Quasi-phases and pseudo-transitions in one-dimensional models with nearest neighbor interactions
NASA Astrophysics Data System (ADS)
de Souza, S. M.; Rojas, Onofre
2018-01-01
There are some particular one-dimensional models, such as the Ising-Heisenberg spin models with a variety of chain structures, which exhibit unexpected behaviors quite similar to the first and second order phase transition, which could be confused naively with an authentic phase transition. Through the analysis of the first derivative of free energy, such as entropy, magnetization, and internal energy, a "sudden" jump that closely resembles a first-order phase transition at finite temperature occurs. However, by analyzing the second derivative of free energy, such as specific heat and magnetic susceptibility at finite temperature, it behaves quite similarly to a second-order phase transition exhibiting an astonishingly sharp and fine peak. The correlation length also confirms the evidence of this pseudo-transition temperature, where a sharp peak occurs at the pseudo-critical temperature. We also present the necessary conditions for the emergence of these quasi-phases and pseudo-transitions.
NASA Astrophysics Data System (ADS)
Bindiya T., S.; Elias, Elizabeth
2015-01-01
In this paper, multiplier-less near-perfect reconstruction tree-structured filter banks are proposed. Filters with sharp transition width are preferred in filter banks in order to reduce the aliasing between adjacent channels. When sharp transition width filters are designed as conventional finite impulse response filters, the order of the filters will become very high leading to increased complexity. The frequency response masking (FRM) method is known to result in linear-phase sharp transition width filters with low complexity. It is found that the proposed design method, which is based on FRM, gives better results compared to the earlier reported results, in terms of the number of multipliers when sharp transition width filter banks are needed. To further reduce the complexity and power consumption, the tree-structured filter bank is made totally multiplier-less by converting the continuous filter bank coefficients to finite precision coefficients in the signed power of two space. This may lead to performance degradation and calls for the use of a suitable optimisation technique. In this paper, gravitational search algorithm is proposed to be used in the design of the multiplier-less tree-structured uniform as well as non-uniform filter banks. This design method results in uniform and non-uniform filter banks which are simple, alias-free, linear phase and multiplier-less and have sharp transition width.
On the stress calculation within phase-field approaches: a model for finite deformations
NASA Astrophysics Data System (ADS)
Schneider, Daniel; Schwab, Felix; Schoof, Ephraim; Reiter, Andreas; Herrmann, Christoph; Selzer, Michael; Böhlke, Thomas; Nestler, Britta
2017-08-01
Numerical simulations based on phase-field methods are indispensable in order to investigate interesting and important phenomena in the evolution of microstructures. Microscopic phase transitions are highly affected by mechanical driving forces and therefore the accurate calculation of the stresses in the transition region is essential. We present a method for stress calculations within the phase-field framework, which satisfies the mechanical jump conditions corresponding to sharp interfaces, although the sharp interface is represented as a volumetric region using the phase-field approach. This model is formulated for finite deformations, is independent of constitutive laws, and allows using any type of phase inherent inelastic strains.
A liquid-liquid transition in supercooled aqueous solution related to the HDA-LDA transition
NASA Astrophysics Data System (ADS)
Woutersen, Sander; Ensing, Bernd; Hilbers, Michiel; Zhao, Zuofeng; Angell, C. Austen
2018-03-01
Simulations and theory suggest that the thermodynamic anomalies of water may be related to a phase transition between two supercooled liquid states, but so far this phase transition has not been observed experimentally because of preemptive ice crystallization. We used calorimetry, infrared spectroscopy, and molecular dynamics simulations to investigate a water-rich hydrazinium trifluoroacetate solution in which the local hydrogen bond structure surrounding a water molecule resembles that in neat water at elevated pressure, but which does not crystallize upon cooling. Instead, this solution underwent a sharp, reversible phase transition between two homogeneous liquid states. The hydrogen-bond structures of these two states are similar to those established for high- and low-density amorphous (HDA and LDA) water. Such structural similarity supports theories that predict a similar sharp transition in pure water under pressure if ice crystallization could be suppressed.
Amini, Abbas; Cheng, Chun
2013-01-01
Due to a distinct nature of thermomechanical smart materials' reaction to applied loads, a revolutionary approach is needed to measure the hardness and to understand its size effect for pseudoelastic NiTi shape memory alloys (SMAs) during the solid-state phase transition. Spherical hardness is increased with depths during the phase transition in NiTi SMAs. This behaviour is contrary to the decrease in the hardness of NiTi SMAs with depths using sharp tips and the depth-insensitive hardness of traditional metallic alloys using spherical tips. In contrast with the common dislocation theory for the hardness measurement, the nature of NiTi SMAs' hardness is explained by the balance between the interface and the bulk energy of phase transformed SMAs. Contrary to the energy balance in the indentation zone using sharp tips, the interface energy was numerically shown to be less dominant than the bulk energy of the phase transition zone using spherical tips. PMID:23963305
Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16
NASA Astrophysics Data System (ADS)
Sharma, V. K.; Chattopadhyay, M. K.; Kumar, Ravi; Ganguli, Tapas; Tiwari, Pragya; Roy, S. B.
2007-12-01
We present results of detailed ac susceptibility, magnetization and specific heat measurements in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. These alloys undergo a paramagnetic to ferromagnetic transition around 305 K, which is followed by a martensitic transition in the temperature regime around 220 K. Inside the martensite phase both the alloys show signatures of field-induced transition from martensite to austenite phase. Both field- and temperature-induced martensite-austenite transitions are relatively sharp in Ni50Mn34In16. We estimate the isothermal magnetic entropy change and adiabatic temperature change across the various phase transitions in these alloys and investigate the possible influence of these transitions on the estimated magnetocaloric effect. The sharp martensitic transition in Ni50Mn34In16 gives rise to a comparatively large inverse magnetocaloric effect across this transition. On the other hand the magnitudes of the conventional magnetocaloric effect associated with the paramagnetic to ferromagnetic transition are quite comparable in these alloys.
A liquid-liquid transition in supercooled aqueous solution related to the HDA-LDA transition.
Woutersen, Sander; Ensing, Bernd; Hilbers, Michiel; Zhao, Zuofeng; Angell, C Austen
2018-03-09
Simulations and theory suggest that the thermodynamic anomalies of water may be related to a phase transition between two supercooled liquid states, but so far this phase transition has not been observed experimentally because of preemptive ice crystallization. We used calorimetry, infrared spectroscopy, and molecular dynamics simulations to investigate a water-rich hydrazinium trifluoroacetate solution in which the local hydrogen bond structure surrounding a water molecule resembles that in neat water at elevated pressure, but which does not crystallize upon cooling. Instead, this solution underwent a sharp, reversible phase transition between two homogeneous liquid states. The hydrogen-bond structures of these two states are similar to those established for high- and low-density amorphous (HDA and LDA) water. Such structural similarity supports theories that predict a similar sharp transition in pure water under pressure if ice crystallization could be suppressed. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Substrate Temperature effect on the transition characteristics of Vanadium (IV) oxide
NASA Astrophysics Data System (ADS)
Yang, Tsung-Han; Wei, Wei; Jin, Chunming; Narayan, Jay
2008-10-01
One of the semiconductor to metal transition material (SMT) is Vanadium Oxide (VO2) which has a very sharp transition temperature close to 340 K as the crystal structure changes from monoclinic phase (semiconductor) into tetragonal phase (metal phase). We have grown high-quality epitaxial vanadium oxide (VO2) films on sapphire (0001) substrates by pulsed laser deposition for oxygen pressure 10-2torr and obtained interesting results without further annealing treatments. The epitaxial growth via domain matching epitaxy, where integral multiples of planes matched across the film-substrate interface. We were able to control the transition characteristics such as the sharpness (T), amplitude (A) of SMT transition and the width of thermal hysteresis (H) by altering the substrate temperature from 300 ^oC, 400 ^oC, 500 ^oC, and 600 ^oC. We use the XRD to identify the microstructure of film and measure the optical properties of film. Finally the transition characteristics is observed by the resistance with the increase of temperature by Van Der Pauw method from 25 to 100 ^oC to measure the electrical resistivity hystersis loop during the transition temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de; Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de; Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de
The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevantmore » physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.« less
Revisiting non-Gaussianity from non-attractor inflation models
NASA Astrophysics Data System (ADS)
Cai, Yi-Fu; Chen, Xingang; Namjoo, Mohammad Hossein; Sasaki, Misao; Wang, Dong-Gang; Wang, Ziwei
2018-05-01
Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non-attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition—such as in the case of smooth transition or some sharp transition scenarios—the Script O(1) local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigro, Valentina, E-mail: nigro@fis.uniroma3.it; Bruni, Fabio; Ricci, Maria Antonietta
The temperature dependence of the local intra-particle structure of colloidal microgel particles, composed of interpenetrated polymer networks, has been investigated by small-angle neutron scattering at different pH and concentrations, in the range (299÷315) K, where a volume phase transition from a swollen to a shrunken state takes place. Data are well described by a theoretical model that takes into account the presence of both interpenetrated polymer networks and cross-linkers. Two different behaviors are found across the volume phase transition. At neutral pH and T ≈ 307 K, a sharp change of the local structure from a water rich open inhomogeneousmore » interpenetrated polymer network to a homogeneous porous solid-like structure after expelling water is observed. Differently, at acidic pH, the local structure changes almost continuously. These findings demonstrate that a fine control of the pH of the system allows to tune the sharpness of the volume-phase transition.« less
Bi-directional phase transition of Cu/6H-SiC(0 0 0 1) system discovered by positron beam study
NASA Astrophysics Data System (ADS)
Zhang, J. D.; Weng, H. M.; Shan, Y. Y.; Ching, H. M.; Beling, C. D.; Fung, S.; Ling, C. C.
2002-06-01
The slow positron beam facility at the University of Hong Kong has been used to study the Cu/6H-SiC(0 0 0 1) system. The S- E data show the presence of the Cu/SiC interface buried at a depth of 30 nm. Keeping the beam energy fixed and sweeping the sample temperature, sharp discontinuities are noted in the S-parameter at both ˜17 and ˜250 K. The S-parameter transitions, which are in opposite directions, are indicative of sharp free volume changes that come as a result of the sudden changes in the structure at the Cu/SiC interface accompanying some phase transition. Energy dispersive X-ray spectroscopy (EDXS) room temperature scans reveal the presence of O in addition to Cu, C, Si at the interface, and thus copper oxide phases should be considered in interpreting this new phenomenon. It is suggested that TEM investigation together with temperature dependent X-ray diffraction spectroscopy may be able to shed further light on the nature of this interesting bi-directional phase transition.
Onisawa, Naomi; Manabe, Hiroyuki; Mori, Kensaku
2017-01-01
During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. Copyright © 2017 the American Physiological Society.
Onisawa, Naomi; Mori, Kensaku
2016-01-01
During slow-wave sleep, interareal communications via coordinated, slow oscillatory activities occur in the large-scale networks of the mammalian neocortex. Because olfactory cortex (OC) areas, which belong to paleocortex, show characteristic sharp-wave (SPW) activity during slow-wave sleep, we examined whether OC SPWs in freely behaving rats occur in temporal coordination with up- and downstates of the orbitofrontal cortex (OFC) slow oscillation. Simultaneous recordings of local field potentials and spike activities in the OC and OFC showed that during the downstate in the OFC, the OC also exhibited downstate with greatly reduced neuronal activity and suppression of SPW generation. OC SPWs occurred during two distinct phases of the upstate of the OFC: early-phase SPWs occurred at the start of upstate shortly after the down-to-up transition in the OFC, whereas late-phase SPWs were generated at the end of upstate shortly before the up-to-down transition. Such temporal coordination between neocortical up- and downstates and olfactory system SPWs was observed between the prefrontal cortex areas (OFC and medial prefrontal cortex) and the OC areas (anterior piriform cortex and posterior piriform cortex). These results suggest that during slow-wave sleep, OC and OFC areas communicate preferentially in specific time windows shortly after the down-to-up transition and shortly before the up-to-down transition. NEW & NOTEWORTHY Simultaneous recordings of local field potentials and spike activities in the anterior piriform cortex (APC) and orbitofrontal cortex (OFC) during slow-wave sleep showed that APC sharp waves tended to occur during two distinct phases of OFC upstate: early phase, shortly after the down-to-up transition, and late phase, shortly before the up-to-down transition, suggesting that during slow-wave sleep, olfactory cortex and OFC areas communicate preferentially in the specific time windows. PMID:27733591
Dong, Hang; Zhang, Wenyuan; Zhou, Li; Ma, Yongli
2015-01-01
We investigate the transition and damping of low-energy collective modes in a trapped unitary Fermi gas by solving the Boltzmann-Vlasov kinetic equation in a scaled form, which is combined with both the T-matrix fluctuation theory in normal phase and the mean-field theory in order phase. In order to connect the microscopic and kinetic descriptions of many-body Feshbach scattering, we adopt a phenomenological two-fluid physical approach, and derive the coupling constants in the order phase. By solving the Boltzmann-Vlasov steady-state equation in a variational form, we calculate two viscous relaxation rates with the collision probabilities of fermion’s scattering including fermions in the normal fluid and fermion pairs in the superfluid. Additionally, by considering the pairing and depairing of fermions, we get results of the frequency and damping of collective modes versus temperature and s-wave scattering length. Our theoretical results are in a remarkable agreement with the experimental data, particularly for the sharp transition between collisionless and hydrodynamic behaviour and strong damping between BCS and unitary limits near the phase transition. The sharp transition originates from the maximum of viscous relaxation rate caused by fermion-fermion pair collision at the phase transition point when the fermion depair, while the strong damping due to the fast varying of the frequency of collective modes from BCS limit to unitary limit. PMID:26522094
Magnetocaloric Effect in Layered Organic Conductor λ-(BETS)2FeCl4
NASA Astrophysics Data System (ADS)
Sugiura, Shiori; Shimada, Kazuo; Tajima, Naoya; Nishio, Yutaka; Terashima, Taichi; Isono, Takayuki; Kato, Reizo; Zhou, Biao; Uji, Shinya
2018-04-01
Magnetocaloric effect (MCE) and magnetic torque measurements have been carried out in the π-d system λ-(BETS)2FeCl4 [BETS = bis(ethylenedithio)tetraselenafulvalene], which shows an antiferromagnetic insulating (AFI) phase below ˜8.5 K. In the magnetic torque curve, a sharp structure at ˜1.2 T and a step at ˜10 T are observed at low temperatures, which are caused by the spin-flop (SF) transition and the transition from the AFI to paramagnetic metallic (PM) phase, respectively. The MCE, directly related to the magnetic entropy, shows a small sharp peak at the SF transition and a sharp dip at the AFI-PM transition. The overall feature above 3 K is qualitatively interpreted by a simple picture: antiferromagnetic (AF) π spins and paramagnetic 3d spins at the Fe sites. However, a broad dip in the MCE is additionally found at ˜5 T below ˜3 K, which is not explained by the above picture. The results are compared with those of κ-(BETS)2FeBr4, which shows an AF order of the 3d spins at the Fe sites.
Unusually sharp paramagnetic phase transition in thin film Fe3Pt invar
NASA Astrophysics Data System (ADS)
Drisko, Jasper; Cumings, John
2013-03-01
Invar alloys, typically 3d transition metal rich systems, are most commonly known for their extremely low coefficients of thermal expansion (CTE) over a wide range of temperatures close to room temperature. This anomalous behavior in the CTE lends Invar to a variety of important applications in precision mechanical devices, scientific instruments, and sensors, among others. Many theoretical models of Invar have been proposed over the years, the most promising of which is a system described by two coexisting phases, one high-spin high-volume and the other low-spin low-volume, that compete to stabilize the volume of the material as the temperature is changed. However, no theory has yet been able to explain all experimental observations across the range of Invar alloys, especially at finite temperature. We have fabricated thin films of a Fe3Pt Invar alloy and investigate them using Lorentz Transmission Electron Microscopy (TEM). 23nm films are deposited onto SiN membrane substrates via radio-frequency magnetron sputtering from a pure Fe target decorated with Pt pieces. We observe novel magnetic domain structures and an unusually sharp phase transition between ferromagnetic (FM) and paramagnetic (PM) regions of the film under a temperature gradient. This sharp transition suggests that the FM-to-PM transition may be first order, perhaps containing a structural-elastic component to the order parameter. However, electron diffraction reveals that both the FM and PM regions have the same FCC crystal structure.
Liu, Zhao; Bhatt, R N
2016-11-11
We investigate the disorder-driven phase transition from a fractional quantum Hall state to an Anderson insulator using quantum entanglement methods. We find that the transition is signaled by a sharp increase in the sensitivity of a suitably averaged entanglement entropy with respect to disorder-the magnitude of its disorder derivative appears to diverge in the thermodynamic limit. We also study the level statistics of the entanglement spectrum as a function of disorder. However, unlike the dramatic phase-transition signal in the entanglement entropy derivative, we find a gradual reduction of level repulsion only deep in the Anderson insulating phase.
Electronic structure and quantum spin fluctuations at the magnetic phase transition in MnSi
NASA Astrophysics Data System (ADS)
Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.
2018-05-01
The effect of spin fluctuations on the heat capacity and homogeneous magnetic susceptibility of the chiral magnetic MnSi in the vicinity of magnetic transition has been investigated by using the free energy functional of the coupled electron and spin subsystems and taking into account the Dzyaloshinsky-Moriya interaction. For helical ferromagnetic ordering, we found that zero-point fluctuations of the spin density are large and comparable with fluctuations of the non-uniform magnetization. The amplitude of zero-point spin fluctuations shows a sharp decrease in the region of the magnetic phase transition. It is shown that sharp decrease of the amplitude of the quantum spin fluctuations results in the lambda-like maxima of the heat capacity and the homogeneous magnetic susceptibility. Above the temperature of the lambda anomaly, the spin correlation radius becomes less than the period of the helical structure and chiral fluctuations of the local magnetization appear. It is shown that formation of a "shoulder" on the temperature dependence of the heat capacity is due to disappearance of the local magnetization. Our finding allows to explain the experimentally observed features of the magnetic phase transition of MnSi as a result of the crossover of quantum and thermodynamic phase transitions.
Condensation to a strongly correlated dark fluid of two dimensional dipolar excitons
NASA Astrophysics Data System (ADS)
Mazuz-Harpaz, Yotam; Cohen, Kobi; Rapaport, Ronen
2017-08-01
Recently we reported on the condensation of cold, electrostatically trapped dipolar excitons in GaAs bilayer heterostructure into a new, dense and dark collective phase. Here we analyze and discuss in detail the experimental findings and the emerging evident properties of this collective liquid-like phase. We show that the phase transition is characterized by a sharp increase of the number of non-emitting dipoles, by a clear contraction of the fluid spatial extent into the bottom of the parabolic-like trap, and by spectral narrowing. We extract the total density of the condensed phase which we find to be consistent with the expected density regime of a quantum liquid. We show that there are clear critical temperature and excitation power onsets for the phase transition and that as the power further increases above the critical power, the strong darkening is reduced down until no clear darkening is observed. At this point another transition appears which we interpret as a transition to a strongly repulsive yet correlated e-h plasma. Based on the experimental findings, we suggest that the physical mechanism that may be responsible for the transition is a dynamical final-state stimulation of the dipolar excitons to their dark spin states, which have a long lifetime and thus support the observed sharp increase in density. Further experiments and modeling will hopefully be able to unambiguously identify the physical mechanism behind these recent observations.
NASA Astrophysics Data System (ADS)
Vasilevskiy, D.; Keshavarz, M. K.; Simard, J.-M.; Masut, R. A.; Turenne, S.; Snyder, G. J.
2018-06-01
Some materials such as Cu2-xSe, Cu1.97Ag0.03Se, and SnSe have attracted attention by demonstrating a significant enhancement of their thermoelectric performance, which is associated with a phase transition. This phenomenon, observed in a limited temperature ( T) interval, results in sharp changes of the Seebeck coefficient ( S), the electrical resistivity ( ρ), and the thermal conductivity ( κ), which may render the correct evaluation of the dimensionless figure of merit (ZT) difficult. We report the thermoelectric properties of a polycrystalline Cu2-xSe sample which is known to undergo a phase transition near 410 K, containing a mixture of α- and β-phases at room temperature, as determined by x-ray diffraction measurements. We have used a Harman-based setup (TEMTE Inc.), which assures the direct measurement of ZT at all temperatures, including the phase transition region. This approach ensures that κ( T) is determined under steady-state conditions at any given temperature, including points arbitrarily close to the transition temperature which cannot be guaranteed by previously used techniques such as laser flash. We have observed a sharp maximum for κ( T) near 410 K, similar to the reported specific heat variation, with a ZT peak value of 0.2 at 400 K. The expected gain in ZT related to the phase transition is reduced because the increase in S is counterbalanced by the increase in κ( T). Thus, our detailed assessment of the temperature variation of the individual thermoelectric properties accurately evaluates the performance enhancement associated to a structural phase transition and helps to elucidate this complex phenomenon.
Optical study of phase transitions in single-crystalline RuP
NASA Astrophysics Data System (ADS)
Chen, R. Y.; Shi, Y. G.; Zheng, P.; Wang, L.; Dong, T.; Wang, N. L.
2015-03-01
RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition.
Phase diagram of the underdoped cuprates at high magnetic field
NASA Astrophysics Data System (ADS)
Chakraborty, Debmalya; Morice, Corentin; Pépin, Catherine
2018-06-01
The experimentally measured phase diagram of cuprate superconductors in the temperature-applied magnetic field plane illuminates key issues in understanding the physics of these materials. At low temperature, the superconducting state gives way to a long-range charge order with increasing magnetic field; both the orders coexist in a small intermediate region. The charge order transition is strikingly insensitive to temperature and quickly reaches a transition temperature close to the zero-field superconducting Tc. We argue that such a transition along with the presence of the coexisting phase is difficult to obtain in a weak coupling competing orders formalism. We demonstrate that for some range of parameters there is an enlarged symmetry of the strongly coupled charge and superconducting orders in the system depending on their relative masses and the coupling strength of the two orders. We establish that this sharp switch from the superconducting phase to the charge order phase can be understood in the framework of a composite SU(2) order parameter comprising the charge and superconducting orders. Finally, we illustrate that there is a possibility of the coexisting phase of the competing charge and superconducting orders only when the SU(2) symmetry between them is weakly broken due to biquadratic terms in the free energy. The relation of this sharp transition to the proximity to the pseudogap quantum critical doping is also discussed.
Phase transition of traveling waves in bacterial colony pattern
NASA Astrophysics Data System (ADS)
Wakano, Joe Yuichiro; Komoto, Atsushi; Yamaguchi, Yukio
2004-05-01
Depending on the growth condition, bacterial colonies can exhibit different morphologies. Many previous studies have used reaction diffusion equations to reproduce spatial patterns. They have revealed that nonlinear reaction term can produce diverse patterns as well as nonlinear diffusion coefficient. Typical reaction term consists of nutrient consumption, bacterial reproduction, and sporulation. Among them, the functional form of sporulation rate has not been biologically investigated. Here we report experimentally measured sporulation rate. Then, based on the result, a reaction diffusion model is proposed. One-dimensional simulation showed the existence of traveling wave solution. We study the wave form as a function of the initial nutrient concentration and find two distinct types of solution. Moreover, transition between them is very sharp, which is analogous to phase transition. The velocity of traveling wave also shows sharp transition in nonlinear diffusion model, which is consistent with the previous experimental result. The phenomenon can be explained by separatrix in reaction term dynamics. Results of two-dimensional simulation are also shown and discussed.
Uncertainty relations and topological-band insulator transitions in 2D gapped Dirac materials
NASA Astrophysics Data System (ADS)
Romera, E.; Calixto, M.
2015-05-01
Uncertainty relations are studied for a characterization of topological-band insulator transitions in 2D gapped Dirac materials isostructural with graphene. We show that the relative or Kullback-Leibler entropy in position and momentum spaces, and the standard variance-based uncertainty relation give sharp signatures of topological phase transitions in these systems.
Experimental observation of phase-flip transitions in the brain
NASA Astrophysics Data System (ADS)
Dotson, Nicholas M.; Gray, Charles M.
2016-10-01
The phase-flip transition has been demonstrated in a host of coupled nonlinear oscillator models, many pertaining directly to understanding neural dynamics. However, there is little evidence that this phenomenon occurs in the brain. Using simultaneous microelectrode recordings in the nonhuman primate cerebral cortex, we demonstrate the presence of phase-flip transitions between oscillatory narrow-band local field potential signals separated by several centimeters. Specifically, we show that sharp transitions between in-phase and antiphase synchronization are accompanied by a jump in synchronization frequency. These findings are significant for two reasons. First, they validate predictions made by model systems. Second, they have potentially far reaching implications for our understanding of the mechanisms underlying corticocortical communication, which are thought to rely on narrow-band oscillatory synchronization with specific relative phase relationships.
Phase transitions in Nowak Sznajd opinion dynamics
NASA Astrophysics Data System (ADS)
Wołoszyn, Maciej; Stauffer, Dietrich; Kułakowski, Krzysztof
2007-05-01
The Nowak modification of the Sznajd opinion dynamics model on the square lattice assumes that with probability β the opinions flip due to mass-media advertising from down to up, and vice versa. Besides, with probability α the Sznajd rule applies that a neighbour pair agreeing in its two opinions convinces all its six neighbours of that opinion. Our Monte Carlo simulations and mean-field theory find sharp phase transitions in the parameter space.
Evolution and control of the phase competition morphology in a manganite film
NASA Astrophysics Data System (ADS)
Zhou, Haibiao; Wang, Lingfei; Hou, Yubin; Huang, Zhen; Lu, Qingyou; Wu, Wenbin
2015-11-01
The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.
Evolution and control of the phase competition morphology in a manganite film.
Zhou, Haibiao; Wang, Lingfei; Hou, Yubin; Huang, Zhen; Lu, Qingyou; Wu, Wenbin
2015-11-25
The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.
NASA Astrophysics Data System (ADS)
Christy, Yohanes; Matsumoto, Kazuya; Kojima, Seiji
2015-07-01
The lattice instability of the incommensurate (IC) phase transition of uniaxial ferroelectric Ba2NaNb5O15 (BNN) was investigated by micro-Brillouin scattering. Spectra of the longitudinal acoustic (LA) mode were observed from room temperature to 750 K. In the vicinity of the IC phase transition temperature TIC = 573 K, elastic anomalies in the form of a sharp peak in the sound velocity and thermal hysteresis during the heating and cooling cycle were observed. During this transition, the crystal point group changed from tetragonal 4mm to orthorhombic 2mm along with the IC modulation. In order to deepen our understanding of the thermal hysteresis, aging experiment in the IC phase was conducted. We can conclude that the appearance of thermal hysteresis related to the relaxation of ferroelastic strain is related to the feature of the new type III IC phase transition mechanism of BNN.
NASA Astrophysics Data System (ADS)
Proctor, K. W.; Montgomery, Q. W.; Prairie, J. C.
2016-02-01
Marine snow aggregates play a fundamental role in the marine carbon cycle. Since marine snow aggregates are larger and thus sink faster than individual phytoplankton, aggregates often dominate carbon flux. Previous studies have shown that marine snow aggregates will significantly decrease their settling velocity when passing through sharp density transitions within the ocean, a phenomenon defined as delayed settling. Given the importance of aggregate settling to carbon export, these small-scale changes in aggregate settling dynamics may have significant impacts on the efficiency of the biological pump. However, there is still a lack of knowledge about how different physical properties of aggregates can affect this delayed settling. In this study, we investigated the effect of phytoplankton growth phase on delayed settling behavior. Using phytoplankton cultures stopped at four different growth phases, we formed marine snow aggregates in the laboratory in rotating cylindrical tanks. We then observed individual aggregates as they settled through a stratified tank. We will present data which illustrates that aggregates experience greatly reduced settling rates when passing through sharp density gradients and that the growth phase of the phytoplankton used to form these aggregates has a significant effect on this delayed settling behavior. A thorough understanding of the impact of phytoplankton growth phase on the delayed settling behavior of marine snow will offer insight into the way phytoplankton growth phase may influence the efficiency of the biological pump, carbon flux, and the carbon cycle as a whole.
Curvature perturbation and waterfall dynamics in hybrid inflation
NASA Astrophysics Data System (ADS)
Akbar Abolhasani, Ali; Firouzjahi, Hassan; Sasaki, Misao
2011-10-01
We investigate the parameter spaces of hybrid inflation model with special attention paid to the dynamics of waterfall field and curvature perturbations induced from its quantum fluctuations. Depending on the inflaton field value at the time of phase transition and the sharpness of the phase transition inflation can have multiple extended stages. We find that for models with mild phase transition the induced curvature perturbation from the waterfall field is too large to satisfy the COBE normalization. We investigate the model parameter space where the curvature perturbations from the waterfall quantum fluctuations vary between the results of standard hybrid inflation and the results obtained here.
NASA Astrophysics Data System (ADS)
Brock, Jeffrey; Khan, Mahmud
2018-05-01
The phase transitions and associated magnetocaloric properties of the Ni2Mn0.55CoxCr0.45-xGa (0 ≤ x ≤ 0.25) Heusler alloy system have been investigated. All samples exhibit a first-order martensitic phase transition, evidenced by a sharp drop in the resistivity versus temperature data and a thermomagnetic irreversibility in the dc magnetization data of the respective samples. Large magnetic entropy changes have also been observed near the phase transitions. The martensitic transformation temperature increases as Cr is partially replaced with Co. Additionally, this substitution leads to a partial decoupling of the magnetic and structural phase transitions, dramatically suppressing any magnetic hysteresis losses. Furthermore, the change in electrical resistivity during the phase transition remains relatively constant across the system, despite major changes in the degree of structural disorder and magnetostructural phase transition coupling. Detailed experimental results and conjectures as to the origin of these behaviors have been provided.
New results in gravity dependent two-phase flow regime mapping
NASA Astrophysics Data System (ADS)
Kurwitz, Cable; Best, Frederick
2002-01-01
Accurate prediction of thermal-hydraulic parameters, such as the spatial gas/liquid orientation or flow regime, is required for implementation of two-phase systems. Although many flow regime transition models exist, accurate determination of both annular and slug regime boundaries is not well defined especially at lower flow rates. Furthermore, models typically indicate the regime as a sharp transition where data may indicate a transition space. Texas A&M has flown in excess of 35 flights aboard the NASA KC-135 aircraft with a unique two-phase package. These flights have produced a significant database of gravity dependent two-phase data including visual observations for flow regime identification. Two-phase flow tests conducted during recent zero-g flights have added to the flow regime database and are shown in this paper with comparisons to selected transition models. .
Martin, Tyler B; Mongcopa, Katrina Irene S; Ashkar, Rana; Butler, Paul; Krishnamoorti, Ramanan; Jayaraman, Arthi
2015-08-26
Simulations and experiments are conducted on mixtures containing polymer grafted nanoparticles in a chemically distinct polymer matrix, where the graft and matrix polymers exhibit attractive enthalpic interactions at low temperatures that become progressively repulsive as temperature is increased. Both coarse-grained molecular dynamics simulations, and X-ray scattering and neutron scattering experiments with deuterated polystyrene (dPS) grafted silica and poly(vinyl methyl ether) PVME matrix show that the sharp phase transition from (mixed) dispersed to (demixed) aggregated morphologies due to the increasingly repulsive effective interactions between the blend components is distinct from the continuous wetting-dewetting transition. Strikingly, this is unlike the extensively studied chemically identical graft-matrix composites, where the two transitions have been considered to be synonymous, and is also unlike the free (ungrafted) blends of the same graft and matrix homopolymers, where the wetting-dewetting is a sharp transition coinciding with the macrophase separation.
Dissolution of topological Fermi arcs in a dirty Weyl semimetal
NASA Astrophysics Data System (ADS)
Slager, Robert-Jan; Juričić, Vladimir; Roy, Bitan
2017-11-01
Weyl semimetals (WSMs) have recently attracted a great deal of attention as they provide a condensed matter realization of chiral anomaly, feature topologically protected Fermi arc surface states, and sustain sharp chiral Weyl quasiparticles up to a critical disorder at which a continuous quantum phase transition (QPT) drives the system into a metallic phase. We here numerically demonstrate that with increasing strength of disorder, the Fermi arc gradually loses its sharpness, and close to the WSM-metal QPT it completely dissolves into the metallic bath of the bulk. The predicted topological nature of the WSM-metal QPT and the resulting bulk-boundary correspondence across this transition can be directly observed in angle-resolved photoemission spectroscopy (ARPES) and Fourier transformed scanning tunneling microscopy (STM) measurements by following the continuous deformation of the Fermi arcs with increasing disorder in recently discovered Weyl materials.
A reversible transition in liquid Bi under pressure.
Emuna, M; Matityahu, S; Yahel, E; Makov, G; Greenberg, Y
2018-01-21
The electrical resistance of solid and liquid Bi has been measured at high pressures and temperatures using a novel experimental design for high sensitivity measurements utilizing a "Paris-Edinburgh" toroid large volume press. An anomalous sharp decrease in resistivity with increasing temperature at constant pressures was observed in the region beyond melting which implies a possible novel transition in the melt. The proposed transition was observed across a range of pressures both in heating and cooling cycles of the sample demonstrating its reversibility. From the measurements it was possible to determine a "phase-line" of this transition on the Bi pressure-temperature phase diagram terminating at the melting curve.
Energy boost in laser wakefield accelerators using sharp density transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Döpp, A.; Guillaume, E.; Thaury, C.
The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficultmore » to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing.« less
NASA Astrophysics Data System (ADS)
Bina, C. R.
An optimization algorithm based upon the method of simulated annealing is of utility in calculating equilibrium phase assemblages as functions of pressure, temperature, and chemical composi tion. Operating by analogy to the statistical mechanics of the chemical system, it is applicable both to problems of strict chemical equilibrium and to problems involving metastability. The method reproduces known phase diagrams and illustrates the expected thermal deflection of phase transitions in thermal models of subducting lithospheric slabs and buoyant mantle plumes. It reveals temperature-induced changes in phase transition sharpness and the stability of Fe-rich γ phase within an α+γ field in cold slab thermal models, and it suggests that transitions such as the possible breakdown of silicate perovskite to mixed oxides can amplify velocity anomalies.
NASA Astrophysics Data System (ADS)
Tournier, Robert F.
2018-01-01
Glass-to-glass and liquid-to-liquid phase transitions are observed in bulk and confined water, with or without applied pressure. They result from the competition of two liquid phases separated by an enthalpy difference depending on temperature. The classical nucleation equation of these phases is completed by this quantity existing at all temperatures, a pressure contribution, and an enthalpy excess. This equation leads to two homogeneous nucleation temperatures in each liquid phase; the first one (Tn- below Tm) being the formation temperature of an "ordered" liquid phase and the second one corresponding to the overheating temperature (Tn+ above Tm). Thermodynamic properties, double glass transition temperatures, sharp enthalpy and volume changes are predicted in agreement with experimental results. The first-order transition line at TLL = 0.833 × Tm between fragile and strong liquids joins two critical points. Glass phase above Tg becomes "ordered" liquid phase disappearing at TLL at low pressure and at Tn+ = 1.302 × Tm at high pressure.
Phase-field model of insulator-to-metal transition in VO2 under an electric field
NASA Astrophysics Data System (ADS)
Shi, Yin; Chen, Long-Qing
2018-05-01
The roles of an electric field and electronic doping in insulator-to-metal transitions are still not well understood. Here we formulated a phase-field model of insulator-to-metal transitions by taking into account both structural and electronic instabilities as well as free electrons and holes in VO2, a strongly correlated transition-metal oxide. Our phase-field simulations demonstrate that in a VO2 slab under a uniform electric field, an abrupt universal resistive transition occurs inside the supercooling region, in sharp contrast to the conventional Landau-Zener smooth electric breakdown. We also show that hole doping may decouple the structural and electronic phase transitions in VO2, leading to a metastable metallic monoclinic phase which could be stabilized through a geometrical confinement and the size effect. This work provides a general mesoscale thermodynamic framework for understanding the influences of electric field, electronic doping, and stress and strain on insulator-to-metal transitions and the corresponding mesoscale domain structure evolution in VO2 and related strongly correlated systems.
Phase transition of charged-AdS black holes and quasinormal modes: A time domain analysis
NASA Astrophysics Data System (ADS)
Chabab, M.; El Moumni, H.; Iraoui, S.; Masmar, K.
2017-10-01
In this work, we investigate the time evolution of a massless scalar perturbation around small and large RN-AdS4 black holes for the purpose of probing the thermodynamic phase transition. We show that below the critical point the scalar perturbation decays faster with increasing of the black hole size, both for small and large black hole phases. Our analysis of the time profile of quasinormal mode reveals a sharp distinction between the behaviors of both phases, providing a reliable tool to probe the black hole phase transition. However at the critical point P=Pc, as the black hole size extends, we note that the damping time increases and the perturbation decays faster, the oscillation frequencies raise either in small and large black hole phase. In this case the time evolution approach fails to track the AdS4 black hole phase.
Roles of strain and domain boundaries on the phase transition stability of VO2 thin films
NASA Astrophysics Data System (ADS)
Jian, Jie; Chen, Aiping; Chen, Youxing; Zhang, Xinghang; Wang, Haiyan
2017-10-01
The fundamental phase transition mechanism and the stability of the semiconductor-to-metal phase transition properties during multiple thermal cycles have been investigated on epitaxial vanadium dioxide (VO2) thin films via both ex situ heating and in situ heating by transmission electron microscopy (TEM). VO2 thin films were deposited on c-cut sapphire substrates by pulsed laser deposition. Ex situ studies show the broadening of transition sharpness (ΔT) and the width of thermal hysteresis (ΔH) after 60 cycles. In situ TEM heating studies reveal that during thermal cycles, large strain was accumulated around the domain boundaries, which was correlated with the phase transition induced lattice constant change and the thermal expansion. It suggests that the degradation of domain boundary structures in the VO2 films not only caused the transition property reduction (e.g., the decrease in ΔT and ΔH) but also played an important role in preventing the film from fracture during thermal cycles.
Exploratory Phase Transition-Based Switches Using Functional Oxides
2011-02-02
TECHNICAL REPORT Abstract Vanadium dioxide ( VO2 ) undergoes a sharp metal-insulator transition (MIT) in the vicinity of room temperature and there is...18 The mechanisms governing metal-insulator transition (MIT) in vanadium dioxide ( VO2 ) is an intensively explored subject in condensed matter...textured vanadium dioxide films were grown on single crystal Al2O3 (0001) substrates by RF-sputtering from a VO2 target (99.5%, AJA International Inc
Doping-Based Stabilization of the M2 Phase in Free-Standing VO2 Nanostructures at Room Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strelcov, Evgheni; Tselev, Alexander; Ivanov, Ilia N
2012-01-01
A new high-yield method of doping VO2 nanostructures with aluminum is proposed, which renders possible stabilization of the monoclinic M2 phase in free-standing nanoplatelets in ambient conditions and opens an opportunity for realization of a purely electronic Mott Transition Field-Effect Transistor without an accompanying structural transition. The synthesized free-standing M2-phase nanostructures are shown to have very high crystallinity and an extremely sharp temperature-driven metal-insulator transition. A combination of x-ray microdiffraction, micro-Raman spectroscopy, Energy-Dispersive X-ray spectroscopy, and four-probe electrical measurements allowed thorough characterization of the doped nanostructures. Light is shed onto some aspects of the nanostructure growth, and the temperature-doping levelmore » phase diagram is established.« less
Quantum phase transition and quench dynamics in the anisotropic Rabi model
NASA Astrophysics Data System (ADS)
Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi; Zheng, Shi-Biao
2017-01-01
We investigate the quantum phase transition (QPT) and quench dynamics in the anisotropic Rabi model when the ratio of the qubit transition frequency to the oscillator frequency approaches infinity. Based on the Schrieffer-Wolff transformation, we find an anti-Hermitian operator that maps the original Hamiltonian into a one-dimensional oscillator Hamiltonian within the spin-down subspace. We analytically derive the eigenenergy and eigenstate of the normal and superradiant phases and demonstrate that the system undergoes a second-order quantum phase transition at a critical border. The critical border is a straight line in a two-dimensional parameter space which essentially extends the dimensionality of QPT in the Rabi model. By combining the Kibble-Zurek mechanism and the adiabatic dynamics method, we find that the residual energy vanishes as the quench time tends to zero, which is a sharp contrast to the universal scaling where the residual energy diverges in the same limit.
NASA Astrophysics Data System (ADS)
Zhao, Bo
Phase transitions are one of the most exciting physical phenomena ever discovered. The understanding of phase transitions has long been of interest. Recently eigenstate phase transitions have been discovered and studied; they are drastically different from traditional thermal phase transitions. In eigenstate phase transitions, a sharp change is exhibited in properties of the many-body eigenstates of the Hamiltonian of a quantum system, but not the thermal equilibrium properties of the same system. In this thesis, we study two different types of eigenstate phase transitions. The first is the eigenstate phase transition within the ferromagnetic phase of an infinite-range spin model. By studying the interplay of the eigenstate thermalization hypothesis and Ising symmetry breaking, we find two eigenstate phase transitions within the ferromagnetic phase: In the lowest-temperature phase the magnetization can macroscopically oscillate by quantum tunneling between up and down. The relaxation of the magnetization is always overdamped in the remainder of the ferromagnetic phase, which is further divided into phases where the system thermally activates itself over the barrier between the up and down states, and where it quantum tunnels. The second is the many-body localization phase transition. The eigenstates on one side of the transition obey the eigenstate thermalization hypothesis; the eigenstates on the other side are many-body localized, and thus thermal equilibrium need not be achieved for an initial state even after evolving for an arbitrary long time. We study this many-body localization phase transition in the strong disorder renormalization group framework. After setting up a set of coarse-graining rules for a general one dimensional chain, we get a simple "toy model'' and obtain an almost purely analytical solution to the infinite-randomness critical fixed point renormalization group equation. We also get an estimate of the correlation length critical exponent nu ≈ 2.5.
