2016-01-08

    This study quantified the interplay and gradient effects on GTV dose coverage for 3D CRT, dMLC IMRT, and VMAT SABR treatments for target amplitudes of 5-30 mm using 3DVH v3.1 software incorporating 4D Respiratory MotionSim (4D RMS) module. For clinically relevant motion periods (5 s), the interplay effect was small, with deviations in the minimum dose covering the target volume (D99%) of less than ± 2.5% for target amplitudes up to 30 mm. Increasing the period to 60 s resulted in interplay effects of up to ± 15.0% on target D99% dose coverage. The gradient effect introduced by target motion resulted in deviations of up to ± 3.5% in D99% target dose coverage. VMAT treatments showed the largest deviation in dose metrics, which was attributed to the long delivery times in comparison to dMLC IMRT. Retrospective patient analysis indicated minimal interplay and gradient effects for patients treated with dMLC IMRT at the NCCI.

  20. SU-E-T-457: Design and Characterization of An Economical 192Ir Hemi-Brain Small Animal Irradiator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grams, M; Wilson, Z; Sio, T

    Purpose: To describe the design and dosimetric characterization of a simple and economical small animal irradiator. Methods: A high dose rate 192Ir brachytherapy source from a commercially available afterloader was used with a 1.3 centimeter thick tungsten collimator to provide sharp beam penumbra suitable for hemi-brain irradiation of mice. The unit is equipped with continuous gas anesthesia to allow robust animal immobilization. Dosimetric characterization of the device was performed with Gafchromic film. The penumbra from the small animal irradiator was compared under similar collimating conditions to the penumbra from 6 MV photons, 6 MeV electrons, and 20 MeV electrons frommore » a linear accelerator as well as 300 kVp photons from an orthovoltage unit and Monte Carlo simulated 90 MeV protons. Results: The tungsten collimator provides a sharp penumbra suitable for hemi-brain irradiation, and dose rates on the order of 200 cGy/minute were achieved. The sharpness of the penumbra attainable with this device compares favorably to those measured experimentally for 6 MV photons, and 6 and 20 MeV electron beams from a linear accelerator. Additionally, the penumbra was comparable to those measured for a 300 kVp orthovoltage beam and a Monte Carlo simulated 90 MeV proton beam. Conclusions: The small animal irradiator described here can be built for under $1,000 and used in conjunction with any commercial brachytherapy afterloader to provide a convenient and cost-effective option for small animal irradiation experiments. The unit offers high dose rate delivery and sharp penumbra, which is ideal for hemi-brain irradiation of mice. With slight modifications to the design, irradiation of sites other than the brain could be accomplished easily. Due to its simplicity and low cost, the apparatus described is an attractive alternative for small animal irradiation experiments requiring a sharp penumbra.« less

  1. Metrics for linear kinematic features in sea ice

    NASA Astrophysics Data System (ADS)

    Levy, G.; Coon, M.; Sulsky, D.

    2006-12-01

    The treatment of leads as cracks or discontinuities (see Coon et al. presentation) requires some shift in the procedure of evaluation and comparison of lead-resolving models and their validation against observations. Common metrics used to evaluate ice model skills are by and large an adaptation of a least square "metric" adopted from operational numerical weather prediction data assimilation systems and are most appropriate for continuous fields and Eilerian systems where the observations and predictions are commensurate. However, this class of metrics suffers from some flaws in areas of sharp gradients and discontinuities (e.g., leads) and when Lagrangian treatments are more natural. After a brief review of these metrics and their performance in areas of sharp gradients, we present two new metrics specifically designed to measure model accuracy in representing linear features (e.g., leads). The indices developed circumvent the requirement that both the observations and model variables be commensurate (i.e., measured with the same units) by considering the frequencies of the features of interest/importance. We illustrate the metrics by scoring several hypothetical "simulated" discontinuity fields against the lead interpreted from RGPS observations.

  2. Image-guided positioning and tracking.

    PubMed

    Ruan, Dan; Kupelian, Patrick; Low, Daniel A

    2011-01-01

    Radiation therapy aims at maximizing tumor control while minimizing normal tissue complication. The introduction of stereotactic treatment explores the volume effect and achieves dose escalation to tumor target with small margins. The use of ablative irradiation dose and sharp dose gradients requires accurate tumor definition and alignment between patient and treatment geometry. Patient geometry variation during treatment may significantly compromise the conformality of delivered dose and must be managed properly. Setup error and interfraction/intrafraction motion are incorporated in the target definition process by expanding the clinical target volume to planning target volume, whereas the alignment between patient and treatment geometry is obtained with an adaptive control process, by taking immediate actions in response to closely monitored patient geometry. This article focuses on the monitoring and adaptive response aspect of the problem. The term "image" in "image guidance" will be used in a most general sense, to be inclusive of some important point-based monitoring systems that can be considered as degenerate cases of imaging. Image-guided motion adaptive control, as a comprehensive system, involves a hierarchy of decisions, each of which balances simplicity versus flexibility and accuracy versus robustness. Patient specifics and machine specifics at the treatment facility also need to be incorporated into the decision-making process. Identifying operation bottlenecks from a system perspective and making informed compromises are crucial in the proper selection of image-guidance modality, the motion management mechanism, and the respective operation modes. Not intended as an exhaustive exposition, this article focuses on discussing the major issues and development principles for image-guided motion management systems. We hope these information and methodologies will facilitate conscientious practitioners to adopt image-guided motion management systems accounting for patient and institute specifics and to embrace advances in knowledge and new technologies subsequent to the publication of this article.

  3. The effect of CT technical factors on quantification of lung fissure integrity

    NASA Astrophysics Data System (ADS)

    Chong, D.; Brown, M. S.; Ochs, R.; Abtin, F.; Brown, M.; Ordookhani, A.; Shaw, G.; Kim, H. J.; Gjertson, D.; Goldin, J. G.

    2009-02-01

    A new emphysema treatment uses endobronchial valves to perform lobar volume reduction. The degree of fissure completeness may predict treatment efficacy. This study investigated the behavior of a semiautomated algorithm for quantifying lung fissure integrity in CT with respect to reconstruction kernel and dose. Raw CT data was obtained for six asymptomatic patients from a high-risk population for lung cancer. The patients were scanned on either a Siemens Sensation 16 or 64, using a low-dose protocol of 120 kVp, 25 mAs. Images were reconstructed using kernels ranging from smooth to sharp (B10f, B30f, B50f, B70f). Research software was used to simulate an even lower-dose acquisition of 15 mAs, and images were generated at the same kernels resulting in 8 series per patient. The left major fissure was manually contoured axially at regular intervals, yielding 37 contours across all patients. These contours were read into an image analysis and pattern classification system which computed a Fissure Integrity Score (FIS) for each kernel and dose. FIS values were analyzed using a mixed-effects model with kernel and dose as fixed effects and patient as random effect to test for difference due to kernel and dose. Analysis revealed no difference in FIS between the smooth kernels (B10f, B30f) nor between sharp kernels (B50f, B70f), but there was a significant difference between the sharp and smooth groups (p = 0.020). There was no significant difference in FIS between the two low-dose reconstructions (p = 0.882). Using a cutoff of 90%, the number of incomplete fissures increased from 5 to 10 when the imaging protocol changed from B50f to B30f. Reconstruction kernel has a significant effect on quantification of fissure integrity in CT. This has potential implications when selecting patients for endobronchial valve therapy.

  4. On sharp vorticity gradients in elongating baroclinic eddies and their stabilization with a solid-body rotation

    NASA Astrophysics Data System (ADS)

    Sutyrin, Georgi G.

    2016-06-01

    Wide compensated vortices are not able to remain circular in idealized two-layer models unless the ocean depth is assumed to be unrealistically large. Small perturbations on both cyclonic and anticyclonic eddies grow slower if a middle layer with uniform potential vorticity (PV) is added, owing to a weakening of the vertical coupling between the upper and lower layers and a reduction of the PV gradient in the deep layer. Numerical simulations show that the nonlinear development of the most unstable elliptical mode causes self-elongation of the upper vortex core and splitting of the deep PV anomaly into two corotating parts. The emerging tripolar flow pattern in the lower layer results in self-intensification of the fluid rotation in the water column around the vortex center. Further vortex evolution depends on the model parameters and initial conditions, which limits predictability owing to multiple equilibrium attractors existing in the dynamical system. The vortex core strips thin filaments, which roll up into submesoscale vortices to result in substantial mixing at the vortex periphery. Stirring and damping of vorticity by bottom friction are found to be essential for subsequent vortex stabilization. The development of sharp PV gradients leads to nearly solid-body rotation inside the vortex core and formation of transport barriers at the vortex periphery. These processes have important implications for understanding the longevity of real-ocean eddies.

  5. Morphology dependent near-field response in atomistic plasmonic nanocavities.

    PubMed

    Chen, Xing; Jensen, Lasse

    2018-06-21

    In this work we examine how the atomistic morphologies of plasmonic dimers control the near-field response by using an atomistic electrodynamics model. At large separations, the field enhancement in the junction follows a simple inverse power law as a function of the gap separation, which agrees with classical antenna theory. However, when the separations are smaller than 0.8 nm, the so-called quantum size regime, the field enhancement is screened and thus deviates from the simple power law. Our results show that the threshold distance for the deviation depends on the specific morphology of the junction. The near field in the junction can be localized to an area of less than 1 nm2 in the presence of an atomically sharp tip, but the separation distances leading to a large confinement of near field depend strongly on the specific atomistic configuration. More importantly, the highly confined fields lead to large field gradients particularly in a tip-to-surface junction, which indicates that such a plasmonic structure favors observing strong field gradient effects in near-field spectroscopy. We find that for atomically sharp tips the field gradient becomes significant and depends strongly on the local morphology of a tip. We expect our findings to be crucial for understanding the origin of high-resolution near-field spectroscopy and for manipulating optical cavities through atomic structures in the strongly coupled plasmonic systems.

  6. Why Compositional Convection Cannot Explain Substellar Objects’ Sharp Spectral-type Transitions

    NASA Astrophysics Data System (ADS)

    Leconte, Jérémy

    2018-02-01

    As brown dwarfs and young giant planets cool down, they are known to experience various chemical transitions—for example, from {CO} rich L-dwarfs to methane rich T-dwarfs. Those chemical transitions are accompanied by spectral transitions with sharpness that cannot be explained by chemistry alone. In a series of articles, Tremblin et al. proposed that some of the yet-unexplained features associated with these transitions could be explained by a reduction of the thermal gradient near the photosphere. To explain, in turn, this more isothermal profile, they invoke the presence of an instability analogous to fingering convection—compositional convection—triggered by the change in mean molecular weight of the gas due to the chemical transitions mentioned above. In this Letter, we use existing arguments to demonstrate that any turbulent transport, if present, would in fact increase the thermal gradient. This misinterpretation comes from the fact that turbulence mixes/homogenizes entropy (potential temperature) instead of temperature. So, while increasing transport, turbulence in an initially stratified atmosphere actually carries energy downward, whether it is due to fingering or any other type of compositional convection. These processes therefore cannot explain the features observed along the aforementioned transitions by reducing the thermal gradient in the atmosphere of substellar objects. Understanding the microphysical and dynamical properties of clouds at these transitions thus probably remains our best way forward.

  7. Spatially variable natural selection and the divergence between parapatric subspecies of lodgepole pine (Pinus contorta, Pinaceae).

    PubMed

    Eckert, Andrew J; Shahi, Hurshbir; Datwyler, Shannon L; Neale, David B

    2012-08-01

    Plant populations arrayed across sharp environmental gradients are ideal systems for identifying the genetic basis of ecologically relevant phenotypes. A series of five uplifted marine terraces along the northern coast of California represents one such system where morphologically distinct populations of lodgepole pine (Pinus contorta) are distributed across sharp soil gradients ranging from fertile soils near the coast to podzolic soils ca. 5 km inland. A total of 92 trees was sampled across four coastal marine terraces (N = 10-46 trees/terrace) located in Mendocino County, California and sequenced for a set of 24 candidate genes for growth and responses to various soil chemistry variables. Statistical analyses relying on patterns of nucleotide diversity were employed to identify genes whose diversity patterns were inconsistent with three null models. Most genes displayed patterns of nucleotide diversity that were consistent with null models (N = 19) or with the presence of paralogs (N = 3). Two genes, however, were exceptional: an aluminum responsive ABC-transporter with F(ST) = 0.664 and an inorganic phosphate transporter characterized by divergent haplotypes segregating at intermediate frequencies in most populations. Spatially variable natural selection along gradients of aluminum and phosphate ion concentrations likely accounted for both outliers. These results shed light on some of the genetic components comprising the extended phenotype of this ecosystem, as well as highlight ecotones as fruitful study systems for the detection of adaptive genetic variants.

  8. Analytical model for out-of-field dose in photon craniospinal irradiation

    NASA Astrophysics Data System (ADS)

    Taddei, Phillip J.; Jalbout, Wassim; Howell, Rebecca M.; Khater, Nabil; Geara, Fady; Homann, Kenneth; Newhauser, Wayne D.

    2013-11-01

    The prediction of late effects after radiotherapy in organs outside a treatment field requires accurate estimations of out-of-field dose. However, out-of-field dose is not calculated accurately by commercial treatment planning systems (TPSs). The purpose of this study was to develop and test an analytical model for out-of-field dose during craniospinal irradiation (CSI) from photon beams produced by a linear accelerator. In two separate evaluations of the model, we measured absorbed dose for a 6 MV CSI using thermoluminescent dosimeters placed throughout an anthropomorphic phantom and fit the measured data to an analytical model of absorbed dose versus distance outside of the composite field edge. These measurements were performed in two separate clinics—the University of Texas MD Anderson Cancer Center (MD Anderson) and the American University of Beirut Medical Center (AUBMC)—using the same phantom but different linear accelerators and TPSs commissioned for patient treatments. The measurement at AUBMC also included in-field locations. Measured dose values were compared to those predicted by TPSs and parameters were fit to the model in each setting. In each clinic, 95% of the measured data were contained within a factor of 0.2 and one root mean square deviation of the model-based values. The root mean square deviations of the mathematical model were 0.91 cGy Gy-1 and 1.67 cGy Gy-1 in the MD Anderson and AUBMC clinics, respectively. The TPS predictions agreed poorly with measurements in regions of sharp dose gradient, e.g., near the field edge. At distances greater than 1 cm from the field edge, the TPS underestimated the dose by an average of 14% ± 24% and 44% ± 19% in the MD Anderson and AUBMC clinics, respectively. The in-field measured dose values of the measurement at AUBMC matched the dose values calculated by the TPS to within 2%. Dose algorithms in TPSs systematically underestimated the actual out-of-field dose. Therefore, it is important to use an improved model based on measurements when estimating out-of-field dose. The model proposed in this study performed well for this purpose in two clinics and may be applicable in other clinics with similar treatment field configurations.

  9. Biodiversity response to natural gradients of multiple stressors on continental margins

    PubMed Central

    Sperling, Erik A.; Frieder, Christina A.; Levin, Lisa A.

    2016-01-01

    Sharp increases in atmospheric CO2 are resulting in ocean warming, acidification and deoxygenation that threaten marine organisms on continental margins and their ecological functions and resulting ecosystem services. The relative influence of these stressors on biodiversity remains unclear, as well as the threshold levels for change and when secondary stressors become important. One strategy to interpret adaptation potential and predict future faunal change is to examine ecological shifts along natural gradients in the modern ocean. Here, we assess the explanatory power of temperature, oxygen and the carbonate system for macrofaunal diversity and evenness along continental upwelling margins using variance partitioning techniques. Oxygen levels have the strongest explanatory capacity for variation in species diversity. Sharp drops in diversity are seen as O2 levels decline through the 0.5–0.15 ml l−1 (approx. 22–6 µM; approx. 21–5 matm) range, and as temperature increases through the 7–10°C range. pCO2 is the best explanatory variable in the Arabian Sea, but explains little of the variance in diversity in the eastern Pacific Ocean. By contrast, very little variation in evenness is explained by these three global change variables. The identification of sharp thresholds in ecological response are used here to predict areas of the seafloor where diversity is most at risk to future marine global change, noting that the existence of clear regional differences cautions against applying global thresholds. PMID:27122565

  10. Sperm navigation along helical paths in 3D chemoattractant landscapes

    PubMed Central

    Jikeli, Jan F.; Alvarez, Luis; Friedrich, Benjamin M.; Wilson, Laurence G.; Pascal, René; Colin, Remy; Pichlo, Magdalena; Rennhack, Andreas; Brenker, Christoph; Kaupp, U. Benjamin

    2015-01-01

    Sperm require a sense of direction to locate the egg for fertilization. They follow gradients of chemical and physical cues provided by the egg or the oviduct. However, the principles underlying three-dimensional (3D) navigation in chemical landscapes are unknown. Here using holographic microscopy and optochemical techniques, we track sea urchin sperm navigating in 3D chemoattractant gradients. Sperm sense gradients on two timescales, which produces two different steering responses. A periodic component, resulting from the helical swimming, gradually aligns the helix towards the gradient. When incremental path corrections fail and sperm get off course, a sharp turning manoeuvre puts sperm back on track. Turning results from an ‘off' Ca2+ response signifying a chemoattractant stimulation decrease and, thereby, a drop in cyclic GMP concentration and membrane voltage. These findings highlight the computational sophistication by which sperm sample gradients for deterministic klinotaxis. We provide a conceptual and technical framework for studying microswimmers in 3D chemical landscapes. PMID:26278469

  11. Thermal rectification in thin films driven by gradient grain microstructure

    NASA Astrophysics Data System (ADS)

    Cheng, Zhe; Foley, Brian M.; Bougher, Thomas; Yates, Luke; Cola, Baratunde A.; Graham, Samuel

    2018-03-01

    As one of the basic components of phononics, thermal rectifiers transmit heat current asymmetrically similar to electronic rectifiers in microelectronics. Heat can be conducted through them easily in one direction while being blocked in the other direction. In this work, we report a thermal rectifier that is driven by the gradient grain structure and the inherent gradient in thermal properties as found in these materials. To demonstrate their thermal rectification properties, we build a spectral thermal conductivity model with complete phonon dispersion relationships using the thermophysical properties of chemical vapor deposited (CVD) diamond films which possess gradient grain microstructures. To explain the observed significant thermal rectification, the temperature and thermal conductivity distribution are studied. Additionally, the effects of temperature bias and film thickness are discussed, which shed light on tuning the thermal rectification based on the gradient microstructures. Our results show that the columnar grain microstructure makes CVD materials unique candidates for mesoscale thermal rectifiers without a sharp temperature change.

  12. Sperm navigation along helical paths in 3D chemoattractant landscapes.

    PubMed

    Jikeli, Jan F; Alvarez, Luis; Friedrich, Benjamin M; Wilson, Laurence G; Pascal, René; Colin, Remy; Pichlo, Magdalena; Rennhack, Andreas; Brenker, Christoph; Kaupp, U Benjamin

    2015-08-17

    Sperm require a sense of direction to locate the egg for fertilization. They follow gradients of chemical and physical cues provided by the egg or the oviduct. However, the principles underlying three-dimensional (3D) navigation in chemical landscapes are unknown. Here using holographic microscopy and optochemical techniques, we track sea urchin sperm navigating in 3D chemoattractant gradients. Sperm sense gradients on two timescales, which produces two different steering responses. A periodic component, resulting from the helical swimming, gradually aligns the helix towards the gradient. When incremental path corrections fail and sperm get off course, a sharp turning manoeuvre puts sperm back on track. Turning results from an 'off' Ca(2+) response signifying a chemoattractant stimulation decrease and, thereby, a drop in cyclic GMP concentration and membrane voltage. These findings highlight the computational sophistication by which sperm sample gradients for deterministic klinotaxis. We provide a conceptual and technical framework for studying microswimmers in 3D chemical landscapes.

  13. A sharp, robust, and quantitative method by liquid chromatography tandem mass spectrometry for the measurement of EAD for acute radiation syndrome and its application.

    PubMed

    Zhang, Yiwei; Li, Jian; Meng, Zhiyun; Zhu, Xiaoxia; Gan, Hui; Gu, Ruolan; Wu, Zhuona; Zheng, Ying; Wei, Jinbin; Dou, Guifang

    2017-06-15

    17-Ethinyl-3,17-dihydroxyandrost-5-ene (EAD) is an agent designed for the treatment of acute radiation syndrome (ARS). Given its vital role played in the prevention and mitigation of ARS, the development of a sharp, sensitive and robust liquid chromatography tandem mass spectrometry (LC-MS/MS) method to monitor the metabolism of EAD in vivo was crucial. A new method was constructed and validated for the determination of EAD with the internal standard of androst-5-ene-3β,17β-diol (5-AED). The blood samples were precipitated with methanol, centrifuged, from which the supernatant was separated on UPLC with C18 column and eluted in gradient with acetonitrile and Milli-Q water both containing 0.1% formic acid (FA). Quantification was performed by a triple quadrupole mass spectrometer with electro spray ionization (ESI) in multiple reactive monitoring (MRM) positive mode. A good linearity was obtained with R>0.99 for EAD within its calibration range from 5 to 1000ngmL -1 with a lowest limit of quantification (LLOQ) of 5ngmL -1 . Inter- and intra-day accuracy and precision of three levels of quality control (QC) samples were within the range of 15%, while the LLOQ was within 20%. Samples were stable under the circumstances of the experiments. The method was simple, accurate and robust applied to determine the concentrations of EAD in Wistar rat after a single administration of EAD orally at the dose of 100mgkg -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Quantification of interplay and gradient effects for lung stereotactic ablative radiotherapy (SABR) treatments

    PubMed Central

    2016-01-01

    This study quantified the interplay and gradient effects on GTV dose coverage for 3D CRT, dMLC IMRT, and VMAT SABR treatments for target amplitudes of 5–30 mm using 3DVH v3.1 software incorporating 4D Respiratory MotionSim (4D RMS) module. For clinically relevant motion periods (5 s), the interplay effect was small, with deviations in the minimum dose covering the target volume (D99%) of less than ±2.5% for target amplitudes up to 30 mm. Increasing the period to 60 s resulted in interplay effects of up to ±15.0% on target D99% dose coverage. The gradient effect introduced by target motion resulted in deviations of up to ±3.5% in D99% target dose coverage. VMAT treatments showed the largest deviation in dose metrics, which was attributed to the long delivery times in comparison to dMLC IMRT. Retrospective patient analysis indicated minimal interplay and gradient effects for patients treated with dMLC IMRT at the NCCI. PACS numbers: 87.55.km, 87.56.Fc PMID:26894347

  15. Developing A Directional High-Dose Rate (d-HDR) Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Heredia, Athena Yvonne

    Conventional sources used in brachytherapy provide nearly isotropic or radially symmetric dose distributions. Optimizations of dose distributions have been limited to varied dwell times at specified locations within a given treatment volume, or manipulations in source position for seed implantation techniques. In years past, intensity modulated brachytherapy (IMBT) has been used to reduce the amount of radiation to surrounding sensitive structures in select intracavitary cases by adding space or partial shields. Previous work done by Lin et al., at the University of Wisconsin-Madison, has shown potential improvements in conformality for brachytherapy treatments using a directionally shielded low dose rate (LDR) source for treatments in breast and prostate. Directional brachytherapy sources irradiate approximately half of the radial angles around the source, and adequately shield a quarter of the radial angles on the opposite side, with sharp gradient zones between the treated half and shielded quarter. With internally shielded sources, the radiation can be preferentially emitted in such a way as to reduce toxicities in surrounding critical organs. The objective of this work is to present findings obtained in the development of a new directional high dose rate (d-HDR) source. To this goal, 103Pd (Z = 46) is reintroduced as a potential radionuclide for use in HDR brachytherapy. 103Pd has a low average photon energy (21 keV) and relatively short half -life (17 days), which is why it has historically been used in low dose rate applications and implantation techniques. Pd-103 has a carrier-free specific activity of 75000 Ci/g. Using cyclotron produced 103Pd, near carrier-free specific activities can be achieved, providing suitability for high dose rate applications. The evolution of the d-HDR source using Monte Carlo simulations is presented, along with dosimetric parameters used to fully characterize the source. In addition, a discussion on how to obtain elemental palladium, Pd(0), will be discussed in detail. Directional HDR has the potential to improve upon current treatments, providing better dose conformality to the target volume, while maintaining the benefits of HDR applications.

  16. 13. Looking north, from the southern approach to the bridge. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Looking north, from the southern approach to the bridge. The bridge deck, which is concrete with several patch coats of asphalt (now chiefly gravel and some turf), demonstrates a sharp gradient from the abutment to the bridge center line. - Vigo County Bridge No. 139, Spanning Sugar Creek at Seventy-fourth Place, Terre Haute, Vigo County, IN

  17. Connections between density, wall-normal velocity, and coherent structure in a heated turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Saxton-Fox, Theresa; Gordeyev, Stanislav; Smith, Adam; McKeon, Beverley

    2015-11-01

    Strong density gradients associated with turbulent structure were measured in a mildly heated turbulent boundary layer using an optical sensor (Malley probe). The Malley probe measured index of refraction gradients integrated along the wall-normal direction, which, due to the proportionality of index of refraction and density in air, was equivalently an integral measure of density gradients. The integral output was observed to be dominated by strong, localized density gradients. Conditional averaging and Pearson correlations identified connections between the streamwise gradient of density and the streamwise gradient of wall-normal velocity. The trends were suggestive of a process of pick-up and transport of heat away from the wall. Additionally, by considering the density field as a passive marker of structure, the role of the wall-normal velocity in shaping turbulent structure in a sheared flow was examined. Connections were developed between sharp gradients in the density and flow fields and strong vertical velocity fluctuations. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.

  18. Near-field Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ayars, Eric James

    2000-10-01

    The purpose of this research is to investigate differences observed between Raman spectra when seen through a Near-field Scanning Optical Microscope (NSOM) and spectra of the same materials in conventional Raman or micro-Raman configurations. One source of differences in the observed spectra is a strong z polarized component in the near-field radiation; observations of the magnitude of this effect are compared with theoretical predictions for the field intensity near an NSOM tip. Large electric field gradients near the sharp NSOM probe may be another source of differences. This Gradient-Field Raman (GFR) effect was observed, and there is good evidence that it plays a significant role in Surface-Enhanced Raman Spectroscopy (SERS). The NSOM data seen, however, are not sufficient to prove conclusively that the spectral variations seen are due to the field gradients.

  19. Dose reduction in abdominal computed tomography: intraindividual comparison of image quality of full-dose standard and half-dose iterative reconstructions with dual-source computed tomography.

    PubMed

    May, Matthias S; Wüst, Wolfgang; Brand, Michael; Stahl, Christian; Allmendinger, Thomas; Schmidt, Bernhard; Uder, Michael; Lell, Michael M

    2011-07-01

    We sought to evaluate the image quality of iterative reconstruction in image space (IRIS) in half-dose (HD) datasets compared with full-dose (FD) and HD filtered back projection (FBP) reconstruction in abdominal computed tomography (CT). To acquire data with FD and HD simultaneously, contrast-enhanced abdominal CT was performed with a dual-source CT system, both tubes operating at 120 kV, 100 ref.mAs, and pitch 0.8. Three different image datasets were reconstructed from the raw data: Standard FD images applying FBP which served as reference, HD images applying FBP and HD images applying IRIS. For the HD data sets, only data from 1 tube detector-system was used. Quantitative image quality analysis was performed by measuring image noise in tissue and air. Qualitative image quality was evaluated according to the European Guidelines on Quality criteria for CT. Additional assessment of artifacts, lesion conspicuity, and edge sharpness was performed. : Image noise in soft tissue was substantially decreased in HD-IRIS (-3.4 HU, -22%) and increased in HD-FBP (+6.2 HU, +39%) images when compared with the reference (mean noise, 15.9 HU). No significant differences between the FD-FBP and HD-IRIS images were found for the visually sharp anatomic reproduction, overall diagnostic acceptability (P = 0.923), lesion conspicuity (P = 0.592), and edge sharpness (P = 0.589), while HD-FBP was rated inferior. Streak artifacts and beam hardening was significantly more prominent in HD-FBP while HD-IRIS images exhibited a slightly different noise pattern. Direct intrapatient comparison of standard FD body protocols and HD-IRIS reconstruction suggest that the latest iterative reconstruction algorithms allow for approximately 50% dose reduction without deterioration of the high image quality necessary for confident diagnosis.

  20. Lacosamide and Levetiracetam Have No Effect on Sharp-Wave Ripple Rate.

    PubMed

    Kudlacek, Jan; Chvojka, Jan; Posusta, Antonin; Kovacova, Lubica; Hong, Seung Bong; Weiss, Shennan; Volna, Kamila; Marusic, Petr; Otahal, Jakub; Jiruska, Premysl

    2017-01-01

    Pathological high-frequency oscillations are a novel marker used to improve the delineation of epileptogenic tissue and, hence, the outcome of epilepsy surgery. Their practical clinical utilization is curtailed by the inability to discriminate them from physiological oscillations due to frequency overlap. Although it is well documented that pathological HFOs are suppressed by antiepileptic drugs (AEDs), the effect of AEDs on normal HFOs is not well known. In this experimental study, we have explored whether physiological HFOs (sharp-wave ripples) of hippocampal origin respond to AED treatment. The results show that application of a single dose of levetiracetam or lacosamide does not reduce the rate of sharp-wave ripples. In addition, it seems that these new generation drugs do not negatively affect the cellular and network mechanisms involved in sharp-wave ripple generation, which may provide a plausible explanation for the absence of significant negative effects on cognitive functions of these drugs, particularly on memory.

  1. Technical Note: Dose gradients and prescription isodose in orthovoltage stereotactic radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fagerstrom, Jessica M., E-mail: fagerstrom@wisc.edu; Bender, Edward T.; Culberson, Wesley S.

    Purpose: The purpose of this work is to examine the trade-off between prescription isodose and dose gradients in orthovoltage stereotactic radiosurgery. Methods: Point energy deposition kernels (EDKs) describing photon and electron transport were calculated using Monte Carlo methods. EDKs were generated from 10  to 250 keV, in 10 keV increments. The EDKs were converted to pencil beam kernels and used to calculate dose profiles through isocenter from a 4π isotropic delivery from all angles of circularly collimated beams. Monoenergetic beams and an orthovoltage polyenergetic spectrum were analyzed. The dose gradient index (DGI) is the ratio of the 50% prescription isodosemore » volume to the 100% prescription isodose volume and represents a metric by which dose gradients in stereotactic radiosurgery (SRS) may be evaluated. Results: Using the 4π dose profiles calculated using pencil beam kernels, the relationship between DGI and prescription isodose was examined for circular cones ranging from 4 to 18 mm in diameter and monoenergetic photon beams with energies ranging from 20 to 250 keV. Values were found to exist for prescription isodose that optimize DGI. Conclusions: The relationship between DGI and prescription isodose was found to be dependent on both field size and energy. Examining this trade-off is an important consideration for designing optimal SRS systems.« less

  2. Revisiting the Rossby Haurwitz wave test case with contour advection

    NASA Astrophysics Data System (ADS)

    Smith, Robert K.; Dritschel, David G.

    2006-09-01

    This paper re-examines a basic test case used for spherical shallow-water numerical models, and underscores the need for accurate, high resolution models of atmospheric and ocean dynamics. The Rossby-Haurwitz test case, first proposed by Williamson et al. [D.L. Williamson, J.B. Drake, J.J. Hack, R. Jakob, P.N. Swarztrauber, A standard test set for numerical approximations to the shallow-water equations on the sphere, J. Comput. Phys. (1992) 221-224], has been examined using a wide variety of shallow-water models in previous papers. Here, two contour-advective semi-Lagrangian (CASL) models are considered, and results are compared with previous test results. We go further by modifying this test case in a simple way to initiate a rapid breakdown of the basic wave state. This breakdown is accompanied by the formation of sharp potential vorticity gradients (fronts), placing far greater demands on the numerics than the original test case does. We also go further by examining other dynamical fields besides the height and potential vorticity, to assess how well the models deal with gravity waves. Such waves are sensitive to the presence or not of sharp potential vorticity gradients, as well as to numerical parameter settings. In particular, large time steps (convenient for semi-Lagrangian schemes) can seriously affect gravity waves but can also have an adverse impact on the primary fields of height and velocity. These problems are exacerbated by a poor resolution of potential vorticity gradients.

  3. Ultra-low-dose computed tomographic angiography with model-based iterative reconstruction compared with standard-dose imaging after endovascular aneurysm repair: a prospective pilot study.

    PubMed

    Naidu, Sailen G; Kriegshauser, J Scott; Paden, Robert G; He, Miao; Wu, Qing; Hara, Amy K

    2014-12-01

    An ultra-low-dose radiation protocol reconstructed with model-based iterative reconstruction was compared with our standard-dose protocol. This prospective study evaluated 20 men undergoing surveillance-enhanced computed tomography after endovascular aneurysm repair. All patients underwent standard-dose and ultra-low-dose venous phase imaging; images were compared after reconstruction with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction. Objective measures of aortic contrast attenuation and image noise were averaged. Images were subjectively assessed (1 = worst, 5 = best) for diagnostic confidence, image noise, and vessel sharpness. Aneurysm sac diameter and endoleak detection were compared. Quantitative image noise was 26% less with ultra-low-dose model-based iterative reconstruction than with standard-dose adaptive statistical iterative reconstruction and 58% less than with ultra-low-dose adaptive statistical iterative reconstruction. Average subjective noise scores were not different between ultra-low-dose model-based iterative reconstruction and standard-dose adaptive statistical iterative reconstruction (3.8 vs. 4.0, P = .25). Subjective scores for diagnostic confidence were better with standard-dose adaptive statistical iterative reconstruction than with ultra-low-dose model-based iterative reconstruction (4.4 vs. 4.0, P = .002). Vessel sharpness was decreased with ultra-low-dose model-based iterative reconstruction compared with standard-dose adaptive statistical iterative reconstruction (3.3 vs. 4.1, P < .0001). Ultra-low-dose model-based iterative reconstruction and standard-dose adaptive statistical iterative reconstruction aneurysm sac diameters were not significantly different (4.9 vs. 4.9 cm); concordance for the presence of endoleak was 100% (P < .001). Compared with a standard-dose technique, an ultra-low-dose model-based iterative reconstruction protocol provides comparable image quality and diagnostic assessment at a 73% lower radiation dose.

  4. Structure of the plasmapause from ISEE 1 low-energy ion and plasma wave observations

    NASA Technical Reports Server (NTRS)

    Nagai, T.; Horwitz, J. L.; Anderson, R. R.; Chappell, C. R.

    1985-01-01

    Low-energy ion pitch angle distributions are compared with plasma density profiles in the near-earth magnetosphere using ISEE 1 observations. The classical plasmapause determined by the sharp density gradient is not always observed in the dayside region, whereas there almost always exists the ion pitch angle distribution transition from cold, isotropic to warm, bidirectional, field-aligned distributions. In the nightside region the plasmapause density gradient is typically found, and it normally coincides with the ion pitch angle distribution transition. The sunward motion of the plasma is found in the outer part of the 'plasmaspheric' plasma in the dusk bulge region.

  5. Multiscale structural gradients enhance the biomechanical functionality of the spider fang

    PubMed Central

    Bar-On, Benny; Barth, Friedrich G.; Fratzl, Peter; Politi, Yael

    2014-01-01

    The spider fang is a natural injection needle, hierarchically built from a complex composite material comprising multiscale architectural gradients. Considering its biomechanical function, the spider fang has to sustain significant mechanical loads. Here we apply experiment-based structural modelling of the fang, followed by analytical mechanical description and Finite-Element simulations, the results of which indicate that the naturally evolved fang architecture results in highly adapted effective structural stiffness and damage resilience. The analysis methods and physical insights of this work are potentially important for investigating and understanding the architecture and structural motifs of sharp-edge biological elements such as stingers, teeth, claws and more. PMID:24866935

  6. Using adaptive grid in modeling rocket nozzle flow

    NASA Technical Reports Server (NTRS)

    Chow, Alan S.; Jin, Kang-Ren

    1992-01-01

    The mechanical behavior of a rocket motor internal flow field results in a system of nonlinear partial differential equations which cannot be solved analytically. However, this system of equations called the Navier-Stokes equations can be solved numerically. The accuracy and the convergence of the solution of the system of equations will depend largely on how precisely the sharp gradients in the domain of interest can be resolved. With the advances in computer technology, more sophisticated algorithms are available to improve the accuracy and convergence of the solutions. An adaptive grid generation is one of the schemes which can be incorporated into the algorithm to enhance the capability of numerical modeling. It is equivalent to putting intelligence into the algorithm to optimize the use of computer memory. With this scheme, the finite difference domain of the flow field called the grid does neither have to be very fine nor strategically placed at the location of sharp gradients. The grid is self adapting as the solution evolves. This scheme significantly improves the methodology of solving flow problems in rocket nozzles by taking the refinement part of grid generation out of the hands of computational fluid dynamics (CFD) specialists and place it into the computer algorithm itself.

  7. Theory and applications of refractive index-based optical microscopy to measure protein mass transfer in spherical adsorbent particles.

    PubMed

    Bankston, Theresa E; Stone, Melani C; Carta, Giorgio

    2008-04-25

    This work provides the theoretical foundation and a range of practical application examples of a recently developed method to measure protein mass transfer in adsorbent particles using refractive index-based optical microscopy. A ray-theoretic approach is first used to predict the behavior of light traveling through a particle during transient protein adsorption. When the protein concentration gradient in the particle is sharp, resulting in a steep refractive index gradient, the rays bend and intersect, thereby concentrating light in a sharp ring that marks the position of the adsorption front. This behavior is observed when mass transfer is dominated by pore diffusion and the adsorption isotherm is highly favorable. Applications to protein cation-exchange, hydrophobic interaction, and affinity adsorption are then considered using, as examples, the three commercial, agarose-based stationary phases SP-Sepharose-FF, Butyl Sepharose 4FF, and MabSelect. In all three cases, the method provides results that are consistent with measurements based on batch adsorption and previously published data confirming its utility for the determination of protein mass transfer kinetics under a broad range of practically relevant conditions.

  8. Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James; Sarff, John; Ding, Weixing; Brower, David; Parke, Eli; Chapman, Brett; Terry, Paul; Pueschel, M. J.; Williams, Zach

    2017-10-01

    Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM). Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking, which are suppressed via inductive control for this work. The improved confinement is associated with an increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have f 50 kHz, kϕρs < 0.14 , and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in global tearing mode associated fluctuations, their amplitude increases with local density gradient, and they exhibit a density-gradient threshold at R /Ln 15 . The GENE code, modified for the RFP, predicts the onset of density-gradient-driven TEM for these strong-gradient plasma conditions. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations, comparable to experimental magnetic fluctuations, causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Work supported by US DOE.

  9. Ultra-high spatial resolution multi-energy CT using photon counting detector technology

    NASA Astrophysics Data System (ADS)

    Leng, S.; Gutjahr, R.; Ferrero, A.; Kappler, S.; Henning, A.; Halaweish, A.; Zhou, W.; Montoya, J.; McCollough, C.

    2017-03-01

    Two ultra-high-resolution (UHR) imaging modes, each with two energy thresholds, were implemented on a research, whole-body photon-counting-detector (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both energy thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-energy threshold and 0.5 mm for the high-energy threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard imaging mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-energy capability. The low-energy threshold images of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-energy analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution images. However, UHR scans at higher dose showed improvement in multi-energy analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-energy analysis, either increased radiation dose, or application of noise reduction techniques, is needed.

  10. Contrast-enhanced Magnetic Resonance Imaging of Pelvic Bone Metastases at 3.0 T: Comparison Between 3-dimensional T1-weighted CAIPIRINHA-VIBE Sequence and 2-dimensional T1-weighted Turbo Spin-Echo Sequence.

    PubMed

    Yoon, Min A; Hong, Suk-Joo; Lee, Kyu-Chong; Lee, Chang Hee

    2018-06-12

    This study aimed to compare 3-dimensional T1-weighted gradient-echo sequence (CAIPIRINHA-volumetric interpolated breath-hold examination [VIBE]) with 2-dimensional T1-weighted turbo spin-echo sequence for contrast-enhanced magnetic resonance imaging (MRI) of pelvic bone metastases at 3.0 T. Thirty-one contrast-enhanced MRIs of pelvic bone metastases were included. Two contrast-enhanced sequences were evaluated for the following parameters: overall image quality, sharpness of pelvic bone, iliac vessel clarity, artifact severity, and conspicuity and edge sharpness of the smallest metastases. Quantitative analysis was performed by calculating signal-to-noise ratio and contrast-to-noise ratio of the smallest metastases. Significant differences between the 2 sequences were assessed. CAIPIRINHA-VIBE had higher scores for overall image quality, pelvic bone sharpness, iliac vessel clarity, and edge sharpness of the metastatic lesions, and had less artifacts (all P < 0.05). There was no significant difference in conspicuity, signal-to-noise ratio, or contrast-to-noise ratio of the smallest metastases (P > 0.05). Our results suggest that CAIPIRINHA-VIBE may be superior to turbo spin-echo for contrast-enhanced MRI of pelvic bone metastases at 3.0 T.

  11. SU-G-BRC-15: The Potential Clinical Significance of Dose Mapping Error for Intra- Fraction Dose Mapping for Lung Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayah, N; Weiss, E; Watkins, W

    Purpose: To evaluate the dose-mapping error (DME) inherent to conventional dose-mapping algorithms as a function of dose-matrix resolution. Methods: As DME has been reported to be greatest where dose-gradients overlap tissue-density gradients, non-clinical 66 Gy IMRT plans were generated for 11 lung patients with the target edge defined as the maximum 3D density gradient on the 0% (end of inhale) breathing phase. Post-optimization, Beams were copied to 9 breathing phases. Monte Carlo dose computed (with 2*2*2 mm{sup 3} resolution) on all 10 breathing phases was deformably mapped to phase 0% using the Monte Carlo energy-transfer method with congruent mass-mapping (EMCM);more » an externally implemented tri-linear interpolation method with voxel sub-division; Pinnacle’s internal (tri-linear) method; and a post-processing energy-mass voxel-warping method (dTransform). All methods used the same base displacement-vector-field (or it’s pseudo-inverse as appropriate) for the dose mapping. Mapping was also performed at 4*4*4 mm{sup 3} by merging adjacent dose voxels. Results: Using EMCM as the reference standard, no clinically significant (>1 Gy) DMEs were found for the mean lung dose (MLD), lung V20Gy, or esophagus dose-volume indices, although MLD and V20Gy were statistically different (2*2*2 mm{sup 3}). Pinnacle-to-EMCM target D98% DMEs of 4.4 and 1.2 Gy were observed ( 2*2*2 mm{sup 3}). However dTransform, which like EMCM conserves integral dose, had DME >1 Gy for one case. The root mean square RMS of the DME for the tri-linear-to- EMCM methods was lower for the smaller voxel volume for the tumor 4D-D98%, lung V20Gy, and cord D1%. Conclusion: When tissue gradients overlap with dose gradients, organs-at-risk DME was statistically significant but not clinically significant. Target-D98%-DME was deemed clinically significant for 2/11 patients (2*2*2 mm{sup 3}). Since tri-linear RMS-DME between EMCM and tri-linear was reduced at 2*2*2 mm{sup 3}, use of this resolution is recommended for dose mapping. Interpolative dose methods are sufficiently accurate for the majority of cases. J.V. Siebers receives funding support from Varian Medical Systems.« less

  12. Apparatus Tests Thermocouples For Seebeck Inhomogeneity

    NASA Technical Reports Server (NTRS)

    Burkett, Cecil G., Jr.; Bauserman, Willard A., Jr.; West, James W.

    1995-01-01

    Automated apparatus reveals sources of error not revealed in calibration. Computer-controlled apparatus detects and measures Seebeck inhomogeneities in sheathed thermocouples. Measures thermocouple output voltage as function of position of probe along sharp gradient of temperature. Abnormal variations in voltage-versus-position data indicative of Seebeck inhomogeneities. Prototype for development of standard method and equipment for routine acceptance/rejection testing of sheathed thermocouples in industrial and research laboratories.

  13. Dosimetric properties of a proton beamline dedicated to the treatment of ocular disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slopsema, R. L., E-mail: rslopsema@floridaproton.org; Mamalui, M.; Yeung, D.

    2014-01-15

    Purpose: A commercial proton eyeline has been developed to treat ocular disease. Radiotherapy of intraocular lesions (e.g., uveal melanoma, age-related macular degeneration) requires sharp dose gradients to avoid critical structures like the macula and optic disc. A high dose rate is needed to limit patient gazing times during delivery of large fractional dose. Dose delivery needs to be accurate and predictable, not in the least because current treatment planning algorithms have limited dose modeling capabilities. The purpose of this paper is to determine the dosimetric properties of a new proton eyeline. These properties are compared to those of existing systemsmore » and evaluated in the context of the specific clinical requirements of ocular treatments. Methods: The eyeline is part of a high-energy, cyclotron-based proton therapy system. The energy at the entrance of the eyeline is 105 MeV. A range modulator (RM) wheel generates the spread-out Bragg peak, while a variable range shifter system adjusts the range and spreads the beam laterally. The range can be adjusted from 0.5 up to 3.4 g/cm{sup 2}; the modulation width can be varied in steps of 0.3 g/cm{sup 2} or less. Maximum field diameter is 2.5 cm. All fields can be delivered with a dose rate of 30 Gy/min or more. The eyeline is calibrated according to the IAEA TRS-398 protocol using a cylindrical ionization chamber. Depth dose distributions and dose/MU are measured with a parallel-plate ionization chamber; lateral profiles with radiochromic film. The dose/MU is modeled as a function of range, modulation width, and instantaneous MU rate with fit parameters determined per option (RM wheel). Results: The distal fall-off of the spread-out Bragg peak is 0.3 g/cm{sup 2}, larger than for most existing systems. The lateral penumbra varies between 0.9 and 1.4 mm, except for fully modulated fields that have a larger penumbra at skin. The source-to-axis distance is found to be 169 cm. The dose/MU shows a strong dependence on range (up to 4%/mm). A linear increase in dose/MU as a function of instantaneous MU rate is observed. The dose/MU model describes the measurements with an accuracy of ±2%. Neutron dose is found to be 146 ± 102 μSv/Gy at the contralateral eye and 19 ± 13 μSv/Gy at the chest. Conclusions: Measurements show the proton eyeline meets the requirements to effectively treat ocular disease.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slopsema, R. L., E-mail: rslopsema@floridaproton.org; Mamalui, M.; Yeung, D.

    Purpose: A commercial proton eyeline has been developed to treat ocular disease. Radiotherapy of intraocular lesions (e.g., uveal melanoma, age-related macular degeneration) requires sharp dose gradients to avoid critical structures like the macula and optic disc. A high dose rate is needed to limit patient gazing times during delivery of large fractional dose. Dose delivery needs to be accurate and predictable, not in the least because current treatment planning algorithms have limited dose modeling capabilities. The purpose of this paper is to determine the dosimetric properties of a new proton eyeline. These properties are compared to those of existing systemsmore » and evaluated in the context of the specific clinical requirements of ocular treatments. Methods: The eyeline is part of a high-energy, cyclotron-based proton therapy system. The energy at the entrance of the eyeline is 105 MeV. A range modulator (RM) wheel generates the spread-out Bragg peak, while a variable range shifter system adjusts the range and spreads the beam laterally. The range can be adjusted from 0.5 up to 3.4 g/cm{sup 2}; the modulation width can be varied in steps of 0.3 g/cm{sup 2} or less. Maximum field diameter is 2.5 cm. All fields can be delivered with a dose rate of 30 Gy/min or more. The eyeline is calibrated according to the IAEA TRS-398 protocol using a cylindrical ionization chamber. Depth dose distributions and dose/MU are measured with a parallel-plate ionization chamber; lateral profiles with radiochromic film. The dose/MU is modeled as a function of range, modulation width, and instantaneous MU rate with fit parameters determined per option (RM wheel). Results: The distal fall-off of the spread-out Bragg peak is 0.3 g/cm{sup 2}, larger than for most existing systems. The lateral penumbra varies between 0.9 and 1.4 mm, except for fully modulated fields that have a larger penumbra at skin. The source-to-axis distance is found to be 169 cm. The dose/MU shows a strong dependence on range (up to 4%/mm). A linear increase in dose/MU as a function of instantaneous MU rate is observed. The dose/MU model describes the measurements with an accuracy of ±2%. Neutron dose is found to be 146 ± 102 μSv/Gy at the contralateral eye and 19 ± 13 μSv/Gy at the chest. Conclusions: Measurements show the proton eyeline meets the requirements to effectively treat ocular disease.« less

  15. Adaptive statistical iterative reconstruction use for radiation dose reduction in pediatric lower-extremity CT: impact on diagnostic image quality.

    PubMed

    Shah, Amisha; Rees, Mitchell; Kar, Erica; Bolton, Kimberly; Lee, Vincent; Panigrahy, Ashok

    2018-06-01

    For the past several years, increased levels of imaging radiation and cumulative radiation to children has been a significant concern. Although several measures have been taken to reduce radiation dose during computed tomography (CT) scan, the newer dose reduction software adaptive statistical iterative reconstruction (ASIR) has been an effective technique in reducing radiation dose. To our knowledge, no studies are published that assess the effect of ASIR on extremity CT scans in children. To compare radiation dose, image noise, and subjective image quality in pediatric lower extremity CT scans acquired with and without ASIR. The study group consisted of 53 patients imaged on a CT scanner equipped with ASIR software. The control group consisted of 37 patients whose CT images were acquired without ASIR. Image noise, Computed Tomography Dose Index (CTDI) and dose length product (DLP) were measured. Two pediatric radiologists rated the studies in subjective categories: image sharpness, noise, diagnostic acceptability, and artifacts. The CTDI (p value = 0.0184) and DLP (p value <0.0002) were significantly decreased with the use of ASIR compared with non-ASIR studies. However, the subjective ratings for sharpness (p < 0.0001) and diagnostic acceptability of the ASIR images (p < 0.0128) were decreased compared with standard, non-ASIR CT studies. Adaptive statistical iterative reconstruction reduces radiation dose for lower extremity CTs in children, but at the expense of diagnostic imaging quality. Further studies are warranted to determine the specific utility of ASIR for pediatric musculoskeletal CT imaging.

  16. Indirect flat-panel detector with avalanche gain: Fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Wei; Li Dan; Reznik, Alla

    2005-09-15

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoidmore » pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d{sub Se} and the applied electric field E{sub Se} of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E{sub Se} dependence of both avalanche gain and optical quantum efficiency of an 8 {mu}m HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E{sub Se}: (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 {mu}m can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.« less

  17. A model for thin layer formation by delayed particle settling at sharp density gradients

    NASA Astrophysics Data System (ADS)

    Prairie, Jennifer C.; White, Brian L.

    2017-02-01

    Thin layers - regions where plankton or particles accumulate vertically on scales of a few meters or less - are common in coastal waters, and have important implications for both trophic dynamics and carbon cycling. These features can form by a variety of biological and physical mechanisms, including localized growth, shear-thinning, and directed swimming. An additional mechanism may result in the formation of thin layers of marine aggregates, which have been shown to decrease their settling velocity when passing through sharp density gradients, a behavior termed delayed settling. Here, we apply a simple vertical advection-diffusion model to predict the properties of aggregate thin layers formed by this process. We assume a constant vertical flux of particles from the surface, which is parameterized by observations from laboratory experiments with marine aggregates. The formation, maintenance, and shape of the layers are described in relation to non-dimensional numbers that depend on environmental conditions and particle settling properties. In particular, model results demonstrate layer intensity and sharpness both increase with higher Péclet number (Pe), that is, under conditions with weaker mixing relative to layer formation. Similarly, more intense and sharper layers are found when the delayed settling behavior of aggregates is characterized by a lower velocity minimum. The model also predicts layers that are vertically asymmetric and highly "peaky" when compared with a Gaussian distribution, features often seen in thin layers in natural environments. Lastly, by comparing model predictions with observations of thin layers in the field, we are able to gain some insight into the applicability of delayed settling as a thin layer formation mechanism in different environmental conditions.

  18. Reliable clarity automatic-evaluation method for optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Qin, Bangyong; Shang, Ren; Li, Shengyang; Hei, Baoqin; Liu, Zhiwen

    2015-10-01

    Image clarity, which reflects the sharpness degree at the edge of objects in images, is an important quality evaluate index for optical remote sensing images. Scholars at home and abroad have done a lot of work on estimation of image clarity. At present, common clarity-estimation methods for digital images mainly include frequency-domain function methods, statistical parametric methods, gradient function methods and edge acutance methods. Frequency-domain function method is an accurate clarity-measure approach. However, its calculation process is complicate and cannot be carried out automatically. Statistical parametric methods and gradient function methods are both sensitive to clarity of images, while their results are easy to be affected by the complex degree of images. Edge acutance method is an effective approach for clarity estimate, while it needs picking out the edges manually. Due to the limits in accuracy, consistent or automation, these existing methods are not applicable to quality evaluation of optical remote sensing images. In this article, a new clarity-evaluation method, which is based on the principle of edge acutance algorithm, is proposed. In the new method, edge detection algorithm and gradient search algorithm are adopted to automatically search the object edges in images. Moreover, The calculation algorithm for edge sharpness has been improved. The new method has been tested with several groups of optical remote sensing images. Compared with the existing automatic evaluation methods, the new method perform better both in accuracy and consistency. Thus, the new method is an effective clarity evaluation method for optical remote sensing images.

  19. Field-assisted synthesis of SERS-active silver nanoparticles using conducting polymers.

    PubMed

    Xu, Ping; Jeon, Sea-Ho; Mack, Nathan H; Doorn, Stephen K; Williams, Darrick J; Han, Xijiang; Wang, Hsing-Lin

    2010-08-01

    A gradient of novel silver nanostructures with widely varying sizes and morphologies is fabricated on a single conducting polyaniline-graphite (P-G) membrane with the assistance of an external electric field. It is believed that the formation of such a silver gradient is a synergetic consequence of the generation of a silver ion concentration gradient along with an electrokinetic flow of silver ions in the field-assisted model, which greatly influences the nucleation and growth mechanism of Ag particles on the P-G membrane. The produced silver dendrites, flowers and microspheres, with sharp edges, intersections and bifurcations, all present strong surface enhanced Raman spectroscopy (SERS) responses toward an organic target molecule, mercaptobenzoic acid (MBA). This facile field-assisted synthesis of Ag nanoparticles via chemical reduction presents an alternative approach to nanomaterial fabrication, which can yield a wide range of unique structures with enhanced optical properties that were previously inaccessible by other synthetic routes.

  20. Impact of geometric uncertainties on dose calculations for intensity modulated radiation therapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Jiang, Runqing

    Intensity-modulated radiation therapy (IMRT) uses non-uniform beam intensities within a radiation field to provide patient-specific dose shaping, resulting in a dose distribution that conforms tightly to the planning target volume (PTV). Unavoidable geometric uncertainty arising from patient repositioning and internal organ motion can lead to lower conformality index (CI) during treatment delivery, a decrease in tumor control probability (TCP) and an increase in normal tissue complication probability (NTCP). The CI of the IMRT plan depends heavily on steep dose gradients between the PTV and organ at risk (OAR). Geometric uncertainties reduce the planned dose gradients and result in a less steep or "blurred" dose gradient. The blurred dose gradients can be maximized by constraining the dose objective function in the static IMRT plan or by reducing geometric uncertainty during treatment with corrective verification imaging. Internal organ motion and setup error were evaluated simultaneously for 118 individual patients with implanted fiducials and MV electronic portal imaging (EPI). A Gaussian probability density function (PDF) is reasonable for modeling geometric uncertainties as indicated by the 118 patients group. The Gaussian PDF is patient specific and group standard deviation (SD) should not be used for accurate treatment planning for individual patients. In addition, individual SD should not be determined or predicted from small imaging samples because of random nature of the fluctuations. Frequent verification imaging should be employed in situations where geometric uncertainties are expected. Cumulative PDF data can be used for re-planning to assess accuracy of delivered dose. Group data is useful for determining worst case discrepancy between planned and delivered dose. The margins for the PTV should ideally represent true geometric uncertainties. The measured geometric uncertainties were used in this thesis to assess PTV coverage, dose to OAR, equivalent uniform dose per fraction (EUDf) and NTCP. The dose distribution including geometric uncertainties was determined from integration of the convolution of the static dose gradient with the PDF. Integration of the convolution of the static dose and derivative of the PDF can also be used to determine the dose including geometric uncertainties although this method was not investigated in detail. Local maximum dose gradient (LMDG) was determined via optimization of dose objective function by manually adjusting DVH control points or selecting beam numbers and directions during IMRT treatment planning. Minimum SD (SDmin) is used when geometric uncertainty is corrected with verification imaging. Maximum SD (SDmax) is used when the geometric uncertainty is known to be large and difficult to manage. SDmax was 4.38 mm in anterior-posterior (AP) direction, 2.70 mm in left-right (LR) direction and 4.35 mm in superior-inferior (SI) direction; SDmin was 1.1 mm in all three directions if less than 2 mm threshold was used for uncorrected fractions in every direction. EUDf is a useful QA parameter for interpreting the biological impact of geometric uncertainties on the static dose distribution. The EUD f has been used as the basis for the time-course NTCP evaluation in the thesis. Relative NTCP values are useful for comparative QA checking by normalizing known complications (e.g. reported in the RTOG studies) to specific DVH control points. For prostate cancer patients, rectal complications were evaluated from specific RTOG clinical trials and detailed evaluation of the treatment techniques (e.g. dose prescription, DVH, number of beams, bean angles). Treatment plans that did not meet DVH constraints represented additional complication risk. Geometric uncertainties improved or worsened rectal NTCP depending on individual internal organ motion within patient.

  1. On the accurate analysis of vibroacoustics in head insert gradient coils.

    PubMed

    Winkler, Simone A; Alejski, Andrew; Wade, Trevor; McKenzie, Charles A; Rutt, Brian K

    2017-10-01

    To accurately analyze vibroacoustics in MR head gradient coils. A detailed theoretical model for gradient coil vibroacoustics, including the first description and modeling of Lorentz damping, is introduced and implemented in a multiphysics software package. Numerical finite-element method simulations were used to establish a highly accurate vibroacoustic model in head gradient coils in detail, including the newly introduced Lorentz damping effect. Vibroacoustic coupling was examined through an additional modal analysis. Thorough experimental studies were used to validate simulations. Average experimental sound pressure levels (SPLs) and accelerations over the 0-3000 Hz frequency range were 97.6 dB, 98.7 dB, and 95.4 dB, as well as 20.6 g, 8.7 g, and 15.6 g for the X-, Y-, and Z-gradients, respectively. A reasonable agreement between simulations and measurements was achieved. Vibroacoustic coupling showed a coupled resonance at 2300 Hz for the Z-gradient that is responsible for a sharp peak and the highest SPL value in the acoustic spectrum. We have developed and used more realistic multiphysics simulation methods to gain novel insights into the underlying concepts for vibroacoustics in head gradient coils, which will permit improved analyses of existing gradient coils and novel SPL reduction strategies for future gradient coil designs. Magn Reson Med 78:1635-1645, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Obtaining reliable phase-gradient delays from otoacoustic emission data.

    PubMed

    Shera, Christopher A; Bergevin, Christopher

    2012-08-01

    Reflection-source otoacoustic emission phase-gradient delays are widely used to obtain noninvasive estimates of cochlear function and properties, such as the sharpness of mechanical tuning and its variation along the length of the cochlear partition. Although different data-processing strategies are known to yield different delay estimates and trends, their relative reliability has not been established. This paper uses in silico experiments to evaluate six methods for extracting delay trends from reflection-source otoacoustic emissions (OAEs). The six methods include both previously published procedures (e.g., phase smoothing, energy-weighting, data exclusion based on signal-to-noise ratio) and novel strategies (e.g., peak-picking, all-pass factorization). Although some of the methods perform well (e.g., peak-picking), others introduce substantial bias (e.g., phase smoothing) and are not recommended. In addition, since standing waves caused by multiple internal reflection can complicate the interpretation and compromise the application of OAE delays, this paper develops and evaluates two promising signal-processing strategies, the first based on time-frequency filtering using the continuous wavelet transform and the second on cepstral analysis, for separating the direct emission from its subsequent reflections. Altogether, the results help to resolve previous disagreements about the frequency dependence of human OAE delays and the sharpness of cochlear tuning while providing useful analysis methods for future studies.

  3. Exploring Moho sharpness in Northeastern North China Craton with frequency-dependence analysis of Ps receiver function

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Yao, H.; Chen, L.; WANG, X.; Fang, L.

    2017-12-01

    The North China Craton (NCC), one of the oldest cratons in the world, has attracted wide attention in Earth Science for decades because of the unusual Mesozoic destruction of its cratonic lithosphere. Understanding the deep processes and mechanism of this craton destruction demands detailed knowledge about the deep structure of this region. In this study, we calculate P-wave receiver functions (RFs) with two-year teleseismic records from the North China Seismic Array ( 200 stations) deployed in the northeastern NCC. We observe both diffused and concentered PpPs signals from the Moho in RF waveforms, which indicates heterogeneous Moho sharpness variations in the study region. Synthetic Ps phases generated from broad positive velocity gradients at the depth of the Moho (referred as Pms) show a clear frequency dependence nature, which in turn is required to constrain the sharpness of the velocity gradient. Practically, characterizing such a frequency dependence feature in real data is challenging, because of low signal-to-noise ratio, contaminations by multiples generated from shallow structure, distorted signal stacking especially in double-peak Pms signals, etc. We attempt to address these issues by, firstly, utilizing a high-resolution Moho depth model of this region to predict theoretical delay times of Pms that facilitate more accurate Pms identifications. The Moho depth model is derived by wave-equation based poststack depth migration on both Ps phase and surface-reflected multiples in RFs in our previous study (Zhang et al., submitted to JGR). Second, we select data from a major back azimuth range of 100° - 220° that includes 70% teleseismic events due to the uneven data coverage and to avoid azimuthal influence as well. Finally, we apply an adaptive cross-correlation stacking of Pms signals in RFs for each station within different frequency bands. High-quality Pms signals at different frequencies will be selected after careful visual inspection and adaptive cross-correlation stacking. At last, we will model the stacked Pms signals within different frequency bands to obtain the final sharpness of crust-mantle boundary, which may shed new lights on understanding the mechanism of cratonic reactivation and destruction in the NCC.

  4. TEMPERATURE-GRADIENT PLATES FOR GROWTH OF MICROORGANISMS

    PubMed Central

    Landman, Otto E.; Bausum, Howard T.; Matney, Thomas S.

    1962-01-01

    Landman, Otto E. (Fort Detrick, Frederick, Md.), Howard T. Bausum, and Thomas S. Matney. Temperature-gradient plates for growth of microorganisms. J. Bacteriol. 83:463–469. 1962.—Different temperature-gradient plates have been devised for the study of microbial growth on solid media through continuous temperature ranges or in liquid media at finely graded temperatures. All plates are made of heavy-gauge aluminum; heat supplied at one end is dissipated along the length of the metal so that a gradient is produced. The shape and range of the gradient depends on the amount of heat supplied, the insulation, the ambient temperature, and other factors. Differences of 0.2 C in temperature sensitivity between bacterial strains can be detected. The plates are simple to construct and operate. The dimensions of the aluminum, the mode of temperature measurement, and the method of heating may all be modified without diminishing the basic utility of the device. A sharp growth front develops at the maximal temperature of growth of bacteria. In most strains, all bacteria below the front form colonies and all bacteria above the front are killed, except for a few temperature-resistant mutants. Images PMID:14461975

  5. Gradient, contact-free volume transfers minimize compound loss in dose-response experiments.

    PubMed

    Harris, David; Olechno, Joe; Datwani, Sammy; Ellson, Richard

    2010-01-01

    More accurate dose-response curves can be constructed by eliminating aqueous serial dilution of compounds. Traditional serial dilutions that use aqueous diluents can result in errors in dose-response values of up to 4 orders of magnitude for a significant percentage of a compound library. When DMSO is used as the diluent, the errors are reduced but not eliminated. The authors use acoustic drop ejection (ADE) to transfer different volumes of model library compounds, directly creating a concentration gradient series in the receiver assay plate. Sample losses and contamination associated with compound handling are therefore avoided or minimized, particularly in the case of less water-soluble compounds. ADE is particularly well suited for assay miniaturization, but gradient volume dispensing is not limited to miniaturized applications.

  6. Interstitial rotating shield brachytherapy for prostate cancer.

    PubMed

    Adams, Quentin E; Xu, Jinghzu; Breitbach, Elizabeth K; Li, Xing; Enger, Shirin A; Rockey, William R; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T

    2014-05-01

    To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). A wire-mounted 62 GBq(153)Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0-5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D(98%)), I-RSBT reduced urethral D(0.1cc) below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D(1cc) was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D(1cc) was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq (153)Gd sources. For the case considered, the proposed(153)Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%-44% if the clinician allows a urethral dose gradient volume of 0-5 mm around the urethra to receive a dose below the prescription. A multisource approach is necessary in order to deliver the proposed (153)Gd-based I-RSBT technique in reasonable treatment times.

  7. Epiphytic lichenosynusia under conditions of chemical pollution: Dose-effect dependencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailova, I.N.; Vorobeichik, E.L.

    1995-11-01

    The dose-effect dependencies, which characterize response of the epiphytic lichenosynusia of southern taiga in the Middle Urals to pollution by discharges of a copper-smelting plant, are substantially non-linear and, in most cases, have an S-shaped form. A transition from background to impact state is very sharp and begins when the background level of pollution is exceeded by 1.5 - 2.3 times.

  8. The impact of summer rainfall on the temperature gradient along the United States-Mexico border

    NASA Technical Reports Server (NTRS)

    Balling, Robert C., Jr.

    1989-01-01

    The international border running through the Sonoran Desert in southern Arizona and northern Sonora is marked by a sharp discontinuity in albedo and grass cover. The observed differences in surface properties are a result of long-term, severe overgrazing of the Mexican lands. Recently, investigators have shown the Mexican side of the border to have higher surface and air temperatures when compared to adjacent areas in the United State. The differences in temperatures appear to be more associated with differential evapotranspiration rates than with albedo changes along the border. In this study, the impact of summer rainfall on the observed seasonal and daily gradient in maximum temperature is examined. On a seasonal time scale, the temperature gradient increases with higher moisture levels, probably due to a vegetative response on the United States' side of the border; at the daily level, the gradient in maximum temperature decreases after a rain event as evaporation rates equalize between the countries. The results suggest that temperature differences between vegetated and overgrazed landscapes in arid areas are highly dependent upon the amount of moisture available for evapotranspiration.

  9. Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis

    NASA Astrophysics Data System (ADS)

    Shin, Sangwoo; Ault, Jesse T.; Warren, Patrick B.; Stone, Howard A.

    2017-10-01

    The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formed at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. We also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.

  10. Diffusiophoresis in one-dimensional solute gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ault, Jesse T.; Warren, Patrick B.; Shin, Sangwoo

    Here, the diffusiophoretic motion of suspended colloidal particles under one-dimensional solute gradients is solved using numerical and analytical techniques. Similarity solutions are developed for the injection and withdrawal dynamics of particles into semi-infinite pores. Furthermore, a method of characteristics formulation of the diffusion-free particle transport model is presented and integrated to realize particle trajectories. Analytical solutions are presented for the limit of small particle diffusiophoretic mobility Γ p relative to the solute diffusivity D s for particle motions in both semi-infinite and finite domains. Results confirm the build up of local maxima and minima in the propagating particle front dynamics.more » The method of characteristics is shown to successfully predict particle motions and the position of the particle front, although it fails to accurately predict suspended particle concentrations in the vicinity of sharp gradients, such as at the particle front peak seen in some injection cases, where particle diffusion inevitably plays an important role. Results inform the design of applications in which the use of applied solute gradients can greatly enhance particle injection into and withdrawal from pores.« less

  11. Validation of contour-driven thin-plate splines for tracking fraction-to-fraction changes in anatomy and radiation therapy dose mapping.

    PubMed

    Schaly, B; Bauman, G S; Battista, J J; Van Dyk, J

    2005-02-07

    The goal of this study is to validate a deformable model using contour-driven thin-plate splines for application to radiation therapy dose mapping. Our testing includes a virtual spherical phantom as well as real computed tomography (CT) data from ten prostate cancer patients with radio-opaque markers surgically implanted into the prostate and seminal vesicles. In the spherical mathematical phantom, homologous control points generated automatically given input contour data in CT slice geometry were compared to homologous control point placement using analytical geometry as the ground truth. The dose delivered to specific voxels driven by both sets of homologous control points were compared to determine the accuracy of dose tracking via the deformable model. A 3D analytical spherically symmetric dose distribution with a dose gradient of approximately 10% per mm was used for this phantom. This test showed that the uncertainty in calculating the delivered dose to a tissue element depends on slice thickness and the variation in defining homologous landmarks, where dose agreement of 3-4% in high dose gradient regions was achieved. In the patient data, radio-opaque marker positions driven by the thin-plate spline algorithm were compared to the actual marker positions as identified in the CT scans. It is demonstrated that the deformable model is accurate (approximately 2.5 mm) to within the intra-observer contouring variability. This work shows that the algorithm is appropriate for describing changes in pelvic anatomy and for the dose mapping application with dose gradients characteristic of conformal and intensity modulated radiation therapy.

  12. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation

    NASA Technical Reports Server (NTRS)

    Frost, W.; Harper, W. L.; Fichtl, G. H.

    1975-01-01

    Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Mean-flow results are compared with those given in a previous paper where the same problem was attacked using a Prandtl mixing-length hypothesis. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow. They highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient.

  13. Evaluating which plan quality metrics are appropriate for use in lung SBRT.

    PubMed

    Yaparpalvi, Ravindra; Garg, Madhur K; Shen, Jin; Bodner, William R; Mynampati, Dinesh K; Gafar, Aleiya; Kuo, Hsiang-Chi; Basavatia, Amar K; Ohri, Nitin; Hong, Linda X; Kalnicki, Shalom; Tome, Wolfgang A

    2018-02-01

    Several dose metrics in the categories-homogeneity, coverage, conformity and gradient have been proposed in literature for evaluating treatment plan quality. In this study, we applied these metrics to characterize and identify the plan quality metrics that would merit plan quality assessment in lung stereotactic body radiation therapy (SBRT) dose distributions. Treatment plans of 90 lung SBRT patients, comprising 91 targets, treated in our institution were retrospectively reviewed. Dose calculations were performed using anisotropic analytical algorithm (AAA) with heterogeneity correction. A literature review on published plan quality metrics in the categories-coverage, homogeneity, conformity and gradient was performed. For each patient, using dose-volume histogram data, plan quality metric values were quantified and analysed. For the study, the radiation therapy oncology group (RTOG) defined plan quality metrics were: coverage (0.90 ± 0.08); homogeneity (1.27 ± 0.07); conformity (1.03 ± 0.07) and gradient (4.40 ± 0.80). Geometric conformity strongly correlated with conformity index (p < 0.0001). Gradient measures strongly correlated with target volume (p < 0.0001). The RTOG lung SBRT protocol advocated conformity guidelines for prescribed dose in all categories were met in ≥94% of cases. The proportion of total lung volume receiving doses of 20 Gy and 5 Gy (V 20 and V 5 ) were mean 4.8% (±3.2) and 16.4% (±9.2), respectively. Based on our study analyses, we recommend the following metrics as appropriate surrogates for establishing SBRT lung plan quality guidelines-coverage % (ICRU 62), conformity (CN or CI Paddick ) and gradient (R 50% ). Furthermore, we strongly recommend that RTOG lung SBRT protocols adopt either CN or CI Padddick in place of prescription isodose to target volume ratio for conformity index evaluation. Advances in knowledge: Our study metrics are valuable tools for establishing lung SBRT plan quality guidelines.