Flipping the Switch from G1 to S Phase with E3 Ubiquitin Ligases
Rizzardi, Lindsay F.
2012-01-01
The cell cycle ensures genome maintenance by coordinating the processes of DNA replication and chromosome segregation. Of particular importance is the irreversible transition from the G1 phase of the cell cycle to S phase. This transition marks the switch from preparing chromosomes for replication (“origin licensing”) to active DNA synthesis (“origin firing”). Ubiquitin-mediated proteolysis is essential for restricting DNA replication to only once per cell cycle and is the major mechanism regulating the G1 to S phase transition. Although some changes in protein levels are attributable to regulated mRNA abundance, protein degradation elicits very rapid changes in protein abundance and is critical for the sharp and irreversible transition from one cell cycle stage to the next. Not surprisingly, regulation of the G1-to-S phase transition is perturbed in most cancer cells, and deregulation of key molecular events in G1 and S phase drives not only cell proliferation but also genome instability. In this review we focus on the mechanisms by which E3 ubiquitin ligases control the irreversible transition from G1 to S phase in mammalian cells. PMID:23634252
Fratino, L.; Sémon, P.; Charlebois, M.; ...
2017-06-06
The properties of a phase with large correlation length can be strongly influenced by the underlying normal phase. Here, we illustrate this by studying the half-filled two-dimensional Hubbard model using cellular dynamical mean-field theory with continuous-time quantum Monte Carlo. Sharp crossovers in the mechanism that favors antiferromagnetic correlations and in the corresponding local density of states are observed. We found that these crossovers occur at values of the interaction strength U and temperature T that are controlled by the underlying normal-state Mott transition.
NASA Astrophysics Data System (ADS)
Vâgberg, Daniel; Olsson, Peter; Teitel, S.
2017-05-01
We report on numerical simulations of simple models of athermal, bidisperse, soft-core, massive disks in two dimensions, as a function of packing fraction ϕ , inelasticity of collisions as measured by a parameter Q , and applied uniform shear strain rate γ ˙. Our particles have contact interactions consisting of normally directed elastic repulsion and viscous dissipation, as well as tangentially directed viscous dissipation, but no interparticle Coulombic friction. Mapping the phase diagram in the (ϕ ,Q ) plane for small γ ˙, we find a sharp first-order rheological phase transition from a region with Bagnoldian rheology to a region with Newtonian rheology, and show that the system is always Newtonian at jamming. We consider the rotational motion of particles and demonstrate the crucial importance that the coupling between rotational and translational degrees of freedom has on the phase structure at small Q (strongly inelastic collisions). At small Q , we show that, upon increasing γ ˙, the sharp Bagnoldian-to-Newtonian transition becomes a coexistence region of finite width in the (ϕ ,γ ˙) plane, with coexisting Bagnoldian and Newtonian shear bands. Crossing this coexistence region by increasing γ ˙ at fixed ϕ , we find that discontinuous shear thickening can result if γ ˙ is varied too rapidly for the system to relax to the shear-banded steady state corresponding to the instantaneous value of γ ˙.
Hybrid Perovskite Phase Transition and Its Ionic, Electrical and Optical Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoque, Md Nadim Ferdous; Islam, Nazifah; Zhu, Kai
Hybrid perovskite solar cells (PSCs) under normal operation will reach a temperature above ~ 60 °C, across the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI 3). Whether the structural phase transition could result in dramatic changes of ionic, electrical and optical properties that may further impact the PSC performances should be studied. Herein, we report a structural phase transition temperature of MAPbI 3thin film at ~ 55 °C, but a striking contrast occurred at ~ 45 °C in the ionic and electrical properties of MAPbI 3due to a change of the ion activation energy from 0.7 eV tomore » 0.5 eV. The optical properties exhibited no sharp transition except for the steady increase of the bandgap with temperature. It was also observed that the activation energy for ionic migration steadily increased with increased grain sizes, and reduction of the grain boundary density reduced the ionic migration.« less
Compressible-Incompressible Two-Phase Flows with Phase Transition: Model Problem
NASA Astrophysics Data System (ADS)
Watanabe, Keiichi
2017-12-01
We study the compressible and incompressible two-phase flows separated by a sharp interface with a phase transition and a surface tension. In particular, we consider the problem in R^N , and the Navier-Stokes-Korteweg equations is used in the upper domain and the Navier-Stokes equations is used in the lower domain. We prove the existence of R -bounded solution operator families for a resolvent problem arising from its model problem. According to Göts and Shibata (Asymptot Anal 90(3-4):207-236, 2014), the regularity of ρ _+ is W^1_q in space, but to solve the kinetic equation: u_Γ \\cdot n_t = [[ρ u
Paik, Taejong; Hong, Sung-Hoon; Gaulding, E Ashley; Caglayan, Humeyra; Gordon, Thomas R; Engheta, Nader; Kagan, Cherie R; Murray, Christopher B
2014-01-28
We demonstrate thermally switchable VO2 metamaterials fabricated using solution-processable colloidal nanocrystals (NCs). Vanadium oxide (VOx) NCs are synthesized through a nonhydrolytic reaction and deposited from stable colloidal dispersions to form NC thin films. Rapid thermal annealing transforms the VOx NC thin films into monoclinic, nanocrystalline VO2 thin films that show a sharp, reversible metal-insulator phase transition. Introduction of precise concentrations of tungsten dopings into the colloidal VOx NCs enables the still sharp phase transition of the VO2 thin films to be tuned to lower temperatures as the doping level increases. We fabricate "smart", differentially doped, multilayered VO2 films to program the phase and therefore the metal-insulator behavior of constituent vertically structured layers with temperature. With increasing temperature, we tailored the optical response of multilayered films in the near-IR and IR regions from that of a strong light absorber, in a metal-insulator structure, to that of a Drude-like reflector, characteristic of a pure metallic structure. We demonstrate that nanocrystal-based nanoimprinting can be employed to pattern multilayered subwavelength nanostructures, such as three-dimensional VO2 nanopillar arrays, that exhibit plasmonic dipolar responses tunable with a temperature change.
Moving heavy quarkonium entropy, effective string tension, and the QCD phase diagram
NASA Astrophysics Data System (ADS)
Chen, Xun; Feng, Sheng-Qin; Shi, Ya-Fei; Zhong, Yang
2018-03-01
The entropy and effective string tension of the moving heavy quark-antiquark pair in the strongly coupled plasmas are calculated by using a deformed an anti-de Sitter/Reissner-Nordström black hole metric. A sharp peak of the heavy-quarkonium entropy around the deconfinement transition can be realized in our model, which is consistent with the lattice QCD result. The effective string tension of the heavy quark-antiquark pair is related to the deconfinement phase transition. Thus, we investigate the deconfinement phase transition by analyzing the characteristics of the effective string tension with different temperatures, chemical potentials, and rapidities. It is found that the results of phase diagram calculated through effective string tension are in agreement with results calculated through a Polyakov loop. We argue that a moving system will reach the phase transition point at a lower temperature and chemical potential than a stationary system. It means that the lifetime of the moving quark-gluon plasma become longer than the static one.
Baturina, T I; Mironov, A Yu; Vinokur, V M; Baklanov, M R; Strunk, C
2007-12-21
We investigate low-temperature transport properties of thin TiN superconducting films in the vicinity of the disorder-driven superconductor-insulator transition. In a zero magnetic field, we find an extremely sharp separation between superconducting and insulating phases, evidencing a direct superconductor-insulator transition without an intermediate metallic phase. At moderate temperatures, in the insulating films we reveal thermally activated conductivity with the magnetic field-dependent activation energy. At very low temperatures, we observe a zero-conductivity state, which is destroyed at some depinning threshold voltage V{T}. These findings indicate the formation of a distinct collective state of the localized Cooper pairs in the critical region at both sides of the transition.
Kaluarachchi, Udhara S.; Deng, Yuhang; Besser, Matthew F.; ...
2017-06-09
Transport and magnetic studies of PbTaSe 2 under pressure suggest the existence of two superconducting phases with the low temperature phase boundary at ~ 0.25 GPa that is defined by a very sharp, first order, phase transition. The first order phase transition line can be followed via pressure dependent resistivity measurements, and is found to be near 0.12 GPa near room temperature. Transmission electron microscopy and x-ray diffraction at elevated temperatures confirm that this first order phase transition is structural and occurs at ambient pressure near ~ 425 K. The new, high temperature/high pressure phase has a similar crystal structuremore » and slightly lower unit cell volume relative to the ambient pressure, room temperature structure. Based on first-principles calculations this structure is suggested to be obtained by shifting the Pb atoms from the 1 a to 1 e Wyckoff position without changing the positions of Ta and Se atoms. PbTaSe 2 has an exceptionally pressure sensitive, structural phase transition with Δ T s / Δ P ≈ -1400 K/GPa near room temperature, and ≈ -1700 K/GPa near 4 K. This first order transition causes a ~ 1 K (~ 25 % ) steplike decrease in T c as pressure is increased through 0.25 GPa.« less
Structural phase stability in nanocrystalline titanium to 161 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velisavljevic, Nenad; Jacobsen, Matthew K.; Vohra, Yogesh K.
2014-09-16
Nanocrystalline titanium (nc-Ti) metal was investigated up to 161 GPa at room temperature using a diamond anvil cell. X-ray diffraction and electrical resistance techniques were used to investigate the compressibility and structural phase stability. nc-Ti is observed to undergo three structural phase transitions at high pressures, starting with α → ω at 10GPa and followed by ω → γ at 127GPa and γ → δ at 140GPa. The observed structural phase transitions, as well as compressibility, are consistent with previously reported values for coarse grained Ti (c-Ti). The high pressure experiments on nc-Ti samples do no show any significant variationmore » of the α → ω transition pressure under varying nonhydrostatic conditions. This is in sharp contrast to c-Ti, where a significant decrease in the α → ω transition pressure is observed under increasing nonhydrostatic conditions. As a result, this would indicate that the decrease in grain size in nano grained titanium makes the α → ω phase transition less sensitive to shear stresses as compared to bulk or c-Ti.« less
X-ray scattering studies of structural phase transitions in pyrochlore Cd2Nb2O7
NASA Astrophysics Data System (ADS)
Tachibana, Makoto; Fritsch, Katharina; Gaulin, Bruce D.
2013-10-01
Structural phase transitions in pyrochlore Cd2Nb2O7 were studied by means of single crystal x-ray scattering. On cooling below the ferroelastic transition at T1 = 204 K, the cubic Bragg peaks broaden in a manner consistent with weak orthorhombic distortion. The distortion evolves rather smoothly through the ferroelectric transition at T2 = 196 K, which explains the absence of sharp anomalies in the heat capacity and dielectric constant at this transition. At lower temperatures, the anomalous relaxor-like character of this compound is evident as a gradual reduction in the Bragg peak intensities, which continues down to the onset of another transition at T3 = 85 K. The studies of two Bragg peaks that are forbidden within the cubic phase reveal an interesting disparity: while the intensity for one of them increases in a classical mean-field manner below T1, the other shows unconventional behavior that is reminiscent of the pyrochlore superconductor Cd2Re2O7.
NASA Astrophysics Data System (ADS)
Xu, Ran; Tian, Jingjing; Zhu, Qingshan; Feng, Yujun; Wei, Xiaoyong; Xu, Zhuo
2017-07-01
Temperature-driven phase transition of Pb0.97La0.02[Zr0.55Sn0.30Ti0.15]O3 ceramics was studied, and the consecutive ferroelectric-antiferroelectric-paraelectric (FE-AFE-PE) switching was confirmed. The materials have better dielectric tunability (-82% to 50%) in the AFE state than in the FE state. Also, the phase transition influences the energy-storage and -release performance significantly. A sharp increase in releasable energy density and efficiency was observed due to the temperature-driven FE-AFE transition. Highest releasable energy density, current density, and peak power density were achieved at 130 °C, which was attributed to the highest backward transition field. The stored charge was released completely in AFE and PE states in the microseconds scale, while only a small part of it was released in the FE state. The above results indicate the huge impact of temperature-driven phase transition on dielectrics' performance, which is significant when developing AFE materials working in a wide temperature range.
Thermodynamic behavior of a phase transition in a model for sympatric speciation
NASA Astrophysics Data System (ADS)
Luz-Burgoa, K.; Moss de Oliveira, S.; Schwämmle, Veit; Sá Martins, J. S.
2006-08-01
We investigate the macroscopic effects of the ingredients that drive the origin of species through sympatric speciation. In our model, sympatric speciation is obtained as we tune up the strength of competition between individuals with different phenotypes. As a function of this control parameter, we can characterize, through the behavior of a macroscopic order parameter, a phase transition from a nonspeciation to a speciation state of the system. The behavior of the first derivative of the order parameter with respect to the control parameter is consistent with a phase transition and exhibits a sharp peak at the transition point. For different resources distribution, the transition point is shifted, an effect similar to pressure in a PVT system. The inverse of the parameter related to a sexual selection strength behaves like an external field in the system and, as thus, is also a control parameter. The macroscopic effects of the biological parameters used in our model are a reminiscent of the behavior of thermodynamic quantities in a phase transition of an equilibrium physical system.
Signatures of a macroscopic switching transition for a dynamic microtubule
NASA Astrophysics Data System (ADS)
Aparna, J. S.; Padinhateeri, Ranjith; Das, Dibyendu
2017-04-01
Characterising complex kinetics of non-equilibrium self-assembly of bio-filaments is of general interest. Dynamic instability in microtubules, consisting of successive catastrophes and rescues, is observed to occur as a result of the non-equilibrium conversion of GTP-tubulin to GDP-tubulin. We study this phenomenon using a model for microtubule kinetics with GTP/GDP state-dependent polymerisation, depolymerisation and hydrolysis of subunits. Our results reveal a sharp switch-like transition in the mean velocity of the filaments, from a growth phase to a shrinkage phase, with an associated co-existence of the two phases. This transition is reminiscent of the discontinuous phase transition across the liquid-gas boundary. We probe the extent of discontinuity in the transition quantitatively using characteristic signatures such as bimodality in velocity distribution, variance and Binder cumulant, and also hysteresis behaviour of the system. We further investigate ageing behaviour in catastrophes of the filament, and find that the multi-step nature of catastrophes is intensified in the vicinity of the switching transition. This assumes importance in the context of Microtubule Associated Proteins which have the potential of altering kinetic parameter values.
A Gas-Kinetic Method for Hyperbolic-Elliptic Equations and Its Application in Two-Phase Fluid Flow
NASA Technical Reports Server (NTRS)
Xu, Kun
1999-01-01
A gas-kinetic method for the hyperbolic-elliptic equations is presented in this paper. In the mixed type system, the co-existence and the phase transition between liquid and gas are described by the van der Waals-type equation of state (EOS). Due to the unstable mechanism for a fluid in the elliptic region, interface between the liquid and gas can be kept sharp through the condensation and evaporation process to remove the "averaged" numerical fluid away from the elliptic region, and the interface thickness depends on the numerical diffusion and stiffness of the phase change. A few examples are presented in this paper for both phase transition and multifluid interface problems.
NASA Astrophysics Data System (ADS)
Kemper, J. B.; Vafek, O.; Betts, J. B.; Balakirev, F. F.; Hardy, W. N.; Liang, Ruixing; Bonn, D. A.; Boebinger, G. S.
2016-01-01
More than a quarter century after the discovery of the high-temperature superconductor (HTS) YBa2Cu3O6+δ (YBCO; ref. ), studies continue to uncover complexity in its phase diagram. In addition to HTS and the pseudogap, there is growing evidence for multiple phases with boundaries which are functions of temperature (T), doping (p) and magnetic field. Here we report the low-temperature electronic specific heat (Celec) of YBa2Cu3O6.43 and YBa2Cu3O6.47 (p = 0.076 and 0.084) up to a magnetic field (H) of 34.5 T, a poorly understood region of the underdoped H-T-p phase space. We observe two regimes in the low-temperature limit: below a characteristic magnetic field H' ~ 12-15 T, Celec/T obeys an expected H1/2 behaviour; however, near H' there is a sharp inflection followed by a linear-in-H behaviour. H' rests deep within the superconducting phase and, thus, the linear-in-H behaviour is observed in the zero-resistance regime. In the limit of zero temperature, Celec/T is proportional to the zero-energy electronic density of states. At one of our dopings, the inflection is sharp only at lowest temperatures, and we thus conclude that this inflection is evidence of a magnetic-field-driven quantum phase transition.
NASA Astrophysics Data System (ADS)
Gunaydin-Sen, Ozge
2005-03-01
Natural abundance ^15N CPMAS NMR has been used to investigate the paraelectric-antiferroelectric phase transition of NH4H2AsO4 (ADA) (TN˜216K) and of NH4H2PO4 (ADP) (148K), with a focus on the role of the NH4^+ ion. Isotropic chemical shift of ^15N for ADA exhibits an almost linear temperature dependence to within TN±1K, and then changes discontinuously, followed by another almost linear dependence. The spectra of the paraelectric and antiferroelectric phases coexist around the TN. The sharp anomaly around TN implies that the NH4^+ ions undergo a displacive transition, whereas the protons in the O-HO bonds undergo an order-disorder transition. The ^15N data thus support a mixed order-disorder-displacive mechanism for this transition. The ^15N data on ADP exhibit somewhat different behavior. ^31P CPMAS measurements will also be presented and discussed in terms of the above model.
Rheology and tribology of lubricants with polymeric viscosity modifiers
NASA Astrophysics Data System (ADS)
Babak, LotfizadehDehkordi
Elastohydrodynamic lubrication (EHL) theory has been used to model the lubrication state of antifriction machine elements, where initial viscosity and pressure viscosity coefficients are essential parameters in film thickness modeling. Since the pressures of lubricants in the contact zone can be very high, it is important to know the rheological properties of lubricants in these pressure and temperature regimes. The characteristics of viscosity behavior as a function of pressure are also essential for a universal definition of the pressure viscosity coefficient in order to estimate film thickness in an EHL regime. In this study, viscosities and pressure-viscosity coefficients of ten commercial engine and gear oils and seventeen laboratory-produced oil/polymer viscosity modifiers (VM) additives are measured up to 1.3 GPa at 40, 75 and 100 °C. For the first time, a sharp increase in the viscosity and piezoviscous factor is observed in both mineral-based and synthetic-based oils with different VMs. Analysis of the experimental results indicates that sharp increase in viscosity observed in these experiments are believed to arise from physical changes in the VMs, that is liquid-solid phase transition. Evidence is offered that polymer properties such as molecular weight, concentration and structure influence the onset of the phase transitions. A modified Yasutomi model, which normally describes the pressure dependence of the viscosity of lubricants very well, fails to predict the viscosity of the specimens above the onset of sharp increase in viscosity. A design of experiment (DOE) analysis using Design-Expert software indicates that pressure and temperature are the most critical parameters in the viscosity variation. Tribological tests demonstrate that wear in the contact, zone occurs at temperatures and stresses that coincides with the VM phase transitions in both commercial and laboratory synthesized oil/VMs. Tribological results also indicate that the onset of the sharp increase in viscosity can have significant and unanticipated consequences on the elastohydrodynamic contact and can adversely affect EHL theory. The onset of the steep rise in viscosity may also affect the torque and power losses in a mechanical system. Hence, this previously unknown behavior of the lubricant with VMs should be seriously considered in the application of lubricant in mechanical system.
Sierra, M B; Pedroni, V I; Buffo, F E; Disalvo, E A; Morini, M A
2016-06-01
Temperature dependence of the zeta potential (ZP) is proposed as a tool to analyze the thermotropic behavior of unilamellar liposomes prepared from binary mixtures of phosphatidylcholines in the absence or presence of ions in aqueous suspensions. Since the lipid phase transition influences the surface potential of the liposome reflecting a sharp change in the ZP during the transition, it is proposed as a screening method for transition temperatures in complex systems, given its high sensitivity and small amount of sample required, that is, 70% less than that required in the use of conventional calorimeters. The sensitivity is also reflected in the pre-transition detection in the presence of ions. Plots of phase boundaries for these mixed-lipid vesicles were constructed by plotting the delimiting temperatures of both main phase transition and pre-transition vs. the lipid composition of the vesicle. Differential scanning calorimetry (DSC) studies, although subject to uncertainties in interpretation due to broad bands in lipid mixtures, allowed the validation of the temperature dependence of the ZP method for determining the phase transition and pre-transition temperatures. The system chosen was dipalmitoylphosphatidylcholine/dimyristoyl phosphatidylcholine (DMPC/DPPC), the most common combination in biological membranes. This work may be considered as a starting point for further research into more complex lipid mixtures with functional biological importance. Copyright © 2016 Elsevier B.V. All rights reserved.
Popova, V A; Surovtsev, N V
2014-09-01
The temperature dependences of α relaxation time τ(α)(T) of three glass-forming liquids (salol, o-terphenyl, and α-picoline) were investigated by a depolarized light scattering technique. A detailed description of τ(α)(T) near T(A), the temperature of the transition from the Arrhenius law at high temperatures to a non-Arrhenius behavior of τ(α)(T) at lower temperatures, was done. It was found that this transition is quite sharp. If the transition is described as switching from the Arrhenius law to the Vogel-Fulcher-Tammann law, it occurs within the temperature range of about 15 K or less. Most of the known expressions for τ(α)(T) cannot describe this sharp transition. Our analysis revealed that this transition can be described either as a discontinuous transition in the spirit of the frustration-limited domain theory [D. Kivelson, G. Tarjus, X. Zhao, and S. A. Kivelson, Phys. Rev. E 53, 751 (1996)], implying a phase transition, or by a phenomenological expression recently suggested [B. Schmidtke, N. Petzold, R. Kahlau, M. Hofmann, and E. A. Rössler, Phys. Rev. E 86, 041507 (2012)], where the activation energy includes the term depending exponentially on temperature.
The gravel sand transition in a disturbed catchment
NASA Astrophysics Data System (ADS)
Knighton, A. David
1999-03-01
More than 40 million cubic metres of mining waste were supplied to the Ringarooma River between 1875 and 1984, leading to successive phases of aggradation and degradation. The natural bed material is gravel but, given the volume of introduced load and the fact that much of the input was less than 5 mm in diameter, the size composition of the bed changed from gravel to sand during the phase of downstream progressive aggradation. A very sharp gravel-sand transition developed in which median grain size decreased from over 30 mm to under 3 mm in less than 500 m. With upstream supplies of mining debris becoming depleted first, degradation followed the same downstream progressive pattern as aggradation, causing the transition to migrate downstream. By 1984, the river could be regarded as a series of zones, each characterized by a particular bed condition: a natural cobble-gravel bed, unaffected by mining inputs (0-32 km); pre-disturbance bed re-exposed by degradation over 35-40 years (32-53 km); sandy substrate with a gravel armour produced by differential transport during degradation (53-65 km); sand dominated but with developing surface patches of coarser material (65-75 km); sandy bed reflecting the size composition of the original mining input (75-118 km). Although the gravel-sand transition itself is sharp, the transitional zone is lengthy (53-75 km). As degradation continues, the gravel-sand transition is expected to progress downstream but it has remained in a stable position for 12 years. Indeed, two major floods during the period released large quantities of sand from the sub-armour layer and newly-formed banks of mine tailings, causing fining both above and below the transition. Surface grain size is an adjustable component in the transitional zone as the river strives to recover from a major anthropogenic disturbance.
Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films
Ji, Yanda; Zhang, Yin; Gao, Min; Yuan, Zhen; Xia, Yudong; Jin, Changqing; Tao, Bowan; Chen, Chonglin; Jia, Quanxi; Lin, Yuan
2014-01-01
Vanadium dioxide (VO2) with its unique sharp resistivity change at the metal-insulator transition (MIT) has been extensively considered for the near-future terahertz/infrared devices and energy harvesting systems. Controlling the epitaxial quality and microstructures of vanadium dioxide thin films and understanding the metal-insulator transition behaviors are therefore critical to novel device development. The metal-insulator transition behaviors of the epitaxial vanadium dioxide thin films deposited on Al2O3 (0001) substrates were systematically studied by characterizing the temperature dependency of both Raman spectrum and Fourier transform infrared spectroscopy. Our findings on the correlation between the nucleation dynamics of intermediate monoclinic (M2) phase with microstructures will open a new avenue for the design and integration of advanced heterostructures with controllable multifunctionalities for sensing and imaging system applications. PMID:24798056
NASA Astrophysics Data System (ADS)
Kuehl, C. Stephen
2003-08-01
Completing its final development and early deployment on the Navy's multi-role aircraft, the F/A-18 E/F Super Hornet, the SHAred Reconnaissance Pod (SHARP) provides the war fighter with the latest digital tactical reconnaissance (TAC Recce) Electro-Optical/Infrared (EO/IR) sensor system. The SHARP program is an evolutionary acquisition that used a spiral development process across a prototype development phase tightly coupled into overlapping Engineering and Manufacturing Development (EMD) and Low Rate Initial Production (LRIP) phases. Under a tight budget environment with a highly compressed schedule, SHARP challenged traditional acquisition strategies and systems engineering (SE) processes. Adopting tailored state-of-the-art systems engineering process models allowd the SHARP program to overcome the technical knowledge transition challenges imposed by a compressed program schedule. The program's original goal was the deployment of digital TAC Recce mission capabilities to the fleet customer by summer of 2003. Hardware and software integration technical challenges resulted from requirements definition and analysis activities performed across a government-industry led Integrated Product Team (IPT) involving Navy engineering and test sites, Boeing, and RTSC-EPS (with its subcontracted hardware and government furnished equipment vendors). Requirements development from a bottoms-up approach was adopted using an electronic requirements capture environment to clarify and establish the SHARP EMD product baseline specifications as relevant technical data became available. Applying Earned-Value Management (EVM) against an Integrated Master Schedule (IMS) resulted in efficiently managing SE task assignments and product deliveries in a dynamically evolving customer requirements environment. Application of Six Sigma improvement methodologies resulted in the uncovering of root causes of errors in wiring interconnectivity drawings, pod manufacturing processes, and avionics requirements specifications. Utilizing the draft NAVAIR SE guideline handbook and the ANSI/EIA-632 standard: Processes for Engineering a System, a systems engineering tailored process approach was adopted for the accelerated SHARP EMD prgram. Tailoring SE processes in this accelerated product delivery environment provided unique opportunities to be technically creative in the establishment of a product performance baseline. This paper provides an historical overview of the systems engineering activities spanning the prototype phase through the EMD SHARP program phase, the performance requirement capture activities and refinement process challenges, and what SE process improvements can be applied to future SHARP-like programs adopting a compressed, evolutionary spiral development acquisition paradigm.
Genway, Sam; Garrahan, Juan P; Lesanovsky, Igor; Armour, Andrew D
2012-05-01
Recent progress in the study of dynamical phase transitions has been made with a large-deviation approach to study trajectories of stochastic jumps using a thermodynamic formalism. We study this method applied to an open quantum system consisting of a superconducting single-electron transistor, near the Josephson quasiparticle resonance, coupled to a resonator. We find that the dynamical behavior shown in rare trajectories can be rich even when the mean dynamical activity is small, and thus the formalism gives insights into the form of fluctuations. The structure of the dynamical phase diagram found from the quantum-jump trajectories of the resonator is studied, and we see that sharp transitions in the dynamical activity may be related to the appearance and disappearance of bistabilities in the state of the resonator as system parameters are changed. We also demonstrate that for a fast resonator, the trajectories of quasiparticles are similar to the resonator trajectories.
Effect of pressure on the superconducting {ital T}{sub {ital c}} of lanthanum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tissen, V.G.; Ponyatovskii, E.G.; Nefedova, M.V.
1996-04-01
The effect of pressure on the superconducting transition temperature {ital T}{sub {ital c}} of La was studied up to 50 GPa. {ital T}{sub {ital c}}({ital P}) shows a rather complicated variation with a discontinuous increase in {ital T}{sub {ital c}} at about 2.2 GPa due to the first-order phase transition from dhcp to fcc structure. At about 5.4 GPa a sharp peak is observed due to the soft-mode phase transition from fcc to the distorted fcc structure and two broad maxima are found within the stability region of the distorted fcc structure around 12 and 39 GPa. Some differences betweenmore » these and previous low-pressure data for metastable fcc La are noticed. The results are discussed in connection with pressure-induced structural phase transitions found in earlier x-ray-diffraction experiments and band-structure calculations giving evidences for van Hove singularities in the density of states. {copyright} {ital 1996 The American Physical Society.}« less
Nanoscale Engineering in VO2 Nanowires via Direct Electron Writing Process.
Zhang, Zhenhua; Guo, Hua; Ding, Wenqiang; Zhang, Bin; Lu, Yue; Ke, Xiaoxing; Liu, Weiwei; Chen, Furong; Sui, Manling
2017-02-08
Controlling phase transition in functional materials at nanoscale is not only of broad scientific interest but also important for practical applications in the fields of renewable energy, information storage, transducer, sensor, and so forth. As a model functional material, vanadium dioxide (VO 2 ) has its metal-insulator transition (MIT) usually at a sharp temperature around 68 °C. Here, we report a focused electron beam can directly lower down the transition temperature of a nanoarea to room temperature without prepatterning the VO 2 . This novel process is called radiolysis-assisted MIT (R-MIT). The electron beam irradiation fabricates a unique gradual MIT zone to several times of the beam size in which the temperature-dependent phase transition is achieved in an extended temperature range. The gradual transformation zone offers to precisely control the ratio of metal/insulator phases. This direct electron writing technique can open up an opportunity to precisely engineer nanodomains of diversified electronic properties in functional material-based devices.
Kinetics of (2 × 4) → (3 × 1(6)) structural changes on GaAs(001) surfaces during the UHV annealing
NASA Astrophysics Data System (ADS)
Vasev, A. V.; Putyato, M. A.; Preobrazhenskii, V. V.
2018-06-01
The peculiarities of superstructural transition (2 × 4) → (3 × 1(6)) on the GaAs(001) surface were studied by the RHEED method in the conditions initiated by a sharp change of the arsenic flux. The specular beam intensities RHEED picture dependences on time were obtained during the transition. The measurement results were analyzed within the JMAK (Johnson - Melh - Avrami - Kolmogorov) kinetic model. It was established that the process of structural rearrangement proceeds in two stages and it is realized through the state of intermediate disordering, domains with different reconstructions being coexistent on the surface. The activation energies and phase transition velocities were determined for each of the stages. The procedure for precise determination of GaAs(001) surface temperature using the features of the α(2 × 4) → DO transition process kinetic was proposed. The results of this work allow us to broaden our understanding of the reconstruction transitions mechanisms. This information has a key (fundamental and applied) nature for the technologies of epitaxial growth of multilayer heterostructures, where the interface planarity and the sharpness of composition profile are of particular importance.
Phase-field model for isothermal phase transitions in binary alloys
NASA Technical Reports Server (NTRS)
Wheeler, A. A.; Boettinger, W. J.; Mcfadden, G. B.
1992-01-01
A new phase field model is described which models isothermal phase transitions between ideal binary alloy solution phases. Equations are developed for the temporal and spatial variation of the phase field, which describes the identity of the phase, and of the composition. An asymptotic analysis, as the gradient energy coefficient of the phase field becomes small, was conducted. From the analysis, it is shown that the model recovers classical sharp interface models of this situation when the interfacial layers are thin, and they show how to relate the parameters appearing in the phase field model to material and growth parameters in real systems. Further, three stages of temporal evolution are identified: the first corresponding to interfacial genesis which occurs very rapidly; the second to interfacial motion controlled by the local energy difference across the interface and diffusion; the last taking place on a long time scale in which curvature effects are important and which correspond to Ostwald ripening. The results of the numerical calculations are presented.
Thermal hysteresis of the phase-transition temperature of single-crystal GdB6
NASA Astrophysics Data System (ADS)
Reiffers, M.; Ebek, J.; Antavá, E.; Pristá, G.; Kunii, S.
2006-01-01
The phase transition of a single-crystal sample of GdB6, oriented along the 111 axis using the temperature dependence of electrical resistivity (T ), susceptibility (T ) and heat capacity C (T ) under an applied magnetic field was studied. ρ (T ) has shown 2 anomalies - a sharp drop at T N1 = 15.4 K and a small maximum at T N2 = 9.1 K with thermal hysteresis effect. χ (T ) shows the anomalies at both transition temperatures. C (T ) shows similar thermal hysteresis effect at T N2. The small maximum at T N2 decreases its position to lower temperatures with increasing magnetic field. The peak at T N1 is practically unaffected by an applied magnetic field up to 9 T.
Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs
Jacobs, Benjamin W.; Ayres, Virginia M.; Stallcup, Richard E.; ...
2007-10-19
Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.
NASA Astrophysics Data System (ADS)
Lu, Chuanyang; He, Yanming; Gao, Zengliang; Yang, Jianguo; Jin, Weiya; Xie, Zhigang
2017-11-01
Nuclear power, as a reliable clean and economical energy source, has gained great attention from all over the world. The A508-3 steel will be introduced as the structural materials for Chinese nuclear reactor pressure vessels (RPVs). This work investigated the temperature-dependence microstructural evolution during high-temperature heat treatments, and built the relationship between the microstructure and mechanical properties for the steel before and after phase transition. The results show that the original steel consists of the bainite, allotriomorphic ferrite, retained austenite and few Mo-rich M2C carbides. The phase-transition temperature of the steel is determined to be 750 °C. The tensile tests performed at 20-1000 °C indicate that both of the yield strength and ultimate tensile strength decrease monotonously with increasing the temperature. Before phase transition, precipitation of cementite from the retained austenite and coarsening of cementite at the austenite-ferrite interphases should be responsible for their sharp decrease. After phase transition, the growth of austenite grain reduces the strength moderately. As for the elongation, however, it increases dramatically when the testing temperature is over 750 °C, due to the dissolution of cementite and formation of austenite. The obtained results will provide some fundamental data to understand and implement the In-Vessel Retention strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Hang; Takada, Yasutami
2011-10-15
The quantum phase transition between Mott insulator and superfluid is studied in the two-dimensional Jaynes-Cummings square lattice in which the counter-rotating coupling (CRC) is included. Both the ground state and the spectra of low-lying excitations are obtained with use of a sophisticated unitary transformation. This CRC is shown not only to induce a long-range interaction between cavities, favoring the long-range superfluid order, but also to break the conservation of local polariton number at each site, leading to the absence of the Mott lobes in the phase diagram, in sharp contrast with the case without the CRC as well as thatmore » of the Bose-Hubbard model.« less
Glassiness versus Order in Densely Frustrated Josephson Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, P.; Teitel, S.; Gingras, M.J.
1998-01-01
We carry out extensive Monte Carlo simulations of the Coulomb gas dual to the uniformly frustrated two-dimensional XY model, for a sequence of frustrations f converging to the irrational (3{minus}{radical}(5))/ 2. We find in these systems a sharp first order equilibrium phase transition to an ordered vortex structure at a T{sub c} which varies only slightly with f . This ordered vortex structure remains, in general, phase incoherent until a lower vortex pinning transition T{sub p}(f) that varies with f. We argue that the glassy behaviors reported for this model in earlier simulations are dynamic effects. {copyright} {ital 1997} {italmore » The American Physical Society}« less
NASA Astrophysics Data System (ADS)
Sous, John; Chakraborty, Monodeep; Krems, Roman; Berciu, Mona
We study two identical fermions, or two hard-core bosons, in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer- Heeger (SSH) model. We show that exchange of phonons generates effective nearest-neighbor repulsion between particles and also gives rise to interactions that move the pair as a whole. The two-polaron phase diagram exhibits two sharp transitions, leading to light dimers at strong coupling and the flattening of the dimer dispersion at some critical values of the parameters. This dimer (quasi)self-trapping occurs at coupling strengths where single polarons are mobile. This illustrates that, depending on the strength of the phonon-mediated interactions, the coupling to phonons may completely suppress or strongly enhance quantum transport of correlated particles. NSERC, Stewart Blusson Quantum Matter Institute.
NASA Astrophysics Data System (ADS)
Bordonskii, G. S.; Gurulev, A. A.
2017-04-01
We have experimentally studied the thermal and microwave properties of a nanoporous medium (silica gel) with hydrogen-filled pores. On cooling down to about -45°C at atmospheric pressure, the system exhibited chemical transformations, a first-order phase transition with heat evolution, and a sharp change in the power of microwave radiation at 34 GHz transmitted through a sample. It is concluded that this point on the phase diagram corresponds to a point on the Widom line featuring sharp increase in fluctuations of the entropy and density of supercooled water formed during hydrogen interaction with the surface of pores in silica gel. These results confirm the existence of a second critical point of water, from which the Widom line originates.
NASA Astrophysics Data System (ADS)
Maguire, R.; Ritsema, J.
2017-12-01
The tectonic evolution of North America over the past 150 million years was heavily influenced by the complex subduction history of the Farallon plate. In particular, Laramide mountain building may have been triggered by the initiation of flat slab subduction in the late Cretaceous. While it has been proposed that the cause of slab flattening is related to the subduction of an oceanic plateau[1], direct geophysical evidence of a subducted oceanic plateau is lacking. Here, using P-to-S receiver functions, we detect a sharp seismic discontinuity at 720-km depth beneath the southeastern United States and Gulf of Mexico. We interpret this discontinuity as a garnet-to-bridgmanite phase transition occurring within a thickened Farallon crust. Our results are consistent with a subducted oceanic plateau (likely the conjugate half of the Hess rise) which is foundering below the base of the mantle transition zone. Additionally, we find a strong 520-km discontinuity beneath the southeastern United States which may indicate a hydrous transition zone due to the release of H2O from the Farallon slab. These results provide insight into the dynamics of flat slab subduction as well as the tectonic history of North America. [1] Livaccari, R. F., Burke, K., & Şengör, A. M. C. (1981). Was the Laramide orogeny related to subduction of an oceanic plateau? Nature, v. 289, p. 276-278, doi: 10.1038/289276a0
Threshold Collision Energy of the QCD Phase Diagram Tricritical Endpoint
NASA Astrophysics Data System (ADS)
Bugaev, K. A.; Emaus, R.; Sagun, V. V.; Ivanytskyi, A. I.; Bravina, L. V.; Blaschke, D. B.; Nikonov, E. G.; Taranenko, A. V.; Zabrodin, E. E.; Zinovjev, G. M.
2018-05-01
Using the most advanced formulation of the hadron resonance gas model we analyze the two sets of irregularities found at chemical freeze-out of central nuclear-nuclear collisions at the center of mass energies 3.8-4.9 GeV and 7.6-9.2 GeV. In addition to previously reported irregularities at the collision energies 4.9 and 9.2 GeV we found sharp peaks of baryonic charge density. Also we analyze the collision energy dependence of the modified Wroblewski factor and the strangeness suppression factor. Based on the thermostatic properties of the mixed phase of a 1st order phase transition and the ones of the Hagedorn mass spectrum we explain, respectively, the reason of observed chemical equilibration of strangeness at the collision energy 4.9 GeV and above 8.7 GeV. It is argued that the both sets of irregularities possibly evidence for two phase transitions, namely, the 1st order transition at lower energy range and the 2nd order transition at higher one. In combination with a recent analysis of the light nuclei number fluctuations we conclude that the center of mass collision energy range 8.8-9.2 GeV may be in the nearest vicinity of the QCD tricritical endpoint. The properties of the phase existing between two phase transitions are revealed and discussed.
Mathematical analysis of a sharp-diffuse interfaces model for seawater intrusion
NASA Astrophysics Data System (ADS)
Choquet, C.; Diédhiou, M. M.; Rosier, C.
2015-10-01
We consider a new model mixing sharp and diffuse interface approaches for seawater intrusion phenomena in free aquifers. More precisely, a phase field model is introduced in the boundary conditions on the virtual sharp interfaces. We thus include in the model the existence of diffuse transition zones but we preserve the simplified structure allowing front tracking. The three-dimensional problem then reduces to a two-dimensional model involving a strongly coupled system of partial differential equations of parabolic type describing the evolution of the depths of the two free surfaces, that is the interface between salt- and freshwater and the water table. We prove the existence of a weak solution for the model completed with initial and boundary conditions. We also prove that the depths of the two interfaces satisfy a coupled maximum principle.
Molecular organization of the cholesteryl ester droplets in the fatty streaks of human aorta.
Engelman, D M; Hillman, G M
1976-01-01
X-ray diffraction patterns from human arterial specimens containing atherosclerotic fatty streak lesions exhibited a single sharp reflection, corresponding to a structural spacing of about 35 A. Specimens without lesions did not. When specimens with fatty streaks were heated, an order-to-disorder phase transition was revealed by the disappearance of the sharp reflection. The transition was thermally reversible and its temperature varied from aorta to aorta over a range from 28 degrees to 42 degrees C. Since cholesteryl ester droplets are a major component of fatty streaks, comparison studies were made of the diffraction behavior from pure cholesteryl esters. We found that the diffraction patterns of the fatty streak material could be accounted for by the organization of the cholesteryl esters into a liquid-crystalline smectic phase that melts from the smectic to a less ordered phase upon heating. When combined with the conclusions of others from polarized light microscopy, our study shows that a droplet in the smectic phase has well-defined concentric layers of lipid molecules. In each layer, the long axes of the molecules have a net radial orientation with respect to the droplet, but the side-to-side organization is disordered. We suggest that the accessibility of portions of the lipids for specific binding to enzymes or transport proteins may be restricted when they are in the smectic state, and that exchange of lipids with surrounding membranes or other potential binding sites may likewise be inhibited. The restriction in the smectic phase should be greater than in the less ordered phases that exist at higher temperatures. Images PMID:965500
Many-body localization in Ising models with random long-range interactions
NASA Astrophysics Data System (ADS)
Li, Haoyuan; Wang, Jia; Liu, Xia-Ji; Hu, Hui
2016-12-01
We theoretically investigate the many-body localization phase transition in a one-dimensional Ising spin chain with random long-range spin-spin interactions, Vi j∝|i-j |-α , where the exponent of the interaction range α can be tuned from zero to infinitely large. By using exact diagonalization, we calculate the half-chain entanglement entropy and the energy spectral statistics and use them to characterize the phase transition towards the many-body localization phase at infinite temperature and at sufficiently large disorder strength. We perform finite-size scaling to extract the critical disorder strength and the critical exponent of the divergent localization length. With increasing α , the critical exponent experiences a sharp increase at about αc≃1.2 and then gradually decreases to a value found earlier in a disordered short-ranged interacting spin chain. For α <αc , we find that the system is mostly localized and the increase in the disorder strength may drive a transition between two many-body localized phases. In contrast, for α >αc , the transition is from a thermalized phase to the many-body localization phase. Our predictions could be experimentally tested with an ion-trap quantum emulator with programmable random long-range interactions, or with randomly distributed Rydberg atoms or polar molecules in lattices.
Optical manifestation of the Stoner ferromagnetic transition in two-dimensional electron systems
NASA Astrophysics Data System (ADS)
Van'kov, A. B.; Kaysin, B. D.; Kukushkin, I. V.
2017-12-01
We perform a magneto-optical study of a two-dimensional electron systems in the regime of the Stoner ferromagnetic instability for even quantum Hall filling factors on MgxZn1 -xO /ZnO heterostructures. Under conditions of Landau-level crossing, caused by enhanced spin susceptibility in combination with the tilting of the magnetic field, the transition between two rivaling phases, paramagnetic and ferromagnetic, is traced in terms of optical spectra reconstruction. Synchronous sharp transformations are observed both in the photoluminescence structure and parameters of collective excitations upon transition from paramagnetic to ferromagnetic ordering. Based on these measurements, a phase diagram is constructed in terms of the two-dimensional electron density and tilt angle of the magnetic field. Apart from stable paramagnetic and ferromagnetic phases, an instability region is found at intermediate parameters with the Stoner transition occurring at ν ≈2 . The spin configuration in all cases is unambiguously determined by means of inelastic light scattering by spin-sensitive collective excitations. One indicator of the spin ordering is the intra-Landau-level spin exciton, which acquires a large spectral weight in the ferromagnetic phases. The other is an abrupt energy shift of the intersubband charge density excitation due to reconstruction of the many-particle energy contribution. From our analysis of photoluminescence and light scattering data, we estimate the ratio of surface areas occupied by the domains of the two phases in the vicinity of a transition point. In addition, the thermal smearing of a phase transition is characterized.
Phase diagram of the itinerant helical magnet MnSi at high pressures and strong magnetic fields
NASA Astrophysics Data System (ADS)
Stishov, Sergei
We performed a series of resistivity, heat capacity and ultrasound speed measurements of a MnSi single crystal at high pressures and strong magnetic fields [1-3]. Two notable features of the phase transition in MnSi that disappear on pressure increasin are a sharp peak marking the first order phase transition and a shallow maximum, situated slightly above the critical temperature and pointing to the domain of prominent helical fluctuations. The longitudinal and transverse ultrasound speeds and attenuation were measured in a MnSi single crystal in the temperature range of 2-40 K and magnetic fields to 7 Tesla. The magnetic phase transition in MnSi in zero magnetic field is signified by a quasi-discontinuity in the c11 elastic constant, which almost vanishes at the skyrmion - paramagnetic transition at high magnetic fields. The powerful fluctuations at the minima of c11 make the mentioned crossing point of the minima and the phase transition lines similar to a critical end point, where a second order phase transition meets a first order one.
Coordinated and uncoordinated optimization of networks
NASA Astrophysics Data System (ADS)
Brede, Markus
2010-06-01
In this paper, we consider spatial networks that realize a balance between an infrastructure cost (the cost of wire needed to connect the network in space) and communication efficiency, measured by average shortest path length. A global optimization procedure yields network topologies in which this balance is optimized. These are compared with network topologies generated by a competitive process in which each node strives to optimize its own cost-communication balance. Three phases are observed in globally optimal configurations for different cost-communication trade offs: (i) regular small worlds, (ii) starlike networks, and (iii) trees with a center of interconnected hubs. In the latter regime, i.e., for very expensive wire, power laws in the link length distributions P(w)∝w-α are found, which can be explained by a hierarchical organization of the networks. In contrast, in the local optimization process the presence of sharp transitions between different network regimes depends on the dimension of the underlying space. Whereas for d=∞ sharp transitions between fully connected networks, regular small worlds, and highly cliquish periphery-core networks are found, for d=1 sharp transitions are absent and the power law behavior in the link length distribution persists over a much wider range of link cost parameters. The measured power law exponents are in agreement with the hypothesis that the locally optimized networks consist of multiple overlapping suboptimal hierarchical trees.
Simulating a topological transition in a superconducting phase qubit by fast adiabatic trajectories
NASA Astrophysics Data System (ADS)
Wang, Tenghui; Zhang, Zhenxing; Xiang, Liang; Gong, Zhihao; Wu, Jianlan; Yin, Yi
2018-04-01
The significance of topological phases has been widely recognized in the community of condensed matter physics. The well controllable quantum systems provide an artificial platform to probe and engineer various topological phases. The adiabatic trajectory of a quantum state describes the change of the bulk Bloch eigenstates with the momentum, and this adiabatic simulation method is however practically limited due to quantum dissipation. Here we apply the "shortcut to adiabaticity" (STA) protocol to realize fast adiabatic evolutions in the system of a superconducting phase qubit. The resulting fast adiabatic trajectories illustrate the change of the bulk Bloch eigenstates in the Su-Schrieffer-Heeger (SSH) model. A sharp transition is experimentally determined for the topological invariant of a winding number. Our experiment helps identify the topological Chern number of a two-dimensional toy model, suggesting the applicability of the fast adiabatic simulation method for topological systems.
NASA Astrophysics Data System (ADS)
Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui
2014-02-01
Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.
Composite, ordered material having sharp surface features
D'Urso, Brian R.; Simpson, John T.
2006-12-19
A composite material having sharp surface features includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a sharp surface feature. The sharp surface features can be coated to make the surface super-hydrophobic.
Innocenti, Giacomo; Morelli, Alice; Genesio, Roberto; Torcini, Alessandro
2007-12-01
The dynamical phases of the Hindmarsh-Rose neuronal model are analyzed in detail by varying the external current I. For increasing current values, the model exhibits a peculiar cascade of nonchaotic and chaotic period-adding bifurcations leading the system from the silent regime to a chaotic state dominated by bursting events. At higher I-values, this phase is substituted by a regime of continuous chaotic spiking and finally via an inverse period doubling cascade the system returns to silence. The analysis is focused on the transition between the two chaotic phases displayed by the model: one dominated by spiking dynamics and the other by bursts. At the transition an abrupt shrinking of the attractor size associated with a sharp peak in the maximal Lyapunov exponent is observable. However, the transition appears to be continuous and smoothed out over a finite current interval, where bursts and spikes coexist. The beginning of the transition (from the bursting side) is signaled from a structural modification in the interspike interval return map. This change in the map shape is associated with the disappearance of the family of solutions responsible for the onset of the bursting chaos. The successive passage from bursting to spiking chaos is associated with a progressive pruning of unstable long-lasting bursts.
Statistical mechanics of complex economies
NASA Astrophysics Data System (ADS)
Bardoscia, Marco; Livan, Giacomo; Marsili, Matteo
2017-04-01
In the pursuit of ever increasing efficiency and growth, our economies have evolved to remarkable degrees of complexity, with nested production processes feeding each other in order to create products of greater sophistication from less sophisticated ones, down to raw materials. The engine of such an expansion have been competitive markets that, according to general equilibrium theory (GET), achieve efficient allocations under specific conditions. We study large random economies within the GET framework, as templates of complex economies, and we find that a non-trivial phase transition occurs: the economy freezes in a state where all production processes collapse when either the number of primary goods or the number of available technologies fall below a critical threshold. As in other examples of phase transitions in large random systems, this is an unintended consequence of the growth in complexity. Our findings suggest that the Industrial Revolution can be regarded as a sharp transition between different phases, but also imply that well developed economies can collapse if too many intermediate goods are introduced.
Epitaxial VO2 thin-film-based radio-frequency switches with electrical activation
NASA Astrophysics Data System (ADS)
Lee, Jaeseong; Lee, Daesu; Cho, Sang June; Seo, Jung-Hun; Liu, Dong; Eom, Chang-Beom; Ma, Zhenqiang
2017-09-01
Vanadium dioxide (VO2) is a correlated material exhibiting a sharp insulator-to-metal phase transition (IMT) caused by temperature change and/or bias voltage. We report on the demonstration of electrically triggered radio-frequency (RF) switches based on epitaxial VO2 thin films. The highly epitaxial VO2 and SnO2 template layer was grown on a (001) TiO2 substrate by pulsed laser deposition (PLD). A resistance change of the VO2 thin films of four orders of magnitude was achieved with a relatively low threshold voltage, as low as 13 V, for an IMT phase transition. VO2 RF switches also showed high-frequency responses of insertion losses of -3 dB at the on-state and return losses of -4.3 dB at the off-state over 27 GHz. Furthermore, an intrinsic cutoff frequency of 17.4 THz was estimated for the RF switches. The study on electrical IMT dynamics revealed a phase transition time of 840 ns.
Formation of collapsed tetragonal phase in EuCo₂As₂ under high pressure.
Bishop, Matthew; Uhoya, Walter; Tsoi, Georgiy; Vohra, Yogesh K; Sefat, Athena S; Sales, Brian C
2010-10-27
The structural properties of EuCo₂As₂ have been studied up to 35 GPa, through the use of x-ray diffraction in a diamond anvil cell at a synchrotron source. At ambient conditions, EuCo₂As₂ ) (I4/mmm) has a tetragonal lattice structure with a bulk modulus of 48 ± 4 GPa. With the application of pressure, the a axis exhibits negative compressibility with a concurrent sharp decrease in c-axis length. The anomalous compressibility of the a axis continues until 4.7 GPa, at which point the structure undergoes a second-order phase transition to a collapsed tetragonal (CT) state with a bulk modulus of 111 ± 2 GPa. We found a strong correlation between the ambient pressure volume of 122 parents of superconductors and the corresponding tetragonal to collapsed tetragonal phase transition pressures.
Nucleation in the presence of long-range interactions. [performed on ferroelectric barium titanate
NASA Technical Reports Server (NTRS)
Chandra, P.
1989-01-01
Unlike droplet nucleation near a liquid-gas critical point, the decay of metastable phases in crystalline materials is strongly affected by the presence of long-range forces. Field quench experiments performed on the ferroelectric barium titanate indicate that nucleation in this material is markedly different from that observed in liquids. In this paper, a theory for nucleation at a first-order phase transition in which the mediating forces are long range is presented. It is found that the long-range force induces cooperative nucleation and growth processes, and that this feedback mechanism produces a well-defined delay time with a sharp onset in the transformation to the stable phase. Closed-form expressions for the characteristic onset time and width of the transition are developed, in good agreement with numerical and experimental results.
NASA Astrophysics Data System (ADS)
Hatke, Anthony; Engel, Lloyd; Liu, Yang; Shayegan, Mansour; Pfeiffer, Loren; West, Ken; Baldwin, Kirk
2015-03-01
The termination of the low Landau filling factor (ν) fractional quantum Hall series for a single layer two dimensional system results in the formation of a pinned Wigner solid for ν < 1 / 5. In a wide quantum well the system can support a bilayer state in which interlayer and intralayer interactions become comparable, which is measured in traditional transport as an insulating state for ν < 1 / 2. We perform microwave spectroscopic studies of this bilayer state and observe that this insulator exhibits a resonance, a signature of a solid phase. Additionally, we find that as we increase the density of the well at fixed ν this bilayer solid exhibits multiple sharp reductions in the resonance amplitude vs ν. This behavior is characteristic of multiple phase transitions, which remain hidden from dc transport measurements.
Anomalously low pressure of rutile-CaCl2 phase transition in aluminous hydrogen- bearing stishovite.
NASA Astrophysics Data System (ADS)
Lakshtanov, D. L.; Sinogeikin, S. V.; Litasov, K. D.; Prakapenka, V. B.; Hellwig, H.; Wang, J.; Sanches-Valle, C.; Perrillat, J.; Chen, B.; Somayazulu, M.; Ohtani, E.; Bass, J.
2006-12-01
Stishovite, the tetragonal rutile-structured (P42/mnm) high-pressure phase of silica with Si in six coordination by oxygen, is one of the main constituents of subducting slabs, may also be present as a free phase in the lower mantle, and may be a reaction product at the core-mantle boundary. Pure SiO2 stishovite undergoes a rutile-CaCl2 structural transition at 50 - 60GPa. Theoretical investigations suggested that this transition is associated with a drastic drop in shear modulus that could provide a sharp seismic signature, however such a change in velocity has never been verified experimentally. Thus far a majority of investigations have concentrated on pure SiO2 stishovite, whereas stishovite in natural lithologies (such as MORB) is expected to contain up to 5wt.% Al2O3 and possibly water. Here we report the elastic properties, densities, and Raman spectra of Al- and H-bearing stishovite with a composition close to that expected in Earth's mantle. We show that the Landau-type rutile-CaCl2 phase transition in stishovite is significantly different from the transition pressure for pure SiO2. Our results suggest that the rutile-CaCl2 transition in natural stishovite (with up to 5wt.% Al2O3) is strongly influenced by the presence of minor elements. The phase transition is accompanied by drastic changes in elastic properties, which we have measured on single-crystal samples. This transition should be visible in seismic profiles and may be responsible for seismic reflectors at 1000-1400 km depths.
On Mechanical Transitions in Biologically Motivated Soft Matter Systems
NASA Astrophysics Data System (ADS)
Fogle, Craig
The notion of phase transitions as a characterization of a change in physical properties pervades modern physics. Such abrupt and fundamental changes in the behavior of physical systems are evident in condensed matter system and also occur in nuclear and subatomic settings. While this concept is less prevalent in the field of biology, recent advances have pointed to its relevance in a number of settings. Recent studies have modeled both the cell cycle and cancer as phase transition in physical systems. In this dissertation we construct simplified models for two biological systems. As described by those models, both systems exhibit phase transitions. The first model is inspired by the shape transition in the nuclei of neutrophils during differentiation. During differentiation the nucleus transitions from spherical to a shape often described as "beads on a string." As a simplified model of this system, we investigate the spherical-to-wrinkled transition in an elastic core bounded to a fluid shell system. We find that this model exhibits a first-order phase transition, and the shape that minimizes the energy of the system scales as (micror3/kappa). . The second system studied is motivated by the dynamics of globular proteins. These proteins may undergoes conformational changes with large displacements relative to their size. Transitions between conformational states are not possible if the dynamics are governed strictly by linear elasticity. We construct a model consisting of an predominantly elastic region near the energetic minimum of the system and a non-linear softening of the system at a critical displacement. We find that this simple model displays very rich dynamics include a sharp dynamical phase transition and driving-force-dependent symmetry breaking.
Color superconductivity in compact stellar hybrid configurations
NASA Astrophysics Data System (ADS)
Ranea-Sandoval, Ignacio F.; Orsaria, Milva G.; Han, Sophia; Weber, Fridolin; Spinella, William M.
2017-12-01
The discovery of pulsars PSR J1614-2230 and PSR J0348+0432 with masses of around 2 M⊙ imposes strong constraints on the equations of state of cold, ultradense matter. If a phase transition from hadronic matter to quark matter were to occur in the inner cores of such massive neutron stars, the energetically favorable state of quark matter would be a color superconductor. In this study, we analyze the stability and maximum mass of such neutron stars. The hadronic phase is described by nonlinear relativistic mean-field models, and the local Nambu-Jona Lasinio model is used to describe quark matter in the 2SC+s quark phase. The phase transition is treated as a Maxwell transition, assuming a sharp hadron-quark interface, and the "constant-sound-speed" (CSS) parametrization is employed to discuss the existence of stellar twin configurations. We find that massive neutron stars such as J1614-2230 and J0348+0432 can only exist on the connected stellar branch but not on the disconnected twin-star branch. The latter can only support stars with masses that are strictly below 2 M⊙ .
Fermi surface reconstruction and multiple quantum phase transitions in the antiferromagnet CeRhIn5
Jiao, Lin; Chen, Ye; Kohama, Yoshimitsu; Graf, David; Bauer, E. D.; Singleton, John; Zhu, Jian-Xin; Weng, Zongfa; Pang, Guiming; Shang, Tian; Zhang, Jinglei; Lee, Han-Oh; Park, Tuson; Jaime, Marcelo; Thompson, J. D.; Steglich, Frank; Si, Qimiao; Yuan, H. Q.
2015-01-01
Conventional, thermally driven continuous phase transitions are described by universal critical behavior that is independent of the specific microscopic details of a material. However, many current studies focus on materials that exhibit quantum-driven continuous phase transitions (quantum critical points, or QCPs) at absolute zero temperature. The classification of such QCPs and the question of whether they show universal behavior remain open issues. Here we report measurements of heat capacity and de Haas–van Alphen (dHvA) oscillations at low temperatures across a field-induced antiferromagnetic QCP (Bc0 ≈ 50 T) in the heavy-fermion metal CeRhIn5. A sharp, magnetic-field-induced change in Fermi surface is detected both in the dHvA effect and Hall resistivity at B0* ≈ 30 T, well inside the antiferromagnetic phase. Comparisons with band-structure calculations and properties of isostructural CeCoIn5 suggest that the Fermi-surface change at B0* is associated with a localized-to-itinerant transition of the Ce-4f electrons in CeRhIn5. Taken in conjunction with pressure experiments, our results demonstrate that at least two distinct classes of QCP are observable in CeRhIn5, a significant step toward the derivation of a universal phase diagram for QCPs. PMID:25561536
Collapsed tetragonal phase transition in LaRu 2 P 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drachuck, Gil; Sapkota, Aashish; Jayasekara, Wageesha T.
Here, the structural properties of LaRu 2P 2 under external pressure have been studied up to 14 GPa, employing high-energy x-ray diffraction in a diamond-anvil pressure cell. At ambient conditions, LaRu 2P 2 (I4/ mmm) has a tetragonal structure with a bulk modulus of B = 105(2) GPa and exhibits superconductivity at T c = 4.1 K. With the application of pressure, LaRu 2P 2 undergoes a phase transition to a collapsed tetragonal (cT) state with a bulk modulus of B = 175(5) GPa. At the transition, the c-lattice parameter exhibits a sharp decrease with a concurrent increase of themore » a-lattice parameter. The cT phase transition in LaRu 2P 2 is consistent with a second-order transition, and was found to be temperature dependent, increasing from P = 3.9(3) GPa at 160 K to P = 4.6(3) GPa at 300 K. In total, our data are consistent with the cT transition being near, but slightly above 2 GPa at 5 K where superconductivity is suppressed. Finally, we compare the effect of physical and chemical pressure in the RRu 2P 2 ( R = Y, La–Er, Yb) isostructural series of compounds and find them to be analogous.« less
Collapsed tetragonal phase transition in LaRu2P2
NASA Astrophysics Data System (ADS)
Drachuck, Gil; Sapkota, Aashish; Jayasekara, Wageesha T.; Kothapalli, Karunakar; Bud'ko, Sergey L.; Goldman, Alan I.; Kreyssig, Andreas; Canfield, Paul C.
2017-11-01
The structural properties of LaRu2P2 under external pressure have been studied up to 14 GPa, employing high-energy x-ray diffraction in a diamond-anvil pressure cell. At ambient conditions, LaRu2P2 (I4/mmm) has a tetragonal structure with a bulk modulus of B =105 (2 ) GPa and exhibits superconductivity at Tc=4.1 K. With the application of pressure, LaRu2P2 undergoes a phase transition to a collapsed tetragonal (cT) state with a bulk modulus of B =175 (5 ) GPa. At the transition, the c -lattice parameter exhibits a sharp decrease with a concurrent increase of the a -lattice parameter. The cT phase transition in LaRu2P2 is consistent with a second-order transition, and was found to be temperature dependent, increasing from P =3.9 (3 ) GPa at 160 K to P =4.6 (3 ) GPa at 300 K. In total, our data are consistent with the cT transition being near, but slightly above 2 GPa at 5 K where superconductivity is suppressed. Finally, we compare the effect of physical and chemical pressure in the RRu2P2 (R = Y, La -Er , Yb) isostructural series of compounds and find them to be analogous.
Collapsed tetragonal phase transition in LaRu 2 P 2
Drachuck, Gil; Sapkota, Aashish; Jayasekara, Wageesha T.; ...
2017-11-10
Here, the structural properties of LaRu 2P 2 under external pressure have been studied up to 14 GPa, employing high-energy x-ray diffraction in a diamond-anvil pressure cell. At ambient conditions, LaRu 2P 2 (I4/ mmm) has a tetragonal structure with a bulk modulus of B = 105(2) GPa and exhibits superconductivity at T c = 4.1 K. With the application of pressure, LaRu 2P 2 undergoes a phase transition to a collapsed tetragonal (cT) state with a bulk modulus of B = 175(5) GPa. At the transition, the c-lattice parameter exhibits a sharp decrease with a concurrent increase of themore » a-lattice parameter. The cT phase transition in LaRu 2P 2 is consistent with a second-order transition, and was found to be temperature dependent, increasing from P = 3.9(3) GPa at 160 K to P = 4.6(3) GPa at 300 K. In total, our data are consistent with the cT transition being near, but slightly above 2 GPa at 5 K where superconductivity is suppressed. Finally, we compare the effect of physical and chemical pressure in the RRu 2P 2 ( R = Y, La–Er, Yb) isostructural series of compounds and find them to be analogous.« less
Anisotropy induced anomalies in Dy 1$-$xTb xAl 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, M.; Miami Univ., Oxford, OH; Pathak, A. K.
2017-01-02
The Dy 1$-$xTb xAl 2 alloys have been investigated by X-ray powder diffraction, heat capacity, and magnetic measurements. All samples exhibit cubic Laves phase crystal structure at room temperature but at T C, DyAl2 and TbAl 2 show tetragonal and rhombohedral distortions, respectively. First order phase transitions are observed below T C (at the spin-reorientation transition, T SR) in the alloys with 0.15 ≤ x ≤ 0.35. These transitions are signified by sharp heat capacity peaks and corresponding anomalies in the magnetization and ac magnetic susceptibility data. The observations are interpreted by taking into consideration the differences in easy magnetizationmore » directions of DyAl 2 and TbAl 2. Due to the competing magnetic structures, the anisotropy-related instability and magnetic frustrations are prominent in the Dy 1$-$xTb xAl 2 alloys at certain concentrations resulting in the first order transitions.« less
Transport of a Bose gas in 1D disordered lattices at the fluid-insulator transition.
Tanzi, Luca; Lucioni, Eleonora; Chaudhuri, Saptarishi; Gori, Lorenzo; Kumar, Avinash; D'Errico, Chiara; Inguscio, Massimo; Modugno, Giovanni
2013-09-13
We investigate the momentum-dependent transport of 1D quasicondensates in quasiperiodic optical lattices. We observe a sharp crossover from a weakly dissipative regime to a strongly unstable one at a disorder-dependent critical momentum. In the limit of nondisordered lattices the observations suggest a contribution of quantum phase slips to the dissipation. We identify a set of critical disorder and interaction strengths for which such critical momentum vanishes, separating a fluid regime from an insulating one. We relate our observation to the predicted zero-temperature superfluid-Bose glass transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolev, S. L., E-mail: sobolev@icp.ac.ru
An analytical model has been developed to describe the influence of solute trapping during rapid alloy solidification on the components of the Gibbs free energy change at the phase interface with emphasis on the solute drag energy. For relatively low interface velocity V < V{sub D}, where V{sub D} is the characteristic diffusion velocity, all the components, namely mixing part, local nonequilibrium part, and solute drag, significantly depend on solute diffusion and partitioning. When V ≥ V{sub D}, the local nonequilibrium effects lead to a sharp transition to diffusionless solidification. The transition is accompanied by complete solute trapping and vanishingmore » solute drag energy, i.e. partitionless and “dragless” solidification.« less
Hou, Lei; Wu, Peiyi
2016-06-21
Turbidity, DLS and FTIR measurements in combination with the perturbation correlation moving window (PCMW) technique and 2D correlation spectroscopy (2Dcos) analysis have been utilized to investigate the LCST-type transition of a oligo ethylene glycol acrylate-based copolymer (POEGA) in aqueous solutions in this work. As demonstrated in turbidity and DLS curves, the macroscopic phase separation was sharp and slightly concentration dependent. Moreover, individual chemical groups along polymer chains also display abrupt changes in temperature-variable IR spectra. However, according to conventional IR analysis, the C-H groups present obvious dehydration, whereas C[double bond, length as m-dash]O and C-O-C groups exhibit anomalous "forced hydration" during the steep phase transition. From these analyses together with the PCMW and 2Dcos results, it has been confirmed that the hydrophobic interaction among polymer chains drove the chain collapse and dominated the phase transition. In addition, the unexpected enhanced hydration behavior of C[double bond, length as m-dash]O and C-O-C groups was induced by forced hydrogen bonding between polar groups along polymer chains and entrapped water molecules in the aggregates, which originated from the special chemical structure of POEGA.
Phase transition in lithium ammonium sulphate doped with cesium metal ions
NASA Astrophysics Data System (ADS)
Gaafar, M.; Kassem, M. E.; Kandil, S. H.
2000-07-01
Effects of doped cesium (C s+) metal ions (with different molar ratios n) on the phase transition of lithium ammonium sulphate LiNH 4SO 4 system have been studied by measuring the specific heat Cp( T) of the doped systems in the temperature range from 400 to 480 K. The study shows a peculiar phase transition of the pure system ( n=0) characterized by double distinct peaks, changed to a single sharp and narrow one as a result of the doping process. The measurements exhibit different effects of enhanced molar ratios of dopants on the phase transition behaviour of this system. At low dopant content ( n≤3%), the excess specific heat (Δ Cp) max at the transition temperature T1 decreases till a minimum value at n=0.8%, then it increases gradually. In this case, Δ Cp( T) behaviour is varied quantitatively and not modified. Enhanced dopant content ( n>3%) has a pronounced effect on the critical behaviour, which is significantly changed and considerably modified relative to the pure system. In addition, broadening of the critical temperature region, and decrease of (Δ Cp) max associated with changes of the Landau expansion coefficients are obtained and discussed. The study deals with the contribution of the thermally excited dipoles to the specific heat in the ferroelectric region and shows that their energy depends on doping.
NASA Astrophysics Data System (ADS)
Giovambattista, N.; Sciortino, F.; Starr, F. W.; Poole, P. H.
The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics for describing supercooled liquids and glasses. We use the PEL formalism and computer simulations to study the transformation between low-density (LDL) and high-density liquid (HDL) water, and between low-density (LDA) and high-density amorphous ice (HDA). We employ the ST2 water model that exhibits a LDL-HDL first-order phase transition and a sharp LDA-HDA transformation, as observed in experiments. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that LDL configurations are located in the same megabasin as LDA, and that HDL configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid and the amorphous ice differ. We also study the liquid-to-ice-VII first-order phase transition. The PEL properties across this transition are qualitatively similar to the changes found during the LDA-HDA transformation, supporting the interpretation that the LDA-HDA transformation is a first-order-like phase transition between out-of-equilibrium states.
NASA Astrophysics Data System (ADS)
Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan
2015-03-01
Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.
Linear Phase Sharp Transition BPF to Detect Noninvasive Maternal and Fetal Heart Rate.
Marchon, Niyan; Naik, Gourish; Pai, K R
2018-01-01
Fetal heart rate (FHR) detection can be monitored using either direct fetal scalp electrode recording (invasive) or by indirect noninvasive technique. Weeks before delivery, the invasive method poses a risk factor to the fetus, while the latter provides accurate fetal ECG (FECG) information which can help diagnose fetal's well-being. Our technique employs variable order linear phase sharp transition (LPST) FIR band-pass filter which shows improved stopband attenuation at higher filter orders. The fetal frequency fiduciary edges form the band edges of the filter characterized by varying amounts of overlap of maternal ECG (MECG) spectrum. The one with the minimum maternal spectrum overlap was found to be optimum with no power line interference and maximum fetal heart beats being detected. The improved filtering is reflected in the enhancement of the performance of the fetal QRS detector (FQRS). The improvement has also occurred in fetal heart rate obtained using our algorithm which is in close agreement with the true reference (i.e., invasive fetal scalp ECG). The performance parameters of the FQRS detector such as sensitivity (Se), positive predictive value (PPV), and accuracy (F 1 ) were found to improve even for lower filter order. The same technique was extended to evaluate maternal QRS detector (MQRS) and found to yield satisfactory maternal heart rate (MHR) results.
López Cascales, J J; Otero, T F; Fernandez Romero, A J; Camacho, L
2006-06-20
Understanding the lipid phase transition of lipid bilayers is of great interest from biophysical, physicochemical, and technological points of view. With the aim of elucidating the structural changes that take place in a DPPC phospholipid bilayer induced by an external isotropic surface pressure, five computer simulations were carried out in a range from 0.1 to 40 mN/m. Molecular dynamics simulations provided insight into the structural changes that took place in the lipid structure. It was seen that low pressures ranging from 0.1 to 1 mN/m had hardly any effect on the structure, electrical properties, or hydration of the lipid bilayer. However, for pressures above 40 mN/m, there was a sharp change in the lipid-lipid interactions, hydrocarbon lipid fluidity, and electrostatic potential, corresponding to the mesomorphic transition from a liquid crystalline state (L(alpha)) to its gel state (P'(beta)). The head lipid orientation remained almost unaltered, parallel to the lipid layer, as the surface pressure was increased, although a noticeable change in its angular distribution function was evident with the phase transition.
Sphaleron rate in the minimal standard model.
D'Onofrio, Michela; Rummukainen, Kari; Tranberg, Anders
2014-10-03
We use large-scale lattice simulations to compute the rate of baryon number violating processes (the sphaleron rate), the Higgs field expectation value, and the critical temperature in the standard model across the electroweak phase transition temperature. While there is no true phase transition between the high-temperature symmetric phase and the low-temperature broken phase, the crossover is sharp and located at temperature T(c) = (159.5 ± 1.5) GeV. The sphaleron rate in the symmetric phase (T>T(c)) is Γ/T(4) = (18 ± 3)α(W)(5), and in the broken phase in the physically interesting temperature range 130 GeV < T < T(c) it can be parametrized as log(Γ/T(4)) = (0.83 ± 0.01)T/GeV-(147.7 ± 1.9). The freeze-out temperature in the early Universe, where the Hubble rate wins over the baryon number violation rate, is T* = (131.7 ± 2.3) GeV. These values, beyond being intrinsic properties of the standard model, are relevant for, e.g., low-scale leptogenesis scenarios.
Nazca-South America Subduction Zone Reflectivity from P'P' Precursors
NASA Astrophysics Data System (ADS)
Gu, Y. J.; Schultz, R.
2012-12-01
Much of what is known about mantle owes to the interpretation of its reflectivity structure. On the global scale mantle stratifications have been attributed to mineralogical phase changes of olivine; two widely observed examples are the 410 and 660 km discontinuities. Among the various seismological tools, results from longer-period SS/PP precursors and high frequency receiver functions are routinely compared to increase the confidence of the recovered mantle stratifications. The former are lower frequency approaches with complex Fresnel zones, while constraints on receiver distribution hinder analysis in oceanic regions for the latter. P'P' precursors are a promising high frequency alternative, capable of resolving small-scale structures (resolution of ~5 km vertically, 200 km laterally) in the mantle, owing to its short-period nature (~1Hz), shallow angle of incidence and nearly symmetric Fresnel zone. However, P'P' precursors are known for several complications: phase triplication (PKiKPPKiKP, PKIKPPKIKP, PKPPKPab and PKPPKPbc) and the maximum-phase Fresnel zones result in strong scattering and asymmetric arrivals. Much of these concerns are alleviated through revamped processing techniques involving stacking, deconvolution, Radon transform and migration. We utilize P'P' precursors to constrain the mantle structure and layering beneath the Nazca-South America subduction zone. Our migration profiles reveal both olivine (e.g., 410, 520, 660) and garnet related transitions in the mantle, with constraints on the sharpness of these transitions. Observations of a depressed 660 are attributed to thermal variations, showing the spatial extent of the impinging Nazca slab. Prominent 520 arrivals near subducted slab material suggest this transition is sharpened to a thickness resonant with P'P' (~10km). The possibility of chemical heterogeneity is evidenced near the top of the mantle transition zone through complicated 410 amplitudes. The existence, depth, sharpness and strength of these reflectors/discontinuities offer new constraints on the dynamics and mineralogy of the mantle.
A SAXS-WAXS study of the endothermic transitions in amorphous or supercooled liquid itraconazole
Benmore, C. J.; Mou, Q.; Benmore, K. J.; ...
2016-10-07
Small and wide angle high energy x-ray scattering experiments were performed upon cooling itraconazole from the melt to investigate the structural origin of the two transitions at ~74 °C and ~90 °C observed in DSC measurements. Slight changes to the main WAXS peak at Q = 1.33 ± 0.01 Å –1 were observed at 90 °C and are found to be inter-molecular in nature, suggesting a liquid to isotropic transition. This finding was supported by complementary wide angle neutron scattering measurements. For temperatures at and below ~74 °C two strong rings appear in the 2D-SAXS pattern at Q = 0.24more » ± 0.01 Å –1 and 0.43 ± 0.01 Å –1. The SAXS spectra were further deconvoluted into sharp and broad components. Lastly, a narrowing of the broad component is associated with only minor changes in the packing arrangements of the itraconazole molecules below ~90 °C, while the appearance of the sharp component below ~74 °C is attributed to the formation of a polydomain lamellar phase.« less
Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1-x system
NASA Astrophysics Data System (ADS)
Yang, Guang; Bureau, Bruno; Rouxel, Tanguy; Gueguen, Yann; Gulbiten, Ozgur; Roiland, Claire; Soignard, Emmanuel; Yarger, Jeffery L.; Troles, Johann; Sangleboeuf, Jean-Christophe; Lucas, Pierre
2010-11-01
Physical properties of chalcogenide glasses in the AsxSe1-x system have been measured as a function of composition including the Young’s modulus E , shear modulus G , bulk modulus K , Poisson’s ratio ν , the density ρ , and the glass transition Tg . All these properties exhibit a relatively sharp extremum at the average coordination number ⟨r⟩=2.4 . The structural origin of this trend is investigated by Raman spectroscopy and nuclear magnetic resonance. It is shown that the reticulation of the glass structure increases continuously until x=0.4 following the “chain crossing model” and then undergoes a transition toward a lower dimension pyramidal network containing an increasing number of molecular inclusions at x>0.4 . Simple theoretical estimates of the network bonding energy confirm a mismatch between the values of mechanical properties measured experimentally and the values predicted from a continuously reticulated structure, therefore corroborating the formation of a lower dimension network at high As content. The evolution of a wide range of physical properties is consistent with this sharp structural transition and suggests that there is no intermediate phase in these glasses at room temperature.
NASA Astrophysics Data System (ADS)
Halios, Christos H.; Barlow, Janet F.
2018-03-01
The study of the boundary layer can be most difficult when it is in transition and forced by a complex surface, such as an urban area. Here, a novel combination of ground-based remote sensing and in situ instrumentation in central London, UK, is deployed, aiming to capture the full evolution of the urban boundary layer (UBL) from night-time until the fully-developed convective phase. In contrast with the night-time stable boundary layer observed over rural areas, the night-time UBL is weakly convective. Therefore, a new approach for the detection of the morning-transition and rapid-growth phases is introduced, based on the sharp, quasi-linear increase of the mixing height. The urban morning-transition phase varied in duration between 0.5 and 4 h and the growth rate of the mixing layer during the rapid-growth phase had a strong positive relationship with the convective velocity scale, and a weaker, negative relationship with wind speed. Wind shear was found to be higher during the night-time and morning-transition phases than the rapid-growth phase and the shear production of turbulent kinetic energy near the mixing-layer top was around six times larger than surface shear production in summer, and around 1.5 times larger in winter. In summer under low winds, low-level jets dominated the UBL, and shear production was greater than buoyant production during the night-time and the morning-transition phase near the mixing-layer top. Within the rapid-growth phase, buoyant production dominated at the surface, but shear production dominated in the upper half of the UBL. These results imply that regional flows such as low-level jets play an important role alongside surface forcing in determining UBL structure and growth.
Gautier, J; Passot, S; Pénicaud, C; Guillemin, H; Cenard, S; Lieben, P; Fonseca, F
2013-09-01
The mechanisms of cellular damage that lactic acid bacteria incur during freeze-thaw processes have not been elucidated to date. Fourier transform infrared spectroscopy was used to investigate in situ the lipid phase transition behavior of the membrane of Lactobacillus delbrueckii ssp. bulgaricus CFL1 cells during the freeze-thaw process. Our objective was to relate the lipid membrane behavior to membrane integrity losses during freezing and to cell-freezing resistance. Cells were produced by using 2 different culture media: de Man, Rogosa, and Sharpe (MRS) broth (complex medium) or mild whey-based medium (minimal medium commonly used in the dairy industry), to obtain different membrane lipid compositions corresponding to different recovery rates of cell viability and functionality after freezing. The lipid membrane behavior studied by Fourier transform infrared spectroscopy was found to be different according to the cell lipid composition and cryotolerance. Freeze-resistant cells, exhibiting a higher content of unsaturated and cyclic fatty acids, presented a lower lipid phase transition temperature (Ts) during freezing (Ts=-8°C), occurring within the same temperature range as the ice nucleation, than freeze-sensitive cells (Ts=+22°C). A subzero value of lipid phase transition allowed the maintenance of the cell membrane in a relatively fluid state during freezing, thus facilitating water flux from the cell and the concomitant volume reduction following ice formation in the extracellular medium. In addition, the lipid phase transition of freeze-resistant cells occurred within a short temperature range, which could be ascribed to a reduced number of fatty acids, representing more than 80% of the total. This short lipid phase transition could be associated with a limited phenomenon of lateral phase separation and membrane permeabilization. This work highlights that membrane phase transitions occurring during freeze-thawing play a fundamental role in the cryotolerance of Lb. delbrueckii ssp. bulgaricus CFL1 cells. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chabri, T.; Ghosh, A.; Nair, Sunil; Awasthi, A. M.; Venimadhav, A.; Nath, T. K.
2018-05-01
The existence of a first order martensite transition in off-stoichiometric Ni45Mn44Sn9In2 ferromagnetic shape memory Heusler alloy has been clearly observed by thermal, magnetic, and magneto-transport measurements. Field and thermal path dependence of the change in large magnetic entropy and negative magnetoresistance are observed, which originate due to the sharp change in magnetization driven by metamagnetic transition from the weakly magnetic martensite phase to the ferromagnetic austenite phase in the vicinity of the martensite transition. The noticeable shift in the martensite transition with the application of a magnetic field is the most significant feature of the present study. This shift is due to the interplay of the austenite and martensite phase fraction in the alloy. The different aspects of the first order martensite transition, e.g. broadening of the martensite transition and the field induced arrest of the austenite phase are mainly related to the dynamics of coexisting phases in the vicinity of the martensite transition. The alloy also shows a second order ferromagnetic → paramagnetic transition near the Curie temperature of the austenite phase. A noticeably large change in magnetic entropy (ΔS M = 24 J kg‑1 K‑1 at 298 K) and magnetoresistance (= ‑33% at 295 K) has been observed for the change in 5 and 8 T magnetic fields, respectively. The change in adiabatic temperature for the change in a magnetic field of 5 T is found to be ‑3.8 K at 299 K. The low cost of the ingredients and the large change in magnetic entropy very near to the room temperature makes Ni45Mn44Sn9In2 alloy a promising magnetic refrigerant for real technological application.