  14. SU-E-J-29: Automatic Image Registration Performance of Three IGRT Systems for Prostate Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, J; University of Sydney, Sydney, NSW; Sykes, J

    Purpose: To compare the performance of an automatic image registration algorithm on image sets collected on three commercial image guidance systems, and explore its relationship with imaging parameters such as dose and sharpness. Methods: Images of a CIRS Virtually Human Male Pelvis phantom (VHMP) were collected on the CBCT systems of Varian TrueBeam/OBI and Elekta Synergy/XVI linear accelerators, across a range of mAs settings; and MVCT on a Tomotherapy Hi-ART accelerator with a range of pitch. Using the 6D correlation ratio algorithm of XVI, each image was registered to a mask of the prostate volume with a 5 mm expansion.more » Registrations were repeated 100 times, with random initial offsets introduced to simulate daily matching. Residual registration errors were calculated by correcting for the initial phantom set-up error. Automatic registration was also repeated after reconstructing images with different sharpness filters. Results: All three systems showed good registration performance, with residual translations <0.5mm (1σ) for typical clinical dose and reconstruction settings. Residual rotational error had larger range, with 0.8°, 1.2° and 1.9° for 1σ in XVI, OBI and Tomotherapy respectively. The registration accuracy of XVI images showed a strong dependence on imaging dose, particularly below 4mGy. No evidence of reduced performance was observed at the lowest dose settings for OBI and Tomotherapy, but these were above 4mGy. Registration failures (maximum target registration error > 3.6 mm on the surface of a 30mm sphere) occurred in 5% to 10% of registrations. Changing the sharpness of image reconstruction had no significant effect on registration performance. Conclusions: Using the present automatic image registration algorithm, all IGRT systems tested provided satisfactory registrations for clinical use, within a normal range of acquisition settings.« less

  15. Head CT: Image quality improvement with ASIR-V using a reduced radiation dose protocol for children.

    PubMed

    Kim, Hyun Gi; Lee, Ho-Joon; Lee, Seung-Koo; Kim, Hyun Ji; Kim, Myung-Joon

    2017-09-01

    To investigate the quality of images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V), using pediatric head CT protocols. A phantom was scanned at decreasing 20% mA intervals using our standard pediatric head CT protocols. Each study was then reconstructed at 10% ASIR-V intervals. After the phantom study, we reduced mA by 10% in the protocol for <3-year-old patients and applied 30% ASIR-V and by 30% in the protocol for 3- to 15-year-old patients and applied 40% ASIR-V. Increasing the percentage of ASIR-V resulted in lower noise and higher contrast-to-noise ratio (CNR) and preserved spatial resolution in the phantom study. Compared to a conventional-protocol, reduced-dose protocol with ASIR-V achieved 12.8% to 34.0% of dose reduction and showed images of lower noise (9.22 vs. 10.73, P = 0.043) and higher CNR in different levels (centrum semiovale, 2.14 vs. 1.52, P = 0.003; basal ganglia, 1.46 vs. 1.07, P = 0.001; and cerebellum, 2.18 vs. 1.33, P < 0.001). Qualitative analysis showed higher gray-white matter differentiation and sharpness and preserved overall diagnostic quality in the images with ASIR-V. Use of ASIR-V allowed a 12.8% to 34.0% dose reduction in each age group with potential to improve image quality. • It is possible to reduce radiation dose and improve image quality with ASIR-V. • We improved noise and CNR and decreased radiation dose. • Sharpness improved with ASIR-V. • Total radiation dose was decreased by 12.8% to 34.0%.

  16. Speed and convergence properties of gradient algorithms for optimization of IMRT.

    PubMed

    Zhang, Xiaodong; Liu, Helen; Wang, Xiaochun; Dong, Lei; Wu, Qiuwen; Mohan, Radhe

    2004-05-01

    Gradient algorithms are the most commonly employed search methods in the routine optimization of IMRT plans. It is well known that local minima can exist for dose-volume-based and biology-based objective functions. The purpose of this paper is to compare the relative speed of different gradient algorithms, to investigate the strategies for accelerating the optimization process, to assess the validity of these strategies, and to study the convergence properties of these algorithms for dose-volume and biological objective functions. With these aims in mind, we implemented Newton's, conjugate gradient (CG), and the steepest decent (SD) algorithms for dose-volume- and EUD-based objective functions. Our implementation of Newton's algorithm approximates the second derivative matrix (Hessian) by its diagonal. The standard SD algorithm and the CG algorithm with "line minimization" were also implemented. In addition, we investigated the use of a variation of the CG algorithm, called the "scaled conjugate gradient" (SCG) algorithm. To accelerate the optimization process, we investigated the validity of the use of a "hybrid optimization" strategy, in which approximations to calculated dose distributions are used during most of the iterations. Published studies have indicated that getting trapped in local minima is not a significant problem. To investigate this issue further, we first obtained, by trial and error, and starting with uniform intensity distributions, the parameters of the dose-volume- or EUD-based objective functions which produced IMRT plans that satisfied the clinical requirements. Using the resulting optimized intensity distributions as the initial guess, we investigated the possibility of getting trapped in a local minimum. For most of the results presented, we used a lung cancer case. To illustrate the generality of our methods, the results for a prostate case are also presented. For both dose-volume and EUD based objective functions, Newton's method far outperforms other algorithms in terms of speed. The SCG algorithm, which avoids expensive "line minimization," can speed up the standard CG algorithm by at least a factor of 2. For the same initial conditions, all algorithms converge essentially to the same plan. However, we demonstrate that for any of the algorithms studied, starting with previously optimized intensity distributions as the initial guess but for different objective function parameters, the solution frequently gets trapped in local minima. We found that the initial intensity distribution obtained from IMRT optimization utilizing objective function parameters, which favor a specific anatomic structure, would lead to a local minimum corresponding to that structure. Our results indicate that from among the gradient algorithms tested, Newton's method appears to be the fastest by far. Different gradient algorithms have the same convergence properties for dose-volume- and EUD-based objective functions. The hybrid dose calculation strategy is valid and can significantly accelerate the optimization process. The degree of acceleration achieved depends on the type of optimization problem being addressed (e.g., IMRT optimization, intensity modulated beam configuration optimization, or objective function parameter optimization). Under special conditions, gradient algorithms will get trapped in local minima, and reoptimization, starting with the results of previous optimization, will lead to solutions that are generally not significantly different from the local minimum.

  17. A Comparison of Four Indices for Combining Distance and Dose Differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Simon J., E-mail: simon.thomas@addenbrookes.nhs.uk; Cowley, Ian R.

    2012-04-01

    Purpose: When one is comparing two dose distributions, a number of methods have been published to combine dose difference and distance to agreement into a single measure. Some have been defined as pass/fail indices and some as numeric indices. We show that the pass/fail indices can all be used to derive numeric indices, and we compare the results of using these indices to evaluate one-dimensional (1D) and three-dimensional (3D) dose distributions, with the aim of selecting the most appropriate index for use in different circumstances. Methods and Materials: The indices compared are the gamma index, the kappa index, the indexmore » in International Commission on Radiation Units and Measurements Report 83, and a box index. Comparisons are made for 1D and 3D distributions. The 1D distribution is chosen to have a variety of dose gradients. The 3D distribution is taken from a clinical treatment plan. The effect of offsetting distributions by known distances and doses is studied. Results: The International Commission on Radiation Units and Measurements Report 83 index causes large discontinuities unless the dose gradient cutoff is set to equal the ratio of the dose tolerance to the distance tolerance. If it is so set, it returns identical results to the kappa index. Where the gradient is very high or very low, all the indices studied in this article give similar results for the same tolerance values. For moderate gradients, they differ, with the box index being the least strict, followed by the gamma index, and with the kappa index being the most strict. Conclusions: If the clinical tolerances are much greater than the uncertainties of the measuring system, the kappa index should be used, with tolerance values determined by the clinical tolerances. In cases where the uncertainties of the measuring system dominate, the box index will be best able to determine errors in the delivery system.« less

  18. Interstitial rotating shield brachytherapy for prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Quentin E., E-mail: quentin-adams@uiowa.edu; Xu, Jinghzu; Breitbach, Elizabeth K.

    Purpose: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). Methods: A wire-mounted 62 GBq{sup 153}Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535more » μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0–5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. Results: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D{sub 98%}), I-RSBT reduced urethral D{sub 0.1cc} below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D{sub 1cc} was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D{sub 1cc} was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq {sup 153}Gd sources. Conclusions: For the case considered, the proposed{sup 153}Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%–44% if the clinician allows a urethral dose gradient volume of 0–5 mm around the urethra to receive a dose below the prescription. A multisource approach is necessary in order to deliver the proposed {sup 153}Gd-based I-RSBT technique in reasonable treatment times.« less

  19. Echo planar imaging at 4 Tesla with minimum acoustic noise.

    PubMed

    Tomasi, Dardo G; Ernst, Thomas

    2003-07-01

    To minimize the acoustic sound pressure levels of single-shot echo planar imaging (EPI) acquisitions on high magnetic field MRI scanners. The resonance frequencies of gradient coil vibrations, which depend on the coil length and the elastic properties of the materials in the coil assembly, were measured using piezoelectric transducers. The frequency of the EPI-readout train was adjusted to avoid the frequency ranges of mechanical resonances. Our MRI system exhibited two sharp mechanical resonances (at 720 and 1220 Hz) that can increase vibrational amplitudes up to six-fold. A small adjustment of the EPI-readout frequency made it possible to reduce the sound pressure level of EPI-based perfusion and functional MRI scans by 12 dB. Normal vibrational modes of MRI gradient coils can dramatically increase the sound pressure levels during echo planar imaging (EPI) scans. To minimize acoustic noise, the frequency of EPI-readout trains and the resonance frequencies of gradient coil vibrations need to be different. Copyright 2003 Wiley-Liss, Inc.

  20. Bistability of mangrove forests and competition with freshwater plants

    USGS Publications Warehouse

    Jiang, Jiang; Fuller, Douglas O; Teh, Su Yean; Zhai, Lu; Koh, Hock Lye; DeAngelis, Donald L.; Sternberg, L.D.S.L.

    2015-01-01

    Halophytic communities such as mangrove forests and buttonwood hammocks tend to border freshwater plant communities as sharp ecotones. Most studies attribute this purely to underlying physical templates, such as groundwater salinity gradients caused by tidal flux and topography. However, a few recent studies hypothesize that self-reinforcing feedback between vegetation and vadose zone salinity are also involved and create a bistable situation in which either halophytic dominated habitat or freshwater plant communities may dominate as alternative stable states. Here, we revisit the bistability hypothesis and demonstrate the mechanisms that result in bistability. We demonstrate with remote sensing imagery the sharp boundaries between freshwater hardwood hammock communities in southern Florida and halophytic communities such as buttonwood hammocks and mangroves. We further document from the literature how transpiration of mangroves and freshwater plants respond differently to vadose zone salinity, thus altering the salinity through feedback. Using mathematical models, we show how the self-reinforcing feedback, together with physical template, controls the ecotones between halophytic and freshwater communities. Regions of bistability along environmental gradients of salinity have the potential for large-scale vegetation shifts following pulse disturbances such as hurricane tidal surges in Florida, or tsunamis in other regions. The size of the region of bistability can be large for low-lying coastal habitat due to the saline water table, which extends inland due to salinity intrusion. We suggest coupling ecological and hydrologic processes as a framework for future studies.

  1. Full spatial-field visualization of gas temperature in an air micro-glow discharge by calibrated Schlieren photography

    NASA Astrophysics Data System (ADS)

    Xiong, Qing; Xu, Le; Wang, Xia; Xiong, Lin; Huang, Qinghua; Chen, Qiang; Wang, Jingang; Peng, Wenxiong; Li, Jiarui

    2018-03-01

    Gas temperature is an important basic parameter for both fundamental research and applications of plasmas. In this work, efforts were made to visualize the full spatial field of gas temperature (T g) in a microdischarge with sharp T g gradients by a method of calibrated Schlieren (CS) photography. Compared to other two typical diagnostic approaches, optical emission spectroscopy (OES) and Rayleigh scattering, the proposed CS method exhibits the ability to capture the whole field of gas temperature using a single Schlieren image, even the discharge is of non-luminous zones like Faraday dark space (FDS). The image shows that the T g field in the studied micro-glow air discharge expands quickly with the increase of discharge currents, especially in the cathode region. The two-dimensional maps of gas temperature display a ‘W-shape’ with sharp gradients in both areas of negative and positive glows, slightly arched distributions in the positive column, and cooling zones in the FDS. The obtained T g fields show similar patterns to that of the discharge luminance. With an increase in discharge currents, more electric energy is dissipated by heating air gas and inducing constriction of the low-temperature FDS. Except in the vicinities of electrode boundaries, due to the interference from optical diffraction, the estimated gas temperature distributions are of acceptable accuracy, confirmed by the approaches of OES and UV Rayleigh scattering.

  2. Decay of the zincate concentration gradient at an alkaline zinc cathode after charging

    NASA Technical Reports Server (NTRS)

    Kautz, H. E.; May, C. E.

    1979-01-01

    The study was carried out by observing the decay of the zincate concentration gradient at a horizontal zinc cathode after charging. This decay was found to approximate first order kinetics as expected from a proposed boundary layer model. The decay half life was shown to be a linear function of the thickness of porous zinc deposit on the cathode indicating a very rapid transport of zincate through porous zinc metal. The rapid transport is attributed to an electrochemical mechanism. The data also indicated a relatively sharp transition between the diffusion and convection transport regions. The diffusion of zincate ion through asbestos submerged in alkaline electrolyte was shown to be comparable with that predicted from the bulk diffusion coefficient of the zincate ion in alkali.

  3. Implementation of a dose gradient method into optimization of dose distribution in prostate cancer 3D-CRT plans

    PubMed Central

    Giżyńska, Marta K.; Kukołowicz, Paweł F.; Kordowski, Paweł

    2014-01-01

    Aim The aim of this work is to present a method of beam weight and wedge angle optimization for patients with prostate cancer. Background 3D-CRT is usually realized with forward planning based on a trial and error method. Several authors have published a few methods of beam weight optimization applicable to the 3D-CRT. Still, none on these methods is in common use. Materials and methods Optimization is based on the assumption that the best plan is achieved if dose gradient at ICRU point is equal to zero. Our optimization algorithm requires beam quality index, depth of maximum dose, profiles of wedged fields and maximum dose to femoral heads. The method was tested for 10 patients with prostate cancer, treated with the 3-field technique. Optimized plans were compared with plans prepared by 12 experienced planners. Dose standard deviation in target volume, and minimum and maximum doses were analyzed. Results The quality of plans obtained with the proposed optimization algorithms was comparable to that prepared by experienced planners. Mean difference in target dose standard deviation was 0.1% in favor of the plans prepared by planners for optimization of beam weights and wedge angles. Introducing a correction factor for patient body outline for dose gradient at ICRU point improved dose distribution homogeneity. On average, a 0.1% lower standard deviation was achieved with the optimization algorithm. No significant difference in mean dose–volume histogram for the rectum was observed. Conclusions Optimization shortens very much time planning. The average planning time was 5 min and less than a minute for forward and computer optimization, respectively. PMID:25337411

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, J; Sarwan, R; Pavord, D

    Purpose: To quantitatively compare low dose spillage outside of PTV edge in arc therapy modalities Methods: The machines used in the study are Tomotherapy Hi-Arc and Varian 21EX with millennium120 MLC. TPS are TomoPlaning and RayStation for VMAT, respectively. The phantom is a 30cm diameter cylindrical solid water (TOMOTHERAPY, TOMOPHANTOM ASSY). The PTV is 4cm length with ellipsoidal sectional shape with major axis=5cm, minor axis=3cm in the axial plane and reversed in the coronal plane. The PTV volume is created with interpolation. It is located at the center of the phantom. The prescribed dose is 1000x5 cGy to 95% themore » PTV. The isocenter is set co-centered with the PTV. EBT-3 film was used to measure iso-dose lines at the center plane. Film dosimetry is performed with the RIT, v6.2. Results: the study shows: (1) dose falloff gradient is usually uneven, depending on the PTV shape in the gantry rotation plane. For an elliptical shape, the low dose spillage is wider in the minor axis direction than that in the major axis direction. The more a shape is closer to circular, the more even gradient is all directions; (2)for a circular shape (CAX plane in this study), the maximum dose in % of Rx dose at 2cm from PTV is 55% for Tomo, vs. 70% for VMAT (3) the most rapid dose falloff rang is between 95%–80% IDL for both modalities. Conclusion: Tomo has more rapid dose falloff outside of PTV. In some areas, the gradient is double for Tomo helical than that for LINAC VMAT at same points. Future work will examine the differences between optimization of doses and inherent delivery limitations.« less

  5. Quality correction factors of composite IMRT beam deliveries: theoretical considerations.

    PubMed

    Bouchard, Hugo

    2012-11-01

    In the scope of intensity modulated radiation therapy (IMRT) dosimetry using ionization chambers, quality correction factors of plan-class-specific reference (PCSR) fields are theoretically investigated. The symmetry of the problem is studied to provide recommendable criteria for composite beam deliveries where correction factors are minimal and also to establish a theoretical limit for PCSR delivery k(Q) factors. The concept of virtual symmetric collapsed (VSC) beam, being associated to a given modulated composite delivery, is defined in the scope of this investigation. Under symmetrical measurement conditions, any composite delivery has the property of having a k(Q) factor identical to its associated VSC beam. Using this concept of VSC, a fundamental property of IMRT k(Q) factors is demonstrated in the form of a theorem. The sensitivity to the conditions required by the theorem is thoroughly examined. The theorem states that if a composite modulated beam delivery produces a uniform dose distribution in a volume V(cyl) which is symmetric with the cylindrical delivery and all beams fulfills two conditions in V(cyl): (1) the dose modulation function is unchanged along the beam axis, and (2) the dose gradient in the beam direction is constant for a given lateral position; then its associated VSC beam produces no lateral dose gradient in V(cyl), no matter what beam modulation or gantry angles are being used. The examination of the conditions required by the theorem lead to the following results. The effect of the depth-dose gradient not being perfectly constant with depth on the VSC beam lateral dose gradient is found negligible. The effect of the dose modulation function being degraded with depth on the VSC beam lateral dose gradient is found to be only related to scatter and beam hardening, as the theorem holds also for diverging beams. The use of the symmetry of the problem in the present paper leads to a valuable theorem showing that k(Q) factors of composite IMRT beam deliveries are close to unity under specific conditions. The theoretical limit k(Q(pcsr),Q(msr) ) (f(pcsr),f(msr) )=1 is determined based on the property of PCSR deliveries to provide a uniform dose in the target volume. The present approach explains recent experimental observations and proposes ideal conditions for IMRT reference dosimetry. The result of this study could potentially serve as a theoretical basis for reference dosimetry of composite IMRT beam deliveries or for routine IMRT quality assurance.

  6. TH-EF-204-04: Experience of IMRT and Other Conformal Techniques in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krylova, T.

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  7. TH-EF-204-00: AAPM-AMPR (Russia)-SEFM (Spain) Joint Course On Challenges and Advantages of Small Field Radiation Treatment Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  8. TH-EF-204-02: Small Field Radiation Therapy: Physics and Recent Recommendations From IAEA and ICRU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seuntjens, J.

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  9. TH-EF-204-06: Closing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borras, C.

    2016-06-15

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  10. TH-EF-204-01: Introduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cygler, J.

    2016-06-15

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  11. TH-EF-204-03: Determination of Small Field Output Factors, Advantages and Limitations of Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaque, J. Puxeu

    2016-06-15

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  12. TH-EF-204-05: Application of Small-Field Treatment: The Promises and Pitfalls of SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, E.

    2016-06-15

    Joanna E. Cygler, Jan Seuntjens, J. Daniel Bourland, M. Saiful Huq, Josep Puxeu Vaque, Daniel Zucca Aparicio, Tatiana Krylova, Yuri Kirpichev, Eric Ford, Caridad Borras Stereotactic Radiation Therapy (SRT) utilizes small static and dynamic (IMRT) fields, to successfully treat malignant and benign diseases using techniques such as Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiation Therapy (SBRT). SRT is characterized by sharp dose gradients for individual fields and their resultant dose distributions. For appropriate targets, small field radiotherapy offers improved treatment quality by allowing better sparing of organs at risk while delivering the prescribed target dose. Specialized small field treatment deliverymore » systems, such as robotic-controlled linear accelerators, gamma radiosurgery units, and dynamic arc linear accelerators may utilize rigid fixation, image guidance, and tumor tracking, to insure precise dose delivery to static or moving targets. However, in addition to great advantages, small field delivery techniques present special technical challenges for dose calibration due to unique geometries and small field sizes not covered by existing reference dosimetry protocols such as AAPM TG-51 or IAEA TRS 398. In recent years extensive research has been performed to understand small field dosimetry and measurement instrumentation. AAPM, IAEA and ICRU task groups are expected to provide soon recommendations on the dosimetry of small radiation fields. In this symposium we will: 1] discuss the physics, instrumentation, methodologies and challenges for small field radiation dose measurements; 2] review IAEA and ICRU recommendations on prescribing, recording and reporting of small field radiation therapy; 3] discuss selected clinical applications and technical aspects for specialized image-guided, small field, linear accelerator based treatment techniques such as IMRT and SBRT. Learning Objectives: To learn the physics of small fields in contrast to dosimetry of conventional fields To learn about detectors suitable for small fields To learn about the role of Monte Carlo simulations in determination of small field output factors To provide an overview of the IAEA small field dosimetry recommendations To provide an overview of the content of the ICRU report on Prescribing, Reporting and Recording of Small Field Radiation Therapy. To learn about special technical considerations in delivering IMRT and SBRT treatments To appreciate specific challenges of IMRT implementation J. Seuntjens, Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research.« less

  13. Application of the High Gradient hydrodynamics code to simulations of a two-dimensional zero-pressure-gradient turbulent boundary layer over a flat plate

    NASA Astrophysics Data System (ADS)

    Kaiser, Bryan E.; Poroseva, Svetlana V.; Canfield, Jesse M.; Sauer, Jeremy A.; Linn, Rodman R.

    2013-11-01

    The High Gradient hydrodynamics (HIGRAD) code is an atmospheric computational fluid dynamics code created by Los Alamos National Laboratory to accurately represent flows characterized by sharp gradients in velocity, concentration, and temperature. HIGRAD uses a fully compressible finite-volume formulation for explicit Large Eddy Simulation (LES) and features an advection scheme that is second-order accurate in time and space. In the current study, boundary conditions implemented in HIGRAD are varied to find those that better reproduce the reduced physics of a flat plate boundary layer to compare with complex physics of the atmospheric boundary layer. Numerical predictions are compared with available DNS, experimental, and LES data obtained by other researchers. High-order turbulence statistics are collected. The Reynolds number based on the free-stream velocity and the momentum thickness is 120 at the inflow and the Mach number for the flow is 0.2. Results are compared at Reynolds numbers of 670 and 1410. A part of the material is based upon work supported by NASA under award NNX12AJ61A and by the Junior Faculty UNM-LANL Collaborative Research Grant.

  14. Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Sangwoo; Ault, Jesse T.; Warren, Patrick B.

    The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formedmore » at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. As a result, we also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.« less

  15. Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis

    DOE PAGES

    Shin, Sangwoo; Ault, Jesse T.; Warren, Patrick B.; ...

    2017-11-16

    The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formedmore » at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. As a result, we also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.« less

  16. Edge enhancement algorithm for low-dose X-ray fluoroscopic imaging.

    PubMed

    Lee, Min Seok; Park, Chul Hee; Kang, Moon Gi

    2017-12-01

    Low-dose X-ray fluoroscopy has continually evolved to reduce radiation risk to patients during clinical diagnosis and surgery. However, the reduction in dose exposure causes quality degradation of the acquired images. In general, an X-ray device has a time-average pre-processor to remove the generated quantum noise. However, this pre-processor causes blurring and artifacts within the moving edge regions, and noise remains in the image. During high-pass filtering (HPF) to enhance edge detail, this noise in the image is amplified. In this study, a 2D edge enhancement algorithm comprising region adaptive HPF with the transient improvement (TI) method, as well as artifacts and noise reduction (ANR), was developed for degraded X-ray fluoroscopic images. The proposed method was applied in a static scene pre-processed by a low-dose X-ray fluoroscopy device. First, the sharpness of the X-ray image was improved using region adaptive HPF with the TI method, which facilitates sharpening of edge details without overshoot problems. Then, an ANR filter that uses an edge directional kernel was developed to remove the artifacts and noise that can occur during sharpening, while preserving edge details. The quantitative and qualitative results obtained by applying the developed method to low-dose X-ray fluoroscopic images and visually and numerically comparing the final images with images improved using conventional edge enhancement techniques indicate that the proposed method outperforms existing edge enhancement methods in terms of objective criteria and subjective visual perception of the actual X-ray fluoroscopic image. The developed edge enhancement algorithm performed well when applied to actual low-dose X-ray fluoroscopic images, not only by improving the sharpness, but also by removing artifacts and noise, including overshoot. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. SU-E-T-295: Simultaneous Beam Sampling and Aperture Shape Optimization for Station Parameter Optimized Radiation Therapy (SPORT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarepisheh, M; Li, R; Xing, L

    Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) andmore » aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves quality of resultant treatment plans as compared with conventional VMAT or IMRT treatments.« less

  18. Microstructural characterization and density change of 304 stainless steel reflector blocks after long-term irradiation in EBR-II

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Wiezorek, J. M. K.; Garner, F. A.; Freyer, P. D.; Okita, T.; Sagisaka, M.; Isobe, Y.; Allen, T. R.

    2015-10-01

    While thin reactor structural components such as cladding and ducts do not experience significant gradients in dpa rate, gamma heating rate, temperature or stress, thick components can develop strong local variations in void swelling and irradiation creep in response to gradients in these variables. In this study we conducted microstructural investigations by transmission electron microscopy of two 52 mm thick 304-type stainless steel hex-blocks irradiated for 12 years in the EBR-II reactor with accumulated doses ranging from ∼0.4 to 33 dpa. Spatial variations in the populations of voids, precipitates, Frank loops and dislocation lines have been determined for 304 stainless steel sections exposed to different temperatures, different dpa levels and at different dpa rates, demonstrating the existence of spatial gradients in the resulting void swelling. The microstructural measurements compare very well with complementary density change measurements regarding void swelling gradients in the 304 stainless steel hex-block components. The TEM studies revealed that the original cold-worked-state microstructure of the unirradiated blocks was completely erased by irradiation, replaced by high densities of interstitial Frank loops, voids and carbide precipitates at both the lowest and highest doses. At large dose levels the amount of volumetric void swelling correlated directly with the gamma heating gradient-related temperature increase (e.g. for 28 dpa, ∼2% swelling at 418 °C and ∼2.9% swelling at 448 °C). Under approximately iso-thermal local conditions, volumetric void swelling was found to increase with dose level (e.g. ∼0.2% swelling at 0.4 dpa, ∼0.5% swelling at 4 dpa and ∼2% swelling at 28 dpa). Carbide precipitate formation levels were found to be relatively independent of both dpa level and temperature and induced a measurable densification. Void swelling was dominant at the higher dose levels and caused measurable decreases in density. Void swelling at the lowest doses was larger than might be expected based on the dpa level, an observation in agreement with earlier studies showing that the onset of void swelling is accelerated by decreasing dpa rates.

  19. Spatial frequency performance limitations of radiation dose optimization and beam positioning

    NASA Astrophysics Data System (ADS)

    Stewart, James M. P.; Stapleton, Shawn; Chaudary, Naz; Lindsay, Patricia E.; Jaffray, David A.

    2018-06-01

    The flexibility and sophistication of modern radiotherapy treatment planning and delivery methods have advanced techniques to improve the therapeutic ratio. Contemporary dose optimization and calculation algorithms facilitate radiotherapy plans which closely conform the three-dimensional dose distribution to the target, with beam shaping devices and image guided field targeting ensuring the fidelity and accuracy of treatment delivery. Ultimately, dose distribution conformity is limited by the maximum deliverable dose gradient; shallow dose gradients challenge techniques to deliver a tumoricidal radiation dose while minimizing dose to surrounding tissue. In this work, this ‘dose delivery resolution’ observation is rigorously formalized for a general dose delivery model based on the superposition of dose kernel primitives. It is proven that the spatial resolution of a delivered dose is bounded by the spatial frequency content of the underlying dose kernel, which in turn defines a lower bound in the minimization of a dose optimization objective function. In addition, it is shown that this optimization is penalized by a dose deposition strategy which enforces a constant relative phase (or constant spacing) between individual radiation beams. These results are further refined to provide a direct, analytic method to estimate the dose distribution arising from the minimization of such an optimization function. The efficacy of the overall framework is demonstrated on an image guided small animal microirradiator for a set of two-dimensional hypoxia guided dose prescriptions.

  20. Classification of pasture habitats by Hungarian herders in a steppe landscape (Hungary)

    PubMed Central

    2012-01-01

    Background Landscape ethnoecology focuses on the ecological features of the landscape, how the landscape is perceived, and used by people who live in it. Though studying folk classifications of species has a long history, the comparative study of habitat classifications is just beginning. I studied the habitat classification of herders in a Hungarian steppe, and compared it to classifications of botanists and laymen. Methods For a quantitative analysis the picture sort method was used. Twenty-three pictures of 7-11 habitat types were sorted by 25 herders.’Density’ of pictures along the habitat gradient of the Hortobágy salt steppe was set as equal as possible, but pictures differed in their dominant species, wetness, season, etc. Before sorts, herders were asked to describe pictures to assure proper recognition of habitats. Results Herders classified the images into three main groups: (1) fertile habitats at the higher parts of the habitat gradient (partos, lit. on the shore); (2) saline habitats (szík, lit. salt or saline place), and (3) meadows and marshes (lapos, lit. flooded) at the lower end of the habitat gradient. Sharpness of delimitation changed along the gradient. Saline habitats were the most isolated from the rest. Botanists identified 6 groups. Laymen grouped habitats in a less coherent way. As opposed to my expectations, botanical classification was not more structured than that done by herders. I expected and found high correspondence between the classifications by herders, botanists and laymen. All tended to recognize similar main groups: wetlands, ”good grass” and dry/saline habitats. Two main factors could have been responsible for similar classifications: salient features correlated (e.g. salinity recognizable by herders and botanists but not by laymen correlated with the density of grasslands or height of vegetation recognizable also for laymen), or the same salient features were used as a basis for sorting (wetness, and abiotic stress). Conclusions Despite all the difficulties of studying habitat classifications (more implicit, more variable knowledge than knowledge on species), conducting landscape ethnoecological research will inevitably reveal a deeper human understanding of biological organization at a supraspecific level, where natural discontinuities are less sharp than at the species or population level. PMID:22853549

  1. Analysis of models for two solution crystal growth problems

    NASA Technical Reports Server (NTRS)

    Fehribach, Joseph D.; Rosenberger, Franz

    1989-01-01

    Two diffusive solution crystal growth models are considered which are characterized by two phases separated by an interface, a lack of convective mixing in either phase, and the presence of diffusion components differing widely in diffusivity. The first model describes precipitant-driven solution crystal growth and the second model describes a hanging drop evaporation problem. It is shown that for certain proteins sharp concentration gradients may develop in the drop during evaporation, while under the same conditions the concentrations of other proteins remain uniform.

  2. Prostate Dose Escalation by Innovative Inverse Planning-Driven IMRT

    DTIC Science & Technology

    2005-11-01

    Galvin, J. M.; Low, D.; Palta , J. R.; Rosen, I.; Sharpe, M. B.; Xia, P.; Xiao, Y.; Xing, L.; Yu, C. X., Guidance document on delivery, treatment planning... Palta , J., Implementing IMRT in clinical practice: ajoint document of the American Society for Therapeutic Radiology and Oncology and the American

  3. The gradient index lens of the eye: an opto-biological synchrony.

    PubMed

    Pierscionek, Barbara K; Regini, Justyn W

    2012-07-01

    The refractive power of a lens is determined largely by its surface curvatures and the refractive index of its medium. These properties can also be used to control the sharpness of focus and hence the image quality. One of the most effective ways of doing this is with a gradient index. Eye lenses of all species, thus far, measured, are gradient index (GRIN) structures. The index gradation is one that increases from the periphery of the lens to its centre but the steepness of the gradient and the magnitudes of the refractive index vary so that the optics of the lens accords with visual demands. The structural proteins, the crystallins, which create the index gradient, also vary from species to species, in type and relative distribution across the tissue. The crystallin classes do not contribute equally to the refractive index, and this may be related to their structure and amino acid content. This article compares GRIN forms in eye lenses of varying species, the relevance of these forms to visual requirements, and the relationship between refractive index and the structural proteins. Consideration is given to the dynamics of a living lens, potential variations in the GRIN form with physiological changes and the possible link between discontinuities in the gradient and growth. Finally, the property of birefringence and the characteristic polarisation patterns seen in highly ordered crystals that have also been observed in specially prepared eye lenses are described and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James

    2016-10-01

    Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_s<0.14, and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in fluctuations associated with global tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.

  5. SU-E-T-39: A Logistic Function-Based Model to Predict Organ-At-Risk (OAR) DVH in IMRT Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S; Zhang, H; Zhang, B

    2015-06-15

    Purpose: To investigate the feasibility of a logistic function-based model to predict organ-at-risk (OAR) DVH for IMRT planning. The predicted DVHs are compared to achieved DVHs by expert treatment planners. Methods: A logistic function is used to model the OAR dose-gradient function. This function describes the percentage of the prescription dose as a function of the normal distance to PTV surface. The slope of dose-gradient function is function of relative spatial orientation of the PTV and OARs. The OAR DVH is calculated using the OAR dose-gradient function assuming that the dose is same for voxels with same normal distance tomore » PTV. Ten previously planned prostate IMRT plans were selected to build the model, and the following plan parameters were calculated as possible features to the model: the PTV maximum/minimum dose, PTV volume, bladder/rectum volume in the radiation field, percentage of bladder/rectum overlapping with PTV, and the distance between the bladder/rectum centroid and PTV. The bladder/rectum dose-gradient function was modeled and applied on 10 additional test cases, and the predicted and achieved clinical bladder/rectum DVHs were compared: V70 (percentage of volume receiving 70Gy and above), V65, V60, V55, V50, V45, V40. Results: The following parameters were selected as model features: PTV volume, and distance of centroid of rectum/bladder to PTV. The model was tested with 10 additional patients. For bladder, the absolute difference (mean±standard deviation) between predicted and clinical DVHs is V70=−0.3±3.2, V65=−0.8±3.9, V60=1.5±4.3, V55=1.7±5.3, V50=−0.6±6.4, V45=0.6±6.5, and V40=0.9±5.7, the correlation coefficient is 0.96; for rectum, the difference is V70=1.5±3.8, V65=1.2±4.2, V60=−0.1±5.3, V55=1.0±6.6, V50=1.6±8.7, V45=1.9±9.8, and V40=1.5±10.1, and the correlation coefficient is 0.87. Conclusion: The OAR DVH can be accurately predicted using the OAR dose-gradient function in IMRT plans. This approach may be used as a quality control tool and aid less experienced planners determine benchmarks for plan quality.« less

  6. Impact of tumour motion compensation and delineation methods on FDG PET-based dose painting plan quality for NSCLC radiation therapy.

    PubMed

    Thomas, Hannah Mary; Kinahan, Paul E; Samuel, James Jebaseelan E; Bowen, Stephen R

    2018-02-01

    To quantitatively estimate the impact of different methods for both boost volume delineation and respiratory motion compensation of [18F] FDG PET/CT images on the fidelity of planned non-uniform 'dose painting' plans to the prescribed boost dose distribution. Six locally advanced non-small cell lung cancer (NSCLC) patients were retrospectively reviewed. To assess the impact of respiratory motion, time-averaged (3D AVG), respiratory phase-gated (4D GATED) and motion-encompassing (4D MIP) PET images were used. The boost volumes were defined using manual contour (MANUAL), fixed threshold (FIXED) and gradient search algorithm (GRADIENT). The dose painting prescription of 60 Gy base dose to the planning target volume and an integral dose of 14 Gy (total 74 Gy) was discretized into seven treatment planning substructures and linearly redistributed according to the relative SUV at every voxel in the boost volume. Fifty-four dose painting plan combinations were generated and conformity was evaluated using quality index VQ0.95-1.05, which represents the sum of planned dose voxels within 5% deviation from the prescribed dose. Trends in plan quality and magnitude of achievable dose escalation were recorded. Different segmentation techniques produced statistically significant variations in maximum planned dose (P < 0.02), as well as plan quality between segmentation methods for 4D GATED and 4D MIP PET images (P < 0.05). No statistically significant differences in plan quality and maximum dose were observed between motion-compensated PET-based plans (P > 0.75). Low variability in plan quality was observed for FIXED threshold plans, while MANUAL and GRADIENT plans achieved higher dose with lower plan quality indices. The dose painting plans were more sensitive to segmentation of boost volumes than PET motion compensation in this study sample. Careful consideration of boost target delineation and motion compensation strategies should guide the design of NSCLC dose painting trials. © 2017 The Royal Australian and New Zealand College of Radiologists.

  7. The Combination of DGT Technique and Traditional Chemical Methods for Evaluation of Cadmium Bioavailability in Contaminated Soils with Organic Amendment

    PubMed Central

    Yao, Yu; Sun, Qin; Wang, Chao; Wang, Pei-Fang; Miao, Ling-Zhan; Ding, Shi-Ming

    2016-01-01

    Organic amendments have been proposed as a means of remediation for Cd-contaminated soils. However, understanding the inhibitory effects of organic materials on metal immobilization requires further research. In this study colza cake, a typical organic amendment material, was investigated in order to elucidate the ability of this material to reduce toxicity of Cd-contaminated soil. Available concentrations of Cd in soils were measured using an in situ diffusive gradients in thin films (DGT) technique in combination with traditional chemical methods, such as HOAc (aqua regia), EDTA (ethylene diamine tetraacetic acid), NaOAc (sodium acetate), CaCl2, and labile Cd in pore water. These results were applied to predict the Cd bioavailability after the addition of colza cake to Cd-contaminated soil. Two commonly grown cash crops, wheat and maize, were selected for Cd accumulation studies, and were found to be sensitive to Cd bioavailability. Results showed that the addition of colza cake may inhibit the growth of wheat and maize. Furthermore, the addition of increasing colza cake doses led to decreasing shoot and root biomass accumulation. However, increasing colza cake doses did lead to the reduction of Cd accumulation in plant tissues, as indicated by the decreasing Cd concentrations in shoots and roots. The labile concentration of Cd obtained by DGT measurements and the traditional chemical extraction methods, showed the clear decrease of Cd with the addition of increasing colza cake doses. All indicators showed significant positive correlations (p < 0.01) with the accumulation of Cd in plant tissues, however, all of the methods could not reflect plant growth status. Additionally, the capability of Cd to change from solid phase to become available in a soil solution decreased with increasing colza cake doses. This was reflected by the decreases in the ratio (R) value of CDGT to Csol. Our study suggests that the sharp decrease in R values could not only reflect the extremely low capability of labile Cd to be released from its solid phase, but may also be applied to evaluate the abnormal growth of the plants. PMID:27314376

  8. The Combination of DGT Technique and Traditional Chemical Methods for Evaluation of Cadmium Bioavailability in Contaminated Soils with Organic Amendment.

    PubMed

    Yao, Yu; Sun, Qin; Wang, Chao; Wang, Pei-Fang; Miao, Ling-Zhan; Ding, Shi-Ming

    2016-06-15

    Organic amendments have been proposed as a means of remediation for Cd-contaminated soils. However, understanding the inhibitory effects of organic materials on metal immobilization requires further research. In this study colza cake, a typical organic amendment material, was investigated in order to elucidate the ability of this material to reduce toxicity of Cd-contaminated soil. Available concentrations of Cd in soils were measured using an in situ diffusive gradients in thin films (DGT) technique in combination with traditional chemical methods, such as HOAc (aqua regia), EDTA (ethylene diamine tetraacetic acid), NaOAc (sodium acetate), CaCl₂, and labile Cd in pore water. These results were applied to predict the Cd bioavailability after the addition of colza cake to Cd-contaminated soil. Two commonly grown cash crops, wheat and maize, were selected for Cd accumulation studies, and were found to be sensitive to Cd bioavailability. Results showed that the addition of colza cake may inhibit the growth of wheat and maize. Furthermore, the addition of increasing colza cake doses led to decreasing shoot and root biomass accumulation. However, increasing colza cake doses did lead to the reduction of Cd accumulation in plant tissues, as indicated by the decreasing Cd concentrations in shoots and roots. The labile concentration of Cd obtained by DGT measurements and the traditional chemical extraction methods, showed the clear decrease of Cd with the addition of increasing colza cake doses. All indicators showed significant positive correlations (p < 0.01) with the accumulation of Cd in plant tissues, however, all of the methods could not reflect plant growth status. Additionally, the capability of Cd to change from solid phase to become available in a soil solution decreased with increasing colza cake doses. This was reflected by the decreases in the ratio (R) value of CDGT to Csol. Our study suggests that the sharp decrease in R values could not only reflect the extremely low capability of labile Cd to be released from its solid phase, but may also be applied to evaluate the abnormal growth of the plants.

  9. Simulated sensitivity of tropical cyclone track to the moisture in an idealized monsoon gyre

    NASA Astrophysics Data System (ADS)

    Yan, Ziyu; Ge, Xuyang; Guo, Bingyao

    2017-12-01

    In this study, the sensitivity of tropical cyclone (TC) track to the moisture condition in a nearby monsoon gyre (MG) is investigated. Numerical simulations reveal that TC track is highly sensitive to the spatial distribution of relative humidity (RH). In an experiment conducted with higher (lower) RH in the eastern (western) semicircle of an MG, the TC experiences a sharp northward turning. In contrast, when the RH pattern is reversed, the simulated TC does not show a sharp northward turning. The RH distribution modulates the intensity and structure of both the TC and MG, so that when the TC is initially embedded in a moister environment, convection is enhanced in the outer core, which favors an expansion of the outer core size. A TC with a larger outer size has greater beta-effect propagation, favoring a faster westward translational speed. Meanwhile, higher RH enhances the vorticity gradient within the MG and promotes a quicker attraction between the TC and MG centers through vorticity segregation process. These cumulative effects cause the TC to collocate with the MG center. Once the coalescence process takes place, the energy dispersion associated with the TC and MG is enhanced, which rapidly strengthens southwesterly flows on the eastern flanks. The resulting steering flow leads the TC to take a sharp northward track.

  10. Population Differentiation and Species Formation in the Deep Sea: The Potential Role of Environmental Gradients and Depth

    PubMed Central

    Jennings, Robert M.; Etter, Ron J.; Ficarra, Lynn

    2013-01-01

    Ecological speciation probably plays a more prominent role in diversification than previously thought, particularly in marine ecosystems where dispersal potential is great and where few obvious barriers to gene flow exist. This may be especially true in the deep sea where allopatric speciation seems insufficient to account for the rich and largely endemic fauna. Ecologically driven population differentiation and speciation are likely to be most prevalent along environmental gradients, such as those attending changes in depth. We quantified patterns of genetic variation along a depth gradient (1600-3800m) in the western North Atlantic for a protobranch bivalve ( Nuculaatacellana ) to test for population divergence. Multilocus analyses indicated a sharp discontinuity across a narrow depth range, with extremely low gene flow inferred between shallow and deep populations for thousands of generations. Phylogeographical discordance occurred between nuclear and mitochondrial loci as might be expected during the early stages of species formation. Because the geographic distance between divergent populations is small and no obvious dispersal barriers exist in this region, we suggest the divergence might reflect ecologically driven selection mediated by environmental correlates of the depth gradient. As inferred for numerous shallow-water species, environmental gradients that parallel changes in depth may play a key role in the genesis and adaptive radiation of the deep-water fauna. PMID:24098590

  11. Investigation of dose characteristics in three-dimensional MAGAT-type polymer gel dosimetry with MSE MR imaging

    NASA Astrophysics Data System (ADS)

    Lee, Jason J. S.; Tsai, Chia-Jung; Lo, Man-Kuok; Huang, Yung-Hui; Chen, Chien-Chuan; Wu, Jay; Tyan, Yeu-Sheng; Wu, Tung-Hsin

    2008-05-01

    A new type of normoxic polymer gel dosimeter, named MAGAT responses well to absorbed dose even when manufacturing in the presence of normal levels of oxygen. The aim of this study was to evaluate dose response, diffusion effect and cumulated dose response under multiple fractional irradiations of the MAGAT gel dosimeter using Multiple Spin-Echo (MSE) Magnetic Resonance (MR) sequence. Dose response was performed by irradiating MAGAT-gel-filled testing vials with a 6 MV linear accelerator and a linear relationship was present with doses from 0 to 6 Gy, but gradually, a bi-exponential function result was obtained with given doses up to 20 Gy. No significant difference in dose response was present between single and cumulated doses (p > 0.05). For study of diffusion effect, edge sharpness of the R2 map imaging between two split doses was smaller than 1 cm of dose profile penumbra between 20% and 80%. In conclusion, the MAGAT polymer gel dosimeter with MSE MR imaging is a promising method for dose verification in clinical radiation therapy practice.

  12. Single-Breath-Hold Whole-heart Unenhanced Coronary MRA Using Multi-shot Gradient Echo EPI at 3T: Comparison with Free-breathing Turbo-field-echo Coronary MRA on Healthy Volunteers.

    PubMed

    Iyama, Yuji; Nakaura, Takeshi; Nagayama, Yasunori; Oda, Seitaro; Utsunomiya, Daisuke; Kidoh, Masafumi; Yuki, Hideaki; Hirata, Kenichiro; Namimoto, Tomohiro; Kitajima, Mika; Morita, Kosuke; Funama, Yoshinori; Takemura, Atsushi; Okuaki, Tomoyuki; Yamashita, Yasuyuki

    2018-04-10

    We investigated the feasibility of single breath hold unenhanced coronary MRA using multi-shot gradient echo planar imaging (MSG-EPI) on a 3T-scanner. Fourteen volunteers underwent single breath hold coronary MRA with a MSG-EPI and free-breathing turbo field echo (TFE) coronary MRA at 3T. The acquisition time, signal to noise ratio (SNR), and the contrast of the sequences were compared with the paired t-test. Readers evaluated the image contrast, noise, sharpness, artifacts, and the overall image quality. The acquisition time was 88.1% shorter for MSG-EPI than TFE (24.7 ± 2.5 vs 206.4 ± 23.1 sec, P < 0.01). The SNR was significantly higher on MSG-EPI than TFE scans (P < 0.01). There was no significant difference in the contrast on MSG-EPI and TFE scans (1.8 ± 0.3 vs 1.9 ± 0.3, P = 0.24). There was no significant difference in image contrast, image sharpness, and overall image quality between two scan techniques. The score of image noise and artifact were significantly higher on MSG-EPI than TFE scans (P < 0.05). The single breath hold MSG-EPI sequence is a promising technique for shortening the scan time and for preserving the image quality of unenhanced whole heart coronary MRA on a 3T scanner.

  13. Electroosmotic flow mixing in zigzag microchannels.

    PubMed

    Chen, Jia-Kun; Yang, Ruey-Jen

    2007-03-01

    In this study we performed numerical and experimental investigations into the mixing of EOFs in zigzag microchannels with two different corner geometries, namely sharp corners and flat corners. In the zigzag microchannel with sharp corners, the flow travels more rapidly near the inner wall of the corner than near the outer wall as a result of the higher electric potential drop. The resulting velocity gradient induces a racetrack effect, which enhances diffusion within the fluid and hence improves the mixing performance. The simulation results reveal that the mixing index is approximately 88.83%. However, the sharp-corner geometry causes residual liquid or bubbles to become trapped in the channel at the point where the flow is almost stationary, when the channel is in the process of cleaning. Accordingly, a zigzag microchannel with flat-corner geometry is developed. The flat-corner geometry forms a convergent-divergent type nozzle which not only enhances the mixing performance in the channel, but also prevents the accumulation of residual liquid or bubbles. Scaling analysis reveals that this corner geometry leads to an effective increase in the mixing length. The experimental results reveal that the mixing index is increased to 94.30% in the flat-corner zigzag channel. Hence, the results demonstrate that the mixing index of the flat-corner zigzag channel is better than that of the conventional sharp-corner microchannel. Finally, the results of Taguchi analysis indicate that the attainable mixing index is determined primarily by the number of corners in the microchannel and by the flow passing height at each corner.

  14. The scenario-based generalization of radiation therapy margins.

    PubMed

    Fredriksson, Albin; Bokrantz, Rasmus

    2016-03-07

    We give a scenario-based treatment plan optimization formulation that is equivalent to planning with geometric margins if the scenario doses are calculated using the static dose cloud approximation. If the scenario doses are instead calculated more accurately, then our formulation provides a novel robust planning method that overcomes many of the difficulties associated with previous scenario-based robust planning methods. In particular, our method protects only against uncertainties that can occur in practice, it gives a sharp dose fall-off outside high dose regions, and it avoids underdosage of the target in 'easy' scenarios. The method shares the benefits of the previous scenario-based robust planning methods over geometric margins for applications where the static dose cloud approximation is inaccurate, such as irradiation with few fields and irradiation with ion beams. These properties are demonstrated on a suite of phantom cases planned for treatment with scanned proton beams subject to systematic setup uncertainty.

  15. Quality correction factors of composite IMRT beam deliveries: Theoretical considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouchard, Hugo

    2012-11-15

    Purpose: In the scope of intensity modulated radiation therapy (IMRT) dosimetry using ionization chambers, quality correction factors of plan-class-specific reference (PCSR) fields are theoretically investigated. The symmetry of the problem is studied to provide recommendable criteria for composite beam deliveries where correction factors are minimal and also to establish a theoretical limit for PCSR delivery k{sub Q} factors. Methods: The concept of virtual symmetric collapsed (VSC) beam, being associated to a given modulated composite delivery, is defined in the scope of this investigation. Under symmetrical measurement conditions, any composite delivery has the property of having a k{sub Q} factor identicalmore » to its associated VSC beam. Using this concept of VSC, a fundamental property of IMRT k{sub Q} factors is demonstrated in the form of a theorem. The sensitivity to the conditions required by the theorem is thoroughly examined. Results: The theorem states that if a composite modulated beam delivery produces a uniform dose distribution in a volume V{sub cyl} which is symmetric with the cylindrical delivery and all beams fulfills two conditions in V{sub cyl}: (1) the dose modulation function is unchanged along the beam axis, and (2) the dose gradient in the beam direction is constant for a given lateral position; then its associated VSC beam produces no lateral dose gradient in V{sub cyl}, no matter what beam modulation or gantry angles are being used. The examination of the conditions required by the theorem lead to the following results. The effect of the depth-dose gradient not being perfectly constant with depth on the VSC beam lateral dose gradient is found negligible. The effect of the dose modulation function being degraded with depth on the VSC beam lateral dose gradient is found to be only related to scatter and beam hardening, as the theorem holds also for diverging beams. Conclusions: The use of the symmetry of the problem in the present paper leads to a valuable theorem showing that k{sub Q} factors of composite IMRT beam deliveries are close to unity under specific conditions. The theoretical limit k{sub Q{sub p{sub c{sub s{sub r,Q{sub m{sub s{sub r}{sup f{sub p}{sub c}{sub s}{sub r},f{sub m}{sub s}{sub r}}}}}}}}}=1 is determined based on the property of PCSR deliveries to provide a uniform dose in the target volume. The present approach explains recent experimental observations and proposes ideal conditions for IMRT reference dosimetry. The result of this study could potentially serve as a theoretical basis for reference dosimetry of composite IMRT beam deliveries or for routine IMRT quality assurance.« less

  16. Vascular and Immunobiology of the Circulatory Sphingosine 1-Phosphate Gradient

    PubMed Central

    Yanagida, Keisuke; Hla, Timothy

    2017-01-01

    Vertebrates are endowed with a closed circulatory system, the evolution of which required novel structural and regulatory changes. Furthermore, immune cell trafficking paradigms adapted to the barriers imposed by the closed circulatory system. How did such changes occur mechanistically? We propose that spatial compartmentalization of the lipid mediator sphingosine 1-phosphate (S1P) may be one such mechanism. In vertebrates, S1P is spatially compartmentalized in the blood and lymphatic circulation, thus comprising a sharp S1P gradient across the endothelial barrier. Circulatory S1P has critical roles in maturation and homeostasis of the vascular system as well as in immune cell trafficking. Physiological functions of S1P are tightly linked to shear stress, the key biophysical stimulus from blood flow. Thus, circulatory S1P confinement could be a primordial strategy of vertebrates in the development of a closed circulatory system. This review discusses the cellular and molecular basis of the S1P gradients and aims to interpret its physiological significance as a key feature of the closed circulatory system. PMID:27813829

  17. Morphology of the scattering targets: Fresnel and turbulent mechanisms, part 2.1A

    NASA Technical Reports Server (NTRS)

    Royrvik, O.

    1984-01-01

    Refractive index fluctuations cause coherent scattering and reflection of VHF radio waves from the clear air in the altitude region between 0 and approximately 90 km. Similar echoes from the stratosphere/troposphere and the mesosphere are observed at UHF and MF/HF frequencies, respectively. The nature of the refractive index fluctuations has been studied for many years without producing a clear consensus on what mechanism causes them. It is believed that the irregularities can originate from two different mechanisms: turbulent mixing of the gradient of refractive index, and stable horizontally stratified laminae of sharp gradients in the refractive index. In order to explain observations of volume dependence and aspect sensitivity of the echo power in the MST region, a diversity of submechanisms has been proposed. They include isotropic and anisotropic turbulent scattering, Fresnel scattering and reflection, and diffuse reflection. Isotropic turbulent scattering is believed to cause a majority of the clear air echoes observed by MST radars. The mechanism requires active turbulence mixing of a preexisting gradient in the refractive index profile.

  18. Background field removal using a region adaptive kernel for quantitative susceptibility mapping of human brain

    NASA Astrophysics Data System (ADS)

    Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C. M.; Chen, Zhong

    2017-08-01

    Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions are preserved in the brain mask. Shadow artifacts due to strong susceptibility variations in the derived QSM maps could also be largely eliminated using the R-SHARP method, leading to more accurate QSM reconstruction.

  19. Background field removal using a region adaptive kernel for quantitative susceptibility mapping of human brain.

    PubMed

    Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C M; Chen, Zhong

    2017-08-01

    Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions are preserved in the brain mask. Shadow artifacts due to strong susceptibility variations in the derived QSM maps could also be largely eliminated using the R-SHARP method, leading to more accurate QSM reconstruction. Copyright © 2017. Published by Elsevier Inc.

  20. The natural statistics of blur

    PubMed Central

    Sprague, William W.; Cooper, Emily A.; Reissier, Sylvain; Yellapragada, Baladitya; Banks, Martin S.

    2016-01-01

    Blur from defocus can be both useful and detrimental for visual perception: It can be useful as a source of depth information and detrimental because it degrades image quality. We examined these aspects of blur by measuring the natural statistics of defocus blur across the visual field. Participants wore an eye-and-scene tracker that measured gaze direction, pupil diameter, and scene distances as they performed everyday tasks. We found that blur magnitude increases with increasing eccentricity. There is a vertical gradient in the distances that generate defocus blur: Blur below the fovea is generally due to scene points nearer than fixation; blur above the fovea is mostly due to points farther than fixation. There is no systematic horizontal gradient. Large blurs are generally caused by points farther rather than nearer than fixation. Consistent with the statistics, participants in a perceptual experiment perceived vertical blur gradients as slanted top-back whereas horizontal gradients were perceived equally as left-back and right-back. The tendency for people to see sharp as near and blurred as far is also consistent with the observed statistics. We calculated how many observations will be perceived as unsharp and found that perceptible blur is rare. Finally, we found that eye shape in ground-dwelling animals conforms to that required to put likely distances in best focus. PMID:27580043

  1. Microbial community diversity, structure and assembly across oxygen gradients in meromictic marine lakes, Palau.

    PubMed

    Meyerhof, Matthew S; Wilson, Jesse M; Dawson, Michael N; Michael Beman, J

    2016-12-01

    Microbial communities consume oxygen, alter biogeochemistry and compress habitat in aquatic ecosystems, yet our understanding of these microbial-biogeochemical-ecological interactions is limited by a lack of systematic analyses of low-oxygen ecosystems. Marine lakes provide an ideal comparative system, as they range from well-mixed holomictic lakes to stratified, anoxic, meromictic lakes that vary in their vertical extent of anoxia. We examined microbial communities inhabiting six marine lakes and one ocean site using pyrosequencing of 16S rRNA genes. Microbial richness and evenness was typically highest in the anoxic monimolimnion of meromictic lakes, with common marine bacteria present in mixolimnion communities replaced by anoxygenic phototrophs, sulfate-reducing bacteria and SAR406 in the monimolimnion. These sharp changes in community structure were linked to environmental gradients (constrained variation in redundancy analysis = 68%-76%) - particularly oxygen and pH. However, in those lakes with the steepest oxygen gradients, salinity and dissolved nutrients were important secondary constraining variables, indicating that subtle but substantive differences in microbial communities occur within similar low-oxygen habitats. Deterministic processes were a dominant influence on whole community assembly (all nearest taxon index values >4), demonstrating that the strong environmental gradients present in meromictic marine lakes drive microbial community assembly. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Relationships between heat flow, thermal and pressure fields in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Husson, L.; Henry, P.; Le Pichon, X.

    2004-12-01

    The thermal field of the Gulf of Mexico (GoM) is restored from a comprehensive temperature-depth database. A striking feature is the systematic sharp gradient increase between 2500 and 4000 m. The analysis of the pressure (fracturation tests and mud weights) indicates a systematic correlation between the pressure and temperature fields, as well as with the thickness of Plio-Pleistocene sedimentary layer, and is interpreted as the fact of cooling from fluid flow in the upper, almost hydrostatically pressured layer. The Nusselt number, that we characterize by the ratio between the near high-P gradient over low-P gradient varies spatially and is correlated to the structural pattern of the GoM; this observation outlines the complex relationships between heat and fluid flows, structure and sedimentation. The deep thermal signal is restored in terms of gradient and heat flow density from a statistical analysis of the thermal data combined to the thermal modelling of about 175 wells. At a regional scale, although the sedimentary cover is warmer in Texas than in Louisiana in terms of temperature, the steady state basal heat flow is higher in Louisiana. In addition, beneath the Corsair Fault, which lay offshore parallel to the Texan coast, the high heat flow suggests a zone of Tertiary lithospheric thinning.

  3. The adaptive statistical iterative reconstruction-V technique for radiation dose reduction in abdominal CT: comparison with the adaptive statistical iterative reconstruction technique.

    PubMed

    Kwon, Heejin; Cho, Jinhan; Oh, Jongyeong; Kim, Dongwon; Cho, Junghyun; Kim, Sanghyun; Lee, Sangyun; Lee, Jihyun

    2015-10-01

    To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. 27 consecutive patients (mean body mass index: 23.55 kg m(-2) underwent CT of the abdomen at two time points. At the first time point, abdominal CT was scanned at 21.45 noise index levels of automatic current modulation at 120 kV. Images were reconstructed with 40% ASIR, the routine protocol of Dong-A University Hospital. At the second time point, follow-up scans were performed at 30 noise index levels. Images were reconstructed with filtered back projection (FBP), 40% ASIR, 30% ASIR-V, 50% ASIR-V and 70% ASIR-V for the reduced radiation dose. Both quantitative and qualitative analyses of image quality were conducted. The CT dose index was also recorded. At the follow-up study, the mean dose reduction relative to the currently used common radiation dose was 35.37% (range: 19-49%). The overall subjective image quality and diagnostic acceptability of the 50% ASIR-V scores at the reduced radiation dose were nearly identical to those recorded when using the initial routine-dose CT with 40% ASIR. Subjective ratings of the qualitative analysis revealed that of all reduced radiation dose CT series reconstructed, 30% ASIR-V and 50% ASIR-V were associated with higher image quality with lower noise and artefacts as well as good sharpness when compared with 40% ASIR and FBP. However, the sharpness score at 70% ASIR-V was considered to be worse than that at 40% ASIR. Objective image noise for 50% ASIR-V was 34.24% and 46.34% which was lower than 40% ASIR and FBP. Abdominal CT images reconstructed with ASIR-V facilitate radiation dose reductions of to 35% when compared with the ASIR. This study represents the first clinical research experiment to use ASIR-V, the newest version of iterative reconstruction. Use of the ASIR-V algorithm decreased image noise and increased image quality when compared with the ASIR and FBP methods. These results suggest that high-quality low-dose CT may represent a new clinical option.

  4. The adaptive statistical iterative reconstruction-V technique for radiation dose reduction in abdominal CT: comparison with the adaptive statistical iterative reconstruction technique

    PubMed Central

    Cho, Jinhan; Oh, Jongyeong; Kim, Dongwon; Cho, Junghyun; Kim, Sanghyun; Lee, Sangyun; Lee, Jihyun

    2015-01-01

    Objective: To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. Methods: 27 consecutive patients (mean body mass index: 23.55 kg m−2 underwent CT of the abdomen at two time points. At the first time point, abdominal CT was scanned at 21.45 noise index levels of automatic current modulation at 120 kV. Images were reconstructed with 40% ASIR, the routine protocol of Dong-A University Hospital. At the second time point, follow-up scans were performed at 30 noise index levels. Images were reconstructed with filtered back projection (FBP), 40% ASIR, 30% ASIR-V, 50% ASIR-V and 70% ASIR-V for the reduced radiation dose. Both quantitative and qualitative analyses of image quality were conducted. The CT dose index was also recorded. Results: At the follow-up study, the mean dose reduction relative to the currently used common radiation dose was 35.37% (range: 19–49%). The overall subjective image quality and diagnostic acceptability of the 50% ASIR-V scores at the reduced radiation dose were nearly identical to those recorded when using the initial routine-dose CT with 40% ASIR. Subjective ratings of the qualitative analysis revealed that of all reduced radiation dose CT series reconstructed, 30% ASIR-V and 50% ASIR-V were associated with higher image quality with lower noise and artefacts as well as good sharpness when compared with 40% ASIR and FBP. However, the sharpness score at 70% ASIR-V was considered to be worse than that at 40% ASIR. Objective image noise for 50% ASIR-V was 34.24% and 46.34% which was lower than 40% ASIR and FBP. Conclusion: Abdominal CT images reconstructed with ASIR-V facilitate radiation dose reductions of to 35% when compared with the ASIR. Advances in knowledge: This study represents the first clinical research experiment to use ASIR-V, the newest version of iterative reconstruction. Use of the ASIR-V algorithm decreased image noise and increased image quality when compared with the ASIR and FBP methods. These results suggest that high-quality low-dose CT may represent a new clinical option. PMID:26234823

  5. Development of an Automatic Testing Platform for Aviator's Night Vision Goggle Honeycomb Defect Inspection.

    PubMed

    Jian, Bo-Lin; Peng, Chao-Chung

    2017-06-15

    Due to the direct influence of night vision equipment availability on the safety of night-time aerial reconnaissance, maintenance needs to be carried out regularly. Unfortunately, some defects are not easy to observe or are not even detectable by human eyes. As a consequence, this study proposed a novel automatic defect detection system for aviator's night vision imaging systems AN/AVS-6(V)1 and AN/AVS-6(V)2. An auto-focusing process consisting of a sharpness calculation and a gradient-based variable step search method is applied to achieve an automatic detection system for honeycomb defects. This work also developed a test platform for sharpness measurement. It demonstrates that the honeycomb defects can be precisely recognized and the number of the defects can also be determined automatically during the inspection. Most importantly, the proposed approach significantly reduces the time consumption, as well as human assessment error during the night vision goggle inspection procedures.

  6. Direct numerical simulation of incompressible multiphase flow with phase change

    NASA Astrophysics Data System (ADS)

    Lee, Moon Soo; Riaz, Amir; Aute, Vikrant

    2017-09-01

    Simulation of multiphase flow with phase change is challenging because of the potential for unphysical pressure oscillations, spurious velocity fields and mass flux errors across the interface. The resulting numerical errors may become critical when large density contrasts are present. To address these issues, we present a new approach for multiphase flow with phase change that features, (i) a smooth distribution of sharp velocity jumps and mass flux within a narrow region surrounding the interface, (ii) improved mass flux projection from the implicit interface onto the uniform Cartesian grid and (iii) post-advection velocity correction step to ensure accurate velocity divergence in interfacial cells. These new features are implemented in combination with a sharp treatment of the jumps in pressure and temperature gradient. A series of 1-D, 2-D, axisymmetric and 3-D problems are solved to verify the improvements afforded by the new approach. Axisymmetric film boiling results are also presented, which show good qualitative agreement with heat transfer correlations as well as experimental observations of bubble shapes.

  7. Simulating Pliocene warmth and a permanent El Niño-like state: The role of cloud albedo

    DOE PAGES

    Burls, N. J.; Fedorov, A. V.

    2014-09-13

    We present that available evidence suggests that during the early Pliocene (4–5 Ma) the mean east-west sea surface temperature (SST) gradient in the equatorial Pacific Ocean was significantly smaller than today, possibly reaching only 1–2°C. The meridional SST gradients were also substantially weaker, implying an expanded ocean warm pool in low latitudes. Subsequent global cooling led to the establishment of the stronger, modern temperature gradients. Given our understanding of the physical processes that maintain the present-day cold tongue in the east, warm pool in the west and hence sharp temperature contrasts, determining the key factors that maintained early Pliocene climatemore » still presents a challenge for climate theories and models. This study demonstrates how different cloud properties could provide a solution. We show that a reduction in the meridional gradient in cloud albedo can sustain reduced meridional and zonal SST gradients, an expanded warm pool and warmer thermal stratification in the ocean, and weaker Hadley and Walker circulations in the atmosphere. Having conducted a range of hypothetical modified cloud albedo experiments, we arrive at our Pliocene simulation, which shows good agreement with proxy SST data from major equatorial and coastal upwelling regions, the tropical warm pool, middle and high latitudes, and available subsurface temperature data. As suggested by the observations, the simulated Pliocene-like climate sustains a robust El Niño-Southern Oscillation despite the reduced mean east-west SST gradient. In conclusion, our results demonstrate that cloud albedo changes may be a critical element of Pliocene climate and that simulating the meridional SST gradient correctly is central to replicating the geographical patterns of Pliocene warmth.« less

  8. Ultrafast 3D balanced steady-state free precession MRI of the lung: Assessment of anatomic details in comparison to low-dose CT.

    PubMed

    Heye, Tobias; Sommer, Gregor; Miedinger, David; Bremerich, Jens; Bieri, Oliver

    2015-09-01

    To evaluate the anatomical details offered by a new single breath-hold ultrafast 3D balanced steady-state free precession (uf-bSSFP) sequence in comparison to low-dose chest computed tomography (CT). This was an Institutional Review Board (IRB)-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant prospective study. A total of 20 consecutive patients enrolled in a lung cancer screening trial underwent same-day low-dose chest CT and 1.5T MRI. The presence of pulmonary nodules and anatomical details on 1.9 mm isotropic uf-bSSFP images was compared to 2 mm lung window reconstructions by two readers. The number of branching points on six predefined pulmonary arteries and the distance between the most peripheral visible vessel segment to the pleural surface on thin slices and 50 mm maximum intensity projections (MIP) were assessed. Image quality and sharpness of the pulmonary vasculature were rated on a 5-point scale. The uf-bSSFP detection rate of pulmonary nodules (32 nodules visible on CT and MRI, median diameter 3.9 mm) was 45.5% with 21 false-positive findings (pooled data of both readers). Uf-bSSFP detected 71.2% of branching points visible on CT data. The mean distance between peripheral vasculature and pleural surface was 13.0 ± 4.2 mm (MRI) versus 8.5 ± 3.3 mm (CT) on thin slices and 8.6 ± 3.9 mm (MRI) versus 4.6 ± 2.5 mm (CT) on MIPs. Median image quality and sharpness were rated 4 each. Although CT is superior to MRI, uf-bSSFP imaging provides good anatomical details with sufficient image quality and sharpness obtainable in a single breath-hold covering the entire chest. © 2014 Wiley Periodicals, Inc.

  9. Features of influence of spatially inhomogeneous geomagnetic field on a humans heart rhythm variability

    NASA Astrophysics Data System (ADS)

    Tuzhilkin, D. A.; Borodin, A. S.; Shitov, A. V.

    2017-11-01

    The results of a study of the functioning of the human cardiovascular system in the epicentral zone of the Chui earthquake on a tectonic fault characterized by a sharp gradient zone of a regional magnetic field are presented. It is shown that in the dynamics of the daily distribution of RR-intervals, events corresponding to the time of visit by volunteers of sites characterized by the presence of a spatially inhomogeneous geomagnetic field are singled out. In particular, there is a decrease in the average period of cardiac contractions.

  10. Lagrangian statistics of mesoscale turbulence in a natural environment: The Agulhas return current.

    PubMed

    Carbone, Francesco; Gencarelli, Christian N; Hedgecock, Ian M

    2016-12-01

    The properties of mesoscale geophysical turbulence in an oceanic environment have been investigated through the Lagrangian statistics of sea surface temperature measured by a drifting buoy within the Agulhas return current, where strong temperature mixing produces locally sharp temperature gradients. By disentangling the large-scale forcing which affects the small-scale statistics, we found that the statistical properties of intermittency are identical to those obtained from the multifractal prediction in the Lagrangian frame for the velocity trajectory. The results suggest a possible universality of turbulence scaling.

  11. Chemoattraction and chemorepulsion of Strongyloides stercoralis infective larvae on a sodium chloride gradient is mediated by amphidial neuron pairs ASE and ASH, respectively.

    PubMed

    Forbes, W M; Ashton, F T; Boston, R; Zhu, X; Schad, G A

    2004-03-25

    Depending on its concentration, sodium chloride acts as either an attractant or a repellant to the infective larvae (L3i) of Strongyloides stercoralis. On a concentration gradient, L3i are attracted to 0.05 M NaCl, but repelled by 2.8M. To test the hypothesis that amphidial neurons ASE and ASH might mediate attraction and repulsion, respectively, these neurons, and control neurons as well, were ablated in hatchling larvae with a laser microbeam. After the larvae attained infectivity (L3i), they were tested on a NaCl gradient. When placed at low salinity, 73.5% of normal controls migrated "up" the gradient, while 26.4% crawled randomly. In contrast, only 20.6% of ASE-ablated L3i migrated "up" the gradient, while 79.4% migrated randomly. Ablation-control ASK-ablated L3i (58.8%) migrated "up" the gradient while 41.1% crawled randomly. When placed at a region of high salinity, 100% of normal control L3i migrated "down" the gradient, whereas 62.5% of ASH-ablated L3i migrated randomly, the remaining 37.5% migrating "down" the gradient. In sharp contrast with ASH-ablated L3i, 94.1% of ablation-control larvae, i.e. ASK-ablated L3i, migrated "down" the gradient. Migration behavior of ASE- and ASH-ablated L3i was significantly different (P < 0.001) from that of ASK-ablated L3i and normal controls. It is noteworthy that 87.5% of ASE-ablated L3i that failed to exhibit chemoattractive behavior were actively chemorepelled from high salinity. Also, 70.0% of ASH-ablated L3i that failed to be chemorepelled from high salinity were capable of chemoattractive behavior, indicating that the worms had retained their behavioral responses except for those associated with the targeted neurons.

  12. Evaluation of image-guided helical tomotherapy for the retreatment of spinal metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahan, Stephen L.; Ramsey, Chester R.; Scaperoth, Daniel D.

    Introduction: Patients with vertebral metastasis that receive radiation therapy are typically treated to the spinal cord tolerance dose. As such, it is difficult to successfully deliver a second course of radiation therapy for patients with overlapping treatment volumes. In this study, an image-guided helical tomotherapy system was evaluated for the retreatment of previously irradiated vertebral metastasis. Methods and Materials: Helical tomotherapy dose gradients and maximum cord doses were measured in a cylindrical phantom for geometric test cases with separations between the planning target volume (PTV) and the spinal cord organ at risk (OAR) of 2 mm, 4 mm, 6 mm,more » 8 mm, and 10 mm. Megavoltage computed tomography (CT) images were examined for their ability to localize spinal anatomy for positioning purposes by repeat imaging of the cervical spine in an anthropomorphic phantom. In addition to the phantom studies, 8 patients with cord compressions that had received previous radiation therapy were retreated to a mean dose of 28 Gy using conventional fractionation. Results and Discussion: Megavoltage CT images were capable of positioning an anthropomorphic phantom to within {+-}1.2 mm (2{sigma}) superior-inferiorly and within {+-}0.6 mm (2{sigma}) anterior-posteriorly and laterally. Dose gradients of 10% per mm were measured in phantom while PTV uniformity indices of less than 11% were maintained. The calculated maximum cord dose was 25% of the prescribed dose for a 10-mm PTV-to-OAR separation and 71% of the prescribed dose for a PTV-to-OAR separation of 2 mm. Eight patients total have been treated without radiation-induced myelopathy or any other adverse effects from treatment. Conclusions: A technique has been evaluated for the retreatment of vertebral metastasis using image-guided helical tomotherapy. Phantom and patient studies indicated that a tomotherapy system is capable of delivering dose gradients of 10% per mm and positioning the patient within 1.2 mm without the use of special stereotactic immobilization.« less

  13. Patterns in Temporal Variability of Temperature, Oxygen and pH along an Environmental Gradient in a Coral Reef

    PubMed Central

    Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.

    2014-01-01

    Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364

  14. Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas

    PubMed Central

    Matthaeus, W. H.; Wan, Minping; Servidio, S.; Greco, A.; Osman, K. T.; Oughton, S.; Dmitruk, P.

    2015-01-01

    An overview is given of important properties of spatial and temporal intermittency, including evidence of its appearance in fluids, magnetofluids and plasmas, and its implications for understanding of heliospheric plasmas. Spatial intermittency is generally associated with formation of sharp gradients and coherent structures. The basic physics of structure generation is ideal, but when dissipation is present it is usually concentrated in regions of strong gradients. This essential feature of spatial intermittency in fluids has been shown recently to carry over to the realm of kinetic plasma, where the dissipation function is not known from first principles. Spatial structures produced in intermittent plasma influence dissipation, heating, and transport and acceleration of charged particles. Temporal intermittency can give rise to very long time correlations or a delayed approach to steady-state conditions, and has been associated with inverse cascade or quasi-inverse cascade systems, with possible implications for heliospheric prediction. PMID:25848085

  15. Investigation of the stress distribution around a mode 1 crack with a novel strain gradient theory

    NASA Astrophysics Data System (ADS)

    Lederer, M.; Khatibi, G.

    2017-01-01

    Stress concentrations at the tip of a sharp crack have extensively been investigated in the past century. According to the calculations of Inglis, the stress ahead of a mode 1 crack shows the characteristics of a singularity. This solution is exact in the framework of linear elastic fracture mechanics (LEFM). From the viewpoint of multiscale modelling, however, it is evident that the stress at the tip of a stable crack cannot be infinite, because the strengths of atomic bonds are finite. In order to prevent the problem of this singularity, a new version of strain gradient elasticity is employed here. This theory is implemented in the commercial FEM code ABAQUS through user subroutine UEL. Convergence of the model is proved through consecutive mesh refinement. In consequence, the stresses ahead of a mode 1 crack become finite. Furthermore, the model predicts a size effect in the sense “smaller is stronger”.

  16. High contrast ion acceleration at intensities exceeding 10{sup 21} Wcm{sup −2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dollar, F.; Zulick, C.; Matsuoka, T.

    2013-05-15

    Ion acceleration from short pulse laser interactions at intensities of 2×10{sup 21}Wcm{sup −2} was studied experimentally under a wide variety of parameters, including laser contrast, incidence angle, and target thickness. Trends in maximum proton energy were observed, as well as evidence of improvement in the acceleration gradients by using dual plasma mirrors over traditional pulse cleaning techniques. Extremely high efficiency acceleration gradients were produced, accelerating both the contaminant layer and high charge state ions from the bulk of the target. Two dimensional particle-in-cell simulations enabled the study of the influence of scale length on submicron targets, where hydrodynamic expansion affectsmore » the rear surface as well as the front. Experimental evidence of larger electric fields for sharp density plasmas is observed in simulation results as well for such targets, where target ions are accelerated without the need for contaminant removal.« less

  17. Strong field acceleration and steering of ultrafast electron pulses from a sharp metallic nanotip.

    PubMed

    Park, Doo Jae; Piglosiewicz, Bjoern; Schmidt, Slawa; Kollmann, Heiko; Mascheck, Manfred; Lienau, Christoph

    2012-12-14

    We report a strong, laser-field induced modification of the propagation direction of ultrashort electron pulses emitted from nanometer-sized gold tapers. Angle-resolved kinetic energy spectra of electrons emitted from such tips are recorded using ultrafast near-infrared light pulses of variable wavelength and intensity for excitation. For sufficiently long wavelengths, we observe a pronounced strong-field acceleration of electrons within the field gradient at the taper apex. We find a distinct narrowing of the emission cone angle of the fastest electrons. We ascribe this to the field-induced steering of subcycle electrons as opposed to the diverging emission of quiver electrons. Our findings are corroborated by simulations based on a modified Simpleman model incorporating the curved, vectorial field gradient in the vicinity of the tip. Our results indicate new pathways for designing highly directional nanometer-sized ultrafast electron sources.

  18. A revision of the gamma-evaluation concept for the comparison of dose distributions.

    PubMed

    Bakai, Annemarie; Alber, Markus; Nüsslin, Fridtjof

    2003-11-07

    A method for the quantitative four-dimensional (4D) evaluation of discrete dose data based on gradient-dependent local acceptance thresholds is presented. The method takes into account the local dose gradients of a reference distribution for critical appraisal of misalignment and collimation errors. These contribute to the maximum tolerable dose error at each evaluation point to which the local dose differences between comparison and reference data are compared. As shown, the presented concept is analogous to the gamma-concept of Low et al (1998a Med. Phys. 25 656-61) if extended to (3+1) dimensions. The pointwise dose comparisons of the reformulated concept are easier to perform and speed up the evaluation process considerably, especially for fine-grid evaluations of 3D dose distributions. The occurrences of false negative indications due to the discrete nature of the data are reduced with the method. The presented method was applied to film-measured, clinical data and compared with gamma-evaluations. 4D and 3D evaluations were performed. Comparisons prove that 4D evaluations have to be given priority, especially if complex treatment situations are verified, e.g., non-coplanar beam configurations.

  19. Combined effects of climatic gradient and domestic livestock grazing on reptile community structure in a heterogeneous agroecosystem.

    PubMed

    Rotem, Guy; Gavish, Yoni; Shacham, Boaz; Giladi, Itamar; Bouskila, Amos; Ziv, Yaron

    2016-01-01

    Grazing plays an important role in shaping ecological communities in human-related ecosystems. Although myriad studies have explored the joint effect of grazing and climate on plant communities, this interactive effect has rarely been studied in animals. We hypothesized that the effect of grazing on the reptile community varies along a climatic gradient in relation to the effect of grazing on habitat characteristics, and that grazing differentially affects reptiles of different biogeographic regions. We tested our hypotheses by collecting data on environmental characteristics and by trapping reptiles in four heterogeneous landscapes experiencing differing grazing intensities and distributed along a sharp climatic gradient. We found that while reptile diversity increased with grazing intensity at the mesic end of the gradient, it decreased with grazing intensity at the arid end. Moreover, the proportion of reptile species of differing biogeographic origins varied with the interactive effect of climate and grazing. The representation of species originating in arid biogeographic zones was highest at the arid end of the climatic gradient, and representation increased with grazing intensity within this area. Regardless of the climatic context, increased grazing pressure results in a reduction in vegetation cover and thus in changes in habitat characteristics. By reducing vegetation cover, grazing increased habitat heterogeneity in the dense mesic sites and decreased habitat heterogeneity in the arid sites. Thus, our results suggest that the same direction of habitat alteration caused by grazing may have opposite effects on biodiversity and community composition in different climatic contexts.

  20. Three-dimensional Gravity Inversion with a New Gradient Scheme on Unstructured Grids

    NASA Astrophysics Data System (ADS)

    Sun, S.; Yin, C.; Gao, X.; Liu, Y.; Zhang, B.

    2017-12-01

    Stabilized gradient-based methods have been proved to be efficient for inverse problems. Based on these methods, setting gradient close to zero can effectively minimize the objective function. Thus the gradient of objective function determines the inversion results. By analyzing the cause of poor resolution on depth in gradient-based gravity inversion methods, we find that imposing depth weighting functional in conventional gradient can improve the depth resolution to some extent. However, the improvement is affected by the regularization parameter and the effect of the regularization term becomes smaller with increasing depth (shown as Figure 1 (a)). In this paper, we propose a new gradient scheme for gravity inversion by introducing a weighted model vector. The new gradient can improve the depth resolution more efficiently, which is independent of the regularization parameter, and the effect of regularization term will not be weakened when depth increases. Besides, fuzzy c-means clustering method and smooth operator are both used as regularization terms to yield an internal consecutive inverse model with sharp boundaries (Sun and Li, 2015). We have tested our new gradient scheme with unstructured grids on synthetic data to illustrate the effectiveness of the algorithm. Gravity forward modeling with unstructured grids is based on the algorithm proposed by Okbe (1979). We use a linear conjugate gradient inversion scheme to solve the inversion problem. The numerical experiments show a great improvement in depth resolution compared with regular gradient scheme, and the inverse model is compact at all depths (shown as Figure 1 (b)). AcknowledgeThis research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900). ReferencesSun J, Li Y. 2015. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering. Geophysics, 80(4): ID1-ID18. Okabe M. 1979. Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies. Geophysics, 44(4), 730-741.

  1. A coordinated sequence of distinct flagellar waveforms enables a sharp flagellar turn mediated by squid sperm pH-taxis.

    PubMed

    Iida, Tomohiro; Iwata, Yoko; Mohri, Tatsuma; Baba, Shoji A; Hirohashi, Noritaka

    2017-10-11

    Animal spermatozoa navigate by sensing ambient chemicals to reach the site of fertilization. Generally, such chemicals derive from the female reproductive organs or cells. Exceptionally, squid spermatozoa mutually release and perceive carbon dioxide to form clusters after ejaculation. We previously identified the pH-taxis by which each spermatozoon can execute a sharp turn, but how flagellar dynamics enable this movement remains unknown. Here, we show that initiation of the turn motion requires a swim down a steep proton gradient (a theoretical estimation of ≥0.025 pH/s), crossing a threshold pH value of ~5.5. Time-resolved kinematic analysis revealed that the turn sequence results from the rhythmic exercise of two flagellar motions: a stereotypical flagellar 'bent-cane' shape followed by asymmetric wave propagation, which enables a sharp turn in the realm of low Reynolds numbers. This turning episode is terminated by an 'overshoot' trajectory that differs from either straight-line motility or turning. As with bidirectional pH-taxes in some bacteria, squid spermatozoa also showed repulsion from strong acid conditions with similar flagellar kinematics as in positive pH-taxis. These findings indicate that squid spermatozoa might have a unique reorientation mechanism, which could be dissimilar to that of classical egg-guided sperm chemotaxis in other marine invertebrates.

  2. Diffusion sampler testing at Naval Air Station North Island, San Diego County, California, November 1999 to January 2000

    USGS Publications Warehouse

    Vroblesky, Don A.; Peters, Brian C.

    2000-01-01

    Volatile organic compound concentrations in water from diffusion samplers were compared to concentrations in water obtained by low-flow purging at 15 observation wells at the Naval Air Station North Island, San Diego, California. Multiple diffusion samplers were installed in the wells. In general, comparisons using bladder pumps and diffusion samplers showed similar volatile organic carbon concentrations. In some wells, sharp concentration gradients were observed, such as an increase in cis-1,2-dichloroethene concentration from 100 to 2,600 micrograms per liter over a vertical distance of only 3.4 feet. In areas where such sharp gradients were observed, concentrations in water obtained by low-flow sampling at times reflected an average concentration over the area of influence; however, concentrations obtained by using the diffusion sampler seemed to represent the immediate vicinity of the sampler. When peristaltic pumps were used to collect ground-water samples by low-flow purging, the volatile organic compound concentrations commonly were lower than concentrations obtained by using diffusion samplers. This difference may be due to loss of volatiles by degassing under negative pressures in the sampling lines induced while using the peristaltic pump, mixing in the well screen, or possible short-circuiting of water from an adjacent depth. Diffusion samplers placed in buckets of freephase jet fuel (JP-5) and Stoddard solvent from observation wells did not show evidence of structural integrity loss during the 2 months of equilibration, and volatile organic compounds detected in the free-phase fuel also were detected in the water from the diffusion samplers.

  3. Discontinuous Galerkin modeling of the Columbia River's coupled estuary-plume dynamics

    NASA Astrophysics Data System (ADS)

    Vallaeys, Valentin; Kärnä, Tuomas; Delandmeter, Philippe; Lambrechts, Jonathan; Baptista, António M.; Deleersnijder, Eric; Hanert, Emmanuel

    2018-04-01

    The Columbia River (CR) estuary is characterized by high river discharge and strong tides that generate high velocity flows and sharp density gradients. Its dynamics strongly affects the coastal ocean circulation. Tidal straining in turn modulates the stratification in the estuary. Simulating the hydrodynamics of the CR estuary and plume therefore requires a multi-scale model as both shelf and estuarine circulations are coupled. Such a model has to keep numerical dissipation as low as possible in order to correctly represent the plume propagation and the salinity intrusion in the estuary. Here, we show that the 3D baroclinic discontinuous Galerkin finite element model SLIM 3D is able to reproduce the main features of the CR estuary-to-ocean continuum. We introduce new vertical discretization and mode splitting that allow us to model a region characterized by complex bathymetry and sharp density and velocity gradients. Our model takes into account the major forcings, i.e. tides, surface wind stress and river discharge, on a single multi-scale grid. The simulation period covers the end of spring-early summer of 2006, a period of high river flow and strong changes in the wind regime. SLIM 3D is validated with in-situ data on the shelf and at multiple locations in the estuary and compared with an operational implementation of SELFE. The model skill in the estuary and on the shelf indicate that SLIM 3D is able to reproduce the key processes driving the river plume dynamics, such as the occurrence of bidirectional plumes or reversals of the inner shelf coastal currents.

  4. Dosimetric uncertainty in prostate cancer proton radiotherapy.

    PubMed

    Lin, Liyong; Vargas, Carlos; Hsi, Wen; Indelicato, Daniel; Slopsema, Roelf; Li, Zuofeng; Yeung, Daniel; Horne, Dave; Palta, Jatinder

    2008-11-01

    The authors we evaluate the uncertainty in proton therapy dose distribution for prostate cancer due to organ displacement, varying penumbra width of proton beams, and the amount of rectal gas inside the rectum. Proton beam treatment plans were generated for ten prostate patients with a minimum dose of 74.1 cobalt gray equivalent (CGE) to the planning target volume (PTV) while 95% of the PTV received 78 CGE. Two lateral or lateral oblique proton beams were used for each plan. The authors we investigated the uncertainty in dose to the rectal wall (RW) and the bladder wall (BW) due to organ displacement by comparing the dose-volume histograms (DVH) calculated with the original or shifted contours. The variation between DVHs was also evaluated for patients with and without rectal gas in the rectum for five patients who had 16 to 47 cc of visible rectal gas in their planning computed tomography (CT) imaging set. The uncertainty due to the varying penumbra width of the delivered protons for different beam setting options on the proton delivery system was also evaluated. For a 5 mm anterior shift, the relative change in the RW volume receiving 70 CGE dose (V70) was 37.9% (5.0% absolute change in 13.2% of a mean V70). The relative change in the BW volume receiving 70 CGE dose (V70) was 20.9% (4.3% absolute change in 20.6% of a mean V70) with a 5 mm inferior shift. A 2 mm penumbra difference in beam setting options on the proton delivery system resulted in the relative variations of 6.1% (0.8% absolute change) and 4.4% (0.9% absolute change) in V70 of RW and BW, respectively. The data show that the organ displacements produce absolute DVH changes that generally shift the entire isodose line while maintaining the same shape. The overall shape of the DVH curve for each organ is determined by the penumbra and the distance of the target in beam's eye view (BEV) from the block edge. The beam setting option producing a 2 mm sharper penumbra at the isocenter can reduce the magnitude of maximal doses to the RW by 2% compared to the alternate option utilizing the same block margin of 7 mm. The dose to 0.1 cc of the femoral head on the distal side of the lateral-posterior oblique beam is increased by 25 CGE for a patient with 25 cc of rectal gas. Variation in the rectal and bladder wall DVHs due to uncertainty in the position of the organs relative to the location of sharp dose falloff gradients should be accounted for when evaluating treatment plans. The proton beam delivery option producing a sharper penumbra reduces maximal doses to the rectal wall. Lateral-posterior oblique beams should be avoided in patients prone to develop a large amount of rectal gas.

  5. Is it necessary to plan with safety margins for actively scanned proton therapy?

    NASA Astrophysics Data System (ADS)

    Albertini, F.; Hug, E. B.; Lomax, A. J.

    2011-07-01

    In radiation therapy, a plan is robust if the calculated and the delivered dose are in agreement, even in the case of different uncertainties. The current practice is to use safety margins, expanding the clinical target volume sufficiently enough to account for treatment uncertainties. This, however, might not be ideal for proton therapy and in particular when using intensity modulated proton therapy (IMPT) plans as degradation in the dose conformity could also be found in the middle of the target resulting from misalignments of highly in-field dose gradients. Single field uniform dose (SFUD) and IMPT plans have been calculated for different anatomical sites and the need for margins has been assessed by analyzing plan robustness to set-up and range uncertainties. We found that the use of safety margins is a good way to improve plan robustness for SFUD and IMPT plans with low in-field dose gradients but not necessarily for highly modulated IMPT plans for which only a marginal improvement in plan robustness could be detected through the definition of a planning target volume.

  6. Generalised photon skyshine calculations.

    PubMed

    Hayes, Robert

    2004-01-01

    The energy-dependent dose contributions from monoenergetic photon source points located 1.5 m above the ground have been tabulated. These values are intended to be used for regulatory compliance with site boundary dose limitations and as such are all presented in effective dose units. Standard air and soil are modelled where the air has vertical density gradient approximation. Energies from 0.05 up to 10 MeV are evaluated for dose transport up to 40 mean free paths.

  7. MLC-based penumbra softener of EDW borders to reduce junction inhomogeneities.

    PubMed

    Szpala, Stanislaw; Kohli, Kirpal

    2017-05-01

    Junctions of fields are known to be susceptible to developing cold or hot spots in the presence of even small geometrical misalignments. Reduction of these dose inhomogeneities can be accomplished through decreasing the dose gradients in the penumbra, but currently it cannot be done for enhanced dynamic wedges (EDW). An MLC-based penumbra softener was developed in the developer mode of TrueBeam linacs to reduce dose gradients across the side border of EDWs. The movement of each leaf was individually synchronized with the movement of the dynamic Y jaw to soften the penumbra in the same manner along the entire field border, in spite of the presence of the dose gradient of the EDW. Junction homogeneity upon field misalignment for side-matched EDWs was examined with the MV imager. The fluence inhomogeneities were reduced from about 30% per mm of shift of the field borders for the conventional EDW to about 2% per mm for the softened-penumbra plan. The junction in a four-field monoisocentric breast plan delivered to the Rando phantom was assessed with film. The dose inhomogeneities across the junction in the superior-inferior direction were reduced from about 20% to 25% per mm for the conventional fields to about 5% per mm. The dose near the softened junction of the breast plan with no shifts did not deviate from the conventional plan by more than about 4%. The newly-developed softened-penumbra junction of EDW (and/or open) fields was shown to reduce sensitivity to misalignments without increasing complexity of the planning or delivery. This methodology needs to be adopted by the manufacturers for clinical use. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mwidu, U; Devic, S; Shehadeh, M

    Purpose: A retrospective comparison of dose distributions achievable by High dose rate brachytherapy (HDRBT), Helical TomoTherapy (TOMO), CyberKnife (CK) and RapidArc (RA) in locally advanced inoperable cervical cancer patients is presented. Methods: Five patients with advanced stage cervical carcinoma were selected for this study after a full course of external beam radiotherapy (EBRT), chemotherapy and HDR Brachytherapy. To highlight any significant similarities/differences in dose distributions, high-risk clinical target volume (HRCTV) coverage, organs at risk (OAR) sparing, and machine specific delivery limitations, we used D90 (dose received by 90% of the volume) as the parameter for HRCTV coverage as recommended bymore » the GEC-ESTRO Working Group. We also compared both integral and differential dose volume histograms (DVH) between different dose distributions treatment modalities for HRCTV and OAR. Results: TOMO and RA provided the most conformal dose distributions to HRCTV. Median doses (in Gy) to organs at risk were; for rectal wall: 1.7±0.6, 2.5±0.6,1.2±0.3, and 1.5±0.6, and for bladder wall: 1.6±0.1, 2.4±0.4, 0.8±0.6, and 1.5±0.5, for HDRBT, TOMO, CK, and RA, respectively. Conclusion: Contemporary EBRT modalities might be able to replace brachytherapy treatments for cervix cancer. While brachytherapy dose distributions feature high dose gradients, EBRT modalities provide highly conformal dose distributions to the target. However, it is still not clear whether a highly conformal dose or high gradient dose is more clinically relevant for the HRCTV in cervix cancer patients.« less

  9. Global latitudinal species diversity gradient in deep-sea benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Culver, Stephen J.; Buzas, Martin A.

    2000-02-01

    Global scale patterns of species diversity for modern deep-sea benthic foraminifera, an important component of the bathyal and abyssal meiofauna, are examined using comparable data from five studies in the Atlantic, ranging over 138° of latitude from the Norwegian Sea to the Weddell Sea. We show that a pattern of decreasing diversity with increasing latitude characterises both the North and South Atlantic. This pattern is confirmed for the northern hemisphere by independent data from the west-central North Atlantic and the Arctic basin. Species diversity in the North Atlantic northwards from the equator is variable until a sharp fall in the Norwegian Sea (ca. 65°N). In the South Atlantic species diversity drops from a maximum in latitudes less than 30°S and then decreases slightly from 40 to 70°S. For any given latitude, North Atlantic diversity is generally lower than in the South Atlantic. Both ecological and historical factors related to food supply are invoked to explain the formation and maintenance of the latitudinal gradient of deep-sea benthic foraminiferal species diversity. The gradient formed some 36 million years ago when global climatic cooling led to seasonally fluctuating food supply in higher latitudes.

  10. Optimization-based image reconstruction in x-ray computed tomography by sparsity exploitation of local continuity and nonlocal spatial self-similarity

    NASA Astrophysics Data System (ADS)

    Han-Ming, Zhang; Lin-Yuan, Wang; Lei, Li; Bin, Yan; Ai-Long, Cai; Guo-En, Hu

    2016-07-01

    The additional sparse prior of images has been the subject of much research in problems of sparse-view computed tomography (CT) reconstruction. A method employing the image gradient sparsity is often used to reduce the sampling rate and is shown to remove the unwanted artifacts while preserve sharp edges, but may cause blocky or patchy artifacts. To eliminate this drawback, we propose a novel sparsity exploitation-based model for CT image reconstruction. In the presented model, the sparse representation and sparsity exploitation of both gradient and nonlocal gradient are investigated. The new model is shown to offer the potential for better results by introducing a similarity prior information of the image structure. Then, an effective alternating direction minimization algorithm is developed to optimize the objective function with a robust convergence result. Qualitative and quantitative evaluations have been carried out both on the simulation and real data in terms of accuracy and resolution properties. The results indicate that the proposed method can be applied for achieving better image-quality potential with the theoretically expected detailed feature preservation. Project supported by the National Natural Science Foundation of China (Grant No. 61372172).

  11. Short-Term Effects of gamma-Irradiation on 1-Aminocyclopropane-1-Carboxylic Acid Metabolism in Early Climacteric Cherry Tomatoes : Comparison with Wounding.

    PubMed

    Larrigaudière, C; Latché, A; Pech, J C; Triantaphylidès, C

    1990-03-01

    gamma-Irradiation of early climacteric (breaker) cherry tomatoes (Lycopersicon pimpinellifollium L.) caused a sharp burst in ethylene production during the first hour. The extent of ethylene production was dose dependent and was maximum at about 3 kilograys. The content of 1-aminocyclopropane-1-carboxylic acid (ACC), followed the same evolution as ethylene production, while malonyl ACC increased steadily with time in irradiated fruits. The burst in ethylene production was accompanied by a sharp stimulation of ACC synthase activity which began 15 minutes after irradiation. The stimulation was completely prevented by cycloheximide, but not by actinomycin d or cordycepin. In contrast with irradiation, mechanical wounding continuously stimulated ethylene production over several hours. gamma-Irradiation and cordycepin applied to wounded tissues both caused the cessation of this continuous increase, but the initial burst was still persisting. These data suggest that gamma-irradiation, like wounding, stimulates the translation of preexisting mRNAs. It also reduces, at least temporarily, the subsequent transcription-dependent stimulation of ethylene production. gamma-Irradiation greatly inhibited the activity of ethylene-forming enzyme at doses higher than 1 kilogray. Such sensitivity is in accordance with a highly integrated membranebound enzyme.

  12. Short-Term Effects of γ-Irradiation on 1-Aminocyclopropane-1-Carboxylic Acid Metabolism in Early Climacteric Cherry Tomatoes 1

    PubMed Central

    Larrigaudière, Christian; Latché, Alain; Pech, Jean Claude; Triantaphylidès, Christian

    1990-01-01

    γ-Irradiation of early climacteric (breaker) cherry tomatoes (Lycopersicon pimpinellifollium L.) caused a sharp burst in ethylene production during the first hour. The extent of ethylene production was dose dependent and was maximum at about 3 kilograys. The content of 1-aminocyclopropane-1-carboxylic acid (ACC), followed the same evolution as ethylene production, while malonyl ACC increased steadily with time in irradiated fruits. The burst in ethylene production was accompanied by a sharp stimulation of ACC synthase activity which began 15 minutes after irradiation. The stimulation was completely prevented by cycloheximide, but not by actinomycin d or cordycepin. In contrast with irradiation, mechanical wounding continuously stimulated ethylene production over several hours. γ-Irradiation and cordycepin applied to wounded tissues both caused the cessation of this continuous increase, but the initial burst was still persisting. These data suggest that γ-irradiation, like wounding, stimulates the translation of preexisting mRNAs. It also reduces, at least temporarily, the subsequent transcription-dependent stimulation of ethylene production. γ-Irradiation greatly inhibited the activity of ethylene-forming enzyme at doses higher than 1 kilogray. Such sensitivity is in accordance with a highly integrated membranebound enzyme. PMID:16667318

  13. Voyager radio occultation by the Uranian rings: Structure, dynamics, and particle sizes. Ph.D. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Gresh, Donna Leigh

    1990-01-01

    Diffraction of Voyager 2's 3.6 and 13 cm wavelength microwaves by the Uranian rings is removed through an inverse Fresnel transform filtering procedure that accommodates the significant eccentricity of the rings. Resulting 50 m resolution profiles at two observation longitudes: (1) reveal remarkably detailed and longitudinally varying structure, (2) provide eccentricity gradient profiles of Rings alpha, beta, and epsilon which bring into question current theoretical models for observed rigid precession, and (3) suggest that two possible unseen satellites may confine some of the very sharp edges observed via resonant interactions.

  14. Numerical study of the small scale structures in Boussinesq convection

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1992-01-01

    Two-dimensional Boussinesq convection is studied numerically using two different methods: a filtered pseudospectral method and a high order accurate Essentially Nonoscillatory (ENO) scheme. The issue whether finite time singularity occurs for initially smooth flows is investigated. The numerical results suggest that the collapse of the bubble cap is unlikely to occur in resolved calculations. The strain rate corresponding to the intensification of the density gradient across the front saturates at the bubble cap. We also found that the cascade of energy to small scales is dominated by the formulation of thin and sharp fronts across which density jumps.

  15. Comprehensive numerical methodology for direct numerical simulations of compressible Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reckinger, Scott James; Livescu, Daniel; Vasilyev, Oleg V.

    A comprehensive numerical methodology has been developed that handles the challenges introduced by considering the compressive nature of Rayleigh-Taylor instability (RTI) systems, which include sharp interfacial density gradients on strongly stratified background states, acoustic wave generation and removal at computational boundaries, and stratification-dependent vorticity production. The computational framework is used to simulate two-dimensional single-mode RTI to extreme late-times for a wide range of flow compressibility and variable density effects. The results show that flow compressibility acts to reduce the growth of RTI for low Atwood numbers, as predicted from linear stability analysis.

  16. An experimental study of a three-dimensional shock wave/turbulent boundary-layer interaction at a hypersonic Mach number

    NASA Technical Reports Server (NTRS)

    Kussoy, M. I.; Horstman, K. C.; Kim, K.-S.

    1991-01-01

    Experimental data for a series of three-dimensional shock-wave/turbulent-boundary-layer interaction flows at Mach 8.2 are presented. The test bodies, composed of sharp fins fastened to a flat-plate test surface, were designed to generate flows with varying degrees of pressure gradient, boundary-layer separation, and turning angle. The data include surface-pressure, heat-transfer, and skin-friction distributions, as well as limited mean flowfield surveys both in the undisturbed and interaction regimes. The data were obtained for the purpose of validating computational models of these hypersonic interactions.

  17. Evidence that Polycyclic Aromatic Hydrocarbons in Two Carbonaceous Chondrites Predate Parent-Body Formation

    NASA Technical Reports Server (NTRS)

    Plows, F. L.; Elsila, J. E.; Zare, R. N.; Buseck, P. R.

    2003-01-01

    Organic material in meteorites provides insight into the cosmochemistry of the early solar system. The distribution of polycyclic aromatic hydrocarbons (PAHs) in the Allende and Murchison carbonaceous chondrites was investigated using spatially resolved microprobe laser-desorption laser-ionization mass spectrometry. Sharp chemical gradients of PAHs are associated with specific meteorite features. The ratios of various PAH intensities relative to the smallest PAH, naphthalene, are nearly constant across the sample. These findings suggest a common origin for PAHs dating prior to or contemporary with the formation of the parent body, consistent with proposed interstellar formation mechanisms.

  18. Adaptive mesh strategies for the spectral element method

    NASA Technical Reports Server (NTRS)

    Mavriplis, Catherine

    1992-01-01

    An adaptive spectral method was developed for the efficient solution of time dependent partial differential equations. Adaptive mesh strategies that include resolution refinement and coarsening by three different methods are illustrated on solutions to the 1-D viscous Burger equation and the 2-D Navier-Stokes equations for driven flow in a cavity. Sharp gradients, singularities, and regions of poor resolution are resolved optimally as they develop in time using error estimators which indicate the choice of refinement to be used. The adaptive formulation presents significant increases in efficiency, flexibility, and general capabilities for high order spectral methods.

  19. New 2D dilaton gravity for nonsingular black holes

    NASA Astrophysics Data System (ADS)

    Kunstatter, Gabor; Maeda, Hideki; Taves, Tim

    2016-05-01

    We construct a two-dimensional action that is an extension of spherically symmetric Einstein-Lanczos-Lovelock (ELL) gravity. The action contains arbitrary functions of the areal radius and the norm squared of its gradient, but the field equations are second order and obey Birkhoff’s theorem. In complete analogy with spherically symmetric ELL gravity, the field equations admit the generalized Misner-Sharp mass as the first integral that determines the form of the vacuum solution. The arbitrary functions in the action allow for vacuum solutions that describe a larger class of interesting nonsingular black hole spacetimes than previously available.

  20. Beam-plasma instability in inhomogeneous magnetic field and second order cyclotron resonance effects

    NASA Astrophysics Data System (ADS)

    Trakhtengerts, V. Y.; Hobara, Y.; Demekhov, A. G.; Hayakawa, M.

    1999-03-01

    A new analytical approach to cyclotron instability of electron beams with sharp gradients in velocity space (step-like distribution function) is developed taking into account magnetic field inhomogeneity and nonstationary behavior of the electron beam velocity. Under these conditions, the conventional hydrodynamic instability of such beams is drastically modified and second order resonance effects become important. It is shown that the optimal conditions for the instability occur for nonstationary quasimonochromatic wavelets whose frequency changes in time. The theory developed permits one to estimate the wave amplification and spatio-temporal characteristics of these wavelets.

  1. Development of high-accuracy convection schemes for sequential solvers

    NASA Technical Reports Server (NTRS)

    Thakur, Siddharth; Shyy, Wei

    1993-01-01

    An exploration is conducted of the applicability of such high resolution schemes as TVD to the resolving of sharp flow gradients using a sequential solution approach borrowed from pressure-based algorithms. It is shown that by extending these high-resolution shock-capturing schemes to a sequential solver that treats the equations as a collection of scalar conservation equations, the speed of signal propagation in the solution has to be coordinated by assigning the local convection speed as the characteristic speed for the entire system. A higher amount of dissipation is therefore needed to eliminate oscillations near discontinuities.

  2. Acousto-optic tunable filter chromatic aberration analysis and reduction with auto-focus system

    NASA Astrophysics Data System (ADS)

    Wang, Yaoli; Chen, Yuanyuan

    2018-07-01

    An acousto-optic tunable filter (AOTF) displays optical band broadening and sidelobes as a result of the coupling between the acoustic wave and optical waves of different wavelengths. These features were analysed by wave-vector phase matching between the optical and acoustic waves. A crossed-line test board was imaged by an AOTF multi-spectral imaging system, showing image blurring in the direction of diffraction and image sharpness in the orthogonal direction produced by the greater bandwidth and sidelobes in the former direction. Applying the secondary-imaging principle and considering the wavelength-dependent refractive index, focal length varies over the broad wavelength range. An automatic focusing method is therefore proposed for use in AOTF multi-spectral imaging systems. A new method for image-sharpness evaluation, based on improved Structure Similarity Index Measurement (SSIM), is also proposed, based on the characteristics of the AOTF imaging system. Compared with the traditional gradient operator, as same as it, the new evaluation function realized the evaluation between different image quality, thus could achieve the automatic focusing for different multispectral images.

  3. 150-μm Spatial Resolution Using Photon-Counting Detector Computed Tomography Technology: Technical Performance and First Patient Images.

    PubMed

    Leng, Shuai; Rajendran, Kishore; Gong, Hao; Zhou, Wei; Halaweish, Ahmed F; Henning, Andre; Kappler, Steffen; Baer, Matthias; Fletcher, Joel G; McCollough, Cynthia H

    2018-05-28

    The aims of this study were to quantitatively assess two new scan modes on a photon-counting detector computed tomography system, each designed to maximize spatial resolution, and to qualitatively demonstrate potential clinical impact using patient data. This Health Insurance Portability Act-compliant study was approved by our institutional review board. Two high-spatial-resolution scan modes (Sharp and UHR) were evaluated using phantoms to quantify spatial resolution and image noise, and results were compared with the standard mode (Macro). Patients were scanned using a conventional energy-integrating detector scanner and the photon-counting detector scanner using the same radiation dose. In first patient images, anatomic details were qualitatively evaluated to demonstrate potential clinical impact. Sharp and UHR modes had a 69% and 87% improvement in in-plane spatial resolution, respectively, compared with Macro mode (10% modulation-translation-function values of 16.05, 17.69, and 9.48 lp/cm, respectively). The cutoff spatial frequency of the UHR mode (32.4 lp/cm) corresponded to a limiting spatial resolution of 150 μm. The full-width-at-half-maximum values of the section sensitivity profiles were 0.41, 0.44, and 0.67 mm for the thinnest image thickness for each mode (0.25, 0.25, and 0.5 mm, respectively). At the same in-plane spatial resolution, Sharp and UHR images had up to 15% lower noise than Macro images. Patient images acquired in Sharp mode demonstrated better delineation of fine anatomic structures compared with Macro mode images. Phantom studies demonstrated superior resolution and noise properties for the Sharp and UHR modes relative to the standard Macro mode and patient images demonstrated the potential benefit of these scan modes for clinical practice.

  4. Interactions between cold and water limitation along a climate gradient produce sharp thresholds in ecosystem type, carbon balance, and water cycling

    NASA Astrophysics Data System (ADS)

    Kelly, A. E.; Goulden, M.; Fellows, A. W.

    2013-12-01

    California's Mediterranean climate supports a broad diversity of ecosystem types, including Sequoia forests in the mid-montane Sierra Nevada. Understanding how winter cold and summer drought interact to produce the lush forest in the Sierra is critical to predicting the impacts of projected climate change on California's ecosystems, water supply, and carbon cycling. We investigated how smooth gradients of temperature and water availability produced sharp thresholds in biomass, productivity, growing season, water use, and ultimately ecosystem type and function. We used the climate gradient of the western slope of the Sierra Nevada as a study system. Four eddy covariance towers were situated in the major ecosystem types of the Sierra Nevada at approximately 800-m elevation intervals. Eddy flux data were combined with remote sensing and direct measurements of biomass, productivity, soil available water, and evapotranspiration to understand how weather and available water control ecosystem production and function. We found that production at the high elevation lodgepole site at 2700 m was strongly limited by winter cold. Production at the low elevation oak woodland site at 400 m was strongly limited by summer drought. The yellow pine site at 1200 m was only 4 °C cooler than the oak woodland site, yet had an order of magnitude more biomass and productivity with year-round growth. The mixed conifer site at 2000 m is 3.5 °C warmer than the lodgepole forest, yet also has higher biomass, ten times higher productivity, and year-round growth. We conclude that there is a broad climatological 'sweet spot' within the Sierra Nevada, in which the Mediterranean climate can support large-statured forest with high growth rates. The range of the mid-elevation forest was sharply bounded by water limitation at the lower edge and cold limitation at the upper edge despite small differences in precipitation and temperature across these boundaries. Our results suggest that small changes in precipitation or winter warming could markedly alter ecosystem structure and function as well as carbon and water cycling in the Sierra Nevada.

  5. Unusually sharp paramagnetic phase transition in thin film Fe3Pt invar

    NASA Astrophysics Data System (ADS)

    Drisko, Jasper; Cumings, John

    2013-03-01

    Invar alloys, typically 3d transition metal rich systems, are most commonly known for their extremely low coefficients of thermal expansion (CTE) over a wide range of temperatures close to room temperature. This anomalous behavior in the CTE lends Invar to a variety of important applications in precision mechanical devices, scientific instruments, and sensors, among others. Many theoretical models of Invar have been proposed over the years, the most promising of which is a system described by two coexisting phases, one high-spin high-volume and the other low-spin low-volume, that compete to stabilize the volume of the material as the temperature is changed. However, no theory has yet been able to explain all experimental observations across the range of Invar alloys, especially at finite temperature. We have fabricated thin films of a Fe3Pt Invar alloy and investigate them using Lorentz Transmission Electron Microscopy (TEM). 23nm films are deposited onto SiN membrane substrates via radio-frequency magnetron sputtering from a pure Fe target decorated with Pt pieces. We observe novel magnetic domain structures and an unusually sharp phase transition between ferromagnetic (FM) and paramagnetic (PM) regions of the film under a temperature gradient. This sharp transition suggests that the FM-to-PM transition may be first order, perhaps containing a structural-elastic component to the order parameter. However, electron diffraction reveals that both the FM and PM regions have the same FCC crystal structure.

  6. Effects of Phytoplankton Growth Phase on Delayed Settling Behavior of Marine Snow Aggregates at Sharp Density Transitions

    NASA Astrophysics Data System (ADS)

    Proctor, K. W.; Montgomery, Q. W.; Prairie, J. C.

    2016-02-01

    Marine snow aggregates play a fundamental role in the marine carbon cycle. Since marine snow aggregates are larger and thus sink faster than individual phytoplankton, aggregates often dominate carbon flux. Previous studies have shown that marine snow aggregates will significantly decrease their settling velocity when passing through sharp density transitions within the ocean, a phenomenon defined as delayed settling. Given the importance of aggregate settling to carbon export, these small-scale changes in aggregate settling dynamics may have significant impacts on the efficiency of the biological pump. However, there is still a lack of knowledge about how different physical properties of aggregates can affect this delayed settling. In this study, we investigated the effect of phytoplankton growth phase on delayed settling behavior. Using phytoplankton cultures stopped at four different growth phases, we formed marine snow aggregates in the laboratory in rotating cylindrical tanks. We then observed individual aggregates as they settled through a stratified tank. We will present data which illustrates that aggregates experience greatly reduced settling rates when passing through sharp density gradients and that the growth phase of the phytoplankton used to form these aggregates has a significant effect on this delayed settling behavior. A thorough understanding of the impact of phytoplankton growth phase on the delayed settling behavior of marine snow will offer insight into the way phytoplankton growth phase may influence the efficiency of the biological pump, carbon flux, and the carbon cycle as a whole.

  7. Creation of a sharp compositional interface in the Pu`u `O`o shallow magma reservoir, Kilauea volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E.; Garcia, M. O.

    2006-12-01

    Lavas from the early episodes of the Pu`u `O`O eruption (1983-85) of Kilauea Volcano on the island of Hawai'i display rapid compositional variation over short periods for some episodes, especially from the well sampled episode 30 with ~2 wt% MgO variation in <4 hours. Little chemical variation is observed within the episode 30 lavas before or after this abrupt change suggesting a sharp compositional interface within the Pu`u `O`o dike-like shallow reservoir. The change in lava composition throughout the eruption is due to changes in cooling within the dike-like shallow reservoir of Pu`u `O`o. Potential explanations for a sharp interface, such as a reservoir of changing width and changing country rock thermal properties, are evaluated using a simple thermal model of a dike-like body with spatially variable thermal conductivity. The model that best reproduces the compositional data involves a change in thermal conductivity from 2.7 to 11 W m-1 C-1. which is consistent with deep drill hole data in the east rift zone. The change in thermal conductivity may indicate that fluid flow in the east rift zone is restricted at depth possibly by increasing numbers of dikes acting as acuacludes or decreasing pore space due to formation of secondary minerals. Results suggest that country rock thermal gradients can strongly influence magma chemistry in shallow reservoirs.

  8. Modeling the sharp compositional interface in the Pùu ̀Ṑō magma reservoir, Kīlauea volcano, Hawaìi

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; Garcia, Michael O.

    2007-05-01

    Lavas from the early episodes of the Pu`u `Ō`ō eruption (1983-1985) of Kīlauea Volcano on the island of Hawai`i display rapid compositional variation over short periods for some episodes, especially the well-sampled episode 30 with ˜2 wt% MgO variation in <4 hours. Little chemical variation is observed within the episode 30 lavas before or after this abrupt change, suggesting a sharp compositional interface within the Pu`u `Ō`ō dike-like shallow reservoir. Cooling-induced crystal fractionation in this reservoir is thought to be the main control on intraepisode compositional variation. Potential explanations for a sharp interface, such as changing reservoir width and wall rock thermal properties, are evaluated using a simple thermal model of a dike-like body surrounded by wall rock with spatially variable thermal conductivity. The model that best reproduces the compositional data involves a change in wall rock thermal conductivity from 2.7 to 9 W m-1 C-1, which is consistent with deep drill hole data in the east rift zone. The change in thermal conductivity may indicate that fluid flow in the east rift zone is restricted to shallow depths possibly by increasing numbers of dikes acting as aquicludes and/or decreasing pore space due to formation of secondary minerals. Results suggest that wall rock thermal gradients can strongly influence magma chemistry in shallow reservoirs.

  9. Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires.

    PubMed

    Prat-Guitart, Nuria; Rein, Guillermo; Hadden, Rory M; Belcher, Claire M; Yearsley, Jon M

    2016-12-01

    The gravimetric moisture content of peat is the main factor limiting the ignition and spread propagation of smouldering fires. Our aim is to use controlled laboratory experiments to better understand how the spread of smouldering fires is influenced in natural landscape conditions where the moisture content of the top peat layer is not homogeneous. In this paper, we study for the first time the spread of peat fires across a spatial matrix of two moisture contents (dry/wet) in the laboratory. The experiments were undertaken using an open-top insulated box (22×18×6cm) filled with milled peat. The peat was ignited at one side of the box initiating smouldering and horizontal spread. Measurements of the peak temperature inside the peat, fire duration and longwave thermal radiation from the burning samples revealed important local changes of the smouldering behaviour in response to sharp gradients in moisture content. Both, peak temperatures and radiation in wetter peat (after the moisture gradient) were sensitive to the drier moisture condition (preceding the moisture gradient). Drier peat conditions before the moisture gradient led to higher temperatures and higher radiation flux from the fire during the first 6cm of horizontal spread into a wet peat patch. The total spread distance into a wet peat patch was affected by the moisture content gradient. We predicted that in most peat moisture gradients of relevance to natural ecosystems the fire self-extinguishes within the first 10cm of horizontal spread into a wet peat patch. Spread distances of more than 10cm are limited to wet peat patches below 160% moisture content (mass of water per mass of dry peat). We found that spatial gradients of moisture content have important local effects on the horizontal spread and should be considered in field and modelling studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar

    NASA Astrophysics Data System (ADS)