NASA Astrophysics Data System (ADS)
Sajjadi, Amir Y.; Carp, Stefan A.; Manstein, Dieter
2017-02-01
Monitoring phase transition in adipose tissue and formation of lipid crystals is important in Cryo-procedures such as cryosurgery or Selective Cryolipolysis (SC). In this work, we exploited a Near-Infrared Spectroscopy (NIRS) method to monitor the onset of fat freezing/melting. Concurrent measurements using frequency domain NIRS and MR Spectroscopy during cooling/heating were performed on an in vitro porcine skin sample with a thick subcutaneous fat layer in a human MR scanner. The NIRS probe was placed on the skin measuring the average optical scattering of the fatty layer. Two fiber optic temperature probes were inserted in the area of the MRS and NIRS measurements. To further investigate the microscopic features of the phase-transition, an identical cooling/heating procedure was replicated on the same fat tissue while being imaged by Optical Coherence Tomography. The temperature relationships of optical scattering, MRS peak characteristics and OCT reflection intensity were analyzed to find signatures related to the onset of phase transition. The optical scattering in the fatty tissues decreases during the heating and increases by cooling. However, there is an inflexion in the rate of change of the scattering while the phase transition happens in the fatty layer. The methylene fat peaks on the MR Spectrum are also shown to be broadened during the cooling. OCT intensity displays a sharp increase at the transition temperature. The results from multiple samples show two transition points around 5-10 ˚C (cooling) and 15-20 ˚C (heating) through all three methods, demonstrating that adipose tissue phase change can be monitored non-invasively.
Sivaramakrishna, D; Swamy, Musti J
2015-09-08
A homologous series of l-alanine alkyl ester hydrochlorides (AEs) bearing 9-18 C atoms in the alkyl chain have been synthesized and characterized with respect to self-assembly, supramolecular structure, and phase transitions. The CMCs of AEs bearing 11-18 C atoms were found to range between 0.1 and 10 mM. Differential scanning calorimetric (DSC) studies showed that the transition temperatures (Tt), enthalpies (ΔHt) and entropies (ΔSt) of AEs in the dry state exhibit odd-even alternation, with the odd-chain-length compounds having higher Tt values, but the even-chain-length homologues showing higher values of ΔHt and ΔSt. In DSC measurements on hydrated samples, carried out at pH 5.0 and pH 10.0 (where they exist in cationic and neutral forms, respectively), compounds with 13-18 C atoms in the alkyl chain showed sharp gel-to-liquid crystalline phase transitions, and odd-even alternation was not seen in the thermodynamic parameters. The molecular structure, packing properties, and intermolecular interactions of AEs with 9 and 10 C atoms in the alkyl chain were determined by single crystal X-ray diffraction, which showed that the alkyl chains are packed in a tilted interdigitated bilayer format. d-Spacings obtained from powder X-ray diffraction studies exhibited a linear dependence on the alkyl chain length, suggesting that the other AEs also adopt an interdigitated bilayer structure. Turbidimetric, fluorescence spectroscopic, and isothermal titration calorimetric (ITC) studies established that in aqueous dispersions l-alanine lauryl ester hydrochloride (ALE·HCl) and sodium dodecyl sulfate (SDS) form an equimolar complex. Transmission electron microscopic and DSC studies indicate that the complex exists as unilamellar liposomes, which exhibit a sharp phase transition at ∼39 °C. The aggregates were disrupted at high pH, suggesting that the catanionic complex would be useful to develop a base-labile drug delivery system. ITC studies indicated that ALE·HCl forms a strong complex with DNA, suggesting that the AEs may find use in DNA therapeutics as well.
Wu, J. J.; Lin, Jung-Fu; Wang, X. C.; Liu, Q. Q.; Zhu, J. L.; Xiao, Y. M.; Chow, P.; Jin, Changqing
2013-01-01
The recent discovery of iron ferropnictide superconductors has received intensive concern in connection with magnetically involved superconductors. Prominent features of ferropnictide superconductors are becoming apparent: the parent compounds exhibit an antiferromagnetic ordered spin density wave (SDW) state, the magnetic-phase transition is always accompanied by a crystal structural transition, and superconductivity can be induced by suppressing the SDW phase via either chemical doping or applied external pressure to the parent state. These features generated considerable interest in the interplay between magnetism and structure in chemically doped samples, showing crystal structure transitions always precede or coincide with magnetic transition. Pressure-tuned transition, on the other hand, would be more straightforward to superconducting mechanism studies because there are no disorder effects caused by chemical doping; however, remarkably little is known about the interplay in the parent compounds under controlled pressure due to the experimental challenge of in situ measuring both of magnetic and crystal structure evolution at high pressure and low temperatures. Here we show from combined synchrotron Mössbauer and X-ray diffraction at high pressures that the magnetic ordering surprisingly precedes the structural transition at high pressures in the parent compound BaFe2As2, in sharp contrast to the chemical-doping case. The results can be well understood in terms of the spin fluctuations in the emerging nematic phase before the long-range magnetic order that sheds light on understanding how the parent compound evolves from a SDW state to a superconducting phase, a key scientific inquiry of iron-based superconductors. PMID:24101468
NASA Astrophysics Data System (ADS)
Zhang, K.; Brötzmann, M.; Hofsäss, H.
2012-09-01
We investigate pattern formation on Si by sputter erosion under simultaneous co-deposition of Fe atoms, both at off-normal incidence, as function of the Fe surface coverage. The patterns obtained for 5 keV Xe ion irradiation at 30° incidence angle are analyzed with atomic force microscopy. Rutherford backscattering spectroscopy of the local steady state Fe content of the Fe-Si surface layer allows a quantitative correlation between pattern type and Fe coverage. With increasing Fe coverage the patterns change, starting from a flat surface at low coverage (< 2×1015 Fe/cm2) over dot patterns (2-8×1015 Fe/cm2), ripples patterns (8-17×1015 Fe/cm2), pill bug structures (1.8×1016 Fe/cm2) and a rather flat surface with randomly distributed weak pits at high Fe coverage (>1.8×1016 Fe/cm2). Our results confirm the observations by Macko et al. for 2 keV Kr ion irradiation of Si with Fe co-deposition. In particular, we also find a sharp transition from pronounced ripple patterns with large amplitude (rms roughness ˜ 18 nm) to a rather flat surface (rms roughness ˜ 0.5 nm). Within this transition regime, we also observe the formation of pill bug structures, i.e. individual small hillocks with a rippled structure on an otherwise rather flat surface. The transition occurs within a very narrow regime of the steady state Fe surface coverage between 1.7 and 1.8×1016 Fe/cm2, where the composition of the mixed Fe-Si surface layer of about 10 nm thickness reaches the stoichiometry of FeSi2. Phase separation towards amorphous iron silicide is assumed as the major contribution for the pattern formation at lower Fe coverage and the sharp transition from ripple patterns to a flat surface.
Roughness exponent in two-dimensional percolation, Potts model, and clock model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redinz, Jose Arnaldo; Martins, Marcelo Lobato
We present a numerical study of the self-affine profiles obtained from configurations of the q-state Potts (with q=2,3, and 7) and p=10 clock models as well as from the occupation states for site percolation on the square lattice. The first and second order static phase transitions of the Potts model are located by a sharp change in the value of the roughness exponent {alpha} characterizing those profiles. The low temperature phase of the Potts model corresponds to flat ({alpha}{approx_equal}1) profiles, whereas its high temperature phase is associated with rough ({alpha}{approx_equal}0.5) ones. For the p=10 clock model, in addition to themore » flat (ferromagnetic) and rough (paramagnetic) profiles, an intermediate rough (0.5{lt}{alpha}{lt}1) phase{emdash}associated with a soft spin-wave one{emdash}is observed. Our results for the transition temperatures in the Potts and clock models are in agreement with the static values, showing that this approach is able to detect the phase transitions in these models directly from the spin configurations, without any reference to thermodynamical potentials, order parameters, or response functions. Finally, we show that the roughness exponent {alpha} is insensitive to geometric critical phenomena.« less
Thermodynamic properties of gas-condensate system with abnormally high content of heavy hydrocarbons
NASA Astrophysics Data System (ADS)
Zanochuev, S. A.; Shabarov, A. B.; Podorozhnikov, S. Yu; Zakharov, A. A.
2018-05-01
Gas-condensate systems (GCS) with an abnormally high content of heavy hydrocarbons are characterized by a sharp change in both phase and component compositions with an insignificant decrease in pressure below the start pressure of the phase transitions (the beginning of condensation). Calculation methods for describing the phase behavior of such systems are very sensitive to the quality of the initial information. The uncertainty of the input data leads not only to significant errors in the forecast of phase compositions, but also to an incorrect phase state estimation of the whole system. The research presents the experimental thermodynamic parameters of the GCS of the BT reservoirs on the Beregovoye field, obtained at the phase equilibrium facility. The data contribute to the adaptation of the calculated models of the phase behavior of the GCS with a change in pressure.
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Kumari, Shalini; Borkar, Hitesh; Katiyar, Ram S.; Scott, James Floyd
2017-01-01
We present detailed Raman studies of SrZrO3 (SZO) that show three anomalies in Raman modes: One has a small jump in frequency ω, one has its intensity vanish, and a third has a sharp change in temperature derivative dω(T)/dT from flat below T = 600 K to a Curie-Weiss dependence above 600 K with extrapolation to zero frequency at the known transition temperature T = 970 K, thereby proving the latter to be displacive. In addition, the P4mm ferroelectric phase predicted at high stresses has preliminary support from polarization-voltage experiments. The inference of a new transition in the temperature region 600-650 K is in disagreement with neutron studies. Comparisons are given for family member SrSnO3 and SrHfO3, and we discuss the different conclusions of Kennedy and Knight. We show that a known transition in SrHfO3 is also displacive with a well-behaved soft mode.
Entanglement Entropy across the Superfluid-Insulator Transition: A Signature of Bosonic Criticality.
Frérot, Irénée; Roscilde, Tommaso
2016-05-13
We study the entanglement entropy and entanglement spectrum of the paradigmatic Bose-Hubbard model, describing strongly correlated bosons on a lattice. The use of a controlled approximation-the slave-boson approach-allows us to study entanglement in all regimes of the model (and, most importantly, across its superfluid-Mott-insulator transition) at a minimal cost. We find that the area-law scaling of entanglement-verified in all the phases-exhibits a sharp singularity at the transition. The singularity is greatly enhanced when the transition is crossed at fixed, integer filling, due to a richer entanglement spectrum containing an additional gapless mode, which descends from the amplitude (Higgs) mode of the global excitation spectrum-while this mode remains gapped at the generic (commensurate-incommensurate) transition with variable filling. Hence, the entanglement properties contain a unique signature of the two different forms of bosonic criticality exhibited by the Bose-Hubbard model.
Bradley, D I; Clubb, D O; Fisher, S N; Guénault, A M; Haley, R P; Matthews, C J; Pickett, G R; Tsepelin, V; Zaki, K
2005-07-15
We report a transition in the vorticity generated by a grid moving in the B phase of superfluid 3He at T
Minimal color-flavor-locked-nuclear interface
NASA Astrophysics Data System (ADS)
Alford, Mark; Rajagopal, Krishna; Reddy, Sanjay; Wilczek, Frank
2001-10-01
At nuclear matter density, electrically neutral strongly interacting matter in weak equilibrium is made of neutrons, protons, and electrons. At sufficiently high density, such matter is made of up, down, and strange quarks in the color-flavor-locked (CFL) phase, with no electrons. As a function of increasing density (or, perhaps, increasing depth in a compact star) other phases may intervene between these two phases, which are guaranteed to be present. The simplest possibility, however, is a single first order phase transition between CFL and nuclear matter. Such a transition, in space, could take place either through a mixed phase region or at a single sharp interface with electron-free CFL and electron-rich nuclear matter in stable contact. Here we construct a model for such an interface. It is characterized by a region of separated charge, similar to an inversion layer at a metal-insulator boundary. On the CFL side, the charged boundary layer is dominated by a condensate of negative kaons. We then consider the energetics of the mixed phase alternative. We find that the mixed phase will occur only if the nuclear-CFL surface tension is significantly smaller than dimensional analysis would indicate.
The role of solid-solid phase transitions in mantle convection
NASA Astrophysics Data System (ADS)
Faccenda, Manuele; Dal Zilio, Luca
2017-01-01
With changing pressure and temperature conditions, downwelling and upwelling crustal and mantle rocks experience several solid-solid phase transitions that affect the mineral physical properties owing to structural changes in the crystal lattice and to the absorption or release of latent heat. Variations in density, together with phase boundary deflections related to the non-null reaction slope, generate important buoyancy forces that add to those induced by thermal perturbations. These buoyancy forces are proportional to the density contrast between reactant and product phases, their volume fraction, the slope and the sharpness of the reaction, and affect the style of mantle convection depending on the system composition. In a homogeneous pyrolitic mantle there is little tendency for layered convection, with slabs that may stagnate in the transition zone because of the positive buoyancy caused by post-spinel and post-ilmenite reactions, and hot plumes that are accelerated by phase transformations in the 600-800 km depth range. By adding chemical and mineralogical heterogeneities as on Earth, phase transitions introduce bulk rock and volatiles filtering effects that generate a compositional gradient throughout the entire mantle, with levels that are enriched or depleted in one or more of these components. Phase transitions often lead to mechanical softening or hardening that can be related to a different intrinsic mechanical behaviour and volatile solubility of the product phases, the heating or cooling associated with latent heat, and the transient grain size reduction in downwelling cold material. Strong variations in viscosity would enhance layered mantle convection, causing slab stagnation and plume ponding. At low temperatures and relatively dry conditions, reactions are delayed due to the sluggish kinetics, so that non-equilibrium phase aggregates can persist metastably beyond the equilibrium phase boundary. Survival of low-density metastable olivine, Ringwoodite, pyroxene and pyrope garnet in the transition zone and uppermost lower mantle produces positive buoyancy forces that decrease the subduction velocity and may lead to slab stagnation in the transition zone. The presence of deep metastable portions is still debated, and should not be associated a-priori with a completely dry slab as field observations suggest that heterogeneously hydrated oceanic plates could contain metastable dry portions surrounded by transformed wet rocks.
Comparative study of helimagnets MnSi and Cu2OSeO3 at high pressures
NASA Astrophysics Data System (ADS)
Stishov, Sergei; Sidorov, Vladimir; Petrova, Alla; Berdonosov, Peter; Dolgikh, Valery
2014-03-01
The heat capacity of helical magnets Cu2OSeO3 and MnSi has been investigated at high pressures by the ac-calorimetric technique. Despite the differing nature of their magnetic moments, Cu2OSeO3 and MnSi demonstrate a surprising similarity in behavior of their magnetic and thermodynamic properties at the phase transition. Two characteristic features of the heat capacity at the phase transitions of both substances (peak and shoulder) behave also in a similar way at high pressures if analyzed as a function of temperature. This probably implies that the longitudinal spin fluctuations typical of weak itinerant magnets like MnSi contribute little to the phase transition. The shoulders of the heat capacity curves shrink with decreasing temperature suggesting that they arise from classical fluctuations. In case of MnSi the sharp peak and shoulder at the heat capacity disappear simultaneously probably signifying the existence of a tricritical point and confirming the fluctuation nature of the first order phase transition in MnSi as well as in Cu2OSeO3. This work was supported by the Russian Foundation for Basic Research (grant 12-02-00376-a, 12-03-92604), Program of the Physics Department of RAS on Strongly Correlated Electron Systems and Program of the Presidium of RAS on Strongly Compressed Matter.
Femtosecond Optical and X-Ray Measurement of the Semiconductor-to-Metal Transition in VO2
NASA Astrophysics Data System (ADS)
Cavalleri, Andrea; Toth, Csaba; Squier, Jeff; Siders, Craig; Raksi, Ferenc; Forget, Patrick; Kieffer, Jean-Claude
2001-03-01
While the use of ultrashort visible pulses allows access to ultrafast changes in the optical properties during phase transitions, measurement of the correlation between atomic movement and electronic rearrangement has proven more elusive. Here, we report on the conjunct measurement of ultrafast electronic and structural dynamics during a semiconductor-to-metal phase transition in VO2. Rearrangement of the unit cell from monoclinic to rutile (measured by ultrafast x-ray diffraction) is accompanied by a sharp increase in the electrical conductivity and perturbation of the optical properties (measured with ultrafast visible spectroscopy). Ultrafast x-ray diffraction experiments were performed using femtosecond bursts of Cu-Ka from a laser generated plasma source. A clear rise of the diffraction signal originating from the impulsively generated metallic phase was observable on the sub-picosecond timescale. Optical experiments were performed using time-resolved microscopy, providing temporally and spatially resolved measurements of the optical reflectivity at 800 nm. The data indicate that the reflectivity of the low-temperature semiconducting solid is driven to that of the equilibrium, high-temperature metallic phase within 400 fs after irradiation with a 50-fs laser pulse at fluences in excess of 10 mJ/cm2. In conclusion, the data presented in this contribution suggest that the semiconductor-to-metal transition in VO2 occurs within 500 fs after laser-irradiation. A nonthermal physical mechanism governs the re-arrangement.
Rheology of Self-Assembling Silk Fibroin Solutions
NASA Astrophysics Data System (ADS)
Zhou, Rui; Chen, Song-Bi; Yuan, Xue-Feng
2008-07-01
A robust procedure for preparation of aqueous silk fibroin solutions with a range of concentration up to 25 wt% from domestic Bombyx mori cocoon shells has been established. We have carried out molecular and rheometric characterizations of silk fibroin solutions, and constructed an equilibrium phase diagram. The sharp sol-gel transition can be exploited for rapid solidification of micro-morphological structure. We will discuss the correlations between fluid formulation, rheological properties and processibility of silk fibroin in the talk.
Crystal Phase Quantum Well Emission with Digital Control.
Assali, S; Lähnemann, J; Vu, T T T; Jöns, K D; Gagliano, L; Verheijen, M A; Akopian, N; Bakkers, E P A M; Haverkort, J E M
2017-10-11
One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a new route to further advance entangled photons in solid state quantum systems.
Partial substitution effects on the physical properties of Ba0.67Nd0.22Ti(1-x)SnxO3
NASA Astrophysics Data System (ADS)
Brahem, R.; Rahmouni, H.; Farhat, N.; Costa, L. C.; Khirouni, K.
2015-12-01
Perovskite-ceramics Ba0.67Nd0.22Ti(1-x)SnxO3 (BNTSnx) with 0≤ x≤ 0.10 are synthesized by the conventional solid-state reaction. The diffraction peaks are sharp, indicating well crystallized phases. Ritveld analyses of XRD data show that the samples display a clean single phase without traces of secondary phases. The Scanning electron microscopy micrographs show that more dense structure is formed when increasing tin content and all samples show a similar grain habit with a parallelepipedic structure. The analysis of the dielectric properties permits to suggest the presence of diffuse phase transition in the system. The temperature dependence of the permittivity is well described by the modified Curie-Weiss law. Also, a metal-semiconductor transition is observed at around T_{MS}=220 K and 145 K, respectively for x = 0 and 0.05. For x = 0.1, only a semiconductor behavior is observed and T_{MS} is lower than 80 K. In addition, the frequency dependence of conductance is found to obey to the Jonscher universal power law.
NASA Astrophysics Data System (ADS)
Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta
2018-03-01
Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.
Weak ferromagnetism in a high-pressure phase of FeTiO3 with polar lattice distortion
NASA Astrophysics Data System (ADS)
Varga, Tamas; Mitchell, John; Fennie, Craig; Streiffer, Stephen; Hong, Seungbum; Park, Moonkyu; Gopalan, Venkatraman; Kumar, Amit; Vlahos, Eftihia; Sanehira, Takeshi; Wang, Yanbin
2009-03-01
Today's challenge in multiferroics is to identify materials in which polarization and magnetization -- normally considered contraindicated properties - are strongly coupled. Recent density functional theory calculations have predicted that the family of compounds MTiO3 (M = Mn, Fe, Ni) are promising candidates where a polar lattice distortion can induce weak ferromagnetism. The crucial insight is that while the equilibrium one-atmosphere structure of these is ilmenite, they must be transformed to a closely related LiNbO3-type structure. We have prepared the corresponding FeTiO3 phase at 18 GPa and 1200 ^oC. It shows a sharp antiferromagnetic (AF) transition at 111.5 K. FeTiO3 also displays ferroelectric domains, and weak ferromagnetism coincident with the AF transition. Possible coupling between its polarization and weak ferromagnetism is discussed based on results of piezoelectric force microscopy (PFM), second harmonic generation (SHG), dielectric, and polarization measurements.
Phase-locking transition in a chirped superconducting Josephson resonator.
Naaman, O; Aumentado, J; Friedland, L; Wurtele, J S; Siddiqi, I
2008-09-12
We observe a sharp threshold for dynamic phase locking in a high-Q transmission line resonator embedded with a Josephson tunnel junction, and driven with a purely ac, chirped microwave signal. When the drive amplitude is below a critical value, which depends on the chirp rate and is sensitive to the junction critical current I0, the resonator is only excited near its linear resonance frequency. For a larger amplitude, the resonator phase locks to the chirped drive and its amplitude grows until a deterministic maximum is reached. Near threshold, the oscillator evolves smoothly in one of two diverging trajectories, providing a way to discriminate small changes in I0 with a nonswitching detector, with potential applications in quantum state measurement.
Thermalization after an interaction quench in the Hubbard model.
Eckstein, Martin; Kollar, Marcus; Werner, Philipp
2009-07-31
We use nonequilibrium dynamical mean-field theory to study the time evolution of the fermionic Hubbard model after an interaction quench. Both in the weak-coupling and in the strong-coupling regime the system is trapped in quasistationary states on intermediate time scales. These two regimes are separated by a sharp crossover at U(c)dyn=0.8 in units of the bandwidth, where fast thermalization occurs. Our results indicate a dynamical phase transition which should be observable in experiments on trapped fermionic atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiulu; Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, 621010 Mianyang, Sichuan; Liu, Zhongli
2015-02-07
The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of themore » longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0–300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.« less
Phase Diagram of an Ethylene Glycol-Hexamethylphosphorotriamide System
NASA Astrophysics Data System (ADS)
Solonina, I. A.; Rodnikova, M. N.; Kiselev, M. R.; Khoroshilov, A. V.
2018-02-01
The phase diagram of an ethylene glycol (EG)-hexamethylphosphorotriamide (HMPT) system is studied over two wide temperature intervals (+25°C…-90°C…+40°C) and (-150°C…+40°C) by means of differential scanning calorimetry using INTERTECH DSC Q100 and METTLER TA4000 DSC instruments (Switzerland) in the DSC30 mode with variable cooling/heating rates. Substantial overcooling of the liquid phase, a glass transition, and different types of interaction are observed in the system. No thermal effects are observed in intermediate range of concentrations during the slow cooling/heating processes, and the system remains liquid until the glass transition. The presence of such a metastable phase is attributed to a sharp rise in the viscosity of the system due to different kinds of interaction between the components. HMPT: 2EG and HMPT: EG compounds with crystallization temperatures of +5 and -0.5°C, respectively, are observed upon rapid cooling and slow heating. Changes in enthalpy are calculated for all of the observed thermal effects. The distinction from the phase diagram of H2O-HMFT (literary data) is explained by the difference in the interactions between system components and by the structural differences between EG and H2O.
Effects of homogeneous condensation in compressible flows: Ludwieg-tube experiments and simulations
NASA Astrophysics Data System (ADS)
Luo, Xisheng; Lamanna, Grazia; Holten, A. P. C.; van Dongen, M. E. H.
Effects of homogeneous nucleation and subsequent droplet growth in compressible flows in humid nitrogen are investigated numerically and experimentally. A Ludwieg tube is employed to produce expansion flows. Corresponding to different configurations, three types of experiment are carried out in such a tube. First, the phase transition in a strong unsteady expansion wave is investigated to demonstrate the mutual interaction between the unsteady flow and the condensation process and also the formation of condensation-induced shock waves. The role of condensation-induced shocks in the gradual transition from a frozen initial structure to an equilibrium structure is explained. Second, the condensing flow in a slender supersonic nozzle G2 is considered. Particular attention is given to condensation-induced oscillations and to the transition from symmetrical mode-1 oscillations to asymmetrical mode-2 oscillations in a starting nozzle flow, as first observed by Adam & Schnerr. The transition is also found numerically, but the amplitude, frequency and transition time are not yet well predicted. Third, a sharp-edged obstacle is placed in the tube to generate a starting vortex. Condensation in the vortex is found. Owing to the release of latent heat of condensation, an increase in the pressure and temperature in the vortex core is observed. Condensation-induced shock waves are found, for a sufficiently high initial saturation ratio, which interact with the starting vortex, resulting in a very complex flow. As time proceeds, a subsonic or transonic free jet is formed downstream of the sharp-edged obstacle, which becomes oscillatory for a relatively high main-flow velocity and for a sufficiently high humidity.
Fluid thermodynamics control thermal weakening during earthquake rupture.
NASA Astrophysics Data System (ADS)
Acosta, M.; Passelegue, F. X.; Schubnel, A.; Violay, M.
2017-12-01
Although fluids are pervasive among tectonic faults, thermo-hydro-mechanical couplings during earthquake slip remain unclear. We report full dynamic records of stick-slip events, performed on saw cut Westerly Granite samples loaded under triaxial conditions at stresses representative of the upper continental crust (σ3' 70 MPa) Three fluid pressure conditions were tested, dry, low , and high pressure (i.e. Pf=0, 1, and 25 MPa). Friction (μ) evolution recorded at 10 MHz sampling frequency showed that, for a single event, μ initially increased from its static pre-stress level, μ0 to a peak value μ p it then abruptly dropped to a minimum dynamic value μd before recovering to its residual value μr, where the fault reloaded elastically. Under dry and low fluid pressure conditions, dynamic friction (μd) was extremely low ( 0.2) and co-seismic slip (δ) was large ( 250 and 200 μm respectively) due to flash heating (FH) and melting of asperities as supported by microstructures. Conversely, at pf=25 MPa, μd was higher ( 0.45), δ was smaller ( 80 μm), and frictional melting was not found. We calculated flash temperatures at asperity contacts including heat buffering by on-fault fluid. Considering the isobaric evolution of water's thermodynamic properties with rising temperature showed that pressurized water controlled fault heating and weakening, through sharp variations of specific heat (cpw) and density (ρw) at water's phase transitions. Injecting the computed flash temperatures into slip-on-a-plane model for thermal pressurization (TP) showed that: (i) if pf was low enough so that frictional heating induced liquid/vapour phase transition, FH operated, allowing very low μd during earthquakes. (ii) Conversely, if pf was high enough that shear heating induced a sharp phase transition directly from liquid to supercritical state, an extraordinary rise in water's specific heat acted as a major energy sink inhibiting FH and limiting TP, allowing higher dynamic fault strengths. Further extrapolation of this simplified model to mid- and low- crustal depths shows that, large cpw rise during phase transitions makes TP the dominant weakening mechanism up to 5 km depth. Increasing depth allows somewhat larger shear stress and reduced cpw rise, and so substantial shear heating at low slip rates, favouring FH for fault weakening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Pawan; Kar, Manoranjan, E-mail: mano@iitp.ac.in; Shankhwar, Nisha
2015-05-21
The co-doping of Ca and Mn in respective Bi and Fe-sites of BiFeO{sub 3} lattice leads to structural transition from rhombohedral (R3c space group) to orthorhombic (Pbnm space group) crystal symmetry. The tilt angle for anti-phase rotation of the oxygen octahedra of BiFeO{sub 3} at room temperature is observed to be ∼13.8°. It decreases with the increase in the co-doping percentage which suggests the composition-driven structural phase transition. The remnant magnetization for sample with 15% of co-doping becomes about 16 times that of BiFeO{sub 3}. It may be attributed to the suppression of cycloid spin structure and uncompensated spins atmore » the surface of nanocrystallites. Further increase in co-doping percentage results in the sharp reduction of remnant magnetization due to the dominant contribution from the collinear antiferromagnetic ordering in the Pbnm space group. The Arrott plot analysis clearly indicates the composition-driven crossover from the antiferromagnetic to weak ferromagnetic ordering and vice versa. Electron spin resonance results provide the evidence for the composition-driven phase transitions from an incommensurate spin cycloidal modulated state to one with nearly homogeneous spin order. The band gap (2.17 eV) of BiFeO{sub 3} measured using UV-Vis spectra was supported by the resonance Raman spectra.« less
NASA Astrophysics Data System (ADS)
Madiba, I. G.; Kotsedi, L.; Ngom, B. D.; Khanyile, B. S.; Maaza, M.
2018-05-01
Vanadium dioxide films have been known as the most promising thermochromic thin films for smart windows which self-control the solar radiation and heat transfer for energy saving, comfort in houses and automotives. Such an attractive technological application is due to the fact that vanadium dioxide crystals exhibit a fast semiconductor-to-metal phase transition at a transition temperature Tc of about 68 °C, together with sharp optical changes from high transmitive to high reflective coatings in the IR spectral region. The phase transition has been associated with the nature of the microstructure, stoichiometry and stresses related to the oxide. This study reports on the effect of the crystallographic quality controlled by the substrate temperature on the thermochromic properties of vanadium dioxide thin films synthesized by reactive radio frequency inverted cylindrical magnetron sputtering from vanadium target. The reports results are based on X-ray diffraction, Atomic force microscopy, and UV-Visible spectrophotometer. The average crystalline grain size of VO2 increases with the substrate temperature, inducing stress related phenomena within the films.
Entanglements in Conjugated Polymers
NASA Astrophysics Data System (ADS)
Xie, Renxuan; Lee, Youngmin; Aplan, Melissa; Caggiano, Nick; Gomez, Enrique; Colby, Ralph
Conjugated polymers, such as poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly-((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(thiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (PFTBT), are widely used as hole and electron transport materials in a variety of electronic devices. However, fundamental knowledge regarding chain entanglements and nematic-to-isotropic transition is still lacking and are crucial to maximize charge transport properties. A systematic melt rheology study on P3HT with various molecular weights and regio regularities was performed. We find that the entanglement molecular weight Me is 5.0 kg/mol for regiorandom P3HT, but the apparent Me for regioregular P3HT is significantly higher. The difference is postulated to arise from the presence of a nematic phase only in regioregular P3HT. Analogously, PFTBT shows a clear rheological signature of the nematic-to-isotropic transition as a reversible sharp transition at 278 C. Shearing of this nematic phase leads to anisotropic crystalline order in PFTBT. We postulate that aligning the microstructure will impact charge transport and thereby advance the field of conducting polymers. National Science Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, K.; Broetzmann, M.; Hofsaess, H.
We investigate pattern formation on Si by sputter erosion under simultaneous co-deposition of Fe atoms, both at off-normal incidence, as function of the Fe surface coverage. The patterns obtained for 5 keV Xe ion irradiation at 30 Degree-Sign incidence angle are analyzed with atomic force microscopy. Rutherford backscattering spectroscopy of the local steady state Fe content of the Fe-Si surface layer allows a quantitative correlation between pattern type and Fe coverage. With increasing Fe coverage the patterns change, starting from a flat surface at low coverage (< 2 Multiplication-Sign 10{sup 15} Fe/cm{sup 2}) over dot patterns (2-8 Multiplication-Sign 10{sup 15}more » Fe/cm{sup 2}), ripples patterns (8-17 Multiplication-Sign 10{sup 15} Fe/cm{sup 2}), pill bug structures (1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}) and a rather flat surface with randomly distributed weak pits at high Fe coverage (>1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}). Our results confirm the observations by Macko et al. for 2 keV Kr ion irradiation of Si with Fe co-deposition. In particular, we also find a sharp transition from pronounced ripple patterns with large amplitude (rms roughness {approx} 18 nm) to a rather flat surface (rms roughness {approx} 0.5 nm). Within this transition regime, we also observe the formation of pill bug structures, i.e. individual small hillocks with a rippled structure on an otherwise rather flat surface. The transition occurs within a very narrow regime of the steady state Fe surface coverage between 1.7 and 1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}, where the composition of the mixed Fe-Si surface layer of about 10 nm thickness reaches the stoichiometry of FeSi{sub 2}. Phase separation towards amorphous iron silicide is assumed as the major contribution for the pattern formation at lower Fe coverage and the sharp transition from ripple patterns to a flat surface.« less
Khan, Mahmud; Mudryk, Ya.; Gschneidner, K. A.; ...
2011-12-27
HoAl₂ exhibits a first-order spin reorientation transition at 20 K, which is manifested as a sharp peak in the heat capacity. When Ho is partially replaced by only 5% of Tb, the sharp heat-capacity peak in Ho 1-xTb xAl₂ (x = 0.05) disappears, and then reappears again for x ≥ 0.07. For x = 0.05, the anomaly corresponding to the spin reorientation transition is barely seen in the heat capacity, but as x exceeds 0.07 the weak anomaly transforms to a sharp peak. The spin reorientation transition temperature increases to 29 K for x = 0.05, and as x increasesmore » further the transition shifts to lower temperature and returns to ~20 K for x = 0.25. The transition is no longer observed when x exceeds 0.60. Temperature-dependent x-ray powder-diffraction data confirm the first-order nature of the spin reorientation transition for the alloy with x = 0.40, and indicate that the compound retains the room-temperature cubic structure within the sensitivity of the technique. Experimental observations are discussed considering the easy magnetization directions of HoAl₂ and TbAl₂.« less
NASA Astrophysics Data System (ADS)
Moraru, Ciprian G.
The ability to predict the onset of boundary-layer transition is critical for hypersonic flight vehicles. The development of prediction methods depends on a thorough comprehension of the mechanisms that cause transition. In order to improve the understanding of hypersonic boundary-layer transition, tests were conducted on a large 7° half-angle cone at Mach 10 in the Arnold Engineering Development Complex Wind Tunnel 9. Twenty-four runs were performed at varying unit Reynolds numbers and angles of attack for sharp and blunt nosetip configurations. Heat-transfer measurements were used to determine the start of transition on the cone. Increasing the unit Reynolds number caused a forward movement of transition on the sharp cone at zero angle of attack. Increasing nosetip radius delayed transition up to a radius of 12.7 mm. Larger nose radii caused the start of transition to move forward. At angles of attack up to 10°, transition was leeside forward for nose radii up to 12.7 mm and windside forward for nose radii of 25.4 mm and 50.8 mm. Second-mode instability waves were measured on the sharp cone and cones with small nose radii. At zero angle of attack, waves at a particular streamwise location on the sharp cone were in earlier stages of development as the unit Reynolds number was decreased. The same trend was observed as the nosetip radius was increased. No second-mode waves were apparent for the cones with large nosetip radii. As the angle of attack was increased, waves at a particular streamwise location on the sharp cone moved to earlier stages of growth on the windward ray and later stages of growth on the leeward ray. RMS amplitudes of second-mode waves were computed. Comparison between maximum second-mode amplitudes and edge Mach numbers showed good correlation for various nosetip radii and unit Reynolds numbers. Using the e N method, initial amplitudes were estimated and compared to freestream noise in the second-mode frequency band. Correlations indicate that freestream noise likely has a significant influence on initial second-mode amplitudes.
On Riemann solvers and kinetic relations for isothermal two-phase flows with surface tension
NASA Astrophysics Data System (ADS)
Rohde, Christian; Zeiler, Christoph
2018-06-01
We consider a sharp interface approach for the inviscid isothermal dynamics of compressible two-phase flow that accounts for phase transition and surface tension effects. Kinetic relations are frequently used to fix the mass exchange and entropy dissipation rate across the interface. The complete unidirectional dynamics can then be understood by solving generalized two-phase Riemann problems. We present new well-posedness theorems for the Riemann problem and corresponding computable Riemann solvers that cover quite general equations of state, metastable input data and curvature effects. The new Riemann solver is used to validate different kinetic relations on physically relevant problems including a comparison with experimental data. Riemann solvers are building blocks for many numerical schemes that are used to track interfaces in two-phase flow. It is shown that the new Riemann solver enables reliable and efficient computations for physical situations that could not be treated before.
NASA Astrophysics Data System (ADS)
Frey Huls, N. A.; Bingham, N. S.; Phan, M. H.; Srikanth, H.; Stauffer, D. D.; Leighton, C.
2011-01-01
Half-doped Pr1-xSrxCoO3 (x=0.5) displays anomalous magnetism, most notably manifest in the field-cooled magnetization versus temperature curves under different applied cooling fields. Recently, an explanation was advanced that a magnetocrystalline anisotropy transition driven by a structural transition at 120 K is the origin of this behavior. In this paper, we further elucidate the nature of the magnetic anisotropy across the low-temperature phase transition in this material by means of transverse susceptibility (TS) measurements performed using a self-resonant tunnel diode oscillator. TS probes magnetic materials by means of a small radio frequency oriented transverse to a dc field that sweeps from positive to negative saturation. TS scans as a function of field clearly reveal peaks associated with the anisotropy (HK) and switching fields (HS). When peak position is examined as a function of temperature, ˜120 K the signature of a ferromagnetic-to-ferromagnetic phase transition is evident as a sharp feature in HK and a corresponding cusp in HS. A third TS peak (not previously observed in other classes of magnetic oxides such as manganites and spinel ferrites) is found to be correlated with the crossover field (Hcr) in the unconventional magnetization versus temperature [M(T)] behavior. We observe a strong temperature dependence of Hcr at ˜120 K using this technique, which suggests the magnetic-field-influenced magnetocrystalline anisotropy transition. We show the switching between the high-field magnetization state and the low-field magnetization state associated with the magnetocrystalline anisotropy transition is irreversible when the magnetic field is recycled. Finally, we demonstrate that the TS peak magnitude indicates easy axis switching associated with this phase transition, even in these polycrystalline samples. Our results further confirm that TS provides new insights into the magnetic behavior of complex oxides.
Phase-field approach to implicit solvation of biomolecules with Coulomb-field approximation
NASA Astrophysics Data System (ADS)
Zhao, Yanxiang; Kwan, Yuen-Yick; Che, Jianwei; Li, Bo; McCammon, J. Andrew
2013-07-01
A phase-field variational implicit-solvent approach is developed for the solvation of charged molecules. The starting point of such an approach is the representation of a solute-solvent interface by a phase field that takes one value in the solute region and another in the solvent region, with a smooth transition from one to the other on a small transition layer. The minimization of an effective free-energy functional of all possible phase fields determines the equilibrium conformations and free energies of an underlying molecular system. All the surface energy, the solute-solvent van der Waals interaction, and the electrostatic interaction are coupled together self-consistently through a phase field. The surface energy results from the minimization of a double-well potential and the gradient of a field. The electrostatic interaction is described by the Coulomb-field approximation. Accurate and efficient methods are designed and implemented to numerically relax an underlying charged molecular system. Applications to single ions, a two-plate system, and a two-domain protein reveal that the new theory and methods can capture capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states as found in molecular dynamics simulations. Comparisons of the phase-field and the original sharp-interface variational approaches are discussed.
Electric field-triggered metal-insulator transition resistive switching of bilayered multiphasic VOx
NASA Astrophysics Data System (ADS)
Won, Seokjae; Lee, Sang Yeon; Hwang, Jungyeon; Park, Jucheol; Seo, Hyungtak
2018-01-01
Electric field-triggered Mott transition of VO2 for next-generation memory devices with sharp and fast resistance-switching response is considered to be ideal but the formation of single-phase VO2 by common deposition techniques is very challenging. Here, VOx films with a VO2-dominant phase for a Mott transition-based metal-insulator transition (MIT) switching device were successfully fabricated by the combined process of RF magnetron sputtering of V metal and subsequent O2 annealing to form. By performing various material characterizations, including scanning transmission electron microscopy-electron energy loss spectroscopy, the film is determined to have a bilayer structure consisting of a VO2-rich bottom layer acting as the Mott transition switching layer and a V2O5/V2O3 mixed top layer acting as a control layer that suppresses any stray leakage current and improves cyclic performance. This bilayer structure enables excellent electric field-triggered Mott transition-based resistive switching of Pt-VOx-Pt metal-insulator-metal devices with a set/reset current ratio reaching 200, set/reset voltage of less than 2.5 V, and very stable DC cyclic switching upto 120 cycles with a great set/reset current and voltage distribution less than 5% of standard deviation at room temperature, which are specifications applicable for neuromorphic or memory device applications. [Figure not available: see fulltext.
A sharp and flat section of the core-mantle boundary
Vidale, J.E.; Benz, H.M.
1992-01-01
THE transition zone between the Earth's core and mantle plays an important role as a boundary layer for mantle and core convection1. This zone conducts a large amount of heat from the core to the mantle, and contains at least one thermal boundary layer2,3; the proximity of reactive silicates and molten iron leads to the possibility of zones of intermediate composition4. Here we investigate one region of the core-mantle boundary using seismic waves that are converted from shear to compressional waves by reflection at the boundary. The use of this phase (known as ScP), the large number of receiving stations, and the large aperture of our array all provide higher resolution than has previously been possible5-7. For the 350-km-long section of the core-mantle boundary under the northeast Pacific sampled by the reflections, the local boundary topography has an amplitude of less than 500 m, no sharp radial gradients exist in the 400 km above the boundary, and the mantle-lo-core transition occurs over less than 1 km. The simplicity of the structure near and above the core-mantle boundary argues against chemical heterogeneity at the base of the mantle in this location.