    Anderson, Dylan; Cox, Dan; Mieras, Ryan; Puleo, Jack A.; Hsu, Tian-Jian

    2017-06-01

    Horizontal and vertical pressure gradients may be important physical mechanisms contributing to onshore sediment transport beneath steep, near-breaking waves in the surf zone. A barred beach was constructed in a large-scale laboratory wave flume with a fixed profile containing a mobile sediment layer on the crest of the sandbar. Horizontal and vertical pore pressure gradients were obtained by finite differences of measurements from an array of pressure transducers buried within the upper several centimeters of the bed. Colocated observations of erosion depth were made during asymmetric wave trials with wave heights between 0.10 and 0.98 m, consistently resulting in onshore sheet flow sediment transport. The pore pressure gradient vector within the bed exhibited temporal rotations during each wave cycle, directed predominantly upward under the trough and then rapidly rotating onshore and downward as the wavefront passed. The magnitude of the pore pressure gradient during each phase of rotation was correlated with local wave steepness and relative depth. Momentary bed failures as deep as 20 grain diameters were coincident with sharp increases in the onshore-directed pore pressure gradients, but occurred at horizontal pressure gradients less than theoretical critical values for initiation of the motion for compact beds. An expression combining the effects of both horizontal and vertical pore pressure gradients with bed shear stress and soil stability is used to determine that failure of the bed is initiated at nonnegligible values of both forces.Plain Language SummaryThe pressure gradient present within the seabed beneath breaking waves may be an important physical mechanism transporting sediment. A large-scale laboratory was used to replicate realistic surfzone conditions in controlled tests, allowing for horizontal and vertical pressure gradient magnitudes and the resulting sediment bed response to be observed with precise instruments. Contrary to previous studies, the pore pressure gradient exhibited a range of values when erosion occurred, which indicates that erosion is the result of multiple physical mechanisms competing to secure or destabilize the sediment bed. The observations provide a better understanding of the forces acting within the sediment, and could improve parameters used in coastal sediment transport models to better predict coastal change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JOM....69h1269Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JOM....69h1269Z"><span>Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zimmermann, G.; Sturz, L.; Nguyen-Thi, H.; Mangelinck-Noel, N.; Li, Y. Z.; Gandin, C.-A.; Fleurisson, R.; Guillemot, G.; McFadden, S.; Mooney, R. P.; Voorhees, P.; Roosz, A.; Ronaföldi, A.; Beckermann, C.; Karma, A.; Chen, C.-H.; Warnken, N.; Saad, A.; Grün, G.-U.; Grohn, M.; Poitrault, I.; Pehl, T.; Nagy, I.; Todt, D.; Minster, O.; Sillekens, W.</p> <p>2017-08-01</p> <p>During casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton-finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.474..110T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.474..110T"><span>Multi-mode Li diffusion in natural zircons: Evidence for diffusion in the presence of step-function concentration boundaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, Ming; Rudnick, Roberta L.; McDonough, William F.; Bose, Maitrayee; Goreva, Yulia</p> <p>2017-09-01</p> <p>Micron- to submicron-scale observations of Li distribution and Li isotope composition profiles can be used to infer the mechanisms of Li diffusion in natural zircon. Extreme fractionation (20-30‰) within each single crystal studied here confirms that Li diffusion commonly occurs in zircon. Sharp Li concentration gradients frequently seen in zircons suggest that the effective diffusivity of Li is significantly slower than experimentally determined (Cherniak and Watson, 2010; Trail et al., 2016), otherwise the crystallization/metamorphic heating of these zircons would have to be unrealistically fast (years to tens of years). Charge coupling with REE and Y has been suggested as a mechanism that may considerably reduce Li diffusivity in zircon (Ushikubo et al., 2008; Bouvier et al., 2012). We show that Li diffused in the direction of decreasing Li/Y ratio and increasing Li concentration (uphill diffusion) in one of the zircons, demonstrating charge coupling with REE and Y. Quantitative modeling reveals that Li may diffuse in at least two modes in natural zircons: one being slow and possibly coupled with REE+Y, and the other one being fast and not coupled with REE+Y. The partitioning of Li between these two modes during its diffusion may depend on the pre-diffusion substitution mechanism of REE and Y in the zircon lattice. Based on our results, sharp Li concentration gradients are not indicative of limited diffusion, and can be preserved at temperatures >700 °C on geologic timescales. Finally, large δ7 Li variations observed in the Hadean Jack Hills zircons may record kinetic fractionation, rather than a record of ancient intense weathering in the granite source materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T11A0441S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T11A0441S"><span>Constraints on seismic anisotropy beneath the Appalachian Mountains from Love-to-Rayleigh wave scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Servali, A.; Long, M. D.; Benoit, M.</p> <p>2017-12-01</p> <p>The eastern margin of North America has been affected by a series of mountain building and rifting events that have likely shaped the deep structure of the lithosphere. Observations of seismic anisotropy can provide insight into lithospheric deformation associated with these past tectonic events, as well as into present-day patterns of mantle flow beneath the passive margin. Previous work on SKS splitting beneath eastern North America has revealed fast splitting directions parallel to the strike of the Appalachian orogen in the central and southern Appalachians. A major challenge to the interpretation of SKS splitting measurements, however, is the lack of vertical resolution; isolating anisotropic structures at different depths is therefore difficult. Complementary constraints on the depth distribution of anisotropy can be provided by surface waves. In this study, we analyze the scattering of Love wave energy to Rayleigh waves, which is generated via sharp lateral gradients in anisotropic structure along the ray path. The scattered phases, known as quasi-Love (QL) waves, exhibit amplitude behavior that depend on the strength of the anisotropic contrast as well as the angle between the propagation azimuth and the anisotropic symmetry axis. We analyze data collected by the dense MAGIC seismic array across the central Appalachians. We examine teleseismic earthquakes of magnitude 6.7 and greater over a range of backazimuths, and isolate surface waves at periods between 100 and 500 seconds. We compare the data to synthetic seismograms generated by the Princeton Global ShakeMovie initiative to identify anomalous QL arrivals. We find evidence significant QL arrivals at MAGIC stations, with amplitudes depending on propagation azimuth and station location. Preliminary results are consistent with a sharp lateral gradient in seismic anisotropy across the Appalachian Mountains in the depth range between 100-200 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvA..90c3628J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvA..90c3628J"><span>Optimal quantum control of Bose-Einstein condensates in magnetic microtraps: Comparison of gradient-ascent-pulse-engineering and Krotov optimization schemes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jäger, Georg; Reich, Daniel M.; Goerz, Michael H.; Koch, Christiane P.; Hohenester, Ulrich</p> <p>2014-09-01</p> <p>We study optimal quantum control of the dynamics of trapped Bose-Einstein condensates: The targets are to split a condensate, residing initially in a single well, into a double well, without inducing excitation, and to excite a condensate from the ground state to the first-excited state of a single well. The condensate is described in the mean-field approximation of the Gross-Pitaevskii equation. We compare two optimization approaches in terms of their performance and ease of use; namely, gradient-ascent pulse engineering (GRAPE) and Krotov's method. Both approaches are derived from the variational principle but differ in the way the control is updated, additional costs are accounted for, and second-order-derivative information can be included. We find that GRAPE produces smoother control fields and works in a black-box manner, whereas Krotov with a suitably chosen step-size parameter converges faster but can produce sharp features in the control fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDD35005K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDD35005K"><span>Formation of temperature front in stably stratified turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kimura, Yoshifumi; Sullivan, Peter; Herring, Jackson</p> <p>2016-11-01</p> <p>An important feature of stably stratified turbulence is the significant influence of internal gravity waves which makes stably stratified turbulence unique compared to homogeneous isotropic turbulence. In this paper, we investigate the genesis of temperature fronts-a crucial subject both practically and fundamentally-in stably stratified turbulence using Direct Numerical Simulations (DNS) of the Navier-Stokes equation under the Boussinesq approximation with 10243 grid points. Vertical profiles of temperature fluctuations show almost vertically periodic sawtooth wavy structures with negative and positive layers stacked together with clear boundaries implying a sharp temperature fronts. The sawtooth waves consist of gradual decreasing temperature fluctuations with rapid recovery to a positive value as the frontal boundary is crossed vertically. This asymmetry of gradients comes from the structure that warm temperature region lies on top of cool temperature region, and can be verified in the skewed probability density function (PDF) of vertical temperature gradient. We try to extract the flow structures and mechanism for the formation and maintenance of the strong temperature front numerically.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004APS..DFD.AA003M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004APS..DFD.AA003M"><span>The Effect of Hemodynamics on Cerebral Aneurysm Morphology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Metcalfe, Ralph; Mantha, Aishwarya; Karmonik, Christof; Strother, Charles</p> <p>2004-11-01</p> <p>One of the difficulties in applying principles of hemodynamics to the study of blood flow in aneurysms are the drastic variations in possible shape of both the aneurysms and the parent arteries in the region of interest. We have taken data from three para-opthalmic internal carotid artery aneurysms using 3D-digital subtraction angiography (3D-DSA) and performed CFD simulations of steady and unsteady flows through the three different cases using the same pressure gradients and pulsatile flow waveforms (based on the Ku model for flow through the Carotid bifurcation). We have found that the total pressure differential within the aneurysms is consistent with the direction of flow, and that the dynamic pressure gradient within the aneurysm is very small compared with the static pressure variations. Wall shear stresses were highest near regions of sharp arterial curvature, but always remained low inside the aneurysm. These results suggest a more complex role for hemodynamics in aneurysm generation, growth and rupture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760005953','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760005953"><span>Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation with reference to aeronautical operating systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frost, W.; Harper, W. L.</p> <p>1975-01-01</p> <p>Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.). Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow and highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient. Discussion of the effects of the disturbed wind field in CTOL and STOL aircraft flight path and obstruction clearance standards is given. The results indicate that closer inspection of these presently recommended standards as influenced by wind over irregular terrains is required.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4270414','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4270414"><span>Individual Template-Stripped Conductive Gold Pyramids for Tip-Enhanced Dielectrophoresis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2015-01-01</p> <p>Gradient fields of optical, magnetic, or electrical origin are widely used for the manipulation of micro- and nanoscale objects. Among various device geometries to generate gradient forces, sharp metallic tips are one of the most effective. Surface roughness and asperities present on traditionally produced tips reduce trapping efficiencies and limit plasmonic applications. Template-stripped, noble metal surfaces and structures have sub-nm roughness and can overcome these limits. We have developed a process using a mix of conductive and dielectric epoxies to mount template-stripped gold pyramids on tungsten wires that can be integrated with a movable stage. When coupled with a transparent indium tin oxide (ITO) electrode, the conductive pyramidal tip functions as a movable three-dimensional dielectrophoretic trap which can be used to manipulate submicrometer-scale particles. We experimentally demonstrate the electrically conductive functionality of the pyramidal tip by dielectrophoretic manipulation of fluorescent beads and concentration of single-walled carbon nanotubes, detected with fluorescent microscopy and Raman spectroscopy. PMID:25541619</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NIMPA.784..570S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NIMPA.784..570S"><span>Compressed sensing with gradient total variation for low-dose CBCT reconstruction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Seongchae; Huh, Young; Park, Justin C.; Lee, Byeonghun; Baek, Junghee; Kim, Eunyoung</p> <p>2015-06-01</p> <p>This paper describes the improvement of convergence speed with gradient total variation (GTV) in compressed sensing (CS) for low-dose cone-beam computed tomography (CBCT) reconstruction. We derive a fast algorithm for the constrained total variation (TV)-based a minimum number of noisy projections. To achieve this task we combine the GTV with a TV-norm regularization term to promote an accelerated sparsity in the X-ray attenuation characteristics of the human body. The GTV is derived from a TV and enforces more efficient computationally and faster in convergence until a desired solution is achieved. The numerical algorithm is simple and derives relatively fast convergence. We apply a gradient projection algorithm that seeks a solution iteratively in the direction of the projected gradient while enforcing a non-negatively of the found solution. In comparison with the Feldkamp, Davis, and Kress (FDK) and conventional TV algorithms, the proposed GTV algorithm showed convergence in ≤18 iterations, whereas the original TV algorithm needs at least 34 iterations in reducing 50% of the projections compared with the FDK algorithm in order to reconstruct the chest phantom images. Future investigation includes improving imaging quality, particularly regarding X-ray cone-beam scatter, and motion artifacts of CBCT reconstruction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23257239','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23257239"><span>Algorithms for the optimization of RBE-weighted dose in particle therapy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Horcicka, M; Meyer, C; Buschbacher, A; Durante, M; Krämer, M</p> <p>2013-01-21</p> <p>We report on various algorithms used for the nonlinear optimization of RBE-weighted dose in particle therapy. Concerning the dose calculation carbon ions are considered and biological effects are calculated by the Local Effect Model. Taking biological effects fully into account requires iterative methods to solve the optimization problem. We implemented several additional algorithms into GSI's treatment planning system TRiP98, like the BFGS-algorithm and the method of conjugated gradients, in order to investigate their computational performance. We modified textbook iteration procedures to improve the convergence speed. The performance of the algorithms is presented by convergence in terms of iterations and computation time. We found that the Fletcher-Reeves variant of the method of conjugated gradients is the algorithm with the best computational performance. With this algorithm we could speed up computation times by a factor of 4 compared to the method of steepest descent, which was used before. With our new methods it is possible to optimize complex treatment plans in a few minutes leading to good dose distributions. At the end we discuss future goals concerning dose optimization issues in particle therapy which might benefit from fast optimization solvers.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PMB....58..275H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PMB....58..275H"><span>Algorithms for the optimization of RBE-weighted dose in particle therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horcicka, M.; Meyer, C.; Buschbacher, A.; Durante, M.; Krämer, M.</p> <p>2013-01-01</p> <p>We report on various algorithms used for the nonlinear optimization of RBE-weighted dose in particle therapy. Concerning the dose calculation carbon ions are considered and biological effects are calculated by the Local Effect Model. Taking biological effects fully into account requires iterative methods to solve the optimization problem. We implemented several additional algorithms into GSI's treatment planning system TRiP98, like the BFGS-algorithm and the method of conjugated gradients, in order to investigate their computational performance. We modified textbook iteration procedures to improve the convergence speed. The performance of the algorithms is presented by convergence in terms of iterations and computation time. We found that the Fletcher-Reeves variant of the method of conjugated gradients is the algorithm with the best computational performance. With this algorithm we could speed up computation times by a factor of 4 compared to the method of steepest descent, which was used before. With our new methods it is possible to optimize complex treatment plans in a few minutes leading to good dose distributions. At the end we discuss future goals concerning dose optimization issues in particle therapy which might benefit from fast optimization solvers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25652498','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25652498"><span>Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI-LINAC systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gargett, Maegan; Oborn, Brad; Metcalfe, Peter; Rosenfeld, Anatoly</p> <p>2015-02-01</p> <p>MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named "magic plate," for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. geant4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm(3)) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm(2) area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm(2) photon field size. The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI-linear accelerator systems. In the in-line orientation, the silicon dose is directly proportional to the water dose. In the perpendicular orientation, there is a shift in dose response relative to water in the highest dose gradient regions, at the edge of jaw-defined and single-segment MLC fields. The trend was not observed in-field for an IMRT beam. The array is expected to be a valuable tool in MRIgRT dosimetry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22413450-monte-carlo-simulation-dose-response-novel-silicon-diode-array-use-hybrid-mrilinac-systems','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22413450-monte-carlo-simulation-dose-response-novel-silicon-diode-array-use-hybrid-mrilinac-systems"><span>Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI–LINAC systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gargett, Maegan, E-mail: mg406@uowmail.edu.au; Rosenfeld, Anatoly; Oborn, Brad</p> <p>2015-02-15</p> <p>Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-linemore » and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI–linear accelerator systems. In the in-line orientation, the silicon dose is directly proportional to the water dose. In the perpendicular orientation, there is a shift in dose response relative to water in the highest dose gradient regions, at the edge of jaw-defined and single-segment MLC fields. The trend was not observed in-field for an IMRT beam. The array is expected to be a valuable tool in MRIgRT dosimetry.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4807719','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4807719"><span>Drug Therapy for Hypertrophic Cardiomypathy: Physiology and Practice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>V. Sherrid, Mark</p> <p>2016-01-01</p> <p>HCM is the most common inherited heart condition occurring in 1:500 individuals in the general population. Left ventricular outflow obstruction at rest or after provocation occurs in 2/3 of HCM patients and is a frequent cause of limiting symptoms. Pharmacologic therapy is the first-line treatment for obstruction, and should be aggressively pursued before application of invasive therapy. Beta-blockade is given first, and up-titrated to decrease resting heart rate to between 50 and 60 beats per minute. However, beta-blockade is not expected to decrease resting gradients; its effect rests on decreasing the rise in gradient that accompanies exercise. For patients who fail beta-blockade the addition of oral disopyramide in adequate dose often will decrease resting gradients and offer meaningful relief of symptoms. Disopyramide vagolytic side effects, if they occur, can be greatly mitigated by simultaneous administration of oral pyridostigmine. This combination allows adequate dosing of disopyramide to achieve therapeutic goals. Verapamil utility in obstructive HCM with high resting gradients is limited by its vasodilating effects that can, infrequently, worsen gradient and symptoms. As such, we tend to avoid it in patients with high gradients and limiting heart failure symptoms. In a head-to-head comparison of intravenous drug administration in individual obstructive HCM patients the relative efficacy for lowering gradient was disopyramide > beta-blockade > verapamil. Severe symptoms in non-obstructive HCM are caused by fibrosis or severe myocyte disarray, and often by very small LV chamber size. Severe symptoms caused by these anatomic and histologic abnormalities, in the absence of obstruction, are less amenable to current pharmacotherapy. New pharmacotherapeutic approaches to HCM are on the horizon, that are to be evaluated in formal therapeutic trials. PMID:26818487</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18363806','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18363806"><span>Fast effects of glucocorticoids on memory-related network oscillations in the mouse hippocampus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weiss, E K; Krupka, N; Bähner, F; Both, M; Draguhn, A</p> <p>2008-05-01</p> <p>Transient or lasting increases in glucocorticoids accompany deficits in hippocampus-dependent memory formation. Recent data indicate that the formation and consolidation of declarative and spatial memory are mechanistically related to different patterns of hippocampal network oscillations. These include gamma oscillations during memory acquisition and the faster ripple oscillations (approximately 200 Hz) during subsequent memory consolidation. We therefore analysed the effects of acutely applied glucocorticoids on network activity in mouse hippocampal slices. Evoked field population spikes and paired-pulse responses were largely unaltered by corticosterone or cortisol, respectively, despite a slight increase in maximal population spike amplitude by 10 microm corticosterone. Several characteristics of sharp waves and superimposed ripple oscillations were affected by glucocorticoids, most prominently the frequency of spontaneously occurring sharp waves. At 0.1 microm, corticosterone increased this frequency, whereas maximal (10 microm) concentrations led to a reduction. In addition, gamma oscillations became slightly faster and less regular in the presence of high doses of corticosteroids. The present study describes acute effects of glucocorticoids on sharp wave-ripple complexes and gamma oscillations in mouse hippocampal slices, revealing a potential background for memory deficits in the presence of elevated levels of these hormones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27126304','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27126304"><span>Functional neurotoxicity evaluation of noribogaine using video-EEG in cynomolgus monkeys.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Authier, Simon; Accardi, Michael V; Paquette, Dominique; Pouliot, Mylène; Arezzo, Joseph; Stubbs, R John; Gerson, Ronald J; Friedhoff, Lawrence T; Weis, Holger</p> <p>2016-01-01</p> <p>Continuous video-electroencephalographic (EEG) monitoring remains the gold standard for seizure liability assessments in preclinical drug safety assessments. EEG monitored by telemetry was used to assess the behavioral and EEG effects of noribogaine hydrochloride (noribogaine) in cynomolgus monkeys. Noribogaine is an iboga alkaloid being studied for the treatment of opioid dependence. Six cynomolgus monkeys (3 per gender) were instrumented with EEG telemetry transmitters. Noribogaine was administered to each monkey at both doses (i.e., 160 and 320mg/kg, PO) with an interval between dosing of at least 6days, and the resulting behavioral and EEG effects were evaluated. IV pentylenetetrazol (PTZ), served as a positive control for induced seizures. The administration of noribogaine at either of the doses evaluated was not associated with EEG evidence of seizure or with EEG signals known to be premonitory signs of increased seizure risk (e.g., sharp waves, unusual synchrony, shifts to high-frequency patterns). Noribogaine was associated with a mild reduction in activity levels, increased scratching, licking and chewing, and some degree of poor coordination and related clinical signs. A single monkey exhibited brief myoclonic movements that increased in frequency at the high dose, but which did not appear to generalize, cluster or to be linked with EEG abnormalities. Noribogaine was also associated with emesis and partial anorexia. In contrast, PTZ was associated with substantial pre-ictal EEG patterns including large amplitude, repetitive sharp waves leading to generalized seizures and to typical post-ictal EEG frequency attenuation. EEG patterns were within normal limits following administration of noribogaine at doses up to 320mg/kg with concurrent clinical signs that correlated with plasma exposures and resolved by the end of the monitoring period. PTZ was invariably associated with EEG paroxysmal activity leading to ictal EEG. In the current study, a noribogaine dose of 320mg/kg was considered to be the EEG no observed adverse effect level (NOAEL) in conscious freely moving cynomolgus monkeys. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25179163','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25179163"><span>Increasing food deprivation relative to baseline influences D-amphetamine dose-response gradients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lotfizadeh, Amin D; Zimmermann, Zachary J; Watkins, Erin E; Edwards, Timothy L; Poling, Alan</p> <p>2014-10-01</p> <p>Several studies using non-pharmacological discriminative stimuli have found that stimulus control, as evident in generalization gradients, changes when motivation for (i.e., deprivation of) the relevant reinforcer is altered. Drug-discrimination studies, however, have not consistently revealed such an effect. A procedural detail that may account for the lack of a reliable effect in drug-discrimination studies is that motivation was characteristically reduced relative to the training condition in these studies. The present experiment examined how substantially increasing motivation affects D-amphetamine discrimination. Rats initially were trained to discriminate D-amphetamine (1.0 mg/kg) from vehicle (0 mg/kg) injections under 22-h food deprivation conditions. Dose-response gradients were then obtained under 22-h and 46-h deprivation levels. The ED50 was significantly higher with greater deprivation. This finding suggests that increasing motivation relative to the training condition may reduce stimulus control by drugs, while decreasing it may sharpen stimulus control. Copyright © 2014. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22339878-su-dosimetric-comparison-hdr-brachytherapy-intensity-modulated-proton-therapy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22339878-su-dosimetric-comparison-hdr-brachytherapy-intensity-modulated-proton-therapy"><span>SU-E-T-124: Dosimetric Comparison of HDR Brachytherapy and Intensity Modulated Proton Therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wu, J; Wu, H; Das, I</p> <p>2014-06-01</p> <p>Purpose: Brachytherapy is known to be able to deliver more radiation dose to tumor while minimizing radiation dose to surrounding normal tissues. Proton therapy also provides superior dose distribution due to Bragg peak. Since both HDR and Intensity Modulated Proton Therapy (IMPT) are beneficial for their quick dose drop off, our goal in this study is to compare the pace of dose gradient drop-off between HDR and IMPT plans based on the same CT image data-set. In addition, normal tissues sparing were also compared among HDR, IMPT and SBRT. Methods: Five cervical cancer cases treated with EBRT + HDR boostmore » combination with Tandem and Ovoid applicator were used for comparison purpose. Original HDR plans with prescribed dose of 5.5 Gy x 5 fractions were generated and optimized. The 100% isodose line of HDR plans was converted to a dose volume, and treated as CTV for IMPT and SBRT planning. The same HDR CT scans were also used for IMPT plan and SBRT plan for direct comparison. The philosophy of the IMPT and SBRT planning was to create the same CTV coverage as HDR plans. All three modalities treatment plans were compared to each other with a set of predetermined criteria. Results: With similar target volume coverage in cervix cancer boost treatment, HDR provides a slightly sharper dose drop-off from 100% to 50% isodose line, averagely in all directions compared to IMPT. However, IMPT demonstrated more dose gradient drop-off at the junction of the target and normal tissues by providing more normal tissue sparing and superior capability to reduce integral dose. Conclusion: IMPT is capable of providing comparable dose drop-off as HDR. IMPT can be explored as replacement for HDR brachytherapy in various applications.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29330375','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29330375"><span>Intra-Specific Latitudinal Clines in Leaf Carbon, Nitrogen, and Phosphorus and their Underlying Abiotic Correlates in Ruellia Nudiflora.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abdala-Roberts, Luis; Covelo, Felisa; Parra-Tabla, Víctor; Terán, Jorge C Berny Mier Y; Mooney, Kailen A; Moreira, Xoaquín</p> <p>2018-01-12</p> <p>While plant intra-specific variation in the stoichiometry of nutrients and carbon is well documented, clines for such traits have been less studied, despite their potential to reveal the mechanisms underlying such variation. Here we analyze latitudinal variation in the concentration of leaf nitrogen (N), phosphorus (P), carbon (C) and their ratios across 30 populations of the perennial herb Ruellia nudiflora. In addition, we further determined whether climatic and soil variables underlie any such latitudinal clines in leaf traits. The sampled transect spanned 5° latitude (ca. 900 km) and exhibited a four-fold precipitation gradient and 2 °C variation in mean annual temperature. We found that leaf P concentration increased with precipitation towards lower latitudes, whereas N and C did not exhibit latitudinal clines. In addition, N:P and C:P decreased towards lower latitudes and latitudinal variation in the former was weakly associated with soil conditions (clay content and cation exchange capacity); C:N did not exhibit a latitudinal gradient. Overall, these results emphasize the importance of addressing and disentangling the simultaneous effects of abiotic factors associated with intra-specific clines in plant stoichiometric traits, and highlight the previously underappreciated influence of abiotic factors on plant nutrients operating under sharp abiotic gradients over smaller spatial scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120001337','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120001337"><span>Asymmetric Uncertainty Expression for High Gradient Aerodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pinier, Jeremy T</p> <p>2012-01-01</p> <p>When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A33L..07G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A33L..07G"><span>The effects of SST Gradients on Tropical Convective Systems and Implications for Tropical Cyclogenesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glazer, R.; Bourassa, M. A.; Hart, R. E.</p> <p>2013-12-01</p> <p>It has long been known that generally the warmer the sea surface temperature (SST), the more possible tropical cyclone (TC) genesis is, assuming the atmosphere is supportive. The conventional wisdom has been that - apart from what the TC cools through upwelling -- one value of SST represents the state of the ocean surface in the region of the storm's inner circulation. With the advent of the satellite era and fine resolution SST datasets now becoming available, we know that in reality there are gradients of SST across which developing TCs move. The influence of those gradients on tropical convection and TC genesis is largely unknown at this time. Previous studies have shown that SST gradients can significantly impact the overlying ocean surface winds leading to areas of enhanced convergence/divergence and Vorticity (Chelton et al. 2004; O'Neill et al. 2005, 2010). The magnitude of this effect approximately increases as the surface wind increases. Work by Minobe et al. (2008) concluded that a sharp SST Gradient, over the Gulf Stream for instance, could produce enough surface wind convergence to maintain a band of precipitation along the ocean front. An analysis of satellite derived SST data over the Atlantic shows that it is not uncommon for SST gradients of 2 C/200km or more to exist in the immediate environment of a Tropical System. The authors seek to understand whether the conclusions made in previous works can be applied in the case of a developing Tropical System and whether SST Gradients exist in the Tropical Atlantic to a degree that would influence the cyclogenesis process. To address this, the effects of SST gradients on tropical cyclogenesis processes are investigated using model simulations of the Weather Research and Forecasting Model (WRF). WRF is run at cloud permitting scales (2km) for real cases of co-location between a tropical system and an SST gradient exceeding 2 C/200km in the environment of the system. In subsequent runs to this control run, the SSTs are modified to give a smaller or larger SST Gradient with the same atmospheric conditions. All cases are chosen from Atlantic Hurricane Seasons between 2002-2011. The results are then analyzed in the framework of previous studies that have sought to model and understand tropical cyclogenesis using WRF (Nolan 2007; Fang and Zhang 2010).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27203328','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27203328"><span>Anticorrelated Emission of High Harmonics and Fast Electron Beams From Plasma Mirrors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bocoum, Maïmouna; Thévenet, Maxence; Böhle, Frederik; Beaurepaire, Benoît; Vernier, Aline; Jullien, Aurélie; Faure, Jérôme; Lopez-Martens, Rodrigo</p> <p>2016-05-06</p> <p>We report for the first time on the anticorrelated emission of high-order harmonics and energetic electron beams from a solid-density plasma with a sharp vacuum interface-plasma mirror-driven by an intense ultrashort laser pulse. We highlight the key role played by the nanoscale structure of the plasma surface during the interaction by measuring the spatial and spectral properties of harmonics and electron beams emitted by a plasma mirror. We show that the nanoscale behavior of the plasma mirror can be controlled by tuning the scale length of the electron density gradient, which is measured in situ using spatial-domain interferometry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120007511','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120007511"><span>Improvement of OMI Ozone Profile Retrievals in the Troposphere and Lower Troposphere by the Use of the Tropopause-Based Ozone Profile Climatology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bak, Juseon; Liu, X.; Wei, J.; Kim, J. H.; Chance, K.; Barnet, C.</p> <p>2011-01-01</p> <p>An advance algorithm based on the optimal estimation technique has beeen developed to derive ozone profile from GOME UV radiances and have adapted it to OMI UV radiances. OMI vertical resolution : 7-11 km in the troposphere and 10-14 km in the stratosphere. Satellite ultraviolet measurements (GOME, OMI) contain little vertical information for the small scale of ozone, especially in the upper troposphere (UT) and lower stratosphere (LS) where the sharp O3 gradient across the tropopause and large ozone variability are observed. Therefore, retrievals depend greatly on the a-priori knowledge in the UTLS</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM13A2128M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM13A2128M"><span>The Development of Drift Wave Turbulence in Magnetic Reconnection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McMurtrie, L.; Drake, J. F.; Swisdak, M. M.</p> <p>2013-12-01</p> <p>An important feature in collisionless magnetic reconnection is the development of sharp discontinuities along the separatrices bounding the Alfvenic outflow. The typical scale length of these features is ρs (the Larmor radius based on the sound speed) for guide field reconnection. Temperature gradients in the inflowing plasma (as might be found in the magnetopause) can lead to instabilities at these separatrices, specifically drift wave turbulence. We present standalone 2D and 3D PIC simulations of drift wave turbulence to investigate scaling properties and growth rates. Further investigations of the relative importance of drift wave turbulence in the development of reconnection will also be considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910057156&hterms=ren&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dren','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910057156&hterms=ren&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dren"><span>Modeling flow at the nozzle of a solid rocket motor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chow, Alan S.; Jin, Kang-Ren</p> <p>1991-01-01</p> <p>The mechanical behavior of a rocket motor internal flow field results in a system of nonlinear partial differential equations which can be solved numerically. The accuracy and the convergence of the solution of the system of equations depends largely on how precisely the sharp gradients can be resolved. An adaptive grid generation scheme is incorporated into the computer algorithm to enhance the capability of numerical modeling. With this scheme, the grid is refined as the solution evolves. This scheme significantly improves the methodology of solving flow problems in rocket nozzle by putting the refinement part of grid generation into the computer algorithm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720022611','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720022611"><span>Study of low Reynolds number nozzle flows, including radial pressure gradients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rae, W. J.</p> <p>1972-01-01</p> <p>An analysis is presented of the laminar, axisymmetric flow in a nozzle, including both axial and radial variations of the pressure. The system of equations derived is believed to contain all of the terms necessary for describing the flow through a relatively sharp throat (i.e., one for which the longitudinal radius of curvature of the throat is comparable to, or less than, the transverse radius). A finite difference approximation of these equations is described, together with a computer program for finding numerical solutions. An instability was found in the starting solution; a series of attempts to eliminate this instability is described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhDT........47E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhDT........47E"><span>Supersonic turbulent boundary layers with periodic mechanical non-equilibrium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ekoto, Isaac Wesley</p> <p></p> <p>Previous studies have shown that favorable pressure gradients reduce the turbulence levels and length scales in supersonic flow. Wall roughness has been shown to reduce the large-scales in wall bounded flow. Based on these previous observations new questions have been raised. The fundamental questions this dissertation addressed are: (1) What are the effects of wall topology with sharp versus blunt leading edges? and (2) Is it possible that a further reduction of turbulent scales can occur if surface roughness and favorable pressure gradients are combined? To answer these questions and to enhance the current experimental database, an experimental analysis was performed to provide high fidelity documentation of the mean and turbulent flow properties along with surface and flow visualizations of a high-speed (M = 2.86), high Reynolds number (Retheta ≈ 60,000) supersonic turbulent boundary layer distorted by curvature-induced favorable pressure gradients and large-scale ( k+s ≈ 300) uniform surface roughness. Nine models were tested at three separate locations. Three pressure gradient models strengths (a nominally zero, a weak, and a strong favorable pressure gradient) and three roughness topologies (aerodynamically smooth, square, and diamond shaped roughness elements) were used. Highly resolved planar measurements of mean and fluctuating velocity components were accomplished using particle image velocimetry. Stagnation pressure profiles were acquired with a traversing Pitot probe. Surface pressure distributions were characterized using pressure sensitive paint. Finally flow visualization was accomplished using schlieren photographs. Roughness topology had a significant effect on the boundary layer mean and turbulent properties due to shock boundary layer interactions. Favorable pressure gradients had the expected stabilizing effect on turbulent properties, but the improvements were less significant for models with surface roughness near the wall due to increased tendency towards flow separation. It was documented that proper roughness selection coupled with a sufficiently strong favorable pressure gradient produced regions of "negative" production in the transport of turbulent stress. This led to localized areas of significant turbulence stress reduction. With proper roughness selection and sufficient favorable pressure gradient strength, it is believed that localized relaminarization of the boundary layer is possible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023400','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023400"><span>Investigation of the Crust of the Pannonian Basin, Hungary Using Low-Altitude CHAMP Horizontal Gradient Magnetic Anomalies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Taylor, Patrick T.; Kis, Karoly I.; Puszta, Sandor; Wittmann, Geza; Kim, Hyung Rae; Toronyi, B.</p> <p>2011-01-01</p> <p>The Pannonian Basin is a deep intra-continental basin that formed as part of the Alpine orogeny. It is some 600 by 500 km in area and centered on Hungary. This area was chosen since it has one of the thinnest continental crusts in Europe and is the region of complex tectonic structures. In order to study the nature of the crustal basement we used the long-wavelength magnetic anomalies acquired by the CHAMP satellite. The SWARM constellation, scheduled to be launched next year, will have two lower altitude satellites flying abreast, with a separation of between ca. 150 to 200 km. to record the horizontal magnetic gradient. Since the CHAMP satellite has been in orbit for eight years and has obtained an extensive range of data, both vertically and horizontally there is a large enough data base to compute the horizontal magnetic gradients over the Pannonian Basin region using these many CHAMP orbits. We recomputed a satellite magnetic anomaly map, using the spherical-cap method of Haines (1985), the technique of Alsdorf et al. (1994) and from spherical harmonic coefficients of MF6 (Maus et aI., 2008) employing the latest and lowest altitude CHAMP data. We then computed the horizontal magnetic anomaly gradients (Kis and Puszta, 2006) in order to determine how these component data will improve our interpretation and to preview what the SW ARM mission will reveal with reference to the horizontal gradient anomalies. The gradient amplitude of an 1000 km northeast-southwest profile through our horizontal component anomaly map varied from 0 to 0.025 nT/km with twin positive anomalies (0.025 and 0.023 nT/km) separated by a sharp anomaly negative at o nT/km. Horizontal gradient indicate major magnetization boundaries in the crust (Dole and Jordan, 1978 and Cordell and Grauch, 1985). Our gradient anomaly was modeled with a twodimensional body and the anomaly, of some 200 km, correlates with a 200 km area of crustal thinning in the southwestern Pannonian Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001643.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001643.html"><span>Gradient Sun [still</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>To view a video of the Gradient Sun go to: www.flickr.com/photos/gsfc/8103212817 Looking at a particularly beautiful image of the sun helps show how the lines between science and art can sometimes blur. But there is more to the connection between the two disciplines: science and art techniques are often quite similar, indeed one may inform the other or be improved based on lessons from the other arena. One such case is a technique known as a "gradient filter" – recognizable to many people as an option available on a photo-editing program. Gradients are, in fact, a mathematical description that highlights the places of greatest physical change in space. A gradient filter, in turn, enhances places of contrast, making them all the more obviously different, a useful tool when adjusting photos. Scientists, too, use gradient filters to enhance contrast, using them to accentuate fine structures that might otherwise be lost in the background noise. On the sun, for example, scientists wish to study a phenomenon known as coronal loops, which are giant arcs of solar material constrained to travel along that particular path by the magnetic fields in the sun's atmosphere. Observations of the loops, which can be more or less tangled and complex during different phases of the sun's 11-year activity cycle, can help researchers understand what's happening with the sun's complex magnetic fields, fields that can also power great eruptions on the sun such as solar flares or coronal mass ejections. The still here shows an unfiltered image from the sun next to one that has been processed using a gradient filter. Note how the coronal loops are sharp and defined, making them all the more easy to study. On the other hand, gradients also make great art. NASA/Goddard Space Flight Center To download this video go to: svs.gsfc.nasa.gov/goto?11112 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002CTM.....6..553K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002CTM.....6..553K"><span>Mechanisms of detonation formation due to a temperature gradient</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kapila, A. K.; Schwendeman, D. W.; Quirk, J. J.; Hawa, T.</p> <p>2002-12-01</p> <p>Emergence of a detonation in a homogeneous, exothermically reacting medium can be deemed to occur in two phases. The first phase processes the medium so as to create conditions ripe for the onset of detonation. The actual events leading up to preconditioning may vary from one experiment to the next, but typically, at the end of this stage the medium is hot and in a state of nonuniformity. The second phase consists of the actual formation of the detonation wave via chemico-gasdynamic interactions. This paper considers an idealized medium with simple, rate-sensitive kinetics for which the preconditioned state is modelled as one with an initially prescribed linear gradient of temperature. Accurate and well-resolved numerical computations are carrried out to determine the mode of detonation formation as a function of the size of the initial gradient. For shallow gradients, the result is a decelerating supersonic reaction wave, a weak detonation, whose trajectory is dictated by the initial temperature profile, with only weak intervention from hydrodynamics. If the domain is long enough, or the gradient less shallow, the wave slows down to the Chapman-Jouguet speed and undergoes a swift transition to the ZND structure. For sharp gradients, gasdynamic nonlinearity plays a much stronger role. Now the path to detonation is through an accelerating pulse that runs ahead of the reaction wave and rearranges the induction-time distribution there to one that bears little resemblance to that corresponding to the initial temperature gradient. The pulse amplifies and steepens, transforming itself into a complex consisting of a lead shock, an induction zone, and a following fast deflagration. As the pulse advances, its three constituent entities attain progressively higher levels of mutual coherence, to emerge as a ZND detonation. For initial gradients that are intermediate in size, aspects of both the extreme scenarios appear in the path to detonation. The novel aspect of this study resides in the fact that it is guided by, and its results are compared with, existing asymptotic analyses of detonation evolution.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3406126','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3406126"><span>Archaeal Abundance across a pH Gradient in an Arable Soil and Its Relationship to Bacterial and Fungal Growth Rates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sterngren, Anna E.; Rousk, Johannes</p> <p>2012-01-01</p> <p>Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient. PMID:22706045</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22706045','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22706045"><span>Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bengtson, Per; Sterngren, Anna E; Rousk, Johannes</p> <p>2012-08-01</p> <p>Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2892931','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2892931"><span>Comparison of twice-daily vs once-daily deferasirox dosing in a gerbil model of iron cardiomyopathy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Otto-Duessel, Maya; Aguilar, Michelle; Nick, Hanspeter; Moats, Rex; Wood, John C.</p> <p>2010-01-01</p> <p>Objective Despite the availability of deferoxamine chelation therapy for more than 20 years, iron cardiomyopathy remains the leading cause of death in thalassemia major patients. Effective chelation of cardiac iron is difficult; cardiac iron stores respond more slowly to chelation therapy and require a constant gradient of labile iron species between serum and myocytes. We have previously demonstrated the efficacy of once-daily deferasirox in removing previously stored cardiac iron in the gerbil, but changes in cardiac iron were relatively modest compared with hepatic iron. We postulated that daily divided dosing, by sustaining a longer labile iron gradient from myocytes to serum, would produce better cardiac iron chelation than a comparable daily dose. Methods Twenty-four 8- to 10-week-old female gerbils underwent iron dextran—loading for 10 weeks, followed by a 1-week iron equilibration period. Animals were divided into three treatment groups of eight animals each and were treated with deferasirox 100 mg/kg/day as a single dose, deferasirox 100 mg/kg/day daily divided dose, or sham chelation for a total of 12 weeks. Following euthanasia, organs were harvested for quantitative iron and tissue histology. Results Hepatic and cardiac iron contents were not statistically different between the daily single-dose and daily divided-dose groups. However, the ratio of cardiac to hepatic iron content was lower in the divided-dose group (0.78% vs 1.11%, p = 0.0007). Conclusion Daily divided dosing of deferasirox changes the relative cardiac and liver iron chelation profile compared with daily single dosing, trading improvements in cardiac iron elimination for less-effective hepatic chelation. PMID:17588475</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24359671','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24359671"><span>Optimization for high-dose-rate brachytherapy of cervical cancer with adaptive simulated annealing and gradient descent.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yao, Rui; Templeton, Alistair K; Liao, Yixiang; Turian, Julius V; Kiel, Krystyna D; Chu, James C H</p> <p>2014-01-01</p> <p>To validate an in-house optimization program that uses adaptive simulated annealing (ASA) and gradient descent (GD) algorithms and investigate features of physical dose and generalized equivalent uniform dose (gEUD)-based objective functions in high-dose-rate (HDR) brachytherapy for cervical cancer. Eight Syed/Neblett template-based cervical cancer HDR interstitial brachytherapy cases were used for this study. Brachytherapy treatment plans were first generated using inverse planning simulated annealing (IPSA). Using the same dwell positions designated in IPSA, plans were then optimized with both physical dose and gEUD-based objective functions, using both ASA and GD algorithms. Comparisons were made between plans both qualitatively and based on dose-volume parameters, evaluating each optimization method and objective function. A hybrid objective function was also designed and implemented in the in-house program. The ASA plans are higher on bladder V75% and D2cc (p=0.034) and lower on rectum V75% and D2cc (p=0.034) than the IPSA plans. The ASA and GD plans are not significantly different. The gEUD-based plans have higher homogeneity index (p=0.034), lower overdose index (p=0.005), and lower rectum gEUD and normal tissue complication probability (p=0.005) than the physical dose-based plans. The hybrid function can produce a plan with dosimetric parameters between the physical dose-based and gEUD-based plans. The optimized plans with the same objective value and dose-volume histogram could have different dose distributions. Our optimization program based on ASA and GD algorithms is flexible on objective functions, optimization parameters, and can generate optimized plans comparable with IPSA. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22555183-su-brd-robustness-dose-painting-numbers-proton-therapy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22555183-su-brd-robustness-dose-painting-numbers-proton-therapy"><span>SU-F-BRD-05: Robustness of Dose Painting by Numbers in Proton Therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Montero, A Barragan; Sterpin, E; Lee, J</p> <p></p> <p>Purpose: Proton range uncertainties may cause important dose perturbations within the target volume, especially when steep dose gradients are present as in dose painting. The aim of this study is to assess the robustness against setup and range errors for high heterogeneous dose prescriptions (i.e., dose painting by numbers), delivered by proton pencil beam scanning. Methods: An automatic workflow, based on MATLAB functions, was implemented through scripting in RayStation (RaySearch Laboratories). It performs a gradient-based segmentation of the dose painting volume from 18FDG-PET images (GTVPET), and calculates the dose prescription as a linear function of the FDG-uptake value on eachmore » voxel. The workflow was applied to two patients with head and neck cancer. Robustness against setup and range errors of the conventional PTV margin strategy (prescription dilated by 2.5 mm) versus CTV-based (minimax) robust optimization (2.5 mm setup, 3% range error) was assessed by comparing the prescription with the planned dose for a set of error scenarios. Results: In order to ensure dose coverage above 95% of the prescribed dose in more than 95% of the GTVPET voxels while compensating for the uncertainties, the plans with a PTV generated a high overdose. For the nominal case, up to 35% of the GTVPET received doses 5% beyond prescription. For the worst of the evaluated error scenarios, the volume with 5% overdose increased to 50%. In contrast, for CTV-based plans this 5% overdose was present only in a small fraction of the GTVPET, which ranged from 7% in the nominal case to 15% in the worst of the evaluated scenarios. Conclusion: The use of a PTV leads to non-robust dose distributions with excessive overdose in the painted volume. In contrast, robust optimization yields robust dose distributions with limited overdose. RaySearch Laboratories is sincerely acknowledged for providing us with RayStation treatment planning system and for the support provided.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........91F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........91F"><span>Optimized Orthovoltage Stereotactic Radiosurgery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fagerstrom, Jessica M.</p> <p></p> <p>Because of its ability to treat intracranial targets effectively and noninvasively, stereotactic radiosurgery (SRS) is a prevalent treatment modality in modern radiation therapy. This work focused on SRS delivering rectangular function dose distributions, which are desirable for some targets such as those with functional tissue included within the target volume. In order to achieve such distributions, this work used fluence modulation and energies lower than those utilized in conventional SRS. In this work, the relationship between prescription isodose and dose gradients was examined for standard, unmodulated orthovoltage SRS dose distributions. Monte Carlo-generated energy deposition kernels were used to calculate 4pi, isocentric dose distributions for a polyenergetic orthovoltage spectrum, as well as monoenergetic orthovoltage beams. The relationship between dose gradients and prescription isodose was found to be field size and energy dependent, and values were found for prescription isodose that optimize dose gradients. Next, a pencil-beam model was used with a Genetic Algorithm search heuristic to optimize the spatial distribution of added tungsten filtration within apertures of cone collimators in a moderately filtered 250 kVp beam. Four cone sizes at three depths were examined with a Monte Carlo model to determine the effects of the optimized modulation compared to open cones, and the simulations found that the optimized cones were able to achieve both improved penumbra and flatness statistics at depth compared to the open cones. Prototypes of the filter designs calculated using mathematical optimization techniques and Monte Carlo simulations were then manufactured and inserted into custom built orthovoltage SRS cone collimators. A positioning system built in-house was used to place the collimator and filter assemblies temporarily in the 250 kVp beam line. Measurements were performed in water using radiochromic film scanned with both a standard white light flatbed scanner as well as a prototype laser densitometry system. Measured beam profiles showed that the modulated beams could more closely approach rectangular function dose profiles compared to the open cones. A methodology has been described and implemented to achieve optimized SRS delivery, including the development of working prototypes. Future work may include the construction of a full treatment platform.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22634787-su-dosimetric-evaluation-left-chestwall-patient-treated-compact-proton-pencil-beam-gantry-utilizing-daily-setup-cbct','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22634787-su-dosimetric-evaluation-left-chestwall-patient-treated-compact-proton-pencil-beam-gantry-utilizing-daily-setup-cbct"><span>SU-F-J-191: Dosimetric Evaluation of a Left Chestwall Patient Treated with a Compact Proton Pencil Beam Gantry Utilizing Daily Setup CBCT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Maynard, M; Chen, K; Rosen, L</p> <p></p> <p>Purpose: To evaluate the robustness of the gradient technique for treating a multi-isocenter left chest wall patient with a compact proton pencil beam gantry. Both CBCT and stereoscopic imaging are used to facilitate daily treatment setup. Methods: To treat the elongated chest wall planning target volume (PTV) with the compact PBS system, a 28 fraction (5040 CcGE) treatment plan was created using two fields with gradient matching technique. Daily table shifts between treatment field isocenters were obtained from the record and verify system for each treatment fraction. Copies of the initial treatment plan were made for each fraction and themore » field isocenter coordinates for each plan copy were adjusted to reflect daily table shifts. Doses were re-calculated for each fraction, summed, and compared against the initial plan. Results: The table shifts (average and range) were 2.2 (−5.1–+3.9), 3.0 (−6.0–+4.0) and 3.0 (−10.1–+1.9) millimeters in the anterior-posterior, superior-inferior and right-left directions, respectively. Dose difference to the PTV, heart and ipsilateral lung were evaluated. The percentage of the PTV receiving the prescription dose decreased from 94.6% to 89.1%. The D95 of the PTV increased from 99.6% to 99.9%. The maximum dose in PTV increased from 106.6% to 109.2% and V105 increased from 1.0% to 16.5%. The V20 of the ipsilateral lung increased from 18.5% to 21.0%. The mean heart dose difference was negligible. Conclusion: Observed dose differences to lung and heart tissues due to daily setup variations remained acceptably low while maintaining sufficient dose coverage to the PTV. This initial case study demonstrates the robustness of the gradient technique to treat a large target, multi-isocenter plan with a compact proton pencil beam gantry equipped with CBCT and stereoscopic imaging modalities.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JKPS...63.1083B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JKPS...63.1083B"><span>Feasibility of CBCT dosimetry for IMRT using a normoxic polymethacrylic-acid gel dosimeter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bong, Ji Hye; Kwon, Soo-Il; Kim, Kum Bae; Kim, Mi Suk; Jung, Hai Jo; Ji, Young Hoon; Ko, In Ok; Park, Ji Ae; Kim, Kyeong Min</p> <p>2013-09-01</p> <p>The purpose of this study is to evaluate the availability of cone-beam computed tomography(CBCT) for gel dosimetry. The absorbed dose was analyzed by using intensity-modulated radiation therapy(IMRT) to irradiate several tumor shapes with a calculated dose and several tumor acquiring images with CBCT in order to verify the possibility of reading a dose on the polymer gel dosimeter by means of the CBCT image. The results were compared with those obtained using magnetic resonance imaging(MRI) and CT. The linear correlation coefficients at doses less than 10 Gy for the polymer gel dosimeter were 0.967, 0.933 and 0.985 for MRI, CT and CBCT, respectively. The dose profile was symmetric on the basis of the vertical axis in a circular shape, and the uniformity was 2.50% for the MRI and 8.73% for both the CT and the CBCT. In addition, the gradient in the MR image of the gel dosimeter irradiated in an H shape was 109.88 while the gradients of the CT and the CBCT were 71.95 and 14.62, respectively. Based on better image quality, the present study showed that CBCT dosimetry for IMRT could be restrictively performed using a normoxic polymethacrylic-acid gel dosimeter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22545203-su-robust-proton-beam-therapy-technique-high-risk-prostate-cancer-whole-pelvis-irradiation-bilateral-opposed-single-field-uniform-dose-sfud-plan-lateral-penumbra-gradient-matching','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22545203-su-robust-proton-beam-therapy-technique-high-risk-prostate-cancer-whole-pelvis-irradiation-bilateral-opposed-single-field-uniform-dose-sfud-plan-lateral-penumbra-gradient-matching"><span>SU-E-T-73: A Robust Proton Beam Therapy Technique for High-Risk Prostate Cancer Whole Pelvis Irradiation: Bilateral Opposed Single Field Uniform Dose (SFUD) Plan with Lateral Penumbra Gradient Matching</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ding, X; Wu, H; Rosen, L</p> <p>2015-06-15</p> <p>Purpose: To develop a clinical feasible and robust proton therapy technique to spare bowel, bladder and rectum for high-risk prostate cancer patients Methods: The study includes 3 high-risk prostate cancer cases treated with bilateral opposed SFUD with lateral penumbra gradient matching technique prescribed to 5400cGyE in 30 fx in our institution. To treat whole pelvic lymph node chain, the complicated ‘H’ shape, using SFUD technique, we divided the target into two sub-targets (LLAT beam treating ‘90 degree T-shape’ and RLAT beam treating ‘: shape’) in Plan A and use lateral penumbra gradient matching at patient’s left side. Vice verse inmore » Plan B. Each plan deliver half of the prescription dose. Beam-specific PTVs were created to take range uncertainty and setup error into account. For daily treatment, patient received four fields from both plan A and B per day. Robustness evaluation were performed in the worst case scenario with 3.5% range uncertainty and 1, 2, 3mm overlap or gap between LLAT and RLAT field matching in Raystation 4.0. All of cases also have a Tomotherapy backup plan approved by physician as a dosimetric comparison. Results: The total treatment time take 15–20mins including IGRT and four fields delivery on ProteusONE, a compact size PBS proton system, compared to 25–30min in traditional Tomotherapy. Robustness analysis shows that this plan technique is insensitive to the range uncertainties. With the lateral gradient matching, 1, 2, 3mm overlap renders only 2.5%, 5.5% and 8% hot or cool spot in the junction areas. Dosimetric comparisons with Tomotherapy show a significant dose reduction in bladder D50%(14.7±9.3Gy), D35%(7.3±5.8Gy); small bowel and rectum average dose(19.6±7.5Gy and 14.5±6.3Gy respectively). Conclusion: The bilateral opposed(SFUD) plan with lateral penumbra gradient matching has been approved to be a safe, robust and efficient treatment option for whole pelvis high-risk prostate cancer patient which significantly spares the OARs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4343170-enhancing-effect-continuous-cobalt-gamma-radiation-susceptibility-anaphylactic-shock-mice','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4343170-enhancing-effect-continuous-cobalt-gamma-radiation-susceptibility-anaphylactic-shock-mice"><span>Enhancing Effect of Continuous Cobalt-60 Gamma-Radiation on Susceptibility to Anaphylactic Shock in Mice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hale, William M.; Stoner, Richard D.</p> <p>1958-05-01</p> <p>Continuous exposure to gamma -radiation at a dose rate of 4 rep/hr enhanced the severity of anaphylactnic shock ln mice sensitized with tetanus toxoid and challenged 1 hour or 7 days postradiation with fluid tetanus toxoid. A sharp increase in susceptibility to fatal anaphylaxis was observed as the accumulated dose was increased from 192 to 288 rep. Recovery from the enhancing effect of continuous gamma -radiation began during the second week postradiation; complete recovery occurred during the third week after an accumulated dose of 672 rep. Anaphylactic shock was demonstrable in mice sensitized 6 months before challenge with the specificmore » antigen. An enhanced susceptibility to fatal anaphylaxis was obtained when these animals were given an accumulated dose of 288 rep and challenged 1 hour postradiation. Passive anaphylaxis was more severe in irradiated mice sensitized with homopogous antitoxin 1 hour postradiation and challenged the following day with tetanus toxoid. The antihistaminic agent Thephorin afforded complete protection from fatal anaphypaxis in irradiated mice. (auth)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22649040-su-dosimetric-comparison-acuros-xb-adaptive-convolve-intensity-modulated-radiotherapy-head-neck-cancer','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22649040-su-dosimetric-comparison-acuros-xb-adaptive-convolve-intensity-modulated-radiotherapy-head-neck-cancer"><span>SU-F-T-449: Dosimetric Comparison of Acuros XB, Adaptive Convolve in Intensity Modulated Radiotherapy for Head and Neck Cancer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Uehara, R; Tachibana, H</p> <p></p> <p>Purpose: There have been several publications focusing on dose calculation in lung for a new dose calculation algorithm of Acuros XB (AXB). AXB could contribute to dose calculation for high-density media for bone and dental prosthesis rather than in lung. We compared the dosimetric performance of AXB, Adaptive Convolve (AC) in head and neck IMRT plans. Methods: In a phantom study, the difference in depth profile between AXB and AC was evaluated using Kodak EDR2 film sandwiched with tough water phantoms. 6 MV x-ray using the TrueBeam was irradiated. In a patient study, 20 head and neck IMRT plans hadmore » been clinically approved in Pinnacle3 and were transferred to Eclipse. Dose distribution was recalculated using AXB in Eclipse while maintaining AC-calculated monitor units and MLC sequence planned in Pinnacle. Subsequently, both the dose-volumetric data obtained using the two different calculation algorithms were compared. Results: The results in the phantom evaluation for the shallow area ahead of the build-up region shows over-dose for AXB and under-dose for AC, respectively. In the patient plans, AXB shows more hot spots especially around the high-density media than AC in terms of PTV (Max difference: 4.0%) and OAR (Max. difference: 1.9%). Compared to AC, there were larger dose deviations in steep dose gradient region and higher skin-dose. Conclusion: In head and neck IMRT plans, AXB and AC show different dosimetric performance for the regions inside the target volume around high-density media, steep dose gradient regions and skin-surface. There are limitations in skin-dose and complex anatomic condition using even inhomogeneous anthropomorphic phantom Thus, there is the potential for an increase of hot-spot in AXB, and an underestimation of dose in substance boundaries and skin regions in AC.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PMB....58R.131K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PMB....58R.131K"><span>In vivo proton range verification: a review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knopf, Antje-Christin; Lomax, Antony</p> <p>2013-08-01</p> <p>Protons are an interesting modality for radiotherapy because of their well defined range and favourable depth dose characteristics. On the other hand, these same characteristics lead to added uncertainties in their delivery. This is particularly the case at the distal end of proton dose distributions, where the dose gradient can be extremely steep. In practice however, this gradient is rarely used to spare critical normal tissues due to such worries about its exact position in the patient. Reasons for this uncertainty are inaccuracies and non-uniqueness of the calibration from CT Hounsfield units to proton stopping powers, imaging artefacts (e.g. due to metal implants) and anatomical changes of the patient during treatment. In order to improve the precision of proton therapy therefore, it would be extremely desirable to verify proton range in vivo, either prior to, during, or after therapy. In this review, we describe and compare state-of-the art in vivo proton range verification methods currently being proposed, developed or clinically implemented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000014455','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000014455"><span>Thin Interface Asymptotics for an Energy/Entropy Approach to Phase-Field Models with Unequal Conductivities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McFadden, G. B.; Wheeler, A. A.; Anderson, D. M.</p> <p>1999-01-01</p> <p>Karma and Rapped recently developed a new sharp interface asymptotic analysis of the phase-field equations that is especially appropriate for modeling dendritic growth at low undercoolings. Their approach relieves a stringent restriction on the interface thickness that applies in the conventional asymptotic analysis, and has the added advantage that interfacial kinetic effects can also be eliminated. However, their analysis focussed on the case of equal thermal conductivities in the solid and liquid phases; when applied to a standard phase-field model with unequal conductivities, anomalous terms arise in the limiting forms of the boundary conditions for the interfacial temperature that are not present in conventional sharp-interface solidification models, as discussed further by Almgren. In this paper we apply their asymptotic methodology to a generalized phase-field model which is derived using a thermodynamically consistent approach that is based on independent entropy and internal energy gradient functionals that include double wells in both the entropy and internal energy densities. The additional degrees of freedom associated with the generalized phased-field equations can be chosen to eliminate the anomalous terms that arise for unequal conductivities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGE....15..207J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGE....15..207J"><span>3D first-arrival traveltime tomography with modified total variation regularization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Wenbin; Zhang, Jie</p> <p>2018-02-01</p> <p>Three-dimensional (3D) seismic surveys have become a major tool in the exploration and exploitation of hydrocarbons. 3D seismic first-arrival traveltime tomography is a robust method for near-surface velocity estimation. A common approach for stabilizing the ill-posed inverse problem is to apply Tikhonov regularization to the inversion. However, the Tikhonov regularization method recovers smooth local structures while blurring the sharp features in the model solution. We present a 3D first-arrival traveltime tomography method with modified total variation (MTV) regularization to preserve sharp velocity contrasts and improve the accuracy of velocity inversion. To solve the minimization problem of the new traveltime tomography method, we decouple the original optimization problem into two following subproblems: a standard traveltime tomography problem with the traditional Tikhonov regularization and a L2 total variation problem. We apply the conjugate gradient method and split-Bregman iterative method to solve these two subproblems, respectively. Our synthetic examples show that the new method produces higher resolution models than the conventional traveltime tomography with Tikhonov regularization. We apply the technique to field data. The stacking section shows significant improvements with static corrections from the MTV traveltime tomography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A11M0236T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A11M0236T"><span>Investigating model deficiencies in the global budget of ethane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tzompa Sosa, Z. A.; Keller, C. A.; Turner, A. J.; Mahieu, E.; Franco, B.; Fischer, E. V.</p> <p>2015-12-01</p> <p>Many locations in the Northern Hemisphere show a statistically-significant sharp increase in measurements of ethane (C2H6) since 2009. It is hypothesized that the recent massive growth of shale gas exploitation in North America could be the source of this change. However, state-of-the-science chemical transport models are currently unable to reproduce the hemispheric burden of C2H6 or the recent sharp increase, pointing to a potential problem with current emission inventories. To resolve this, we used space-borne CH4 observations from the Greenhouse Gases Observing SATellite (GOSAT) to derive C2H6 emissions. By using known emission ratios to CH4, we estimated emissions of C2H6 from oil and gas activities, biofuels, and biomass burning over North America. The GEOS-Chem global chemical transport model was used to simulate atmospheric abundances of C2H6 with the new emissions estimates. The model is able to reproduce Northern Hemisphere surface concentrations. However, the model significantly under-predicts the amount of C2H6 throughout the column and the observed Northern Hemispheric gradient as diagnosed by comparisons to aircraft observations from the Hiaper Pole-to-Pole (HIPPO) Campaign.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017117','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017117"><span>A sharp and flat section of the core-mantle boundary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Vidale, J.E.; Benz, H.M.</p> <p>1992-01-01</p> <p>THE transition zone between the Earth's core and mantle plays an important role as a boundary layer for mantle and core convection1. This zone conducts a large amount of heat from the core to the mantle, and contains at least one thermal boundary layer2,3; the proximity of reactive silicates and molten iron leads to the possibility of zones of intermediate composition4. Here we investigate one region of the core-mantle boundary using seismic waves that are converted from shear to compressional waves by reflection at the boundary. The use of this phase (known as ScP), the large number of receiving stations, and the large aperture of our array all provide higher resolution than has previously been possible5-7. For the 350-km-long section of the core-mantle boundary under the northeast Pacific sampled by the reflections, the local boundary topography has an amplitude of less than 500 m, no sharp radial gradients exist in the 400 km above the boundary, and the mantle-lo-core transition occurs over less than 1 km. The simplicity of the structure near and above the core-mantle boundary argues against chemical heterogeneity at the base of the mantle in this location.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060027362','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060027362"><span>Traj_opt User's Guide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Saunders, David A.</p> <p>2005-01-01</p> <p>Trajectory optimization program Traj_opt was developed at Ames Research Center to help assess the potential benefits of ultrahigh temperature ceramic materials applied to reusable space vehicles with sharp noses and wing leading edges. Traj_opt loosely couples the Ames three-degrees-of-freedom trajectory package Traj (see NASA-TM-2004-212847) with the SNOPT optimization package (Stanford University Technical Report SOL 98-1). Traj_opt version January 22, 2003 is covered by this user guide. The program has been applied extensively to entry and ascent abort trajectory calculations for sharp and blunt crew transfer vehicles. The main optimization variables are control points for the angle of attack and bank angle time histories. No propulsion options are provided, but numerous objective functions may be specified and the nonlinear constraints implemented include a distributed surface heating constraint capability. Aero-capture calculations are also treated with an option to minimize orbital eccentricity at apoapsis. Traj_opt runs efficiently on a single processor, using forward or central differences for the gradient calculations. Results may be displayed conveniently with Gnuplot scripts. Control files recommended for five standard reentry and ascent abort trajectories are included along with detailed descriptions of the inputs and outputs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPG11044K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPG11044K"><span>Directed high-power THz radiation from transverse laser wakefield excited in an electron density filament</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kalmykov, Serge; Englesbe, Alexander; Elle, Jennifer; Domonkos, Matthew; Schmitt-Sody, Andreas</p> <p>2017-10-01</p> <p>A tightly focused femtosecond, weakly relativistic laser pulse partially ionizes the ambient gas, creating a string (a ``filament'') of electron density, locally reducing the nonlinear index and compensating for the self-focusing effect caused by bound electrons. While maintaining the filament over many Rayleigh lengths, the pulse drives inside it a three-dimensional (3D) wave of charge separation - the plasma wake. If the pulse waist size is much smaller than the Langmuir wavelength, electron current in the wake is mostly transverse. Electrons, driven by the wake across the sharp radial boundary of the filament, lose coherence within 2-3 periods of wakefield oscillations, and the wake decays. The laser pulse is thus accompanied by a short-lived, almost aperiodic electron current coupled to the sharp index gradient. The comprehensive 3D hydrodynamic model shows that this structure emits a broad-band THz radiation, with the highest power emitted in the near-forward direction. The THz radiation pattern contains information on wake currents surrounding the laser pulse, thus serving as an all-optical diagnostic tool. The results are tested in cylindrical and full 3D PIC simulations using codes WAKE and EPOCH.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM23A2593S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM23A2593S"><span>Validation of measured poleward TEC gradient using multi-station GPS with Artificial Neural Network based TEC model in low latitude region for developing predictive capability of ionospheric scintillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sur, D.; Paul, A.</p> <p>2017-12-01</p> <p>The equatorial ionosphere shows sharp diurnal and latitudinal Total Electron Content (TEC) variations over a major part of the day. Equatorial ionosphere also exhibits intense post-sunset ionospheric irregularities. Accurate prediction of TEC in these low latitudes is not possible from standard ionospheric models. An Artificial Neural Network (ANN) based Vertical TEC (VTEC) model has been designed using TEC data in low latitude Indian longitude sector for accurate prediction of VTEC. GPS TEC data from the stations Calcutta (22.58°N, 88.38°E geographic, magnetic dip 32°), Baharampore (24.09°N, 88.25°E geographic, magnetic dip 35°) and Siliguri (26.72°N, 88.39°E geographic; magnetic dip 40°) are used as training dataset for the duration of January 2007-September 2011. Poleward VTEC gradients from northern EIA crest to region beyond EIA crest have been calculated from measured VTEC and compared with that obtained from ANN based VTEC model. TEC data from Calcutta and Siliguri are used to compute VTEC gradients during April 2013 and August-September 2013. It has been observed that poleward VTEC gradient computed from ANN based TEC model has shown good correlation with measured values during vernal and autumnal equinoxes of high solar activity periods of 2013. Possible correlation between measured poleward TEC gradients and post-sunset scintillations (S4 ≥ 0.4) from northern crest of EIA has been observed in this paper. From the observation, a suitable threshold poleward VTEC gradient has been proposed for possible occurrence of post-sunset scintillations at northern crest of EIA along 88°E longitude. Poleward VTEC gradients obtained from ANN based VTEC model are used to forecast possible ionospheric scintillation after post-sunset period using the threshold value. It has been observed that these predicted VTEC gradients obtained from ANN based VTEC model can forecast post-sunset L-band scintillation with an accuracy of 67% to 82% in this dynamic low latitude region. The use of VTEC gradients from ANN based VTEC model removes the necessity of continuous operation of multi-station ground based TEC receivers in this low latitude region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19610318','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19610318"><span>Energy spectrum control for modulated proton beams.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hsi, Wen C; Moyers, Michael F; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E; Farr, Jonathan B; Mascia, Anthony E; Schreuder, Andries N</p> <p>2009-06-01</p> <p>In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to +/-21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than +/-3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4711149','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4711149"><span>Microbial Mat Communities along an Oxygen Gradient in a Perennially Ice-Covered Antarctic Lake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hawes, Ian; Mackey, Tyler J.; Krusor, Megan; Doran, Peter T.; Sumner, Dawn Y.; Eisen, Jonathan A.; Hillman, Colin; Goroncy, Alexander K.</p> <p>2015-01-01</p> <p>Lake Fryxell is a perennially ice-covered lake in the McMurdo Dry Valleys, Antarctica, with a sharp oxycline in a water column that is density stabilized by a gradient in salt concentration. Dissolved oxygen falls from 20 mg liter−1 to undetectable over one vertical meter from 8.9- to 9.9-m depth. We provide the first description of the benthic mat community that falls within this oxygen gradient on the sloping floor of the lake, using a combination of micro- and macroscopic morphological descriptions, pigment analysis, and 16S rRNA gene bacterial community analysis. Our work focused on three macroscopic mat morphologies that were associated with different parts of the oxygen gradient: (i) “cuspate pinnacles” in the upper hyperoxic zone, which displayed complex topography and were dominated by phycoerythrin-rich cyanobacteria attributable to the genus Leptolyngbya and a diverse but sparse assemblage of pennate diatoms; (ii) a less topographically complex “ridge-pit” mat located immediately above the oxic-anoxic transition containing Leptolyngbya and an increasing abundance of diatoms; and (iii) flat prostrate mats in the upper anoxic zone, dominated by a green cyanobacterium phylogenetically identified as Phormidium pseudopriestleyi and a single diatom, Diadesmis contenta. Zonation of bacteria was by lake depth and by depth into individual mats. Deeper mats had higher abundances of bacteriochlorophylls and anoxygenic phototrophs, including Chlorobi and Chloroflexi. This suggests that microbial communities form assemblages specific to niche-like locations. Mat morphologies, underpinned by cyanobacterial and diatom composition, are the result of local habitat conditions likely defined by irradiance and oxygen and sulfide concentrations. PMID:26567300</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031666','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031666"><span>Response of bird species densities to habitat structure and fire history along a Midwestern open-forest gradient</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Grundel, R.; Pavlovic, N.B.</p> <p>2007-01-01</p> <p>Oak savannas were historically common but are currently rare in the Midwestern United States. We assessed possible associations of bird species with savannas and other threatened habitats in the region by relating fire frequency and vegetation characteristics to seasonal densities of 72 bird species distributed across an open-forest gradient in northwestern Indiana. About one-third of the species did not exhibit statistically significant relationships with any combination of seven vegetation characteristics that included vegetation cover in five vertical strata, dead tree density, and tree height. For 40% of the remaining species, models best predicting species density incorporated tree density. Therefore, management based solely on manipulating tree density may not be an adequate strategy for managing bird populations along this open-forest gradient. Few species exhibited sharp peaks in predicted density under habitat conditions expected in restored savannas, suggesting that few savanna specialists occur among Midwestern bird species. When fire frequency, measured over fifteen years, was added to vegetation characteristics as a predictor of species density, it was incorporated into models for about one-quarter of species, suggesting that fire may modify habitat characteristics in ways that are important for birds but not captured by the structural habitat variables measured. Among those species, similar numbers had peaks in predicted density at low, intermediate, or high fire frequency. For species suggested by previous studies to have a preference for oak savannas along the open-forest gradient, estimated density was maximized at an average fire return interval of about one fire every three years. ?? The Cooper Ornithological Society 2007.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcMod.122....1A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcMod.122....1A"><span>Frontal dynamics at the edge of the Columbia River plume</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akan, Çiğdem; McWilliams, James C.; Moghimi, Saeed; Özkan-Haller, H. Tuba</p> <p>2018-02-01</p> <p>In the tidal ebb-cycle at the Mouth of the Columbia River, strong density and velocity fronts sometimes form perpendicular to the coast at the edges of the freshwater plume. They are distinct from previously analyzed fronts at the offshore western edge of the plume that evolve as a gravity-wave bore. We present simulation results to demonstrate their occurrence and investigate the mechanisms behind their frontogenesis and evolution. Tidal velocities on average ranged between 1.5 m s-1 in flood and 2.5 m s-1 in ebb during the brief hindcast period. The tidal fronts exhibit strong horizontal velocity and buoyancy gradients on a scale ∼ 100 m in width with normalized relative vorticity (ζz/f) values reaching up to 50. We specifically focus on the front on the northern edge of the plume and examine the evolution in plume characteristics such as its water mass gradients, horizontal and vertical velocity structure, vertical velocity, turbulent vertical mixing, horizontal propagation, cross-front momentum balance, and Lagrangian frontogenetic tendencies in both buoyancy and velocity gradients. Advective frontogenesis leads to a very sharp front where lateral mixing near the grid-resolution limit arrests its further contraction. The negative vorticity within the front is initiated by the positive bottom drag curl on the north side of the Columbia estuary and against the north jetty. Because of the large negative vorticity and horizontal vorticity gradient, centrifugal and lateral shear instability begins to develop along the front, but frontal fragmentation and decay set in only after the turn of the tide because of the briefness of the ebb interval.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.474..636G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.474..636G"><span>Effect of composition gradient on magnetothermal instability modified by shear and rotation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gupta, Himanshu; Chaudhuri, Anya; Sadhukhan, Shubhadeep; Chakraborty, Sagar</p> <p>2018-02-01</p> <p>We model the intracluster medium as a weakly collisional plasma that is a binary mixture of the hydrogen and the helium ions, along with free electrons. When, owing to the helium sedimentation, the gradient of the mean-molecular weight (or equivalently, composition or helium ions' concentration) of the plasma is not negligible, it can have appreciable influence on the stability criteria of the thermal convective instabilities, e.g. the heat-flux-buoyancy instability and the magnetothermal instability (MTI). These instabilities are consequences of the anisotropic heat conduction occurring preferentially along the magnetic field lines. In this paper, without ignoring the magnetic tension, we first present the mathematical criterion for the onset of composition gradient modified MTI. Subsequently, we relax the commonly adopted equilibrium state in which the plasma is at rest, and assume that the plasma is in a sheared state which may be due to differential rotation. We discuss how the concentration gradient affects the coupling between the Kelvin-Helmholtz instability and the MTI in rendering the plasma unstable or stable. We derive exact stability criterion by working with the sharp boundary case in which the physical variables - temperature, mean-molecular weight, density and magnetic field - change discontinuously from one constant value to another on crossing the boundary. Finally, we perform the linear stability analysis for the case of the differentially rotating plasma that is thermally and compositionally stratified as well. By assuming axisymmetric perturbations, we find the corresponding dispersion relation and the explicit mathematical expression determining the onset of the modified MTI.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22939209','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22939209"><span>Efficiency gain limits of the parallel segmented inlet and outlet flow concept in analytical liquid chromatography columns suffering from radial transcolumn packing density gradients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Broeckhoven, Ken; Desmet, Gert</p> <p>2012-10-05</p> <p>The maximal gain in efficiency that can be expected from the use of the segmented column end fittings that were recently introduced to alleviate the effect of transcolumn packing density gradients has been quantified and generalized using numerical computations of the band broadening process. It was found that, for an unretained compound in a column with a parabolic packing density gradient, the use of a segmented inlet or a segmented outlet allows to eliminate about 60-100% of the plate height contribution (H(tc)) originating from a parabolic transcolumn velocity gradient in a d(c)=4.6 mm column. In a d(c)=2.1 mm column, these percentages change from 10 to 100%. Using a combined segmented in- and outlet, H(tc) can be reduced by about 90-100% (d(c)=4.6 mm column) or 20-100% (d(c)=2.1 mm column). The strong variation of these gain percentages is due to fact that they depend very strongly on the column length and the flow rate. Dimensionless graphs have been established that allow to directly quantify the effect for each specific case. It was also found that, in agreement with one's physical intuition, trans-column velocity profiles that are more flat in the central region benefit more from the concept than sharp, parabolic-like profiles. The gain margins furthermore tend to become smaller with increasing retention and increasing diffusion coefficient. Copyright © 2012 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.C33C1276R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.C33C1276R"><span>Elevation Gradients and Climatic Consequences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Redmond, K. T.</p> <p>2006-12-01</p> <p>Steep topography usually results in gradients in surface meteorological elements. Sometimes these gradients are extremely sharp. Frequent or persistent gradients are expressed in climatic statistics as well. Most commonly, higher elevations are wetter and cooler than lower elevations. The magnitude of these climate gradients vary both spatially and temporally, generally on smaller scales for the former and on a greater variety of scales for the latter. Orographic contributions to precipitation vary on hourly to annual scales, and temperature inversions of different durations can alter or reverse the vertical temperature lapse rate normally found in the atmosphere. The presence of these factors affects the probability distributions of climate elements as a function of elevation. This leads in turn to consequences for ecology, resource management, and data. Orographic enhancement of Sierra precipitation varies by a factor of about three on seasonal time scales, and more on shorter scales. Particularly strong gradients in temperature climate are observed along the California coast, resulting in large changes in long-term climatological probability distributions over quite short distances in elevation. These have significant implications for plant life. For specific noteworthy events, such as the California heat wave of July 2006, striking differences were seen over a horizontal distance of merely 2-3 km along the Big Sur Coast, related entirely to elevation. There is evidence of differential warming with elevation between California's Central Valley and the Sierra Nevada. As a practical matter, the three-dimensional correlation fields of weather and climate elements in topographically diverse regions, on differing time scales, have complex structure, but also have certain regularities. This makes quality control of weather and climate data sets in highly diverse topography much more challenging. Quality control decisions that do not properly take this correlation structure (which varies in time) into account can result in degraded data sets, a variety of Type I and Type II errors, and paradoxically, hinder or prevent the discovery and description of the effects of climate gradients by incorrectly altering the data sets needed to uncover and quantify the relationships.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24444847','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24444847"><span>Process evaluation of a problem solving intervention to prevent recurrent sickness absence in workers with common mental disorders.