High temperature coercive field behavior of Fe-Zr powder
NASA Astrophysics Data System (ADS)
Mishra, Debabrata; Perumal, A.; Srinivasan, A.
2009-04-01
We report the investigation of high temperature coercive field behavior of Fe80Zr20 nanocrystalline alloy powder having two-phase microstructure prepared by mechanical alloying process. Thermomagnetization measurement shows the presence of two different magnetic phase transitions corresponding to the amorphous matrix and nonequilibrium Fe(Zr) solid solution. Temperature dependent coercivity exhibits a sharp increase in its value close to the Curie temperature of the amorphous matrix. This feature is attributed to the loss of intergranular ferromagnetic exchange coupling between the nanocrystallites due to the paramagnetic nature of the amorphous matrix. The temperature dependent coercive field behavior is ascribed to the variations in both the effective anisotropy and the exchange stiffness constant with temperature.
Anelasticity maps for acoustic dissipation associated with phase transitions in minerals
NASA Astrophysics Data System (ADS)
Carpenter, Michael A.; Zhang, Zhiying
2011-07-01
Acoustic dissipation due to structural phase transitions in minerals could give rise to large seismic attenuation effects superimposed on the high temperature background contribution from dislocations and grain boundaries in the Earth. In addition to the possibility of a sharp peak actually at a transition point for both compressional and shear waves, significant attenuation might arise over wider temperature intervals due to the mobility of transformation twins or other defects associated with the transition. Attenuation due to structural phase transitions in quartz, pyroxenes, perovskites, stishovite and hollandite, or to spin state transitions of Fe2+ in magnesiowüstite and perovskite and the hcp/bcc transition in iron-nickel (Fe-Ni) alloy, are reviewed from this perspective. To these can be added possible loss behaviour associated with reconstructive transitions which might occur by a ledge mechanism on topotactic interfaces (orthopyroxene/clinopyroxene, olivine/spinel and perovskite/postperovskite), with impurities (Snoek effect) or with mobility of protons. There are experimental difficulties associated with measuring dissipation effects in situ at simultaneous high pressures and temperatures, so reliance is currently placed on investigation of analogue phases such as LaCoO3 for spin-state behaviour and LaAlO3 for the dynamics of ferroelastic twin walls. Similarly, it is not possible to measure loss dynamics simultaneously at the low stresses and low frequencies that pertain in seismic waves, so reliance must be placed on combining different techniques, such as dynamic mechanical analysis (low frequency, relatively high stress) and resonant ultrasound spectroscopy (high frequency, low stress), to extrapolate acoustic loss behaviour over wide frequency, temperature and stress intervals. In this context 'anelasticity maps' provide a convenient means of representing different loss mechanisms. Contouring of the inverse mechanical quality factor, Q-1, can be achieved if the appropriate constitutive laws are known. The overall approach is illustrated using the examples of spin-state transitions of Co3+ in LaCoO3 and twin mobility in single crystals of the rhombohedral phase of LaAlO3. Anelasticity maps of this type should give seismologists a clearer view of the characteristic patterns of seismic velocity and attenuation that could be used to detect (or rule out) the presence of particular phase transitions or loss behaviour in the core and mantle.
Metal-insulator transition and superconductivity in the spinel-type Cu(Ir1-xRhx)2S4 system
NASA Astrophysics Data System (ADS)
Matsumoto, Nobuhiro; Endoh, Ryo; Nagata, Shoichi; Furubayashi, Takao; Matsumoto, Takehiko
1999-08-01
The normal thiospinel CuIr2S4 exhibits a temperature-induced metal-insulator (M-I) transition around 226 K with structural transformation, showing hysteresis on heating and cooling. It has been verified that d electrons of Ir atom on the octahedral B sites have a significant role for the M-I transition. On the other hand, CuRh2S4 is a superconductor with the transition temperature Tc=4.70 K, which is well understood on the basis of the BCS theory. It is important to investigate the effect on the M-I transition by substitution of Rh for Ir. We have systematically studied structural transformation and electrical and magnetic properties of Cu(Ir1-xRhx)2S4. The features of the M-I transition change with Rh concentration x. A phase diagram of temperature versus x will be proposed for the Cu(Ir1-xRhx)2S4 system. The sharp M-I transition temperature varies drastically from 226 to 93 K with x from 0.00 to 0.17 and disappears around x=0.20. In a region of 0.00<=x<=0.20, the magnetic susceptibility begins decreasing at a constant onset temperature 226 K on cooling process and shows rather broad temperature variation, even though the metallic state is kept in the resistivity. The sharp M-I transition can take place after the suppression of magnitude in the susceptibility has sufficiently developed far below 226 K. These experimental results are discussed with emphasis on the intrinsic difference between Cu(Ir1-xRhx)2S4 and CuIr2(S1-xSex)4 systems. Furthermore, we will mention the superconductivity for both systems of Cu(Ir1-xRhx)2S4 with high-Rh concentration region and Cu1-xNixRh2S4.
Frequency Invariability of (Pb,La)(Zr,Ti)O₃ Antiferroelectric Thick-Film Micro-Cantilevers.
An, Kun; Jin, Xuechen; Meng, Jiang; Li, Xiao; Ren, Yifeng
2018-05-13
Micro-electromechanical systems comprising antiferroelectric layers can offer both actuation and transduction to integrated technologies. Micro-cantilevers based on the (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ (PLZT) antiferroelectric thick film are fabricated by the micro-nano manufacturing process, to utilize the effect of phase transition induced strain and sharp phase switch of antiferroelectric materials. When micro-cantilevers made of antiferroelectric thick films were driven by sweep voltages, there were two resonant peaks corresponding to the natural frequency shift from 27.8 to 27.0 kHz, before and after phase transition. This is the compensation principle for the PLZT micro-cantilever to tune the natural frequency by the amplitude modulation of driving voltage, rather than of frequency modulation. Considering the natural frequency shift about 0.8 kHz and the frequency tuning ability about 156 Hz/V before the phase transition, this can compensate the frequency shift caused by increasing temperature by tuning only the amplitude of driving voltage, when the ultrasonic micro-transducer made of antiferroelectric thick films works for such a long period. Therefore, antiferroelectric thick films with hetero-structures incorporated into PLZT micro-cantilevers not only require a lower driving voltage (no more than 40 V) than rival bulk piezoelectric ceramics, but also exhibit better performance of frequency invariability, based on the amplitude modulation.
Giovambattista, Nicolas; Sciortino, Francesco; Starr, Francis W; Poole, Peter H
2016-12-14
The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics to describe supercooled liquids and glasses. Here we use the PEL formalism and computer simulations to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) at different temperatures. We employ the ST2 water model for which the LDA-HDA transformations are remarkably sharp, similar to what is observed in experiments, and reminiscent of a first-order phase transition. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that low-density liquid (LDL) configurations are located in the same megabasin as LDA, and that high-density liquid (HDL) configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid is different from the path followed by the amorphous solid. At higher pressure, we also study the liquid-to-ice-VII first-order phase transition, and find that the behavior of the PEL properties across this transition is qualitatively similar to the changes found during the LDA-HDA transformation. This similarity supports the interpretation that the LDA-HDA transformation is a first-order phase transition between out-of-equilibrium states. Finally, we compare the PEL properties explored during the LDA-HDA transformations in ST2 water with those reported previously for SPC/E water, for which the LDA-HDA transformations are rather smooth. This comparison illuminates the previous work showing that, at accessible computer times scales, a liquid-liquid phase transition occurs in the case of ST2 water, but not for SPC/E water.
NASA Astrophysics Data System (ADS)
Giovambattista, Nicolas; Sciortino, Francesco; Starr, Francis W.; Poole, Peter H.
2016-12-01
The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics to describe supercooled liquids and glasses. Here we use the PEL formalism and computer simulations to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) at different temperatures. We employ the ST2 water model for which the LDA-HDA transformations are remarkably sharp, similar to what is observed in experiments, and reminiscent of a first-order phase transition. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that low-density liquid (LDL) configurations are located in the same megabasin as LDA, and that high-density liquid (HDL) configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid is different from the path followed by the amorphous solid. At higher pressure, we also study the liquid-to-ice-VII first-order phase transition, and find that the behavior of the PEL properties across this transition is qualitatively similar to the changes found during the LDA-HDA transformation. This similarity supports the interpretation that the LDA-HDA transformation is a first-order phase transition between out-of-equilibrium states. Finally, we compare the PEL properties explored during the LDA-HDA transformations in ST2 water with those reported previously for SPC/E water, for which the LDA-HDA transformations are rather smooth. This comparison illuminates the previous work showing that, at accessible computer times scales, a liquid-liquid phase transition occurs in the case of ST2 water, but not for SPC/E water.
Metal-semiconductor phase transition of order arrays of VO2 nanocrystals
NASA Astrophysics Data System (ADS)
Lopez, Rene; Suh, Jae; Feldman, Leonard; Haglund, Richard
2004-03-01
The study of solid-state phase transitions at nanometer length scales provides new insights into the effects of material size on the mechanisms of structural transformations. Such research also opens the door to new applications, either because materials properties are modified as a function of particle size, or because the nanoparticles interact with a surrounding matrix material, or with each other. In this paper, we describe the formation of vanadium dioxide nanoparticles in silicon substrates by pulsed laser deposition of ion beam lithographically selected sites and thermal processing. We observe the collective behavior of 50 nm diameter VO2 oblate nanoparticles, 10 nm high, and ordered in square arrays with arbitrary lattice constant. The metal-semiconductor-transition of the VO2 precipitates shows different features in each lattice spacing substrate. The materials are characterized by electron microscopy, x-ray diffraction, Rutherford backscattering. The features of the phase transition are studied via infrared optical spectroscopy. Of particular interest are the enhanced scattering and the surface plasmon resonance when the particles reach the metallic state. This resonance amplifies the optical contrast in the range of near-infrared optical communication wavelengths and it is altered by the particle-particle coupling as in the case of noble metals. In addition the VO2 nanoparticles exhibit sharp transitions with up to 50 K of hysteresis, one of the largest values ever reported for this transition. The optical properties of the VO2 nanoarrays are correlated with the size of the precipitates and their inter-particle distance. Nonlinear and ultra fast optical measurements have shown that the transition is the fastest known solid-solid transformation. The VO2 nanoparticles show the same bulk property, transforming in times shorter than 150 fs. This makes them remarkable candidates for ultrafast optical and electronic switching applications.
Competing Orders and Anomalies
Moon, Eun-Gook
2016-01-01
A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184
NASA Astrophysics Data System (ADS)
Paik, Taejong; Hong, Sung-Hoon; Gordon, Thomas; Gaulding, Ashley; Kagan, Cherie; Murray, Christopher
2013-03-01
We report the fabrication of thermochromic VO2-based metamaterials using solution-processable colloidal nanocrystals. Vanadium-based nanoparticles are prepared through a non-hydrolytic reaction, resulting in stable colloidal dispersions in solution. Thermochromic nanocrystalline VO2 thin-films are prepared via rapid thermal annealing of colloidal nanoparticles coated on a variety of substrates. Nanostructured VO2 can be patterned over large areas by nanoimprint lithography. Precise control of tungsten (W) doping concentration in colloidal nanoparticles enables tuning of the phase transition temperature of the nanocrystalline VO2 thin-films. W-doped VO2 films display a sharp temperature dependent phase transition, similar to the undoped VO2 film, but at lower temperatures tunable with the doping level. By sequential coating of doped VO2 with different doping concentrations, we fabricate ?smart? multi-layered VO2 films displaying multiple phase transition temperatures within a single structure, allowing for dynamic modulation of the metal-dielectric layered structure. The optical properties programmed into the layered structure are switchable with temperature, which provides additional degrees of freedom to design tunable optical metamaterials. This work is supported by the US Office of Naval Research Multidisciplinary University Research Initiative (MURI) program grant number ONR-N00014-10-1-0942.
Verwey transition in a magnetite ultrathin film by resonant x-ray scattering
NASA Astrophysics Data System (ADS)
Grenier, S.; Bailly, A.; Ramos, A. Y.; De Santis, M.; Joly, Y.; Lorenzo, J. E.; Garaudée, S.; Frericks, M.; Arnaud, S.; Blanc, N.; Boudet, N.
2018-03-01
We report a detailed study of the Verwey transition in a magnetite ultrathin film (UTF) grown on Ag(001) using resonant x-ray scattering (RXS). RXS was measured at the Fe K-edge on the crystal truncation rod of the substrate, increasing the sensitivity to the film thanks to the cross-interference, thereby obtaining an x-ray phase-shift reference and a polarization analyzer. The spectra were interpreted with ad hoc calculations based on density functional theory within a surface-scattering formalism. We observed that the UTF has a relatively sharp transition temperature TV=120 K and is remarkably close to the bulk temperature for such thickness. We determined the specific Fe stacking at the interface with the substrate below TV, and detected a spectroscopic signal evolving with temperature from TV up to at least TV+80 K, hinting that the RT crystallographic structure does not set at TV in the UTF.
Optical isolation with nonlinear topological photonics
NASA Astrophysics Data System (ADS)
Zhou, Xin; Wang, You; Leykam, Daniel; Chong, Y. D.
2017-09-01
It is shown that the concept of topological phase transitions can be used to design nonlinear photonic structures exhibiting power thresholds and discontinuities in their transmittance. This provides a novel route to devising nonlinear optical isolators. We study three representative designs: (i) a waveguide array implementing a nonlinear 1D Su-Schrieffer-Heeger model, (ii) a waveguide array implementing a nonlinear 2D Haldane model, and (iii) a 2D lattice of coupled-ring waveguides. In the first two cases, we find a correspondence between the topological transition of the underlying linear lattice and the power threshold of the transmittance, and show that the transmission behavior is attributable to the emergence of a self-induced topological soliton. In the third case, we show that the topological transition produces a discontinuity in the transmittance curve, which can be exploited to achieve sharp jumps in the power-dependent isolation ratio.
Thermodynamic Control of Two-Dimensional Molecular Ionic Nanostructures on Metal Surfaces
Jeon, Seokmin; Doak, Peter W.; Sumpter, Bobby G.; ...
2016-07-26
Bulk molecular ionic solids exhibit fascinating electronic properties, including electron correlations, phase transitions and superconducting ground states. In contrast, few of these phenomena have so far been observed in low-dimensional molecular structures, including thin films, nanoparticles and molecular blends, not in the least because most of such structures have so far been composed of nearly closed-shell molecules. It is therefore desirable to develop low-dimensional molecular structures of ionic molecules toward fundamental studies and potential applications. Here we present detailed analysis of monolayer-thick structures of the canonical TTF-TCNQ (tetrathiafulvalene 7,7,8,8-tetracyanoquinodimethane) system grown on low-index gold and silver surfaces. The most distinctivemore » property of the epitaxial growth is the wide abundance of stable TTF/TCNQ ratios, in sharp contrast to the predominance of 1:1 ratio in the bulk. We propose the existence of the surface phase-diagram that controls the structures of TTF-TCNQ on the surfaces, and demonstrate phase-transitions that occur upon progressively increasing the density of TCNQ while keeping the surface coverage of TTF fixed. Based on direct observations, we propose the binding motif behind the stable phases and infer the dominant interactions that enable the existence of the rich spectrum of surface structures. Finally, we also show that the surface phase diagram will control the epitaxy beyond monolayer coverage. Multiplicity of stable surface structures, the corollary rich phase diagram and the corresponding phase-transitions present an interesting opportunity for low-dimensional molecular systems, particularly if some of the electronic properties of the bulk can be preserved or modified in the surface phases.« less
NASA Astrophysics Data System (ADS)
Katsura, T.; Ishii, T.; Huang, R.; Maeda, F.; Yuan, L.; Bhat, S.; Farla, R. J.; Kawazoe, T.; Tsujino, N.; Liu, Z.; Fei, H.; Wang, L.; Druzhbin, D.; Yamamoto, T.; Kulik, E.; Koemets, I.; Higo, Y.; Tange, Y.
2017-12-01
Short wave-length seismic reflections from the 660 km discontinuity (D660) indicated an extreme sharp, namely less than 2 km thick boundary. To explain this observation, Ito and Takahashi [1989] estimated that the pressure interval of the dissociation of ringwoodite (Rw) to bridgmanite (Brg) plus ferropericlase (fPc) is < 0.15 GPa, corresponding to < 4 km, based on their multi-anvil press (MAP) experiment using the quench method. However, precision and accuracy in pressure determination of conventional MAP are no better than 1 GPa. In addition, although they estimated the pressure interval by combining the width of Rw-Brg-fPc coexistence with the temperature gradient in the furnace, very sluggish phase transition kinetics does not allow such a precise estimation of pressure. Using now established in situ X-ray diffraction techniques and accurate equations of state of MgO, we are able to revisit previous work to estimate the Rw-Brg-fPc pressure interval at 1700 K with uncertainty in the pressure estimation as low as 0.05 GPa. The majority of our efforts have been made to determine difference in transition pressure between Fo100 and Fo70 compositions. For this purpose, we prepared fine-grained mixtures of olivine (Ol), enstatite (En) and fPc with these two compositions and loaded in a MAP cell together with an MgO pressure marker and a WRe thermocouple. The cell was compressed to ca. 6 MN, heated to 1100 K to convert Ol and En to Rw and akimotoite (Ak), respectively, and further compressed until the sample pressure reached 22 24 GPa. Then, the sample was heated to 1700 K, and the temperature was maintained for 1-2 hours. Simultaneously, after several trials, the press load was increased at the right rate at the temperature to maintain nearly constant pressure within 0.2 GPa. X-ray diffractions of the samples and pressure maker were taken to determine pressure and phases present. An important finding is that the transition pressure in Fo70 is 0.1 GPa higher than that in Fo100. Namely, the hypothetical transition pressure in Fe2SiO4 is 0.3 GPa higher than the transition pressure in Mg2SiO4. This geometry is contrary to the previous understanding. The obtained pressure difference and the partition coefficients of Fe and Mg among Brg, Rw and fPc suggest that the pressure interval is almost zero, which explains the sharpness of the D660.
Impact induced depolarization of ferroelectric materials
NASA Astrophysics Data System (ADS)
Agrawal, Vinamra; Bhattacharya, Kaushik
2018-06-01
We study the large deformation dynamic behavior and the associated nonlinear electro-thermo-mechanical coupling exhibited by ferroelectric materials in adiabatic environments. This is motivated by a ferroelectric generator which involves pulsed power generation by loading the ferroelectric material with a shock, either by impact or a blast. Upon impact, a shock wave travels through the material inducing a ferroelectric to nonpolar phase transition giving rise to a large voltage difference in an open circuit situation or a large current in a closed circuit situation. In the first part of this paper, we provide a general continuum mechanical treatment of the situation assuming a sharp phase boundary that is possibly charged. We derive the governing laws, as well as the driving force acting on the phase boundary. In the second part, we use the derived equations and a particular constitutive relation that describes the ferroelectric to nonpolar phase transition to study a uniaxial plate impact problem. We develop a numerical method where the phase boundary is tracked but other discontinuities are captured using a finite volume method. We compare our results with experimental observations to find good agreement. Specifically, our model reproduces the observed exponential rise of charge as well as the resistance dependent Hugoniot. We conclude with a parameter study that provides detailed insight into various aspects of the problem.
Emergent transport in a many-body open system driven by interacting quantum baths
NASA Astrophysics Data System (ADS)
Reisons, Juris; Mascarenhas, Eduardo; Savona, Vincenzo
2017-10-01
We analyze an open many-body system that is strongly coupled at its boundaries to interacting quantum baths. We show that the two-body interactions inside the baths induce emergent phenomena in the spin transport. The system and baths are modeled as independent spin chains resulting in a global nonhomogeneous X X Z model. The evolution of the system-bath state is simulated using matrix-product-states methods. We present two phase transitions induced by bath interactions. For weak bath interactions we observe ballistic and insulating phases. However, for strong bath interactions a diffusive phase emerges with a distinct power-law decay of the time-dependent spin current Q ∝t-α . Furthermore, we investigate long-lasting current oscillations arising from the non-Markovian dynamics in the homogeneous case and find a sharp change in their frequency scaling coinciding with the triple point of the phase diagram.
Fully synchronous solutions and the synchronization phase transition for the finite-N Kuramoto model
NASA Astrophysics Data System (ADS)
Bronski, Jared C.; DeVille, Lee; Jip Park, Moon
2012-09-01
We present a detailed analysis of the stability of phase-locked solutions to the Kuramoto system of oscillators. We derive an analytical expression counting the dimension of the unstable manifold associated to a given stationary solution. From this we are able to derive a number of consequences, including analytic expressions for the first and last frequency vectors to phase-lock, upper and lower bounds on the probability that a randomly chosen frequency vector will phase-lock, and very sharp results on the large N limit of this model. One of the surprises in this calculation is that for frequencies that are Gaussian distributed, the correct scaling for full synchrony is not the one commonly studied in the literature; rather, there is a logarithmic correction to the scaling which is related to the extremal value statistics of the random frequency vector.
Stability-to-instability transition in the structure of large-scale networks
NASA Astrophysics Data System (ADS)
Hu, Dandan; Ronhovde, Peter; Nussinov, Zohar
2012-12-01
We examine phase transitions between the “easy,” “hard,” and “unsolvable” phases when attempting to identify structure in large complex networks (“community detection”) in the presence of disorder induced by network “noise” (spurious links that obscure structure), heat bath temperature T, and system size N. The partition of a graph into q optimally disjoint subgraphs or “communities” inherently requires Potts-type variables. In earlier work [Philos. Mag.1478-643510.1080/14786435.2011.616547 92, 406 (2012)], when examining power law and other networks (and general associated Potts models), we illustrated that transitions in the computational complexity of the community detection problem typically correspond to spin-glass-type transitions (and transitions to chaotic dynamics in mechanical analogs) at both high and low temperatures and/or noise. The computationally “hard” phase exhibits spin-glass type behavior including memory effects. The region over which the hard phase extends in the noise and temperature phase diagram decreases as N increases while holding the average number of nodes per community fixed. This suggests that in the thermodynamic limit a direct sharp transition may occur between the easy and unsolvable phases. When present, transitions at low temperature or low noise correspond to entropy driven (or “order by disorder”) annealing effects, wherein stability may initially increase as temperature or noise is increased before becoming unsolvable at sufficiently high temperature or noise. Additional transitions between contending viable solutions (such as those at different natural scales) are also possible. Identifying community structure via a dynamical approach where “chaotic-type” transitions were found earlier. The correspondence between the spin-glass-type complexity transitions and transitions into chaos in dynamical analogs might extend to other hard computational problems. In this work, we examine large networks (with a power law distribution in cluster size) that have a large number of communities (q≫1). We infer that large systems at a constant ratio of q to the number of nodes N asymptotically tend towards insolvability in the limit of large N for any positive T. The asymptotic behavior of temperatures below which structure identification might be possible, T×=O[1/lnq], decreases slowly, so for practical system sizes, there remains an accessible, and generally easy, global solvable phase at low temperature. We further employ multivariate Tutte polynomials to show that increasing q emulates increasing T for a general Potts model, leading to a similar stability region at low T. Given the relation between Tutte and Jones polynomials, our results further suggest a link between the above complexity transitions and transitions associated with random knots.
Unconventional charge order in a co-doped high-Tc superconductor
Pelc, D.; Vučković, M.; Grafe, H. -J.; Baek, S. -H.; Požek, M.
2016-01-01
Charge-stripe order has recently been established as an important aspect of cuprate high-Tc superconductors. However, owing to the complex interplay between competing phases and the influence of disorder, it is unclear how it emerges from the parent high-temperature state. Here we report on the discovery of an unconventional ordered phase between charge-stripe order and (pseudogapped) metal in the cuprate La1.8−xEu0.2SrxCuO4. We use three complementary experiments—nuclear quadrupole resonance, nonlinear conductivity and specific heat—to demonstrate that the order appears through a sharp phase transition and exists in a dome-shaped region of the phase diagram. Our results imply that the new phase is a state, which preserves translational symmetry: a charge nematic. We thus resolve the process of charge-stripe development in cuprates, show that this nematic phase is distinct from high-temperature pseudogap and establish a link with other strongly correlated electronic materials with prominent nematic order. PMID:27605152
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Jinqiao; Zhang, Ling; Xie, Bing
2015-09-28
Anti-ferroelectric (AFE) composite ceramics of (Pb{sub 0.858}Ba{sub 0.1}La{sub 0.02}Y{sub 0.008})(Zr{sub 0.65}Sn{sub 0.3}Ti{sub 0.05})O{sub 3}-(Pb{sub 0.97}La{sub 0.02})(Zr{sub 0.9}Sn{sub 0.05} Ti{sub 0.05})O{sub 3} (PBLYZST-PLZST) were fabricated by the conventional solid-state sintering process (CS), the glass-aided sintering (GAS), and the spark plasma sintering (SPS), respectively. The influence of the temperature induced phase transition on the phase structure, hysteresis loops, and energy storage properties of the composite ceramics were investigated in detail. The measured results of X-ray diffraction demonstrate that the composite ceramics exhibit the perovskite phases and small amounts of non-functional pyrochlore phases. Compared with the CS process, the GAS and SPS processesmore » are proven more helpful to suppress the diffusion behaviors between the PBLYZST and PLZST phases according to the field emission scanning electron microscopy, thereby being able to improve the contribution of PBLYZST phase to the temperature stability of the orthogonal AFE phase. When the ambient temperature rises from 25 °C to 125 °C, CS and GAS samples have undergone a phase transition from orthorhombic AFE phase to tetragonal AFE phase, which results in a sharp decline in the energy storage density. However, the phase transition temperature of SPS samples is higher than 125 °C, and the energy storage density only slightly decreases due to the disorder of material microstructure caused by the high temperature. As a result, the SPS composite ceramics obtain a recoverable high energy storage density of 6.46 J/cm{sup 3} and the excellent temperature stability of the energy storage density of 1.16 × 10{sup −2} J/°C·cm{sup 3}, which is 1.29 × 10{sup −2} J/°C·cm{sup 3} lower than that of CS samples and about 0.43 times as that of GAS samples.« less
Weak and strong chaos in Fermi-Pasta-Ulam models and beyond.
Pettini, Marco; Casetti, Lapo; Cerruti-Sola, Monica; Franzosi, Roberto; Cohen, E G D
2005-03-01
We briefly review some of the most relevant results that our group obtained in the past, while investigating the dynamics of the Fermi-Pasta-Ulam (FPU) models. The first result is the numerical evidence of the existence of two different kinds of transitions in the dynamics of the FPU models: (i) A stochasticity threshold (ST), characterized by a value of the energy per degree of freedom below which the overwhelming majority of the phase space trajectories are regular (vanishing Lyapunov exponents). It tends to vanish as the number N of degrees of freedom is increased. (ii) A strong stochasticity threshold (SST), characterized by a value of the energy per degree of freedom at which a crossover appears between two different power laws of the energy dependence of the largest Lyapunov exponent, which phenomenologically corresponds to the transition between weak and strong chaotic regimes. It is stable with N. The second result is the development of a Riemannian geometric theory to explain the origin of Hamiltonian chaos. Starting this theory has been motivated by the inadequacy of the approach based on homoclinic intersections to explain the origin of chaos in systems of arbitrarily large N, or arbitrarily far from quasi-integrability, or displaying a transition between weak and strong chaos. Finally, the third result stems from the search for the transition between weak and strong chaos in systems other than FPU. Actually, we found that a very sharp SST appears as the dynamical counterpart of a thermodynamic phase transition, which in turn has led, in the light of the Riemannian theory of chaos, to the development of a topological theory of phase transitions.
Weak and strong chaos in Fermi-Pasta-Ulam models and beyond
NASA Astrophysics Data System (ADS)
Pettini, Marco; Casetti, Lapo; Cerruti-Sola, Monica; Franzosi, Roberto; Cohen, E. G. D.
2005-03-01
We briefly review some of the most relevant results that our group obtained in the past, while investigating the dynamics of the Fermi-Pasta-Ulam (FPU) models. The first result is the numerical evidence of the existence of two different kinds of transitions in the dynamics of the FPU models: (i) A stochasticity threshold (ST), characterized by a value of the energy per degree of freedom below which the overwhelming majority of the phase space trajectories are regular (vanishing Lyapunov exponents). It tends to vanish as the number N of degrees of freedom is increased. (ii) A strong stochasticity threshold (SST), characterized by a value of the energy per degree of freedom at which a crossover appears between two different power laws of the energy dependence of the largest Lyapunov exponent, which phenomenologically corresponds to the transition between weak and strong chaotic regimes. It is stable with N. The second result is the development of a Riemannian geometric theory to explain the origin of Hamiltonian chaos. Starting this theory has been motivated by the inadequacy of the approach based on homoclinic intersections to explain the origin of chaos in systems of arbitrarily large N, or arbitrarily far from quasi-integrability, or displaying a transition between weak and strong chaos. Finally, the third result stems from the search for the transition between weak and strong chaos in systems other than FPU. Actually, we found that a very sharp SST appears as the dynamical counterpart of a thermodynamic phase transition, which in turn has led, in the light of the Riemannian theory of chaos, to the development of a topological theory of phase transitions.
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Farrell, D. E.
1989-01-01
A melt of composition Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) was fast quenched to form a glass. This was subsequently air annealed and the influence of annealing time and temperature on the formation of various crystalline phases was investigated. X-ray powder diffraction indicate that none of the resulting samples were single phase. However, for an annealing temperature of 840 C, the volume fraction of the high Tc phase (isostructural with Bi2Sr2Ca2Cu3O10) increased with annealing time. A specimen annealed at this temperature for 243 h followed by slow cooling showed a sharp transition and Tc (R = 0) = 107.2 K.
Beryl-II, a high-pressure phase of beryl: Raman and luminescence spectroscopy to 16.4 GPa
NASA Astrophysics Data System (ADS)
O'Bannon, Earl; Williams, Quentin
2016-10-01
The Raman and Cr3+ and V2+ luminescence spectra of beryl and emerald have been characterized up to 15.0 and 16.4 GPa, respectively. The Raman spectra show that an E 1g symmetry mode at 138 cm-1 shifts negatively by -4.57 (±0.55) cm-1/GPa, and an extrapolation of the pressure dependence of this mode indicates that a soft-mode transition should occur near 12 GPa. Such a transition is in accord with prior theoretical results. Dramatic changes in Raman mode intensities and positions occur between 11.2 and 15.0 GPa. These changes are indicative of a phase transition that primarily involves tilting and mild distortion of the Si6O18 rings. New Raman modes are not observed in the high-pressure phase, which indicates that the local bonding environment is not altered dramatically across the transition (e.g., changes in coordination do not occur). Both sharp line and broadband luminescence are observed for both Cr3+ and V2+ in emerald under compression to 16.4 GPa. The R-lines of both Cr3+ and V2+ shift to lower energy (longer wavelength) under compression. Both R-lines of Cr3+ split at ~13.7 GPa, and the V2+ R1 slope changes at this pressure and shifts more rapidly up to ~16.4 GPa. The Cr3+ R-line splitting and FWHM show more complex behavior, but also shift in behavior at ~13.7 GPa. These changes in the pressure dependency of the Cr3+ and V2+ R-lines and the changes in R-line splitting and FWHM at ~13.7 GPa further demonstrate that a phase transition occurs at this pressure, in good agreement with our Raman results. The high-pressure phase of beryl appears to have two Al sites that become more regular under compression. Hysteresis is not observed in our Raman or luminescence spectra on decompression, suggesting that this transition is second order in nature: The occurrence of a second-order transition near this pressure is also in accord with prior theoretical results. We speculate that the high-pressure phase (beryl-II) might be a mildly modulated structure, and/or that extensive twinning occurs across this transition.
NASA Astrophysics Data System (ADS)
Gutha, Rithvik R.; Sharp, Christina; Wing, Waylin J.; Sadeghi, Seyed M.
2018-02-01
Chemical sensing based on Localized Surface Plasmonic Resonances (LSPR) and the ultra-sharp optical features of surface lattice resonances (SLR) of arrays of metallic nanoantennas have attracted much attention. Recently we studied biosensing based on the transition between LSPR and SLR (hybridization phase), demonstrating significantly higher refractive index sensitivity than each of these resonances individually. In this contribution we study the impact of size and shape of the metallic nanoantennas on the hybridization process and the way they influence application of this process for biosensing, wherein miniscule variation of the refractive index of the environment leads to dramatic changes in the spectral properties of the arrays.
Financial instability from local market measures
NASA Astrophysics Data System (ADS)
Bardoscia, Marco; Livan, Giacomo; Marsili, Matteo
2012-08-01
We study the emergence of instabilities in a stylized model of a financial market, when different market actors calculate prices according to different (local) market measures. We derive typical properties for ensembles of large random markets using techniques borrowed from statistical mechanics of disordered systems. We show that, depending on the number of financial instruments available and on the heterogeneity of local measures, the market moves from an arbitrage-free phase to an unstable one, where the complexity of the market—as measured by the diversity of financial instruments—increases, and arbitrage opportunities arise. A sharp transition separates the two phases. Focusing on two different classes of local measures inspired by real market strategies, we are able to analytically compute the critical lines, corroborating our findings with numerical simulations.
Destroying coherence in high-temperature superconductors with current flow
Kaminski, A.; Rosenkranz, S.; Norman, M. R.; ...
2016-09-13
Here, the loss of single-particle coherence going from the superconducting state to the normal state in underdoped cuprates is a dramatic effect that has yet to be understood. Here, we address this issue by performing angle resolved photoemission spectroscopy measurements in the presence of a transport current. We find that the loss of coherence is associated with the development of an onset in the resistance, in that well before the midpoint of the transition is reached, the sharp peaks in the angle resolved photoemission spectra are completely suppressed. Since the resistance onset is a signature of phase fluctuations, this impliesmore » that the loss of single-particle coherence is connected with the loss of long-range phase coherence.« less
NASA Astrophysics Data System (ADS)
Marlowe, R. L.; Lukan, A. M.; Lee, S. A.; Anthony, L.; Rupprecht, A.
1996-03-01
Differential scanning calorimetry was used to measure the binding strength between calf-thymus DNA and its primary water of hydration. The specific heat of wet-spun films was found to have a broad endothermic transition near 80 ^oC and a sharp exothermic transition near 250 ^oC. The broad transition is believed to be mainly due to the breaking of the bonds of the strongly bound water of hydration. This transition was found to be reversible, as expected. Kissinger analysis indicates that the activation barrier for breaking the bonds of these water molecules is about 0.6 eV. The sharp transition appeared to be an indication of a thermal decomposition of the DNA. Samples taken above this transition lost mass, showed evidence of having melted, and had turned black in color. This transition is irreversible.
Effect of long-range interactions on the phase transition of Axelrod's model
NASA Astrophysics Data System (ADS)
Reia, Sandro M.; Fontanari, José F.
2016-11-01
Axelrod's model with F =2 cultural features, where each feature can assume k states drawn from a Poisson distribution of parameter q , exhibits a continuous nonequilibrium phase transition in the square lattice. Here we use extensive Monte Carlo simulations and finite-size scaling to study the critical behavior of the order parameter ρ , which is the fraction of sites that belong to the largest domain of an absorbing configuration averaged over many runs. We find that it vanishes as ρ ˜(qc0-q )β with β ≈0.25 at the critical point qc0≈3.10 and that the exponent that measures the width of the critical region is ν0≈2.1 . In addition, we find that introduction of long-range links by rewiring the nearest-neighbors links of the square lattice with probability p turns the transition discontinuous, with the critical point qcp increasing from 3.1 to 27.17, approximately, as p increases from 0 to 1. The sharpness of the threshold, as measured by the exponent νp≈1 for p >0 , increases with the square root of the number of nodes of the resulting small-world network.
NASA Astrophysics Data System (ADS)
Malygin, G. A.; Nikolaev, V. I.; Averkin, A. I.; Zograf, A. P.
2016-12-01
The compression diagram of Ni49Fe18Ga27Co6 alloy crystals in the [011] direction was studied until full shape memory strain at various temperatures in the range of 259-340 K. It is found that all load curves are anomalously shaped and contain portions of sharp and gradual decreases in deformation stresses. Simulation of pseudo-elastic stress-strain curves within the theory of diffuse martensitic transitions, describing not only equilibrium of phases, but also the kinetics of the transition between them, shows that elastic interphase stresses during martensitic reactions Ll 2 → 14 M and 14 M → Ll 0 characteristic of this alloy can be responsible for the extraordinary shape of compression diagrams.
Evidence for a New Intermediate Phase in a Strongly Correlated 2D System near Wigner Crystallization
NASA Astrophysics Data System (ADS)
Gao, Xuan; Qiu, Richard; Goble, Nicholas; Serafin, Alex; Yin, Liang; Xia, Jian-Sheng; Sullivan, Neil; Pfeiffer, Loren; West, Ken
How the two dimensional (2D) quantum Wigner crystal (WC) transforms into the metallic liquid phase remains an outstanding problem in physics. In theories considering the 2D WC to liquid transition in the clean limit, it was suggested that a number of intermediate phases might exist. We have studied the transformation between the metallic fluid phase and the low magnetic field reentrant insulating phase (RIP) which was interpreted as due to the WC [Qiu et al., PRL 108, 106404 (2012)], in a strongly correlated 2D hole system in GaAs quantum well with large interaction parameter rs (~20-30) and high mobility. Instead of a sharp transition, we found that increasing density (or lowering rs) drives the RIP into a state where the incipient RIP coexists with Fermi liquid. This apparent mixture phase intermediate between Fermi liquid and WC also exhibits a non-trivial temperature dependent resistivity behavior which can be qualitatively understood by the reversed melting of WC in the mixture, in analogy to the Pomeranchuk effect in the solid-liquid mixture of Helium-3. X.G. thanks NSF (DMR-0906415) for supporting work at CWRU. Experiments at the NHMFL High B/T Facility were supported by NSF Grant 0654118 and the State of Florida. L.P. thanks the Gordon and Betty Moore Foundation and NSF MRSEC (DMR-0819860) for support.
Power suppression at large scales in string inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cicoli, Michele; Downes, Sean; Dutta, Bhaskar, E-mail: mcicoli@ictp.it, E-mail: sddownes@physics.tamu.edu, E-mail: dutta@physics.tamu.edu
2013-12-01
We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflationmore » is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.« less
Power suppression at large scales in string inflation
NASA Astrophysics Data System (ADS)
Cicoli, Michele; Downes, Sean; Dutta, Bhaskar
2013-12-01
We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflation is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.
NASA Astrophysics Data System (ADS)
Kluge, Thomas
2015-11-01
Combining ultra-intense short-pulse and high-energy long-pulse lasers, with brilliant coherent hard X-ray FELs, such as the Helmholtz International Beamline for Extreme Fields (HIBEF) under construction at the HED Instrument of European XFEL, or MEC at LCLS, holds the promise to revolutionize our understanding of many High Energy Density Physics phenomena. Examples include the relativistic electron generation, transport, and bulk plasma response, and ionization dynamics and heating in relativistic laser-matter interactions, or the dynamics of laser-driven shocks, quasi-isentropic compression, and the kinetics of phase transitions at high pressure. A particularly promising new technique is the use of coherent X-ray diffraction to characterize electron density correlations, and by resonant scattering to characterize the distribution of specific charge-state ions, either on the ultrafast time scale of the laser interaction, or associated with hydrodynamic motion. As well one can image slight density changes arising from phase transitions inside of shock-compressed high pressure matter. The feasibility of coherent diffraction techniques in laser-driven matter will be discussed. including recent results from demonstration experiments at MEC. Among other things, very sharp density changes from laser-driven compression are observed, having an effective step width of 10 nm or smaller. This compares to a resolution of several hundred nm achievedpreviously with phase contrast imaging. and on behalf of HIBEF User Consortium, for the Helmholtz International Beamline for Extreme Fields at the European XFEL.
Boundary-layer transition on cones at angle of attack in a Mach-6 Quiet Tunnel
NASA Astrophysics Data System (ADS)
Swanson, Erick O.
It is desirable for the boundary layer on a re-entry vehicle (RV) to be laminar during as much of its flight as possible, since a turbulent boundary layer causes several problems, such as high heat flux to the vehicle and larger drag forces. Nosetip roughness can cause the boundary layer to transition downstream on the cone. Surface roughness and nosetip bluntness may cause windside-forward transition on maneuvering RVs. The crossflow instability may also influence transition on yawed RVs. The mechanisms through which these phenomena induce transition are poorly understood. Several experiments have been conducted to study these phenomena. The temperature-sensitive-paint (TSP) and oil-flow techniques were used to observe transition and crossflow vortices on cones at angle of attack in the Purdue Boeing/AFOSR Mach-6 Quiet Tunnel. The high-Reynolds number capability of the tunnel was developed to facilitate these experiments. Improvements were made in the use of the temperature-sensitive-paint technique in the Purdue Mach-6 Quiet Tunnel. The measured heat transfer to cones with sharp and spherically-blunt nosetips at 0° angle-of-attack was within 60% of the values from Navier-Stokes computations. Transition was observed on sharp and spherically-blunt cones at 6° angle-of-attack in noisy flow. Crossflow vortices were observed with both TSP and oil flow under noisy conditions in the turbulent boundary layer on a sharp cone. The vortex angles were about 50% of the surface-streamline angles observed using oil dots. TSP was also used to observe crossflow vortices in quiet flow. The vortices were similar to those seen in noisy flow. An array of roughness elements at x = 2 inches (axially) with a spacing of 9° on a yawed sharp cone in noisy flow influenced transition that was apparently induced by the crossflow instability. No influence of the roughness array was observed in quiet flow.
Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry.
Murani, Anil; Kasumov, Alik; Sengupta, Shamashis; Kasumov, Yu A; Volkov, V T; Khodos, I I; Brisset, F; Delagrange, Raphaëlle; Chepelianskii, Alexei; Deblock, Richard; Bouchiat, Hélène; Guéron, Sophie
2017-07-05
The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance. Here we provide another demonstration of ballistic transport, in the way the edge states carry a supercurrent. The system we have investigated is a micrometre-long monocrystalline bismuth nanowire with topological surfaces, that we connect to two superconducting electrodes. We have measured the relation between the Josephson current flowing through the nanowire and the superconducting phase difference at its ends, the current-phase relation. The sharp sawtooth-shaped phase-modulated current-phase relation we find demonstrates that transport occurs selectively along two ballistic edges of the nanowire. In addition, we show that a magnetic field induces 0-π transitions and ϕ 0 -junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents.
Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry
Murani, Anil; Kasumov, Alik; Sengupta, Shamashis; Kasumov, Yu A.; Volkov, V. T.; Khodos, I. I.; Brisset, F.; Delagrange, Raphaëlle; Chepelianskii, Alexei; Deblock, Richard; Bouchiat, Hélène; Guéron, Sophie
2017-01-01
The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance. Here we provide another demonstration of ballistic transport, in the way the edge states carry a supercurrent. The system we have investigated is a micrometre-long monocrystalline bismuth nanowire with topological surfaces, that we connect to two superconducting electrodes. We have measured the relation between the Josephson current flowing through the nanowire and the superconducting phase difference at its ends, the current–phase relation. The sharp sawtooth-shaped phase-modulated current–phase relation we find demonstrates that transport occurs selectively along two ballistic edges of the nanowire. In addition, we show that a magnetic field induces 0–π transitions and φ0-junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents. PMID:28677681
Investigation of phase-change coatings for variable thermal control of spacecraft
NASA Technical Reports Server (NTRS)
Kelliher, W. C.; Young, P. R.
1972-01-01
An investigation was conducted to determine the feasibility of producing a spacecraft coating system that could vary the ratio of its solar absorptance to thermal emittance to adjust automatically for changes in the thermal balance of a spacecraft. This study resulted in a new concept called the phase-change effect which uses the change that occurs in the optical properties of many materials during the phase transition from a crystalline solid to an amorphous material. A series of two-component model coatings was developed which, when placed on a highly reflecting substrate, exhibited a sharp decrease in solar absorptance within a narrow temperature range. A variable thermal control coating can have a significant amount of temperature regulation with the phase-change effect. Data are presented on several crystallite-polymer formulations, their physical and optical properties, and associated phase-change temperatures. Aspects pertaining to their use in a space environment and an example of the degree of thermal regulation attainable with these coatings is also given.
Driven Phases of Quantum Matter
NASA Astrophysics Data System (ADS)
Khemani, Vedika; von Keyserlingk, Curt; Lazarides, Achilleas; Moessner, Roderich; Sondhi, Shivaji
Clean and interacting periodically driven quantum systems are believed to exhibit a single, trivial ``infinite-temperature'' Floquet-ergodic phase. By contrast, I will show that their disordered Floquet many-body localized counterparts can exhibit distinct ordered phases with spontaneously broken symmetries delineated by sharp transitions. Some of these are analogs of equilibrium states, while others are genuinely new to the Floquet setting. I will show that a subset of these novel phases are absolutely stableto all weak local deformations of the underlying Floquet drives, and spontaneously break Hamiltonian dependent emergent symmetries. Strikingly, they simultaneously also break the underlying time-translation symmetry of the Floquet drive and the order parameter exhibits oscillations at multiples of the fundamental period. This ``time-crystallinity'' goes hand in hand with spatial symmetry breaking and, altogether, these phases exhibit a novel form of simultaneous long-range order in space and time. I will describe how this spatiotemporal order can be detected in experiments involving quenches from a broad class of initial states.
On the P 21/m and Pmmn pathways of the B1 B2 phase transition in NaCl: a quantum-mechanical study
NASA Astrophysics Data System (ADS)
Catti, Michele
2004-06-01
The monoclinic P 21/m and orthorhombic Pmmn (Watanabe et al' s-type) mechanisms of the high-pressure phase transition of NaCl between the B1 (rocksalt, Fm\\overline 3 m ) and B2 (CsCl-like, Pm\\overline 3 m ) cubic phases were investigated by ab initio DFT techniques with all-electron localized basis sets. Enthalpy profiles versus the order parameter were computed at constant pressures of 15, 26.3 (equilibrium) and 35 GPa for each pathway. The monoclinic path shows a lower activation enthalpy at the equilibrium pressure, but at different p values (hysteresis effects) the other mechanism becomes competitive. In the P 21/m case, sharp jumps of structural parameters are observed along the transformation coordinate, which can be explained by a mechanism based on discontinuous sliding of alternating pairs of (100) atomic layers. This accounts also for the predicted formation of a metastable intermediate Cmcm phase with TlI-like structure, similar to that observed experimentally at high pressure in AgCl, and the relations with the KOH structure are discussed, too. On the other hand, along the Pmmn pathway the structural parameters vary quite smoothly, indicating a continuous motion of neighbouring atomic planes within the constraint of the additional mirror symmetry.
NASA Astrophysics Data System (ADS)
Folkerts, Timothy John
A systematic study of Ba_ {1-x}K_ xBiO_3 (BKBO) in the range 0 <= x <= 0.5 is presented in this work, concentrating especially on the superconducting range 0.35 <= x <= 0.5. Samples were studied using powder x-ray diffraction, thermal analysis, magnetization as a function of both temperature and applied field, and resistivity as a function of both temperature and pressure. Particular effort went into producing high quality samples. This proved difficult because of the moisture sensitivity of the starting materials and of the intermediate products, and because of the tendency of the material to phase separate into regions of varying potassium concentrations. Once synthesis techniques were developed which allowed production of high quality samples, systematic studies could be undertaken. The sharpness of the powder x-ray diffraction peaks, along with least squares fits, were used to determine phase purity and to exclude poor quality samples. The lattice parameters of the remaining samples were seen to obey Vegard's Law. Magnetization studies as a function of temperature were used to determine the superconducting transition temperature (T_ c). Onsets for superconductivity were observed as high as 30 K for samples with broad transitions, although samples with sharp transitions had a maximum T_ c of only 28.8 K. This high T_ c, as well as the crystal structure clearly link BKBO to the high T_ c superconductors. Hysteresis measurements were undertaken to determine the upper and lower critical fields, critical currents, and the normal state susceptibility. Estimates of the coherence length, penetration depth, and the electronic contribution to the specific heat based on these measurements agree well with BCS theory. Resistivity data are quit dependent on sample quality, as well as potassium doping. At low potassium concentrations, the material is semiconducting, while at higher potassium concentrations where the material is superconducting, the normal state resistivity of Ba_ {1-x}K_ xBiO_3 is nearly temperature independent. This is in contrast to other oxide superconductors, which typically show metallic behavior. We conclude that the BCS theory adequately describes the properties of Ba_{1-x }K_ xBiO_3, as determined in this study.
BCS to BEC evolution for mixtures of fermions with unequal masses
NASA Astrophysics Data System (ADS)
de Melo, Carlos A. R. Sa
2009-03-01
I discuss the zero and finite temperature phase diagrams of a mixture of fermions with unequal masses with and without population imbalance, which may correspond for example to mixtures of ^6Li and ^40K, ^6Li and ^87Sr, or ^40K and ^87Sr in the context of ultracold atoms. At zero temperature and when excess fermions are present, at least three phases may occur as the interaction parameter is changed from the BCS to the BEC regime. These phases correspond to normal, phase separation, or superfluid with coexistence between paired and excess fermions. The zero temperature phase diagram of population imbalance versus interaction parameter presents a remarkable asymmetry between the cases involving excess lighter or heavier fermions [1, 2], in sharp contrast with the symmetric phase diagram corresponding to the case of equal masses. At finite temperatures, the phase separation region of the phase diagram competes with superfluid regions possessing gapless elementary excitations [3] for certain ranges of the interaction parameter depending on the mass ratio. Furthermore, a phase transition may take place between two superfluid phases which are topologically distinct. The precise location of such transition is sensitive to the mass ratio between the two species of fermions. Signatures of this possible topological transition are present in the momentum distribution or structure factor, which may be measured experimentally in time-of-flight or through Bragg scattering, respectively. Lastly, throughout the evolution from BCS to BEC, I discuss the critical current and sound velocity for unequal mass systems as a function of interaction parameter and mass ratio. These quantities may also be measured via the same techniques already used in mixtures of fermions with equal masses. [1] M. Iskin, and C. A. R. Sa de Melo, Phys. Rev. Lett. 97, 100404 (2006). [2] M. Iskin and C. A. R. Sa de Melo, Phys. Rev. A 76, 013601 (2007). [3] Li Han, and C. A. R. Sa de Melo, arXiv:0812.xxxx
Rosenholm, Jarl B
2018-03-01
The perfect gas law is used as a reference when selecting state variables (P, V, T, n) needed to characterize ideal gases (vapors), liquids and solids. Van der Waals equation of state is used as a reference for models characterizing interactions in liquids, solids and their mixtures. Van der Waals loop introduces meta- and unstable states between the observed gas (vapor)-liquid P-V transitions at low T. These intermediate states are shown to appear also between liquid-liquid, liquid-solid and solid-solid phase transitions. First-order phase transitions are characterized by a sharp discontinuity of first-order partial derivatives (P, S, V) of Helmholtz and Gibbs free energies. Second-order partial derivatives (K T , B, C V , C P , E) consist of a static contribution relating to second-order phase transitions and a relaxation contribution representing the degree of first-order phase transitions. Bimodal (first-order) and spinodal (second-order) phase boundaries are used to separate stable phases from metastable and unstable phases. The boundaries are identified and quantified by partial derivatives of molar Gibbs free energy or chemical potentials with respect to P, S, V and composition (mole fractions). Molecules confined to spread Langmuir monolayers or adsorbed Gibbs monolayers are characterized by equation of state and adsorption isotherms relating to a two-dimensional van der Waals equation of state. The basic work of two-dimensional wetting (cohesion, adsorption, spreading, immersion), have to be adjusted by a horizontal surface pressure in the presence of adsorbed vapor layers. If the adsorption is extended to liquid films a vertical surface pressure (Π) may be added to account for the lateral interaction, thus restoring PV = ΠAh dependence of thin films. Van der Waals attraction, Coulomb repulsion and structural hydration forces contribute to the vertical surface pressure. A van der Waals type coexistence of ordered (dispersed) and disordered (aggregated) phases is shown to exist when liquid vapor is confined in capillaries (condensation-liquefaction-evaporation and flux). This pheno-menon can be experimentally illustrated with suspended nano-sized particles (flocculation-coagulation-peptisation of colloidal sols) being confined in sample holders of varying size. The self-assembled aggregates represent critical self-similar equilibrium structures corres-ponding to rate determining complexes in kinetics. Overall, a self-consistent thermodynamic framework is established for the characterization of two- and three-dimensional phase separations in one-, two- and three-component systems. Copyright © 2018 Elsevier B.V. All rights reserved.
A comprehensive numerical analysis of background phase correction with V-SHARP.
Özbay, Pinar Senay; Deistung, Andreas; Feng, Xiang; Nanz, Daniel; Reichenbach, Jürgen Rainer; Schweser, Ferdinand
2017-04-01
Sophisticated harmonic artifact reduction for phase data (SHARP) is a method to remove background field contributions in MRI phase images, which is an essential processing step for quantitative susceptibility mapping (QSM). To perform SHARP, a spherical kernel radius and a regularization parameter need to be defined. In this study, we carried out an extensive analysis of the effect of these two parameters on the corrected phase images and on the reconstructed susceptibility maps. As a result of the dependence of the parameters on acquisition and processing characteristics, we propose a new SHARP scheme with generalized parameters. The new SHARP scheme uses a high-pass filtering approach to define the regularization parameter. We employed the variable-kernel SHARP (V-SHARP) approach, using different maximum radii (R m ) between 1 and 15 mm and varying regularization parameters (f) in a numerical brain model. The local root-mean-square error (RMSE) between the ground-truth, background-corrected field map and the results from SHARP decreased towards the center of the brain. RMSE of susceptibility maps calculated with a spatial domain algorithm was smallest for R m between 6 and 10 mm and f between 0 and 0.01 mm -1 , and for maps calculated with a Fourier domain algorithm for R m between 10 and 15 mm and f between 0 and 0.0091 mm -1 . We demonstrated and confirmed the new parameter scheme in vivo. The novel regularization scheme allows the use of the same regularization parameter irrespective of other imaging parameters, such as image resolution. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Pressure-induced amorphization of charge ordered spinel AlV{sub 2}O{sub 4} at low temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malavi, Pallavi S., E-mail: malavips@barc.gov.in; Karmakar, S., E-mail: malavips@barc.gov.in; Sharma, S. M.
2014-04-24
Structural properties of charge ordered spinel AlV{sub 2}O{sub 4} have been investigated under high pressure at low temperature (80K) by synchrotron based x-ray diffraction measurements. It is observed that upon increasing pressure the structure becomes progressively disordered due to the distortion of the AlO{sub 4} tetrahedral unit and undergoes amorphization above ∼12 GPa. While releasing pressure, the rhombohedral phase is only partially recovered at a much lower pressure (below 5 GPa). Within the stability of the rhombohedral phase, the distortion in the vanadium heptamer increases monotonically with pressure, suggesting enhanced charge ordering. This result is in sharp contrast with themore » recent observation of pressure-induced frustration in the charge ordered state leading to structural transition to the cubic phase at room temperature [JPCM 25, 292201, 2013].« less
Abrupt change of Antarctic moisture origin at the end of Termination II
Masson-Delmotte, V.; Stenni, B.; Blunier, T.; Cattani, O.; Chappellaz, J.; Cheng, H.; Dreyfus, G.; Edwards, R. L.; Falourd, S.; Govin, A.; Kawamura, K.; Johnsen, S. J.; Jouzel, J.; Landais, A.; Lemieux-Dudon, B.; Lourantou, A.; Marshall, G.; Minster, B.; Mudelsee, M.; Pol, K.; Röthlisberger, R.; Selmo, E.; Waelbroeck, C.
2010-01-01
The deuterium excess of polar ice cores documents past changes in evaporation conditions and moisture origin. New data obtained from the European Project for Ice Coring in Antarctica Dome C East Antarctic ice core provide new insights on the sequence of events involved in Termination II, the transition between the penultimate glacial and interglacial periods. This termination is marked by a north–south seesaw behavior, with first a slow methane concentration rise associated with a strong Antarctic temperature warming and a slow deuterium excess rise. This first step is followed by an abrupt north Atlantic warming, an abrupt resumption of the East Asian summer monsoon, a sharp methane rise, and a CO2 overshoot, which coincide within dating uncertainties with the end of Antarctic optimum. Here, we show that this second phase is marked by a very sharp Dome C centennial deuterium excess rise, revealing abrupt reorganization of atmospheric circulation in the southern Indian Ocean sector. PMID:20566887
Transition Prediction in Hypersonic Boundary Layers Using Receptivity and Freestream Spectra
NASA Technical Reports Server (NTRS)
Balakumar, P.; Chou, Amanda
2016-01-01
Boundary-layer transition in hypersonic flows over a straight cone can be predicted using measured freestream spectra, receptivity, and threshold values for the wall pressure fluctuations at the transition onset points. Simulations are performed for hypersonic boundary-layer flows over a 7-degree half-angle straight cone with varying bluntness at a freestream Mach number of 10. The steady and the unsteady flow fields are obtained by solving the two-dimensional Navier-Stokes equations in axisymmetric coordinates using a 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using a third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The calculated N-factors at the transition onset location increase gradually with increasing unit Reynolds numbers for flow over a sharp cone and remain almost the same for flow over a blunt cone. The receptivity coefficient increases slightly with increasing unit Reynolds numbers. They are on the order of 4 for a sharp cone and are on the order of 1 for a blunt cone. The location of transition onset predicted from the simulation including the freestream spectrum, receptivity, and the linear and the weakly nonlinear evolutions yields a solution close to the measured onset location for the sharp cone. The simulations over-predict transition onset by about twenty percent for the blunt cone.
Pattern formation for NO+N H3 on Pt(100): Two-dimensional numerical results
NASA Astrophysics Data System (ADS)
Uecker, Hannes
2005-01-01
The Lombardo-Fink-Imbihl model of the NO+NH3 reaction on a Pt(100) surface consists of seven coupled ordinary differential equations (ODE) and shows stable relaxation oscillations with sharp transitions in the relevant temperature range. Here we study numerically the effect of coupling of these oscillators by surface diffusion in two dimensions. We find different types of patterns, in particular phase clusters and standing waves. In models of related surface reactions such clustered solutions are known to exist only under a global coupling through the gas phase. This global coupling is replaced here by relatively fast diffusion of two variables which are kinetically slaved in the ODE. We also compare our simulations with experimental results and discuss some shortcomings of the model.
From stable to unstable anomaly-induced inflation
NASA Astrophysics Data System (ADS)
Netto, Tibério de Paula; Pelinson, Ana M.; Shapiro, Ilya L.; Starobinsky, Alexei A.
2016-10-01
Quantum effects derived through conformal anomaly lead to an inflationary model that can be either stable or unstable. The unstable version requires a large dimensionless coefficient of about 5× {10}^8 in front of the {R}^2 term that results in the inflationary regime in the R+{R}^2 ("Starobinsky") model being a generic intermediate attractor. In this case the non-local terms in the effective action are practically irrelevant, and there is a `graceful exit' to a low curvature matter-like dominated stage driven by high-frequency oscillations of R - scalarons, which later decay to pairs of all particles and antiparticles, with the amount of primordial scalar (density) perturbations required by observations. The stable version is a genuine generic attractor, so there is no exit from it. We discuss a possible transition from stable to unstable phases of inflation. It is shown that this transition is automatic if the sharp cut-off approximation is assumed for quantum corrections in the period of transition. Furthermore, we describe two different quantum mechanisms that may provide a required large {R}^2-term in the transition period.
Observation of amorphous to crystalline phase transformation in Te substituted Sn-Sb-Se thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chander, Ravi, E-mail: rcohri@yahoo.com
2015-05-15
Thin films of Sn-Sb-Se-Te (8 ≤ x ≤ 14) chalcogenide system were prepared by thermal evaporation technique using melt quenched bulk samples. The as-prepared thin films were found amorphous as evidenced from X-ray diffraction studies. Resistivity measurement showed an exponential decrease with temperature upto critical temperature (transition temperature) beyond which a sharp decrease was observed and with further increase in temperature showed an exponential decrease in resistivity with different activation energy. The transition temperature showed a decreasing trend with tellurium content in the sample. The resistivity measurement during cooling run showed no abrupt change in resistivity. The resistivity measurements ofmore » annealed films did not show any abrupt change revealing the structural transformation occurring in the material. The transition width showed an increase with tellurium content in the sample. The resistivity ratio showed two order of magnitude improvements for sample with higher tellurium content. The observed transition temperature in this system was found quite less than already commercialized Ge-Sb-Te system for optical and electronic memories.« less
NASA Astrophysics Data System (ADS)
Park, S.; Ishii, M.
2017-12-01
Constraining elastic properties of the 410- and 660-km discontinuities is vital for understanding the mantle composition and dynamics. One approach to study the transition zone is to use the "triplicated" arrivals of seismic data. These arrivals consist of three seismic phases that are sensitive to seismic structure slightly above, at, and below the discontinuity. Therefore, these data provide powerful constraints on the depth, width, and magnitude of velocity jump of the discontinuities with consequences for the studies of mantle composition, relevant phase transitions, and dynamics. Nevertheless, one of the most challenging aspects of using the triplication data is to identify the three individual phases that arrive close in time. In order to separate the three phases, we apply Radon transform to short-period seismograms recorded by a dense array of stations. This approach unwraps the triplication pattern, and brings out the high-frequency information that is not easily accessible in the original form of data. This method is applied to study the transition zone around the Kuril subduction zone, a region northeast of Japan. We take advantage of the High-Sensitivity Seismograph Network in Japan comprised of more than 700 stations whose dense sampling in distance allows us to capture the triplication pattern. The data are processed to obtain the variations in wave speeds around the discontinuities, i.e., at 410±100 and 660±100 km, resulting in models of topography and sharpness of discontinuities at various sampling locations. Both discontinuities exhibit local topography undulations consistent with the temperature effect; the 410- and 660-km discontinuities become shallower and deeper, respectively, nearer to the slab. Additional discontinuities around 660 km are also detected, which may be attributed to the garnet transitions occurring at similar depths as the post-spinel transition. The 410-km discontinuity is observed to be more diffuse than 660-km discontinuity. The wide transition cannot be explained solely by the presence of water or melt, suggesting the importance of other effects such as high Fe content of olivine or olivine-poor composition.
NASA Astrophysics Data System (ADS)
Jung, Moonjung; Kim, Dong-Hee
2017-12-01
We investigate the first-order transition in the spin-1 two-dimensional Blume-Capel model in square lattices by revisiting the transfer-matrix method. With large strip widths increased up to the size of 18 sites, we construct the detailed phase coexistence curve which shows excellent quantitative agreement with the recent advanced Monte Carlo results. In the deep first-order area, we observe the exponential system-size scaling of the spectral gap of the transfer matrix from which linearly increasing interfacial tension is deduced with decreasing temperature. We find that the first-order signature at low temperatures is strongly pronounced with much suppressed finite-size influence in the examined thermodynamic properties of entropy, non-zero spin population, and specific heat. It turns out that the jump at the transition becomes increasingly sharp as it goes deep into the first-order area, which is in contrast to the Wang-Landau results where finite-size smoothing gets more severe at lower temperatures.
Gradient Augmented Level Set Method for Two Phase Flow Simulations with Phase Change
NASA Astrophysics Data System (ADS)
Anumolu, C. R. Lakshman; Trujillo, Mario F.
2016-11-01
A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient Augmented Levelset method is coupled with the two-phase momentum and energy equations to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is adopted for velocity to discretize the advection and diffusion terms in the interfacial region. Furthermore, the GFM is employed to treat the discontinuity in the stress tensor, velocity, and temperature gradient yielding an accurate treatment in handling jump conditions. Thermal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a sharp treatment for the energy solution. This sharp treatment is extended to estimate the interfacial mass transfer rate. At the computational cell, a d-cubic Hermite interpolating polynomial is employed to describe the interface location, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodology for treating various interfacial processes with a high degree of sharpness. The ability to predict the interface and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analytical solutions.
Lee, Michael S; Olson, Mark A
2011-06-28
Temperature-based replica exchange (T-ReX) enhances sampling of molecular dynamics simulations by autonomously heating and cooling simulation clients via a Metropolis exchange criterion. A pathological case for T-ReX can occur when a change in state (e.g., folding to unfolding of a protein) has a large energetic difference over a short temperature interval leading to insufficient exchanges amongst replica clients near the transition temperature. One solution is to allow the temperature set to dynamically adapt in the temperature space, thereby enriching the population of clients near the transition temperature. In this work, we evaluated two approaches for adapting the temperature set: a method that equalizes exchange rates over all neighbor temperature pairs and a method that attempts to induce clients to visit all temperatures (dubbed "current maximization") by positioning many clients at or near the transition temperature. As a test case, we simulated the 57-residue SH3 domain of alpha-spectrin. Exchange rate equalization yielded the same unfolding-folding transition temperature as fixed-temperature ReX with much smoother convergence of this value. Surprisingly, the current maximization method yielded a significantly lower transition temperature, in close agreement with experimental observation, likely due to more extensive sampling of the transition state.
Magnetic Fluctuations, Precursor Phenomena, and Phase Transition in MnSi under a Magnetic Field
NASA Astrophysics Data System (ADS)
Pappas, C.; Bannenberg, L. J.; Lelièvre-Berna, E.; Qian, F.; Dewhurst, C. D.; Dalgliesh, R. M.; Schlagel, D. L.; Lograsso, T. A.; Falus, P.
2017-07-01
The reference chiral helimagnet MnSi is the first system where Skyrmion lattice correlations have been reported. At a zero magnetic field the transition at TC to the helimagnetic state is of first order. Above TC, in a region dominated by precursor phenomena, neutron scattering shows the buildup of strong chiral fluctuating correlations over the surface of a sphere with radius 2 π /ℓ, where ℓ is the pitch of the helix. It has been suggested that these fluctuating correlations drive the helical transition to first order following a scenario proposed by Brazovskii for liquid crystals. We present a comprehensive neutron scattering study under magnetic fields, which provides evidence that this is not the case. The sharp first order transition persists for magnetic fields up to 0.4 T whereas the fluctuating correlations weaken and start to concentrate along the field direction already above 0.2 T. Our results thus disconnect the first order nature of the transition from the precursor fluctuating correlations. They also show no indication for a tricritical point, where the first order transition crosses over to second order with increasing magnetic field. In this light, the nature of the first order helical transition and the precursor phenomena above TC, both of general relevance to chiral magnetism, remain an open question.
Electron correlations and magnetism in iron-based superconductors
NASA Astrophysics Data System (ADS)
Birgeneau, Robert
We have carried out a comprehensive study of the phase diagram, structures and phase transitions in the system RbxFeySe2-zSz. We find that the iron content is crucial in stabilizing the stripe antiferromagnetic (AF) phase (y 1.5), the block AF phase (y 1,6) and the iron vacancy-free metallic phase (y 2). These phases are separated by first order transitions. In going from superconducting Rb0.8Fe2Se2 to non-superconducting Rb0.8Fe2S2 we observe in our ARPES experiments little change in the Fermi surface topology but an increase in the overall bandwidth by a factor of 2, hence demonstrating that moderate correlation is essential in achieving high Tc. We show also using neutron scattering that for z =0 there is a sharp magnetic resonance mode well below the superconducting gap which is replaced by a broad hump structure above the gap for z 1. This is accompanied by an insignificant change in Tc. This implies a concomitant change from sign-reversed to sign preserved Cooper-Pairing symmetry driven by the change in electron band width. In this talk we will discuss the overall significance of this rich behavior observed in this alkali Fe-chalcogenide system. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231 within the Quantum Materials Program (KC2202).
Berthelot, Geoffroy; Foulonneau, Vincent; Marc, Andy; Antero-Jacquemin, Juliana; Noirez, Philippe; Bronikowski, Anne M.; Morgan, Theodore J.; Garland, Theodore; Carter, Patrick A.; Hersen, Pascal; Di Meglio, Jean-Marc; Toussaint, Jean-François
2017-01-01
Abstract Locomotion is one of the major physiological functions for most animals. Previous studies have described aging mechanisms linked to locomotor performance among different species. However, the precise dynamics of these age-related changes, and their interactions with development and senescence, are largely unknown. Here, we use the same conceptual framework to describe locomotor performances in Caenorhabditis elegans, Mus domesticus, Canis familiaris, Equus caballus, and Homo sapiens. We show that locomotion is a consistent biomarker of age-related changes, with an asymmetrical pattern throughout life, regardless of the type of effort or its duration. However, there is variation (i) among species for the same mode of locomotion, (ii) within species for different modes of locomotion, and (iii) among individuals of the same species for the same mode of locomotion. Age-related patterns are modulated by genetic (such as selective breeding) as well as environmental conditions (such as temperature). However, in all cases, the intersection of the rising developmental phase and the declining senescent phase reveals neither a sharp transition nor a plateau, but a smooth transition, emphasizing a crucial moment: the age at peak performance. This transition may define a specific target for future investigations on the dynamics of such biological interactions. PMID:27522057
Reentrant cluster glass and stability of ferromagnetism in the Ga2MnCo Heusler alloy
NASA Astrophysics Data System (ADS)
Samanta, Tamalika; Bhobe, P. A.; Das, A.; Kumar, A.; Nigam, A. K.
2018-05-01
We present here a detailed investigation into the magnetic ordering of a full Heusler alloy Ga2MnCo using dc and ac magnetization measurements, neutron diffraction, and neutron depolarization experiments. The crystal structure at room temperature was first confirmed to be L 21 using the highly intense synchrotron x-ray diffraction technique. Temperature-dependent magnetization reveals that Ga2MnCo enters a ferromagnetic (FM) state at TC=154 K, characterized by a sharp increase in magnetization and a plateaulike region hereafter. As the temperature is decreased further, a sharp drop in magnetization is observed at Tf=50 K, hinting toward an antiferromagnetic (AFM) phase change. Neutron diffraction (ND) recorded over the range of temperature from 6 to 300 K provides combined information regarding crystal as well as magnetic structure. Accordingly, an increase in the intensity of the ND pattern is seen at 150 K, signaling the onset of long-range FM order. However, there is no sign of the appearance of superlattice reflections corresponding to the AFM phase in the patterns recorded below 50 K. An unusual discontinuity in the unit-cell volume is seen around Tf, indicating a coupling of this second transition with the contraction of the lattice. Attempts to unravel this interesting magnetic behavior using ac susceptibility measurements led to the existence of glassy magnetism below Tf. Systematic analysis of the susceptibility results along with neutron depolarization measurement identifies the low-temperature phase as a reentrant cluster glass.
NASA Astrophysics Data System (ADS)
Alsaqqa, Ali; Kilcoyne, Colin; Singh, Sujay; Horrocks, Gregory; Marley, Peter; Banerjee, Sarbajit; Sambandamurthy, G.
Vanadium dioxide (VO2) is a strongly correlated material that exhibits a sharp thermally driven metal-insulator transition at Tc ~ 340 K. The transition can also be triggered by a DC voltage in the insulating phase with a threshold (Vth) behavior. The mechanisms behind these transitions are hotly discussed and resistance noise spectroscopy is a suitable tool to delineate different transport mechanisms in correlated systems. We present results from a systematic study of the low frequency (1 mHz < f < 10 Hz) noise behavior in VO2 nanobeams across the thermally and electrically driven transitions. In the thermal transition, the power spectral density (PSD) of the resistance noise is unchanged as we approach Tc from 300 K and an abrupt drop in the magnitude is seen above Tc and it remains unchanged till 400 K. However, the noise behavior in the electrically driven case is distinctly different: as the voltage is ramped from zero, the PSD gradually increases by an order of magnitude before reaching Vth and an abrupt increase is seen at Vth. The noise magnitude decreases above Vth, approaching the V = 0 value. The individual roles of percolation, Joule heating and signatures of correlated behavior will be discussed. This work is supported by NSF DMR 0847324.
NASA Astrophysics Data System (ADS)
Viswanath, Changhyun Ko, B.; Yang, Zheng; Ramanathan, Shriram
2011-03-01
VO2 undergoes a sharp metal-insulator transition at ˜67 °C with several orders of change in conductivity and optical transmittance. Understanding and control of the properties of vanadium oxide layers grown on technologically relevant substrates such as Si (100) single crystals is therefore of great interest. In this work, we show tunability of metal-insulator transition temperature as well as recoverable stress in VO2 thin films grown on Si substrate by introducing nanoscale atomic layer deposited HfO2 interfacial layers with no degradation in the resistance ratio. For a confined VO2 film, the metal-insulator transition temperature is suppressed by ˜16 °C and the recoverable stress is 150 MPa, compared to 400 MPa for a bare film. These observations are further correlated with in situ variable temperature measurement of stress changes occurring during the phase transition. Structural and microstructural studies on the various samples have been carried out by x ray diffraction and cross-sectional transmission electron microscopy. The strategy of tuning the metal-insulator transition characteristics by nanoscale interfacial dielectrics is of broader relevance in design of programmable materials and integration into solid state devices for electronics.
NASA Astrophysics Data System (ADS)
Sharma, Neeraj; Peterson, Vanessa K.; Elcombe, Margaret M.; Avdeev, Maxim; Studer, Andrew J.; Blagojevic, Ned; Yusoff, Rozila; Kamarulzaman, Norlida
The structural response to electrochemical cycling of the components within a commercial Li-ion battery (LiCoO 2 cathode, graphite anode) is shown through in situ neutron diffraction. Lithuim insertion and extraction is observed in both the cathode and anode. In particular, reversible Li incorporation into both layered and spinel-type LiCoO 2 phases that comprise the cathode is shown and each of these components features several phase transitions attributed to Li content and correlated with the state-of-charge of the battery. At the anode, a constant cell voltage correlates with a stable lithiated graphite phase. Transformation to de-lithiated graphite at the discharged state is characterised by a sharp decrease in both structural cell parameters and cell voltage. In the charged state, a two-phase region exists and is composed of the lithiated graphite phase and about 64% LiC 6. It is postulated that trapping Li in the solid|electrolyte interface layer results in minimal structural changes to the lithiated graphite anode across the constant cell voltage regions of the electrochemical cycle.
The magnetic ground state and relationship to Kitaev physics in α-RuCl3
NASA Astrophysics Data System (ADS)
Banerjee, Arnab
The 2D Kitaev candidate alpha-RuCl3 consists of stacked honeycomb layers weakly coupled by Van der Waals interactions. Here we report the measurements of bulk properties and neutron diffraction in both powder and single crystal samples. Our results show that the full three dimensional magnetic ground state is highly pliable with at least two dominant phases corresponding to two different out-of-plane magnetic orders. They have different Neel temperatures dependent on the stacking of the 2D layers, such as a broad magnetic transition at TN = 14 K as observed in phase-pure powder samples, or a sharp magnetic transition at a lower TN = 7 K as observed in homogeneous single crystals with no evidence for stacking faults. The magnetic refinements of the neutron scattering data will be discussed, which in all cases shows the in-plane magnetic ground state is the zigzag phase common in Kitaev related materials including the honeycomb lattice Iridates. Inelastic neutron scattering in all cases shows that this material consistently exhibit strong two-dimensional magnetic fluctuations leading to a break-down of the classical spin-wave picture. Work performed at ORNL is supported by U.S. Dept. of Energy, Office of Basic Energy Sciences and Office of User Facilities Division.
Collective effects in models for interacting molecular motors and motor-microtubule mixtures
NASA Astrophysics Data System (ADS)
Menon, Gautam I.
2006-12-01
Three problems in the statistical mechanics of models for an assembly of molecular motors interacting with cytoskeletal filaments are reviewed. First, a description of the hydrodynamical behaviour of density-density correlations in fluctuating ratchet models for interacting molecular motors is outlined. Numerical evidence indicates that the scaling properties of dynamical behaviour in such models belong to the KPZ universality class. Second, the generalization of such models to include boundary injection and removal of motors is provided. In common with known results for the asymmetric exclusion processes, simulations indicate that such models exhibit sharp boundary driven phase transitions in the thermodynamic limit. In the third part of this paper, recent progress towards a continuum description of pattern formation in mixtures of motors and microtubules is described, and a non-equilibrium “phase-diagram” for such systems discussed.
SmNiO3/NdNiO3 thin film multilayers
NASA Astrophysics Data System (ADS)
Girardot, C.; Pignard, S.; Weiss, F.; Kreisel, J.
2011-06-01
Rare earth nickelates RENiO3 (RE =rare earth), which attract interest due to their sharp metal-insulator phase transition, are instable in bulk form due to the necessity of an important oxygen pressure to stabilize Ni in its 3+ state of oxidation. Here, we report the stabilization of RE nickelates in [(SmNiO3)t/(NdNiO3)t]n thin film multilayers, t being the thickness of layers alternated n times. Both bilayers and multilayers have been deposited by metal-organic chemical vapor deposition. The multilayer structure and the presence of the metastable phases SmNiO3 and NdNiO3 are evidenced from by x-ray and Raman scattering. Electric measurements of a bilayer structure further support the structural quality of the embedded RE nickelate layers.
Silicon nanoparticle-ZnS nanophosphors for ultraviolet-based white light emitting diode
NASA Astrophysics Data System (ADS)
Stupca, Matthew; Nayfeh, Osama M.; Hoang, Tuan; Nayfeh, Munir H.; Alhreish, Bahjat; Boparai, Jack; AlDwayyan, Abdullah; AlSalhi, Mohamad
2012-10-01
Present red phosphor converters provide spectra dominated by sharp lines and suffer from availability and stability issues which are not ideal for color mixing in display or solid state lighting applications. We examine the use of mono dispersed 3 nm silicon nanoparticles, with inhomogeneously broadened red luminescence as an effective substitute for red phosphors. We tested a 3-phase hybrid nanophosphor consisting of ZnS:Ag, ZnS:Cu,Au,Al, and nanoparticles. Correlated color temperature is examined under UV and LED pumping in the range 254, 365-400 nm. The temperature is found reasonably flat for the longer wavelengths and drops for the shorter wavelengths while the color rendering index increases. The photo stability of the phosphors relative to the silicon nanoparticles is recorded. The variation in the temperature is analyzed in terms of the strength of inter-band-gap transition and continuum band to band transitions.
Free-carrier mobility in GaN in the presence of dislocation walls
NASA Astrophysics Data System (ADS)
Farvacque, J.-L.; Bougrioua, Z.; Moerman, I.
2001-03-01
The free-carrier mobility versus carrier density in n-type GaN grown by low-pressure metal-organic vapor- phase epitaxy on a sapphire substrate experiences a particular behavior that consists of the appearance of a sharp transition separating a low- from a high-mobility regime. This separation appears as soon as the carrier density exceeds a critical value that depends on the growth process. Using low-field electrical transport simulations, we show that this particular mobility behavior cannot be simply interpreted in terms of dislocation scattering or trapping mechanisms, but that it is also controlled by the collective effect of dislocation walls (the columnar structure). As the free-carrier density increases, the more efficient screening properties result in the transition from a barrier-controlled mobility regime to a pure-diffusion-process-controlled mobility regime. The model permits us to reproduce the experimental mobility collapse quantitatively.
Bonding and electronics of the MoTe2/Ge interface under strain
NASA Astrophysics Data System (ADS)
Szary, Maciej J.; Michalewicz, Marek T.; Radny, Marian W.
2017-05-01
Understanding the interface formation of a conventional semiconductor with a monolayer of transition-metal dichalcogenides provides a necessary platform for the anticipated applications of dichalcogenides in electronics and optoelectronics. We report here, based on the density functional theory, that under in-plane tensile strain, a 2H semiconducting phase of the molybdenum ditelluride (MoTe2) monolayer undergoes a semiconductor-to-metal transition and in this form bonds covalently to bilayers of Ge stacked in the [111] crystal direction. This gives rise to the stable bonding configuration of the MoTe2/Ge interface with the ±K valley metallic, electronic interface states exclusively of a Mo 4 d character. The atomically sharp Mo layer represents therefore an electrically active (conductive) subsurface δ -like two-dimensional profile that can exhibit a valley-Hall effect. Such system can develop into a key element of advanced semiconductor technology or a novel device concept.
Abdel-Hafiez, M.; Zhao, X.-M.; Kordyuk, A. A.; Fang, Y.-W.; Pan, B.; He, Z.; Duan, C.-G.; Zhao, J.; Chen, X.-J.
2016-01-01
In low-dimensional electron systems, charge density waves (CDW) and superconductivity are two of the most fundamental collective quantum phenomena. For all known quasi-two-dimensional superconductors, the origin and exact boundary of the electronic orderings and superconductivity are still attractive problems. Through transport and thermodynamic measurements, we report on the field-temperature phase diagram in 2H-TaS2 single crystals. We show that the superconducting transition temperature (Tc) increases by one order of magnitude from temperatures at 0.98 K up to 9.15 K at 8.7 GPa when the Tc becomes very sharp. Additionally, the effects of 8.7 GPa illustrate a suppression of the CDW ground state, with critically small Fermi surfaces. Below the Tc the lattice of magnetic flux lines melts from a solid-like state to a broad vortex liquid phase region. Our measurements indicate an unconventional s-wave-like picture with two energy gaps evidencing its multi-band nature. PMID:27534898
Many-Body Effects on the Thermodynamics of Fluids, Mixtures, and Nanoconfined Fluids.
Desgranges, Caroline; Delhommelle, Jerome
2015-11-10
Using expanded Wang-Landau simulations, we show that taking into account the many-body interactions results in sharp changes in the grand-canonical partition functions of single-component systems, binary mixtures, and nanoconfined fluids. The many-body contribution, modeled with a 3-body Axilrod-Teller-Muto term, results in shifts toward higher chemical potentials of the phase transitions from low-density phases to high-density phases and accounts for deviations of more than, e.g., 20% of the value of the partition function for a single-component liquid. Using the statistical mechanics formalism, we analyze how this contribution has a strong impact on some properties (e.g., pressure, coexisting densities, and enthalpy) and a moderate impact on others (e.g., Gibbs or Helmholtz free energies). We also characterize the effect of the 3-body terms on adsorption isotherms and adsorption thermodynamic properties, thereby providing a full picture of the effect of the 3-body contribution on the thermodynamics of nanoconfined fluids.