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arends, Iris; Bültmann, Ute; Nielsen, Karina; van Rhenen, Willem; de Boer, Michiel R; van der Klink, Jac J L</p> <p>2014-01-01</p> <p>Common mental disorders (CMDs) are a major cause of sickness absence. Twenty to 30% of the workers who return to work after sickness absence due to CMDs experience recurrent sickness absence. We developed the Stimulating Healthy participation And Relapse Prevention (SHARP)-at work intervention, a problem solving intervention delivered by occupational physicians (OPs), to prevent recurrent sickness absence in this worker population in The Netherlands. A process evaluation was conducted alongside a cluster-randomised controlled trial to (1) evaluate whether the SHARP-at work intervention was implemented according to the protocol and differed from treatment in the control group, and (2) to investigate the relationship between the key elements of the intervention and the effect outcome (i.e. recurrent sickness absence). We collected process data for both the intervention and control group on recruitment, reach, dose delivered, dose received, fidelity, context and satisfaction. Data on recurrent sickness absence was collected through the registry system of the collaborating occupational health service. The study was performed in the Netherlands, and between 2010 and 2012, 154 OPs and 158 participants participated. Compared to the control group, participants in the intervention group more frequently had two or more consultations with the OP (odds ratio [OR] = 3.2, 95% confidence interval [CI] = 1.2-8.8) and completed more assignments (OR = 33.8, 95% CI = 10.4-109.5) as recommended in the intervention protocol. OPs and participants were satisfied with the intervention and rated it as applicable. Several individual intervention components were linked to the effect outcome. The process evaluation showed that the SHARP-at work intervention was conducted according to the protocol for the majority of the participants and well-received by OPs and participants. Furthermore, the intervention differed from treatment in the control group. Overall, the results provide support for implementing the intervention in practice. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PMB....63d5010Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PMB....63d5010Z"><span>A 3D correction method for predicting the readings of a PinPoint chamber on the CyberKnife® M6™ machine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yongqian; Brandner, Edward; Ozhasoglu, Cihat; Lalonde, Ron; Heron, Dwight E.; Saiful Huq, M.</p> <p>2018-02-01</p> <p>The use of small fields in radiation therapy techniques has increased substantially in particular in stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT). However, as field size reduces further still, the response of the detector changes more rapidly with field size, and the effects of measurement uncertainties become increasingly significant due to the lack of lateral charged particle equilibrium, spectral changes as a function of field size, detector choice, and subsequent perturbations of the charged particle fluence. This work presents a novel 3D dose volume-to-point correction method to predict the readings of a 0.015 cc PinPoint chamber (PTW 31014) for both small static-fields and composite-field dosimetry formed by fixed cones on the CyberKnife® M6™ machine. A 3D correction matrix is introduced to link the 3D dose distribution to the response of the PinPoint chamber in water. The parameters of the correction matrix are determined by modeling its 3D dose response in circular fields created using the 12 fixed cones (5 mm-60 mm) on a CyberKnife® M6™ machine. A penalized least-square optimization problem is defined by fitting the calculated detector reading to the experimental measurement data to generate the optimal correction matrix; the simulated annealing algorithm is used to solve the inverse optimization problem. All the experimental measurements are acquired for every 2 mm chamber shift in the horizontal planes for each field size. The 3D dose distributions for the measurements are calculated using the Monte Carlo calculation with the MultiPlan® treatment planning system (Accuray Inc., Sunnyvale, CA, USA). The performance evaluation of the 3D conversion matrix is carried out by comparing the predictions of the output factors (OFs), off-axis ratios (OARs) and percentage depth dose (PDD) data to the experimental measurement data. The discrepancy of the measurement and the prediction data for composite fields is also performed for clinical SRS plans. The optimization algorithm used for generating the optimal correction factors is stable, and the resulting correction factors were smooth in the spatial domain. The measurement and prediction of OFs agree closely with percentage differences of less than 1.9% for all the 12 cones. The discrepancies between the prediction and the measurement PDD readings at 50 mm and 80 mm depth are 1.7% and 1.9%, respectively. The percentage differences of OARs between measurement and prediction data are less than 2% in the low dose gradient region, and 2%/1 mm discrepancies are observed within the high dose gradient regions. The differences between the measurement and prediction data for all the CyberKnife based SRS plans are less than 1%. These results demonstrate the existence and efficiency of the novel 3D correction method for small field dosimetry. The 3D correction matrix links the 3D dose distribution and the reading of the PinPoint chamber. The comparison between the predicted reading and the measurement data for static small fields (OFs, OARs and PDDs) yield discrepancies within 2% for low dose gradient regions and 2%/1 mm for high dose gradient regions; the discrepancies between the predicted and the measurement data are less than 1% for all the SRS plans. The 3D correction method provides an access to evaluate the clinical measurement data and can be applied to non-standard composite fields intensity modulated radiation therapy point dose verification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3248516','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3248516"><span>Curvature-driven capillary migration and assembly of rod-like particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cavallaro, Marcello; Botto, Lorenzo; Lewandowski, Eric P.; Wang, Marisa; Stebe, Kathleen J.</p> <p>2011-01-01</p> <p>Capillarity can be used to direct anisotropic colloidal particles to precise locations and to orient them by using interface curvature as an applied field. We show this in experiments in which the shape of the interface is molded by pinning to vertical pillars of different cross-sections. These interfaces present well-defined curvature fields that orient and steer particles along complex trajectories. Trajectories and orientations are predicted by a theoretical model in which capillary forces and torques are related to Gaussian curvature gradients and angular deviations from principal directions of curvature. Interface curvature diverges near sharp boundaries, similar to an electric field near a pointed conductor. We exploit this feature to induce migration and assembly at preferred locations, and to create complex structures. We also report a repulsive interaction, in which microparticles move away from planar bounding walls along curvature gradient contours. These phenomena should be widely useful in the directed assembly of micro- and nanoparticles with potential application in the fabrication of materials with tunable mechanical or electronic properties, in emulsion production, and in encapsulation. PMID:22184218</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030066218','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030066218"><span>Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.</p> <p>2003-01-01</p> <p>The use of multi-dimensional finite volume numerical techniques with finite thickness models for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the one-dimensional semi -infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody were investigated. An array of streamwise orientated heating striations were generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients due to the striation patterns two-dimensional heat transfer techniques were necessary to obtain accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates because it did not account for lateral heat conduction in the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024429','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024429"><span>Impacts of urban landuse on macroinvertebrate communities in southeastern Wisconsin streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stepenuck, K.F.; Crunkilton, R.L.; Wang, L.</p> <p>2002-01-01</p> <p>Macroinvertebrates were used to assess the impact of urbanization on stream quality across a gradient of watershed imperviousness in 43 southeastern Wisconsin streams. The percentage of watershed connected imperviousness was chosen as the urbanization indicator to examine impact of urban land uses on macroinvertebrate communities. Most urban land uses were negatively correlated with the Shannon diversity index, percent of pollution intolerant Ephemeroptera, Plecoptera, and Trichoptera individuals, and generic richness. Nonurban land uses were positively correlated with these same metrics. The Hilsenhoff biotic index indicated that stream quality declined with increased urbanization. Functional feeding group metrics varied across a gradient of urbanization, suggesting changes in stream quality. Proportions of collectors and gatherers increased, while proportions of filterers, scrapers, and shredders decreased with increased watershed imperviousness. This study demonstrated that urbanization severely degraded stream macroinvertebrate communities, hence stream quality. Good stream quality existed where imperviousness was less than 8 percent, but less favorable assessments were inevitable where imperviousness exceeded 12 to 20 percent. Levels of imperviousness between 8 and 12 percent represented a threshold where minor increases in urbanization were associated with sharp declines in stream quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPN11072L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPN11072L"><span>Parallel Energy Transport in Detached DIII-D Divertor Plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leonard, A. W.; Lore, J. D.; Canik, J. M.; McLean, A. G.; Makowski, M. A.</p> <p>2017-10-01</p> <p>A comparison of experiment and modeling of detached divertor plasmas is examined in the context of parallel energy transport. Experimental estimates of power carried by electron thermal conduction versus plasma convection are experimentally inferred from power balance measurements of radiated power and target plate heat flux combined with Thomson scattering measurements of the Te profile along the divertor leg. Experimental profiles of Te exhibit relatively low gradients with Te < 15 eV from the X-point to the target implying transport dominated by convection. In contrast, fluid modeling with SOLPS produces sharp Te gradients for Te > 3 eV, characteristic of transport dominated by electron conduction through the bulk of the divertor. This discrepancy with experimental transport dominated by convection and modeling by conduction has significant implications for the radiative capacity of divertor plasmas and may explain at least part of the difficulty for fluid modeling to obtain the experimentally observed radiative losses. Comparisons are also made for helium plasmas where the match between experiment and modeling is much better. Work supported by the US DOE under DE-FC02-04ER54698.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DPPBO6011T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DPPBO6011T"><span>Laser-plasma mirrors: from electron acceleration to harmonics generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thévenet, Maxence; Bocoum, Maïmouna; Faure, Jérôme; Leblanc, Adrien; Vincenti, Henri; Quéré, Fabien</p> <p>2016-10-01</p> <p>Accelerating electrons in the > 10 TV/m fields inside an ultrashort ultraintense laser pulse has been a long-standing goal in experimental physics, motivated by promising theoretical predictions. The biggest hurdle was to have electrons injected in the center of the laser pulse. Recent experimental and numerical results showed that this problem could be solved using a plasma mirror, i.e. an overdense plasma with a sharp (<laser wavelength) density gradient on its front side, leading to a 10 MeV 3 nC electron beam. Using particle-in-cell simulations, the ejection process was identified as a push-pull mechanism occuring at each laser period, resulting in a train of attosecond electron bunches injected in the reflected field. We present a study and a model of this process, and show the gradient characteristic length is the crucial parameter for this phenomenon. Finally, the electron ejection process was put into perspective with respect to the high harmonic generation mechanisms on plasma mirrors, giving new insights into the motion of the plasma mirror surface. funded by the European Research Council, Contract No. 306708, ERC Starting Grant FEMTOELEC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22627796','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22627796"><span>The use of adaptive statistical iterative reconstruction in pediatric head CT: a feasibility study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vorona, G A; Zuccoli, G; Sutcavage, T; Clayton, B L; Ceschin, R C; Panigrahy, A</p> <p>2013-01-01</p> <p>Iterative reconstruction techniques facilitate CT dose reduction; though to our knowledge, no group has explored using iterative reconstruction with pediatric head CT. Our purpose was to perform a feasibility study to assess the use of ASIR in a small group of pediatric patients undergoing head CT. An Alderson-Rando head phantom was scanned at decreasing 10% mA intervals relative to our standard protocol, and each study was then reconstructed at 10% ASIR intervals. An intracranial region of interest was consistently placed to estimate noise. Our ventriculoperitoneal shunt CT protocol was subsequently modified, and patients were scanned at 20% ASIR with approximately 20% mA reductions. ASIR studies were anonymously compared with older non-ASIR studies from the same patients by 2 attending pediatric neuroradiologists for diagnostic utility, sharpness, noise, and artifacts. The phantom study demonstrated similar noise at 100% mA/0% ASIR (3.9) and 80% mA/20% ASIR (3.7). Twelve pediatric patients were scanned at reduced dose at 20% ASIR. The average CTDI(vol) and DLP values of the 20% ASIR studies were 22.4 mGy and 338.4 mGy-cm, and for the non-ASIR studies, they were 28.8 mGy and 444.5 mGy-cm, representing statistically significant decreases in the CTDI(vol) (22.1%, P = .00007) and DLP (23.9%, P = .0005) values. There were no significant differences between the ASIR studies and non-ASIR studies with respect to diagnostic acceptability, sharpness, noise, or artifacts. Our findings suggest that 20% ASIR can provide approximately 22% dose reduction in pediatric head CT without affecting image quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21120849-saphire-scintillator-avalanche-photoconductor-high-resolution-emitter-readout-low-dose-ray-imaging-spatial-resolution','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21120849-saphire-scintillator-avalanche-photoconductor-high-resolution-emitter-readout-low-dose-ray-imaging-spatial-resolution"><span>SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) for low dose x-ray imaging: Spatial resolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li Dan; Zhao Wei</p> <p>2008-07-15</p> <p>An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve themore » low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998SPIE.3478..218T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998SPIE.3478..218T"><span>Dual-hologram shearing interference technique with regulated sensitivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toker, Gregory R.; Levin, Daniel</p> <p>1998-06-01</p> <p>A novel optical diagnostic technique,namely, a dual hologram shearing interferometry with regulated sensitivity, is proposed for visualization and measuring the density gradients of compressible flows in wind tunnels. It has advantages over conventional shearing interferometry in both accuracy and sensitivity. The method is especially useful for strong turbulent or unsteady regions of the flows including shock flows. The interferometer proved to be insensitive to mechanical vibrations and allowed to record holograms during the noisy wind tunnel run. The proposed approach was demonstrated by its application to a supersonic flow over spherically blunted and sharp nose cone/cylinder models. It is believed that the technique will become an effective tool for receiving optical data in many flow facilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998SPIE.3479..294T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998SPIE.3479..294T"><span>Dual-hologram shearing interferometry with regulated sensitivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toker, Gregory R.; Levin, Daniel</p> <p>1998-07-01</p> <p>A novel optical diagnostic technique, namely, a dual hologram shearing interferometry with regulated sensitivity, is proposed for visualization and measuring the density gradients of compressible flows in wind tunnels. It has advantages over conventional shearing interferometry in both accuracy and sensitivity. The method is especially useful for strong turbulent or unsteady regions of the flows including shock flows. The interferometer proved to be insensitive to mechanical vibrations and allowed to record holograms during the noisy wind tunnel run. The proposed approach was demonstrated by its application to a supersonic flow over spherically blunted and sharp nose cone/cylinder models. It is believed that the technique will become an effective tool for receiving optical data in many flow facilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM21A2451T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM21A2451T"><span>Cold ion demagnetization near the X-line of magnetic reconnection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toledo Redondo, S.; Andre, M.; Khotyaintsev, Y. V.; Vaivads, A.; Walsh, A. P.; Li, W.; Graham, D. B.; Lavraud, B.; Masson, A.; Aunai, N.; Divin, A. V.; Dargent, J.; Fuselier, S. A.; Gershman, D. J.; Dorelli, J.; Giles, B. L.; Avanov, L. A.; Pollock, C. J.; Saito, Y.; Moore, T. E.; Coffey, V. N.; Chandler, M. O.; Lindqvist, P. A.; Torbert, R. B.; Russell, C. T.</p> <p>2016-12-01</p> <p>We report observatios of the Ion Diffusion Region (IDR) of magnetic reconnection by MMS at the dayside magnetopause. Cold plasma (tens of eV) of ionospheric origin was present inside the IDR the 22 October 2015 and its behavior differed from the hot plasma (several keV). In particular, cold ions remained magnetized and followed E x B inside most of the IDR. We identify a sub-region and name it the cold IDR of the size of the cold ion gyroradius ( 15 km) where cold ions are demagnetized and accelerated parallel to E. Using multi-spacecraft measurements we identify a sharp cold ion density gradient separating the two regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22648912-su-complex-multi-ptv-treatment-evaluation-using-remotely-processed-gel-dosimeter','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22648912-su-complex-multi-ptv-treatment-evaluation-using-remotely-processed-gel-dosimeter"><span>SU-F-T-304: Complex Multi-PTV Treatment Evaluation Using a Remotely Processed 3D Gel Dosimeter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hoisak, J; Dragojevic, I; Sutlief, S</p> <p></p> <p>Purpose: A new 3D gel dosimeter (ClearView™, Modus Medical Systems) was investigated for use as a QA tool for stereotactic radiosurgery (SRS) plans exhibiting high dose gradients and spatially separated treatment targets. The unique feature of this gel dosimeter is the remote processing service provided by Modus Medical Systems. Methods: The gel dosimeters were filled in either 10 cm diameter or 15 cm diameter clear plastic jars. The jars were then shipped in ice-cooled containers to our department for irradiation. Clinical SRS plans for treatment of multiple metastases and plans with simulated concave structures were applied to a CT scanmore » of the gel dosimeter. The gel was irradiated in treatment position using modulated arcs and then returned in the cooled container for processing. The 3D gel dose was compared to the DICOM-RT dose from the treatment plan to assess dosimetric and geometric agreement. Results: There was no discernible difference between the planned and measured dose for dose gradients as high as 10%/mm, which was the highest gradient we evaluated. Geometric agreement for distant metastases separated by 6 cm was within 1.5 mm. Among three identically irradiated gels using a plan intended for nine metastases, the 3%/3mm gamma passing rate was 84.5% with a range of 14.7%, measured over the entire volume of the dosimeter. Regions of larger gamma values correlated with geometric offsets between the planned and measured data. Conclusion: The gel dosimeter exhibits the dosimetric and geometric characteristics necessary for 3D evaluation of treatment plan deliverability. The range of observed gamma passing rates suggests a high sensitivity to geometric registration. With proper management of geometric registration between planned and measured data, this service should enable a radiation oncology department to use 3D dosimetry in end-to-end testing or patient plan delivery QA without the expense of an in-house processing system.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26029736','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26029736"><span>Super-low dose endotoxin pre-conditioning exacerbates sepsis mortality.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Keqiang; Geng, Shuo; Yuan, Ruoxi; Diao, Na; Upchurch, Zachary; Li, Liwu</p> <p>2015-04-01</p> <p>Sepsis mortality varies dramatically in individuals of variable immune conditions, with poorly defined mechanisms. This phenomenon complements the hypothesis that innate immunity may adopt rudimentary memory, as demonstrated in vitro with endotoxin priming and tolerance in cultured monocytes. However, previous in vivo studies only examined the protective effect of endotoxin tolerance in the context of sepsis. In sharp contrast, we report herein that pre-conditionings with super-low or low dose endotoxin lipopolysaccharide (LPS) cause strikingly opposite survival outcomes. Mice pre-conditioned with super-low dose LPS experienced severe tissue damage, inflammation, increased bacterial load in circulation, and elevated mortality when they were subjected to cecal-ligation and puncture (CLP). This is in opposite to the well-reported protective phenomenon with CLP mice pre-conditioned with low dose LPS. Mechanistically, we demonstrated that super-low and low dose LPS differentially modulate the formation of neutrophil extracellular trap (NET) in neutrophils. Instead of increased ERK activation and NET formation in neutrophils pre-conditioned with low dose LPS, we observed significantly reduced ERK activation and compromised NET generation in neutrophils pre-conditioned with super-low dose LPS. Collectively, our findings reveal a novel mechanism potentially responsible for the dynamic programming of innate immunity in vivo as it relates to sepsis risks.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16571930','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16571930"><span>A gradient of radioactive contamination in Dolon village near the SNTS and comparison of computed dose values with instrumental estimates for the 29 August, 1949 nuclear test.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stepanenko, Valeriy F; Hoshi, Masaharu; Dubasov, Yuriy V; Sakaguchi, Aya; Yamamoto, Masayoshi; Orlov, Mark Y; Bailiff, Ian K; Ivannikov, Alexander I; Skvortsov, Valeriy G; Iaskova, Elena K; Kryukova, Irina G; Zhumadilov, Kassym S; Endo, Satoru; Tanaka, Kenichi; Apsalikov, Kazbek N; Gusev, Boris I</p> <p>2006-02-01</p> <p>Spatial distributions of soil contamination by 137Cs (89 sampling points) and 239+240Pu (76 points) near and within Dolon village were analyzed. An essential exponential decrease of contamination was found in Dolon village: the distance of a half reduction in contamination is about 0.87-1.25 km (in a northwest-southeast direction from the supposed centerline of the radioactive trace). This fact is in agreement with the available exposure rate measurements near Dolon (September 1949 archive data): on the basis of a few measurements the pattern of the trace was estimated to comprise a narrow 2 km corridor of maximum exposure rate. To compare computed external doses in air with local dose estimates by retrospective luminescence dosimetry (RLD) the gradient of radioactive soil contamination within the village was accounted for. The computed dose associated with the central axis of the trace was found to be equal to 2260 mGy (calculations based on archive exposure rate data). Local doses near the RLD sampling points (southeast of the village) were calculated to be in the range 466-780 mGy (averaged value: 645+/-70 mGy), which is comparable with RLD data (averaged value 460+/-92 mGy with range 380-618 mGy). A comparison of the computed mean dose in the settlement with dose estimates by ESR tooth enamel dosimetry makes it possible to estimate the "upper level" of the "shielding and behavior" factor in dose reduction for inhabitants of Dolon village which was found to be 0.28+/-0.068.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8763F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8763F"><span>Effect of mesoscale oceanic eddies on mid-latitude storm-tracks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foussard, Alexis; Lapeyre, Guillaume; Plougonven, Riwal</p> <p>2017-04-01</p> <p>Sharp sea surface temperature (SST) gradients associated with oceanic western boundary currents (WBC) exert an influence on the position and intensity of mid-latitude storm-tracks. This occurs through strong surface baroclinicity maintained by cross frontal SST gradient and deep vertical atmospheric motion due to convection on the warm flank of the WBC. However the additional role of mesoscale oceanic structures (30-300km) has not yet been explored although they have a non-negligible influence on surface heat fluxes. Using the Weather Research and Forecasting model, we investigate the potential role of these oceanic eddies in the case of an idealized atmospheric mid-latitude storm track forced by a mesoscale oceanic eddy field superposed with a large-scale SST gradient. Surface latent and sensible fluxes are shown to react with a non-linear response to the SST variations, providing additional heat and moisture supply at large scales. The atmospheric response is not restricted to the boundary layer but reaches the free troposphere, especially through increased water vapor vertical transport and latent heat release. This additional heating in presence of eddies is balanced by a shift of the storm-track and its poleward heat flux toward high latitudes, with amplitude depending on atmospheric configuration and eddies amplitude. We also explore how this displacement of perturbations changes the position and structure of the mid-latitude jet through eddy momentum fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoJI.202..811M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoJI.202..811M"><span>Three-dimensional full waveform inversion of short-period teleseismic wavefields based upon the SEM-DSM hybrid method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Monteiller, Vadim; Chevrot, Sébastien; Komatitsch, Dimitri; Wang, Yi</p> <p>2015-08-01</p> <p>We present a method for high-resolution imaging of lithospheric structures based on full waveform inversion of teleseismic waveforms. We model the propagation of seismic waves using our recently developed direct solution method/spectral-element method hybrid technique, which allows us to simulate the propagation of short-period teleseismic waves through a regional 3-D model. We implement an iterative quasi-Newton method based upon the L-BFGS algorithm, where the gradient of the misfit function is computed using the adjoint-state method. Compared to gradient or conjugate-gradient methods, the L-BFGS algorithm has a much faster convergence rate. We illustrate the potential of this method on a synthetic test case that consists of a crustal model with a crustal discontinuity at 25 km depth and a sharp Moho jump. This model contains short- and long-wavelength heterogeneities along the lateral and vertical directions. The iterative inversion starts from a smooth 1-D model derived from the IASP91 reference Earth model. We invert both radial and vertical component waveforms, starting from long-period signals filtered at 10 s and gradually decreasing the cut-off period down to 1.25 s. This multiscale algorithm quickly converges towards a model that is very close to the true model, in contrast to inversions involving short-period waveforms only, which always get trapped into a local minimum of the cost function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032353','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032353"><span>Spatial pattern formation of coastal vegetation in response to external gradients and positive feedbacks affecting soil porewater salinity: A model study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jiang, J.; DeAngelis, D.L.; Smith, T. J.; Teh, S.Y.; Koh, H. L.</p> <p>2012-01-01</p> <p>Coastal vegetation of South Florida typically comprises salinity-tolerant mangroves bordering salinity-intolerant hardwood hammocks and fresh water marshes. Two primary ecological factors appear to influence the maintenance of mangrove/hammock ecotones against changes that might occur due to disturbances. One of these is a gradient in one or more environmental factors. The other is the action of positive feedback mechanisms, in which each vegetation community influences its local environment to favor itself, reinforcing the boundary between communities. The relative contributions of these two factors, however, can be hard to discern. A spatially explicit individual-based model of vegetation, coupled with a model of soil hydrology and salinity dynamics is presented here to simulate mangrove/hammock ecotones in the coastal margin habitats of South Florida. The model simulation results indicate that an environmental gradient of salinity, caused by tidal flux, is the key factor separating vegetation communities, while positive feedback involving the different interaction of each vegetation type with the vadose zone salinity increases the sharpness of boundaries, and maintains the ecological resilience of mangrove/hammock ecotones against small disturbances. Investigation of effects of precipitation on positive feedback indicates that the dry season, with its low precipitation, is the period of strongest positive feedback. ?? 2011 Springer Science+Business Media B.V. (outside the USA).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..DFDH12006T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..DFDH12006T"><span>Passive scalar dynamics near the turbulent/nonturbulent interface in a jet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taveira, Rodrigo R.; da Silva, Carlos</p> <p>2011-11-01</p> <p>The present work uses several direct numerical simulations (DNS) of turbulent planar jets at Reynolds number ranging from Reλ = 120 to Reλ = 160 and Schmidt numbers raging from Sc = 0 . 7 to 7.0 to analyze the nature and properties of the ``scalar interface'' and to investigate the dynamics of turbulent mixing of a passive scalar. Specifically, we employ conditional statistics in relation to the distance from the T/NT interface in order to eliminate the intermittency that affects common turbulence statistics close to the jet edge. The physical mechanisms behind scalar mixing near the T/NT interfaces and their associated turbulent scales and topology are investigated. A sharp scalar interface exists separating the Turbulent and the irrotational flow regions. The thickness of this scalar interface δθ is also of the order of the Taylor micro-scale, λ. However, the thickness of the scalar gradient variance <θ2 >I (where Gj = ∂ θ / ∂xj) is much smaller. Very intense scalar gradient sheet structures along regions of intense strain, in particular at the T/NT interface. The scalar gradient transport equation is analyzed in order to further investigate the physical mechanism of scalar turbulent mixing at the jet edge. Almost all mixing takes place in a confined region close to the interface, beyond which they become reduced to an almost in perfect - balance between production and dissipation of scalar variance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23595736','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23595736"><span>Tunnel vision: sharper gradient of spatial attention in autism.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Robertson, Caroline E; Kravitz, Dwight J; Freyberg, Jan; Baron-Cohen, Simon; Baker, Chris I</p> <p>2013-04-17</p> <p>Enhanced perception of detail has long been regarded a hallmark of autism spectrum conditions (ASC), but its origins are unknown. Normal sensitivity on all fundamental perceptual measures-visual acuity, contrast discrimination, and flicker detection-is strongly established in the literature. If individuals with ASC do not have superior low-level vision, how is perception of detail enhanced? We argue that this apparent paradox can be resolved by considering visual attention, which is known to enhance basic visual sensitivity, resulting in greater acuity and lower contrast thresholds. Here, we demonstrate that the focus of attention and concomitant enhancement of perception are sharper in human individuals with ASC than in matched controls. Using a simple visual acuity task embedded in a standard cueing paradigm, we mapped the spatial and temporal gradients of attentional enhancement by varying the distance and onset time of visual targets relative to an exogenous cue, which obligatorily captures attention. Individuals with ASC demonstrated a greater fall-off in performance with distance from the cue than controls, indicating a sharper spatial gradient of attention. Further, this sharpness was highly correlated with the severity of autistic symptoms in ASC, as well as autistic traits across both ASC and control groups. These findings establish the presence of a form of "tunnel vision" in ASC, with far-reaching implications for our understanding of the social and neurobiological aspects of autism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930071514&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dvertical%2Bheight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930071514&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dvertical%2Bheight"><span>Satellite observations of a polar low over the Norwegian Sea by Special Sensor Microwave Imager, Geosat, and TIROS-N Operational Vertical Sounder</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Claud, Chantal; Mognard, Nelly M.; Katsaros, Kristina B.; Chedin, Alain; Scott, Noelle A.</p> <p>1993-01-01</p> <p>Many polar lows are generated at the boundary between sea ice and the ocean, in regions of large temperature gradients, where in situ observations are rare or nonexistent. Since satellite observations are frequent in high-latitude regions, they can be used to detect polar lows and track their propagation and evolution. The Special Sensor Microwave/Imager (SSM/I) providing estimates of surface wind speed, integrated cloud liquid water content, water vapor content, and precipitation size ice-scattering signal over the ocean; the Geosat radar altimeter measuring surface wind speed and significant wave height; and the TIROS-N Operational Vertical Sounder (TOVS) allowing the determination of temperature and humidity profiles in the atmosphere have been used in synergy for a specific case which occurred in the Norwegian Sea on January, 23-24 1988. All three instruments show sharp atmospheric gradients associated with the propagation of this low across the ocean, which permit the detection of the polar low at a very early stage and tracking it during its development, propagation, and decay. The wind speed gradients are measured with good qualitative agreement between the altimeter and SSM/I. TOVS retrieved fields prior to the formation of the low confirm the presence of an upper level trough, while during the mature phase baroclinicity can be observed in the 1000-500 hPa geopotential thicknesses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23254684','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23254684"><span>Construction of oxygen and chemical concentration gradients in a single microfluidic device for studying tumor cell-drug interactions in a dynamic hypoxia microenvironment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Lei; Liu, Wenming; Wang, Yaolei; Wang, Jian-chun; Tu, Qin; Liu, Rui; Wang, Jinyi</p> <p>2013-02-21</p> <p>Recent microfluidic advancements in oxygen gradients have greatly promoted controllable oxygen-sensitive cellular investigations at microscale resolution. However, multi-gradient integration in a single microfluidic device for tissue-mimicking cell investigation is not yet well established. In this study, we describe a method that can generate oxygen and chemical concentration gradients in a single microfluidic device via the formation of an oxygen gradient in a chamber and a chemical concentration gradient between adjacent chambers. The oxygen gradient dynamics were systematically investigated, and were quantitatively controlled using simple exchange between the aerial oxygen and the oxygen-free conditions in the gas-permeable polydimethylsiloxane channel. Meanwhile, the chemical gradient dynamics was generated using a special channel-branched device. For potential medical applications of the established oxygen and chemical concentration gradients, a tumor cell therapy assessment was performed using two antitumor drugs (tirapazamine and bleomycin) and two tumor cell lines (human lung adenocarcinoma A549 cells and human cervical carcinoma HeLa cells). The results of the proof-of-concept experiment indicate the dose-dependent antitumor effect of the drugs and hypoxia-induced cytotoxicity of tirapazamine. We demonstrate that the integration of oxygen and chemical concentration gradients in a single device can be applied to investigating oxygen- and chemical-sensitive cell events, which can also be valuable in the development of multi-gradient generating procedures and specific drug screening.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28183438','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28183438"><span>Cardiac Imaging for Assessing Low-Gradient Severe Aortic Stenosis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Clavel, Marie-Annick; Burwash, Ian G; Pibarot, Philippe</p> <p>2017-02-01</p> <p>Up to 40% of patients with aortic stenosis (AS) harbor discordant Doppler-echocardiographic findings, the most common of which is the presence of a small aortic valve area (≤1.0 cm 2 ) suggesting severe AS, but a low gradient (<40 mm Hg) suggesting nonsevere AS. The purpose of this paper is to present the role of multimodality imaging in the diagnostic and therapeutic management of this challenging entity referred to as low-gradient AS. Doppler-echocardiography is critical to determine the subtype of low-gradient AS: that is, classical low-flow, paradoxical low-flow, or normal-flow. Patients with low-flow, low-gradient AS generally have a worse prognosis compared with patients with high-gradient or with normal-flow, low-gradient AS. Patients with low-gradient AS and evidence of severe AS benefit from aortic valve replacement (AVR). However, confirmation of the presence of severe AS is particularly challenging in these patients and requires a multimodality imaging approach including low-dose dobutamine stress echocardiography and aortic valve calcium scoring by multidetector computed tomography. Transcatheter AVR using a transfemoral approach may be superior to surgical AVR in patients with low-flow, low-gradient AS. Further studies are needed to confirm the best valve replacement procedure and prosthetic valve for each category of low-gradient AS and to identify patients with low-gradient AS in whom AVR is likely to be futile. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999PhDT.......222M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999PhDT.......222M"><span>Computational and experimental investigation of two-dimensional scramjet inlets and hypersonic flow over a sharp flat plate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Messitt, Donald G.</p> <p>1999-11-01</p> <p>The WIND code was employed to compute the hypersonic flow in the shock wave boundary layer merged region near the leading edge of a sharp flat plate. Solutions were obtained at Mach numbers from 9.86 to 15.0 and free stream Reynolds numbers of 3,467 to 346,700 in-1 (1.365 · 105 to 1.365 · 107 m-1) for perfect gas conditions. The numerical results indicated a merged shock wave and viscous layer near the leading edge. The merged region grew in size with increasing free stream Mach number, proportional to Minfinity 2/Reinfinity. Profiles of the static pressure in the merged region indicated a strong normal pressure gradient (∂p/∂y). The normal pressure gradient has been neglected in previous analyses which used the boundary layer equations. The shock wave near the leading edge was thick, as has been experimentally observed. Computed shock wave locations and surface pressures agreed well within experimental error for values of the rarefaction parameter, chi/M infinity2 < 0.3. A preliminary analysis using kinetic theory indicated that rarefied flow effects became important above this value. In particular, the WIND solution agreed well in the transition region between the merged flow, which was predicted well by the theory of Li and Nagamatsu, and the downstream region where the strong interaction theory applied. Additional computations with the NPARC code, WIND's predecessor, demonstrated the ability of the code to compute hypersonic inlet flows at free stream Mach numbers up to 20. Good qualitative agreement with measured pressure data indicated that the code captured the important physical features of the shock wave - boundary layer interactions. The computed surface and pitot pressures fell within the combined experimental and numerical error bounds for most points. The calculations demonstrated the need for extremely fine grids when computing hypersonic interaction flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhDT.......104W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhDT.......104W"><span>On the implementation of an accurate and efficient solver for convection-diffusion equations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Chin-Tien</p> <p></p> <p>In this dissertation, we examine several different aspects of computing the numerical solution of the convection-diffusion equation. The solution of this equation often exhibits sharp gradients due to Dirichlet outflow boundaries or discontinuities in boundary conditions. Because of the singular-perturbed nature of the equation, numerical solutions often have severe oscillations when grid sizes are not small enough to resolve sharp gradients. To overcome such difficulties, the streamline diffusion discretization method can be used to obtain an accurate approximate solution in regions where the solution is smooth. To increase accuracy of the solution in the regions containing layers, adaptive mesh refinement and mesh movement based on a posteriori error estimations can be employed. An error-adapted mesh refinement strategy based on a posteriori error estimations is also proposed to resolve layers. For solving the sparse linear systems that arise from discretization, goemetric multigrid (MG) and algebraic multigrid (AMG) are compared. In addition, both methods are also used as preconditioners for Krylov subspace methods. We derive some convergence results for MG with line Gauss-Seidel smoothers and bilinear interpolation. Finally, while considering adaptive mesh refinement as an integral part of the solution process, it is natural to set a stopping tolerance for the iterative linear solvers on each mesh stage so that the difference between the approximate solution obtained from iterative methods and the finite element solution is bounded by an a posteriori error bound. Here, we present two stopping criteria. The first is based on a residual-type a posteriori error estimator developed by Verfurth. The second is based on an a posteriori error estimator, using local solutions, developed by Kay and Silvester. Our numerical results show the refined mesh obtained from the iterative solution which satisfies the second criteria is similar to the refined mesh obtained from the finite element solution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24016585','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24016585"><span>Droplet-based microfluidics for dose-response assay of enzyme inhibitors by electrochemical method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gu, Shuqing; Lu, Youlan; Ding, Yaping; Li, Li; Zhang, Fenfen; Wu, Qingsheng</p> <p>2013-09-24</p> <p>A simple but robust droplet-based microfluidic system was developed for dose-response enzyme inhibition assay by combining concentration gradient generation method with electrochemical detection method. A slotted-vials array and a tapered tip capillary were used for reagents introduction and concentration gradient generation, and a polydimethylsiloxane (PDMS) microfluidic chip integrated with microelectrodes was used for droplet generation and electrochemical detection. Effects of oil flow rate and surfactant on electrochemical sensing were investigated. This system was validated by measuring dose-response curves of three types of acetylcholinesterase (AChE) inhibitors, including carbamate pesticide, organophosphorus pesticide, and therapeutic drugs regulating Alzheimer's disease. Carbaryl, chlorpyrifos, and tacrine were used as model analytes, respectively, and their IC50 (half maximal inhibitory concentration) values were determined. A whole enzyme inhibition assay was completed in 6 min, and the total consumption of reagents was less than 5 μL. This microfluidic system is applicable to many biochemical reactions, such as drug screening and kinetic studies, as long as one of the reactants or products is electrochemically active. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26159588','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26159588"><span>Image Quality and Diagnostic Performance of a Digital PET Prototype in Patients with Oncologic Diseases: Initial Experience and Comparison with Analog PET.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nguyen, Nghi C; Vercher-Conejero, Jose L; Sattar, Abdus; Miller, Michael A; Maniawski, Piotr J; Jordan, David W; Muzic, Raymond F; Su, Kuan-Hao; O'Donnell, James K; Faulhaber, Peter F</p> <p>2015-09-01</p> <p>We report our initial clinical experience for image quality and diagnostic performance of a digital PET prototype scanner with time-of-flight (DigitalTF), compared with an analog PET scanner with time-of-flight (GeminiTF PET/CT). Twenty-one oncologic patients, mean age 58 y, first underwent clinical (18)F-FDG PET/CT on the GeminiTF. The scanner table was then withdrawn while the patient remained on the table, and the DigitalTF was inserted between the GeminiTF PET and CT scanner. The patients were scanned for a second time using the same PET field of view with CT from the GeminiTF for attenuation correction. Two interpreters reviewed the 2 sets of PET/CT images for overall image quality, lesion conspicuity, and sharpness. They counted the number of suggestive (18)F-FDG-avid lesions and provided the TNM staging for the 5 patients referred for initial staging. Standardized uptake values (SUVs) and SUV gradients as a measure of lesion sharpness were obtained. The DigitalTF showed better image quality than the GeminiTF. In a side-by-side comparison using a 5-point scale, lesion conspicuity (4.3 ± 0.6), lesion sharpness (4.3 ± 0.6), and diagnostic confidence (3.4 ± 0.7) were better with DigitalTF than with GeminiTF (P < 0.01). In 52 representative lesions, the lesion maximum SUV was 36% higher with DigitalTF than with GeminiTF, lesion-to-blood-pool SUV ratio was 59% higher, and SUV gradient was 51% higher, with good correlation between the 2 scanners. Lesions less than 1.5 cm showed a greater increase in SUV from GeminiTF to DigitalTF than those lesions 1.5 cm or greater. In 5 of 21 patients, DigitalTF showed an additional 8 suggestive lesions that were not seen using GeminiTF. In the 15 restaging patients, the true-negative rate was 100% and true-positive rate was 78% for both scanners. In the 5 patients for initial staging, DigitalTF led to upstaging in 2 patients and showed the same staging in the other 3 patients, compared with GeminiTF. DigitalTF provides better image quality, diagnostic confidence, and accuracy than GeminiTF. DigitalTF may be the most beneficial in detecting small tumor lesions and disease staging. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25809111','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25809111"><span>In vivo TLD dose measurements in catheter-based high-dose-rate brachytherapy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Adlienė, Diana; Jakštas, Karolis; Urbonavičius, Benas Gabrielis</p> <p>2015-07-01</p> <p>Routine in vivo dosimetry is well established in external beam radiotherapy; however, it is restricted mainly to detection of gross errors in high-dose-rate (HDR) brachytherapy due to complicated measurements in the field of steep dose gradients in the vicinity of radioactive source and high uncertainties. The results of in vivo dose measurements using TLD 100 mini rods and TLD 'pin worms' in catheter-based HDR brachytherapy are provided in this paper alongside with their comparison with corresponding dose values obtained using calculation algorithm of the treatment planning system. Possibility to perform independent verification of treatment delivery in HDR brachytherapy using TLDs is discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012NIMPB.272..162P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012NIMPB.272..162P"><span>Lithography exposure characteristics of poly(methyl methacrylate) (PMMA) for carbon, helium and hydrogen ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Puttaraksa, Nitipon; Norarat, Rattanaporn; Laitinen, Mikko; Sajavaara, Timo; Singkarat, Somsorn; Whitlow, Harry J.</p> <p>2012-02-01</p> <p>Poly(methyl methacrylate) is a common polymer used as a lithographic resist for all forms of particle (photon, ion and electron) beam writing. Faithful lithographic reproduction requires that the exposure dose, Θ, lies in the window Θ0⩽Θ<Θ, where Θ0 and Θ represent the clearing and cross-linking onset doses, respectively. In this work we have used the programmable proximity aperture ion beam lithography systems in Chiang Mai and Jyväskylä to determine the exposure characteristics in terms of fluence for 2 MeV protons, 3 MeV 4He and 6 MeV 12C ions, respectively. After exposure the samples were developed in 7:3 by volume propan-2-ol:de-ionised water mixture. At low fluences, where the fluence is below the clearing fluence, the exposed regions were characterised by rough regions, particularly for He with holes around the ion tracks. As the fluence (dose) increases so that the dose exceeds the clearing dose, the PMMA is uniformly removed with sharp vertical walls. When Θ exceeds the cross-linking onset fluence, the bottom of the exposed regions show undissolved PMMA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998AdSpR..22.1653D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998AdSpR..22.1653D"><span>Biodosimetry of heavy ions by interphase chromosome painting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Durante, M.; Kawata, T.; Nakano, T.; Yamada, S.; Tsujii, H.</p> <p>1998-11-01</p> <p>We report measurements of chromosomal aberrations in peripheral blood lymphocytes from cancer patients undergoing radiotherapy treatment. Patients with cervix or esophageal cancer were treated with 10 MV X-rays produced at a LINAC accelerator, or high-energy carbon ions produced at the HIMAC accelerator at the National Institute for Radiological Sciences (NIRS) in Chiba. Blood samples were obtained before, during, and after the radiation treatment. Chromosomes were prematurely condensed by incubation in calyculin A. Aberrations in chromosomes 2 and 4 were scored after fluorescence in situ hybridization with whole-chromosome probes. Pre-treatment samples were exposed in vitro to X-rays, individual dose-response curves for the induction of chromosomal aberrations were determined, and used as calibration curves to calculate the effective whole-body dose absorbed during the treatment. This calculated dose, based on the calibration curve relative to the induction of reciprocal exchanges, has a sharp increase after the first few fractions of the treatment, then saturates at high doses. Although carbon ions are 2-3 times more effective than X-rays in tumor sterilization, the effective dose was similar to that of X-ray treatment. However, the frequency of complex-type chromosomal exchanges was much higher for patients treated with carbon ions than X-ray.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27232200','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27232200"><span>Image reconstruction from few-view CT data by gradient-domain dictionary learning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Zhanli; Liu, Qiegen; Zhang, Na; Zhang, Yunwan; Peng, Xi; Wu, Peter Z; Zheng, Hairong; Liang, Dong</p> <p>2016-05-21</p> <p>Decreasing the number of projections is an effective way to reduce the radiation dose exposed to patients in medical computed tomography (CT) imaging. However, incomplete projection data for CT reconstruction will result in artifacts and distortions. In this paper, a novel dictionary learning algorithm operating in the gradient-domain (Grad-DL) is proposed for few-view CT reconstruction. Specifically, the dictionaries are trained from the horizontal and vertical gradient images, respectively and the desired image is reconstructed subsequently from the sparse representations of both gradients by solving the least-square method. Since the gradient images are sparser than the image itself, the proposed approach could lead to sparser representations than conventional DL methods in the image-domain, and thus a better reconstruction quality is achieved. To evaluate the proposed Grad-DL algorithm, both qualitative and quantitative studies were employed through computer simulations as well as real data experiments on fan-beam and cone-beam geometry. The results show that the proposed algorithm can yield better images than the existing algorithms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24007143','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24007143"><span>Experimentally studied dynamic dose interplay does not meaningfully affect target dose in VMAT SBRT lung treatments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stambaugh, Cassandra; Nelms, Benjamin E; Dilling, Thomas; Stevens, Craig; Latifi, Kujtim; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir</p> <p>2013-09-01</p> <p>The effects of respiratory motion on the tumor dose can be divided into the gradient and interplay effects. While the interplay effect is likely to average out over a large number of fractions, it may play a role in hypofractionated [stereotactic body radiation therapy (SBRT)] treatments. This subject has been extensively studied for intensity modulated radiation therapy but less so for volumetric modulated arc therapy (VMAT), particularly in application to hypofractionated regimens. Also, no experimental study has provided full four-dimensional (4D) dose reconstruction in this scenario. The authors demonstrate how a recently described motion perturbation method, with full 4D dose reconstruction, is applied to describe the gradient and interplay effects during VMAT lung SBRT treatments. VMAT dose delivered to a moving target in a patient can be reconstructed by applying perturbations to the treatment planning system-calculated static 3D dose. Ten SBRT patients treated with 6 MV VMAT beams in five fractions were selected. The target motion (motion kernel) was approximated by 3D rigid body translation, with the tumor centroids defined on the ten phases of the 4DCT. The motion was assumed to be periodic, with the period T being an average from the empirical 4DCT respiratory trace. The real observed tumor motion (total displacement ≤ 8 mm) was evaluated first. Then, the motion range was artificially increased to 2 or 3 cm. Finally, T was increased to 60 s. While not realistic, making T comparable to the delivery time elucidates if the interplay effect can be observed. For a single fraction, the authors quantified the interplay effect as the maximum difference in the target dosimetric indices, most importantly the near-minimum dose (D99%), between all possible starting phases. For the three- and five-fractions, statistical simulations were performed when substantial interplay was found. For the motion amplitudes and periods obtained from the 4DCT, the interplay effect is negligible (<0.2%). It is also small (0.9% average, 2.2% maximum) when the target excursion increased to 2-3 cm. Only with large motion and increased period (60 s) was a significant interplay effect observed, with D99% ranging from 16% low to 17% high. The interplay effect was statistically significantly lower for the three- and five-fraction statistical simulations. Overall, the gradient effect dominates the clinical situation. A novel method was used to reconstruct the volumetric dose to a moving tumor during lung SBRT VMAT deliveries. With the studied planning and treatment technique for realistic motion periods, regardless of the amplitude, the interplay has nearly no impact on the near-minimum dose. The interplay effect was observed, for study purposes only, with the period comparable to the VMAT delivery time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29298223','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29298223"><span>Nurses' Responses and Reactions to an Emergent Pediatric Simulation Exercise.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hoffman, Kenneth; von Sadovszky, Victoria</p> <p></p> <p>Pediatric nurses' responses and reactions in emergent simulations are understudied. Using authority gradient theory as a guide, the purpose of this study was to examine nurses' reactions during an emergency simulation exercise when directed to give an incorrect medication dose. Ten groups of noncritical care nurses were videotaped from the beginning of the simulation through debriefing. Although errors were made during the simulation event, all groups responded correctly during debriefing, indicating that authority gradient may play a role in clinical decision-making.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P43D2144R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P43D2144R"><span>New Constraints on the Deposition and Alteration History of Mt. Sharp in Gale Crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rice, M. S.; Horgan, B. H. N.; Fraeman, A.; Ackiss, S. E.</p> <p>2015-12-01</p> <p>The Mars Science Laboratory (MSL) rover is currently investigating the lower stratigraphy of northwestern Mt. Sharp, the 5 km thick stack of layered rock that makes up the central mound of Gale Crater. Previous near-infrared spectral investigations from orbit using CRISM have shown that this portion of the mound exhibits a diverse mineralogy that may indicate changing aqueous environments on early Mars. The relationship of these mineralogic units to stratigraphic units across the full extent of Mt. Sharp is not well understood, although such relationships are key to interpreting the depositional and digenetic history. Here we present new mineral maps derived from CRISM data, as well as detailed stratigraphic columns from around the mound, and we use these new results to constrain hypotheses for the modes of aqueous alteration. Our new CRISM mineral maps are projected and co-registered to HiRISE imagery and DEMs, and include Fe/Mg-smectites, poly- and mono-hydrated sulfates, iron oxides, high-Ca pyroxene, and a ferrous phase with a strong red spectral slope between 1.1-1.8 μm, which is consistent with ferrous alteration phases like ferrous clays. This latter unit consistently overlies Fe/Mg-smectites in NW and SW Mt. Sharp, and is located in topographic benches that are either immediately stratigaphically above hematite-bearing ridges. The presence of ferrous alteration phases supports previous interpretations that hematite formed when an Fe2+-bearing fluid encountered an oxidizing environment. In this scenario, the reducing fluids were created by long-term oxygen limited alteration of Fe-bearing minerals in the near-surface. Downward movement of these fluids may have been limited by the underlying clay layer, forcing lateral flow. On emergence at the surface, the iron was oxidized by photochemical or other redox reactions. On Earth, similar pedogenic processes form hematite ironpans on slopes surrounding poorly-drained hilltops, as well as ancient banded iron formations in shallow coastal waters. The reducing environment inferred from the ferrous phases could be a site of high organic preservation potential, and the redox gradient inferred from the ferric/ferrous mineral relationship could have served as an energy source for chemolithotrophic microbes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21.1321K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21.1321K"><span>Voxel inversion of airborne electromagnetic data for improved groundwater model construction and prediction accuracy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kruse Christensen, Nikolaj; Ferre, Ty Paul A.; Fiandaca, Gianluca; Christensen, Steen</p> <p>2017-03-01</p> <p>We present a workflow for efficient construction and calibration of large-scale groundwater models that includes the integration of airborne electromagnetic (AEM) data and hydrological data. In the first step, the AEM data are inverted to form a 3-D geophysical model. In the second step, the 3-D geophysical model is translated, using a spatially dependent petrophysical relationship, to form a 3-D hydraulic conductivity distribution. The geophysical models and the hydrological data are used to estimate spatially distributed petrophysical shape factors. The shape factors primarily work as translators between resistivity and hydraulic conductivity, but they can also compensate for structural defects in the geophysical model. The method is demonstrated for a synthetic case study with sharp transitions among various types of deposits. Besides demonstrating the methodology, we demonstrate the importance of using geophysical regularization constraints that conform well to the depositional environment. This is done by inverting the AEM data using either smoothness (smooth) constraints or minimum gradient support (sharp) constraints, where the use of sharp constraints conforms best to the environment. The dependency on AEM data quality is also tested by inverting the geophysical model using data corrupted with four different levels of background noise. Subsequently, the geophysical models are used to construct competing groundwater models for which the shape factors are calibrated. The performance of each groundwater model is tested with respect to four types of prediction that are beyond the calibration base: a pumping well's recharge area and groundwater age, respectively, are predicted by applying the same stress as for the hydrologic model calibration; and head and stream discharge are predicted for a different stress situation. As expected, in this case the predictive capability of a groundwater model is better when it is based on a sharp geophysical model instead of a smoothness constraint. This is true for predictions of recharge area, head change, and stream discharge, while we find no improvement for prediction of groundwater age. Furthermore, we show that the model prediction accuracy improves with AEM data quality for predictions of recharge area, head change, and stream discharge, while there appears to be no accuracy improvement for the prediction of groundwater age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22685108-concurrent-monte-carlo-transport-fluence-optimization-fluence-adjusting-scalable-transport-monte-carlo','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22685108-concurrent-monte-carlo-transport-fluence-optimization-fluence-adjusting-scalable-transport-monte-carlo"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yang, Y. M., E-mail: ymingy@gmail.com; Bednarz, B.; Svatos, M.</p> <p></p> <p>Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship withinmore » a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. Results: The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. Conclusions: This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4884189','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4884189"><span>Concurrent Monte Carlo transport and fluence optimization with fluence adjusting scalable transport Monte Carlo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Svatos, M.; Zankowski, C.; Bednarz, B.</p> <p>2016-01-01</p> <p>Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship within a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. Results: The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. Conclusions: This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead. PMID:27277051</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20831729','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20831729"><span>Bird community specialization, bird conservation and disturbance: the role of wildfires.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Clavero, Miguel; Brotons, Lluís; Herrando, Sergi</p> <p>2011-01-01</p> <p>1. Although niche theory predicts that disturbance should favour generalist species, the community-level implications of this pattern have been sparsely analysed. Here, we test the hypothesis that disturbance favours generalist species within communities, analysing effects of wildfires in bird communities in a Mediterranean climate area as a case study. 2. We use bird occurrence data in more than 500 1 × 1 km squares forming a gradient running from forest to completely burnt areas. The level of specialization of bird communities was estimated by means of three complementary species specialization indices, calculated for different landscape gradients and averaged at the community level (i.e. 1 × 1 km squares), and mean species rarity. 3. We also calculated mean habitat preferences along landscape gradients, as well as an index of conservation value and total species richness. 4. Different estimators of bird community specialization varied in contrasting fashion along the wildfire disturbance gradient, and thus we conclude that it is not justified to expect unique community responses to the sharp variations in habitat characteristics brought by wildfire disturbances. 5. Burnt areas tended to have rarer and urban-avoider bird species, whereas unburnt forests tended to have larger proportions of forest specialist species. 6. The mean conservation value of communities clearly increased towards the burnt extreme of the wildfire disturbance gradient, while this had a negligible effect on species richness. 7. Wildfires seem to play an important role for the maintenance of open-habitat, urban-avoider bird populations in Mediterranean landscapes and also to benefit a set of bird species of unfavourable European conservation status. 8. In this context, it cannot be unambiguously concluded that fire disturbance, even in a context in which fires are greatly favoured by human-related activities, leads to more functionally simplified communities dominated by generalist species. © 2010 The Authors. Journal compilation © 2010 British Ecological Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGP13B1294M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGP13B1294M"><span>Implications for seismic hazard from new gravity data in Napa and vicinity, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morgan, K.; Langenheim, V. E.; Ritzinger, B. T.</p> <p>2015-12-01</p> <p>New gravity data refine the basin structure beneath the city of Napa, California and suggest continuity of the West Napa fault to the SE, near the city of Vallejo. Previous regional gravity data defined a basin 2-3 km deep beneath Napa where the 2014 M6.0 South Napa and the 2000 M4.9 Yountville earthquakes caused considerable damage. Higher ground motions were also recorded within the area of the gravity low. About 100 new gravity measurements sharpen gravity gradients along the eastern margin of the gravity low, where there was a concentration of red-tagged buildings from the 2014 earthquake. The new data also confirm the presence of an intrabasinal, arch, defined by slightly higher gravity values (~ 1 mGal) in the center of the basin and marked by the edge of a significant magnetic high (~150 nT). This arch coincides with the highest concentration of red-tagged buildings from the 2014 earthquake. Comparison of the potential-field anomalies with rock types encountered in water wells suggests that the arch is underlain by sediments which thin to the south where they are underlain by thick Sonoma Volcanics.. We speculate that the concentration of damage may be caused by shallowing of the basement or by a thicker sequence of basin sediments in the arch or both. Red-tagged buildings from the Yountville earthquake are near the western edge of the basin defined by significant potential-field gradients of the West Napa fault. A sharp basin boundary or guided waves along the fault may have contributed to concentration of damage in this area. Although the potential-field gradients decrease south of Napa, our new gravity data define a gradient aligned to the SE beneath the town of Vallejo. The gradient resides within Mesozoic basement rocks because it traverses outcrops of Great Valley Sequence. Although these data cannot prove Quaternary slip on this structure, its trend and location may indicate continuation of the West Napa fault to the SE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19733418','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19733418"><span>Ionic contribution to the self-potential signals associated with a redox front.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Revil, A; Trolard, F; Bourrié, G; Castermant, J; Jardani, A; Mendonça, C A</p> <p>2009-10-13</p> <p>In contaminant plumes or in the case of ore bodies, a source current density is produced at depth in response to the presence of a gradient of the redox potential. Two charge carriers can exist in such a medium: electrons and ions. Two contributions to the source current density are associated with these charge carriers (i) the gradient of the chemical potential of the ionic species and (ii) the gradient of the chemical potential of the electrons (i.e., the gradient of the redox potential). We ran a set of experiments in which a geobattery is generated using electrolysis reactions of a pore water solution containing iron. A DC power supply is used to impose a difference of electrical potential of 3 V between a working platinum electrode (anode) and an auxiliary platinum electrode (cathode). Both electrodes inserted into a tank filled with a well-calibrated sand infiltrated by a (0.01 mol L(-1) KCl+0.0035 mol L(-)(1) FeSO(4)) solution. After the direct current is turned off, we follow the pH, the redox potential, and the self-potential at several time intervals. The self-potential anomalies amount to a few tens of millivolts after the current is turned off and decreases over time. After several days, all the redox-active compounds produced initially by the electrolysis reactions are consumed through chemical reactions and the self-potential anomalies fall to zero. The resulting self-potential anomalies are shown to be much weaker than the self-potential anomalies observed in the presence of an electronic conductor in the laboratory or in the field. In the presence of a biotic or an abiotic electronic conductor, the self-potential anomalies can amount to a few hundred millivolts. These observations point out indirectly the potential role of bacteria forming biofilms in the transfer of electrons through sharp redox potential gradient in contaminant plumes that are rich in organic matter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JCoPh.353..377A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JCoPh.353..377A"><span>Gradient augmented level set method for phase change simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anumolu, Lakshman; Trujillo, Mario F.</p> <p>2018-01-01</p> <p>A numerical method for the simulation of two-phase flow with phase change based on the Gradient-Augmented-Level-set (GALS) strategy is presented. Sharp capturing of the vaporization process is enabled by: i) identification of the vapor-liquid interface, Γ (t), at the subgrid level, ii) discontinuous treatment of thermal physical properties (except for μ), and iii) enforcement of mass, momentum, and energy jump conditions, where the gradients of the dependent variables are obtained at Γ (t) and are consistent with their analytical expression, i.e. no local averaging is applied. Treatment of the jump in velocity and pressure at Γ (t) is achieved using the Ghost Fluid Method. The solution of the energy equation employs the sub-grid knowledge of Γ (t) to discretize the temperature Laplacian using second-order one-sided differences, i.e. the numerical stencil completely resides within each respective phase. To carefully evaluate the benefits or disadvantages of the GALS approach, the standard level set method is implemented and compared against the GALS predictions. The results show the expected trend that interface identification and transport are predicted noticeably better with GALS over the standard level set. This benefit carries over to the prediction of the Laplacian and temperature gradients in the neighborhood of the interface, which are directly linked to the calculation of the vaporization rate. However, when combining the calculation of interface transport and reinitialization with two-phase momentum and energy, the benefits of GALS are to some extent neutralized, and the causes for this behavior are identified and analyzed. Overall the additional computational costs associated with GALS are almost the same as those using the standard level set technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SGeo...35..765F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SGeo...35..765F"><span>Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational ℓ1-Norm Regularization in the Derivative Domain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.</p> <p>2014-05-01</p> <p>The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall), and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients (called ℓ1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a data base of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case studies featuring the downscaling of a hurricane precipitation field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26567300','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26567300"><span>Microbial Mat Communities along an Oxygen Gradient in a Perennially Ice-Covered Antarctic Lake.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jungblut, Anne D; Hawes, Ian; Mackey, Tyler J; Krusor, Megan; Doran, Peter T; Sumner, Dawn Y; Eisen, Jonathan A; Hillman, Colin; Goroncy, Alexander K</p> <p>2016-01-15</p> <p>Lake Fryxell is a perennially ice-covered lake in the McMurdo Dry Valleys, Antarctica, with a sharp oxycline in a water column that is density stabilized by a gradient in salt concentration. Dissolved oxygen falls from 20 mg liter(-1) to undetectable over one vertical meter from 8.9- to 9.9-m depth. We provide the first description of the benthic mat community that falls within this oxygen gradient on the sloping floor of the lake, using a combination of micro- and macroscopic morphological descriptions, pigment analysis, and 16S rRNA gene bacterial community analysis. Our work focused on three macroscopic mat morphologies that were associated with different parts of the oxygen gradient: (i) "cuspate pinnacles" in the upper hyperoxic zone, which displayed complex topography and were dominated by phycoerythrin-rich cyanobacteria attributable to the genus Leptolyngbya and a diverse but sparse assemblage of pennate diatoms; (ii) a less topographically complex "ridge-pit" mat located immediately above the oxic-anoxic transition containing Leptolyngbya and an increasing abundance of diatoms; and (iii) flat prostrate mats in the upper anoxic zone, dominated by a green cyanobacterium phylogenetically identified as Phormidium pseudopriestleyi and a single diatom, Diadesmis contenta. Zonation of bacteria was by lake depth and by depth into individual mats. Deeper mats had higher abundances of bacteriochlorophylls and anoxygenic phototrophs, including Chlorobi and Chloroflexi. This suggests that microbial communities form assemblages specific to niche-like locations. Mat morphologies, underpinned by cyanobacterial and diatom composition, are the result of local habitat conditions likely defined by irradiance and oxygen and sulfide concentrations. Copyright © 2016, American Society for Microbiology. All Rights Reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28919504','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28919504"><span>Cryptic elevational zonation in trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus janus complex) from the California southern Sierra Nevada.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Starrett, James; Hayashi, Cheryl Y; Derkarabetian, Shahan; Hedin, Marshal</p> <p>2018-01-01</p> <p>The relative roles of ecological niche conservatism versus niche divergence in promoting montane speciation remains an important topic in biogeography. Here, our aim was to test whether lineage diversification in a species complex of trapdoor spiders corresponds with riverine barriers or with an ecological gradient associated with elevational tiering. Aliatypus janus was sampled from throughout its range, with emphasis on populations in the southern Sierra Nevada Mountains of California. We collected multi-locus genetic data to generate a species tree for A. janus and its close relatives. Coalescent based hypothesis tests were conducted to determine if genetic breaks within A. janus conform to riverine barriers. Ecological niche models (ENM) under current and Last Glacial Maximum (LGM) conditions were generated and hypothesis tests of niche conservatism and divergence were performed. Coalescent analyses reveal deeply divergent genetic lineages within A. janus, likely corresponding to cryptic species. Two primary lineages meet along an elevational gradient on the western slopes of the southern Sierra Nevada Mountains. ENMs under both current and LGM conditions indicate that these groups occupy largely non-overlapping niches. ENM hypothesis testing rejected niche identity between the two groups, and supported a sharp ecological gradient occurring where the groups meet. However, the niche similarity test indicated that the two groups may not inhabit different background niches. The Sierra Nevada Mountains provide a natural laboratory for simultaneously testing ecological niche divergence and conservatism and their role in speciation across a diverse range of taxa. Aliatypus janus represents a species complex with cryptic lineages that may have diverged due to parapatric speciation along an ecological gradient, or been maintained by the evolution of ecological niche differences following allopatric speciation. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150010221','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150010221"><span>Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational 1-Norm Regularization in the Derivative Domain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.</p> <p>2013-01-01</p> <p>The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall),and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients(called 1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a database of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case studies featuring the downscaling of a hurricane precipitation field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvA..95d3618V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvA..95d3618V"><span>Generation of dark solitons and their instability dynamics in two-dimensional condensates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Verma, Gunjan; Rapol, Umakant D.; Nath, Rejish</p> <p>2017-04-01</p> <p>We analyze numerically the formation and the subsequent dynamics of two-dimensional matter wave dark solitons in a Thomas-Fermi rubidium condensate using various techniques. An initially imprinted sharp phase gradient leads to the dynamical formation of a stationary soliton as well as very shallow gray solitons, whereas a smooth gradient only creates gray solitons. The depth and hence, the velocity of the soliton is provided by the spatial width of the phase gradient, and it also strongly influences the snake-instability dynamics of the two-dimensional solitons. The vortex dipoles stemming from the unstable soliton exhibit rich dynamics. Notably, the annihilation of a vortex dipole via a transient dark lump or a vortexonium state, the exchange of vortices between either a pair of vortex dipoles or a vortex dipole and a single vortex, and so on. For sufficiently large width of the initial phase gradient, the solitons may decay directly into vortexoniums instead of vortex pairs, and also the decay rate is augmented. Later, we discuss alternative techniques to generate dark solitons, which involve a Gaussian potential barrier and time-dependent interactions, both linear and periodic. The properties of the solitons can be controlled by tuning the amplitude or the width of the potential barrier. In the linear case, the number of solitons and their depths are determined by the quench time of the interactions. For the periodic modulation, a transient soliton lattice emerges with its periodicity depending on the modulation frequency, through a wave number selection governed by the local Bogoliubov spectrum. Interestingly, for sufficiently low barrier potential, both Faraday pattern and soliton lattice coexist. The snake instability dynamics of the soliton lattice is characteristically modified if the Faraday pattern is present.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22269241-density-functional-study-structural-electronic-properties-al-sub-sub','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22269241-density-functional-study-structural-electronic-properties-al-sub-sub"><span>Density functional study of structural and electronic properties of Al{sub n}@C{sub 60}</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dhiman, Shobhna, E-mail: s-dhiman@hotmail.com; Kumar, Ranjan; Dharamvir, Keya</p> <p>2014-04-24</p> <p>Fullerene derivatives have been shown to make contributions in many types of applications. Ab initio investigation of structural and electronic properties of aluminum doped endohedral fullerene has been performed using numerical atomic orbital density functional theory. We have obtained ground state structures for Al{sub n}@C{sub 60} (n=1–10). Which shows that C{sub 60} molecule can accommodate maximum of nine aluminum atoms, for n > 9 the cage eventually break. Encapsulated large number of aluminum atoms leads to deformation of cage with diameter varies from 7.16Å to 7.95Å. Binding energy/Al atom is found to increase till n = 4 and after thatmore » it decreases with the number of Al atoms with a sudden increase for n=10 due to breakage of C{sub 60} cage and electronic affinity first increases till n=4 then it decreases up to n=9 with a sharp increase for n=10. Ionization potential also first increases and then decreases. Homo-Lumo gap decreases till n=3 with a sharp increase for n=4, after that it shows an oscillatory nature. The results obtained are consistent with available theoretical and experimental results. The ab-initio calculations were performed using SIESTA code with generalized gradient approximation (GGA)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950017979','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950017979"><span>Investigation of Convection and Pressure Treatment with Splitting Techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thakur, Siddharth; Shyy, Wei; Liou, Meng-Sing</p> <p>1995-01-01</p> <p>Treatment of convective and pressure fluxes in the Euler and Navier-Stokes equations using splitting formulas for convective velocity and pressure is investigated. Two schemes - controlled variation scheme (CVS) and advection upstream splitting method (AUSM) - are explored for their accuracy in resolving sharp gradients in flows involving moving or reflecting shock waves as well as a one-dimensional combusting flow with a strong heat release source term. For two-dimensional compressible flow computations, these two schemes are implemented in one of the pressure-based algorithms, whose very basis is the separate treatment of convective and pressure fluxes. For the convective fluxes in the momentum equations as well as the estimation of mass fluxes in the pressure correction equation (which is derived from the momentum and continuity equations) of the present algorithm, both first- and second-order (with minmod limiter) flux estimations are employed. Some issues resulting from the conventional use in pressure-based methods of a staggered grid, for the location of velocity components and pressure, are also addressed. Using the second-order fluxes, both CVS and AUSM type schemes exhibit sharp resolution. Overall, the combination of upwinding and splitting for the convective and pressure fluxes separately exhibits robust performance for a variety of flows and is particularly amenable for adoption in pressure-based methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21333971-lif-tld-dosimeter-high-energy-proton-beam-therapy-can-yield-accurate-results','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21333971-lif-tld-dosimeter-high-energy-proton-beam-therapy-can-yield-accurate-results"><span>LiF TLD-100 as a Dosimeter in High Energy Proton Beam Therapy-Can It Yield Accurate Results?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zullo, John R.; Kudchadker, Rajat J.; Zhu, X. Ronald</p> <p></p> <p>In the region of high-dose gradients at the end of the proton range, the stopping power ratio of the protons undergoes significant changes, allowing for a broad spectrum of proton energies to be deposited within a relatively small volume. Because of the potential linear energy transfer dependence of LiF TLD-100 (thermolumescent dosimeter), dose measurements made in the distal fall-off region of a proton beam may be less accurate than those made in regions of low-dose gradients. The purpose of this study is to determine the accuracy and precision of dose measured using TLD-100 for a pristine Bragg peak, particularly inmore » the distal fall-off region. All measurements were made along the central axis of an unmodulated 200-MeV proton beam from a Probeat passive beam-scattering proton accelerator (Hitachi, Ltd., Tokyo, Japan) at varying depths along the Bragg peak. Measurements were made using TLD-100 powder flat packs, placed in a virtual water slab phantom. The measurements were repeated using a parallel plate ionization chamber. The dose measurements using TLD-100 in a proton beam were accurate to within {+-}5.0% of the expected dose, previously seen in our past photon and electron measurements. The ionization chamber and the TLD relative dose measurements agreed well with each other. Absolute dose measurements using TLD agreed with ionization chamber measurements to within {+-} 3.0 cGy, for an exposure of 100 cGy. In our study, the differences in the dose measured by the ionization chamber and those measured by TLD-100 were minimal, indicating that the accuracy and precision of measurements made in the distal fall-off region of a pristine Bragg peak is within the expected range. Thus, the rapid change in stopping power ratios at the end of the range should not affect such measurements, and TLD-100 may be used with confidence as an in vivo dosimeter for proton beam therapy.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22679082-we-fg-early-prediction-radiotherapy-induced-skin-reactions-using-dynamic-infrared-imaging','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22679082-we-fg-early-prediction-radiotherapy-induced-skin-reactions-using-dynamic-infrared-imaging"><span>WE-FG-202-01: Early Prediction of Radiotherapy Induced Skin Reactions Using Dynamic Infrared Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Biswal, N; Cifter, G; Sun, J</p> <p></p> <p>Purpose: To predict radiotherapy induced skin reactions using dynamic infrared imaging. Methods: Thermal images were captured by our homebuilt system consisting of two flash lamps and an infrared (IR) camera. The surface temperature of the skin was first raised by ∼ 6 oC from ∼1 ms flashes. The camera then captured a series of IR images for 10 seconds. For each image, a baseline skin temperature was recorded for 0.5sec before heat impulse. The temporal temperature gradients were calculated between a reference point (immediately after the flash) and at a time point 9sec after that. Thermal effusivity, an intrinsic thermalmore » property of a material, was calculated from the surface temperature decay of skin. We present experimental data in five patients undergoing radiation therapy, of which 2 were Head & Neck, 1 was Sarcoma and 2 were Breast cancer patients. The prescribed doses were 45 – 60 Gy in 25 – 30 fractions. Each patient was imaged before treatment and after every fifth fraction until end of the treatment course. An area on the skin, outside the radiation field, was imaged as control region. During imaging, each patient’s irradiated skins were scored based on RTOG skin morbidity scoring criteria. Results: Temperature gradient, which is the temperature recovery rate, depends on the thermal properties of underlying tissue. It was observed that, the skin temperature and temporal temperature gradient increases with delivered radiation dose and skin RTOG score. The treatment does not change effusivity of superficial skin layer, however there was a significant difference in effusivity between treated and control areas at depth of ∼ 1.5 – 1.8 mm, increases with dose. Conclusion: The higher temporal temperature gradient and effusivity from irradiated areas suggest that there is more fluid under the irradiated skin, which causes faster temperature recovery. The mentioned effects may be predictors of Moist Desquamation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21158306','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21158306"><span>Comparing implementations of penalized weighted least-squares sinogram restoration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Forthmann, Peter; Koehler, Thomas; Defrise, Michel; La Riviere, Patrick</p> <p>2010-11-01</p> <p>A CT scanner measures the energy that is deposited in each channel of a detector array by x rays that have been partially absorbed on their way through the object. The measurement process is complex and quantitative measurements are always and inevitably associated with errors, so CT data must be preprocessed prior to reconstruction. In recent years, the authors have formulated CT sinogram preprocessing as a statistical restoration problem in which the goal is to obtain the best estimate of the line integrals needed for reconstruction from the set of noisy, degraded measurements. The authors have explored both penalized Poisson likelihood (PL) and penalized weighted least-squares (PWLS) objective functions. At low doses, the authors found that the PL approach outperforms PWLS in terms of resolution-noise tradeoffs, but at standard doses they perform similarly. The PWLS objective function, being quadratic, is more amenable to computational acceleration than the PL objective. In this work, the authors develop and compare two different methods for implementing PWLS sinogram restoration with the hope of improving computational performance relative to PL in the standard-dose regime. Sinogram restoration is still significant in the standard-dose regime since it can still outperform standard approaches and it allows for correction of effects that are not usually modeled in standard CT preprocessing. The authors have explored and compared two implementation strategies for PWLS sinogram restoration: (1) A direct matrix-inversion strategy based on the closed-form solution to the PWLS optimization problem and (2) an iterative approach based on the conjugate-gradient algorithm. Obtaining optimal performance from each strategy required modifying the naive off-the-shelf implementations of the algorithms to exploit the particular symmetry and sparseness of the sinogram-restoration problem. For the closed-form approach, the authors subdivided the large matrix inversion into smaller coupled problems and exploited sparseness to minimize matrix operations. For the conjugate-gradient approach, the authors exploited sparseness and preconditioned the problem to speed up convergence. All methods produced qualitatively and quantitatively similar images as measured by resolution-variance tradeoffs and difference images. Despite the acceleration strategies, the direct matrix-inversion approach was found to be uncompetitive with iterative approaches, with a computational burden higher by an order of magnitude or more. The iterative conjugate-gradient approach, however, does appear promising, with computation times half that of the authors' previous penalized-likelihood implementation. Iterative conjugate-gradient based PWLS sinogram restoration with careful matrix optimizations has computational advantages over direct matrix PWLS inversion and over penalized-likelihood sinogram restoration and can be considered a good alternative in standard-dose regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/437191','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/437191"><span>[Cerebral water and electrolytes during changes in the osmolarity and volume of the extracellular fluid].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pinegin, L E; Tibekina, L M; Shakhmatova, E I; Natochin, Iu</p> <p>1979-01-01</p> <p>The increase of osmolarity in the blood serum after administration of polyethylenglycol-400 (PEG) as well as the sharp increase of the renal loss of fluid under the influence of furosemide insignificantly affected the water contents in the white and grey brain substance. A slight dehydration of the grey substance occured on combination of osmotic gradient effect and the renal loss of fluid. Preservation of initial hydration of the brain within the skull on administration of PEG and furosemide is due to redistribution of the fluid phases: dehydration of cells is followed by an increase in the volume of sodium-containing tissue fluid where upon the amount of sodium and calcium in the tissue practically does not change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA118246','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA118246"><span>Sharp Nose Lens Design Using Refractive Index Gradient</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-06-01</p> <p>guided munitions infrared optics gunsunhe ramjet A AT(CaN011m0. = reerfse aide It nRa6"uWF 4191 #ifaU~ IV Week an For infrared sensors located at the...014-6601 uii THIS PAaE(Uha D heem ABSTRACT For infrared sensors located at the nose of a missile or a projectile, an age-olQ problem occurs. A conflict...JalA..... IaW3. *a aaa a w o. a 0 % a * J. 4 a N N.t 6 N6 N16 N6 vN6 36 ,43NNh 3..~. N N."J2SO N N 3j61 ~N N 2N N N.a~w3 W ww2 .~ w2fw W N</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850029113&hterms=refraction+density&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drefraction%2Bdensity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850029113&hterms=refraction+density&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drefraction%2Bdensity"><span>Optical tomography for flow visualization of the density field around a revolving helicopter rotor blade</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Snyder, R.; Hesselink, L.</p> <p>1984-01-01</p> <p>In this paper, a tomographic procedure for reconstructing the density field around a helicopter rotor blade tip from remote optical line-of-sight measurements is discussed. Numerical model studies have been carried out to investigate the influence of the number of available views, limited width viewing, and ray bending on the reconstruction. Performance is measured in terms of the mean-square error. It is found that very good reconstructions can be obtained using only a small number of views even when the width of view is smaller than the spatial extent of the object. An iterative procedure is used to correct for ray bending due to refraction associated with the sharp density gradients (shocks).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22490441-compton-profiles-electronic-properties-tib-sub','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22490441-compton-profiles-electronic-properties-tib-sub"><span>Compton profiles and electronic properties of TiB{sub 2}</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bhatt, Samir, E-mail: sameerbhatt011@gmail.com; Suthar, K. K.; Ahuja, B. L.</p> <p></p> <p>In this paper, we report the experimental Compton profile (CP) of TiB{sub 2} using high energy {sup 137}Cs γ-rays Compton spectrometer. To interpret the experimental momentum density, we have calculated the CPs using Hartree-Fock (HF), density functional theory (DFT) and hybridization of DFT and HF within linear combination of atomic orbitals. The theoretical profile with generalized gradient approximation is found to be relatively in better agreement with the experimental profile. A sharp valley in density of states and hence the pseudogap near the Fermi energy is attributed to hybridization of Ti-3d and B-2p states and almost reverse trend of energymore » bands below and above the Fermi energy.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1360130-generic-equilibration-dynamics-planar-defects-trapped-atomic-superfluids','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1360130-generic-equilibration-dynamics-planar-defects-trapped-atomic-superfluids"><span>Generic equilibration dynamics of planar defects in trapped atomic superfluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Scherpelz, Peter; Padavić, Karmela; Murray, Andy; ...