Superconductivity in REO0.5F0.5BiS2 with high-entropy-alloy-type blocking layers
NASA Astrophysics Data System (ADS)
Sogabe, Ryota; Goto, Yosuke; Mizuguchi, Yoshikazu
2018-05-01
We synthesized new REO0.5F0.5BiS2 (RE: rare earth) superconductors with high-entropy-alloy-type (HEA-type) REO blocking layers. The lattice constant a systematically changed in the HEA-type samples with the RE concentration and the RE ionic radius. A sharp superconducting transition was observed in the resistivity measurements for all the HEA-type samples, and the transition temperature of the HEA-type samples was higher than that of typical REO0.5F0.5BiS2. The sharp superconducting transition and the enhanced superconducting properties of the HEA-type samples may indicate the effectiveness of the HEA states of the REO blocking layers in the REO0.5F0.5BiS2 system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glick, Joseph A.; Khasawneh, Mazin A.; Niedzielski, Bethany M.
We report that josephson junctions containing ferromagnetic layers are of considerable interest for the development of practical cryogenic memory and superconducting qubits. Such junctions exhibit a ground-state phase shift of π for certain ranges of ferromagnetic layer thicknesses. We present studies of Nb based micron-scale elliptically shaped Josephson junctions containing ferromagnetic barriers of Ni 81Fe 19 or Ni 65Fe 15Co 20. By applying an external magnetic field, the critical current of the junctions is found to follow characteristic Fraunhofer patterns and display sharp switching behavior suggestive of single-domain magnets. The high quality of the Fraunhofer patterns enables us to extractmore » the maximum value of the critical current even when the peak is shifted significantly outside the range of the data due to the magnetic moment of the ferromagnetic layer. The maximum value of the critical current oscillates as a function of the ferromagnetic barrier thickness, indicating transitions in the phase difference across the junction between values of zero and π. Lastly, we compare the data to previous work and to models of the 0-π transitions based on existing theories.« less
Glick, Joseph A.; Khasawneh, Mazin A.; Niedzielski, Bethany M.; ...
2017-10-06
We report that josephson junctions containing ferromagnetic layers are of considerable interest for the development of practical cryogenic memory and superconducting qubits. Such junctions exhibit a ground-state phase shift of π for certain ranges of ferromagnetic layer thicknesses. We present studies of Nb based micron-scale elliptically shaped Josephson junctions containing ferromagnetic barriers of Ni 81Fe 19 or Ni 65Fe 15Co 20. By applying an external magnetic field, the critical current of the junctions is found to follow characteristic Fraunhofer patterns and display sharp switching behavior suggestive of single-domain magnets. The high quality of the Fraunhofer patterns enables us to extractmore » the maximum value of the critical current even when the peak is shifted significantly outside the range of the data due to the magnetic moment of the ferromagnetic layer. The maximum value of the critical current oscillates as a function of the ferromagnetic barrier thickness, indicating transitions in the phase difference across the junction between values of zero and π. Lastly, we compare the data to previous work and to models of the 0-π transitions based on existing theories.« less
NASA Astrophysics Data System (ADS)
Karimunnesa, Syeda; Ahmmad, Bashir; Basith, M. A.
2017-07-01
Sr-substituted perovskites, La1.8Sr0.2MMnO6 (M = Ni, Co), were synthesized using the solid-state reaction technique to present a systematic study on their morphological, structural and magnetic properties. The average grain size of the as-prepared La1.8Sr0.2NiMnO6 samples are in the range of 0.2-0.7 µm and those for La1.8Sr0.2CoMnO6 manganites are 0.1-2.8 μm, which is significantly less than that of unsubstituted La2NiMnO6 (LNMO) and La2CoMnO6 (LCMO) manganites. The XPS analysis enlightened about phase purity, binding energy and oxygen vacancy of La1.8Sr0.2MMnO6 manganites. The Sr-substituted LNMO has revealed a sharp ferromagnetic to paramagnetic phase transition at 160 ± 2 K, which is about 120 K less than that of parent LNMO. The Sr-substituted LCMO exhibited such a transition at 220 ± 2 K, which is 8 K less than that of parent LCMO. The temperature-dependent magnetization measurements suggest that the effect of Sr on the transition temperature in LNMO is more significant than that of LCMO.
Wetting and Layering for Solid-on-Solid I: Identification of the Wetting Point and Critical Behavior
NASA Astrophysics Data System (ADS)
Lacoin, Hubert
2018-06-01
We provide a complete description of the low temperature wetting transition for the two dimensional solid-on-solid model. More precisely, we study the integer-valued field {(φ(x))_{x\\in Z^2}} , associated associated with the energy functional V(φ)=β \\sum_{x ˜ y}|φ(x)-φ(y)|-\\sumx ( h{1}_{φ(x)=0}-∞{1}_{φ(x) < 0} ). Since the pioneering work Chalker [15], it is known that for every {β} , there exists {hw(β) > 0} delimiting a transition between a delocalized phase ({h < hw(β)} ) where the proportion of points at level zero vanishes, and a localized phase ({h > hw(β)} ) where this proportion is positive. We prove in the present paper that for {β} sufficiently large we have h_w(β)= log (e^{4β}/e^{4β-1} ). Furthermore, we provide a sharp asymptotic for the free energy at the vicinity of the critical line: We show that close to {h_w(β)} , the free energy is approximately piecewise affine and that the points of discontinuity for the derivative of the affine approximation forms a geometric sequence accumulating on the right of {h_w(β)} . This asymptotic behavior provides strong evidence for the conjectured existence of countably many "layering transitions" at the vicinity of the wetting line, corresponding to jumps for the typical height of the field.
Nanoscopic dynamics of phospholipid in unilamellar vesicles: Effect of gel to fluid phase transition
Sharma, V. K.; Mamontov, E.; Anunciado, D. B.; ...
2015-03-04
Dynamics of phospholipids in unilamellar vesicles (ULV) is of interest in biology, medical, and food sciences since these molecules are widely used as biocompatible agents and a mimic of cell membrane systems. We have investigated the nanoscopic dynamics of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipid in ULV as a function of temperature using elastic and quasielastic neutron scattering (QENS). The dependence of the signal on the scattering momentum transfer, which is a critical advantage of neutron scattering techniques, allows the detailed analysis of the lipid motions that cannot be carried out by other means. In agreement with a differential scanning calorimetry measurement, amore » sharp rise in the elastic scattering intensity below ca. 296 K indicates a phase transition from the high-temperature fluid phase to the low-temperature solid gel phase. The microscopic lipid dynamics exhibits qualitative differences between the solid gel phase (in a measurement at 280 K) and the fluid phase (in a measurement at a physiological temperature of 310 K). The data analysis invariably shows the presence of two distinct motions: the whole lipid molecule motion within a monolayer, or lateral diffusion, and the relatively faster internal motion of the DMPC molecule. The lateral diffusion of the whole lipid molecule is found to be Fickian in character, whereas the internal lipid motions are of localized character, consistent with the structure of the vesicles. The lateral motion slows down by an order of magnitude in the solid gel phase, whereas for the internal motion not only the time scale, but also the character of the motion changes upon the phase transition. In the solid gel phase, the lipids are more ordered and undergo uniaxial rotational motion. However, in the fluid phase, the hydrogen atoms of the lipid tails undergo confined translation diffusion rather than uniaxial rotational diffusion. The localized translational diffusion of the hydrogen atoms of the lipid tails is a manifestation of the flexibility of the chains acquired in the fluid phase. Because of this flexibility, both the local diffusivity and the confinement volume for the hydrogen atoms increase linearly from near the lipid s polar head group to the end of its hydrophobic tail. Our results present a quantitative and detailed picture of the effect of the gel-fluid phase transition on the nanoscopic lipid dynamics in ULV. Lastly, the data analysis approach developed here has a potential for probing the dynamic response of lipids to the presence of additional cell membrane components.« less
NASA Astrophysics Data System (ADS)
Hamilton, David; Weis, Adam; Gu, Genda; van Harlingen, Dale
La2-xBaxCuO4 (LBCO) exhibits a sharp drop in the transition temperature near x = 1 / 8 doping. In this regime, charge, spin and superconducting orders are intertwined and superconductivity is believed to exist in a pair-density wave (PDW) state, an ordered stripe phase characterized by sign changes in the superconducting order parameter between adjacent stripes. We present direct measurements of the current-phase relation (CPR) of Josephson junctions patterned onto crystals of LBCO at x = 1 / 8 and x = 0 . 155 (optimal doping) using a phase-sensitive Josephson interferometry technique. In contrast to the approximately sinusoidal CPR observed at optimal doping, we find the proportion of higher harmonics in the CPR increases at x = 1 / 8 doping, consistent with the formation of a PDW state. In parallel, we are carrying out measurements of the resistance noise in thin films of LBCO of various doping levels to identify features that signify the onset of charge order and changes in the dynamics of charge stripes.
NASA Astrophysics Data System (ADS)
Uecker, Hannes
2004-04-01
The Lombardo-Imbihl-Fink (LFI) ODE model of the NO+NH 3 reaction on a Pt(1 0 0) surface shows stable relaxation oscillations with very sharp transitions for temperatures T between 404 and 433 K. Here we study numerically the effect of linear diffusive coupling of these oscillators in one spatial dimension. Depending on the parameters and initial conditions we find a rich variety of spatio-temporal patterns which we group into four main regimes: bulk oscillations (BOs), standing waves (SW), phase clusters (PC), and phase waves (PW). Two key ingredients for SW and PC are identified, namely the relaxation type of the ODE oscillations and a nonlocal (and nonglobal) coupling due to relatively fast diffusion of the kinetically slaved variables NH 3 and H. In particular, the latter replaces the global coupling through the gas phase used to obtain SW and PC in models of related surface reactions. The PW exist only under the assumption of (relatively) slow diffusion of NH 3 and H.
Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow
NASA Astrophysics Data System (ADS)
Zheng, Lin; Zheng, Song; Zhai, Qinglan
2016-02-01
In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn-Hilliard equation which is solved in the frame work of LBE. The scalar convection-diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results.
NASA Astrophysics Data System (ADS)
Hecher, J.; Ishida, S.; Song, D.; Ogino, H.; Iyo, A.; Eisaki, H.; Nakajima, M.; Kagerbauer, D.; Eisterer, M.
2018-01-01
The phase diagram of iron-based superconductors exhibits structural transitions, electronic nematicity, and magnetic ordering, which are often accompanied by an electronic in-plane anisotropy and a sharp maximum of the superconducting critical current density (Jc) near the phase boundary of the tetragonal and the antiferromagnetic-orthorhombic phase. We utilized scanning Hall-probe microscopy to visualize the Jc of twinned and detwinned Ba (Fe1-xCox) 2As2 (x =5 %-8 % ) crystals to compare the electronic normal state properties with superconducting properties. We find that the electronic in-plane anisotropy continues into the superconducting state. The observed correlation between the electronic and the Jc anisotropy agrees qualitatively with basic models, however, the Jc anisotropy is larger than predicted from the resistivity data. Furthermore, our measurements show that the maximum of Jc at the phase boundary does not vanish when the crystals are detwinned. This shows that twin boundaries are not responsible for the large Jc, suggesting an exotic pinning mechanism.
Kan, Hirohito; Kasai, Harumasa; Arai, Nobuyuki; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta
2016-09-01
An effective background field removal technique is desired for more accurate quantitative susceptibility mapping (QSM) prior to dipole inversion. The aim of this study was to evaluate the accuracy of regularization enabled sophisticated harmonic artifact reduction for phase data with varying spherical kernel sizes (REV-SHARP) method using a three-dimensional head phantom and human brain data. The proposed REV-SHARP method used the spherical mean value operation and Tikhonov regularization in the deconvolution process, with varying 2-14mm kernel sizes. The kernel sizes were gradually reduced, similar to the SHARP with varying spherical kernel (VSHARP) method. We determined the relative errors and relationships between the true local field and estimated local field in REV-SHARP, VSHARP, projection onto dipole fields (PDF), and regularization enabled SHARP (RESHARP). Human experiment was also conducted using REV-SHARP, VSHARP, PDF, and RESHARP. The relative errors in the numerical phantom study were 0.386, 0.448, 0.838, and 0.452 for REV-SHARP, VSHARP, PDF, and RESHARP. REV-SHARP result exhibited the highest correlation between the true local field and estimated local field. The linear regression slopes were 1.005, 1.124, 0.988, and 0.536 for REV-SHARP, VSHARP, PDF, and RESHARP in regions of interest on the three-dimensional head phantom. In human experiments, no obvious errors due to artifacts were present in REV-SHARP. The proposed REV-SHARP is a new method combined with variable spherical kernel size and Tikhonov regularization. This technique might make it possible to be more accurate backgroud field removal and help to achive better accuracy of QSM. Copyright © 2016 Elsevier Inc. All rights reserved.
Methane storage in flexible metal-organic frameworks with intrinsic thermal management
NASA Astrophysics Data System (ADS)
Mason, Jarad A.; Oktawiec, Julia; Taylor, Mercedes K.; Hudson, Matthew R.; Rodriguez, Julien; Bachman, Jonathan E.; Gonzalez, Miguel I.; Cervellino, Antonio; Guagliardi, Antonietta; Brown, Craig M.; Llewellyn, Philip L.; Masciocchi, Norberto; Long, Jeffrey R.
2015-11-01
As a cleaner, cheaper, and more globally evenly distributed fuel, natural gas has considerable environmental, economic, and political advantages over petroleum as a source of energy for the transportation sector. Despite these benefits, its low volumetric energy density at ambient temperature and pressure presents substantial challenges, particularly for light-duty vehicles with little space available for on-board fuel storage. Adsorbed natural gas systems have the potential to store high densities of methane (CH4, the principal component of natural gas) within a porous material at ambient temperature and moderate pressures. Although activated carbons, zeolites, and metal-organic frameworks have been investigated extensively for CH4 storage, there are practical challenges involved in designing systems with high capacities and in managing the thermal fluctuations associated with adsorbing and desorbing gas from the adsorbent. Here, we use a reversible phase transition in a metal-organic framework to maximize the deliverable capacity of CH4 while also providing internal heat management during adsorption and desorption. In particular, the flexible compounds Fe(bdp) and Co(bdp) (bdp2- = 1,4-benzenedipyrazolate) are shown to undergo a structural phase transition in response to specific CH4 pressures, resulting in adsorption and desorption isotherms that feature a sharp ‘step’. Such behaviour enables greater storage capacities than have been achieved for classical adsorbents, while also reducing the amount of heat released during adsorption and the impact of cooling during desorption. The pressure and energy associated with the phase transition can be tuned either chemically or by application of mechanical pressure.
Naisoro, W
2014-01-01
A 350-bed Sydney hospital noted excessive container-associated sharps injuries (CASI) using small sharps containers and compared the effect from 2004 to 2010 of using a larger container engineered to reduce CASI. In Phase 1 (Ph1), disposable 1.4L containers (BD Australia) were carried to/from patients’ rooms. In Phase 2 (Ph2), this stopped and a safety-engineered 32L reusable container (the Device; Sharpsmart, SteriHealth) was mounted in medication stations only and sharps were carried to and from patient rooms using kidney dishes. In Phase 3 (Ph3), the Device was wall-mounted in patient rooms. Sharps injuries were categorised as ‘during-procedure’, ‘after-procedure but before disposal’, ‘CASI’, and ‘improper disposal SI’. Disposal-related SI comprised CASI plus improper-disposal SI. Injuries per 100 full-time-equivalent staff were analysed using Chi2; p ≤ 0.05; and relative risk and 95% confidence limits were calculated. In Ph1 (small containers) 19.4% of SI were CASI and transport injuries were zero. In Ph2 (Device in medication station) CASI fell 94.9% (p <0.001); Disposal-related SI fell 71.1% (p=0.002) but transport injuries rose significantly. In Ph3 (Device in patient room) zero CASI occurred (p<0.001); Disposal-related SI fell 83.1% (p=0.001). Recapping SI fell 85.1% (p=0.01) with the Device. The Device’s volume, large aperture, passive overfill-protection and close-at-hand siting are postulated as SI reduction factors. PMID:28989381
Semrau, Stefan; Goldmann, Johanna E; Soumillon, Magali; Mikkelsen, Tarjei S; Jaenisch, Rudolf; van Oudenaarden, Alexander
2017-10-23
Gene expression heterogeneity in the pluripotent state of mouse embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and lineage commitment have not been studied systematically at the single-cell level. Here we measure the gene expression dynamics of retinoic acid driven mESC differentiation from pluripotency to lineage commitment, using an unbiased single-cell transcriptomics approach. We find that the exit from pluripotency marks the start of a lineage transition as well as a transient phase of increased susceptibility to lineage specifying signals. Our study reveals several transcriptional signatures of this phase, including a sharp increase of gene expression variability and sequential expression of two classes of transcriptional regulators. In summary, we provide a comprehensive analysis of the exit from pluripotency and lineage commitment at the single cell level, a potential stepping stone to improved lineage manipulation through timing of differentiation cues.
NASA Astrophysics Data System (ADS)
Biswas, Sayari; Kar, Asit Kumar
2018-02-01
Titanium dioxide (TiO2) thin films were synthesized by hydrothermal assisted sol-gel dip coating method on quartz substrate. The sol was prepared by hydrothermal method at 90 °C. Dip coating method was used to deposit the thin films. Later films were annealed at four different temperatures -600 °C, 800 °C, 1000 °C and 1200 °C. XRD study showed samples annealed at 600 °C are almost amorphous. At 800 °C, film turns into anatase phase and with further increment of annealing temperature they turn into rutile phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60% was observed in the visible region for the sample annealed at the lowest temperature. Band gap of the prepared films varies from 2.9 eV to 3.5 eV.
Psychology of the Embrace: How Body Rhythms Communicate the Need to Indulge or Separate.
Koch, Sabine C; Rautner, Helena
2017-11-29
In the context of embodiment research, there has been a growing interest in phenomena of interpersonal resonance. Given that haptic communication is particularly under-researched, we focused on the phenomenon of embracing. When we embrace a dear friend to say good-bye at the end of a great evening, we typically first employ smooth and yielding movements with round transitions between muscular tensing and relaxing ( smooth , indulging rhythms ), and when the embrace is getting too long, we start to use slight patting ( sharp , fighting rhythms with sharp transitions) on the back or the shoulders of the partner in order to indicate that we now want to end the embrace. On the ground of interpersonal resonance, most persons (per-sonare, latin = to sound through) understand these implicit nonverbal signals, expressed in haptic tension-flow changes, and will react accordingly. To experimentally test the hypothesis that smooth, indulgent rhythms signal the wish to continue, and sharp, fighting rhythms signal the wish to separate from an embrace, we randomly assigned 64 participants, all students at the University of Heidelberg, to two differently sequenced embrace conditions: (a) with the fighting rhythm at the end of the sequence of two indulgent rhythms (Sequence A: smooth-smooth-sharp); and (b) with the fighting rhythm between two indulgent rhythms (Sequence B: smooth-sharp-smooth). Participants were embraced for 30 s by a female confe-derate with their eyes blindfolded to focus on haptic and kinesthetic cues without being distracted by visual cues. They were instructed to let go of a handkerchief that they held between the fingers of their dominant hand during the embrace, when they felt that the embracer signaled the wish to finish the embrace. Participants significantly more often dropped the handkerchief in the phase of the fighting rhythm, no matter in which location it occurred in the embrace sequence. We assume that we learn such rhythmic behaviors and their meaning from the beginning of life in the communication with caregivers and meaningful others. Some are universal and some are quite idiosyncratic. Infants seem to be highly sensitive to the dynamic nuances presented to them, demonstrating a high capacity for embodied resonance and a high behavioral plasticity. Such adaptive mechanisms are assumed to lay the foundations of family culture (including the degree to which nonverbal cues are attended to, the communication of taboos, etc.) and larger culture, and may also play an important role in interpersonal attraction and aesthetic experience.
Psychology of the Embrace: How Body Rhythms Communicate the Need to Indulge or Separate
Rautner, Helena
2017-01-01
In the context of embodiment research, there has been a growing interest in phenomena of interpersonal resonance. Given that haptic communication is particularly under-researched, we focused on the phenomenon of embracing. When we embrace a dear friend to say good-bye at the end of a great evening, we typically first employ smooth and yielding movements with round transitions between muscular tensing and relaxing (smooth, indulging rhythms), and when the embrace is getting too long, we start to use slight patting (sharp, fighting rhythms with sharp transitions) on the back or the shoulders of the partner in order to indicate that we now want to end the embrace. On the ground of interpersonal resonance, most persons (per-sonare, latin = to sound through) understand these implicit nonverbal signals, expressed in haptic tension-flow changes, and will react accordingly. To experimentally test the hypothesis that smooth, indulgent rhythms signal the wish to continue, and sharp, fighting rhythms signal the wish to separate from an embrace, we randomly assigned 64 participants, all students at the University of Heidelberg, to two differently sequenced embrace conditions: (a) with the fighting rhythm at the end of the sequence of two indulgent rhythms (Sequence A: smooth-smooth-sharp); and (b) with the fighting rhythm between two indulgent rhythms (Sequence B: smooth-sharp-smooth). Participants were embraced for 30 s by a female confederate with their eyes blindfolded to focus on haptic and kinesthetic cues without being distracted by visual cues. They were instructed to let go of a handkerchief that they held between the fingers of their dominant hand during the embrace, when they felt that the embracer signaled the wish to finish the embrace. Participants significantly more often dropped the handkerchief in the phase of the fighting rhythm, no matter in which location it occurred in the embrace sequence. We assume that we learn such rhythmic behaviors and their meaning from the beginning of life in the communication with caregivers and meaningful others. Some are universal and some are quite idiosyncratic. Infants seem to be highly sensitive to the dynamic nuances presented to them, demonstrating a high capacity for embodied resonance and a high behavioral plasticity. Such adaptive mechanisms are assumed to lay the foundations of family culture (including the degree to which nonverbal cues are attended to, the communication of taboos, etc.) and larger culture, and may also play an important role in interpersonal attraction and aesthetic experience. PMID:29186070
NASA Astrophysics Data System (ADS)
Puchkovska, G. O.; Danchuk, V. D.; Makarenko, S. P.; Kravchuk, A. P.; Kotelnikova, E. N.; Filatov, S. K.
2004-12-01
In the present paper, we report temperature dependent FTIR spectra studies of Davydov splitting value for CH 2 rocking vibrations of pure crystalline n-paraffins C nH 2 n+2 ( n is the number of carbon atoms) and some isomorphically substituted binary mixtures of n-paraffins C 22H 46:C 24H 50. Temperature dependencies of Davydov splitting value have been shown to be characterized by the amount of irregularities (sharp decreasing), which corresponds to the phase transitions into the high-temperature (hexagonal) state for pure n-paraffins or different rotator crystalline states for the mixtures. Statistic and dynamic models have been proposed, which provides an adequate description of the observed effect. In the framework of these models, two different mechanisms are responsible for the temperature behavior of the vibrational mode splitting value. Besides the thermal expansion of crystals at heating, the quenching of vibrational excitons on the orientational defects of different nature takes place, accompanied with the breakage of the crystal lattice translational symmetry. The creation of such defects is resulted from the excitation of librational and rotational molecular degrees of freedom at the crystal polymorphic transitions into different rotary crystalline states. The manifestation of the resonance dynamical intermolecular interaction in the spectra of intramolecular vibrations in these crystals has been theoretically analyzed in terms of stochastic equations, taking into consideration the above mentioned phase transition. We have obtained the explicit expression for the theoretically predicted dependence of Davydov splitting value on temperature. The absorption bands, corresponding to Davydov splitting components, have been shown to approach rapidly each other at the transition to the high-temperature (hexagonal) phase. Computer simulation of such dependence has been performed for some aliphatic compounds. Good agreement between the experimental and computer simulation results has been obtained. The theoretical approach developed in the present paper for the resonance dynamical intermolecular interaction near such transitions from the three-dimensional to one-dimensional phase of crystalline n-paraffins has a general character and can be applied to the description of some specific features observed in the vibrational spectra of rotary crystals.
Percolation of a general network of networks.
Gao, Jianxi; Buldyrev, Sergey V; Stanley, H Eugene; Xu, Xiaoming; Havlin, Shlomo
2013-12-01
Percolation theory is an approach to study the vulnerability of a system. We develop an analytical framework and analyze the percolation properties of a network composed of interdependent networks (NetONet). Typically, percolation of a single network shows that the damage in the network due to a failure is a continuous function of the size of the failure, i.e., the fraction of failed nodes. In sharp contrast, in NetONet, due to the cascading failures, the percolation transition may be discontinuous and even a single node failure may lead to an abrupt collapse of the system. We demonstrate our general framework for a NetONet composed of n classic Erdős-Rényi (ER) networks, where each network depends on the same number m of other networks, i.e., for a random regular network (RR) formed of interdependent ER networks. The dependency between nodes of different networks is taken as one-to-one correspondence, i.e., a node in one network can depend only on one node in the other network (no-feedback condition). In contrast to a treelike NetONet in which the size of the largest connected cluster (mutual component) depends on n, the loops in the RR NetONet cause the largest connected cluster to depend only on m and the topology of each network but not on n. We also analyzed the extremely vulnerable feedback condition of coupling, where the coupling between nodes of different networks is not one-to-one correspondence. In the case of NetONet formed of ER networks, percolation only exhibits two phases, a second order phase transition and collapse, and no first order percolation transition regime is found in the case of the no-feedback condition. In the case of NetONet composed of RR networks, there exists a first order phase transition when the coupling strength q (fraction of interdependency links) is large and a second order phase transition when q is small. Our insight on the resilience of coupled networks might help in designing robust interdependent systems.
Pressure driven spin transition in siderite and magnesiosiderite single crystals.
Weis, Christopher; Sternemann, Christian; Cerantola, Valerio; Sahle, Christoph J; Spiekermann, Georg; Harder, Manuel; Forov, Yury; Kononov, Alexander; Sakrowski, Robin; Yavaş, Hasan; Tolan, Metin; Wilke, Max
2017-11-28
Iron-bearing carbonates are candidate phases for carbon storage in the deep Earth and may play an important role for the Earth's carbon cycle. To elucidate the properties of carbonates at conditions of the deep Earth, we investigated the pressure driven magnetic high spin to low spin transition of synthetic siderite FeCO 3 and magnesiosiderite (Mg 0.74 Fe 0.26 )CO 3 single crystals for pressures up to 57 GPa using diamond anvil cells and x-ray Raman scattering spectroscopy to directly probe the iron 3d electron configuration. An extremely sharp transition for siderite single crystal occurs at a notably low pressure of 40.4 ± 0.1 GPa with a transition width of 0.7 GPa when using the very soft pressure medium helium. In contrast, we observe a broadening of the transition width to 4.4 GPa for siderite with a surprising additional shift of the transition pressure to 44.3 ± 0.4 GPa when argon is used as pressure medium. The difference is assigned to larger pressure gradients in case of argon. For magnesiosiderite loaded with argon, the transition occurs at 44.8 ± 0.8 GPa showing similar width as siderite. Hence, no compositional effect on the spin transition pressure is observed. The spectra measured within the spin crossover regime indicate coexistence of regions of pure high- and low-spin configuration within the single crystal.
NASA Astrophysics Data System (ADS)
Roy, Bappaditya; Santra, S. B.
2018-05-01
A random growth lattice filling model of percolation with a touch and stop growth rule is developed and studied numerically on a two dimensional square lattice. Nucleation centers are continuously added one at a time to the empty lattice sites and clusters are grown from these nucleation centers with a growth probability g. For a given g (), the system passes through a critical point during the growth process where the transition from a disconnected to a connected phase occurs. The model is found to exhibit second order continuous percolation transitions as ordinary percolation for whereas for it exhibits weak first order discontinuous percolation transitions. The continuous transitions are characterized by estimating the values of the critical exponents associated with the order parameter fluctuation and the fractal dimension of the spanning cluster over the whole range of g. The discontinuous transitions, however, are characterized by a compact spanning cluster, lattice size independent fluctuation of the order parameter per lattice, departure from power law scaling in the cluster size distribution and weak bimodal distribution of the order parameter. The nature of transitions are further confirmed by studying the Binder cumulant. Instead of a sharp tricritical point, a tricritical region is found to occur for 0.5 < g < 0.8 within which the values of the critical exponents change continuously until the crossover from continuous to discontinuous transition is completed.
NASA Astrophysics Data System (ADS)
Sun, Ningyu; Wei, Wei; Han, Shunjie; Song, Junhao; Li, Xinyang; Duan, Yunfei; Prakapenka, Vitali B.; Mao, Zhu
2018-05-01
In this study, we have determined the phase boundary between Mg0.735Fe0.21Al0.07Si0.965O3-Bm and PPv and the thermal equations of state of both phases up to 202 GPa and 2600 K using synchrotron X-ray diffraction in laser heated diamond anvil cells. Our experimental results have shown that the combined effect of Fe and Al produces a wide two-phase coexistence region with a thickness of 26 GPa (410 km) at 2200 K, and addition of Fe lowers the onset transition pressure to 98 GPa at 2000 K, consistent with previous experimental results. Furthermore, addition of Fe was noted to reduce the density (ρ) and bulk sound velocity (VΦ) contrasts across the Bm-PPv phase transition, which is in contrast to the effect of Al. Using the obtained phase diagram and thermal equations of state of Bm and PPv, we have also examined the effect of composition variations on the ρ and VΦ profiles of the lowermost mantle. Our modeling results have shown that the pyrolitic lowermost mantle should be highly heterogeneous in composition and temperature laterally to match the observed variations in the depth and seismic signatures of the D″ discontinuity. Normal mantle in a pyrolitic composition with ∼10% Fe and Al in Bm and PPv will lack clear seismic signature of the D″ discontinuity because the broad phase boundary could smooth the velocity contrast between Bm and PPv. On the other hand, Fe-enriched regions close to the cold slabs may show a seismic signature with a change in the velocity slope of the D″ discontinuity, consistent with recent seismic observations beneath the eastern Alaska. Only regions depleted in Fe and Al near the cold slabs would show a sharp change in velocity. Fe in such regions could be removed to the outer core by strong core-mantle interactions or partitions together with Al to the high-pressure phases in the subduction mid ocean ridge basalts. Our results thus have profound implication for the composition of the lowermost mantle.
VUV Absorption Spectra of Gas-Phase Quinoline in the 3.5 - 10.7 eV Photon Energy Range.
Leach, Sydney; Jones, Nykola C; Hoffmann, Søren Vrønning; Un, Sun
2018-06-16
The absorption spectrum of quinoline was measured in the gas phase between 3.5 and 10.7 eV using a synchrotron photon source. A large number of sharp and broad spectral features were observed, some of which have plasmon-type collective π-electron modes contributing to their intensities. Eight valence electronic transitions were assigned, considerably extending the number of π-π* transitions previously observed mainly in solution. The principal factor in solution red-shifts is found to be the Lorentz-Lorenz polarizability parameter. Rydberg bands, observed for the first time, are analysed into eight different series, converging to the D0 ground and two excited electronic states, D3 and D4, of the quinoline cation. The R1 series limit is 8.628 eV for the first ionization energy of quinoline, a value more precise than previously published. This value, combined with cation electronic transition data provides precise energies, respectively 10.623 eV and 11.355 eV, for the D3 and D4 states. The valence transition assignments are based on DFT calculations as well as on earlier Pariser-Parr-Pople SCF LCAO MO results. The relative quality of the P-P-P and DFT data is discussed. Both are far from spectroscopic accuracy concerning electronic excited states but were nevertheless useful for our assignments. Our time-dependent DFT calculations of quinoline are excellent for its ground state properties such as geometry, rotational constants, dipole moment and vibrational frequencies, which agree well with experimental observations. Vibrational components of the valence and Rydberg transitions mainly involve C-H bend and C=C and C=N stretch modes. Astrophysical applications of the VUV absorption of quinoline are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grocholski, Brent; Catalli, Krystle; Shim, Sang-Heon
The discovery of a phase transition in Mg-silicate perovskite (Pv) to postperovskite (pPv) at lowermost mantle pressure-temperature (P - T) conditions may provide an explanation for the discontinuous increase in shear wave velocity found in some regions at a depth range of 200 to 400 km above the core-mantle boundary, hereafter the D{double_prime} discontinuity. However, recent studies on binary and ternary systems showed that reasonable contents of Fe{sup 2+} and Al for pyrolite increase the thickness (width of the mixed phase region) of the Pv - pPv boundary (400-600 km) to much larger than the D{double_prime} discontinuity ({le} 70 km).more » These results challenge the assignment of the D{double_prime} discontinuity to the Pv - pPv boundary in pyrolite (homogenized mantle composition). Furthermore, the mineralogy and composition of rocks that can host a detectable Pv {yields} pPv boundary are still unknown. Here we report in situ measurements of the depths and thicknesses of the Pv {yields} pPv transition in multiphase systems (San Carlos olivine, pyrolitic, and midocean ridge basaltic compositions) at the P - T conditions of the lowermost mantle, searching for candidate rocks with a sharp Pv - pPv discontinuity. Whereas the pyrolitic mantle may not have a seismologically detectable Pv {yields} pPv transition due to the effect of Al, harzburgitic compositions have detectable transitions due to low Al content. In contrast, Al-rich basaltic compositions may have a detectable Pv - pPv boundary due to their distinct mineralogy. Therefore, the observation of the D{prime} discontinuity may be related to the Pv {yields} pPv transition in the differentiated oceanic lithosphere materials transported to the lowermost mantle by subducting slabs.« less
Bot, Patrick; Rabaud, Marc; Thomas, Goulven; Lombardi, Alessandro; Lebret, Charles
2016-12-02
Bluff bodies moving in a fluid experience a drag force which usually increases with velocity. However in a particular velocity range a drag crisis is observed, i.e., a sharp and strong decrease of the drag force. This counterintuitive result is well characterized for a sphere or a cylinder. Here we show that, for an object breaking the up-down symmetry, a lift crisis is observed simultaneously to the drag crisis. The term lift crisis refers to the fact that at constant incidence the time-averaged transverse force, which remains small or even negative at low velocity, transitions abruptly to large positive values above a critical flow velocity. This transition is characterized from direct force measurements as well as from change in the velocity field around the obstacle.
NASA Astrophysics Data System (ADS)
Akande, Amos A.; Rammutla, Koena E.; Moyo, Thomas; Osman, Nadir S. E.; Nkosi, Steven S.; Jafta, Charl J.; Mwakikunga, Bonex W.
2015-02-01
We report on the magnetic property of 0.67-WO3+0.33-VOx mixture film deposit on the corning glass substrate using the chemical sol-gel and atmospheric pressure chemical vapor deposition (APCVD) methods. The XRD and Raman spectroscopy confirm species of both materials, and the morphological studies with FIB-SEM and TEM reveal segregation of W and V atoms. XPS reveals that V4+ from VO2 forms only 11% of the film; V3+ in the form of V2O3 form 1% of the film, 21% is V5+ from V2O5 and 67% is given to W6+ from WO3. The analysis of the ESR data shows some sharp changes in the magnetism near the metal-to-insulator (MIT), which could be theoretically interpreted as the ordering or alignment of electron spins from net moment nature to parallel alignment of magnetic moment. The derivatives of magnetic susceptibility established the thermally induced magnetic property: two distinct transitions of 339 K for heating data and 338 K for cooling data for 151.2 mT field were obtained. Similar results were also obtained for 308.7 mT field, 336 K for heating data and 335 K for cooling data. VSM results confirm a paramagnetic phase with a small amount of magnetically ordered phase.
Specific heat of the chiral-soliton-lattice phase in Yb(Ni0.94Cu0.06)3Al9
NASA Astrophysics Data System (ADS)
Ninomiya, Hiroki; Sato, Takaaki; Inoue, Katsuya; Ohara, Shigeo
2018-05-01
We have studied the monoaxial-chiral helimagnet YbNi3Al9 and its-substituted analogue Yb(Ni0.94Cu0.06)3Al9. These compounds belong to a chiral space group R32. In Yb(Ni0.94Cu0.06)3Al9 with the magnetic ordering temperature TM = 6.4 K , only when the magnetic field is applied perpendicular to the helical axis, the chiral soliton lattice is observed below Hc = 10 kOe . YbNi3Al9 with TM = 3.4 K exhibits a metamagnetic transition at Hc = 1 kOe in 2 K. To study the formation of chiral helimagnetic state and chiral soliton lattice, we have measured the specific heat in magnetic fields applied parallel and perpendicular to the helical axis. In zero field, with decreasing temperature, specific heat shows λ-type phase transition from paramagnetic state to chiral helimagnetic one. At the temperature where the chiral soliton lattice emerges, we have found that the specific heat shows a sharp peak. In addition, at around the crossover between paramagnetic state and forced-ferromagnetic one, a broad maximum has been observed. We have determined the magnetic phase diagrams of YbNi3Al9 and Yb(Ni0.94Cu0.06)3Al9.
Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate
Sándor, Csand; Libál, Andras; Reichhardt, Charles; ...
2017-01-17
Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less
Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sándor, Csand; Libál, Andras; Reichhardt, Charles
Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less
Level set immersed boundary method for gas-liquid-solid interactions with phase-change
NASA Astrophysics Data System (ADS)
Dhruv, Akash; Balaras, Elias; Riaz, Amir; Kim, Jungho
2017-11-01
We will discuss an approach to simulate the interaction between two-phase flows with phase changes and stationary/moving structures. In our formulation, the Navier-Stokes and heat advection-diffusion equations are solved on a block-structured grid using adaptive mesh refinement (AMR) along with sharp jump in pressure, velocity and temperature across the interface separating the different phases. The jumps are implemented using a modified Ghost Fluid Method (Lee et al., J. Comput. Physics, 344:381-418, 2017), and the interface is tracked with a level set approach. Phase transition is achieved by calculating mass flux near the interface and extrapolating it to the rest of the domain using a Hamilton-Jacobi equation. Stationary/moving structures are simulated with an immersed boundary formulation based on moving least squares (Vanella & Balaras, J. Comput. Physics, 228:6617-6628, 2009). A variety of canonical problems involving vaporization, film boiling and nucleate boiling is presented to validate the method and demonstrate the its formal accuracy. The robustness of the solver in complex problems, which are crucial in efficient design of heat transfer mechanisms for various applications, will also be demonstrated. Work supported by NASA, Grant NNX16AQ77G.
Studies of High Critical Transition Temperature Superconductors
NASA Astrophysics Data System (ADS)
Zhou, Xue Zhi
1990-01-01
In early 1987 the high-T_{ rm c} superconductor, YBa_2 Cu_3O_{7 -delta}, with T_{ rm c} ~eq 90K was successfully made in our laboratory by a standard ceramic technique. Later Tl_2Ca _2Ba_2Cu_3 O_{10} with T _{rm c} ~eq 120K was produced by a special procedure. Structural analysis by x-ray diffraction showed that YBa_2 Cu_3O_{7 -delta} was responsible for the high -T_{rm c}, the so called 123 phase. It is an oxygen deficient perovskite with the orthorhombic structure, space group Pmmm, lattice constant a = 3.8243, b = 3.8862 and c = 11.667 A. Oxygen vacancies are very important to the superconducting properties. An impurity, Y_2BaCuO_5 , with a green colour, was identified as a semiconducting phase. A technique to grow single crystals of YBa _2Cu_3O_ {7-delta} is described. The crystals are rectangular up to 2 x 2 x 0.2 mm^3 in size. Two phases, Tl_2CaBa _2Cu_2O_8 (the 2122 phase) and Tl_2Ca _2Ba_2Cu _3O_{10} (the 2223 phase), are responsible for the high-T _{rm c} in the Tl-system; they have a tetragonal or pseudotetragonal structure with space group I4/mmm. Resistivity and magnetic ac susceptibility results show that high-T_{rm c} materials have a sharp superconducting transition and many properties in common with conventional superconductors. The shielding effect is closely related to the properties of grain boundaries. Magnetic ordering at low temperature (below 10K) of high-T_{rm c} materials was discovered by Mossbauer experiments with ^{57}Fe doped samples. Substitution of Fe for Cu reduced the superconducting transition temperature and the shielding effect. Theories of superconductivity for conventional and the new superconductors are reviewed and related to the experimental results.
NASA Astrophysics Data System (ADS)
Schmerr, N. C.; Beghein, C.; Kostic, D.; Baldridge, A. M.; West, J. D.; Nittler, L. R.; Bull, A. L.; Montesi, L.; Byrne, P. K.; Hummer, D. R.; Plescia, J. B.; Elkins-Tanton, L. T.; Lekic, V.; Schmidt, B. E.; Elkins, L. J.; Cooper, C. M.; ten Kate, I. L.; Van Hinsbergen, D. J. J.; Parai, R.; Glass, J. B.; Ni, J.; Fuji, N.; McCubbin, F. M.; Michalski, J. R.; Zhao, C.; Arevalo, R. D., Jr.; Koelemeijer, P.; Courtier, A. M.; Dalton, H.; Waszek, L.; Bahamonde, J.; Schmerr, B.; Gilpin, N.; Rosenshein, E.; Mach, K.; Ostrach, L. R.; Caracas, R.; Craddock, R. A.; Moore-Driskell, M. M.; Du Frane, W. L.; Kellogg, L. H.