</p> <p>2015-03-18</p> <p>Here, we investigate equilibration processes shortly after sudden perturbations are applied to ultracold trapped superfluids. We show the similarity of phase imprinting and localized density depletion perturbations, both of which initially are found to produce “phase walls”. These planar defects are associated with a sharp gradient in the phase. Importantly they relax following a quite general sequence. Our studies, based on simulations of the complex time-dependent Ginzburg-Landau equation, address the challenge posed by these experiments: how a superfluid eventually eliminatesa spatially extended planar defect. The processes involved are necessarily more complex than equilibration involving simpler line vortices. An essential mechanismmore » form relaxation involves repeated formation and loss of vortex rings near the trap edge.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9061897','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9061897"><span>Comparisons of molecular karyotype and RAPD patterns of anuran trypanosome isolates during long-term in vitro cultivation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lun, Z R; Desser, S S</p> <p>1996-01-01</p> <p>The patterns of random amplified fragments and molecular karyotypes of 12 isolates of anuran trypanosomes continuously cultured in vitro were compared by random amplified polymorphic DNA (RAPD) analysis and pulsed field gradient gel electrophoresis (PFGE). The time interval between preparation of two series of samples was one year. Changes were not observed in the number and size of sharp, amplified fragments of DNA samples from both series examined with the ten primers used. Likewise, changes in the molecular karyotypes were not detected between the two samples of these isolates. These results suggest that the molecular karyotype and the RAPD patterns of the anuran trypanosomes remain stable after being cultured continuously in vitro for one year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920066457&hterms=thakur&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dthakur','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920066457&hterms=thakur&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dthakur"><span>Unsteady, one-dimensional gas dynamics computations using a TVD type sequential solver</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thakur, Siddharth; Shyy, Wei</p> <p>1992-01-01</p> <p>The efficacy of high resolution convection schemes to resolve sharp gradient in unsteady, 1D flows is examined using the TVD concept based on a sequential solution algorithm. Two unsteady flow problems are considered which include the problem involving the interaction of the various waves in a shock tube with closed reflecting ends and the problem involving the unsteady gas dynamics in a tube with closed ends subject to an initial pressure perturbation. It is concluded that high accuracy convection schemes in a sequential solution framework are capable of resolving discontinuities in unsteady flows involving complex gas dynamics. However, a sufficient amount of dissipation is required to suppress oscillations near discontinuities in the sequential approach, which leads to smearing of the solution profiles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JPhCS.637a2024S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JPhCS.637a2024S"><span>Pediatric chest HRCT using the iDose4 Hybrid Iterative Reconstruction Algorithm: Which iDose level to choose?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smarda, M.; Alexopoulou, E.; Mazioti, A.; Kordolaimi, S.; Ploussi, A.; Priftis, K.; Efstathopoulos, E.</p> <p>2015-09-01</p> <p>Purpose of the study is to determine the appropriate iterative reconstruction (IR) algorithm level that combines image quality and diagnostic confidence, for pediatric patients undergoing high-resolution computed tomography (HRCT). During the last 2 years, a total number of 20 children up to 10 years old with a clinical presentation of chronic bronchitis underwent HRCT in our department's 64-detector row CT scanner using the iDose IR algorithm, with almost similar image settings (80kVp, 40-50 mAs). CT images were reconstructed with all iDose levels (level 1 to 7) as well as with filtered-back projection (FBP) algorithm. Subjective image quality was evaluated by 2 experienced radiologists in terms of image noise, sharpness, contrast and diagnostic acceptability using a 5-point scale (1=excellent image, 5=non-acceptable image). Artifacts existance was also pointed out. All mean scores from both radiologists corresponded to satisfactory image quality (score ≤3), even with the FBP algorithm use. Almost excellent (score <2) overall image quality was achieved with iDose levels 5 to 7, but oversmoothing artifacts appearing with iDose levels 6 and 7 affected the diagnostic confidence. In conclusion, the use of iDose level 5 enables almost excellent image quality without considerable artifacts affecting the diagnosis. Further evaluation is needed in order to draw more precise conclusions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PMB....52.7211M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PMB....52.7211M"><span>Accelerating IMRT optimization by voxel sampling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Benjamin C.; Bortfeld, Thomas R.; Castañon, David A.</p> <p>2007-12-01</p> <p>This paper presents a new method for accelerating intensity-modulated radiation therapy (IMRT) optimization using voxel sampling. Rather than calculating the dose to the entire patient at each step in the optimization, the dose is only calculated for some randomly selected voxels. Those voxels are then used to calculate estimates of the objective and gradient which are used in a randomized version of a steepest descent algorithm. By selecting different voxels on each step, we are able to find an optimal solution to the full problem. We also present an algorithm to automatically choose the best sampling rate for each structure within the patient during the optimization. Seeking further improvements, we experimented with several other gradient-based optimization algorithms and found that the delta-bar-delta algorithm performs well despite the randomness. Overall, we were able to achieve approximately an order of magnitude speedup on our test case as compared to steepest descent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006SPIE.6146..332D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006SPIE.6146..332D"><span>Characterization of a new generation of computed radiography system based on line scanning and phosphor needles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dragusin, Octavian; Rogge, Frank; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde</p> <p>2006-03-01</p> <p>A new generation CR system that is based on phosphor needles and that uses a digitizer with line scan technology was compared to a clinically used CR system. Purely technical and more clinically related tests were run on both systems. This included the calculation of the DQE, signal-to-noise and contrast to noise ratios from Aluminum inserts, contrast detail analysis with the CDRAD phantom and the use of anthropomorphic phantoms (wrist, chest and skull) with scoring by a radiologist. X-ray exposures with various dose levels and 50kV, 70kV and 125kV were acquired. For detector doses above 0.8 μGy, all noise related measurements showed the superiority of the new technology. The MTF confirmed the improvement in sharpness: between 1 and 3 lp/mm increases ranged from 20 to 50%. Further work should be devoted to the determination of the required dose levels in the plate for the different radiological applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PMB....60N.231L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PMB....60N.231L"><span>3D printed plastics for beam modulation in proton therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lindsay, C.; Kumlin, J.; Jirasek, A.; Lee, R.; Martinez, D. M.; Schaffer, P.; Hoehr, C.</p> <p>2015-06-01</p> <p>Two 3D printing methods, fused filament fabrication (FFF) and PolyJet™ (PJ) were investigated for suitability in clinical proton therapy (PT) energy modulation. Measurements of printing precision, printed density and mean stopping power are presented. FFF is found to be accurate to 0.1 mm, to contain a void fraction of 13% due to air pockets and to have a mean stopping power dependent on geometry. PJ was found to print accurate to 0.05 mm, with a material density and mean stopping power consistent with solid poly(methyl methacrylate) (PMMA). Both FFF and PJ were found to print significant, sporadic defects associated with sharp edges on the order of 0.2 mm. Site standard PT modulator wheels were printed using both methods. Measured depth-dose profiles with a 74 MeV beam show poor agreement between PMMA and printed FFF wheels. PJ printed wheel depth-dose agreed with PMMA within 1% of treatment dose except for a distal falloff discrepancy of 0.5 mm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5176633-sustained-remission-cushing-disease-mitotane-pituitary-irradiation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5176633-sustained-remission-cushing-disease-mitotane-pituitary-irradiation"><span>Sustained remission of Cushing's disease with mitotane and pituitary irradiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schteingart, D.E.; Tsao, H.S.; Taylor, C.I.</p> <p>1980-05-01</p> <p>Low doses of mitotane were given orally to 36 patients with Cushing's disease, concurrently with or after pituitary cobalt irradiation. Clinical and biochemical remission occurred in 29. The response to treatment occurred early in 17 patients and late in 12. The different pattern of response to mitotane was not related to the dose given or to its serum level. Early biochemical indicators of adrenal suppression with mitotane were a sharp decrease in adrenal response to the infusion of ACTH and in plasma levels of dehydroepiandrosterone sulfate. Although mitotane was given together with pituitary irradiation, initial remission was due mainly tomore » the adrenal effect of mitotane. Plasma ACTH levels were still elevated when cortisol had returned to normal. In seventeen of the 29 patients who responded to treatment drug therapy has been discontinued, and they remain in remission of Cushing's syndrome. Side-effects have been dose dependent, with anorexia, nausea, decreased memory, and gynecomastia in men being the commonest.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22559643','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22559643"><span>Conversion of mammographic images to appear with the noise and sharpness characteristics of a different detector and x-ray system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mackenzie, Alistair; Dance, David R; Workman, Adam; Yip, Mary; Wells, Kevin; Young, Kenneth C</p> <p>2012-05-01</p> <p>Undertaking observer studies to compare imaging technology using clinical radiological images is challenging due to patient variability. To achieve a significant result, a large number of patients would be required to compare cancer detection rates for different image detectors and systems. The aim of this work was to create a methodology where only one set of images is collected on one particular imaging system. These images are then converted to appear as if they had been acquired on a different detector and x-ray system. Therefore, the effect of a wide range of digital detectors on cancer detection or diagnosis can be examined without the need for multiple patient exposures. Three detectors and x-ray systems [Hologic Selenia (ASE), GE Essential (CSI), Carestream CR (CR)] were characterized in terms of signal transfer properties, noise power spectra (NPS), modulation transfer function, and grid properties. The contributions of the three noise sources (electronic, quantum, and structure noise) to the NPS were calculated by fitting a quadratic polynomial at each spatial frequency of the NPS against air kerma. A methodology was developed to degrade the images to have the characteristics of a different (target) imaging system. The simulated images were created by first linearizing the original images such that the pixel values were equivalent to the air kerma incident at the detector. The linearized image was then blurred to match the sharpness characteristics of the target detector. Noise was then added to the blurred image to correct for differences between the detectors and any required change in dose. The electronic, quantum, and structure noise were added appropriate to the air kerma selected for the simulated image and thus ensuring that the noise in the simulated image had the same magnitude and correlation as the target image. A correction was also made for differences in primary grid transmission, scatter, and veiling glare. The method was validated by acquiring images of a CDMAM contrast detail test object (Artinis, The Netherlands) at five different doses for the three systems. The ASE CDMAM images were then converted to appear with the imaging characteristics of target CR and CSI detectors. The measured threshold gold thicknesses of the simulated and target CDMAM images were closely matched at normal dose level and the average differences across the range of detail diameters were -4% and 0% for the CR and CSI systems, respectively. The conversion was successful for images acquired over a wide dose range. The average difference between simulated and target images for a given dose was a maximum of 11%. The validation shows that the image quality of a digital mammography image obtained with a particular system can be degraded, in terms of noise magnitude and color, sharpness, and contrast to account for differences in the detector and antiscatter grid. Potentially, this is a powerful tool for observer studies, as a range of image qualities can be examined by modifying an image set obtained at a single (better) image quality thus removing the patient variability when comparing systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNS31B..06P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNS31B..06P"><span>Comparison of Compressed Sensing Algorithms for Inversion of 3-D Electrical Resistivity Tomography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peddinti, S. R.; Ranjan, S.; Kbvn, D. P.</p> <p>2016-12-01</p> <p>Image reconstruction algorithms derived from electrical resistivity tomography (ERT) are highly non-linear, sparse, and ill-posed. The inverse problem is much severe, when dealing with 3-D datasets that result in large sized matrices. Conventional gradient based techniques using L2 norm minimization with some sort of regularization can impose smoothness constraint on the solution. Compressed sensing (CS) is relatively new technique that takes the advantage of inherent sparsity in parameter space in one or the other form. If favorable conditions are met, CS was proven to be an efficient image reconstruction technique that uses limited observations without losing edge sharpness. This paper deals with the development of an open source 3-D resistivity inversion tool using CS framework. The forward model was adopted from RESINVM3D (Pidlisecky et al., 2007) with CS as the inverse code. Discrete cosine transformation (DCT) function was used to induce model sparsity in orthogonal form. Two CS based algorithms viz., interior point method and two-step IST were evaluated on a synthetic layered model with surface electrode observations. The algorithms were tested (in terms of quality and convergence) under varying degrees of parameter heterogeneity, model refinement, and reduced observation data space. In comparison to conventional gradient algorithms, CS was proven to effectively reconstruct the sub-surface image with less computational cost. This was observed by a general increase in NRMSE from 0.5 in 10 iterations using gradient algorithm to 0.8 in 5 iterations using CS algorithms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.S21E0379Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.S21E0379Y"><span>Anomalous top layer in the inner core beneath the eastern hemisphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, W.; Wen, L.; Niu, F.</p> <p>2003-12-01</p> <p>Recent studies reported hemispheric variations in seismic velocity and attenuation in the top of the inner core. It, however, remains unclear how the inner core hemisphericity extends deep in the inner core. Here, we analyze PKPbc-PKIKP and PKiKP-PKIKP waveforms collected from the Global Seismographic Network (GSN), regional recordings from the German Regional Seismic Network (GRSN) and Graefenberg (GRF) sampling along the equatorial path (the ray path whose ray angle is larger than 35o from the Earth's rotation axis). The observed global and regional PKPbc-PKIKP differential traveltimes and PKIKP/PKPbc amplitude ratios suggest a simple W2 model (Wen/Niu:2002) in the western hemisphere with a constant velocity gradient of 0.049(km/sec)/100km and a Q value of 600 in the top 400 km of the inner core. In the eastern hemisphere, the data require a change of velocity gradient and Q value at about 235 km below the inner core boundary (ICB). Based on forward modeling, we construct radial velocity and attenuation models in the eastern hemisphere which can explain both the PKiKP-PKIKP and PKPbc-PKIKP observations. The inner core in the eastern hemisphere has a flat velocity gradient extending to about 235 km below the ICB. We test two solutions for the velocity models in the deeper portion of the inner core, with one having a first-order discontinuity at 235 km below the ICB with a velocity jump of 0.07(km/sec) followed by the PREM gradient, and the other having a gradual velocity transition with 0.1(km/sec)/100km gradient extended from 235 km to 375 km below the ICB followed by the PREM gradient. The observed traveltimes exclude the sharp discontinuity velocity model, as it predicts a kink in differential traveltimes at distance of 151o-152o which is not observed in the global and regional datasets. The observed PKIKP/PKPbc amplitude ratios can be best explained by a step function of attenuation with a Q value of 250 at the top 300 km and a Q value of 600 at 300-400 km below the ICB. The top portion of the inner core in the eastern hemisphere is anomalous compared to the rest of the inner core, in having a flat velocity gradient, higher velocities and higher attenuation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4128794','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4128794"><span>The application of EDTA in drug delivery systems: doxorubicin liposomes loaded via NH4EDTA gradient</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Song, Yanzhi; Huang, Zhenjun; Song, Yang; Tian, Qingjing; Liu, Xinrong; She, Zhennan; Jiao, Jiao; Lu, Eliza; Deng, Yihui</p> <p>2014-01-01</p> <p>The applications of ethylenediaminetetraacetic acid (EDTA) have been expanded from the treatment of heavy metal poisoning to chelation therapies for atherosclerosis, heart disease, and cancers, in which EDTA reduces morbidity and mortality by chelating toxic metal ions. In this study, EDTA was used in a drug delivery system by adopting an NH4EDTA gradient method to load doxorubicin into liposomes with the goal of increasing therapeutic effects and decreasing drug-related cytotoxicity. The particle size of the optimum NH4EDTA gradient liposomes was 79.4±1.87 nm, and the entrapment efficiency was 95.54%±0.59%. In vitro studies revealed that liposomes prepared using an NH4EDTA gradient possessed long-term stability and delayed drug release. The in vivo studies also showed the superiority of the new doxorubicin formulation. Compared with an equivalent drug dose (5 mg/kg) prepared by (NH4)2SO4 gradient, NH4EDTA gradient liposomes showed no significant differences in tumor inhibition ratio, but cardiotoxicity and liposome-related immune organ damage were lower, and no drug-related deaths were observed. These results show that use of the NH4EDTA gradient method to load doxorubicin into liposomes could significantly reduce drug toxicity without influencing antitumor activity. PMID:25120359</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22308827-moire-deflectometry-using-talbot-lau-interferometer-refraction-diagnostic-high-energy-density-plasmas-energies-below-kev','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22308827-moire-deflectometry-using-talbot-lau-interferometer-refraction-diagnostic-high-energy-density-plasmas-energies-below-kev"><span>Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for High Energy Density plasmas at energies below 10 keV</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Valdivia, M. P.; Stutman, D.; Finkenthal, M.</p> <p>2014-07-15</p> <p>The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities.more » We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25085141','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25085141"><span>Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for high energy density plasmas at energies below 10 keV.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Valdivia, M P; Stutman, D; Finkenthal, M</p> <p>2014-07-01</p> <p>The highly localized density gradients expected in High Energy Density (HED) plasma experiments can be characterized by x-ray phase-contrast imaging in addition to conventional attenuation radiography. Moiré deflectometry using the Talbot-Lau grating interferometer setup is an attractive HED diagnostic due to its high sensitivity to refraction induced phase shifts. We report on the adaptation of such a system for operation in the sub-10 keV range by using a combination of free standing and ultrathin Talbot gratings. This new x-ray energy explored matches well the current x-ray backlighters used for HED experiments, while also enhancing phase effects at lower electron densities. We studied the performance of the high magnification, low energy Talbot-Lau interferometer, for single image phase retrieval using Moiré fringe deflectometry. Our laboratory and simulation studies indicate that such a device is able to retrieve object electron densities from phase shift measurements. Using laboratory x-ray sources from 7 to 15 μm size we obtained accurate simultaneous measurements of refraction and attenuation for both sharp and mild electron density gradients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26186776','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26186776"><span>SIRF: Simultaneous Satellite Image Registration and Fusion in a Unified Framework.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Chen; Li, Yeqing; Liu, Wei; Huang, Junzhou</p> <p>2015-11-01</p> <p>In this paper, we propose a novel method for image fusion with a high-resolution panchromatic image and a low-resolution multispectral (Ms) image at the same geographical location. The fusion is formulated as a convex optimization problem which minimizes a linear combination of a least-squares fitting term and a dynamic gradient sparsity regularizer. The former is to preserve accurate spectral information of the Ms image, while the latter is to keep sharp edges of the high-resolution panchromatic image. We further propose to simultaneously register the two images during the fusing process, which is naturally achieved by virtue of the dynamic gradient sparsity property. An efficient algorithm is then devised to solve the optimization problem, accomplishing a linear computational complexity in the size of the output image in each iteration. We compare our method against six state-of-the-art image fusion methods on Ms image data sets from four satellites. Extensive experimental results demonstrate that the proposed method substantially outperforms the others in terms of both spatial and spectral qualities. We also show that our method can provide high-quality products from coarsely registered real-world IKONOS data sets. Finally, a MATLAB implementation is provided to facilitate future research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080014263','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080014263"><span>Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.</p> <p>2006-01-01</p> <p>The use of multi-dimensional finite volume heat conduction techniques for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the standard one-dimensional semi-infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the NASA Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody was investigated. An array of streamwise-orientated heating striations was generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients caused by striation patterns multi-dimensional heat transfer techniques were necessary to obtain more accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates compared to 2-D analysis because it did not account for lateral heat conduction in the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS41D..06F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS41D..06F"><span>Impact of Antarctic Polar Front Variability on Southern Ocean Biogeochemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Freeman, N. M.; Lovenduski, N. S.; Gent, P. R.</p> <p>2016-12-01</p> <p>The Antarctic Polar Front (PF) is an important biogeochemical divide in the Southern Ocean, often coinciding with sharp gradients in silicate and nitrate concentration at the surface. Variability in the PF has the potential to influence Southern Ocean biogeochemistry and biological productivity both locally and at the basin scale. Characterizing PF variability is important for contextualizing recent biogeochemical observations from ORCAS, SOCCOM, and the Drake Passage time-series, as well as for understanding how anthropogenic change is influencing Southern Ocean biogeochemistry. Here, we employ a suite of remote sensing observations and output from the Community Earth System Model (CESM) to better understand the relationship between the PF and local biogeochemistry in the Southern Ocean. Using microwave SST measurements spanning 2002-2014 that avoid cloud contamination, we show that the PF has shifted northward (southward) in the Pacific (Indian) sector and intensified at nearly all longitudes along its circumpolar path. We identify the PF in CESM at both coarse (1°x1°) and fine (0.1°x0.1°) horizontal resolutions using temperature and silicate gradient maxima, and quantify its spatial and temporal variability. We further investigate co-variance between the position and intensity of the PF and local phytoplankton community structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22149611-generalizable-class-solutions-treatment-planning-spinal-stereotactic-body-radiation-therapy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22149611-generalizable-class-solutions-treatment-planning-spinal-stereotactic-body-radiation-therapy"><span>Generalizable Class Solutions for Treatment Planning of Spinal Stereotactic Body Radiation Therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Weksberg, David C.; Palmer, Matthew B.; Vu, Khoi N.</p> <p>2012-11-01</p> <p>Purpose: Spinal stereotactic body radiation therapy (SBRT) continues to emerge as an effective therapeutic approach to spinal metastases; however, treatment planning and delivery remain resource intensive at many centers, which may hamper efficient implementation in clinical practice. We sought to develop a generalizable class solution approach for spinal SBRT treatment planning that would allow confidence that a given plan provides optimal target coverage, reduce integral dose, and maximize planning efficiency. Methods and Materials: We examined 91 patients treated with spinal SBRT at our institution. Treatment plans were categorized by lesion location, clinical target volume (CTV) configuration, and dose fractionation scheme,more » and then analyzed to determine the technically achievable dose gradient. A radial cord expansion was subtracted from the CTV to yield a planning CTV (pCTV) construct for plan evaluation. We reviewed the treatment plans with respect to target coverage, dose gradient, integral dose, conformality, and maximum cord dose to select the best plans and develop a set of class solutions. Results: The class solution technique generated plans that maintained target coverage and improved conformality (1.2-fold increase in the 95% van't Riet Conformation Number describing the conformality of a reference dose to the target) while reducing normal tissue integral dose (1.3-fold decrease in the volume receiving 4 Gy (V{sub 4Gy}) and machine output (19% monitor unit (MU) reduction). In trials of planning efficiency, the class solution technique reduced treatment planning time by 30% to 60% and MUs required by {approx}20%: an effect independent of prior planning experience. Conclusions: We have developed a set of class solutions for spinal SBRT that incorporate a pCTV metric for plan evaluation while yielding dosimetrically superior treatment plans with increased planning efficiency. Our technique thus allows for efficient, reproducible, and high-quality spinal SBRT treatment planning.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22355902-su-comparative-study-robotic-linac-based-stereotactitc-body-radiation-therapy-lumbar-spinal-tumors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22355902-su-comparative-study-robotic-linac-based-stereotactitc-body-radiation-therapy-lumbar-spinal-tumors"><span>SU-E-T-355: A Comparative Study of Robotic and Linac-Based Stereotactitc Body Radiation Therapy for Lumbar Spinal Tumors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bossart, E; Monterroso, M; Couto, M</p> <p></p> <p>Purpose: Dosimetrically compare CyberKnife (CK) and linac-based (LB) stereotactic body radiotherapy (SBRT) plans for lumbar spine. Methods: Ten patient plans with lumbar spine tumors treated with CK were selected and retrospectively optimized using three techniques: CK, volumetric modulated arc (VMAT, three arcs), and 9-field-intensity modulated radiotherapy (IMRT). For the LB plans, the target volume was expanded by 1mm to accommodate additional uncertainty in patient positioning. All plans were optimized to a prescription dose of 27Gy in 3 fractions covering 90% of the PTV. If the dose constraints to the cauda equina (cauda) were not met, the prescription dose was loweredmore » to 24Gy. Parameters evaluated included Paddick Conformity-Index (CI) and Gradient-Index (GI). A two-tailed paired t-test was used to establish statistically significant differences in cauda doses. Results: Target volumes for LB plans were on average 38% larger. In terms of the indices, the closer the index values to unity the steeper the dose falloff and the higher the dose conformity to the target. The results showed that LB plans were in general statistically superior to CK plans. The IMRT plan showed the best average gradient index of 2.995, with VMAT and CK GI values of 3.699 and 5.476, respectively. Similarly, the same trend occurs with the average CI results: 0.821, 0.814, and 0.758, corresponding to IMRT, VMAT, and CK. Notably, in one CK plan the target dose was reduced to 24Gy to meet cauda constraints. Additionally, there was a statistically significant dose difference for the cauda between the CK and LB plans. Conclusion: This study demonstrates that LB plans for lumbar spine SBRT can be as effective or even better than CK plans. Despite the expansion of the target volume, the LB plans did not demonstrate dosimetric inferiority. The LB plans Resultin 2-to-3 fold decrease of treatment time.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27377261','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27377261"><span>Radiosurgery with flattening-filter-free techniques in the treatment of brain metastases : Plan comparison and early clinical evaluation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rieber, J; Tonndorf-Martini, E; Schramm, O; Rhein, B; Stefanowicz, S; Kappes, J; Hoffmann, H; Lindel, K; Debus, J; Rieken, S</p> <p>2016-11-01</p> <p>Radiosurgical treatment of brain metastases is well established in daily clinical routine. Utilization of flattening-filter-free beams (FFF) may allow for more rapid delivery of treatment doses and improve clinical comfort. Hence, we compared plan quality and efficiency of radiosurgery in FFF mode to FF techniques. Between November 2014 and June 2015, 21 consecutive patients with 25 brain metastases were treated with stereotactic radiosurgery (SRS) in FFF mode. Brain metastases received dose-fractionation schedules of 1 × 20 Gy or 1 × 18 Gy, delivered to the conformally enclosing 80 % isodose. Three patients with critically localized or large (>3 cm) brain metastases were treated with 6 × 5 Gy. Plan quality and efficiency were evaluated by analyzing conformity, dose gradients, dose to healthy brain tissue, treatment delivery time, and number of monitor units. FFF plans were compared to those using the FF method, and early clinical outcome and toxicity were assessed. FFF mode resulted in significant reductions in beam-on time (p < 0.001) and mean brain dose (p = 0.001) relative to FF-mode comparison plans. Furthermore, significant improvements in dose gradients and sharper dose falloffs were found for SRS in FFF mode (-1.1 %, -29.6 %; p ≤ 0.003), but conformity was slightly superior in SRS in FF mode (-1.3 %; p = 0.001). With a median follow-up time of 5.1 months, 6‑month overall survival was 63.3 %. Local control was observed in 24 of 25 brain metastases (96 %). SRS in FFF mode is time efficient and provides similar plan quality with the opportunity of slightly reduced dose exposure to healthy brain tissue when compared to SRS in FF mode. Clinical outcomes appear promising and show only modest treatment-related toxicity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1528B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1528B"><span>Image processing techniques revealing the relationship between the field-measured ambient gamma dose equivalent rate and geological conditions at a granitic area, Velence Mountains, Hungary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beltran Torres, Silvana; Petrik, Attila; Zsuzsanna Szabó, Katalin; Jordan, Gyozo; Szabó, Csaba</p> <p>2017-04-01</p> <p>In order to estimate the annual dose that the public receive from natural radioactivity, the identification of the potential risk areas is required which, in turn, necessitates understanding the relationship between the spatial distribution of natural radioactivity and the geogenic risk factors (e.g., rock types, dykes, faults, soil conditions, etc.). A detailed spatial analysis of ambient gamma dose equivalent rate was performed in the western side of Velence Mountains, the largest outcropped granitic area in Hungary. In order to assess the role of local geology in the spatial distribution of ambient gamma dose rates, field measurements were carried out at ground level at 300 sites along a 250 m x 250 m regular grid in a total surface of 14.7 km2. Digital image processing methods were applied to identify anomalies, heterogeneities and spatial patterns in the measured gamma dose rates, including local maxima and minima determination, digital cross sections, gradient magnitude and gradient direction, second derivative profile curvature, local variability, lineament density, 2D autocorrelation and directional variogram analyses. Statistical inference showed that different gamma dose rate levels are associated with the rock types (i.e., Carboniferous granite, Pleistocene colluvial, proluvial, deluvial sediments and talus, and Pannonian sand and pebble), with the highest level on the Carboniferous granite including outlying values. Moreover, digital image processing revealed that linear gamma dose rate spatial features are parallel to the SW-NE dyke system and possibly to the NW-SE main fractures. The results of this study underline the importance of understanding the role of geogenic risk factors influencing the ambient gamma dose rate received by public. The study also demonstrates the power of the image processing techniques for the identification of spatial pattern in field-measured geogenic radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22369595-su-lateral-optical-density-variation-flatbed-scanners-combination-gafchromic-film','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22369595-su-lateral-optical-density-variation-flatbed-scanners-combination-gafchromic-film"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Battum, LJ van; Heukelom, S</p> <p></p> <p>Purpose This study investigates the origin of lateral optical density (OD) variation for Gafchromic film (EBT and EBT2) scanned in transmission mode with Epson flatbed scanners (1680 Expression Pro and 10000XL). Effects investigated are: cross talk, optical path length and polarization. Methods Cross talk has been examined with triangular shaped light-transmission sheets with OD ranging from 0 to opaque. Optical path length has been studied with absorptive and reflective OD-filters (OD range 0.2 to 2.0). Dependency on light-polarization on the scanner read out has been investigated using linear polarizer sheets. All experiments have been performed at centre scanner position (normmore » point) and at several lateral scan positions, without and with (un)irradiated EBT-film. Dose values used ranged between 0.2 to 9 Gy, yielding an OD-range between 0.25 to 1.1. Results The lateral OD variation is dose dependent and increases up to 14% at most lateral position for dose up to 9 Gy. Cross talk effect contributes to 0.5% in clinical used OD ranges but equals 2% for extreme high dose gradients. Film induced optical path length will effect the lateral OD variation up to 3% at most lateral points. Light polarization is inherent present in these scanners due to multiple reflection on mirrors. In addition film induced polarization is the most important effect generating the observed lateral OD variation. Both Gafchromic film base and sensitive layer have polarizing capabilities; for the sensitive layer its influence is dose dependent. Conclusions Lateral OD variation origins from optical physics (i.e. polarization and reflection) related to scanner and film construction. Cross talk can be ignored in film dosimetry for clinical used dose values and gradients. Therefore it is recommended to determine the lateral OD variation per film type and scanner.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3948779','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3948779"><span>Versatile Action of Picomolar Gradients of Progesterone on Different Sperm Subpopulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Uñates, Diego Rafael; Guidobaldi, Héctor Alejandro; Gatica, Laura Virginia; Cubilla, Marisa Angélica; Teves, María Eugenia; Moreno, Ayelén; Giojalas, Laura Cecilia</p> <p>2014-01-01</p> <p>High step concentrations of progesterone may stimulate various sperm physiological processes, such as priming and the acrosome reaction. However, approaching the egg, spermatozoa face increasing concentrations of the hormone, as it is secreted by the cumulus cells and then passively diffuses along the cumulus matrix and beyond. In this context, several questions arise: are spermatozoa sensitive to the steroid gradients as they undergo priming and the acrosome reaction? If so, what are the functional gradual concentrations of progesterone? Do spermatozoa in different physiological states respond differentially to steroid gradients? To answer these questions, spermatozoa were confronted with progesterone gradients generated by different hormone concentrations (1 pM to 100 µM). Brief exposure to a 10 pM progesterone gradient stimulated priming for the acrosome reaction in one sperm subpopulation, and simultaneously induced the acrosome reaction in a different sperm subpopulation. This effect was not observed in non-capacitated cells or when progesterone was homogeneously distributed. The results suggest a versatile role of the gradual distribution of very low doses of progesterone, which selectively stimulate the priming and the acrosome reaction in different sperm subpopulations. PMID:24614230</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24621430','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24621430"><span>The dosimetric effects of photon energy on the quality of prostate volumetric modulated arc therapy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mattes, Malcolm D; Tai, Cyril; Lee, Alvin; Ashamalla, Hani; Ikoro, N C</p> <p>2014-01-01</p> <p>Studies comparing the dosimetric effects of high- and low-energy photons to treat prostate cancer using 3-dimensional conformal and intensity modulated radiation therapy have yielded mixed results. With the advent of newer radiation delivery systems like volumetric modulated arc therapy (VMAT), the impact of changing photon energy is readdressed. Sixty-five patients treated for prostate cancer at our institution from 2011 to 2012 underwent CT simulation. A target volume encompassing the prostate and entire seminal vesicles was treated to 50.4 Gy, followed by a boost to the prostate and proximal seminal vesicles to a total dose of 81 Gy. The VMAT plans were generated for 6-MV and 10-MV photons under identical optimization conditions using the Eclipse system version 8.6 (Varian Medical Systems, Palo Alto, CA). The analytical anisotropic algorithm was used for all dose calculations. Plans were normalized such that 98% of the planning target volume (PTV) received 100% of the prescribed dose. Dose-volumetric data from the treatment planning system was recorded for both 6-MV and 10-MV plans, which were compared for both the entire cohort and subsets of patients stratified according to the anterior-posterior separation. Plans using 10-MV photons had statistically significantly lower relative integral dose (4.1%), gradient measure (4.1%), skin Dmax (16.9%), monitor units (13.0%), and bladder V(30) (3.1%) than plans using 6-MV photons (P < .05). There was no difference in rectal dose, high-dose-region bladder dose, PTV coverage, or conformity index. The benefit of 10-MV photons was more pronounced for thicker patients (anterior-posterior separation >21 cm) for most parameters, with statistically significant differences in bladder V(30), bladder V(65), integral dose, conformity index, and monitor units. The main dosimetric benefits of 10-MV as compared with 6-MV photons are seen in thicker patients, though for the entire cohort 10-MV plans resulted in a lower integral dose, gradient measure, skin Dmax, monitor units, and bladder V(30), possibly at the expense of higher rectum V(81). Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740057724&hterms=resting+state&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dresting%2Bstate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740057724&hterms=resting+state&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dresting%2Bstate"><span>Alterations in left ventricular volumes induced by Valsalva manoeuvre</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brooker, J. Z.; Alderman, E. L.; Harrison, D. C.</p> <p>1974-01-01</p> <p>Five patients were studied with left ventriculography during different phases of the Valsalva manoeuvre. Small doses of contrast medium allowed adequate repetitive visualization of the left ventricle for volume calculation. During strain phase, the volume of the left ventricle decreased by nearly 50 per cent in each case, and stroke volume and cardiac output also dropped strikingly. Release of straining was attended by a sharp rebound of left ventricular volume to control levels, with a transient surge of increased cardiac output 42 per cent above that of the resting state.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AIPC.1349..575S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AIPC.1349..575S"><span>Structural and Optical Behaviour of Ar+ Implanted Polycarbonate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shekhawat, Nidhi; Aggarwal, Sanjeev; Sharma, Annu; Deshpande, S. K.; Nair, K. G. M.</p> <p>2011-07-01</p> <p>Effects of 130 keV Ar+ ion implantation on the structural and optical properties of polycarbonate specimens have been studied using Raman, UV-Visible spectroscopy and glancing angle X-ray diffraction techniques. Formation of disordered carbonaceous network in the implanted layers has been observed using Raman and UV-Visible spectroscopy. A sharp decline in band gap values (4.1 eV to 0.63 eV) with increase in implantation dose has been observed. This decrease in optical band gap has been correlated with the formation of disordered structures in the implanted layers of polycarbonate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10134E..0BE','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10134E..0BE"><span>The effects of slice thickness and radiation dose level variations on computer-aided diagnosis (CAD) nodule detection performance in pediatric chest CT scans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Emaminejad, Nastaran; Lo, Pechin; Ghahremani, Shahnaz; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael F.</p> <p>2017-03-01</p> <p>For pediatric oncology patients, CT scans are performed to assess treatment response and disease progression. CAD may be used to detect lung nodules which would reflect metastatic disease. The purpose of this study was to investigate the effects of reducing radiation dose and varying slice thickness on CAD performance in the detection of solid lung nodules in pediatric patients. The dataset consisted of CT scans of 58 pediatric chest cases, from which 7 cases had lung nodules detected by radiologist, and a total of 28 nodules were marked. For each case, the original raw data (sinogram data) was collected and a noise addition model was used to simulate reduced-dose scans of 50%, 25% and 10% of the original dose. In addition, the original and reduced-dose raw data were reconstructed at slice thicknesses of 1.5 and 3 mm using a medium sharp (B45) kernel; the result was eight datasets (4 dose levels x 2 thicknesses) for each case An in-house CAD tool was applied on all reconstructed scans, and results were compared with the radiologist's markings. Patient level mean sensitivities at 3mm thickness were 24%, 26%, 25%, 27%, and at 1.5 mm thickness were 23%, 29%, 35%, 36% for 10%, 25%, 50%, and 100% dose level, respectively. Mean FP numbers were 1.5, 0.9, 0.8, 0.7 at 3 mm and 11.4, 3.5, 2.8, 2.8 at 1.5 mm thickness for 10%, 25%, 50%, and 100% dose level respectively. CAD sensitivity did not change with dose level for 3mm thickness, but did change with dose for 1.5 mm. False Positives increased at low dose levels where noise values were high.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22795526','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22795526"><span>Radiation dose reduction with the adaptive statistical iterative reconstruction (ASIR) technique for chest CT in children: an intra-individual comparison.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Seung Hyun; Kim, Myung-Joon; Yoon, Choon-Sik; Lee, Mi-Jung</p> <p>2012-09-01</p> <p>To retrospectively compare radiation dose and image quality of pediatric chest CT using a routine dose protocol reconstructed with filtered back projection (FBP) (the Routine study) and a low-dose protocol with 50% adaptive statistical iterative reconstruction (ASIR) (the ASIR study). We retrospectively reviewed chest CT performed in pediatric patients who underwent both the Routine study and the ASIR study on different days between January 2010 and August 2011. Volume CT dose indices (CTDIvol), dose length products (DLP), and effective doses were obtained to estimate radiation dose. The image quality was evaluated objectively as noise measured in the descending aorta and paraspinal muscle, and subjectively by three radiologists for noise, sharpness, artifacts, and diagnostic acceptability using a four-point scale. The paired Student's t-test and the Wilcoxon signed-rank test were used for statistical analysis. Twenty-six patients (M:F=13:13, mean age 11.7) were enrolled. The ASIR studies showed 60.3%, 56.2%, and 55.2% reductions in CTDIvol (from 18.73 to 7.43 mGy, P<0.001), DLP (from 307.42 to 134.51 mGy×cm, P<0.001), and effective dose (from 4.12 to 1.84 mSv, P<0.001), respectively, compared with the Routine studies. The objective noise was higher in the paraspinal muscle of the ASIR studies (20.81 vs. 16.67, P=0.004), but was not different in the aorta (18.23 vs. 18.72, P=0.726). The subjective image quality demonstrated no difference between the two studies. A low-dose protocol with 50% ASIR allows radiation dose reduction in pediatric chest CT by more than 55% while maintaining image quality. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20228131','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20228131"><span>Cyclophosphamide dose intensification may circumvent anthracycline resistance of p53 mutant breast cancers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lehmann-Che, Jacqueline; André, Fabrice; Desmedt, Christine; Mazouni, Chafika; Giacchetti, Sylvie; Turpin, Elisabeth; Espié, Marc; Plassa, Louis-François; Marty, Michel; Bertheau, Philippe; Sotiriou, Christos; Piccart, Martine; Symmans, W Fraser; Pusztai, Lajos; de Thé, Hugues</p> <p>2010-01-01</p> <p>The predictive value of p53 for the efficacy of front-line anthracycline-based chemotherapy regimens has been a matter of significant controversy. Anthracyclines are usually combined with widely different doses of alkylating agents, which may significantly modulate tumor response to these combinations. We analyzed three series of de novo stage II-III breast cancer patients treated front line with anthracycline-based regimens of various cyclophosphamide dose intensities: 65 patients with estrogen receptor (ER)(-) tumors treated with anthracyclines alone (Institut Jules Bordet, Brussels), 51 unselected breast cancer patients treated with intermediate doses of cyclophosphamide (MD Anderson Cancer Center, Houston, TX), and 128 others treated with a dose-dense anthracycline-cyclophosphamide combination (St. Louis, Paris). After chemotherapy and surgery, pathologic complete response (pCR) was evaluated. p53 status was determined by a yeast functional assay on the pretreatment tumor sample. In a multivariate analysis of the pooled results, a lack of ER expression and high-dose cyclophosphamide administration were associated with a higher likelihood of pCR. A sharp statistical interaction was detected between p53 status and cyclophosphamide dose intensity. Indeed, when restricting our analysis to patients with ER(-) tumors, we confirmed that a mutant p53 status was associated with anthracycline resistance, but found that p53 inactivation was required for response to the dose-intense alkylating regimen. The latter allowed very high levels of pCR in triple-negative tumors. Thus, our data strongly suggest that cyclophosphamide dose intensification in ER(-) p53-mutated breast cancer patients could significantly improve their response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/40978','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/40978"><span>Biological amine transport in chromaffin ghosts. Coupling to the transmembrane proton and potential gradients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Johnson, R G; Pfister, D; Carty, S E; Scarpa, A</p> <p>1979-11-10</p> <p>The effect of the transmembrane proton gradient (delta pH) and potential gradient (delta psi) upon the rate and extent of amine accumulation was investigated in chromaffin ghosts. The chromaffin ghosts were formed by hypo-osmotic lysis of isolated bovine chromaffin granules and extensive dialysis in order to remove intragranular binding components and dissipate the endogenous electrochemical gradients. Upon ATP addition to suspensions of chromaffin ghosts, a transmembrane proton gradient alone, a transmembrane gradient alone, or both, could be established, depending upon the compositions of the media in which the ghosts were formed and resuspended. When chloride was present in the medium, addition of ATP resulted in the generation of a transmembrane proton gradient, acidic inside of 1 pH unit (measured by [14C]methylamine distribution), and no transmembrane potential (measured by [14C]-thiocyanate distribution). When ATP was added to chromaffin ghosts suspended in a medium in which chloride was substituted by isethionate, a transmembrane potential, inside positive, of 45 mV and no transmembrane proton gradient, was measured. In each medium, the addition of agents known to affect proton or potential gradients, respectively, exerted a predictable mechanism of action. Accumulation of [14C]epinephrine or [14C]5-hydroxytryptamine was over 1 order of magnitude greater in the presence of the transmembrane proton gradient or the transmembrane potential than in the absence of any gradient and, moreover, was related to the magnitude of the proton or potential gradient in a dose-dependent manner. When ghosts were added to a medium containing chloride and isethionate, both a delta pH and delta psi could be generated upon addition of ATP. In this preparation, the maximal rate of amine accumulation was observed. The results indicate that amine accumulation into chromaffin ghosts can occur in the presence of either a transmembrane proton gradient, or a transmembrane potential gradient, and that the maximal rate of accumulation may exist when both components of the protonmotive force are present.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4771820-influence-ionizing-radiation-course-infection-state-immunity-monkeys-experimentally-induced-measles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4771820-influence-ionizing-radiation-course-infection-state-immunity-monkeys-experimentally-induced-measles"><span>THE INFLUENCE OF IONIZING RADIATION ON THE COURSE OF INFECTION AND THE STATE OF IMMUNITY IN MONKEYS WITH EXPERIMENTALLY INDUCED MEASLES (in Russian)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lapin, B.A.; Stasilevich, Z.K.</p> <p>1962-07-01</p> <p>The influence of sublethal doses of x radiation on the course of measles and the formation of immunity was studned. Experiments were staged on 12 monkeys. The results show that during x irradiation in a dose of 300 r and infection of the animals with the measles virus a reciprocal aggravation of the radiation and infectious processes occurs. As a result there is a sharp reduction of the resistance of the monkey's organism with attending complications, which lead to a lethal outcome in nearly haif of the cases. Experiments with irradiation and infection with measles of immune animals disclosed thatmore » the antimeasles immunity evolved earlier proved to be so stable that even irradiation does not weaken it. (auth)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18400290','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18400290"><span>Domoic acid excretion in dungeness crabs, razor clams and mussels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schultz, Irvin R; Skillman, Ann; Woodruff, Dana</p> <p>2008-07-01</p> <p>Domoic acid (DA) is a neurotoxic amino acid produced by several marine algal species of the Pseudo-nitzschia (PN) genus. We studied the elimination of DA from hemolymph after intravascular (IV) injection in razor clams (Siliqua patula), mussels (Mytilus edulis) and Dungeness crabs (Cancer magister). Crabs were also injected with two other organic acids, dichloroacetic acid (DCAA) and kainic acid (KA). For IV dosing, hemolymph was repetitively sampled and DA concentrations measured by HPLC-UV. Toxicokinetic analysis of DA in crabs suggested most of the injected dose remained within hemolymph compartment with little extravascular distribution. This observation is in sharp contrast to results obtained from clams and mussels which exhibited similarly large apparent volumes of distribution despite large differences in overall clearance. These findings suggest fundamentally different storage and elimination processes are occurring for DA between bivalves and crabs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003SSEle..47.1015L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003SSEle..47.1015L"><span>Proton irradiation of MgO- or Sc 2O 3 passivated AlGaN/GaN high electron mobility transistors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luo, B.; Ren, F.; Allums, K. K.; Gila, B. P.; Onstine, A. H.; Abernathy, C. R.; Pearton, S. J.; Dwivedi, R.; Fogarty, T. N.; Wilkins, R.; Fitch, R. C.; Gillespie, J. K.; Jenkins, T. J.; Dettmer, R.; Sewell, J.; Via, G. D.; Crespo, A.; Baca, A. G.; Shul, R. J.</p> <p>2003-06-01</p> <p>AlGaN/GaN high electron mobility transistors with either MgO or Sc 2O 3 surface passivation were irradiated with 40 MeV protons at a dose of 5×10 9 cm -2. While both forward and reverse bias current were decreased in the devices as a result of decreases in channel doping and introduction of generation-recombination centers, there was no significant change observed in gate lag measurements. By sharp contrast, unpassivated devices showed significant decreases in drain current under pulsed conditions for the same proton dose. These results show the effectiveness of the oxide passivation in mitigating the effects of surface states present in the as-grown structures and also of surface traps created by the proton irradiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28957563','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28957563"><span>Comparing biosimilar SB2 with reference infliximab after 54 weeks of a double-blind trial: clinical, structural and safety results.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smolen, Josef S; Choe, Jung-Yoon; Prodanovic, Nenad; Niebrzydowski, Jaroslaw; Staykov, Ivan; Dokoupilova, Eva; Baranauskaite, Asta; Yatsyshyn, Roman; Mekic, Mevludin; Porawska, Wieskawa; Ciferska, Hana; Jedrychowicz-Rosiak, Krystyna; Zielinska, Agnieszka; Choi, Jasmine; Rho, Young Hee</p> <p>2017-10-01</p> <p>SB2 is a biosimilar to the reference infliximab (INF). Similar efficacy, safety and immunogenicity between SB2 and INF up to 30 weeks were previously reported. This report investigates such clinical similarity up to 54 weeks, including structural joint damage. In this phase III, double-blind, parallel-group, multicentre study, patients with moderate to severe RA despite MTX were randomized (1:1) to receive 3 mg/kg of either SB2 or INF at 0, 2, 6 and every 8 weeks thereafter. Dose escalation by 1.5 mg/kg up to a maximum dose of 7.5 mg/kg was allowed after week 30. Efficacy, safety and immunogenicity were measured at each visit up to week 54. Radiographic damage evaluated by modified total Sharp score was measured at baseline and week 54. A total of 584 patients were randomized to receive SB2 (n = 291) or INF (n = 293). The rate of radiographic progression was comparable between SB2 and INF (mean modified total Sharp score difference: SB2, 0.38; INF, 0.37) at 1 year. ACR responses, 28-joint DAS, Clinical Disease Activity Index and Simplified Disease Activity Index were comparable between SB2 and INF up to week 54. The incidence of treatment-emergent adverse events and anti-drug antibodies were comparable between treatment groups. Such comparable trends of efficacy, safety and immunogenicity were consistent from baseline up to 54 weeks. The pattern of dose increment was also comparable between SB2 and INF. SB2 maintained similar efficacy, safety and immunogenicity with INF up to 54 weeks in patients with moderate to severe RA. Radiographic progression was comparable at 1 year. ClinicalTrials.gov (http://clinicaltrials.gov; NCT01936181) and EudraCT (https://www.clinicaltrialsregister.eu; 2012-005733-37). © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5850768','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5850768"><span>Comparing biosimilar SB2 with reference infliximab after 54 weeks of a double-blind trial: clinical, structural and safety results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Smolen, Josef S.; Choe, Jung-Yoon; Prodanovic, Nenad; Niebrzydowski, Jaroslaw; Staykov, Ivan; Dokoupilova, Eva; Baranauskaite, Asta; Yatsyshyn, Roman; Mekic, Mevludin; Porawska, Wieskawa; Ciferska, Hana; Jedrychowicz-Rosiak, Krystyna; Zielinska, Agnieszka; Choi, Jasmine; Rho, Young Hee</p> <p>2017-01-01</p> <p>Abstract Objectives SB2 is a biosimilar to the reference infliximab (INF). Similar efficacy, safety and immunogenicity between SB2 and INF up to 30 weeks were previously reported. This report investigates such clinical similarity up to 54 weeks, including structural joint damage. Methods In this phase III, double-blind, parallel-group, multicentre study, patients with moderate to severe RA despite MTX were randomized (1:1) to receive 3 mg/kg of either SB2 or INF at 0, 2, 6 and every 8 weeks thereafter. Dose escalation by 1.5 mg/kg up to a maximum dose of 7.5 mg/kg was allowed after week 30. Efficacy, safety and immunogenicity were measured at each visit up to week 54. Radiographic damage evaluated by modified total Sharp score was measured at baseline and week 54. Results A total of 584 patients were randomized to receive SB2 (n = 291) or INF (n = 293). The rate of radiographic progression was comparable between SB2 and INF (mean modified total Sharp score difference: SB2, 0.38; INF, 0.37) at 1 year. ACR responses, 28-joint DAS, Clinical Disease Activity Index and Simplified Disease Activity Index were comparable between SB2 and INF up to week 54. The incidence of treatment-emergent adverse events and anti-drug antibodies were comparable between treatment groups. Such comparable trends of efficacy, safety and immunogenicity were consistent from baseline up to 54 weeks. The pattern of dose increment was also comparable between SB2 and INF. Conclusion SB2 maintained similar efficacy, safety and immunogenicity with INF up to 54 weeks in patients with moderate to severe RA. Radiographic progression was comparable at 1 year. Trial registration ClinicalTrials.gov (http://clinicaltrials.gov; NCT01936181) and EudraCT (https://www.clinicaltrialsregister.eu; 2012-005733-37) PMID:28957563</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29730334','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29730334"><span>Fractional sunburn threshold UVR doses generate equivalent vitamin D and DNA damage in skin types I-VI, but with epidermal DNA damage gradient correlated to skin darkness.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shih, Barbara B; Farrar, Mark D; Cooke, Marcus S; Osman, Joanne; Langton, Abigail K; Kift, Richard; Webb, Ann R; Berry, Jacqueline L; Watson, Rachel E B; Vail, Andy; de Gruijl, Frank R; Rhodes, Lesley E</p> <p>2018-05-03</p> <p>Public health guidance recommends limiting sun-exposure to sub-sunburn levels, but it's unknown whether these can gain vitamin D (for musculoskeletal health) whilst avoiding epidermal DNA damage (initiates skin cancer). Well-characterised healthy humans of all skin types (I-VI; lightest to darkest skin) were exposed to a low dose-series of solar simulated UVR of 20-80% their individual sunburn threshold dose (minimal erythemal dose, MED). Significant UVR dose-responses were seen for serum 25(OH)D and whole epidermal CPD, with as little as 0.2 MED concurrently producing 25(OH)D and CPD. Notably, fractional MEDs generated equivalent levels of whole epidermal CPD and 25(OH)D across all skin types. Crucially, we demonstrated an epidermal gradient of CPD formation strongly correlated with skin darkness (r=0.74; P<0.0001), which reflected melanin content and revealed increasing protection across the skin types, ranging from darkest skin, where high CPD levels occurred superficially with none in the germinative basal layer, through to lightest skin where CPD were induced evenly across the epidermal depth. Darker skin people can be encouraged to utilise sub-sunburn UVR-exposure to enhance their vitamin D. In lighter skin people, basal cell damage occurs concurrent with vitamin D synthesis at exquisitely low UVR levels, providing an explanation for their high skin cancer incidence; greater caution is required. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4594030','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4594030"><span>Treatment Plan Technique and Quality for Single-Isocenter Stereotactic Ablative Radiotherapy of Multiple Lung Lesions with Volumetric-Modulated Arc Therapy or Intensity-Modulated Radiosurgery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Quan, Kimmen; Xu, Karen M.; Lalonde, Ron; Horne, Zachary D.; Bernard, Mark E.; McCoy, Chuck; Clump, David A.; Burton, Steven A.; Heron, Dwight E.</p> <p>2015-01-01</p> <p>The aim of this study is to provide a practical approach to the planning technique and evaluation of plan quality for the multi-lesion, single-isocenter stereotactic ablative radiotherapy (SABR) of the lung. Eleven patients with two or more lung lesions underwent single-isocenter volumetric-modulated arc therapy (VMAT) radiosurgery or IMRS. All plans were normalized to the target maximum dose. For each plan, all targets were treated to the same dose. Plan conformity and dose gradient were maximized with dose-control tuning structures surrounding targets. For comparison, multi-isocenter plans were retrospectively created for four patients. Conformity index (CI), homogeneity index (HI), gradient index (GI), and gradient distance (GD) were calculated for each plan. V5, V10, and V20 of the lung and organs at risk (OARs) were collected. Treatment time and total monitor units (MUs) were also recorded. One patient had four lesions and the remainder had two lesions. Six patients received VMAT and five patients received intensity-modulated radiosurgery (IMRS). For those treated with VMAT, two patients received 3-arc VMAT and four received 2-arc VMAT. For those treated with IMRS, two patients were treated with 10 and 11 beams, respectively, and the rest received 12 beams. Prescription doses ranged from 30 to 54 Gy in three to five fractions. The median prescribed isodose line was 84% (range: 80–86%). The median maximum dose was 57.1 Gy (range: 35.7–65.1 Gy). The mean combined PTV was 49.57 cm3 (range: 14.90–87.38 cm3). For single-isocenter plans, the median CI was 1.15 (range: 0.97–1.53). The median HI was 1.19 (range: 1.16–1.28). The median GI was 4.60 (range: 4.16–7.37). The median maximum radiation dose (Dmax) to total lung was 55.6 Gy (range: 35.7–62.0 Gy). The median mean radiation dose to the lung (Dmean) was 4.2 Gy (range: 1.1–9.3 Gy). The median lung V5 was 18.7% (range: 3.8–41.3%). There was no significant difference in CI, HI, GI, GD, V5, V10, and V20 (lung, heart, trachea, esophagus, and spinal cord) between single-isocenter and multi-isocenter plans. This multi-lesion, single-isocenter lung SABR planning technique demonstrated excellent plan quality and clinical efficiency and is recommended for radiosurgical treatment of two or more lung targets for well-suited patients. PMID:26500888</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4996541','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4996541"><span>Stereotactic Arrhythmia Radioablation (STAR) of Ventricular Tachycardia: A Treatment Planning Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fahimian, Benjamin; Soltys, Scott G; Zei, Paul; Lo, Anthony; Gardner, Edward A; Maguire, Patrick J; Loo Jr., Billy W</p> <p>2016-01-01</p> <p>Purpose The first stereotactic arrhythmia radioablation (STAR) of ventricular tachycardia (VT) was delivered at Stanford on a robotic radiosurgery system (CyberKnife® G4) in 2012. The results warranted further investigation of this treatment. Here we compare dosimetrically three possible treatment delivery platforms for STAR. Methods The anatomy and target volume of the first treated patient were used for this study. A dose of 25 Gy in one fraction was prescribed to the planning target volume (PTV). Treatment plans were created on three treatment platforms: CyberKnife® G4 system with Iris collimator (Multiplan, V. 4.6)(Plan #1), CyberKnife® M6 system with InCise 2TM multileaf collimator (Multiplan V. 5.3)(Plan #2) and Varian TrueBeamTM STx with HD 120TM MLC and 10MV flattening filter free (FFF) beam (Eclipse planning system, V.11) (Plan #3 coplanar and #4 noncoplanar VMAT plans). The four plans were compared by prescription isodose line, plan conformity index, dose gradient, as well as dose to the nearby critical structures. To assess the delivery efficiency, planned monitor units (MU) and estimated treatment time were evaluated. Results Plans #1-4 delivered 25 Gy to the PTV to the 75.0%, 83.0%, 84.3%, and 84.9% isodose lines and with conformity indices of 1.19, 1.16, 1.05, and 1.05, respectively. The dose gradients for plans #1-4 were 3.62, 3.42, 3.93, and 3.73 with the CyberKnife® MLC plan (Plan #2) the best, and the TrueBeamTM STx co-planar plan (Plan #3) the worst. The dose to nearby critical structures (lung, stomach, bowel, and esophagus) were all well within tolerance. The MUs for plans #1-4 were 27671, 16522, 6275, and 6004 for an estimated total-treatment-time/beam-delivery-time of 99/69, 65/35, 37/7, and 56/6 minutes, respectively, under the assumption of 30 minutes pretreatment setup time. For VMAT gated delivery, a 40% duty cycle, 2400MU/minute dose rate, and an extra 10 minutes per extra arc were assumed. Conclusion Clinically acceptable plans were created with all three platforms. Plans with MLC were considerably more efficient in MU. CyberKnife® M6 with InCise 2TM collimator provided the most conformal plan (steepest dose drop-off) with significantly reduced MU and treatment time. VMAT plans were most efficient in MU and delivery time. Fluoroscopic image guidance removes the need for additional fiducial marker placement; however, benefits may be moderated by worse dose gradient and more operator-dependent motion management by gated delivery. PMID:27570715</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004PMB....49..997T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004PMB....49..997T"><span>Occupational dose constraints in interventional cardiology procedures: the DIMOND approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsapaki, Virginia; Kottou, Sophia; Vano, Eliseo; Komppa, Tuomo; Padovani, Renato; Dowling, Annita; Molfetas, Michael; Neofotistou, Vassiliki</p> <p>2004-03-01</p> <p>Radiation fields involved in angiographic suites are most uneven with intensity and gradient varying widely with projection geometry. The European Commission DIMOND III project addressed among others, the issues regarding optimization of staff doses with an attempt to propose preliminary occupational dose constraints. Two thermoluminescent dosemeters (TLD) were used to assess operators' extremity doses (left shoulder and left foot) during 20 coronary angiographies (CAs) and 20 percutaneous transluminal coronary angioplasties (PTCAs) in five European centres. X-ray equipment, radiation protection measures used and the dose delivered to the patient in terms of dose-area product (DAP) were recorded so as to subsequently associate them with operator's dose. The range of staff doses noted for the same TLD position, centre and procedure type emphasizes the importance of protective measures and technical characteristics of x-ray equipment. Correlation of patient's DAP with staff shoulder dose is moderate whereas correlation of patient's DAP with staff foot dose is poor in both CA and PTCA. Therefore, it is difficult to predict operator's dose from patient's DAP mainly due to the different use of protective measures. A preliminary occupational dose constraint value was defined by calculating cardiologists' annual effective dose and found to be 0.6 mSv.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/5804949','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/5804949"><span>Interpretation of sucrose gradient sedimentation pattern of deoxyribonucleic acid fragments resulting from random breaks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Litwin, S; Shahn, E; Kozinski, A W</p> <p>1969-07-01</p> <p>Mass distribution in a sucrose gradient of deoxyribonucleic acid (DNA) fragments arising as a result of random breaks is predicted by analytical means from which computer evaluations are plotted. The analytical results are compared with the results of verifying experiments: (i) a Monte Carlo computer experiment in which simulated molecules of DNA were individuals of unit length subjected to random "breaks" applied by a random number generator, and (ii) an in vitro experiment in which molecules of T4 DNA, highly labeled with (32)P, were stored in liquid nitrogen for variable periods of time during which a precisely known number of (32)P atoms decayed, causing single-stranded breaks. The distribution of sizes of the resulting fragments was measured in an alkaline sucrose gradient. The profiles obtained in this fashion were compared with the mathematical predictions. Both experiments agree with the analytical approach and thus permit the use of the graphs obtained from the latter as a means of determining the average number of random breaks in DNA from distributions obtained experimentally in a sucrose gradient. An example of the application of this procedure to a previously unresolved problem is provided in the case of DNA from ultraviolet-irradiated phage which undergoes a dose-dependent intracellular breakdown. The relationship between the number of lethal hits and the number of single-stranded breaks was not previously established. A comparison of the calculated number of nicks per strand of DNA with the known dose in phage-lethal hits reveals a relationship closely approximating one lethal hit to one single-stranded break.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22391920-near-infrared-radio-luminescence-sub-loaded-radiation-hardened-silica-optical-fibers-candidate-dosimeter-harsh-environments','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22391920-near-infrared-radio-luminescence-sub-loaded-radiation-hardened-silica-optical-fibers-candidate-dosimeter-harsh-environments"><span>Near infrared radio-luminescence of O{sub 2} loaded radiation hardened silica optical fibers: A candidate dosimeter for harsh environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Di Francesca, D., E-mail: diego.di.francesca@univ-st-etienne.fr; Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, I-90123 Palermo; Girard, S.</p> <p>2014-11-03</p> <p>We report on an experimental investigation of the infrared Radio-Luminescence (iRL) emission of interstitial O{sub 2} molecules loaded in radiation hardened pure-silica-core and fluorine-doped silica-based optical fibers (OFs). The O{sub 2} loading treatment successfully dissolved high concentrations of oxygen molecules into the silica matrix. A sharp luminescence at 1272 nm was detected when 2.5 cm of the treated OFs were irradiated with 10 keV X-rays. This emission originates from the radiative decay of the first excited singlet state of the embedded O{sub 2} molecules. The dose, dose-rate, and temperature dependencies of the infrared emission are studied through in situ optical measurements. The resultsmore » show that the iRL is quite stable in doses of up to 1 MGy(SiO{sub 2}) and is linearly dependent on the dose-rate up to the maximum investigated dose-rate of ∼200 kGy(SiO{sub 2})/h. The temperature dependency of the iRL shows a decrease in efficiency above 200 °C, which is attributed to the non-radiative decay of the excited O{sub 2} molecules. The results obtained and the long-term stability of the O{sub 2}-loading treatment (no out-gassing effect) strongly suggest the applicability of these components to real-time remote dosimetry in environments characterized by high radiation doses and dose-rates.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12804894','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12804894"><span>Electrokinetic mixing vortices due to electrolyte depletion at microchannel junctions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Takhistov, Paul; Duginova, Ksenia; Chang, Hsueh-Chia</p> <p>2003-07-01</p> <p>Due to electric field leakage across sharp corners, the irrotational character of Ohmic electroosmotic flow is violated. Instead, we demonstrate experimentally and theoretically evidence of electrolyte depletion and vortex separation in electroosmotic flow around a junction between wide and narrow channels. When the penetration length of the electric field exceeds the width of the narrow channel and if the electric field is directed from the narrow to the wide channel, the electromigration of ions diminishes significantly at the junction end of the narrow channel due to this leakage. Concentration depletion then develops at that location to maintain current balance but it also increases the corner zeta potential and the local electroosmotic slip velocity. A back pressure gradient hence appears to maintain flow balance and, at a sufficient magnitude, generates a pair of vortices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5461444-proposed-otec-punta-tuna-pilot-plant','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5461444-proposed-otec-punta-tuna-pilot-plant"><span>Proposed OTEC Punta Tuna Pilot Plant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Marina, J.; Perez, F.</p> <p>1981-01-01</p> <p>Siting features and the design of a 40 MWe prototype OTEC for installation at Punta Tuna, Puerto Rico are presented. An annual average temperature gradient of 40 F from surface to 3,000 ft depth, a sharp coastal drop-off, projected benign environmental effects, and expensive indigenous power supplies are seen as favorable for fixed, floating, or grazing OTEC plants. The Punta Tuna design is for a platform fitted with generators in 300 ft of water, submarine cable power transmission, fiberglass seawater pipes, NH3 as a working fluid, and heat exchangers at the 300 ft depth, below hurricane wind and wave action.more » Methods of installing the 3,000 ft cold water pipes are discussed, and the use of OTEC derived electricity for aluminum smelting in the Caribbean is indicated.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998PhPl....5.1919K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998PhPl....5.1919K"><span>Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.</p> <p>1998-05-01</p> <p>Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet's model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature Tz. An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z* and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920055462&hterms=jerusalem&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Djerusalem','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920055462&hterms=jerusalem&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Djerusalem"><span>Beamwidth effects on Z-R relations and area-integrated rainfall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rosenfeld, Daniel; Atlas, David; Wolff, David B.; Amitai, Eyal</p> <p>1992-01-01</p> <p>The effective radar reflectivity Ze measured by a radar is the convolution of the actual distribution of reflectivity with the beam radiation pattern. Because of the nonlinearity between Z and rain rate R, Ze gives a biased estimator of R whenever the reflectivity field is nonuniform. In the presence of sharp horizontal reflectivity gradients, the measured pattern of Ze extends beyond the actual precipitation boundaries to produce false precipitation echoes. When integrated across the radar image of the storm, the false echo areas contribute to the sum to produce overestimates of the areal rainfall. As the range or beamwidth increases, the ratio of measured to actual rainfall increases. Beyond some range, the normal decrease of reflectivity with height dominates and the measured rainfall underestimates the actual amount.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25885473','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25885473"><span>Understanding sharps injuries in home healthcare: The Safe Home Care qualitative methods study to identify pathways for injury prevention.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Markkanen, Pia; Galligan, Catherine; Laramie, Angela; Fisher, June; Sama, Susan; Quinn, Margaret</p> <p>2015-04-11</p> <p>Home healthcare is one of the fastest growing sectors in the United States. Percutaneous injuries from sharp medical devices (sharps) are a source of bloodborne pathogen infections among home healthcare workers and community members. Sharps use and disposal practices in the home are highly variable and there is no comprehensive analysis of the system of sharps procurement, use and disposal in home healthcare. This gap is a barrier to effective public health interventions. The objectives of this study were to i) identify the full range of pathways by which sharps enter and exit the home, stakeholders involved, and barriers for using sharps with injury prevention features; and ii) assess the leverage points for preventive interventions. This study employed qualitative research methods to develop two systems maps of the use of sharps and prevention of sharps injuries in home healthcare. Twenty-six in-depth interview sessions were conducted including home healthcare agency clinicians, public health practitioners, sharps device manufacturers, injury prevention advocates, pharmacists and others. Interview transcripts were audio-recorded and analyzed thematically using NVIVO qualitative research analysis software. Analysis of supporting archival material also was conducted. All findings guided development of the two maps. Sharps enter the home via multiple complex pathways involving home healthcare providers and home users. The providers reported using sharps with injury prevention features. However, home users' sharps seldom had injury prevention features and sharps were commonly re-used for convenience and cost-savings. Improperly discarded sharps present hazards to caregivers, waste handlers, and community members. The most effective intervention potential exists at the beginning of the sharps systems maps where interventions can eliminate or minimize sharps injuries, in particular with needleless treatment methods and sharps with injury prevention features. Manufacturers and insurance providers can improve safety with more affordable and accessible sharps with injury prevention features for home users. Sharps disposal campaigns, free-of-charge disposal containers, and convenient disposal options remain essential. Sharps injuries are preventable through public health actions that promote needleless treatment methods, sharps with injury prevention features, and safe disposal practices. Communication about hazards regarding sharps is needed for all home healthcare stakeholders.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22648880-su-dynalogs-based-evaluation-different-dose-rate-imrt-using-dvh-gamma-index','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22648880-su-dynalogs-based-evaluation-different-dose-rate-imrt-using-dvh-gamma-index"><span>SU-F-T-266: Dynalogs Based Evaluation of Different Dose Rate IMRT Using DVH and Gamma Index</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ahmed, S; Ahmed, S; Ahmed, F</p> <p>2016-06-15</p> <p>Purpose: This work investigates the impact of low and high dose rate on IMRT through Dynalogs by evaluating Gamma Index and Dose Volume Histogram. Methods: The Eclipse™ treatment planning software was used to generate plans on prostate and head and neck sites. A range of dose rates 300 MU/min and 600 MU/min were applied to each plan in order to investigate their effect on the beam ON time, efficiency and accuracy. Each plan had distinct monitor units per fraction, delivery time, mean dose rate and leaf speed. The DVH data was used in the assessment of the conformity and planmore » quality.The treatments were delivered on Varian™ Clinac 2100C accelerator equipped with 120 leaf millennium MLC. Dynalogs of each plan were analyzed by MATLAB™ program. Fluence measurements were performed using the Sun Nuclear™ 2D diode array and results were assessed, based on Gamma analysis of dose fluence maps, beam delivery statistics and Dynalogs data. Results: Minor differences found by adjusted R-squared analysis of DVH’s for all the plans with different dose rates. It has been also found that more and larger fields have greater time reduction at high dose rate and there was a sharp decrease in number of control points observed in dynalog files by switching dose rate from 300 MU/min to 600 MU/min. Gamma Analysis of all plans passes the confidence limit of ≥95% with greater number of passing points in 300 MU/min dose rate plans. Conclusion: The dynalog files are compatible tool for software based IMRT QA. It can work perfectly parallel to measurement based QA setup and stand-by procedure for pre and post delivery of treatment plan.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24567797','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24567797"><span>Excess vitamin intake: An unrecognized risk factor for obesity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Shi-Sheng; Zhou, Yiming</p> <p>2014-02-15</p> <p>Over the past few decades, food fortification and infant formula supplementation with high levels of vitamins have led to a sharp increase in vitamin intake among infants, children and adults. This is followed by a sharp increase in the prevalence of obesity and related diseases, with significant disparities among countries and different groups within a country. It has long been known that B vitamins at doses below their toxicity threshold strongly promote body fat gain. Studies have demonstrated that formulas, which have very high levels of vitamins, significantly promote infant weight gain, especially fat mass gain, a known risk factor for children developing obesity. Furthermore, ecological studies have shown that increased B vitamin consumption is strongly correlated with the prevalence of obesity and diabetes. We therefore hypothesize that excess vitamins may play a causal role in the increased prevalence of obesity. This review will discuss: (1) the causes of increased vitamin intake; (2) the non-monotonic effect of excess vitamin intake on weight and fat gain; and (3) the role of vitamin fortification in obesity disparities among countries and different groups within a country.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3932423','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3932423"><span>Excess vitamin intake: An unrecognized risk factor for obesity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhou, Shi-Sheng; Zhou, Yiming</p> <p>2014-01-01</p> <p>Over the past few decades, food fortification and infant formula supplementation with high levels of vitamins have led to a sharp increase in vitamin intake among infants, children and adults. This is followed by a sharp increase in the prevalence of obesity and related diseases, with significant disparities among countries and different groups within a country. It has long been known that B vitamins at doses below their toxicity threshold strongly promote body fat gain. Studies have demonstrated that formulas, which have very high levels of vitamins, significantly promote infant weight gain, especially fat mass gain, a known risk factor for children developing obesity. Furthermore, ecological studies have shown that increased B vitamin consumption is strongly correlated with the prevalence of obesity and diabetes. We therefore hypothesize that excess vitamins may play a causal role in the increased prevalence of obesity. This review will discuss: (1) the causes of increased vitamin intake; (2) the non-monotonic effect of excess vitamin intake on weight and fat gain; and (3) the role of vitamin fortification in obesity disparities among countries and different groups within a country. PMID:24567797</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2988831','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2988831"><span>Comparing implementations of penalized weighted least-squares sinogram restoration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Forthmann, Peter; Koehler, Thomas; Defrise, Michel; La Riviere, Patrick</p> <p>2010-01-01</p> <p>Purpose: A CT scanner measures the energy that is deposited in each channel of a detector array by x rays that have been partially absorbed on their way through the object. The measurement process is complex and quantitative measurements are always and inevitably associated with errors, so CT data must be preprocessed prior to reconstruction. In recent years, the authors have formulated CT sinogram preprocessing as a statistical restoration problem in which the goal is to obtain the best estimate of the line integrals needed for reconstruction from the set of noisy, degraded measurements. The authors have explored both penalized Poisson likelihood (PL) and penalized weighted least-squares (PWLS) objective functions. At low doses, the authors found that the PL approach outperforms PWLS in terms of resolution-noise tradeoffs, but at standard doses they perform similarly. The PWLS objective function, being quadratic, is more amenable to computational acceleration than the PL objective. In this work, the authors develop and compare two different methods for implementing PWLS sinogram restoration with the hope of improving computational performance relative to PL in the standard-dose regime. Sinogram restoration is still significant in the standard-dose regime since it can still outperform standard approaches and it allows for correction of effects that are not usually modeled in standard CT preprocessing. Methods: The authors have explored and compared two implementation strategies for PWLS sinogram restoration: (1) A direct matrix-inversion strategy based on the closed-form solution to the PWLS optimization problem and (2) an iterative approach based on the conjugate-gradient algorithm. Obtaining optimal performance from each strategy required modifying the naive off-the-shelf implementations of the algorithms to exploit the particular symmetry and sparseness of the sinogram-restoration problem. For the closed-form approach, the authors subdivided the large matrix inversion into smaller coupled problems and exploited sparseness to minimize matrix operations. For the conjugate-gradient approach, the authors exploited sparseness and preconditioned the problem to speed up convergence. Results: All methods produced qualitatively and quantitatively similar images as measured by resolution-variance tradeoffs and difference images. Despite the acceleration strategies, the direct matrix-inversion approach was found to be uncompetitive with iterative approaches, with a computational burden higher by an order of magnitude or more. The iterative conjugate-gradient approach, however, does appear promising, with computation times half that of the authors’ previous penalized-likelihood implementation. Conclusions: Iterative conjugate-gradient based PWLS sinogram restoration with careful matrix optimizations has computational advantages over direct matrix PWLS inversion and over penalized-likelihood sinogram restoration and can be considered a good alternative in standard-dose regimes. PMID:21158306</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4274000','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4274000"><span>A Dictionary Learning Approach with Overlap for the Low Dose Computed Tomography Reconstruction and Its Vectorial Application to Differential Phase Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mirone, Alessandro; Brun, Emmanuel; Coan, Paola</p> <p>2014-01-01</p> <p>X-ray based Phase-Contrast Imaging (PCI) techniques have been demonstrated to enhance the visualization of soft tissues in comparison to conventional imaging methods. Nevertheless the delivered dose as reported in the literature of biomedical PCI applications often equals or exceeds the limits prescribed in clinical diagnostics. The optimization of new computed tomography strategies which include the development and implementation of advanced image reconstruction procedures is thus a key aspect. In this scenario, we implemented a dictionary learning method with a new form of convex functional. This functional contains in addition to the usual sparsity inducing and fidelity terms, a new term which forces similarity between overlapping patches in the superimposed regions. The functional depends on two free regularization parameters: a coefficient multiplying the sparsity-inducing norm of the patch basis functions coefficients, and a coefficient multiplying the norm of the differences between patches in the overlapping regions. The solution is found by applying the iterative proximal gradient descent method with FISTA acceleration. The gradient is computed by calculating projection of the solution and its error backprojection at each iterative step. We study the quality of the solution, as a function of the regularization parameters and noise, on synthetic data for which the solution is a-priori known. We apply the method on experimental data in the case of Differential Phase Tomography. For this case we use an original approach which consists in using vectorial patches, each patch having two components: one per each gradient component. The resulting algorithm, implemented in the European Synchrotron Radiation Facility tomography reconstruction code PyHST, has proven to be efficient and well-adapted to strongly reduce the required dose and the number of projections in medical tomography. PMID:25531987</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25531987','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25531987"><span>A dictionary learning approach with overlap for the low dose computed tomography reconstruction and its vectorial application to differential phase tomography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mirone, Alessandro; Brun, Emmanuel; Coan, Paola</p> <p>2014-01-01</p> <p>X-ray based Phase-Contrast Imaging (PCI) techniques have been demonstrated to enhance the visualization of soft tissues in comparison to conventional imaging methods. Nevertheless the delivered dose as reported in the literature of biomedical PCI applications often equals or exceeds the limits prescribed in clinical diagnostics. The optimization of new computed tomography strategies which include the development and implementation of advanced image reconstruction procedures is thus a key aspect. In this scenario, we implemented a dictionary learning method with a new form of convex functional. This functional contains in addition to the usual sparsity inducing and fidelity terms, a new term which forces similarity between overlapping patches in the superimposed regions. The functional depends on two free regularization parameters: a coefficient multiplying the sparsity-inducing L1 norm of the patch basis functions coefficients, and a coefficient multiplying the L2 norm of the differences between patches in the overlapping regions. The solution is found by applying the iterative proximal gradient descent method with FISTA acceleration. The gradient is computed by calculating projection of the solution and its error backprojection at each iterative step. We study the quality of the solution, as a function of the regularization parameters and noise, on synthetic data for which the solution is a-priori known. We apply the method on experimental data in the case of Differential Phase Tomography. For this case we use an original approach which consists in using vectorial patches, each patch having two components: one per each gradient component. The resulting algorithm, implemented in the European Synchrotron Radiation Facility tomography reconstruction code PyHST, has proven to be efficient and well-adapted to strongly reduce the required dose and the number of projections in medical tomography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24619212','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24619212"><span>Vaccination of plasmid DNA encoding ORF81 gene of CJ strains of KHV provides protection to immunized carp.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Jingxiang; Xue, Jiangdong; Wang, Qiuju; Zhu, Xia; Li, Xingwei; Lv, Wenliang; Zhang, Dongming</p> <p>2014-06-01</p> <p>In order to construct the recombinant plasmid of pIRES-ORF81, the nucleic acid isolated from Koi herpes virus-CJ (KHV-CJ) strains was used as a template to insert the ORF81 gene fragments amplified by PCR into the pIRES-neo, a kind of eukaryotic expression vector. Using Western blotting analysis, it was verified that ORF81 gene protein can be expressed correctly by pIRES-ORF81, after MFC cells were transfected. The recombinant plasmid pIRES-ORF81 was set into three immunization dose gradients: 1, 10, and 50 μg/carp. Empty plasmid group, PBS group, and blank control group were set simultaneously. Giving intramuscular injections to healthy carps with an average body mass of 246 ± 20 g, indirect ELISA was used to regularly determine antibody levels after three times immunization injection. Neutralizing antibodies were detected by neutralization assay. The results of inoculation tests showed that the pIRES-ORF81 recombinant plasmid can induce the production of carp-specific antibodies. The differences of immune effect between the three different doses of immune gradients were not significant (P > 0.05), but they can induce the production of neutralizing antibodies. After 25 d of inoculation, carp mortality of pIRES-neo empty vector treatment groups was 85%, while the carp mortality of eukaryotic expression recombinant plasmid pIRES-ORF81 injected with three different doses of immune gradients was 20, 17.5, and 12.5%, respectively. Differences in comparison to the control group were highly significant (P < 0.01). However, histopathological section of immunohistochemistry organization revealed no significant changes. It demonstrated that the DNA vaccine pIRES-ORF81 constructed in the experiment displayed a good protective effect against KHV, which had the potential to industrial applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29178912','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29178912"><span>Optimization of the prescription isodose line for Gamma Knife radiosurgery using the shot within shot technique.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Johnson, Perry B; Monterroso, Maria I; Yang, Fei; Mellon, Eric</p> <p>2017-11-25</p> <p>This work explores how the choice of prescription isodose line (IDL) affects the dose gradient, target coverage, and treatment time for Gamma Knife radiosurgery when a smaller shot is encompassed within a larger shot at the same stereotactic coordinates (shot within shot technique). Beam profiles for the 4, 8, and 16 mm collimator settings were extracted from the treatment planning system and characterized using Gaussian fits. The characterized data were used to create over 10,000 shot within shot configurations by systematically changing collimator weighting and choice of prescription IDL. Each configuration was quantified in terms of the dose gradient, target coverage, and beam-on time. By analyzing these configurations, it was found that there are regions of overlap in target size where a higher prescription IDL provides equivalent dose fall-off to a plan prescribed at the 50% IDL. Furthermore, the data indicate that treatment times within these regions can be reduced by up to 40%. An optimization strategy was devised to realize these gains. The strategy was tested for seven patients treated for 1-4 brain metastases (20 lesions total). For a single collimator setting, the gradient in the axial plane was steepest when prescribed to the 56-63% (4 mm), 62-70% (8 mm), and 77-84% (16 mm) IDL, respectively. Through utilization of the optimization technique, beam-on time was reduced by more than 15% in 16/20 lesions. The volume of normal brain receiving 12 Gy or above also decreased in many cases, and in only one instance increased by more than 0.5 cm 3 . This work demonstrates that IDL optimization using the shot within shot technique can reduce treatment times without degrading treatment plan quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18388993','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18388993"><span>Diversity and dynamics of lactobacilli populations during ripening of RDO Camembert cheese.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Henri-Dubernet, Ségolène; Desmasures, Nathalie; Guéguen, Micheline</p> <p>2008-03-01</p> <p>The diversity and dynamics of Lactobacillus populations in traditional raw milk Camembert cheese were monitored throughout the manufacturing process in 3 dairies. Culture-dependent analysis was carried out on isolates grown on acidified de Man - Rogosa - Sharpe agar and Lactobacillus anaerobic de Man Rogosa Sharpe agar supplemented with vancomycin and bromocresol green media. The isolates were identified by polymerase chain reaction - temperature gradient gel electrophoresis (PCR-TGGE) and (or) species-specific PCR and (or) sequencing, and Lactobacillus paracasei and Lactobacillus plantarum isolates were characterized by pulsed field gel electrophoresis (PFGE). Milk and cheese were subjected to culture-independent analysis by PCR-TGGE. Presumed lactobacilli were detected by plate counts throughout the ripening process. However, molecular analysis of total DNA and DNA of isolates failed to detect Lactobacillus spp. in certain cases. The dominant species in the 3 dairies was L. paracasei. PFGE analysis revealed 21 different profiles among 39 L. paracasei isolates. Lactobacillus plantarum was the second most isolated species, but it occurred nearly exclusively in one dairy. The other species isolated were Lactobacillus parabuchneri, Lactobacillus fermentum, Lactobacillus acidophilus, Lactobacillus helveticus, a Lactobacillus psittaci/delbrueckii subsp. bulgaricus/gallinarum/crispatus group, Lactobacillus rhamnosus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, Lactobacillus brevis, Lactobacillus kefiri, and Lactobacillus perolens. Lactobacilli diversity at the strain level was high. Dynamics varied among dairies, and each cheese exhibited a specific picture of species and strains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996ECSS...43..627R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996ECSS...43..627R"><span>Profiling Groundwater Salt Concentrations in Mangrove Swamps and Tropical Salt Flats</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ridd, Peter V.; Sam, Renagi</p> <p>1996-11-01</p> <p>The salt concentration of groundwater in mangrove swamps is an important parameter controlling the growth of mangrove species. Extremely high salt concentrations of groundwater in tropical salt flats are responsible for the complete absence of macrophytes. Determining groundwater salt concentrations can be a very time-consuming and laborious process if conventional techniques are used. Typically, groundwater samples must be extracted for later laboratory analysis. In this work, a simple conductivity probe has been developed which may be inserted easily to a depth of 2 m into the sediment. The changes in conductivity of the sediment is due primarily to porewater salt concentration, and thus ground conductivity is useful in determining changes in groundwater salt concentrations. Using the conductivity probe, transects of sediment conductivity can be undertaken quickly. As an example of a possible application of the probe, transects of ground conductivity were taken on a mangrove swamp/saltflat system. The transects show clearly the sharp delineation in conductivity between the salt flat and mangrove swamp due to a change in groundwater salt concentrations. Horizontal and vertical salt concentration gradients of up to 50 g l -1 m -1and 150 g l -1 m -1, respectively, were found. Very sharp changes in groundwater salt concentrations at the interface between salt flats and mangroves indicate that the mangroves may be modifying the salinity of the groundwater actively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24152220','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24152220"><span>Ecological segregation in a small mammal hybrid zone: habitat-specific mating opportunities and selection against hybrids restrict gene flow on a fine spatial scale.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shurtliff, Quinn R; Murphy, Peter J; Matocq, Marjorie D</p> <p>2014-03-01</p> <p>The degree to which closely related species interbreed is determined by a complex interaction of ecological, behavioral, and genetic factors. We examine the degree of interbreeding between two woodrat species, Neotoma bryanti and N. lepida, at a sharp ecological transition. We identify the ecological association of each genotypic class, assess the opportunity for mating between these groups, and test whether they have similar patterns of year-to-year persistence on our study site. We find that 13% of individuals have a hybrid signature but that the two parental populations and backcrosses are highly segregated by habitat type and use. Also, we find that adult hybrids are comparable to parental types in terms of year-to-year persistence on our site but that, among juveniles, significantly fewer hybrids reach adulthood on site compared to their purebred counterparts. Our analyses show that this hybrid zone is maintained by occasional nonassortative mating coupled with hybrid fertility, but that these factors are balanced by lower apparent survival of juvenile hybrids and habitat-based preference or selection that limits heterospecific mating while promoting backcrossing to habitat-specific genotypes. This system presents a novel example of the role that sharp resource gradients play in reproductive isolation and the potential for genetic introgression. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22492263-optical-properties-armchair-single-walled-carbon-nanotubes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22492263-optical-properties-armchair-single-walled-carbon-nanotubes"><span>Optical properties of armchair (7, 7) single walled carbon nanotubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gharbavi, K.; Badehian, H., E-mail: hojatbadehian@gmail.com</p> <p>2015-07-15</p> <p>Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ε (ω), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energymore » loss spectroscopy showed a sharp π electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19931017','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19931017"><span>LiF TLD-100 as a dosimeter in high energy proton beam therapy--can it yield accurate results?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zullo, John R; Kudchadker, Rajat J; Zhu, X Ronald; Sahoo, Narayan; Gillin, Michael T</p> <p>2010-01-01</p> <p>In the region of high-dose gradients at the end of the proton range, the stopping power ratio of the protons undergoes significant changes, allowing for a broad spectrum of proton energies to be deposited within a relatively small volume. Because of the potential linear energy transfer dependence of LiF TLD-100 (thermolumescent dosimeter), dose measurements made in the distal fall-off region of a proton beam may be less accurate than those made in regions of low-dose gradients. The purpose of this study is to determine the accuracy and precision of dose measured using TLD-100 for a pristine Bragg peak, particularly in the distal fall-off region. All measurements were made along the central axis of an unmodulated 200-MeV proton beam from a Probeat passive beam-scattering proton accelerator (Hitachi, Ltd., Tokyo, Japan) at varying depths along the Bragg peak. Measurements were made using TLD-100 powder flat packs, placed in a virtual water slab phantom. The measurements were repeated using a parallel plate ionization chamber. The dose measurements using TLD-100 in a proton beam were accurate to within +/-5.0% of the expected dose, previously seen in our past photon and electron measurements. The ionization chamber and the TLD relative dose measurements agreed well with each other. Absolute dose measurements using TLD agreed with ionization chamber measurements to within +/- 3.0 cGy, for an exposure of 100 cGy. In our study, the differences in the dose measured by the ionization chamber and those measured by TLD-100 were minimal, indicating that the accuracy and precision of measurements made in the distal fall-off region of a pristine Bragg peak is within the expected range. Thus, the rapid change in stopping power ratios at the end of the range should not affect such measurements, and TLD-100 may be used with confidence as an in vivo dosimeter for proton beam therapy. Copyright 2010 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22570158-we-bra-pseudo-vivo-patient-dosimetry-using-printed-patient-specific-phantom','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22570158-we-bra-pseudo-vivo-patient-dosimetry-using-printed-patient-specific-phantom"><span>WE-D-BRA-05: Pseudo In Vivo Patient Dosimetry Using a 3D-Printed Patient-Specific Phantom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ger, R; Craft, DF; Burgett, EA</p> <p></p> <p>Purpose: To test the feasibility of using 3D-printed patient-specific phantoms for intensity-modulated radiation therapy (IMRT) quality assurance (QA). Methods: We created a patient-specific whole-head phantom using a 3D printer. The printer data file was created from high-resolution DICOM computed tomography (CT) images of 3-year old child treated at our institution for medulloblastoma. A custom-modified extruder system was used to create tissue-equivalent materials. For the printing process, the Hounsfield Units from the CT images were converted to proportional volumetric densities. A 5-field IMRT plan was created from the patient CT and delivered to the 3D- phantom. Dose was measured by anmore » ion chamber placed through the eye. The ion chamber was placed at the posterior edge of the planning target volume in a high dose gradient region. CT scans of the patient and 3D-phantom were fused by using commercial treatment planning software (TPS). The patient’s plan was calculated on the phantom CT images. The ion chamber’s active volume was delineated in the TPS; dose per field and total dose were obtained. Measured and calculated doses were compared. Results: The 3D-phantom dimensions and tissue densities were in good agreement with the patient. However, because of a printing error, there was a large discrepancy in the density in the frontal cortex. The calculated and measured treatment plan doses were 1.74 Gy and 1.72 Gy, respectively. For individual fields, the absolute dose difference between measured and calculated values was on average 3.50%. Conclusion: This study demonstrated the feasibility of using 3D-printed patient-specific phantoms for IMRT QA. Such phantoms would be particularly advantageous for complex IMRT treatment plans featuring high dose gradients and/or for anatomical sites with high variation in tissue densities. Our preliminary findings are promising. We anticipate that, once the printing process is further refined, the agreement between measured and calculated doses will improve.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22679275-th-cd-experimental-characterization-acoustic-signals-generated-water-following-clinical-photon-electron-beam-irradiation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22679275-th-cd-experimental-characterization-acoustic-signals-generated-water-following-clinical-photon-electron-beam-irradiation"><span>TH-CD-201-06: Experimental Characterization of Acoustic Signals Generated in Water Following Clinical Photon and Electron Beam Irradiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hickling, S; El Naqa, I</p> <p></p> <p>Purpose: Previous work has demonstrated the detectability of acoustic waves induced following the irradiation of high density metals with radiotherapy linac photon beams. This work demonstrates the ability to experimentally detect such acoustic signals following both photon and electron irradiation in a more radiotherapy relevant material. The relationship between induced acoustic signal properties in water and the deposited dose distribution is explored, and the feasibility of exploiting such signals for radiotherapy dosimetry is demonstrated. Methods: Acoustic waves were experimentally induced in a water tank via the thermoacoustic effect following a single pulse of photon or electron irradiation produced by amore » clinical linac. An immersion ultrasound transducer was used to detect these acoustic waves in water and signals were read out on an oscilloscope. Results: Peaks and troughs in the detected acoustic signals were found to correspond to the location of gradients in the deposited dose distribution following both photon and electron irradiation. Signal amplitude was linearly related to the dose per pulse deposited by photon or electron beams at the depth of detection. Flattening filter free beams induced large acoustic signals, and signal amplitude decreased with depth after the depth of maximum dose. Varying the field size resulted in a temporal shift of the acoustic signal peaks and a change in the detected signal frequency. Conclusion: Acoustic waves can be detected in a water tank following irradiation by linac photon and electron beams with basic electronics, and have characteristics related to the deposited dose distribution. The physical location of dose gradients and the amount of dose deposited can be inferred from the location and magnitude of acoustic signal peaks. Thus, the detection of induced acoustic waves could be applied to photon and electron water tank and in vivo dosimetry. This work was supported in part by CIHR grants MOP-114910 and MOP-136774. S.H. acknowledges support by the NSERC CREATE Medical Physics Research Training Network grant 432290.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25256153','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25256153"><span>Radiation dose and image quality in pediatric chest CT: effects of iterative reconstruction in normal weight and overweight children.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yoon, Haesung; Kim, Myung-Joon; Yoon, Choon-Sik; Choi, Jiin; Shin, Hyun Joo; Kim, Hyun Gi; Lee, Mi-Jung</p> <p>2015-03-01</p> <p>New CT reconstruction techniques may help reduce the burden of ionizing radiation. To quantify radiation dose reduction when performing pediatric chest CT using a low-dose protocol and 50% adaptive statistical iterative reconstruction (ASIR) compared with age/gender-matched chest CT using a conventional dose protocol and reconstructed with filtered back projection (control group) and to determine its effect on image quality in normal weight and overweight children. We retrospectively reviewed 40 pediatric chest CT (M:F = 21:19; range: 0.1-17 years) in both groups. Radiation dose was compared between the two groups using paired Student's t-test. Image quality including noise, sharpness, artifacts and diagnostic acceptability was subjectively assessed by three pediatric radiologists using a four-point scale (superior, average, suboptimal, unacceptable). Eight children in the ASIR group and seven in the control group were overweight. All radiation dose parameters were significantly lower in the ASIR group (P < 0.01) with a greater than 57% dose reduction in overweight children. Image noise was higher in the ASIR group in both normal weight and overweight children. Only one scan in the ASIR group (1/40, 2.5%) was rated as diagnostically suboptimal and there was no unacceptable study. In both normal weight and overweight children, the ASIR technique is associated with a greater than 57% mean dose reduction, without significantly impacting diagnostic image quality in pediatric chest CT examinations. However, CT scans in overweight children may have a greater noise level, even when using the ASIR technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1279439-effect-proton-irradiation-dose-inaln-gan-metal-oxide-semiconductor-high-electron-mobility-transistors-al2o3-gate-oxide','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1279439-effect-proton-irradiation-dose-inaln-gan-metal-oxide-semiconductor-high-electron-mobility-transistors-al2o3-gate-oxide"><span>Effect of proton irradiation dose on InAlN/GaN metal-oxide semiconductor high electron mobility transistors with Al 2O 3 gate oxide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ahn, Shihyun; Kim, Byung -Jae; Lin, Yi -Hsuan; ...</p> <p>2016-07-26</p> <p>The effects of proton irradiation on the dc performance of InAlN/GaN metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs) with Al 2O 3 as the gate oxide were investigated. The InAlN/GaN MOSHEMTs were irradiated with doses ranging from 1×10 13 to 1×10 15cm –2 at a fixed energy of 5MeV. There was minimal damage induced in the two dimensional electron gas at the lowest irradiation dose with no measurable increase in sheet resistance, whereas a 9.7% increase of the sheet resistance was observed at the highest irradiation dose. By sharp contrast, all irradiation doses created more severe degradation in the Ohmic metalmore » contacts, with increases of specific contact resistance from 54% to 114% over the range of doses investigated. These resulted in source-drain current–voltage decreases ranging from 96 to 242 mA/mm over this dose range. The trap density determined from temperature dependent drain current subthreshold swing measurements increased from 1.6 × 10 13 cm –2 V –1 for the reference MOSHEMTs to 6.7 × 10 13 cm –2 V –1 for devices irradiated with the highest dose. In conclusion, the carrier removal rate was 1287 ± 64 cm –1, higher than the authors previously observed in AlGaN/GaN MOSHEMTs for the same proton energy and consistent with the lower average bond energy of the InAlN.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3470282','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3470282"><span>A Comparison of the effectiveness of Mammographic Film-Screen and Standard Film-Screen in the Detection of Small Bone Fractures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sani, Karim Ghazikhanlou; Jafari, Mahmoodreza; Rostampoor, Nima</p> <p>2011-01-01</p> <p>The use of mammography film-screen is limited in general radiography. The purpose of this study was to compare the effectiveness of mammographic film-screen and standard film-screen systems in the detection of small bone fractures. Radiographs were taken from patients' extremities and neck areas using mammography film-screen and standard film-screen (n=57 each). Fourteen other radiographs were taken from other views (predominantly oblique views), making a total number of 128 radiographs. Paired radiographs, taken from the same areas, were compared by two radiologists in terms of image visual sharpness, presence of bony fractures, and soft tissue injuries. The surface dose received by patients in the two systems was also compared. The radiographs taken by mammography film-screen had a statistically better visual sharpness compared to those taken by the standard film-screen system. However, there was no statistically significant difference between the diagnostic accuracy of the two systems. Mammography film-screen was able to detect only one out of 57 lesions, whereas standard film-screen system did not detec any lesion. The surface dose received by patients in mammography film-screen was higher than that in standard film-screen system. The findings of the present study suggest that mammography film-screen may be recommended as a diagnostic tool for the detection of small fractures of tinny parts of body such as fingers, hand or foot. They also suggest that mammography film-screen has no advantage over standard film-screen for radiography of thick body parts such as neck and knee. PMID:23115417</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4628441','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4628441"><span>Potential of combining iterative reconstruction with noise efficient detector design: aggressive dose reduction in head CT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bender, B; Schabel, C; Fenchel, M; Ernemann, U; Korn, A</p> <p>2015-01-01</p> <p>Objective: With further increase of CT numbers and their dominant contribution to medical exposure, there is a recent quest for more effective dose control. While reintroduction of iterative reconstruction (IR) has proved its potential in many applications, a novel focus is placed on more noise efficient detectors. Our purpose was to assess the potential of IR in combination with an integrated circuit detector (ICD) for aggressive dose reduction in head CT. Methods: Non-contrast low-dose head CT [190 mAs; weighted volume CT dose index (CTDIvol), 33.2 mGy] was performed in 50 consecutive patients, using a new noise efficient detector and IR. Images were assessed in terms of quantitative and qualitative image quality and compared with standard dose acquisitions (320 mAs; CTDIvol, 59.7 mGy) using a conventional detector and filtered back projection. Results: By combining ICD and IR in low-dose examinations, the signal to noise was improved by about 13% above the baseline level in the standard-dose control group. Both, contrast-to-noise ratio (2.02 ± 0.6 vs 1.88 ± 0.4; p = 0.18) and objective measurements of image sharpness (695 ± 84 vs 705 ± 151 change in Hounsfield units per pixel; p = 0.79) were fully preserved in the low-dose group. Likewise, there was no significant difference in the grading of several subjective image quality parameters when both noise-reducing strategies were used in low-dose examinations. Conclusion: Combination of noise efficient detector with IR allows for meaningful dose reduction in head CT without compromise of standard image quality. Advances in knowledge: Our study demonstrates the feasibility of almost 50% dose reduction in head CT dose (1.1 mSv per scan) through combination of novel dose-reducing strategies. PMID:25827204</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27167259','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27167259"><span>Evaluation of the Eclipse eMC algorithm for bolus electron conformal therapy using a standard verification dataset.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carver, Robert L; Sprunger, Conrad P; Hogstrom, Kenneth R; Popple, Richard A; Antolak, John A</p> <p>2016-05-08</p> <p>The purpose of this study was to evaluate the accuracy and calculation speed of electron dose distributions calculated by the Eclipse electron Monte Carlo (eMC) algorithm for use with bolus electron conformal therapy (ECT). The recent com-mercial availability of bolus ECT technology requires further validation of the eMC dose calculation algorithm. eMC-calculated electron dose distributions for bolus ECT have been compared to previously measured TLD-dose points throughout patient-based cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV (planning treatment volume) CT anatomy. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The treatment plans were imported into the Eclipse treatment planning system, and electron dose distributions calculated using 1% and < 0.2% statistical uncertainties. The accuracy of the dose calculations using moderate smoothing and no smooth-ing were evaluated. Dose differences (eMC-calculated less measured dose) were evaluated in terms of absolute dose difference, where 100% equals the given dose, as well as distance to agreement (DTA). Dose calculations were also evaluated for calculation speed. Results from the eMC for the retromolar trigone phantom using 1% statistical uncertainty without smoothing showed calculated dose at 89% (41/46) of the measured TLD-dose points was within 3% dose difference or 3 mm DTA of the measured value. The average dose difference was -0.21%, and the net standard deviation was 2.32%. Differences as large as 3.7% occurred immediately distal to the mandible bone. Results for the nose phantom, using 1% statistical uncertainty without smoothing, showed calculated dose at 93% (53/57) of the measured TLD-dose points within 3% dose difference or 3 mm DTA. The average dose difference was 1.08%, and the net standard deviation was 3.17%. Differences as large as 10% occurred lateral to the nasal air cavities. Including smoothing had insignificant effects on the accuracy of the retromolar trigone phantom calculations, but reduced the accuracy of the nose phantom calculations in the high-gradient dose areas. Dose calculation times with 1% statistical uncertainty for the retromolar trigone and nose treatment plans were 30 s and 24 s, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a framework agent server (FAS). In comparison, the eMC was significantly more accurate than the pencil beam algorithm (PBA). The eMC has comparable accuracy to the pencil beam redefinition algorithm (PBRA) used for bolus ECT planning and has acceptably low dose calculation times. The eMC accuracy decreased when smoothing was used in high-gradient dose regions. The eMC accuracy was consistent with that previously reported for accuracy of the eMC electron dose algorithm and shows that the algorithm is suitable for clinical implementation of bolus ECT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22649120-su-dosimetric-comparison-volumetric-modulated-arc-therapy-intensity-modulated-radiation-therapy-whole-brain-hippocampal-sparing-radiation-therapy-treatments','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22649120-su-dosimetric-comparison-volumetric-modulated-arc-therapy-intensity-modulated-radiation-therapy-whole-brain-hippocampal-sparing-radiation-therapy-treatments"><span>SU-F-T-539: Dosimetric Comparison of Volumetric Modulated Arc Therapy and Intensity Modulated Radiation Therapy for Whole Brain Hippocampal Sparing Radiation Therapy Treatments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kendall, E; Higby, C; Algan, O</p> <p>2016-06-15</p> <p>Purpose: To compare the treatment plan quality and dose gradient near the hippocampus between VMAT (RapidArc) and IMRT delivery techniques for whole brain radiation therapy. Methods: Fifteen patients were evaluated in this retrospective study. All treatments were planned on Varian Eclipse TPS, using 3-Arc VMAT and 9-Field IMRT, following NRG Oncology protocol NRG-CC001 guidelines evaluated by a single radiation oncologist. Prescribed doses in all plans were 30 Gy delivered over 10 fractions normalized to a minimum of 100% of the dose covering 95% of the target volume. Identical contour sets and dose-volume constraints following protocol guidelines were also applied inmore » all plans. A paired t-test analysis was used to compare VMAT and IMRT plans. Results: NRG-CC001 protocol dose-volume constraints were met for all VMAT and IMRT plans. For the planning target volume (PTV), the average values for D2% and D98% were 6% lower and 4% higher in VMAT than in IMRT, respectively. The average mean and maximum hippocampus doses in Gy for VMAT vs IMRT plans were (11.85±0.81 vs. 12.24±0.56, p=0.10) and (16.27±0.78 vs. 16.59±0.71, p=0.24), respectively. In VMAT, the average mean and maximum chiasm doses were 3% and 1% higher than in IMRT plans, respectively. For the left optic nerve, the average mean and maximum doses were 10% and 5% higher in VMAT than in IMRT plans, respectively. These values were 12% and 3% for the right optic nerve. The average percentage of dose gradient around the hippocampus in the 0–5mm and 5–10mm abutted regions for VMAT vs. IMRT were (4.42%±2.22% /mm vs. 3.95%±2.61% /mm, p=0.43) and (4.54%±1.50% /mm vs. 4.39%±1.28% /mm, p=0.73), respectively. Conclusion: VMAT plans can achieve higher hippocampus sparing with a faster dose fall-off than IMRT plans. Though statistically insignificant, VMAT offers better PTV coverage with slightly higher doses to OARs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19874901','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19874901"><span>Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Keren, Alon S; Yuval-Greenberg, Shlomit; Deouell, Leon Y</p> <p>2010-02-01</p> <p>Analysis of high-frequency (gamma-band) neural activity by means of non-invasive EEG is gaining increasing interest. However, we have recently shown that a saccade-related spike potential (SP) seriously confounds the analysis of EEG induced gamma-band responses (iGBR), as the SP eludes traditional EEG artifact rejection methods. Here we provide a comprehensive profile of the SP and evaluate methods for its detection and suppression, aiming to unveil true cerebral gamma-band activity. The SP appears consistently as a sharp biphasic deflection of about 22 ms starting at the saccade onset, with a frequency band of approximately 20-90 Hz. On the average, larger saccades elicit higher SP amplitudes. The SP amplitude gradually changes from the extra-ocular channels towards posterior sites with the steepest gradients around the eyes, indicating its ocular source. Although the amplitude and the sign of the SP depend on the choice of reference channel, the potential gradients remain the same and non-zero for all references. The scalp topography is modulated almost exclusively by the direction of saccades, with steeper gradients ipsilateral to the saccade target. We discuss how the above characteristics impede attempts to remove these SPs from the EEG by common temporal filtering, choice of different references, or rejection of contaminated trials. We examine the extent to which SPs can be reliably detected without an eye tracker, assess the degree to which scalp current density derivation attenuates the effect of the SP, and propose a tailored ICA procedure for minimizing the effect of the SP. Copyright (c) 2009 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.7066I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.7066I"><span>Fine-scale variability of isopycnal salinity in the California Current System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Itoh, Sachihiko; Rudnick, Daniel L.</p> <p>2017-09-01</p> <p>This paper examines the fine-scale structure and seasonal fluctuations of the isopycnal salinity of the California Current System from 2007 to 2013 using temperature and salinity profiles obtained from a series of underwater glider surveys. The seasonal mean distributions of the spectral power of the isopycnal salinity gradient averaged over submesoscale (12-30 km) and mesoscale (30-60 km) ranges along three survey lines off Monterey Bay, Point Conception, and Dana Point were obtained from 298 transects. The mesoscale and submesoscale variance increased as coastal upwelling caused the isopycnal salinity gradient to steepen. Areas of elevated variance were clearly observed around the salinity front during the summer then spread offshore through the fall and winter. The high fine-scale variances were observed typically above 25.8 kg m-3 and decreased with depth to a minimum at around 26.3 kg m-3. The mean spectral slope of the isopycnal salinity gradient with respect to wavenumber was 0.19 ± 0.27 over the horizontal scale of 12-60 km, and 31%-35% of the spectra had significantly positive slopes. In contrast, the spectral slope over 12-30 km was mostly flat, with mean values of -0.025 ± 0.32. An increase in submesoscale variability accompanying the steepening of the spectral slope was often observed in inshore areas; e.g., off Monterey Bay in winter, where a sharp front developed between the California Current and the California Under Current, and the lower layers of the Southern California Bight, where vigorous interaction between a synoptic current and bottom topography is to be expected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23985746','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23985746"><span>Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ceja-Navarro, Javier A; Nguyen, Nhu H; Karaoz, Ulas; Gross, Stephanie R; Herman, Donald J; Andersen, Gary L; Bruns, Thomas D; Pett-Ridge, Jennifer; Blackwell, Meredith; Brodie, Eoin L</p> <p>2014-01-01</p> <p>Coarse woody debris is an important biomass pool in forest ecosystems that numerous groups of insects have evolved to take advantage of. These insects are ecologically important and represent useful natural analogs for biomass to biofuel conversion. Using a range of molecular approaches combined with microelectrode measurements of oxygen, we have characterized the gut microbiome and physiology of Odontotaenius disjunctus, a wood-feeding beetle native to the eastern United States. We hypothesized that morphological and physiological differences among gut regions would correspond to distinct microbial populations and activities. In fact, significantly different communities were found in the foregut (FG), midgut (MG)/posterior hindgut (PHG) and anterior hindgut (AHG), with Actinobacteria and Rhizobiales being more abundant toward the FG and PHG. Conversely, fermentative bacteria such as Bacteroidetes and Clostridia were more abundant in the AHG, and also the sole region where methanogenic Archaea were detected. Although each gut region possessed an anaerobic core, micron-scale profiling identified radial gradients in oxygen concentration in all regions. Nitrogen fixation was confirmed by (15)N2 incorporation, and nitrogenase gene (nifH) expression was greatest in the AHG. Phylogenetic analysis of nifH identified the most abundant transcript as related to Ni-Fe nitrogenase of a Bacteroidetes species, Paludibacter propionicigenes. Overall, we demonstrate not only a compartmentalized microbiome in this beetle digestive tract but also sharp oxygen gradients that may permit aerobic and anaerobic metabolism to occur within the same regions in close proximity. We provide evidence for the microbial fixation of N2 that is important for this beetle to subsist on woody biomass.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC11B1136T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC11B1136T"><span>Whither the 100th Meridian: The once and future physical geography of America's arid-humid divide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ting, M.; Lis, N.; Seager, R.; Feldman, J. R.</p> <p>2016-12-01</p> <p>The idea that the 100th Meridian is a dividing line between the arid west and humid east was first advanced by John Wesley Powell in 1890, and the 100th Meridian has remained as an informal division in aridity to the present day. Whether there is a scientifically sound, climatological and hydrological origin of this division is analyzed, and if so, whether climate change will cause the "Hundredth Meridian" to shift in the future. The potential evapotranspiration (PET) is first computed using a suite of three NLDAS-2 land surface models and the Penman-Monteith Equation, and the aridity index (AI), defined as precipitation divided by PET, is used as the aridity metric. There is a sharp gradient in aridity along and just east of the 100th Meridian, verifying Powell's observations. We further determined that this arid-humid boundary is primarily caused by strong spatial gradients in precipitation and humidity, which in turn are caused by the seasonal cycle in wind direction and moisture transport. Using CMIP5 climate model data, the future was projected in 20-year increments from the present through 2100. Models project that the arid-humid boundary will shift eastward by approximately 2 to 3 degrees by the end of the 21st Century, the gradient will weaken, and that the entire continental US will experience at least some degree of aridification. The relative contributions of precipitation, temperature, specific humidity and circulation change to the eastward shift of the "100th meridian" will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7585F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7585F"><span>A Novel Bayesian algorithm for Microwave Retrieval of Precipitation from Space: Applications in Snow and Coastal Hydrology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foufoula, Efi; Ebtehaj, Ardeshir M.; Bras, Rafael L.</p> <p>2015-04-01</p> <p>Resolving accurately the space-time structure of precipitation over remote areas of the world where in-situ observations are not available is one of the biggest challenges in hydrology in view of the pressure to understand and mitigate climate and human-induced hydrologic and eco-geomorphologic changes. Two especially vulnerable areas are snow covered highlands (earlier snowmelt and changes in land-atmosphere feedbacks affecting storm dynamics and hydrologic response) and coastal areas (threats due to extreme storms and flooding in view of sea level rise and land-use changes affecting hazard potential in these overly populated low land areas). The GPM constellation of satellites offers the potential to retrieve precipitation over these complex surfaces but not without significant new ideas in the retrieval techniques for operational products. Here we present recent results from a new Bayesian inversion Passive Microwave Rainfall Retrieval algorithm (called ShARP) which introduces two main innovations: (1) a new distance metric in the space of retrieval (physically-derived or observational databases of brightness temperature and rainfall profiles) to create neighborhoods whose closeness is judged not on the basis of spatial averages but in terms of spatial structure in the space of spectral brightness temperatures, and (2) computes weights of those elements by minimizing a log-likelihood function plus a prior density of the spatial precipitation gradients. Both innovations rely on extending the typical Least squares (ℓ2) distance metric used in inverse problems to a mixed ℓ2 - ℓ1 metric (via regularization) and showing that this new metric is consistent with the localized small-scale spatial rainfall structure of sharp features embedded within more homogeneous domains. Using the data provided by the Tropical Rainfall Measuring Mission (TRMM) satellite, we demonstrate marked improvements in the ShARP rainfall retrievals in comparison with the standard TRMM-2A12 operational products by analysis of case studies in the Tibetan Highlands and the Ganges-Brahmaputra-Meghna river basin and its coastal delta.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAP...123c5703B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAP...123c5703B"><span>Interfacial sharpness and intermixing in a Ge-SiGe multiple quantum well structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bashir, A.; Gallacher, K.; Millar, R. W.; Paul, D. J.; Ballabio, A.; Frigerio, J.; Isella, G.; Kriegner, D.; Ortolani, M.; Barthel, J.; MacLaren, I.</p> <p>2018-01-01</p> <p>A Ge-SiGe multiple quantum well structure created by low energy plasma enhanced chemical vapour deposition, with nominal well thickness of 5.4 nm separated by 3.6 nm SiGe spacers, is analysed quantitatively using scanning transmission electron microscopy. Both high angle annular dark field imaging and electron energy loss spectroscopy show that the interfaces are not completely sharp, suggesting that there is some intermixing of Si and Ge at each interface. Two methods are compared for the quantification of the spectroscopy datasets: a self-consistent approach that calculates binary substitutional trends without requiring experimental or computational k-factors from elsewhere and a standards-based cross sectional calculation. Whilst the cross section approach is shown to be ultimately more reliable, the self-consistent approach provides surprisingly good results. It is found that the Ge quantum wells are actually about 95% Ge and that the spacers, whilst apparently peaking at about 35% Si, contain significant interdiffused Ge at each side. This result is shown to be not just an artefact of electron beam spreading in the sample, but mostly arising from a real chemical interdiffusion resulting from the growth. Similar results are found by use of X-ray diffraction from a similar area of the sample. Putting the results together suggests a real interdiffusion with a standard deviation of about 0.87 nm, or put another way—a true width defined from 10%-90% of the compositional gradient of about 2.9 nm. This suggests an intrinsic limit on how sharp such interfaces can be grown by this method and, whilst 95% Ge quantum wells (QWs) still behave well enough to have good properties, any attempt to grow thinner QWs would require modifications to the growth procedure to reduce this interdiffusion, in order to maintain a composition of ≥95% Ge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JPhCS.250a2093G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JPhCS.250a2093G"><span>Water equivalency evaluation of PRESAGE® dosimeters for dosimetry of Cs-137 and Ir-192 brachytherapy sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Baldock, Clive</p> <p>2010-11-01</p> <p>A major challenge in brachytherapy dosimetry is the measurement of steep dose gradients. This can be achieved with a high spatial resolution three dimensional (3D) dosimeter. PRESAGE® is a polyurethane based dosimeter which is suitable for 3D dosimetry. Since an ideal dosimeter is radiologically water equivalent, we have investigated the relative dose response of three different PRESAGE® formulations, two with a lower chloride and bromide content than original one, for Cs-137 and Ir-192 brachytherapy sources. Doses were calculated using the EGSnrc Monte Carlo package. Our results indicate that PRESAGE® dosimeters are suitable for relative dose measurement of Cs-137 and Ir-192 brachytherapy sources and the lower halogen content PRESAGE® dosimeters are more water equivalent than the original formulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PMB....58.6641D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PMB....58.6641D"><span>Forcing lateral electron disequilibrium to spare lung tissue: a novel technique for stereotactic body radiation therapy of lung cancer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Disher, Brandon; Hajdok, George; Gaede, Stewart; Mulligan, Matthew; Battista, Jerry J.</p> <p>2013-10-01</p> <p>Stereotactic body radiation therapy (SBRT) has quickly become a preferred treatment option for early-stage lung cancer patients who are ineligible for surgery. This technique uses tightly conformed megavoltage (MV) x-ray beams to irradiate a tumour with ablative doses in only a few treatment fractions. Small high energy x-ray fields can cause lateral electron disequilibrium (LED) to occur within low density media, which can reduce tumour dose. These dose effects may be challenging to predict using analytic dose calculation algorithms, especially at higher beam energies. As a result, previous authors have suggested using low energy photons (<10 MV) and larger fields (>5 × 5 cm2) for lung cancer patients to avoid the negative dosimetric effects of LED. In this work, we propose a new form of SBRT, described as LED-optimized SBRT (LED-SBRT), which utilizes radiotherapy (RT) parameters designed to cause LED to advantage. It will be shown that LED-SBRT creates enhanced dose gradients at the tumour/lung interface, which can be used to manipulate tumour dose, and/or normal lung dose. To demonstrate the potential benefits of LED-SBRT, the DOSXYZnrc (National Research Council of Canada, Ottawa, ON) Monte Carlo (MC) software was used to calculate dose within a cylindrical phantom and a typical lung patient. 6 MV or 18 MV x-ray fields were focused onto a small tumour volume (diameter ˜1 cm). For the phantom, square fields of 1 × 1 cm2, 3 × 3 cm2, or 5 × 5 cm2 were applied. However, in the patient, 3 × 1 cm2, 3 × 2 cm2, 3 × 2.5 cm2, or 3 × 3 cm2 field sizes were used in simulations to assure target coverage in the superior-inferior direction. To mimic a 180° SBRT arc in the (symmetric) phantom, a single beam profile was calculated, rotated, and beams were summed at 1° segments to accumulate an arc dose distribution. For the patient, a 360° arc was modelled with 36 equally weighted (and spaced) fields focused on the tumour centre. A planning target volume (PTV) was generated by considering the extent of tumour motion over the patient's breathing cycle and set-up uncertainties. All patient dose results were normalized such that at least 95% of the PTV received at least 54 Gy (i.e. D95 = 54 Gy). Further, we introduce ‘LED maps’ as a novel clinical tool to compare the magnitude of LED resulting from the various SBRT arc plans. Results from the phantom simulation suggest that the best lung sparing occurred for RT parameters that cause severe LED. For equal tumour dose coverage, normal lung dose (2 cm outside the target region) was reduced from 92% to 23%, comparing results between the 18 MV (5 × 5 cm2) and 18 MV (1 × 1 cm2) arc simulations. In addition to reduced lung dose for the 18 MV (1 × 1 cm2) arc, maximal tumour dose increased beyond 125%. Thus, LED can create steep dose gradients to spare normal lung, while increasing tumour dose levels (if desired). In the patient simulation, a LED-optimized arc plan was designed using either 18 MV (3 × 1 cm2) or 6 MV (3 × 3cm2) beams. Both plans met the D95 dose coverage requirement for the target. However, the LED-optimized plan increased the maximum, mean, and minimum dose within the PTV by as much as 80 Gy, 11 Gy, and 3 Gy, respectively. Despite increased tumour dose levels, the 18 MV (3 × 1 cm2) arc plan improved or maintained the V20, V5, and mean lung dose metrics compared to the 6 MV (3 × 3 cm2) simulation. We conclude that LED-SBRT has the potential to increase dose gradients, and dose levels within a small lung tumour. The magnitude of tumour dose increase or lung sparing can be optimized through manipulation of RT parameters (e.g. beam energy and field size).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25197102','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25197102"><span>Surficial weathering of iron sulfide mine tailings under semi-arid climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hayes, Sarah M; Root, Robert A; Perdrial, Nicolas; Maier, Raina; Chorover, Jon</p> <p>2014-09-15</p> <p>Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering under semi-arid climate at an EPA Superfund Site in semi-arid central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130-140 and 100-120 g kg -1 , respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in the lowest pH samples, indicating its metastable persistence in these semiarid tailings. The resulting sharp geochemical speciation gradients in close proximity to the tailings surface have important implications for plant colonization, as well as mobility and bioavailability of co-associated toxic metal(loid)s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMDI41D..04H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMDI41D..04H"><span>Building and Modification of the Continental Lithosphere: the History of the Contiguous U.S. as told by MLDs and LABs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hopper, E.; Fischer, K. M.</p> <p>2016-12-01</p> <p>The lithosphere preserves a record of past and present tectonic processes in its internal structures and its boundary with the underlying asthenosphere. We use common conversion point stacked Sp converted waves recorded by EarthScope's Transportable Array, as well as other available permanent and temporary broadband stations, to image such structures in the lithospheric mantle of the contiguous U.S. In the tectonically youngest western U.S., a shallow, sharp velocity gradient at the base of the lithosphere suggests a boundary defined by ponded melt. The lithosphere thickens with age of volcanism, implying the lithosphere is a melt-mitigated, conductively cooling thermal boundary layer. Beneath older, colder lithosphere where melt fractions are likely much lower, the velocity gradient at the base of such a layer should be a more diffuse, primarily thermal boundary. This is consistent with observations in the eastern U.S. where the lithosphere-asthenosphere boundary (LAB) is locally sharp and shallower only in areas of inferred enhanced upwelling - such as ancient hot spot tracks and areas of inferred delamination. In the cratonic interior, the LAB is even more gradual in depth, and is transparent to Sp waves with dominant periods of 10 s. Although seismic imaging only provides a snapshot of the lithosphere as it is today, preserved internal structures extend the utility of this imaging back into deep geological time. Ancient accretion within the cratonic lithospheric mantle is preserved as dipping structures associated with relict subducted slabs from Paleoproterozoic continental accretion, suggesting that lateral accretion was integral to the cratonic mantle root formation process. Metasomatism, melt migration and ponding below a carbonated peridotite solidus explain a sub-horizontal mid-lithospheric discontinuity (MLD) commonly observed at 70-100 km depth. This type of MLD is strongest in Mesoproterozoic and older lithosphere, suggesting that it formed more vigorously in the deep past, that a billion years or more are required to build up an observable volatile-rich layer, or that strong, ancient lithosphere is required to support an inherently weak, volatilized layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AMT....11.1087K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AMT....11.1087K"><span>A low-cost particulate matter (PM2.5) monitor for wildland fire smoke</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kelleher, Scott; Quinn, Casey; Miller-Lionberg, Daniel; Volckens, John</p> <p>2018-02-01</p> <p>Wildfires and prescribed fires produce emissions that degrade visibility and are harmful to human health. Smoke emissions and exposure monitoring is critical for public and environmental health protection; however, ground-level measurements of smoke from wildfires and prescribed fires has proven difficult, as existing (validated) monitoring technologies are expensive, cumbersome, and generally require line power. Few ground-based measurements are made during fire events, which limits our ability to assess the environmental and human health impacts of wildland fire smoke. The objective of this work was to develop and validate an Outdoor Aerosol Sampler (OAS) - a filter-based air sampler that has been miniaturized, solar powered, and weatherproofed. This sampler was designed to overcome several of the technical challenges of wildland fire monitoring by being relatively inexpensive and solar powered. The sampler design objectives were achieved by leveraging low-cost electronic components, open-source programming platforms, and in-house fabrication methods. A direct-reading PM2.5 sensor was selected and integrated with the OAS to provide time-resolved concentration data. Cellular communications established via short message service (SMS) technology were utilized in transmitting online sensor readings and controlling the sampling device remotely. A Monte Carlo simulation aided in the selection of battery and solar power necessary to independently power the OAS, while keeping cost and size to a minimum. Thirteen OAS were deployed to monitor smoke concentrations downwind from a large prescribed fire. Aerosol mass concentrations were interpolated across the monitoring network to depict smoke concentration gradients in the vicinity of the fire. Strong concentration gradients were observed (spatially and temporally) and likely present due to a combination of changing fire location and intensity, topographical features (e.g., mountain ridges), and diurnal weather patterns. Gravimetric filter measurements made by the OAS (when corrected for filter collection efficiency) showed relatively good agreement with measurements from an EPA federal equivalent monitor. However, the real-time optical sensor (Sharp GP2Y1023AU0F, Sharp Electronic Co.) within the OAS suffered from temperature dependence, drift, and imprecision.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4151187','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4151187"><span>Surficial weathering of iron sulfide mine tailings under semi-arid climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hayes, Sarah M.; Root, Robert A.; Perdrial, Nicolas; Maier, Raina; Chorover, Jon</p> <p>2014-01-01</p> <p>Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering under semi-arid climate at an EPA Superfund Site in semi-arid central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130–140 and 100–120 g kg−1, respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in the lowest pH samples, indicating its metastable persistence in these semiarid tailings. The resulting sharp geochemical speciation gradients in close proximity to the tailings surface have important implications for plant colonization, as well as mobility and bioavailability of co-associated toxic metal(loid)s. PMID:25197102</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeCoA.141..240H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeCoA.141..240H"><span>Surficial weathering of iron sulfide mine tailings under semi-arid climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayes, Sarah M.; Root, Robert A.; Perdrial, Nicolas; Maier, Raina M.; Chorover, Jon</p> <p>2014-09-01</p> <p>Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering in a semi-arid climate at an EPA Superfund Site in central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130-140 and 100-120 g kg-1, respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in samples with the lowest pH, indicating its metastable persistence in these semiarid tailings. The resulting sharp geochemical speciation gradients in close proximity to the tailings surface have important implications for plant colonization, as well as mobility and bioavailability of co-associated toxic metal(loid)s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H34A..03G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H34A..03G"><span>Predicting Seawater Intrusion in Coastal Groundwater Boreholes Using Self-Potential Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graham, M.; MacAllister, D. J.; Jackson, M.; Vinogradov, J.; Butler, A. P.</p> <p>2017-12-01</p> <p>Many coastal groundwater abstraction wells are under threat from seawater intrusion: this is exacerbated in summer by low water tables and increased abstraction. Existing hydrochemistry or geophysical techniques often fail to predict the timing of intrusion events. We investigate whether the presence and transport of seawater can influence self-potentials (SPs) measured within groundwater boreholes, with the aim of using SP monitoring to provide early warning of saline intrusion. SP data collection: SP data were collected from a coastal groundwater borehole and an inland borehole (> 60 km from the coast) in the Seaford Chalk of southern England. The SP gradient in the inland borehole was approximately 0.05 mV/m, while that in the coastal borehole varied from 0.16-0.26 mV/m throughout the monitoring period. Spectral analysis showed that semi-diurnal fluctuations in the SP gradient were several orders of magnitude higher at the coast than inland, indicating a strong influence from oceanic tides. A characteristic decrease in the gradient, or precursor, was observed in the coastal borehole several days prior to seawater intrusion. Modelling results: Hydrodynamic transport and geoelectric modelling suggest that observed pressure changes (associated with the streaming potential) are insufficient to explain either the magnitude of the coastal SP gradient or the semi-diurnal SP fluctuations. By contrast, a model of the exclusion-diffusion potential closely matches these observations and produces a precursor similar to that observed in the field. Sensitivity analysis suggests that both a sharp saline front and spatial variations in the exclusion efficiency arising from aquifer heterogeneities are necessary to explain the SP gradient observed in the coastal borehole. The presence of the precursor in the model depends also on the presence and depth of fractures near the base of the borehole. Conclusions: Our results indicate that SP monitoring, combined with hydrodynamic transport and geoelectric modelling, holds considerable promise as an early warning device for seawater intrusion. We now aim to refine our understanding of the technique by applying it to a range of aquifer types.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27734232','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27734232"><span>Efficacy of tofacitinib in patients with rheumatoid arthritis stratified by background methotrexate dose group.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fleischmann, R; Mease, P J; Schwartzman, S; Hwang, L-J; Soma, K; Connell, C A; Takiya, L; Bananis, E</p> <p>2017-01-01</p> <p>Tofacitinib is an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis (RA). This post hoc analysis investigated the effect of methotrexate (MTX) dose on the efficacy of tofacitinib in patients with RA. ORAL Scan (NCT00847613) was a 2-year, randomized, Phase 3 trial evaluating tofacitinib in MTX-inadequate responder (IR) patients with RA. Patients received tofacitinib 5 or 10 mg twice daily (BID), or placebo, with low (≤12.5 mg/week), moderate (>12.5 to <17.5 mg/week), or high (≥17.5 mg/week) stable background MTX. Efficacy endpoints (at months 3 and 6) included American College of Rheumatology (ACR) 20/50/70 response rates, and mean change from baseline in Clinical Disease Activity Index (CDAI), Disease Activity Score in 28 joints (DAS28)-4(erythrocyte sedimentation rate [ESR]), Health Assessment Questionnaire-Disability Index (HAQ-DI), and modified Total Sharp score. 797 patients were treated with tofacitinib 5 mg BID (N = 321), tofacitinib 10 mg BID (N = 316), or placebo (N = 160); 242, 333, and 222 patients received low, moderate, and high MTX doses, respectively. At months 3 and 6, ACR20/50/70 response rates were greater for both tofacitinib doses vs placebo across all MTX doses. At month 3, mean changes from baseline in CDAI and HAQ-DI were significantly greater for both tofacitinib doses vs placebo, irrespective of MTX category; improvements were maintained at month 6. Both tofacitinib doses demonstrated improvements in DAS28-4(ESR), and less structural progression vs placebo, across MTX doses at month 6. Tofacitinib plus MTX showed greater clinical and radiographic efficacy than placebo in MTX-IR patients with RA, regardless of MTX dose.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1865i0008K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1865i0008K"><span>Calculation of dose distribution above contaminated soil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuroda, Junya; Tenzou, Hideki; Manabe, Seiya; Iwakura, Yukiko</p> <p>2017-07-01</p> <p>The purpose of this study was to assess the relationship between altitude and the distribution of the ambient dose rate in the air over soil decontamination area by using PHITS simulation code. The geometry configuration was 1000 m ×1000 m area and 1m in soil depth and 100m in altitude from the ground to simulate the area of residences or a school grounds. The contaminated region is supposed to be uniformly contaminated by Cs-137 γ radiation sources. The air dose distribution and space resolution was evaluated for flux of the gamma rays at each altitude, 1, 5, 10, and 20m. The effect of decontamination was calculated by defining sharpness S. S was the ratio of an average flux and a flux at the center of denomination area in each altitude. The suitable flight altitude of the drone is found to be less than 15m above a residence and 31m above a school grounds to confirm the decontamination effect. The calculation results can be a help to determine a flight planning of a drone to minimize the clash risk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4337132','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4337132"><span>Current situation of high-dose-rate brachytherapy for cervical cancer in Brazil*</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>da Silva, Rogério Matias Vidal; Pinezi, Juliana Castro Dourado; Macedo, Luiz Eduardo Andrade; Souza, Divanízia do Nascimento</p> <p>2014-01-01</p> <p>Objective To assess the current situation of high-dose-rate (HDR) brachytherapy for cancer of the cervix in Brazil, regarding apparatuses, planning methods, prescription, fractionation schedule and evaluation of dose in organs at risk. Materials and Methods In the period between March/2012 and May/2013, a multiple choice questionnaire was developed and sent to 89 Brazilian hospitals which perform HDR brachytherapy. Results Sixty-one services answered the questionnaire. All regions of the country experienced a sharp increase in the number of HDR brachytherapy services in the period from 2001 to 2013. As regards planning, although a three-dimensional planning software was available in 91% of the centers, conventional radiography was mentioned by 92% of the respondents as their routine imaging method for such a purpose. Approximately 35% of respondents said that brachytherapy sessions are performed after teletherapy. The scheme of four 7 Gy intracavitary insertions was mentioned as the most frequently practiced. Conclusion The authors observed that professionals have difficulty accessing adjuvant three-dimensional planning tools such as computed tomography and magnetic resonance imaging. PMID:25741073</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11406545','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11406545"><span>The cell transmembrane pH gradient in tumors enhances cytotoxicity of specific weak acid chemotherapeutics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kozin, S V; Shkarin, P; Gerweck, L E</p> <p>2001-06-15</p> <p>The extracellular pH is lower in tumor than in normal tissue, whereas their intracellular pH is similar. In this study, we show that the tumor-specific pH gradient may be exploited for the treatment of cancer by weak acid chemotherapeutics. i.v.-injected glucose substantially decreased the electrode estimated extracellular pH in a xenografted human tumor while its intracellular pH, evaluated by (31)P magnetic resonance spectroscopy, remained virtually unchanged. The resulting increase in the average cell pH gradient caused a parallel increase in tumor growth delay by the weak acid chlorambucil (CHL). Regardless of glucose administration, the effect of CHL was significantly greater in tumors preirradiated with a large dose of ionizing radiation. This suggests that CHL was especially pronounced in radioresistant hypoxic cells possessing a larger transmembrane pH gradient. These results indicate that the naturally occurring cell pH gradient difference between tumor and normal tissue is a major and exploitable determinant of the uptake of weak acids in the complex tumor microenvironment. The use of such drugs may be especially effective in combination with radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28144120','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28144120"><span>Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki</p> <p>2016-01-01</p> <p>Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were -32.336 and -33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5228051','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5228051"><span>Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki</p> <p>2016-01-01</p> <p>Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were −32.336 and −33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range. PMID:28144120</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=238982&keyword=reactive+AND+program&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=238982&keyword=reactive+AND+program&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Using Models to Enhance Exposure Characterization for Air Pollution Health Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The United States and the United Kingdom are faced with increasing challenges in determining the human health impact of air pollutants emitted locally. Often, these pollutants can be toxic at relatively low doses, are highly reactive, or generate large gradients across space beca...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26632056','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26632056"><span>Dosimetric evaluation of three adaptive strategies for prostate cancer treatment including pelvic lymph nodes irradiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cantin, Audrey; Gingras, Luc; Lachance, Bernard; Foster, William; Goudreault, Julie; Archambault, Louis</p> <p>2015-12-01</p> <p>The movements of the prostate relative to the pelvic lymph nodes during intensity-modulated radiation therapy treatment can limit margin reduction and affect the protection of the organs at risk (OAR). In this study, the authors performed an analysis of three adaptive treatment strategies that combine information from both bony and gold marker registrations. The robustness of those treatments against the interfraction prostate movements was evaluated. A retrospective study was conducted on five prostate cancer patients with 7-13 daily cone-beam CTs (CBCTs). The clinical target volumes (CTVs) consisting of pelvic lymph nodes, prostate, and seminal vesicles as well as the OARs were delineated on each CBCT and the initial CT. Three adaptive strategies were analyzed. Two of these methods relied on a two-step patient positioning at each fraction. First step: a bony registration was used to deliver the nodal CTV prescription. Second step: a gold marker registration was then used either to (1) complete the dose delivered to the prostate (complement); (2) or give almost the entire prescription to the prostate with a weak dose gradient between the targets to compensate for possible motions (gradient). The third method (COR) used a pool of precalculated plans based on images acquired at previous treatment fractions. At each new fraction, a plan is selected from that pool based on the daily position of prostate center-of-mass. The dosimetric comparison was conducted and results are presented with and without the systematic shift in the prostate position on the CT planning. The adaptive strategies were compared to the current clinical standard where all fractions are treated with the initial nonadaptive plan. The minimum daily prostate D95% is improved by 2%, 9%, and 6% for the complement, the gradient, and the COR approaches, respectively, compared to the nonadaptive method. The average nodal CTV D95% remains constant across the strategies, except for the gradient approach where a reduction of 7% is observed. However, a correction of the systematic shift reduced the problem, and the adaptive strategies remain robust against the prostate movement across the fraction. The bladder V55Gy is reduced by 35% on average for the adaptive strategies. Because they offer increased CTV coverage and OAR sparing, adaptive methods may be suitable candidates for simple and efficient adaptive treatment strategies for prostate cancer. Margin reduction and systematic error correction in the prostate position improve the protection of the OAR and the dose coverage. A cumulative dose to simulate a complete treatment would show real effects and allow a better comparison between each method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28572693','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28572693"><span>Fundamental limits of image registration performance: Effects of image noise and resolution in CT-guided interventions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ketcha, M D; de Silva, T; Han, R; Uneri, A; Goerres, J; Jacobson, M; Vogt, S; Kleinszig, G; Siewerdsen, J H</p> <p>2017-02-11</p> <p>In image-guided procedures, image acquisition is often performed primarily for the task of geometrically registering information from another image dataset, rather than detection / visualization of a particular feature. While the ability to detect a particular feature in an image has been studied extensively with respect to image quality characteristics (noise, resolution) and is an ongoing, active area of research, comparatively little has been accomplished to relate such image quality characteristics to registration performance. To establish such a framework, we derived Cramer-Rao lower bounds (CRLB) for registration accuracy, revealing the underlying dependencies on image variance and gradient strength. The CRLB was analyzed as a function of image quality factors (in particular, dose) for various similarity metrics and compared to registration accuracy using CT images of an anthropomorphic head phantom at various simulated dose levels. Performance was evaluated in terms of root mean square error (RMSE) of the registration parameters. Analysis of the CRLB shows two primary dependencies: 1) noise variance (related to dose); and 2) sum of squared image gradients (related to spatial resolution and image content). Comparison of the measured RMSE to the CRLB showed that the best registration method, RMSE achieved the CRLB to within an efficiency factor of 0.21, and optimal estimators followed the predicted inverse proportionality between registration performance and radiation dose. Analysis of the CRLB for image registration is an important step toward understanding and evaluating an intraoperative imaging system with respect to a registration task. While the CRLB is optimistic in absolute performance, it reveals a basis for relating the performance of registration estimators as a function of noise content and may be used to guide acquisition parameter selection (e.g., dose) for purposes of intraoperative registration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010261','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010261"><span>Geothermal resources of the northern gulf of Mexico basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jones, P.H.</p> <p>1970-01-01</p> <p>Published geothermal gradient maps for the northern Gulf of Mexico basin indicate little or no potential for the development of geothermal resources. Results of deep drilling, from 4000 to 7000 meters or more, during the past decade however, define very sharp increases in geothermal gradient which are associated with the occurrence of abnormally high interstitial fluid pressure (geopressure). Bounded by regional growth faults along the landward margin of the Gulf Basin, the geopressured zone extends some 1300 km from the Rio Grande (at the boundary between the United States and Mexico) to the mouth of the Mississippi river. Gulfward, it extends to an unknown distance across the Continental Shelf. Within geopressured deposits, geothermal gradients range upwards to 100 ??C/km, being greatest within and immediately below the depth interval in which the maximum pressure gradient change occurs. The 120 ??C isogeotherm ranges from about 2500 to 5000 m below sea level, and conforms in a general way with depth of occurrence of the top of the geopressured zone. Measured geostatic ratios range upward to 0.97; the maximum observed temperature is 273 ??C, at a depth of 5859 m. Dehydration of montmorillonite, which comprises 60 to 80 percent of clay deposited in the northern Gulf Basin during the Neogene, occurs at depths where temperature exceeds about 80 ??C, and is generally complete at depths where temperature exceeds 120 ??C. This process converts intracrystalline and bound water to free pore water, the volume produced being roughly equivalent to half the volume of montmorillonite so altered. Produced water is fresh, and has low viscosity and density. Sand-bed aquifers of deltaic, longshore, or marine origin form excellent avenues for drainage of geopressured deposits by wells, each of which may yield 10,000 m3 or more of superheated water per day from reservoirs having pressures up to 1000 bars at depths greater than 5000 m. ?? 1971.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150000890','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150000890"><span>CVB: the Constrained Vapor Bubble Capillary Experiment on the International Space Station MARANGONI FLOW REGION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wayner, Peter C., Jr.; Kundan, Akshay; Plawsky, Joel</p> <p>2014-01-01</p> <p>The Constrained Vapor Bubble (CVB) is a wickless, grooved heat pipe and we report on a full- scale fluids experiment flown on the International Space Station (ISS). The CVB system consists of a relatively simple setup a quartz cuvette with sharp corners partially filled with either pentane or an ideal mixture of pentane and isohexane as the working fluids. Along with temperature and pressure measurements, the two-dimensional thickness profile of the menisci formed at the corners of the quartz cuvette was determined using the Light Microscopy Module (LMM). Even with the large, millimeter dimensions of the CVB, interfacial forces dominate in these exceedingly small Bond Number systems. The experiments were carried out at various power inputs. Although conceptually simple, the transport processes were found to be very complex with many different regions. At the heated end of the CVB, due to a high temperature gradient, we observed Marangoni flow at some power inputs. This region from the heated end to the central drop region is defined as a Marangoni dominated region. We present a simple analysis based on interfacial phenomena using only measurements from the ISS experiments that lead to a predictive equation for the thickness of the film near the heated end of the CVB. The average pressure gradient for flow in the film is assumed due to the measured capillary pressure at the two ends of the liquid film and that the pressure stress gradient due to cohesion self adjusts to a constant value over a distance L. The boundary conditions are the no slip condition at the wall interface and an interfacial shear stress at the liquid- vapor interface due to the Marangoni stress, which is due to the high temperature gradient. Although the heated end is extremely complex, since it includes three- dimensional variations in radiation, conduction, evaporation, condensation, fluid flow and interfacial forces, we find that using the above simplifying assumptions, a simple successful model can be developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22649177-su-multi-lesion-cranial-srs-vmat-plan-quality','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22649177-su-multi-lesion-cranial-srs-vmat-plan-quality"><span>SU-F-T-613: Multi-Lesion Cranial SRS VMAT Plan Quality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ballangrud, A; Kuo, L; Happersett, L</p> <p></p> <p>Purpose: Cranial SRS VMAT plans must have steep dose gradient around each target to reduce dose to normal brain. This study reports on the correlation between gradient index (GI=V50%/V100%), target size and target dose heterogeneity index (HI=PTV Dmax/prescription dose) for multi-lesion cranial SRS VMAT plans. Methods: VMAT plans for 10 cranial cases with 3 to 6 lesions (total 39 lesions) generated in Varian Eclipse V11.0.47 with a fine-tuned AAA beam model and 0.125 cm dose grid were analyzed. One or two iso centers were used depending on the spatial distribution of lesions. Two to nine coplanar and non-coplanar arcs weremore » used per isocenter. Conformity index (CI= V100%/VPTV), HI, and GI were determined for each lesion. Dose to critical structures were recorded. Results: Lesion size ranged from 0.05–11.00 cm3. HI ranged from 1.2–1.4, CI ranged from 1.0–2.8 and GI from 3.1–8.4. Maximum dose to brainstem, chiasm, lenses, optic nerves and eyes ranged from 120–1946 cGy, 47–463 cGy, 9–121 cGy, 14–512 cGy, and 17–294 cGy, respectively. Brain minus PTV (Brain-PTV) V7Gy was in the range 1.1–6.5%, and Brain-PTV Dmean was in the range 94–324 cGy. Conclusion: This work shows that a GI < 5 can be achieved for lesions > 0.4cc. For smaller lesions, GI increases rapidly. GI is lower when HI is increased. Based on this study, recommend HI is 1.4, and recommended GI is for volumes <0.1cc GI<9, 0.1–0.4cc GI<6, 0.4–0.1.0cc GI<5, and for volumes >1.0cc GI<4. CI is < 1.3 for all lesions except for targets < 0.1cc. Cranial SRS VMAT plans must be optimized to lower the GI to reduce the dose to normal brain tissue.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28202830','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28202830"><span>[Usefulness of Bolus Administration Using the FLEX Mode(Bolus Infusion Mode)for Baclofen Tolerance].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tanaka, Kazunori</p> <p>2017-02-01</p> <p>Intrathecal baclofen(ITB)is used to treat intractable spasticity of various etiologies and can provide better control of spasticity through the adjustment of the dose administered through the pump. However, in patients who develop tolerance to baclofen with the standard simple continuous mode, a sharp increase in dose becomes necessary, and spasticity can become harder to control. We investigated whether switching from the simple continuous mode to the bolus infusion mode was effective in controlling spasticity in patients with baclofen tolerance. We reported four patients undergoing ITB therapy at our facility who were considered to have developed baclofen tolerance. We observed the number of bolus infusions and total dose suitable for maintaining spasticity control after switching from the simple continuous mode to the bolus infusion mode. After switching to the bolus infusion mode, the total dose could be reduced in the short term; however, in the long term, the frequency of bolus infusions had to be increased to maintain spasticity control. Two years after changing to bolus infusion six times a day, the total dose was higher than that in the simple continuous mode for two of the four patients, and was the same level in the other two patients. Our four cases suggest that bolus infusion is effective in patients with baclofen tolerance during ITB therapy. Therefore, the conditions of bolus infusion should be further investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22278146-misfit-strain-driven-cation-inter-diffusion-across-epitaxial-multiferroic-thin-film-interface','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22278146-misfit-strain-driven-cation-inter-diffusion-across-epitaxial-multiferroic-thin-film-interface"><span>Misfit strain driven cation inter-diffusion across an epitaxial multiferroic thin film interface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sankara Rama Krishnan, P. S.; Munroe, Paul; Nagarajan, V.</p> <p></p> <p>Cation intermixing at functional oxide interfaces remains a highly controversial area directly relevant to interface-driven nanoelectronic device properties. Here, we systematically explore the cation intermixing in epitaxial (001) oriented multiferroic bismuth ferrite (BFO) grown on a (001) lanthanum aluminate (LAO) substrate. Aberration corrected dedicated scanning transmission electron microscopy and electron energy loss spectroscopy reveal that the interface is not chemically sharp, but with an intermixing of ∼2 nm. The driving force for this process is identified as misfit-driven elastic strain. Landau-Ginzburg-Devonshire-based phenomenological theory was combined with the Sheldon and Shenoy formula in order to understand the influence of boundary conditions andmore » depolarizing fields arising from misfit strain between the LAO substrate and BFO film. The theory predicts the presence of a strong potential gradient at the interface, which decays on moving into the bulk of the film. This potential gradient is significant enough to drive the cation migration across the interface, thereby mitigating the misfit strain. Our results offer new insights on how chemical roughening at oxide interfaces can be effective in stabilizing the structural integrity of the interface without the need for misfit dislocations. These findings offer a general formalism for understanding cation intermixing at highly strained oxide interfaces that are used in nanoelectronic devices.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OptLT..96..180Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OptLT..96..180Y"><span>Laser circular cutting of Kevlar sheets: Analysis of thermal stress filed and assessment of cutting geometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yilbas, B. S.; Akhtar, S. S.; Karatas, C.</p> <p>2017-11-01</p> <p>A Kevlar laminate has negative thermal expansion coefficient, which makes it difficult to machine at room temperaures using the conventional cutting tools. Contararily, laser machining of a Kevlar laminate provides advantages over the conventional methods because of the non-mechanical contact between the cutting tool and the workpiece. In the present study, laser circular cutting of Kevlar laminate is considered. The experiment is carried out to examine and evaluate the cutting sections. Temperature and stress fields formed in the cutting section are simulated in line with the experimental study. The influence of hole diameters on temperature and stress fields are investigated incorporating two different hole diameters. It is found that the Kevlar laminate cutting section is free from large size asperities such as large scale sideways burnings and attachemnt of charred residues. The maximum temperature along the cutting circumference remains higher for the large diameter hole than that of the small diameter hole. Temperature decay is sharp around the cutting section in the region where the cutting terminates. This, in turn, results in high temperature gradients and the thermal strain in the cutting region. von Mises stress remains high in the region where temperature gradients are high. von Mises stress follows similar to the trend of temperature decay around the cutting edges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790012349','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790012349"><span>Decay of the zincate concentration gradient at an alkaline zinc cathode after charging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kautz, H. E.; May, C. E.</p> <p>1979-01-01</p> <p>The transport of the zincate ion to the alkaline zinc cathode was studied by observing the decay of the zincate concentration gradient at a horizontal zinc cathode after charging. This decay was found to approximate first order kinetics as expected from a proposed boundary layer model. The concentrations were calculated from polarization voltages. The decay half life was shown to be a linear function of the thickness of porous zinc deposit on the cathode indicating a very rapid transport of zincate through porous zinc metal. The rapid transport is attributed to an electrochemical mechanism. From the linear dependence of the half life on the thickness the boundary layer thickness was found to be about 0.010 cm when the cathode was at the bottom of the cell. No significant dependence of the boundary layer thickness on the viscosity of electrolyte was observed. The data also indicated a relatively sharp transition between the diffusion and convection transport regions. When the cathode was at the top of the cell, the boundary layer thickness was found to be roughly 0.080 cm. The diffusion of zincate ion through asbestos submerged in alkaline electrolyte was shown to be comparable with that predicted from the bulk diffusion coefficient of the zincate ion in alkali.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28406683','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28406683"><span>Evaluating the sources and functions of gradiency in phoneme categorization: An individual differences approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kapnoula, Efthymia C; Winn, Matthew B; Kong, Eun Jong; Edwards, Jan; McMurray, Bob</p> <p>2017-09-01</p> <p>During spoken language comprehension listeners transform continuous acoustic cues into categories (e.g., /b/ and /p/). While long-standing research suggests that phonetic categories are activated in a gradient way, there are also clear individual differences in that more gradient categorization has been linked to various communication impairments such as dyslexia and specific language impairments (Joanisse, Manis, Keating, & Seidenberg, 2000; López-Zamora, Luque, Álvarez, & Cobos, 2012; Serniclaes, Van Heghe, Mousty, Carré, & Sprenger-Charolles, 2004; Werker & Tees, 1987). Crucially, most studies have used 2-alternative forced choice (2AFC) tasks to measure the sharpness of between-category boundaries. Here we propose an alternative paradigm that allows us to measure categorization gradiency in a more direct way. Furthermore, we follow an individual differences approach to (a) link this measure of gradiency to multiple cue integration, (b) explore its relationship to a set of other cognitive processes, and (c) evaluate its role in individuals' ability to perceive speech in noise. Our results provide validation for this new method of assessing phoneme categorization gradiency and offer preliminary insights into how different aspects of speech perception may be linked to each other and to more general cognitive processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6551820-acceleration-polarized-protons-gev-measurement-spin-spin-effects-sub-up-arrow-+p-sub-up-arrow-p+p','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6551820-acceleration-polarized-protons-gev-measurement-spin-spin-effects-sub-up-arrow-+p-sub-up-arrow-p+p"><span>Acceleration of polarized protons to 22 GeV/c and the measurement of spin-spin effects in p/sub up-arrow/+p/sub up-arrow/. -->. p+p</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Khiari, F.Z.; Cameron, P.R.; Court, G.R.</p> <p>1989-01-01</p> <p>Accelerating polarized protons to 22 GeV/c at the Brookhaven Alternating Gradient Synchro- tron required both extensive hardware modifications and a difficult commissioning process. We had to overcome 45 strong depolarizing resonances to maintain polarization up to 22 GeV/c in this strong-focusing synchrotron. At 18.5 GeV/c we measured the analyzing power A and the spin-spin correlation parameter A/sub n//sub n/ in large- P/sub perpendicular//sup 2/ proton-proton elastic scattering, using the polarized proton beam and a polarized proton target. We also obtained a high-precision measurement of A at P/sub perpendicular//sup 2/ = 0.3 (GeV/c)/sup 2/ at 13.3 GeV/c. At 18.5 GeV/c wemore » found that A/sub n//sub n/ = (-2 +- 16)% at P/sub perpendicular//sup 2/ = 4.7 (GeV/c)/sup 2/, where it was about 60% near 12 GeV at the Argonne Zero Gradient Synchrotron. This sharp change suggests that spin-spin forces may have a strong and unexpected energy dependence at high P/sub perpendicular//sup 2/.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3933558','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3933558"><span>Fuzzy Filtering Method for Color Videos Corrupted by Additive Noise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ponomaryov, Volodymyr I.; Montenegro-Monroy, Hector; Nino-de-Rivera, Luis</p> <p>2014-01-01</p> <p>A novel method for the denoising of color videos corrupted by additive noise is presented in this paper. The proposed technique consists of three principal filtering steps: spatial, spatiotemporal, and spatial postprocessing. In contrast to other state-of-the-art algorithms, during the first spatial step, the eight gradient values in different directions for pixels located in the vicinity of a central pixel as well as the R, G, and B channel correlation between the analogous pixels in different color bands are taken into account. These gradient values give the information about the level of contamination then the designed fuzzy rules are used to preserve the image features (textures, edges, sharpness, chromatic properties, etc.). In the second step, two neighboring video frames are processed together. Possible local motions between neighboring frames are estimated using block matching procedure in eight directions to perform interframe filtering. In the final step, the edges and smoothed regions in a current frame are distinguished for final postprocessing filtering. Numerous simulation results confirm that this novel 3D fuzzy method performs better than other state-of-the-art techniques in terms of objective criteria (PSNR, MAE, NCD, and SSIM) as well as subjective perception via the human vision system in the different color videos. PMID:24688428</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960008471','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960008471"><span>Wing-section optimization for supersonic viscous flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Item, Cem C.; Baysal, Oktay (Editor)</p> <p>1995-01-01</p> <p>To improve the shape of a supersonic wing, an automated method that also includes higher fidelity to the flow physics is desirable. With this impetus, an aerodynamic optimization methodology incorporating thin-layer Navier-Stokes equations and sensitivity analysis had been previously developed. Prior to embarking upon the wind design task, the present investigation concentrated on testing the feasibility of the methodology, and the identification of adequate problem formulations, by defining two-dimensional, cost-effective test cases. Starting with two distinctly different initial airfoils, two independent shape optimizations resulted in shapes with similar features: slightly cambered, parabolic profiles with sharp leading- and trailing-edges. Secondly, the normal section to the subsonic portion of the leading edge, which had a high normal angle-of-attack, was considered. The optimization resulted in a shape with twist and camber which eliminated the adverse pressure gradient, hence, exploiting the leading-edge thrust. The wing section shapes obtained in all the test cases had the features predicted by previous studies. Therefore, it was concluded that the flowfield analyses and sensitivity coefficients were computed and fed to the present gradient-based optimizer correctly. Also, as a result of the present two-dimensional study, suggestions were made for the problem formulations which should contribute to an effective wing shape optimization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24584284','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24584284"><span>Biodiversity, photosynthetic mode, and ecosystem services differ between native and novel ecosystems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martin, Leanne M; Polley, H Wayne; Daneshgar, Pedram P; Harris, Mary A; Wilsey, Brian J</p> <p>2014-06-01</p> <p>Human activities have caused non-native plant species with novel ecological interactions to persist on landscapes, and it remains controversial whether these species alter multiple aspects of communities and ecosystems. We tested whether native and exotic grasslands differ in species diversity, ecosystem services, and an important aspect of functional diversity (C3:C4 proportions) by sampling 42 sites along a latitudinal gradient and conducting a controlled experiment. Exotic-dominated grasslands had drastically lower plant diversity and slightly higher tissue N concentrations and forage quality compared to native-dominated sites. Exotic sites were strongly dominated by C4 species at southern and C3 species at northern latitudes with a sharp transition at 36-38°, whereas native sites contained C3:C4 mixtures. Large differences in C3:C4 proportions and temporal niche partitioning were found between native and exotic mixtures in the experiment, implying that differences in C3:C4 proportions along the latitudinal gradient are caused partially by species themselves. Our results indicate that the replacement of native- by exotic-dominated grasslands has created a management tradeoff (high diversity versus high levels of certain ecosystem services) and that models of global change impacts and C3/C4 distribution should consider effects of exotic species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007238','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007238"><span>Altitude Variation of the Plasmapause Signature in the Main Ionospheric Trough</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grebowsky, Joseph M.; Benson, Robert F.; Webb, Phillip A.; Truhlik, Vladimir; Bilitza, Dieter</p> <p>2009-01-01</p> <p>The projection of the plasmapause magnetic-field lines to low altitudes, where the light-ion chemistry is dominated by O(+), tends to occur near the minimum electron density in the main (midlatitude) electron density trough at night. With increasing attitude in the trough, where H(+) emerges as the dominant iota on the low-latitude boundary, we have found cases where the plasmapause field lines are located on the sharp low-Latitude side of the trough as expected if this topside ionosphere H(+) distribution varies in step with the plasmapause gradient in the distant plasmasphere. These conclusions are based on near-equatorial crossings of the plasmapause (corresponding to the steep gradient in the dominant species H(+) by the Explorer-45 satellite as determined from electric-field measurements by Maynard and Cauffman in the early 1970s and ISIS-2 ionospheric topside-sounder measurements. The former data have now been converted to digital form and made available at http://nssdcftp.gsfc.nasa.gov. The latter provide samples of nearly coincident observations of ionospheric main trough crossings near the same magnetic-field lines of the Explorer 45-determined equatorial plasmapause. The ISIS-2 vertical electron density profiles are used to infer where the F-region transitions from an O(+) to a H(+) dominated plasma through the main trough boundaries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26149696','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26149696"><span>Wireless programmable electrochemical drug delivery micropump with fully integrated electrochemical dosing sensors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sheybani, Roya; Cobo, Angelica; Meng, Ellis</p> <p>2015-08-01</p> <p>We present a fully integrated implantable electrolysis-based micropump with incorporated EI dosing sensors. Wireless powering and data telemetry (through amplitude and frequency modulation) were utilized to achieve variable flow control and a bi-directional data link with the sensors. Wireless infusion rate control (0.14-1.04 μL/min) and dose sensing (bolus resolution of 0.55-2 μL) were each calibrated separately with the final circuit architecture and then simultaneous wireless flow control and dose sensing were demonstrated. Recombination detection using the dosing system, as well as, effects of coil separation distance and misalignment in wireless power and data transfer were studied. A custom-made normally closed spring-loaded ball check valve was designed and incorporated at the reservoir outlet to prevent backflow of fluids as a result of the reverse pressure gradient caused by recombination of electrolysis gases. Successful delivery, infusion rate control, and dose sensing were achieved in simulated brain tissue.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11393469','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11393469"><span>Characterization of a commercial multileaf collimator used for intensity modulated radiation therapy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Low, D A; Sohn, J W; Klein, E E; Markman, J; Mutic, S; Dempsey, J F</p> <p>2001-05-01</p> <p>The characteristics of a commercial multileaf collimator (MLC) to deliver static and dynamic multileaf collimation (SMLC and DMLC, respectively) were investigated to determine their influence on intensity modulated radiation therapy (IMRT) treatment planning and quality assurance. The influence of MLC leaf positioning accuracy on sequentially abutted SMLC fields was measured by creating abutting fields with selected gaps and overlaps. These data were also used to measure static leaf positioning precision. The characteristics of high leaf-velocity DMLC delivery were measured with constant velocity leaf sequences starting with an open field and closing a single leaf bank. A range of 1-72 monitor units (MU) was used providing a range of leaf velocities. The field abutment measurements yielded dose errors (as a percentage of the open field max dose) of 16.7+/-0.7% mm(-1) and 12.8+/-0.7% mm(-1) for 6 MV and 18 MV photon beams, respectively. The MLC leaf positioning precision was 0.080+/-0.018 mm (single standard deviation) highlighting the excellent delivery hardware tolerances for the tested beam delivery geometry. The high leaf-velocity DMLC measurements showed delivery artifacts when the leaf sequence and selected monitor units caused the linear accelerator to move the leaves at their maximum velocity while modulating the accelerator dose rate to deliver the desired leaf and MU sequence (termed leaf-velocity limited delivery). According to the vendor, a unique feature to their linear accelerator and MLC is that the dose rate is reduced to provide the correct cm MU(-1) leaf velocity when the delivery is leaf-velocity limited. However, it was found that the system delivered roughly 1 MU per pulse when the delivery was leaf-velocity limited causing dose profiles to exhibit discrete steps rather than a smooth dose gradient. The root mean square difference between the steps and desired linear gradient was less than 3% when more than 4 MU were used. The average dose per MU was greater and less than desired for closing and opening leaf patterns, respectively, when the delivery was leaf-velocity limited. The results indicated that the dose delivery artifacts should be minor for most clinical cases, but limit the assumption of dose linearity when significantly reducing the delivered dose for dosimeter characterization studies or QA measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.851a2002S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.851a2002S"><span>128 slice computed tomography dose profile measurement using thermoluminescent dosimeter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salehhon, N.; Hashim, S.; Karim, M. K. A.; Ang, W. C.; Musa, Y.; Bahruddin, N. A.</p> <p>2017-05-01</p> <p>The increasing use of computed tomography (CT) in clinical practice marks the needs to understand the dose descriptor and dose profile. The purposes of the current study were to determine the CT dose index free-in-air (CTDIair) in 128 slice CT scanner and to evaluate the single scan dose profile (SSDP). Thermoluminescent dosimeters (TLD-100) were used to measure the dose profile of the scanner. There were three sets of CT protocols where the tube potential (kV) setting was manipulated for each protocol while the rest of parameters were kept constant. These protocols were based from routine CT abdominal examinations for male adult abdomen. It was found that the increase of kV settings made the values of CTDIair increased as well. When the kV setting was changed from 80 kV to 120 kV and from 120 kV to 140 kV, the CTDIair values were increased as much as 147.9% and 53.9% respectively. The highest kV setting (140 kV) led to the highest CTDIair value (13.585 mGy). The p-value of less than 0.05 indicated that the results were statistically different. The SSDP showed that when the kV settings were varied, the peak sharpness and height of Gaussian function profiles were affected. The full width at half maximum (FWHM) of dose profiles for all protocols were coincided with the nominal beam width set for the measurements. The findings of the study revealed much information on the characterization and performance of 128 slice CT scanner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2583352','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2583352"><span>Effect of Edge-Preserving Adaptive Image Filter on Low-Contrast Detectability in CT Systems: Application of ROC Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Okumura, Miwa; Ota, Takamasa; Kainuma, Kazuhisa; Sayre, James W.; McNitt-Gray, Michael; Katada, Kazuhiro</p> <p>2008-01-01</p> <p>Objective. For the multislice CT (MSCT) systems with a larger number of detector rows, it is essential to employ dose-reduction techniques. As reported in previous studies, edge-preserving adaptive image filters, which selectively eliminate only the noise elements that are increased when the radiation dose is reduced without affecting the sharpness of images, have been developed. In the present study, we employed receiver operating characteristic (ROC) analysis to assess the effects of the quantum denoising system (QDS), which is an edge-preserving adaptive filter that we have developed, on low-contrast resolution, and to evaluate to what degree the radiation dose can be reduced while maintaining acceptable low-contrast resolution. Materials and Methods. The low-contrast phantoms (Catphan 412) were scanned at various tube current settings, and ROC analysis was then performed for the groups of images obtained with/without the use of QDS at each tube current to determine whether or not a target could be identified. The tube current settings for which the area under the ROC curve (Az value) was approximately 0.7 were determined for both groups of images with/without the use of QDS. Then, the radiation dose reduction ratio when QDS was used was calculated by converting the determined tube current to the radiation dose. Results. The use of the QDS edge-preserving adaptive image filter allowed the radiation dose to be reduced by up to 38%. Conclusion. The QDS was found to be useful for reducing the radiation dose without affecting the low-contrast resolution in MSCT studies. PMID:19043565</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7240E..14K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7240E..14K"><span>Analysis of sharpness increase by image noise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kurihara, Takehito; Aoki, Naokazu; Kobayashi, Hiroyuki</p> <p>2009-02-01</p> <p>Motivated by the reported increase in sharpness by image noise, we investigated how noise affects sharpness perception. We first used natural images of tree bark with different amounts of noise to see whether noise enhances sharpness. Although the result showed sharpness decreased as noise amount increased, some observers seemed to perceive more sharpness with increasing noise, while the others did not. We next used 1D and 2D uni-frequency patterns as stimuli in an attempt to reduce such variability in the judgment. The result showed, for higher frequency stimuli, sharpness decreased as the noise amount increased, while sharpness of the lower frequency stimuli increased at a certain noise level. From this result, we thought image noise might reduce sharpness at edges, but be able to improve sharpness of lower frequency component or texture in image. To prove this prediction, we experimented again with the natural image used in the first experiment. Stimuli were made by applying noise separately to edge or to texture part of the image. The result showed noise, when added to edge region, only decreased sharpness, whereas when added to texture, could improve sharpness. We think it is the interaction between noise and texture that sharpens image.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900063619&hterms=Einstein&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DEinstein','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900063619&hterms=Einstein&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DEinstein"><span>IUE and Einstein survey of late-type giant and supergiant stars and the dividing line</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Haisch, Bernhard M.; Bookbinder, Jay A.; Maggio, A.; Vaiana, G. S.; Bennett, Jeffrey O.</p> <p>1990-01-01</p> <p>Results are presented on an IUE UV survey of 255 late-type G, K, and M stars, complementing the Maggio et al. (1990) Einstein X-ray survey of 380 late-type stars. The large data sample of X-ray and UV detections make it possible to examine the activity relationship between the X-ray and the UV emissions. The results confirm previous finding of a trend involving a steeply-dropping upper envelope of the transition region line fluxes, f(line)/f(V), as the dividing line is approached. This suggests that a sharp decrease in maximum activity accompanies the advancing spectral type, with the dividing line corresponding to this steep gradient region. The results confirm the rotation-activity connection for stars in this region of the H-R diagram.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910010750','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910010750"><span>Unstructured and adaptive mesh generation for high Reynolds number viscous flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mavriplis, Dimitri J.</p> <p>1991-01-01</p> <p>A method for generating and adaptively refining a highly stretched unstructured mesh suitable for the computation of high-Reynolds-number viscous flows about arbitrary two-dimensional geometries was developed. The method is based on the Delaunay triangulation of a predetermined set of points and employs a local mapping in order to achieve the high stretching rates required in the boundary-layer and wake regions. The initial mesh-point distribution is determined in a geometry-adaptive manner which clusters points in regions of high curvature and sharp corners. Adaptive mesh refinement is achieved by adding new points in regions of large flow gradients, and locally retriangulating; thus, obviating the need for global mesh regeneration. Initial and adapted meshes about complex multi-element airfoil geometries are shown and compressible flow solutions are computed on these meshes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010091016','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010091016"><span>Antimatter Production at a Potential Boundary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>LaPointe, Michael R.; Reddy, Dhanireddy (Technical Monitor)</p> <p>2001-01-01</p> <p>Current antiproton production techniques rely on high-energy collisions between beam particles and target nuclei to produce particle and antiparticle pairs, but inherently low production and capture efficiencies render these techniques impractical for the cost-effective production of antimatter for space propulsion and other commercial applications. Based on Dirac's theory of the vacuum field, a new antimatter production concept is proposed in which particle-antiparticle pairs are created at the boundary of a steep potential step formed by the suppression of the local vacuum fields. Current antimatter production techniques are reviewed, followed by a description of Dirac's relativistic quantum theory of the vacuum state and corresponding solutions for particle tunneling and reflection from a potential barrier. The use of the Casimir effect to suppress local vacuum fields is presented as a possible technique for generating the sharp potential gradients required for particle-antiparticle pair creation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2005/5046/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2005/5046/"><span>Reducing tensor magnetic gradiometer data for unexploded ordnance detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bracken, Robert E.; Brown, Philip J.</p> <p>2005-01-01</p> <p>We performed a survey to demonstrate the effectiveness of a prototype tensor magnetic gradiometer system (TMGS) for detection of buried unexploded ordnance (UXO). In order to achieve a useful result, we designed a data-reduction procedure that resulted in a realistic magnetic gradient tensor and devised a simple way of viewing complicated tensor data, not only to assess the validity of the final resulting tensor, but also to preview the data at interim stages of processing. The final processed map of the surveyed area clearly shows a sharp anomaly that peaks almost directly over the target UXO. This map agrees well with a modeled map derived from dipolar sources near the known target locations. From this agreement, it can be deduced that the reduction process is valid, making the prototype TMGS a foundation for development of future systems and processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4197476','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4197476"><span>Instability of quantum equilibrium in Bohm's dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Colin, Samuel; Valentini, Antony</p> <p>2014-01-01</p> <p>We consider Bohm's second-order dynamics for arbitrary initial conditions in phase space. In principle, Bohm's dynamics allows for ‘extended’ non-equilibrium, with initial momenta not equal to the gradient of phase of the wave function (as well as initial positions whose distribution departs from the Born rule). We show that extended non-equilibrium does not relax in general and is in fact unstable. This is in sharp contrast with de Broglie's first-order dynamics, for which non-standard momenta are not allowed and which shows an efficient relaxation to the Born rule for positions. On this basis, we argue that, while de Broglie's dynamics is a tenable physical theory, Bohm's dynamics is not. In a world governed by Bohm's dynamics, there would be no reason to expect to see an effective quantum theory today (even approximately), in contradiction with observation. PMID:25383020</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/95868-carbon-storage-subalpine-forests-meadows-olympic-mountains-washington','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/95868-carbon-storage-subalpine-forests-meadows-olympic-mountains-washington"><span>Carbon storage in subalpine forests and meadows of the Olympic Mountains, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Prichard, S.J.; Peterson, D.L.</p> <p>1995-06-01</p> <p>We investigated carbon storage in high elevation ecosystems of the Olympic Mountains. A sharp precipitation gradient created by the Olympic mountain range allows for comparison of carbon storage in different climatic regimes and vegetation types. Carbon in soils, vegetation, and woody debris was examined in subalpine forests and meadows of the northeast (dry) and southwest (wet) Olympics. Soil carbon storage in high elevation sites appears to be considerably greater than most low elevation forests. Above-ground carbon storage is generally greater in southwest sites. Meadow soils contained high carbon concentrations in upper horizons, while forests also stored a substantial amount ofmore » carbon in lower horizons. Information gained from this study will provide a better understanding of soil-vegetation relationships in subalpine ecosystems, especially with respect to potential climatic change impacts.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720017712','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720017712"><span>probing the atmosphere with high power, high resolution radars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hardy, K. R.; Katz, I.</p> <p>1969-01-01</p> <p>Observations of radar echoes from the clear atmosphere are presented and the scattering mechanisms responsible for the two basic types of clear-air echoes are discussed. The commonly observed dot echo originates from a point in space and usually shows little variation in echo intensity over periods of about 0.1 second. The second type of clear-air radar echo appears diffuse in space, and signal intensities vary considerably over periods of less than 0.1 second. The echoes often occur in thin horizontal layers or as boundaries of convective activity; these are characterized by sharp gradients of refractive index. Some features of clear-air atmospheric structures as observed with radar are presented. These structures include thin stable inversions, convective thermals, Benard convection cells, breaking gravity waves, and high tropospheric layers which are sufficiently turbulent to affect aircraft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPU11032S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPU11032S"><span>Studies of Plasma Instabilities using Unstructured Discontinuous Galerkin Method with the Two-Fluid Plasma Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, Yang; Srinivasan, Bhuvana</p> <p>2017-10-01</p> <p>The discontinuous Galerkin (DG) method has the advantage of resolving shocks and sharp gradients that occur in neutral fluids and plasmas. An unstructured DG code has been developed in this work to study plasma instabilities using the two-fluid plasma model. Unstructured meshes are known to produce small and randomized grid errors compared to traditional structured meshes. Computational tests for Rayleigh-Taylor instabilities in radially-converging flows are performed using the MHD model. Choice of grid geometry is not obvious for simulations of instabilities in these circular configurations. Comparisons of the effects for different grids are made. A 2D magnetic nozzle simulation using the two-fluid plasma model is also performed. A vacuum boundary condition technique is applied to accurately solve the Riemann problem on the edge of the plume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030003640','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030003640"><span>Shadowgraph Study of Gradient Driven Fluctuations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William</p> <p>2002-01-01</p> <p>A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q(sup -4), for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The sample was confined between two horizontal parallel sapphire plates with a vertical spacing of 1 mm. The temperatures of the sapphire plates were controlled by independent circulating water loops that used Peltier devices to add or remove heat from the room air as required. For a mixture with a temperature gradient, two effects are involved in generating the vertical refractive index gradient, namely thermal expansion and the Soret effect, which generates a concentration gradient in response to the applied temperature gradient. For the aniline/cyclohexane system, the denser component (aniline) migrates toward the colder surface. Consequently, when heating from above, both effects result in the sample density decreasing with altitude and are stabilizing in the sense that no convective motion occurs regardless of the magnitude of the applied temperature gradient. The Soret effect is strong near a binary liquid critical point, and thus the dominant effect is due to the induced concentration gradient. The results clearly show the divergence at low q and the predicted gravitational quenching. Results obtained for different applied temperature gradients at varying temperature differences from the critical temperature, clearly demonstrate the predicted divergence of the thermal diffusion ratio. Thus, the more closely the critical point is approached, the smaller becomes the temperature gradient required to generate the same signal. Two different methods have been used to generate pure concentration gradients. In the first, a sample cell was filled with a single fluid, ethylene glycol, and a denser miscible fluid, water, was added from below thus establishing a sharp interface to begin the experiment. As time went on the two fluids diffused into each other, and large amplitude fluctuations were clearly observed at low q. The effects of gravitational quenching were also evident. In the second method, the aniline/cyclohexane sample was used, and after applying a vertical temperature gradient for several hours, the top and bottom temperatures were set equal and the thermal gradient died on a time scale of seconds, leaving the Soret induced concentration gradient in place. Again, large-scale fluctuations were observed and died away slowly in amplitude as diffusion destroyed the initial concentration gradient.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4000746-studies-storage-chestnuts-treated-gamma-radiation-ii','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4000746-studies-storage-chestnuts-treated-gamma-radiation-ii"><span>STUDIES IN THE STORAGE OF CHESTNUTS TREATED WITH GAMMA RADIATION. II</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Iwata, T.; Ogata, K.</p> <p>1961-03-01</p> <p>Two varieties of chestnuts were irradiated with relatively high doses of gamma rays, purporting the extension of storage life of the nuts through the inhibition of rooting and sprouting. The materials were treated with the doses of 1.5, 3, and 6 x 10>s4/sup / 6 weeks after harvest and then stored in moist sawdust at 20 deg C. An almost complete inhibiting effect was obtained with all of the doses used regardless of varieties. The contents of ascorbic acid and of reducing sugar were not influenced directly by any dose of irradiation, but the content of non-reducing sugar was affectedmore » to some extent. A sharp increase of respiration was found both in the whole nuts and in the cotyledon part of the nuts immediately after irradiation. In the embryonic axis part of the irradiated nuts, the respiration did not show any change for a considerable period after irradiation; it became fairly lower than the control from the time when some control nuts initiated rooting, and the discoloration of this part took place about the same time. There was a rapid increase of rot incidence when the irradiated nuts have been stored for 4 months at 20 deg C. (auth)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26679790','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26679790"><span>Short communication: Experimental toxocarosis in Chinese Kun Ming mice: Dose-dependent larval distribution and modulation of immune responses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ma, Guangxu; Tan, Yancai; Hu, Ling; Luo, Yongfang; Zhu, Honghong; Zhou, Rongqiong</p> <p>2015-12-01</p> <p>Toxocarosis is an important parasitic zoonosis which is mainly caused by the infective larvae of Toxocara canis. To identify whether there are correlations among the infectious dose, the larval migrans and immune modulation in inbred Chinese Kun Ming (KM) mice, experimental infections were carried out with a range of dosages of 100, 500, 1000, 2000, and 3000 embryonated eggs (EE). Pathogenic reactions were observed in terms of physical and central nervous symptoms. Distributions of T. canis larvae in liver, lung, kidney, heart and brain organs were respectively detected by scanning tissue sections. Moreover, quantitative real-time PCR was employed to identify the variations of Th2 immune response. The results showed that high inocula resulted in advanced larval emergences and arrested migrations in liver, lung, kidney and brain. However, no larvae were found in any of the histological sections of heart tissues. Higher levels of interleukin (IL)-4, IL-5, and IL-10 were detected along with the increasing inoculation doses, but the heaviest inoculum (3000 EE in this study) resulted in the sharp reduction of these ILs. Although no neurological symptoms or mortalities were noticed, these results indicated dose-dependent distribution patterns and immune regulations of T. canis larvae infection in KM mice. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22413442-toward-adaptive-radiotherapy-head-neck-patients-uncertainties-dose-warping-due-choice-deformable-registration-algorithm','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22413442-toward-adaptive-radiotherapy-head-neck-patients-uncertainties-dose-warping-due-choice-deformable-registration-algorithm"><span>Toward adaptive radiotherapy for head and neck patients: Uncertainties in dose warping due to the choice of deformable registration algorithm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Veiga, Catarina, E-mail: catarina.veiga.11@ucl.ac.uk; Royle, Gary; Lourenço, Ana Mónica</p> <p>2015-02-15</p> <p>Purpose: The aims of this work were to evaluate the performance of several deformable image registration (DIR) algorithms implemented in our in-house software (NiftyReg) and the uncertainties inherent to using different algorithms for dose warping. Methods: The authors describe a DIR based adaptive radiotherapy workflow, using CT and cone-beam CT (CBCT) imaging. The transformations that mapped the anatomy between the two time points were obtained using four different DIR approaches available in NiftyReg. These included a standard unidirectional algorithm and more sophisticated bidirectional ones that encourage or ensure inverse consistency. The forward (CT-to-CBCT) deformation vector fields (DVFs) were used tomore » propagate the CT Hounsfield units and structures to the daily geometry for “dose of the day” calculations, while the backward (CBCT-to-CT) DVFs were used to remap the dose of the day onto the planning CT (pCT). Data from five head and neck patients were used to evaluate the performance of each implementation based on geometrical matching, physical properties of the DVFs, and similarity between warped dose distributions. Geometrical matching was verified in terms of dice similarity coefficient (DSC), distance transform, false positives, and false negatives. The physical properties of the DVFs were assessed calculating the harmonic energy, determinant of the Jacobian, and inverse consistency error of the transformations. Dose distributions were displayed on the pCT dose space and compared using dose difference (DD), distance to dose difference, and dose volume histograms. Results: All the DIR algorithms gave similar results in terms of geometrical matching, with an average DSC of 0.85 ± 0.08, but the underlying properties of the DVFs varied in terms of smoothness and inverse consistency. When comparing the doses warped by different algorithms, we found a root mean square DD of 1.9% ± 0.8% of the prescribed dose (pD) and that an average of 9% ± 4% of voxels within the treated volume failed a 2%pD DD-test (DD{sub 2%-pp}). Larger DD{sub 2%-pp} was found within the high dose gradient (21% ± 6%) and regions where the CBCT quality was poorer (28% ± 9%). The differences when estimating the mean and maximum dose delivered to organs-at-risk were up to 2.0%pD and 2.8%pD, respectively. Conclusions: The authors evaluated several DIR algorithms for CT-to-CBCT registrations. In spite of all methods resulting in comparable geometrical matching, the choice of DIR implementation leads to uncertainties in dose warped, particularly in regions of high gradient and/or poor imaging quality.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015RaPC..116..237C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015RaPC..116..237C"><span>Dual-resolution dose assessments for proton beamlet using MCNPX 2.6.0</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chao, T. C.; Wei, S. C.; Wu, S. W.; Tung, C. J.; Tu, S. J.; Cheng, H. W.; Lee, C. C.</p> <p>2015-11-01</p> <p>The purpose of this study is to access proton dose distribution in dual resolution phantoms using MCNPX 2.6.0. The dual resolution phantom uses higher resolution in Bragg peak, area near large dose gradient, or heterogeneous interface and lower resolution in the rest. MCNPX 2.6.0 was installed in Ubuntu 10.04 with MPI for parallel computing. FMesh1 tallies were utilized to record the energy deposition which is a special designed tally for voxel phantoms that converts dose deposition from fluence. 60 and 120 MeV narrow proton beam were incident into Coarse, Dual and Fine resolution phantoms with pure water, water-bone-water and water-air-water setups. The doses in coarse resolution phantoms are underestimated owing to partial volume effect. The dose distributions in dual or high resolution phantoms agreed well with each other and dual resolution phantoms were at least 10 times more efficient than fine resolution one. Because the secondary particle range is much longer in air than in water, the dose of low density region may be under-estimated if the resolution or calculation grid is not small enough.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28083851','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28083851"><span>The influence of the dose calculation resolution of VMAT plans on the calculated dose for eye lens and optic pathway.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Park, Jong Min; Park, So-Yeon; Kim, Jung-In; Carlson, Joel; Kim, Jin Ho</p> <p>2017-03-01</p> <p>To investigate the effect of dose calculation grid on calculated dose-volumetric parameters for eye lenses and optic pathways. A total of 30 patients treated using the volumetric modulated arc therapy (VMAT) technique, were retrospectively selected. For each patient, dose distributions were calculated with calculation grids ranging from 1 to 5 mm at 1 mm intervals. Identical structures were used for VMAT planning. The changes in dose-volumetric parameters according to the size of the calculation grid were investigated. Compared to dose calculation with 1 mm grid, the maximum doses to the eye lens with calculation grids of 2, 3, 4 and 5 mm increased by 0.2 ± 0.2 Gy, 0.5 ± 0.5 Gy, 0.9 ± 0.8 Gy and 1.7 ± 1.5 Gy on average, respectively. The Spearman's correlation coefficient between dose gradients near structures vs. the differences between the calculated doses with 1 mm grid and those with 5 mm grid, were 0.380 (p < 0.001). For the accurate calculation of dose distributions, as well as efficiency, using a grid size of 2 mm appears to be the most appropriate choice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23107424','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23107424"><span>High-resolution motion compensated MRA in patients with congenital heart disease using extracellular contrast agent at 3 Tesla.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dabir, Darius; Naehle, Claas Philip; Clauberg, Ralf; Gieseke, Juergen; Schild, Hans H; Thomas, Daniel</p> <p>2012-10-29</p> <p>Using first-pass MRA (FP-MRA) spatial resolution is limited by breath-hold duration. In addition, image quality may be hampered by respiratory and cardiac motion artefacts. In order to overcome these limitations an ECG- and navigator-gated high-resolution-MRA sequence (HR-MRA) with slow infusion of extracellular contrast agent was implemented at 3 Tesla for the assessment of congenital heart disease and compared to standard first-pass-MRA (FP-MRA). 34 patients (median age: 13 years) with congenital heart disease (CHD) were prospectively examined on a 3 Tesla system. The CMR-protocol comprised functional imaging, FP- and HR-MRA, and viability imaging. After the acquisition of the FP-MRA sequence using a single dose of extracellular contrast agent the motion compensated HR-MRA sequence with isotropic resolution was acquired while injecting the second single dose, utilizing the timeframe before viability imaging. Qualitative scores for image quality (two independent reviewers) as well as quantitative measurements of vessel sharpness and relative contrast were compared using the Wilcoxon signed-rank test. Quantitative measurements of vessel diameters were compared using the Bland-Altman test. The mean image quality score revealed significantly better image quality of the HR-MRA sequence compared to the FP-MRA sequence in all vessels of interest (ascending aorta (AA), left pulmonary artery (LPA), left superior pulmonary vein (LSPV), coronary sinus (CS), and coronary ostia (CO); all p < 0.0001). In comparison to FP-MRA, HR-MRA revealed significantly better vessel sharpness for all considered vessels (AA, LSPV and LPA; all p < 0.0001). The relative contrast of the HR-MRA sequence was less compared to the FP-MRA sequence (AA: p <0.028, main pulmonary artery: p <0.004, LSPV: p <0.005). Both, the results of the intra- and interobserver measurements of the vessel diameters revealed closer correlation and closer 95 % limits of agreement for the HR-MRA. HR-MRA revealed one additional clinical finding, missed by FP-MRA. An ECG- and navigator-gated HR-MRA-protocol with infusion of extracellular contrast agent at 3 Tesla is feasible. HR-MRA delivers significantly better image quality and vessel sharpness compared to FP-MRA. It may be integrated into a standard CMR-protocol for patients with CHD without the need for additional contrast agent injection and without any additional examination time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10575E..3LJ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10575E..3LJ"><span>Impact of deep learning on the normalization of reconstruction kernel effects in imaging biomarker quantification: a pilot study in CT emphysema</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jin, Hyeongmin; Heo, Changyong; Kim, Jong Hyo</p> <p>2018-02-01</p> <p>Differing reconstruction kernels are known to strongly affect the variability of imaging biomarkers and thus remain as a barrier in translating the computer aided quantification techniques into clinical practice. This study presents a deep learning application to CT kernel conversion which converts a CT image of sharp kernel to that of standard kernel and evaluates its impact on variability reduction of a pulmonary imaging biomarker, the emphysema index (EI). Forty cases of low-dose chest CT exams obtained with 120kVp, 40mAs, 1mm thickness, of 2 reconstruction kernels (B30f, B50f) were selected from the low dose lung cancer screening database of our institution. A Fully convolutional network was implemented with Keras deep learning library. The model consisted of symmetric layers to capture the context and fine structure characteristics of CT images from the standard and sharp reconstruction kernels. Pairs of the full-resolution CT data set were fed to input and output nodes to train the convolutional network to learn the appropriate filter kernels for converting the CT images of sharp kernel to standard kernel with a criterion of measuring the mean squared error between the input and target images. EIs (RA950 and Perc15) were measured with a software package (ImagePrism Pulmo, Seoul, South Korea) and compared for the data sets of B50f, B30f, and the converted B50f. The effect of kernel conversion was evaluated with the mean and standard deviation of pair-wise differences in EI. The population mean of RA950 was 27.65 +/- 7.28% for B50f data set, 10.82 +/- 6.71% for the B30f data set, and 8.87 +/- 6.20% for the converted B50f data set. The mean of pair-wise absolute differences in RA950 between B30f and B50f is reduced from 16.83% to 1.95% using kernel conversion. Our study demonstrates the feasibility of applying the deep learning technique for CT kernel conversion and reducing the kernel-induced variability of EI quantification. The deep learning model has a potential to improve the reliability of imaging biomarker, especially in evaluating the longitudinal changes of EI even when the patient CT scans were performed with different kernels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22407712-scifri-pm-dosimetry01-radiation-induced-refraction-artefacts-optical-ct-readout-polymer-gel-dosimeters','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22407712-scifri-pm-dosimetry01-radiation-induced-refraction-artefacts-optical-ct-readout-polymer-gel-dosimeters"><span>Sci—Fri PM: Dosimetry—01: Radiation-induced refraction artefacts in the optical CT readout of polymer gel dosimeters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Campbell, Warren G; Jirasek, Andrew; Wells, Derek M</p> <p>2014-08-15</p> <p>Polymer gel dosimeters (PGDs) are a desirable tool for the verification of advanced radiotherapy treatments. Fully 3D, deformable, and tissue-equivalent, the PGD polymerizes wherever it absorbs dose. To measure the dose absorbed by a PGD, optical computed tomography (CT) can be used to evaluate, in full 3D, the opacity distribution that coincides with polymerization. In addition to an increase in opacity with dose, an increase in refractive index (RI) is also known to occur in irradiated polymer gels. The increase in RI is slight and was previously assumed insignificant. This work reveals the effects that radiation-induced RI changes can havemore » on the optical CT readout of PGDs. A fan-beam optical CT scanner was used to image a cylindrical PGD irradiated by a pair of 3×3 cm{sup 2}, 6 MV photon beams in an orthogonal arrangement. Investigative scans were performed to evaluate refraction errors occurring: i) within the plane, and ii) out of the plane of the fan-beam. In-plane refraction was shown to cause distinct streaking artefacts along dose gradients (i.e. RI gradients) due to higher intensity rays being refracted into more opaque regions. Out-of-plane refraction was shown to produce severe, widespread artefacts due to rays missing the detector array. An iterative Savitzky-Golay filtering technique was developed to reduce both types of artefacts by specifically targeting structured errors in sinogram space. Results introduce a new category of imaging artefacts to be aware of when using optical CT for PGD readout.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27099877','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27099877"><span>A pharmacokinetic-pharmacodynamic model for intrathecal baclofen in patients with severe spasticity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Heetla, H W; Proost, J H; Molmans, B H; Staal, M J; van Laar, T</p> <p>2016-01-01</p> <p>Intrathecal baclofen (ITB) has proven to be an effective and safe treatment for severe spasticity. However, although ITB is used extensively, clinical decisions are based on very scarce pharmacokinetic-pharmacodynamic (PKPD) data. The aim of this study was to measure baclofen CSF concentrations and clinical effects after administration of various ITB boluses in patients with spasticity and to create a PKPD model for ITB. Twelve patients with severe spasticity received four different bolus doses of ITB (0, 25, 50, 75 μg and an optional dose of 100 μg), administered via a catheter with the tip at thoracic level (Th) 10. After each bolus, 10 CSF samples were taken at fixed time intervals, using a catheter with the tip located at Th12. Clinical effect was assessed by measuring spasticity with the Modified Ashworth Scale (MAS). These data were used to develop a PKPD model. All patients achieved an adequate spasmolytic effect with ITB doses varying from 50 to 100 μg. No serious side effects were observed. CSF baclofen concentrations, as well as the clinical effects, correlated significantly with ITB doses. The PK model predicted a steep spinal concentration gradient of ITB along the spinal axis. The clinical effect could be predicted using a delayed-effect model. ITB is an effective and safe therapy with, however, a steep concentration gradient along the spinal axis. This means that the administered baclofen is staying mainly around the catheter tip, which stresses the importance to position the ITB catheter tip closely to the targeted spinal level. © 2015 The British Pharmacological Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22624309-su-noise-temporal-resolution-near-real-time-dosimeter','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22624309-su-noise-temporal-resolution-near-real-time-dosimeter"><span>SU-C-201-04: Noise and Temporal Resolution in a Near Real-Time 3D Dosimeter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rilling, M; Centre de recherche sur le cancer, Universite Laval, Quebec City, QC; Radiation oncology department, CHU de Quebec, Quebec City, QC</p> <p></p> <p>Purpose: To characterize the performance of a real-time three-dimensional scintillation dosimeter in terms of signal-to-noise ratio (SNR) and temporal resolution of 3D dose measurements. This study quantifies its efficiency in measuring low dose levels characteristic of EBRT dynamic treatments, and in reproducing field profiles for varying multileaf collimator (MLC) speeds. Methods: The dosimeter prototype uses a plenoptic camera to acquire continuous images of the light field emitted by a 10×10×10 cm{sup 3} plastic scintillator. Using EPID acquisitions, ray tracing-based iterative tomographic algorithms allow millimeter-sized reconstruction of relative 3D dose distributions. Measurements were taken at 6MV, 400 MU/min with the scintillatormore » centered at the isocenter, first receiving doses from 1.4 to 30.6 cGy. Dynamic measurements were then performed by closing half of the MLCs at speeds of 0.67 to 2.5 cm/s, at 0° and 90° collimator angles. A reference static half-field was obtained for measured profile comparison. Results: The SNR steadily increases as a function of dose and reaches a clinically adequate plateau of 80 at 10 cGy. Below this, the decrease in light collected and increase in pixel noise diminishes the SNR; nonetheless, the EPID acquisitions and the voxel correlation employed in the reconstruction algorithms result in suitable SNR values (>75) even at low doses. For dynamic measurements at varying MLC speeds, central relative dose profiles are characterized by gradients at %D{sub 50} of 8.48 to 22.7 %/mm. These values converge towards the 32.8 %/mm-gradient measured for the static reference field profile, but are limited by the dosimeter’s current acquisition rate of 1Hz. Conclusion: This study emphasizes the efficiency of the 3D dose distribution reconstructions, while identifying limits of the current prototype’s temporal resolution in terms of dynamic EBRT parameters. This work paves the way for providing an optimized, second-generational real-time 3D scintillation dosimeter capable of highly efficient and precise dose measurements. The presenting author is financially supported by an Alexander-Graham Bell doctoral scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21397488','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21397488"><span>Analysis of incidental radiation dose to uninvolved mediastinal/supraclavicular lymph nodes in patients with limited-stage small cell lung cancer treated without elective nodal irradiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ahmed, Irfan; DeMarco, Marylou; Stevens, Craig W; Fulp, William J; Dilling, Thomas J</p> <p>2011-01-01</p> <p>Classic teaching states that treatment of limited-stage small cell lung cancer (L-SCLC) requires large treatment fields covering the entire mediastinum. However, a trend in modern thoracic radiotherapy is toward more conformal fields, employing positron emission tomography/computed tomography (PET/CT) scans to determine the gross tumor volume (GTV). This analysis evaluates the dosimetric results when using selective nodal irradiation (SNI) to treat a patient with L-SCLC, quantitatively comparing the results to standard Intergroup treatment fields. Sixteen consecutive patients with L-SCLC and central mediastinal disease who also underwent pretherapy PET/CT scans were studied in this analysis. For each patient, we created SNI treatment volumes, based on the PET/CT-based criteria for malignancy. We also created 2 ENI plans, the first without heterogeneity corrections, as per the Intergroup 0096 study (ENI(off)) and the second with heterogeneity corrections while maintaining constant the number of MUs delivered between these latter 2 plans (ENI(on)). Nodal stations were contoured using published guidelines, then placed into 4 "bins" (treated nodes, 1 echelon away, >1 echelon away within the mediastinum, contralateral hilar/supraclavicular). These were aggregated across the patients in the study. Dose to these nodal bins and to tumor/normal structures were compared among these plans using pairwise t-tests. The ENI(on) plans demonstrated a statistically significant degradation in dose coverage compared with the ENI(off) plans. ENI and SNI both created a dose gradient to the lymph nodes across the mediastinum. Overall, the gradient was larger for the SNI plans, although the maximum dose to the "1 echelon away" nodes was not statistically different. Coverage of the GTV and planning target volume (PTV) were improved with SNI, while simultaneously reducing esophageal and spinal cord dose though at the expense of modestly reduced dose to anatomically distant lymph nodes within the mediastinum. The ENI(on) plans demonstrate that intergroup-style treatments, as actually delivered, had statistically reduced coverage to the mediastinum and tumor volumes than was reported. Furthermore, SNI leads to improved tumor coverage and reduced esophageal/spinal cord dose, which suggests the possibility of dose escalation using SNI. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27254814','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27254814"><span>Vibrational Sum Frequency Generation Spectroscopy Study of Hydrous Species in Soda Lime Silica Float Glass.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Luo, Jiawei; Banerjee, Joy; Pantano, Carlo G; Kim, Seong H</p> <p>2016-06-21</p> <p>It is generally accepted that the mechanical properties of soda lime silica (SLS) glass can be affected by the interaction between sodium ions and hydrous species (silanol groups and water molecules) in its surface region. While the amount of these hydrous species can be estimated from hydrogen profiles and infrared spectroscopy, their chemical environment in the glass network is still not well understood. This work employed vibrational sum frequency generation (SFG) spectroscopy to investigate the chemical environment of hydrous species in the surface region of SLS float glass. SLS float glass shows sharp peaks in the OH stretching vibration region in SFG spectra, while the OH stretch peaks of glasses that do not have leachable sodium ions and the OH peaks of water molecules in condensed phases are normally broad due to fast hydrogen bonding dynamics. The hydrous species responsible for the sharp SFG peaks for the SLS float glass were found to be thermodynamically more stable than physisorbed water molecules, did not exchange with D2O, and were associated with the sodium concentration gradient in the dealkalized subsurface region. These results suggested that the hydrous species reside in static solvation shells defined by the silicate network with relatively slow hydrogen bonding dynamics, compared to physisorbed water layers on top of the glass surface. A putative radial distribution of the hydrous species within the SLS glass network was estimated based on the OH SFG spectral features, which could be compared with theoretical distributions calculated from computational simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhRvD..88d3501M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhRvD..88d3501M"><span>Local conditions separating expansion from collapse in spherically symmetric models with anisotropic pressures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mimoso, José P.; Le Delliou, Morgan; Mena, Filipe C.</p> <p>2013-08-01</p> <p>We investigate spherically symmetric spacetimes with an anisotropic fluid and discuss the existence and stability of a separating shell dividing expanding and collapsing regions. We resort to a 3+1 splitting and obtain gauge invariant conditions relating intrinsic spacetime quantities to properties of the matter source. We find that the separating shell is defined by a generalization of the Tolman-Oppenheimer-Volkoff equilibrium condition. The latter establishes a balance between the pressure gradients, both isotropic and anisotropic, and the strength of the fields induced by the Misner-Sharp mass inside the separating shell and by the pressure fluxes. This defines a local equilibrium condition, but conveys also a nonlocal character given the definition of the Misner-Sharp mass. By the same token, it is also a generalized thermodynamical equation of state as usually interpreted for the perfect fluid case, which now has the novel feature of involving both the isotropic and the anisotropic stresses. We have cast the governing equations in terms of local, gauge invariant quantities that are revealing of the role played by the anisotropic pressures and inhomogeneous electric part of the Weyl tensor. We analyze a particular solution with dust and radiation that provides an illustration of our conditions. In addition, our gauge invariant formalism not only encompasses the cracking process from Herrera and co-workers but also reveals transparently the interplay and importance of the shear and of the anisotropic stresses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4133B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4133B"><span>Idealized numerical studies of gravity wave alteration in the tropopause region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bense, Vera; Spichtinger, Peter</p> <p>2017-04-01</p> <p>When travelling through the tropopause region, characterised by strong gradients in static stability, wind shear and trace gases, the properties of gravity waves often change drastically. Within this work, the EULAG model (Prusa et al., 2008) is used to provide an idealized setup for sensitivity studies on these modifications. The characteristics of the tropopause are introduced by specifiying environmental profiles for Brunt-Väisälä frequency and horizontal wind speed, partly extracted from measurement and reanalysis data. Tropospheric and stratospheric wave spectra extracted for flows under varying tropopause sharpness are analysed, respectively. In particular, different regimes for transmission behaviour are classified for a series of Brunt-Väisälä frequency profiles showing a tropopause inversion layer (TIL, see e.g. Birner et al., 2002). Furthermore, this study focusses on the comparison of transmission coefficients deduced from numerical simulations with values derived from asymptotical analysis of the governing equations and investigates where the threshold of linear behaviour are for the respective setups, The wave generation is implemented in the model both through topography at the lower model domain and through the prescription of wave packets at initialization of the simulations. References: Prusa, J. M., P. K. Smolarkiewicz, P. K. and A. A. Wyszogrodzki, 2008: EULAG, a computational model for multiscale flows, Computers & Fluids 37, 1193-1207 Birner, T., A. Doernbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes?, Geophys. Res. Lett., 29, 1700, doi:10.1029/2002GL015142.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/305456-effects-pentachlorophenol-survival-earthworms-lumbricus-terrestris-phagocytosis-immunoactive-coelomocytes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/305456-effects-pentachlorophenol-survival-earthworms-lumbricus-terrestris-phagocytosis-immunoactive-coelomocytes"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Giggleman, M.A.; Fitzpatrick, L.C.; Goven, A.J.</p> <p></p> <p>Earthworms, Lumbricus terrestris, exposed for 96 h to filter paper saturated with five nominal concentrations of pentachlorophenol, exhibited a 50% lethal concentration (LC50) of 25.0 {micro}g PCP/cm{sup 2} and corresponding whole worm body burden-based 50% lethal dose (LD50) of 877.7 {micro}g PCP/g dry mass. Linear regression modeling showed that worms increased body concentrations (BC = {micro}g PCP/g dry tissue mass) with increasing exposure concentrations (EC) according to BC = 113.5 + 29.5EC. Phagocytosis of yeast cells by immunoactive coelomocytes was suppressed only at body concentrations (863.3 {micro}g PCP/g dry mass) that approximated the calculated LD50 and overlapped those demonstrating lethality,more » indicating a sharp transition between sublethal and lethal toxicity. An exposure concentration of 15 {micro}g PCP/cm{sup 2} produced significant suppression of phagocytosis of yeast cells by immunoactive coelomocytes. However, the average measured body burden from this group approximated the estimated LD50, indicating a sharp toxic response slope. Exposure to 10 {micro}g PCP/cm{sup 2} with a corresponding body concentration of 501.3 {micro}g PCP/g dry mass did not affect phagocytosis. The importance of body burden data is emphasized.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AIPC.1099..439K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AIPC.1099..439K"><span>Clinical Ion Beam Applications: Basic Properties, Application, Quality Control, Planning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kraft, Gerhard</p> <p>2009-03-01</p> <p>Heavy-ion therapy using beam scanning and biological dose optimization is a novel technique of high-precision external radiotherapy. It yields a better perspective for tumor cure of radio-resistant tumors. However, heavy-ion therapy is not a general solution for all types of tumors. As compared to conventional radiotherapy, heavy-ion radiotherapy has the advantages of higher tumor dose, improved sparing of normal tissue in the entrance channel, a more precise concentration of the dose in the target volume with steeper gradients to the normal tissue, and a higher radiobiological effectiveness for tumors which are radio-resistant in conventional therapy. These properties make it possible to treat radio-resistant tumors with great success, including those in close vicinity to critical organs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5030681','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5030681"><span>Low-gradient aortic stenosis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe</p> <p>2016-01-01</p> <p>Abstract An important proportion of patients with aortic stenosis (AS) have a ‘low-gradient’ AS, i.e. a small aortic valve area (AVA <1.0 cm2) consistent with severe AS but a low mean transvalvular gradient (<40 mmHg) consistent with non-severe AS. The management of this subset of patients is particularly challenging because the AVA-gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA—low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS. PMID:27190103</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22098627-dosimetric-evaluation-intrafractional-tumor-motion-means-robot-driven-phantom','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22098627-dosimetric-evaluation-intrafractional-tumor-motion-means-robot-driven-phantom"><span>Dosimetric evaluation of intrafractional tumor motion by means of a robot driven phantom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Richter, Anne; Wilbert, Juergen; Flentje, Michael</p> <p>2011-10-15</p> <p>Purpose: The aim of the work was to investigate the influence of intrafractional tumor motion to the accumulated (absorbed) dose. The accumulated dose was determined by means of calculations and measurements with a robot driven motion phantom. Methods: Different motion scenarios and compensation techniques were realized in a phantom study to investigate the influence of motion on image acquisition, dose calculation, and dose measurement. The influence of motion on the accumulated dose was calculated by employing two methods (a model based and a voxel based method). Results: Tumor motion resulted in a blurring of steep dose gradients and a reductionmore » of dose at the periphery of the target. A systematic variation of motion parameters allowed the determination of the main influence parameters on the accumulated dose. The key parameters with the greatest influence on dose were the mean amplitude and the pattern of motion. Investigations on necessary safety margins to compensate for dose reduction have shown that smaller safety margins are sufficient, if the developed concept with optimized margins (OPT concept) was used instead of the standard internal target volume (ITV) concept. Both calculation methods were a reasonable approximation of the measured dose with the voxel based method being in better agreement with the measurements. Conclusions: Further evaluation of available systems and algorithms for dose accumulation are needed to create guidelines for the verification of the accumulated dose.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSME51C..05B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSME51C..05B"><span>Oxygen Minimum Zones in Miniature: Microbial Community Diversity, Activity, and Assembly Across Oxygen Gradients in Meromictic Marine Lakes, Palau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beman, J. M.</p> <p>2016-02-01</p> <p>Oxygen minimum zones (OMZs) play a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet our understanding of these changes is limited by a lack of systematic analyses of low-oxygen ecosystems. In particular, forecasting biogeochemical feedbacks to deoxygenation requires detailed knowledge of microbial community assembly and activity as oxygen declines. Marine `lakes'—isolated bodies of seawater surrounded by land—are an ideal comparative system, as they provide a pronounced oxygen gradient extending from well-mixed, holomictic lakes to stratified, meromictic lakes that vary in their extent of anoxia. We examined 13 marine lakes using pyrosequencing of 16S rRNA genes, quantitative PCR for nitrogen (N)- and sulfur (S)-cycling functional genes and groups, and N- and carbon (C)-cycling rate measurements. All lakes were inhabited by well-known marine bacteria, demonstrating the broad relevance of this study system. Microbial diversity was typically highest in the anoxic monimolimnion of meromictic lakes, with marine cyanobacteria, SAR11, and other common bacteria replaced by anoxygenic phototrophs, sulfate-reducing bacteria (SRBs), and SAR406 in the monimolimnion. Denitrifier nitrite reductase (nirS) genes were also detected alongside high abundances (>106 ml-1) of dissimilatory sulfite reductase (dsrA) genes from SRBs in the monimolimnion. Sharp changes in community structure were linked to environmental gradients (constrained variation in redundancy analysis=76%) and deterministic processes dominated community assembly at all depths (nearest taxon index values >4). These results indicate that oxygen is a strong, deterministic driver of microbial community assembly. We also observed enhanced N- and C-cycling rates along the transition from hypoxic to anoxic to sulfidic conditions, suggesting that microbial communities form a positive feedback loop that may accelerate deoxygenation and OMZ expansion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22441163','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22441163"><span>Towards a theory of ecotone resilience: coastal vegetation on a salinity gradient.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Jiang; Gao, Daozhou; DeAngelis, Donald L</p> <p>2012-08-01</p> <p>Ecotones represent locations where vegetation change is likely to occur as a result of climate and other environmental changes. Using a model of an ecotone vulnerable to such future changes, we estimated the resilience of the ecotone to disturbances. The specific ecotone is that between two different vegetation types, salinity-tolerant and salinity-intolerant, along a gradient in groundwater salinity. In the case studied, each vegetation type, through soil feedback loops, promoted local soil salinity levels that favor itself in competition with the other type. Bifurcation analysis was used to study the system of equations for the two vegetation types and soil salinity. Alternative stable equilibria, one for salinity-tolerant and one for salinity intolerant vegetation, were shown to exist over a region of the groundwater salinity gradient, bounded by two bifurcation points. This region was shown to depend sensitively on parameters such as the rate of upward infiltration of salinity from groundwater into the soil due to evaporation. We showed also that increasing diffusion rates of vegetation can lead to shrinkage of the range between the two bifurcation points. Sharp ecotones are typical of salt-tolerant vegetation (mangroves) near the coastline and salt-intolerant vegetation inland, even though the underlying elevation and groundwater salinity change very gradually. A disturbance such as an input of salinity to the soil from a storm surge could upset this stable boundary, leading to a regime shift of salinity-tolerant vegetation inland. We showed, however, that, for our model as least, a simple pulse disturbance would not be sufficient; the salinity would have to be held at a high level, as a 'press', for some time. The approach used here should be generalizable to study the resilience of a variety of ecotones to disturbances. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3609777','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3609777"><span>Influence of Natural Thermal Gradients on Whole Animal Rates of Protein Synthesis in Marine Gammarid Amphipods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rastrick, Samuel P. S.; Whiteley, Nia M.</p> <p>2013-01-01</p> <p>Although temperature is known to have an important effect on protein synthesis rates and growth in aquatic ectotherms held in the laboratory, little is known about the effects of thermal gradients on natural populations in the field. To address this issue we determined whole-animal fractional rates of protein synthesis (ks) in four dominant species of gammarid amphipods with different distributions along the coasts of Western Europe from arctic to temperate latitudes. Up to three populations of each species were collected in the summer and ks measured within 48 h. Summer ks values were relatively high in the temperate species, Gammarus locusta, from Portugal (48°N) and Wales (53°N) and were maintained across latitudes by the conservation of translational efficiency. In sharp contrast, summer ks remained remarkably low in the boreal/temperate species G. duebeni from Wales, Scotland (58°N) and Tromsø (70°N), probably as a temporary energy saving strategy to ensure survival in rapidly fluctuating environments of the high intertidal. Values for ks increased in acclimated G. duebeni from Scotland and Tromsø showing a lack of compensation with latitude. In the subarctic/boreal species, G. oceanicus, summer ks remained unchanged in Scotland and Tromsø but fell significantly in Svalbard (79°N) at 5°C, despite a slight increase in RNA content. At 79°N, mean ks was 4.5 times higher in the circumpolar species G. setosus than in G. oceanicus due to a doubling in RNA content. The relationship between whole-animal protein synthesis rates and natural thermal gradients is complex, varies between species and appears to be associated with local temperatures and their variability, as well as changes in other environmental factors. PMID:23544122</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996JGR...10112555K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996JGR...10112555K"><span>Interpretation of nitric oxide profile observed in January 1992 over Kiruna</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kondo, Y.; Kawa, S. R.; Lary, D.; Sugita, T.; Douglass, Anne R.; Lutman, E.; Koike, M.; Deshler, T.</p> <p>1996-05-01</p> <p>NO mixing ratios measured from Kiruna (68°N, 20°E), Sweden, on January 22, 1992, revealed values much smaller than those observed at midlatitude near equinox and had a sharper vertical gradient around 25 km. Location of the measurements was close to the terminator and near the edge of the polar vortex, which is highly distorted from concentric flow by strong planetary wave activities. These conditions necessitate accurate calculation, properly taking into account the transport and photochemical processes, in order to quantitatively explain the observed NO profile. A three-dimensional chemistry and transport model (CTM) and a trajectory model (TM) were used to interpret the profile observations within their larger spatial, temporal, and chemical context. The NOy profile calculated by the CTM is in good agreement with that observed on January 31, 1992. In addition, model NOy profiles show small variabilities depending on latitudes, and they change little between January 22 and 31. The TM uses the observed NOy values. The NO values calculated by the CTM and TM agree with observations up to 27 km. Between 20 and 27 km the NO values calculated by the trajectory model including only gas phase chemistry are much larger than those including heterogeneous chemistry, indicating that NO mixing ratios were reduced significantly by heterogeneous chemistry on sulfuric acid aerosols. Very little sunlight to generate NOx from HNO3 was available, also causing the very low NO values. The good agreement between the observed and modeled NO profiles indicates that models can reproduce the photochemical and transport processes in the region where NO values have a sharp horizontal gradient. Moreover, CTM and TM model results show that even when the NOy gradients are weak, the model NO depends upon accurate calculation of the transport and insolation for several days.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3167149','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3167149"><span>Mapping Human Cortical Areas in vivo Based on Myelin Content as Revealed by T1- and T2-weighted MRI</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Glasser, Matthew F.; Van Essen, David C.</p> <p>2011-01-01</p> <p>Non-invasively mapping the layout of cortical areas in humans is a continuing challenge for neuroscience. We present a new method of mapping cortical areas based on myelin content as revealed by T1-weighted (T1w) and T2-weighted (T2w) MRI. The method is generalizable across different 3T scanners and pulse sequences. We use the ratio of T1w/T2w image intensities to eliminate the MR-related image intensity bias and enhance the contrast to noise ratio for myelin. Data from each subject was mapped to the cortical surface and aligned across individuals using surface-based registration. The spatial gradient of the group average myelin map provides an observer-independent measure of sharp transitions in myelin content across the surface—i.e. putative cortical areal borders. We found excellent agreement between the gradients of the myelin maps and the gradients of published probabilistic cytoarchitectonically defined cortical areas that were registered to the same surface-based atlas. For other cortical regions, we used published anatomical and functional information to make putative identifications of dozens of cortical areas or candidate areas. In general, primary and early unimodal association cortices are heavily myelinated and higher, multi-modal, association cortices are more lightly myelinated, but there are notable exceptions in the literature that are confirmed by our results. The overall pattern in the myelin maps also has important correlations with the developmental onset of subcortical white matter myelination, evolutionary cortical areal expansion in humans compared to macaques, postnatal cortical expansion in humans, and maps of neuronal density in non-human primates. PMID:21832190</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26A...585A..33B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26A...585A..33B"><span>The stratified two-sided jet of Cygnus A. Acceleration and collimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boccardi, B.; Krichbaum, T. P.; Bach, U.; Mertens, F.; Ros, E.; Alef, W.; Zensus, J. A.</p> <p>2016-01-01</p> <p>Aims: High-resolution Very-Long-Baseline Interferometry (VLBI) observations of relativistic jets are essential for constraining the fundamental parameters of jet formation models. At a distance of 249 Mpc, Cygnus A is a unique target for such studies, since it is the only Fanaroff-Riley Class II radio galaxy for which a detailed subparsec scale imaging of the base of both jet and counter-jet can be obtained. Observing at millimeter wavelengths unveils those regions that appear self-absorbed at longer wavelengths and enables an extremely sharp view toward the nucleus to be obtained. Methods: We performed 7 mm Global VLBI observations, achieving ultra-high resolution imaging on scales down to 90 μas. This resolution corresponds to a linear scale of only ~400 Schwarzschild radii (for MBH = 2.5 × 109M⊙). We studied the kinematic properties of the main emission features of the two-sided flow and probed its transverse structure through a pixel-based analysis. Results: We suggest that a fast and a slow layer with different acceleration gradients exist in the flow. The extension of the acceleration region is large (~ 104RS), indicating that the jet is magnetically driven. The limb brightening of both jet and counter-jet and their large opening angles (φJ ~ 10°) strongly favour a spine-sheath structure. In the acceleration zone, the flow has a parabolic shape (r ∝ z0.55 ± 0.07). The acceleration gradients and the collimation profile are consistent with the expectations for a jet in "equilibrium", achieved in the presence of a mild gradient of the external pressure (p ∝ z- k,k ≤ 2).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70040314','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70040314"><span>Towards a theory of ecotone resilience: coastal vegetation on a salinity gradient</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jiang, Jiang; Gao, Daozhou; DeAngelis, Donald L.</p> <p>2012-01-01</p> <p>Ecotones represent locations where vegetation change is likely to occur as a result of climate and other environmental changes. Using a model of an ecotone vulnerable to such future changes, we estimated the resilience of the ecotone to disturbances. The specific ecotone is that between two different vegetation types, salinity-tolerant and salinity-intolerant, along a gradient in groundwater salinity. In the case studied, each vegetation type, through soil feedback loops, promoted local soil salinity levels that favor itself in competition with the other type. Bifurcation analysis was used to study the system of equations for the two vegetation types and soil salinity. Alternative stable equilibria, one for salinity-tolerant and one for salinity intolerant vegetation, were shown to exist over a region of the groundwater salinity gradient, bounded by two bifurcation points. This region was shown to depend sensitively on parameters such as the rate of upward infiltration of salinity from groundwater into the soil due to evaporation. We showed also that increasing diffusion rates of vegetation can lead to shrinkage of the range between the two bifurcation points. Sharp ecotones are typical of salt-tolerant vegetation (mangroves) near the coastline and salt-intolerant vegetation inland, even though the underlying elevation and groundwater salinity change very gradually. A disturbance such as an input of salinity to the soil from a storm surge could upset this stable boundary, leading to a regime shift of salinity-tolerant vegetation inland. We showed, however, that, for our model as least, a simple pulse disturbance would not be sufficient; the salinity would have to be held at a high level, as a 'press', for some time. The approach used here should be generalizable to study the resilience of a variety of ecotones to disturbances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JPhCS.318e2049T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JPhCS.318e2049T"><span>The Dynamics of Turbulent Scalar Mixing near the Edge of a Shear Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taveira, R. M. R.; da Silva, C. B.; Pereira, J. C. F.</p> <p>2011-12-01</p> <p>In free shear flows a sharp and convoluted turbulent/nonturbulent (T/NT) interface separates the outer fluid region, where the flow is essentially irrotational, from the shear layer turbulent region. It was found recently that the entrainment mechanism is mainly caused by small scale ("nibbling") motions (Westerweel et al. (2005)). The dynamics of this interface is crucial to understand important exchanges of enstrophy and scalars that can be conceived as a three-stage process of entrainment, dispersion and diffusion (Dimotakis (2005)). A thorough understanding of scalar mixing and transport is of indisputable relevance to control turbulent combustion, propulsion and contaminant dispersion (Stanley et al. (2002)). The present work uses several DNS of turbulent jets at Reynolds number ranging from Reλ = 120 to Reλ = 160 (da Silva & Taveira (2010)) and a Schmidt number Sc = 0.7 to analyze the "scalar interface" and turbulent mixing of a passive scalar. Specifically, we employ conditional statistics, denoted by langlerangleI, in order to eliminate the intermittency that affects statistics close to the jet edge. The physical mechanisms behind scalar mixing near the T/NT interfaces, their scales and topology are investigated detail. Analysis of the instantaneous fields showed intense scalar gradient sheet-like structures along regions of persistent strain, in particular at the T/NT interface. The scalar gradient transport equation, at the jet edge, showed that almost all mixing mechanisms are taking place in a confined region, beyond which they become reduced to an almost in perfect balance between production and dissipation of scalar variance. At the T/NT interface transport mechanisms are the ones responsible for the growth in the scalar fluctuations to the entrained fluid, where convection plays a dominant role, smoothing scalar gradients inside the interface and boosting them as far as</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=92790&Lab=NHEERL&keyword=process+AND+accounting&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=92790&Lab=NHEERL&keyword=process+AND+accounting&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>ZINC PRODUCES A TRANSMURAL VOLTAGE GRADIENT AND DISRUPTION OF INTERCELLULAR COMMUNICATION IN THE HEART</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Ambient air pollution particulate matter (PM) exposure contributes to serious arrhythmia in high-risk individuals. We previously showed that non-cytotoxic doses of zinc sulfate (Zn, 50uM), a metal common to PM from many sources, alters the gene expression of several cardiac ion c...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21831975','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21831975"><span>Effects of developer exhaustion on DFL Contrast FV-58 and Kodak Insight dental films.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Carvalho, Fabiano Pachêco; da Silveira, M M F; Frazão, M A G; de Santana, S T; dos Anjos Pontual, M L</p> <p>2011-09-01</p> <p>The aim of this study was to compare the properties of the DFL Contrast FV-58 F-speed film (DFL Co., Rio de Janerio, Brazil) with the Kodak Insight E/F speed film (Eastman Kodak, Rochester, NY) in fresh and exhausted processing solutions. The parameters studied were the speed, average gradient and latitude. Five samples of each type of film were exposed under standardized conditions over 5 weeks. The films were developed in fresh and progressively exhausted processing solutions. Characteristic curves were constructed from values of optical density and radiation dose and were used to calculate the parameters. An analysis of variance was performed separately for film type and time. DFL Contrast FV-58 film has a speed and average gradient that is significantly higher than Insight film, whereas the values of latitude are lower. Exhausted processing solutions were not significant in the parameters studied. DFL Contrast FV-58 film has stable properties when exhausted manual processing solutions are used and can be recommended for use in dental practice, contributing to dose reduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3520341','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3520341"><span>Effects of developer exhaustion on DFL Contrast FV-58 and Kodak Insight dental films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>de Carvalho, FP; da Silveira, MMF; Frazão, MAG; de Santana, ST; dos Anjos Pontual, ML</p> <p>2011-01-01</p> <p>Objectives The aim of this study was to compare the properties of the DFL Contrast FV-58 F-speed film (DFL Co., Rio de Janerio, Brazil) with the Kodak Insight E/F speed film (Eastman Kodak, Rochester, NY) in fresh and exhausted processing solutions. The parameters studied were the speed, average gradient and latitude. Methods Five samples of each type of film were exposed under standardized conditions over 5 weeks. The films were developed in fresh and progressively exhausted processing solutions. Characteristic curves were constructed from values of optical density and radiation dose and were used to calculate the parameters. An analysis of variance was performed separately for film type and time. Results DFL Contrast FV-58 film has a speed and average gradient that is significantly higher than Insight film, whereas the values of latitude are lower. Exhausted processing solutions were not significant in the parameters studied. Conclusion DFL Contrast FV-58 film has stable properties when exhausted manual processing solutions are used and can be recommended for use in dental practice, contributing to dose reduction. PMID:21831975</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040172682&hterms=1087&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2526%25231087','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040172682&hterms=1087&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2526%25231087"><span>Detailed characterization of the 1087 MeV/nucleon iron-56 beam used for radiobiology at the alternating gradient synchrotron</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zeitlin, C.; Heilbronn, L.; Miller, J.</p> <p>1998-01-01</p> <p>We report beam characterization and dosimetric measurements made using a 56Fe beam extracted from the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS) with a kinetic energy of 1087 MeV/nucleon. The measurements reveal that the depth-dose distribution of this beam differs significantly from that obtained with a 600 MeV/nucleon iron beam used in several earlier radiobiology experiments at the Lawrence Berkeley National Laboratory's BEVALAC. We present detailed measurements of beam parameters relevant for radiobiology, including track- and dose-averaged linear energy transfer (LET), fragment composition and LET spectra measured behind sample holders used in irradiations of biological samples. We also report measurements of fluence behind three depths (1.94, 4.68 and 9.35 g cm(-2)) of polyethylene targets with the 1087 MeV/nucleon beam, and behind 1.94 g cm(-2) of polyethylene with a 610 MeV/nucleon beam delivered by the AGS. These results are compared to earlier measurements with the 600 MeV/nucleon beam at the BEVALAC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.847a2071K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.847a2071K"><span>Can a commercial gel dosimetry system be used to verify stereotactic spinal radiotherapy treatment dose distributions?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kairn, T.; Asena, A.; Crowe, S. B.; Livingstone, A.; Papworth, D.; Smith, S.; Sutherland, B.; Sylvander, S.; Franich, R. D.; Trapp, J. V.</p> <p>2017-05-01</p> <p>This study investigated the use of the TruView xylenol-orange-based gel and VISTA optical CT scanner (both by Modus Medical Inc, London, Canada), for use in verifying the accuracy of planned dose distributions for hypo-fractionated (stereotactic) vertebral treatments. Gel measurements were carried out using three stereotactic vertebral treatments and compared with planned doses calculated using the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, USA) as well as with film measurements made using Gafchromic EBT3 film (Ashland Inc, Covington, USA), to investigate the accuracy of the gel system. The gel was calibrated with reference to a moderate-dose gradient region in one of the gel samples. Generally, the gel measurements were able to approximate the close agreement between the doses calculated by the treatment planning system and the doses measured using film (which agreed with each other within 2%), despite lower resolution and bit depth. Poorer agreement was observed when the dose delivered to the gel exceeded the range of doses delivered in the calibration region. This commercial gel dosimetry system may be used to verify hypo-fractionated treatments of vertebral targets, although separate gel calibration measurements are recommended.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3339149','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3339149"><span>A case study for online plan adaptation using helical tomotherapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Neilson, Christopher E.; Yartsev, Slav</p> <p>2012-01-01</p> <p>Helical tomotherapy's ability to provide daily megavoltage (MV) computed tomography (CT) images for patient set-up verification allows for the creation of adapted plans. As plans become more complex by introducing sharper dose gradients in an effort to spare healthy tissue, inter-fraction changes of organ position with respect to plan become a limiting factor in the correct dose delivery to the target. Tomotherapy's planned adaptive option provides the possibility to evaluate the dose distribution for each fraction and subsequently adapt the original plan to the current anatomy. In this study, 30 adapted plans were created using new contours based on the daily MVCT studies of a bladder cancer patient with considerable anatomical variations. Dose to the rectum and two planning target volumes (PTVs) were compared between the original plan, the dose that was actually delivered to the patient, and the theoretical dose from the 30 adapted plans. The adaptation simulation displayed a lower dose to 35% and 50% of the rectum compared to no adaptation at all, while maintaining an equivalent dose to the PTVs. Although online adaptation is currently too time-consuming, it has the potential to improve the effectiveness of radiotherapy. PMID:22557799</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21508445','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21508445"><span>Characterizing a pulse-resolved dosimetry system for complex radiotherapy beams using organic scintillators.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beierholm, Anders R; Ottosson, Rickard O; Lindvold, Lars R; Behrens, Claus F; Andersen, Claus E</p> <p>2011-05-21</p> <p>A fast-readout dosimetry system based on fibre-coupled organic scintillators has been developed for the purpose of conducting point measurements of absorbed dose in radiotherapy beams involving high spatial and temporal dose gradients. The system measures the dose for each linac radiation pulse with millimetre spatial resolution. To demonstrate the applicability of the system in complex radiotherapy fields, output factors and per cent depth dose measurements were performed in solid water for a 6 MV photon beam and compared with Monte Carlo simulated doses for square fields down to 0.6 cm × 0.6 cm size. No significant differences between measurements and simulations were observed. The temporal resolution of the system was demonstrated by measuring dose per pulse, beam start-up transients and the quality factor for 6 MV. The precision of dose per pulse measurements was within 2.7% (1 SD) for a 10 cm × 10 cm field at 10 cm depth. The dose per pulse behaviour compared well with linac target current measurements and accumulated dose measurements, and the system was able to resolve transient dose delivery differences between two Varian linac builds. The system therefore shows promise for reference dosimetry and quality assurance of complex radiotherapy treatments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29578579','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29578579"><span>Intensity modulated operating mode of the rotating gamma system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sengupta, Bishwambhar; Gulyas, Laszlo; Medlin, Donald; Koroknai, Tibor; Takacs, David; Filep, Gyorgy; Panko, Peter; Godo, Bence; Hollo, Tamas; Zheng, Xiao Ran; Fedorcsak, Imre; Dobai, Jozsef; Bognar, Laszlo; Takacs, Endre</p> <p>2018-05-01</p> <p>The purpose of this work was to explore two novel operation modalities of the rotating gamma systems (RGS) that could expand its clinical application to lesions in close proximity to critical organs at risk (OAR). The approach taken in this study consists of two components. First, a Geant4-based Monte Carlo (MC) simulation toolkit is used to model the dosimetric properties of the RGS Vertex 360™ for the normal, intensity modulated radiosurgery (IMRS), and speed modulated radiosurgery (SMRS) operation modalities. Second, the RGS Vertex 360™ at the Rotating Gamma Institute in Debrecen, Hungary is used to collect experimental data for the normal and IMRS operation modes. An ion chamber is used to record measurements of the absolute dose. The dose profiles are measured using Gafchromic EBT3 films positioned within a spherical water equivalent phantom. A strong dosimetric agreement between the measured and simulated dose profiles and penumbra was found for both the normal and IMRS operation modes for all collimator sizes (4, 8, 14, and 18 mm diameter). The simulated falloff and maximum dose regions agree better with the experimental results for the 4 and 8 mm diameter collimators. Although the falloff regions align well in the 14 and 18 mm collimators, the maximum dose regions have a larger difference. For the IMRS operation mode, the simulated and experimental dose distributions are ellipsoidal, where the short axis aligns with the blocked angles. Similarly, the simulated dose distributions for the SMRS operation mode also adopt an ellipsoidal shape, where the short axis aligns with the angles where the orbital speed is highest. For both modalities, the dose distribution is highly constrained with a sharper penumbra along the short axes. Dose modulation of the RGS can be achieved with the IMRS and SMRS modes. By providing a highly constrained dose distribution with a sharp penumbra, both modes could be clinically applicable for the treatment of lesions in close proximity to critical OARs. © 2018 American Association of Physicists in Medicine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24320412','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24320412"><span>Fan-beam intensity modulated proton therapy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hill, Patrick; Westerly, David; Mackie, Thomas</p> <p>2013-11-01</p> <p>This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0-255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal falloff of a proton depth-dose distribution was found to provide sufficient control over the dose distribution to meet objectives, even with coarse lateral resolution and channel widths as large as 2 cm. Treatment plans on both phantom and patient data show that dose conformity suffers when treatments are delivered from less than approximately ten angles. Treatment time for a sample prostate delivery is estimated to be on the order of 10 min, and neutron production is estimated to be comparable to that found for existing collimated systems. Fan beam proton therapy is a method of delivering intensity modulated proton therapy which may be employed as an alternative to magnetic scanning systems. A fan beam of protons can be created by a set of quadrupole magnets and modified by a dual-purpose range and intensity modulator. This can be used to deliver inversely planned treatments, with spot intensities optimized to meet user defined dose objectives. Additionally, the ability of a fan beam delivery system to effectively treat multiple beam spots simultaneously may provide advantages as compared to spot scanning deliveries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2774204','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2774204"><span>Sharps Injuries and Other Blood and Body Fluid Exposures Among Home Health Care Nurses and Aides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Markkanen, Pia K.; Galligan, Catherine J.; Kriebel, David; Chalupka, Stephanie M.; Kim, Hyun; Gore, Rebecca J.; Sama, Susan R.; Laramie, Angela K.; Davis, Letitia</p> <p>2009-01-01</p> <p>Objectives. We quantified risks of sharp medical device (sharps) injuries and other blood and body fluid exposures among home health care nurses and aides, identified risk factors, assessed the use of sharps with safety features, and evaluated underreporting in workplace-based surveillance. Methods. We conducted a questionnaire survey and workplace-based surveillance, collaborating with 9 home health care agencies and 2 labor unions from 2006 to 2007. Results. Approximately 35% of nurses and 6.4% of aides had experienced at least 1 sharps injury during their home health care career; corresponding figures for other blood and body fluid exposures were 15.1% and 6.7%, respectively. Annual sharps injuries incidence rates were 5.1 per 100 full-time equivalent (FTE) nurses and 1.0 per 100 FTE aides. Medical procedures contributing to sharps injuries were injecting medications, administering fingersticks and heelsticks, and drawing blood. Other contributing factors were sharps disposal, contact with waste, and patient handling. Sharps with safety features frequently were not used. Underreporting of sharps injuries to the workplace-based surveillance system was estimated to be about 50%. Conclusions. Sharps injuries and other blood and body fluid exposures are serious hazards for home health care nurses and aides. Improvements in hazard intervention are needed. PMID:19890177</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5104311','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5104311"><span>Needlestick and Sharps Injuries in Dermatologic Surgery: A Review of Preventative Techniques and Post-exposure Protocols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Monroe, Holly; Orengo, Ida; Rosen, Theodore</p> <p>2016-01-01</p> <p>Background: Needlestickand sharps injuries are the leading causes of morbidity in the dermatologicfield. Among medical specialties, surgeons and dermatologists have the highest rates of needlestickand sharps injuries.The high rates of needlestickand sharps injuries in dermatology not only apply to physicians, but also to nurses, physician assistants, and technicians in the demnatologic field. Needlestickand sharps injuries are of great concern due to the monetary, opportunity, social, and emotional costs associated with their occurrence. Objective: A review of preventative techniques and post-exposure protocols for the majortypes of sharps injuries encountered in dermatologic practice. Design: The terms “needle-stick injuryT’sharps injuryTdermatologic surgery? “post-exposure prophylaxis,”and “health-care associated injury” were used in combinations to search the PubMed database. Relevant studies were reviewed for validity and included. Results The authors discuss the major types of sharps injuries that occur in the dermatologic surgery setting and summarize preventative techniques with respect to each type of sharps injury.The authors also summarize and discuss relevant post-exposure protocols in the event of a sharps injury. Conclusion: The adoption of the discussed methods, techniques, practices, and attire can result in the elimination of the vast majority of dermatologic sharps injuries. PMID:27847548</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23995879','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23995879"><span>Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gay, F; Pavia, Y; Pierrat, N; Lasalle, S; Neuenschwander, S; Brisse, H J</p> <p>2014-01-01</p> <p>To assess the benefit and limits of iterative reconstruction of paediatric chest and abdominal computed tomography (CT). The study compared adaptive statistical iterative reconstruction (ASIR) with filtered back projection (FBP) on 64-channel MDCT. A phantom study was first performed using variable tube potential, tube current and ASIR settings. The assessed image quality indices were the signal-to-noise ratio (SNR), the noise power spectrum, low contrast detectability (LCD) and spatial resolution. A clinical retrospective study of 26 children (M:F = 14/12, mean age: 4 years, range: 1-9 years) was secondarily performed allowing comparison of 18 chest and 14 abdominal CT pairs, one with a routine CT dose and FBP reconstruction, and the other with 30 % lower dose and 40 % ASIR reconstruction. Two radiologists independently compared the images for overall image quality, noise, sharpness and artefacts, and measured image noise. The phantom study demonstrated a significant increase in SNR without impairment of the LCD or spatial resolution, except for tube current values below 30-50 mA. On clinical images, no significant difference was observed between FBP and reduced dose ASIR images. Iterative reconstruction allows at least 30 % dose reduction in paediatric chest and abdominal CT, without impairment of image quality. • Iterative reconstruction helps lower radiation exposure levels in children undergoing CT. • Adaptive statistical iterative reconstruction (ASIR) significantly increases SNR without impairing spatial resolution. • For abdomen and chest CT, ASIR allows at least a 30 % dose reduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22369669-su-how-decrease-spine-dose-patients-who-underwent-sterotactic-spine-radiosurgery','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22369669-su-how-decrease-spine-dose-patients-who-underwent-sterotactic-spine-radiosurgery"><span>SU-E-T-548: How To Decrease Spine Dose In Patients Who Underwent Sterotactic Spine Radiosurgery?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Acar, H; Altinok, A; Kucukmorkoc, E</p> <p>2014-06-01</p> <p>Purpose: Stereotactic radiosurgery for spine metastases involves irradiation using a single high dose fraction. The purpose of this study was to dosimetrically compare stereotactic spine radiosurgery(SRS) plans using a recently new volumetric modulated arc therapy(VMAT) technique against fix-field intensity-modulated radiotherapy(IMRT). Plans were evaluated for target conformity and spinal cord sparing. Methods: Fifteen previously treated patients were replanned using the Eclipse 10.1 TPS AAA calculation algorithm. IMRT plans with 7 fields were generated. The arc plans used 2 full arc configurations. Arc and IMRT plans were normalized and prescribed to deliver 16.0 Gy in a single fraction to 90% of themore » planning target volume(PTV). PTVs consisted of the vertebral body expanded by 3mm, excluding the PRV-cord, where the cord was expanded by 2mm.RTOG 0631 recommendations were applied for treatment planning. Partial spinal cord volume was defined as 5mm above and below the radiosurgery target volume. Plans were compared for conformity and gradient index as well as spinal cord sparing. Results: The conformity index values of fifteen patients for two different treatment planning techniques were shown in table 1. Conformity index values for 2 full arc planning (average CI=0.84) were higher than that of IMRT planning (average CI=0.79). The gradient index values of fifteen patients for two different treatment planning techniques were shown in table 2. Gradient index values for 2 full arc planning (average GI=3.58) were higher than that of IMRT planning (average GI=2.82).The spinal cord doses of fifteen patients for two different treatment planning techniques were shown in table 3. D0.35cc, D0.03cc and partial spinal cord D10% values in 2 full arc plannings (average D0.35cc=819.3cGy, D0.03cc=965.4cGy, 10%partial spinal=718.1cGy) were lower than IMRT plannings (average D0.35cc=877.4cGy, D0.03c=1071.4cGy, 10%partial spinal=805.1cGy). Conclusions: The two arc VMAT technique is superior to 7 field IMRT technique in terms of both spinal cord sparing and better conformity and gradient indexes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22420518-simple-efficient-methodology-improve-geometric-accuracy-gamma-knife-radiation-surgery-implementation-multiple-brain-metastases','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22420518-simple-efficient-methodology-improve-geometric-accuracy-gamma-knife-radiation-surgery-implementation-multiple-brain-metastases"><span>A Simple and Efficient Methodology To Improve Geometric Accuracy in Gamma Knife Radiation Surgery: Implementation in Multiple Brain Metastases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Karaiskos, Pantelis, E-mail: pkaraisk@med.uoa.gr; Gamma Knife Department, Hygeia Hospital, Athens; Moutsatsos, Argyris</p> <p></p> <p>Purpose: To propose, verify, and implement a simple and efficient methodology for the improvement of total geometric accuracy in multiple brain metastases gamma knife (GK) radiation surgery. Methods and Materials: The proposed methodology exploits the directional dependence of magnetic resonance imaging (MRI)-related spatial distortions stemming from background field inhomogeneities, also known as sequence-dependent distortions, with respect to the read-gradient polarity during MRI acquisition. First, an extra MRI pulse sequence is acquired with the same imaging parameters as those used for routine patient imaging, aside from a reversal in the read-gradient polarity. Then, “average” image data are compounded from data acquiredmore » from the 2 MRI sequences and are used for treatment planning purposes. The method was applied and verified in a polymer gel phantom irradiated with multiple shots in an extended region of the GK stereotactic space. Its clinical impact in dose delivery accuracy was assessed in 15 patients with a total of 96 relatively small (<2 cm) metastases treated with GK radiation surgery. Results: Phantom study results showed that use of average MR images eliminates the effect of sequence-dependent distortions, leading to a total spatial uncertainty of less than 0.3 mm, attributed mainly to gradient nonlinearities. In brain metastases patients, non-eliminated sequence-dependent distortions lead to target localization uncertainties of up to 1.3 mm (mean: 0.51 ± 0.37 mm) with respect to the corresponding target locations in the “average” MRI series. Due to these uncertainties, a considerable underdosage (5%-32% of the prescription dose) was found in 33% of the studied targets. Conclusions: The proposed methodology is simple and straightforward in its implementation. Regarding multiple brain metastases applications, the suggested approach may substantially improve total GK dose delivery accuracy in smaller, outlying targets.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3648615','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3648615"><span>RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with I-131 radiation dose and other characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Leeman-Neill, Rebecca J.; Brenner, Alina V.; Little, Mark P.; Bogdanova, Tetiana I.; Hatch, Maureen; Zurnadzy, Liudmyla Y.; Mabuchi, Kiyohiko; Tronko, Mykola D.; Nikiforov, Yuri E.</p> <p>2012-01-01</p> <p>Background Childhood exposure to I-131 from the 1986 Chernobyl accident led to a sharp increase in papillary thyroid carcinoma (PTC) incidence in regions surrounding the reactor. Data concerning the association between genetic mutations in PTCs and individual radiation doses are limited. Methods We performed mutational analysis of 62 PTCs diagnosed in a Ukrainian cohort of patients who were <18 y.o. in 1986 and received 0.008-8.6 Gy of I-131 to the thyroid and explored associations between mutation types and I-131 dose and other characteristics. Results RET/PTC rearrangements were most common (35%), followed by BRAF (15%) and RAS (8%) point mutations. Two tumors carrying PAX8/PPARγ rearrangement were identified. We found a significant negative association with I-131 dose for BRAF and RAS point mutations and a significant concave association with I-131 dose, with an inflection point at 1.6 Gy and odds ratio 2.1, based on a linear-quadratic model for RET/PTC and PAX8/PPARγ rearrangements. The trends with dose were significantly different between tumors with point mutations and rearrangements. Compared to point mutations, rearrangements were associated with residence in the relatively iodine deficient Zhytomyr region, younger age at exposure or surgery, and male gender. Conclusions Our results provide the first demonstration of PAX8/PPARγ rearrangements in post-Chernobyl tumors and show different associations for point mutations and chromosomal rearrangements with I-131 dose and other factors. These data support the relationship between chromosomal rearrangements, but not point mutations, and I-131 exposure and point to a possible role of iodine deficiency in generation of RET/PTC rearrangements in these patients. PMID:23436219</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28417170','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28417170"><span>Reduced dose CT with model-based iterative reconstruction compared to standard dose CT of the chest, abdomen, and pelvis in oncology patients: intra-individual comparison study on image quality and lesion conspicuity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Morimoto, Linda Nayeli; Kamaya, Aya; Boulay-Coletta, Isabelle; Fleischmann, Dominik; Molvin, Lior; Tian, Lu; Fisher, George; Wang, Jia; Willmann, Jürgen K</p> <p>2017-09-01</p> <p>To compare image quality and lesion conspicuity of reduced dose (RD) CT with model-based iterative reconstruction (MBIR) compared to standard dose (SD) CT in patients undergoing oncological follow-up imaging. Forty-four cancer patients who had a staging SD CT within 12 months were prospectively included to undergo a weight-based RD CT with MBIR. Radiation dose was recorded and tissue attenuation and image noise of four tissue types were measured. Reproducibility of target lesion size measurements of up to 5 target lesions per patient were analyzed. Subjective image quality was evaluated for three readers independently utilizing 4- or 5-point Likert scales. Median radiation dose reduction was 46% using RD CT (P < 0.01). Median image noise across all measured tissue types was lower (P < 0.01) in RD CT. Subjective image quality for RD CT was higher (P < 0.01) in regard to image noise and overall image quality; however, there was no statistically significant difference regarding image sharpness (P = 0.59). There were subjectively more artifacts on RD CT (P < 0.01). Lesion conspicuity was subjectively better in RD CT (P < 0.01). Repeated target lesion size measurements were highly reproducible both on SD CT (ICC = 0.987) and RD CT (ICC = 0.97). RD CT imaging with MBIR provides diagnostic imaging quality and comparable lesion conspicuity on follow-up exams while allowing dose reduction by a median of 46% compared to SD CT imaging.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>