2015-12-01
Seismic discontinuities within the mantle arise from a wide range of mechanisms, including changes in mineralogy, major element composition, melt content, volatile abundance, anisotropy, or a combination of the above. In particular, the depth and sharpness of upper mantle discontinuities at 410 and 660 km depth are attributed to solid-state phase changes sensitive to both mantle temperature and composition, where regions of thermal heterogeneity produce topography and chemical heterogeneity changes the impedance contrast across the discontinuity. Seismic mapping of this topography and sharpness thus provides constraint on the thermal and compositional state of the mantle. The EarthScope USArray is providing unprecedented access to a wide variety of new regions previously undersampled by the SS precursors. This includes the boundary between the oceanic plate in the western Atlantic Ocean and continental margin of eastern North America. Here we use a seismic array approach to image the depth, sharpness, and topography of the upper mantle discontinuities, as well as other possible upper mantle reflectors beneath this region. This array approach utilizes seismic waves that reflect off the underside of a mantle discontinuity and arrive several hundred seconds prior to the SS seismic phase as precursory energy. In this study, we collected high-quality broadband data SS precursors data from shallow focus (< 30 km deep), mid-Atlantic ridge earthquakes recorded by USArray seismometers in Alaska. We generated 4th root vespagrams to enhance the SS precursors and determine how they sample the mantle. Our data show detection of localized structure on the discontinuity boundaries as well as additional horizons, such as the X-discontinuity and a potential reflection from a discontinuity near the depth of the lithosphere-asthenosphere boundary. These structures are related to the transition from predominantly old ocean lithosphere to underlying continental lithosphere, as while deeper reflectors are associated with the subduction of the ancient Farallon slab. A comparison of the depth of upper mantle discontinuities to changes in seismic velocity and anisotropy will further quantify the relationship to mantle flow, compositional layering, and phases changes.
NASA Astrophysics Data System (ADS)
Hong, Changki; Park, Jinhong; Chung, Yunchul; Choi, Hyungkook; Umansky, Vladimir
2017-11-01
Transmission through a quantum point contact (QPC) in the quantum Hall regime usually exhibits multiple resonances as a function of gate voltage and high nonlinearity in bias. Such behavior is unpredictable and changes sample by sample. Here, we report the observation of a sharp transition of the transmission through an open QPC at finite bias, which was observed consistently for all the tested QPCs. It is found that the bias dependence of the transition can be fitted to the Fermi-Dirac distribution function through universal scaling. The fitted temperature matches quite nicely to the electron temperature measured via shot-noise thermometry. While the origin of the transition is unclear, we propose a phenomenological model based on our experimental results that may help to understand such a sharp transition. Similar transitions are observed in the fractional quantum Hall regime, and it is found that the temperature of the system can be measured by rescaling the quasiparticle energy with the effective charge (e*=e /3 ). We believe that the observed phenomena can be exploited as a tool for measuring the electron temperature of the system and for studying the quasiparticle charges of the fractional quantum Hall states.
NASA Astrophysics Data System (ADS)
Gu, Y. J.; Schultz, R.
2013-12-01
Knowledge of upper mantle transition zone stratification and composition is highly dependent on our ability to efficiently extract and properly interpret small seismic arrivals. A promising high-frequency seismic phase group particularly suitable for a global analysis is P'P' precursors, which are capable of resolving mantle structures at vertical and lateral resolution of approximately 5 and 200 km, respectively, owing to their shallow incidence angle and small, quasi-symmetric Fresnel zones. This study presents a simultaneous analysis of SS and P'P' precursors based on deconvolution, Radon transform and depth migration. Our multi-resolution survey of the mantle near Nazca-South America subduction zone reveals both olivine and garnet related transitions at depth below 400 km. We attribute a depressed 660 to thermal variations, whereas compositional variations atop the upper-mantle transition zone are needed to explain the diminished or highly complex reflected/scattered signals from the 410 km discontinuity. We also observe prominent P'P' reflections within the transition zone, especially near the plate boundary zone where anomalously high reflection amplitudes result from a sharp (~10 km thick) mineral phase change resonant with the dominant frequency of the P'P' precursors. Near the base of the upper mantle, the migration of SS precursors shows no evidence of split reflections near the 660-km discontinuity, but potential majorite-ilmenite (590-640 km) and ilmenite-perovskite transitions (740-750 km) are identified based on similarly processed high-frequency P'P' precursors. At nominal mantle temperatures these two phase changes may be seismically indistinguishable, but colder mantle conditions from the descending Nazca plate, the presence of water and variable Fe contents may cause sufficient separation for a reliable analysis. In addition, our preliminary results provide compelling evidence for multiple shallow lower-mantle reflections (at ~800 km) along the elongated plate boundary zones of South America. Slab stagnation at the base of the transition zone could play a key role, though a proper interpretation of this finding would likely entail compositional (rather than strictly thermal) variations in the vicinity of the descending oceanic crust and lithosphere. Overall, the resolution and sensitivity differences between low/intermediate- S and high-frequency P wave reflections are key considerations toward reconciling seismic and mineralogical models of transition zone structure, both at the study location and worldwide.
Method for transition prediction in high-speed boundary layers, phase 2
NASA Astrophysics Data System (ADS)
Herbert, T.; Stuckert, G. K.; Lin, N.
1993-09-01
The parabolized stability equations (PSE) are a new and more reliable approach to analyzing the stability of streamwise varying flows such as boundary layers. This approach has been previously validated for idealized incompressible flows. Here, the PSE are formulated for highly compressible flows in general curvilinear coordinates to permit the analysis of high-speed boundary-layer flows over fairly general bodies. Vigorous numerical studies are carried out to study convergence and accuracy of the linear-stability code LSH and the linear/nonlinear PSE code PSH. Physical interfaces are set up to analyze the M = 8 boundary layer over a blunt cone calculated by using a thin-layer Navier Stokes (TNLS) code and the flow over a sharp cone at angle of attack calculated using the AFWAL parabolized Navier-Stokes (PNS) code. While stability and transition studies at high speeds are far from routine, the method developed here is the best tool available to research the physical processes in high-speed boundary layers.
Thermal Transport in Nd-doped CeCoIn5
NASA Astrophysics Data System (ADS)
Kim, Duk Y.; Lin, Shi-Zeng; Weickert, Franziska; Rosa, P. F. S.; Bauer, Eric D.; Ronning, Filip; Thompson, J. D.; Movshovich, Roman
Heavy-fermion superconductor CeCoIn5 shows spin-density-wave (SDW) magnetic order in its superconducting state when a high magnetic field is applied. In this Q-phase, the antiferromagnetic order has a single ordering wave vector, and switches its orientation very sharply as magnetic field is rotated within the ab -plane around the [100] (anti-nodal) direction. This hypersensitivity induces a sharp jump of the thermal conductivity. Recently, the SDW with the same ordering wave vector was observed in Nd-doped CeCoIn5 in zero magnetic field. We have measured the thermal conductivity of 5% Nd-doped CeCoIn5 in the magnetic field rotating within the ab -plane. The anisotropy is significantly smaller in the doped material, and the switching transition is much broader. The superconducting transition near Hc 2 is first order, as for the pure CeCoIn5, which indicates the Pauli limited superconductivity. We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.
Rutile IrO2/TiO2 superlattices: A hyperconnected analog to the Ruddelsden-Popper structure
NASA Astrophysics Data System (ADS)
Kawasaki, Jason K.; Baek, David; Paik, Hanjong; Nair, Hari P.; Kourkoutis, Lena F.; Schlom, Darrell G.; Shen, Kyle M.
2018-05-01
Dimensionality and connectivity among octahedra play important roles in determining the properties, electronic structure, and phase transitions of transition-metal oxides. Here we demonstrate the epitaxial growth of (110)-oriented alternating layers of IrO2 and TiO2, both of which have the rutile structure. These (IrO2)n/(TiO2)2 superlattices consist of IrO6 and TiO6 octahedra tiled in a hyperconnected, edge- and corner-sharing network. Despite the large lattice mismatch between constituent layers (Δ d∥=-2.1 % and Δ c =+6.6 % ), our reactive molecular-beam epitaxy-grown superlattices show high structural quality as determined by x-ray diffraction and sharp interfaces as observed by transmission electron microscopy. The large strain at the interface is accommodated by an ordered interfacial reconstruction. The superlattices show persistent metallicity down to n =3 atomic layers, and angle-resolved photoemission spectroscopy measurements reveal quantized sub-bands with signatures of IrO2-IrO2 interlayer coupling.
Crime and punishment: Does it pay to punish?
NASA Astrophysics Data System (ADS)
Iglesias, J. R.; Semeshenko, V.; Schneider, E. M.; Gordon, M. B.
2012-08-01
Crime is the result of a rational distinctive balance between the benefits and costs of an illegal act. This idea was proposed by Becker more than forty years ago (Becker (1968) [1]). In this paper, we simulate a simple artificial society, in which agents earn fixed wages and can augment (or lose) wealth as a result of a successful (or not) act of crime. The probability of apprehension depends on the gravity of the crime, and the punishment takes the form of imprisonment and fines. We study the costs of the law enforcement system required for keeping crime within acceptable limits, and compare it with the harm produced by crime. A sharp phase transition is observed as a function of the probability of punishment, and this transition exhibits a clear hysteresis effect, suggesting that the cost of reversing a deteriorated situation might be much higher than that of maintaining a relatively low level of delinquency. Besides, we analyze economic consequences that arise from crimes under different scenarios of criminal activity and probabilities of apprehension.
NASA Astrophysics Data System (ADS)
Kitagawa, Kentaro; Mezaki, Yuji; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Takigawa, Masashi
2011-03-01
We report the results of 23Na and 75As nuclear magnetic resonance (NMR) experiments on a self-flux grown high-quality single crystal of stoichiometric NaFeAs. The NMR spectra reveal a tetragonal to twinned-orthorhombic structural phase transition at TO = 57 K and an antiferromagnetic (AF) transition at TAF = 45 K. The divergent behavior of nuclear relaxation rate near TAF shows significant anisotropy, indicating that the critical slowing down of stripe-type AF fluctuations are strongly anisotropic in spin space. The NMR spectra at sufficiently low temperatures consist of sharp peaks showing a commensurate stripe AF order with a small moment of ˜0.3 μB. However, the spectra just below TAF exhibit a highly asymmetric broadening pointing to an incommensurate modulation. The commensurate-incommensurate crossover in NaFeAs shows a certain similarity to the behavior of SrFe2As2 under high pressure.
On the non-existence of a sharp cooling break in gamma-ray burst afterglow spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhm, Z. Lucas; Zhang, Bing, E-mail: uhm@physics.unlv.edu, E-mail: zhang@physics.unlv.edu
Although the widely used analytical afterglow model of gamma-ray bursts (GRBs) predicts a sharp cooling break ν {sub c} in its afterglow spectrum, the GRB observations so far rarely show clear evidence for a cooling break in their spectra or a corresponding temporal break in their light curves. Employing a Lagrangian description of the blast wave, we conduct a sophisticated calculation of the afterglow emission. We precisely follow the cooling history of non-thermal electrons accelerated into each Lagrangian shell. We show that a detailed calculation of afterglow spectra does not in fact give rise to a sharp cooling break atmore » ν {sub c}. Instead, it displays a very mild and smooth transition, which occurs gradually over a few orders of magnitude in energy or frequency. The main source of this slow transition is that different mini shells have different evolutionary histories of the comoving magnetic field strength B, so that deriving the current value of ν {sub c} of each mini shell requires an integration of its cooling rate over the time elapsed since its creation. We present the time evolution of optical and X-ray spectral indices to demonstrate the slow transition of spectral regimes and discuss the implications of our result in interpreting GRB afterglow data.« less
First-Order Antiferromagnetic Transition and Fermi Surfaces in Semimetal EuSn3
NASA Astrophysics Data System (ADS)
Mori, Akinobu; Miura, Yasunao; Tsutsumi, Hiroki; Mitamura, Katsuya; Hagiwara, Masayuki; Sugiyama, Kiyohiro; Hirose, Yusuke; Honda, Fuminori; Takeuchi, Tetsuya; Nakamura, Ai; Hiranaka, Yuichi; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika
2014-02-01
We grew high-quality single crystals of the antiferromagnet EuSn3 with the AuCu3-type cubic crystal structure by the Sn self-flux method and measured the electrical resistivity, magnetic susceptibility, high-field magnetization, specific heat, thermal expansion, and de Haas-van Alphen (dHvA) effect, in order to study the magnetic and Fermi surface properties. We observed steplike changes in the electrical resistivity and magnetic susceptibility, and a sharp peak of the specific heat and thermal expansion coefficient at a Néel temperature TN = 36.4 K. The first-order nature of the antiferromagnetic transition was ascertained by the observation of thermal hysteresis as well as of latent heat at TN. The present antiferromagnetic transition is found to be not a typical second-order phase transition but a first-order one. From the results of dHvA experiment, we clarified that the Fermi surface is very similar to that of the divalent compound YbSn3, mainly consisting of a nearly spherical hole Fermi surface and eight ellipsoidal electron Fermi surfaces. EuSn3 is possibly a compensated metal, and the occupation of a nearly spherical hole Fermi surface is 3.5% in its Brillouin zone, indicating that EuSn3 is a semimetal.
Impact of L/D on 90 Degree Sharp-Edge Orifice Flow with Manifold Passage Cross Flow (Preprint)
2007-04-30
that are observed by measurement as the flow transitions from non-cavitation to cavitation (turbulent flow), supercavitation , and finally separation in...include inception of cavitation, supercavitation , and separation. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...cavitation to cavitation (turbulent flow), supercavitation , and finally separation in sharp-edge 90 degree orifices. This study includes orifice L/D from
Phase transitions in distributed control systems with multiplicative noise
NASA Astrophysics Data System (ADS)
Allegra, Nicolas; Bamieh, Bassam; Mitra, Partha; Sire, Clément
2018-01-01
Contemporary technological challenges often involve many degrees of freedom in a distributed or networked setting. Three aspects are notable: the variables are usually associated with the nodes of a graph with limited communication resources, hindering centralized control; the communication is subject to noise; and the number of variables can be very large. These three aspects make tools and techniques from statistical physics particularly suitable for the performance analysis of such networked systems in the limit of many variables (analogous to the thermodynamic limit in statistical physics). Perhaps not surprisingly, phase-transition like phenomena appear in these systems, where a sharp change in performance can be observed with a smooth parameter variation, with the change becoming discontinuous or singular in the limit of infinite system size. In this paper, we analyze the so called network consensus problem, prototypical of the above considerations, that has previously been analyzed mostly in the context of additive noise. We show that qualitatively new phase-transition like phenomena appear for this problem in the presence of multiplicative noise. Depending on dimensions, and on the presence or absence of a conservation law, the system performance shows a discontinuous change at a threshold value of the multiplicative noise strength. In the absence of the conservation law, and for graph spectral dimension less than two, the multiplicative noise threshold (the stability margin of the control problem) is zero. This is reminiscent of the absence of robust controllers for certain classes of centralized control problems. Although our study involves a ‘toy’ model, we believe that the qualitative features are generic, with implications for the robust stability of distributed control systems, as well as the effect of roundoff errors and communication noise on distributed algorithms.
Exotic chemical arrangements and magnetic moment evolution of NixPt1-x (0 ≤x≤ 1) nanoparticles
NASA Astrophysics Data System (ADS)
Mokkath, Junais Habeeb
2018-06-01
We present a systematic study on the chemical ordering pattern and the magnetic properties of NixPt1-x (0 ⩽ x≤ 1) nanoparticles having a size of 1.5 nm by means of an approach which combines basin hopping structure sampling technique and spin-polarized density functional theory. We found exotic chemical ordering patterns for different Ni/Pt ratios. In addition, we observed a sharp phase transition from non-magnetic to ferromagnetic behaviour around x = 67%. We show that this is a direct consequence of a unique atomic arrangement on the surface in which Ni atoms club together causing the strong Ni-Ni magnetic interaction. The observed magnetic properties are correlated to the electronic density of states.
NASA Astrophysics Data System (ADS)
Alécio, Raphael Cavalcante; Strečka, Jozef; Lyra, Marcelo L.
2018-04-01
The thermodynamic behavior of an Ising-Heisenberg triangular tube with Heisenberg intra-rung and Ising inter-rung interactions is exactly obtained in an external magnetic field within the framework of the transfer-matrix method. We report rigorous results for the temperature dependence of the magnetization, entropy, pair correlations and specific heat, as well as typical iso-entropic curves. The discontinuous field-driven ground-state phase transitions are reflected in some anomalous thermodynamic behavior as for instance a striking low-temperature peak of the specific heat and an enhanced magnetocaloric effect. It is demonstrated that the intermediate magnetization plateaus shrink in and the relevant sharp edges associated with the magnetization jump round off upon increasing temperature.
Electric-field-driven phase transition in vanadium dioxide
NASA Astrophysics Data System (ADS)
Wu, B.; Zimmers, A.; Aubin, H.; Gosh, R.; Liu, Y.; Lopez, R.
2011-03-01
In recent years, various strongly correlated materials have shown sharp switching from insulator to metallic state in their I(V) transport curves. Determining if this is purely an out of equilibrium phenomena (due to the strong electric field applied throughout the sample) or simply a Joule heating issue is still an open question. To address this issue, we have first measured local I(V) curves in vanadium dioxide (VO2) Mott insulator at various temperatures using a conducting AFM setup and determined the voltage threshold of the insulator to metal switching. By lifting the tip above the surface (> 35 nm) , wehavethenmeasuredthepurelyelectrostaticforcebetweenthetipandsamplesurfaceasthevoltagebetweenthesetwowasincreased . Inaverynarrowtemperaturerange (below 360 K) , atipheightrange (below 60 nm) andavoltageappliedrange (above 8 V) , weobservedswitchingintheelectrostaticforce (telegraphicnoisevs . timeandvs . voltage) . ThispurelyelectricfieldeffectshowsthattheswitchingphenomenonisstillpresentevenwithoutJouleheatinginVO 2 .
2016-01-01
We report a complete structural and magneto-thermodynamic characterization of four samples of the Heusler alloy Ni-Co-Mn-Ga-In, characterized by similar compositions, critical temperatures and high inverse magnetocaloric effect across their metamagnetic transformation, but different transition widths. The object of this study is precisely the sharpness of the martensitic transformation, which plays a key role in the effective use of materials and which has its origin in both intrinsic and extrinsic effects. The influence of the transition width on the magnetocaloric properties has been evaluated by exploiting a phenomenological model of the transformation built through geometrical considerations on the entropy versus temperature curves. A clear result is that a large temperature span of the transformation is unfavourable to the magnetocaloric performance of a material, reducing both isothermal entropy change and adiabatic temperature change obtainable in a given magnetic field and increasing the value of the maximum field needed to fully induce the transformation. The model, which is based on standard magnetometric and conventional calorimetric measurements, turns out to be a convenient tool for the determination of the optimum values of transformation temperature span in a trade-off between sheer performance and amplitude of the operating range of a material. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402934
NASA Astrophysics Data System (ADS)
Lipinska-Kalita, Kristina E.; Krol, Denise M.; Hemley, Russell J.; Kalita, Patricia E.; Gobin, Cedric L.; Ohki, Yoshimichi
2005-09-01
We have investigated the optical properties of Cr3+ ions in an alkali gallium silicate glass system and in two glass-based nanocomposites with nucleated β-Ga2O3 nanocrystals. The nucleation and growth of the nanocrystalline phase in the host glass matrix were monitored by Raman scattering spectroscopy and angle-dispersive x-ray diffraction. A broadband luminescence, associated with the 4T2-4A2 transition from the weak crystal field of octahedral Cr3+ sites, dominated the emission of the precursor as-quenched glass. The luminescence spectra of the synthesized glass-ceramic nanocomposites revealed a crystal-like 2E-4A2 strong emission and indicated that the major fraction of Cr3+ ions was located within the nanocrystalline environment. The variable-temperature studies of the nanocomposites demonstrated that the fluorescence of Cr3+ ions can be transformed from sharp R lines of the 2E-4A2 transition to a combination of R lines and of the broad band of the 4T2-4A2 transition. We propose a simple distribution model where the major part of Cr3+ ions is located in the nanocrystalline phase of the glass-ceramic composites in the octahedral environment, substituting the gallium atoms in the β-Ga2O3 crystal structure. The developed nanocrystalline glass-ceramics are a promising class of Cr3+-doped oxide glass-based optically active composite materials.
NASA Astrophysics Data System (ADS)
Wei, S. S.; Shearer, P. M.
2017-12-01
The mantle transition-zone discontinuities are usually attributed to isochemical phase transformations of olivine and its high-pressure polymorphs. However, recent seismic observations have shown complexities in these discontinuities that cannot be explained by conventional models of thermal variations. Here we analyse SS precursor stacking results to investigate global mantle transition-zone properties. The precursor waveforms provide information on the seismic velocity and density profiles across and near the major mantle discontinuities. A sporadic low-velocity layer immediately above the 410-km discontinuity is observed worldwide, including East Asia, western North America, eastern South America, and 33-50% of the resolved Pacific Ocean. The 520-km discontinuity exhibits significant variations in its sharpness and depth, and occasionally appears to be split. Structures underlying the 660-km discontinuity show even larger complexities: a sub-discontinuity at 700-800 km depth is detected in some regions, of which some require a positive velocity gradient whereas others have a negative gradient. All of these lateral variations show no geographical correlation with discontinuity topography or tomographic models of seismic velocity, suggesting that they are not caused by regional thermal anomalies. Alternatively, our observations can be explained by compositional heterogeneities in the mid-mantle, including major minerals and volatile content, which may result in additional phase transformations and partial melting. These compositional heterogeneities should be taken into account in future geodynamic models of mantle convection and the deep water cycle.
Marck, Adrien; Berthelot, Geoffroy; Foulonneau, Vincent; Marc, Andy; Antero-Jacquemin, Juliana; Noirez, Philippe; Bronikowski, Anne M; Morgan, Theodore J; Garland, Theodore; Carter, Patrick A; Hersen, Pascal; Di Meglio, Jean-Marc; Toussaint, Jean-François
2017-04-01
Locomotion is one of the major physiological functions for most animals. Previous studies have described aging mechanisms linked to locomotor performance among different species. However, the precise dynamics of these age-related changes, and their interactions with development and senescence, are largely unknown. Here, we use the same conceptual framework to describe locomotor performances in Caenorhabditis elegans, Mus domesticus, Canis familiaris, Equus caballus, and Homo sapiens. We show that locomotion is a consistent biomarker of age-related changes, with an asymmetrical pattern throughout life, regardless of the type of effort or its duration. However, there is variation (i) among species for the same mode of locomotion, (ii) within species for different modes of locomotion, and (iii) among individuals of the same species for the same mode of locomotion. Age-related patterns are modulated by genetic (such as selective breeding) as well as environmental conditions (such as temperature). However, in all cases, the intersection of the rising developmental phase and the declining senescent phase reveals neither a sharp transition nor a plateau, but a smooth transition, emphasizing a crucial moment: the age at peak performance. This transition may define a specific target for future investigations on the dynamics of such biological interactions. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Colloquium: High pressure and road to room temperature superconductivity
NASA Astrophysics Data System (ADS)
Gor'kov, Lev P.; Kresin, Vladimir Z.
2018-01-01
This Colloquium is concerned with the superconducting state of new high-Tc compounds containing hydrogen ions (hydrides). Recently superconductivity with the record-setting transition temperature of Tc=203 K was reported for sulfur hydrides under high pressure. In general, high pressure serves as a path finding tool toward novel structures, including those with very high Tc . The field has a rich and interesting history. Currently, it is broadly recognized that superconductivity in sulfur hydrides owes its origin to the phonon mechanism. However, the picture differs from the conventional one in important ways. The phonon spectrum in sulfur hydride is both broad and has a complex structure. Superconductivity arises mainly due to strong coupling to the high-frequency optical modes, although the acoustic phonons also make a noticeable contribution. A new approach is described, which generalizes the standard treatment of the phonon mechanism and makes it possible to obtain an analytical expression for Tc in this phase. It turns out that, unlike in the conventional case, the value of the isotope coefficient (for the deuterium-hydrogen substitution) varies with the pressure and reflects the impact of the optical modes. The phase diagram, that is the pressure dependence of Tc , is rather peculiar. A crucial feature is that increasing pressure results in a series of structural transitions, including the one which yields the superconducting phase with the record Tc of 203 K. In a narrow region near P ≈150 GPa the critical temperature rises sharply from Tc≈120 to ≈200 K . It seems that the sharp structural transition, which produces the high-Tc phase, is a first-order phase transition caused by interaction between the order parameter and lattice deformations. A remarkable feature of the electronic spectrum in the high-Tc phase is the appearance of small pockets at the Fermi level. Their presence leads to a two-gap spectrum, which can, in principle, be observed with the future use of tunneling spectroscopy. This feature leads to nonmonotonic and strongly asymmetric pressure dependence of Tc . Other hydrides, e.g., CaH6 and MgH6 , can be expected to display even higher values of Tc up to room temperature. The fundamental challenge lies in the creation of a structure capable of displaying high Tc at ambient pressure.
NASA Astrophysics Data System (ADS)
Servali, A.; Levin, V. L.; VanTongeren, J. A.
2015-12-01
In this study we evaluate crustal thickness and Moho sharpness beneath seismic stations in three different tectonic units of the North American continent: the Archean Superior Province, the Proterozoic Grenville Province, and the Paleozoic Appalachian Orogen. Our analysis involves two steps. First, for each site, we produce P-to-S receiver functions (RFs) organized by backazimuth and epicentral distance, and use them to identify the phase most likely representing a conversion from the Moho. Second, we construct averaged RFs for groups of telesismic events located in a similar geographic region, which we employ to examine shapes of Moho P-to-S converted phases in time series with maximum frequencies increasing from 0.25Hz to 2-3 Hz. At some sites we observe a progressive narrowing of a simple Moho converted phase with an increase in frequency, typical of a vertically instantaneous boundary, while at others the converted phase becomes progressively more complex, typical of a diffuse Moho. Thus, we adopt this difference in converted wave shape dependence on increasing frequency as a measure of Moho thickness. Our estimates of Moho thickness range from less than 300 m to over 2 km, with some locations showing evidence for multiple converting boundaries in the 35-50 km depth range. In this study we define "sharp" Moho at those sites where its vertical thickness is less than 1 km. Our results show that sharp Moho is universal in the Archean terranes regardless of surface lithology, likely due to higher Moho temperatures facilitating wide-spread delamination of dense lower crustal rocks. While a sharp Moho is not unique to the Superior Province, all Grenville and Appalachians sites where we find sharp Moho are in regions of granitic plutonism, suggesting a possible general association with reworking and density sorting of the crustal material (e.g. volcanic arc).
Hydrogen and the Wadsleyite to Ringwoodite Transition
NASA Astrophysics Data System (ADS)
Smyth, J. R.
2017-12-01
Olivine [(Mg,Fe)2SiO4] has a stoichiometry of three cations to four oxygens. The three well-known high-pressure polymorphs, olivine, wadsleyite, and ringwoodite, are the dominant mineral phases in the upper mantle (0 - 410 km) and upper (410 - 525 km) and lower (525 - 660 transition zones, respectively. There is, however a fourth polymorph, known as wadsleyite II, that has been seen in a few experiments at pressures near the wadsleyite - ringwoodite transition that might account for the lack of a sharp seismic discontinuity at 525 km. Wadsleyite II is a spinelloid and like wadsleyite and ringwoodite, is based on a cubic-close-packed array of oxygen atoms. Its a and c crystallographic axes are similar to wadsleyite but has a very long b-axis ( 29Å) and has only been identified in experiments that have been equilibrated for more than 20 h. Like wadsleyite and ringwoodite, it can incorporate more than two weight percent water, but has never been observed to incorporate less than 2% H2O by weight. The structure contains both Si2O7 groups as well as isolated SiO4 tetraheda and its density and physical properties are intermediate between wadsleyite and ringwoodite. When it occurs, in long-duration experiments, it is very well-ordered with few if any stacking faults so it is likely to be a stable phase. Although anhydrous samples have been synthesized as spinelloid IV in the nickel aluminate system, the Fo90 silicate composition has only been seen in long-duration experiments in the hydrous peridotite system. From measured elastic properties of anhydrous wadsleyite and ringwoodite, one would expect an observable seismic transition discontinuity between wadsleyite and ringwoodite near 525 km depth under anhydrous conditions. However the presence of an intermediate phase may obscure the seismic signal under hydrous conditions.
Umapathi, Reddicherla; Vepuri, Suresh B; Venkatesu, Pannuru; Soliman, Mahmoud E
2017-05-11
To provide insights into the aggregation behavior, hydration tendency and variation in phase transition temperature produced by the addition of ionic liquids (ILs) to poly(N-isopropylacrylamide) (PNIPAM) aqueous solution, systematic physicochemical studies, and molecular dynamic simulations were carried out. The influence of ILs possessing the same [Cl] - anion and a set of cations [C n mim] + with increasing alkyl chain length such as 1-ethyl-3-methylimidazolium ([Emim] + ), 1-allyl-3-methylimidazolium ([Amim] + ), 1-butyl-3-methylimidazolium ([Bmim] + ), 1-hexyl-3-methylimidazolium ([Hmim] + ), 1-benzyl-3-methylimidazolium ([Bzmim] + ), and 1-decyl-3-methylimidazolium ([Dmim] + ) on the phase transition of PNIPAM was monitored by the aid of UV-visible absorption spectra, fluorescence intensity spectra, viscosity (η), dynamic light scattering (DLS), and Fourier transform infrared (FTIR) spectroscopy. Furthermore, to interpret the direct images and surface morphologies of the PNIPAM-IL aggregates, we performed field emission scanning electron microscopy (FESEM). The overall specific ranking of ILs in preserving the hydration layer around the PNIPAM aqueous solution was [Emim][Cl] > [Amim][Cl] > [Bmim][Cl] > [Hmim][Cl] > [Bzmim][Cl] > [Dmim][Cl]. Moreover, to investigate the molecular mechanism behind the change in the lower critical solution temperature (LCST) of the polymer in the presence of the ILs, a molecular dynamics (MD) study was performed. The MD simulation has clearly shown the reduction in hydration shell of the polymer after interacting with the ILs at their respective LCST. MD study revealed significant changes in polymer conformation because of IL interactions and strongly supports the experimental observation of polymer phase transition at a temperature lower than typical LCST for all the studied ILs. The driving force for concomitant sharp configurational transition has been attributed to the displacement of water molecules on the polymer surface by the ILs because of their hydrophobic interaction with the polymer.
Quackenbush, Nicholas F; Paik, Hanjong; Woicik, Joseph C; Arena, Dario A; Schlom, Darrell G; Piper, Louis F J
2015-08-21
Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe a low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Our results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. More generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions.
NASA Astrophysics Data System (ADS)
Li, Yan; Kowalski, Piotr M.
2018-07-01
In order to get better understanding of the selective order-disorder transition in pyrochlore compounds, using ab initio methods we calculated the formation energies of coupled cation anti-site and anion Frenkel pair defects and the energy barriers for the oxygen migration for number of families of A2B2 O7 pyrochlore-type compounds. While these parameters have been previously computed with force field-based methods, the ab initio results provide more reliable values that can be confidently used in subsequent analysis. We found a fairly good correlation between the formation energies of the coupled defects and the stability field of pyrochlores. In line with previous studies, the compounds that crystallize in defect fluorite structure are found to have smaller values of coupled defect formation energies than those crystallizing in the pyrochlore phase, although the correlation is not that sharp as in the case of isolated anion Frenkel pair defect. The investigation of the energy barriers for the oxygen migration shows that it is not a good, sole indicator of the tendency of the order-disorder phase transition in pyrochlores. However, we found that the oxygen migration barrier is reduced in the presence of the cation antisite defect. This points at disordering-induced enhancement of oxygen diffusion in pyrochlore compounds.
Self-aggregation of clouds in conditionally unstable moist convection
Pauluis, Olivier; Schumacher, Jörg
2011-01-01
The behavior of moist Rayleigh–Bénard convection is investigated using a Boussinesq model with a simplified thermodynamics for phase transitions. This idealized configuration makes the problem accessible to high-resolution three-dimensional direct numerical simulations without small-scale parameterizations of the turbulence for extended layers with aspect ratios up to 64. Our study is focused on the frequently observed conditionally unstable environment that is stably stratified for unsaturated air, but is unstable for cloudy air. We find that no sharp threshold for the transition to convective turbulence exists, a situation similar to wall-bounded shear flows. Rather, the transition depends on the amplitude of the initial perturbation of the quiescent equilibrium and on the aspect ratio of the convective domain. In contrast to the classical dry Rayleigh–Bénard case, convection is highly asymmetric with respect to the vertical direction. Moist upwelling air inside turbulent cloud aggregates is surrounded by ambient regions of slowly descending unsaturated air. It is also found that conditionally unstable moist convection is inefficient at transporting energy. Our study suggests that there is an upper bound on the Nusselt number in moist convection that is lower than that of the classical dry case. PMID:21768333
Wang, Youhong; Chen, Kunling; Xu, Chuanhui; Chen, Yukun
2015-09-10
In the presence of dicumyl peroxide (DCP), biobased thermoplastic vulcanizates (TPVs) composed of poly(lactic acid) (PLA) and epoxidized natural rubber (ENR) were prepared through dynamic vulcanization. Interfacial in situ compatibilization between PLA and ENR phases was confirmed by Fourier transform infrared spectroscopy (FT-IR). A novel "sea-sea" co-continuous phase in the PLA/ENR TPVs was observed through scanning electron microscopy (SEM) and differed from the typical "sea-island" morphology that cross-linked rubber particles dispersed in plastic matrix. A sharp, brittle-ductile transition occurred with 40 wt % of ENR, showing a significantly improved impact strength of 47 kJ/m(2), nearly 15 times that of the neat PLA and 2.6 times that of the simple blend with the same PLA/ENR ratio. Gel permeation chromatography (GPC) and dynamic mechanical analysis (DMA) results suggested that a certain amount of DCP was consumed in the PLA phase, causing a slight cross-linking or branching of PLA molecules. the effects of various DCP contents on the impact property were investigated. The toughening mechanism under impact testing was researched, and the influence factors for toughening were discussed.
Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide
NASA Astrophysics Data System (ADS)
Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew
2018-04-01
Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.
Chiral phases of superfluid 3He in an anisotropic medium
NASA Astrophysics Data System (ADS)
Sauls, J. A.
2013-12-01
Recent advances in the fabrication and characterization of anisotropic silica aerogels with exceptional homogeneity provide new insight into the nature of unconventional pairing in disordered anisotropic media. I report theoretical analysis and predictions for the equilibrium phases of superfluid 3He infused into a low-density, homogeneous uniaxial aerogel. Ginzburg-Landau (GL) theory for a class of equal-spin-pairing (ESP) states in a medium with uniaxial anisotropy is developed and used to analyze recent experiments on uniaxially strained aerogels. For 3He in an axially “stretched” aerogel, GL theory predicts a transition from normal liquid into a chiral Anderson-Morel phase at Tc1 in which the chirality axis l̂ is aligned along the strain axis. This orbitally aligned state is protected from random fluctuations in the anisotropy direction, has a positive nuclear magnetic resonance (NMR) frequency shift, a sharp NMR resonance line, and is identified with the high-temperature ESP-1 phase of superfluid 3He in axially stretched aerogel. A second transition into a biaxial phase is predicted to onset at a slightly lower temperature Tc2
Fraeman, A A; Ehlmann, B L; Arvidson, R E; Edwards, C S; Grotzinger, J P; Milliken, R E; Quinn, D P; Rice, M S
2016-09-01
We have developed a refined geologic map and stratigraphy for lower Mount Sharp using coordinated analyses of new spectral, thermophysical, and morphologic orbital data products. The Mount Sharp group consists of seven relatively planar units delineated by differences in texture, mineralogy, and thermophysical properties. These units are (1-3) three spatially adjacent units in the Murray formation which contain a variety of secondary phases and are distinguishable by thermal inertia and albedo differences, (4) a phyllosilicate-bearing unit, (5) a hematite-capped ridge unit, (6) a unit associated with material having a strongly sloped spectral signature at visible near-infrared wavelengths, and (7) a layered sulfate unit. The Siccar Point group consists of the Stimson formation and two additional units that unconformably overlie the Mount Sharp group. All Siccar Point group units are distinguished by higher thermal inertia values and record a period of substantial deposition and exhumation that followed the deposition and exhumation of the Mount Sharp group. Several spatially extensive silica deposits associated with veins and fractures show that late-stage silica enrichment within lower Mount Sharp was pervasive. At least two laterally extensive hematitic deposits are present at different stratigraphic intervals, and both are geometrically conformable with lower Mount Sharp strata. The occurrence of hematite at multiple stratigraphic horizons suggests redox interfaces were widespread in space and/or in time, and future measurements by the Mars Science Laboratory Curiosity rover will provide further insights into the depositional settings of these and other mineral phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myeongsoon; Kim, Don, E-mail: donkim@pknu.ac.kr
2014-03-01
The clear insulator (monoclinic-VO{sub 2}) to metal (rutile-VO{sub 2}) transition (IMT) was observed in electrical conductivity and differential scanning calorimeter (DSC) measurements at around 340 K, which is IMT temperature (T{sub H}), in the hydrothermally prepared VO{sub 2} crystals. The occurrence of metal to insulator transition (MIT) temperature (T{sub C}) was observed below 333 K during the first resistance measurement cycle in the most of cases. The sudden jump of the electrical resistance at IMT and MIT points was amplified several times than that of the first cycle during the repeated successive thermal cycles (heating and cooling across the IMTmore » and MIT temperatures). T{sub C} and T{sub H} shifted to higher temperature by the repeated successive thermal cycles. This shift and the amplified jump might be related to the mechanical stress between the VO{sub 2} crystals, i.e. extrinsic properties. However, the starting point of MIT, T{sub CS} = ∼ 336 K, and the starting point of IMT, T{sub HS} = ∼ 338 K, kept almost constant during the repeated thermal cycles (< 10 times). These two temperatures may be related to the intrinsic properties of the VO{sub 2}: the phase transitions initiated at these temperatures regardless of the number of the repeated thermal cycles. The neat surface of the VO{sub 2} crystals was severely damaged and the average size of particles reduced from 110 nm to 70–90 nm after extensively repeated thermal cycles (> 70 times). The damaged surface and the smaller particles, which would be originated from the mechanical stress caused by crystal volume change during the first order transition of the VO{sub 2}, would weaken the electrical conduction path (loosen grain boundaries) between the VO{sub 2} single crystals and would result in the amplified jump at the following MIT. This report may boost the study for the improved stability and lifetime of the VO{sub 2} based electronic devices. - Highlights: • The sharp phase transition in cluster of VO{sub 2} crystals depends on repeated thermal cycles. • Two intrinsic and two extrinsic temperatures are observed during the phase transition. • The mechanical stress change and surface damage may cause the extrinsic properties in transport measurement.« less
Phase-field model of vapor-liquid-solid nanowire growth
NASA Astrophysics Data System (ADS)
Wang, Nan; Upmanyu, Moneesh; Karma, Alain
2018-03-01
We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth velocity and radius depending on the growth condition. For the basic normal growth mode, the steady-state solid-liquid interface tip shape consists of a main facet intersected by two truncated side facets ending at triple points. The ratio of truncated and main facet lengths are in quantitative agreement with the prediction of sharp-interface theory that is developed here for faceted nanowire growth in two dimensions.
NASA Astrophysics Data System (ADS)
Pavan Kumar Naik, S.; Seshu Bai, V.
2017-01-01
Controlling the microstructure of superconductors by incorporating the flux pinning centers and reducing the macro-defects to improve high field performance is the topic of recent research. In continuation, the preform optimized infiltration growth (POIG) processed YBa2Cu3O7-δ (YBCO) system, Y-site substituted with three mixed RE (Nd, Sm, Gd) elements is investigated. 20 wt.% of (Nd, Sm, Gd)2BaCuO5 were mixed with Y2BaCuO5 and POIG processed in reduced oxygen atmosphere to obtain YNSG superconductor. No seed is employed for crystal growth; hence the processed samples are multi-grained. Microstructural and compositional investigations on YNSG revealed the presence of different phases in the matrix as well as in precipitates which are of the order of submicron to 4 μm. A large fraction of macro-defects (∼6% of porosity) was observed in the YNSG sample. For reducing the unwanted macro-defects and refine the non-superconducting precipitates, processed YNSG sample is pressed and resolidified (by infiltrating the liquid phases once again) in an argon atmosphere and the structural, microstructural, elemental and superconducting properties are compared with YNSG and undoped samples. Due to spatial scatter in superconducting critical temperatures, caused by the distribution of different REBCO unit cells in YBCO, superconducting transition curve is sharp in YNSG, whereas the resolidified sample showed the broad transition due to solidified liquid phases.
NASA Astrophysics Data System (ADS)
Moroz, N. A.; Olvera, A.; Willis, G. M.; Poudeu, P. F. P.
2015-05-01
The use of template nanostructures for the creation of photovoltaic and thermoelectric semiconductors is becoming a quickly expanding synthesis strategy. In this work we report a simple two-step process enabling the formation of ternary CuAgSe nanoplatelets with a great degree of control over the composition and shape. Starting with hexagonal nanoplatelets of cubic Cu2-xSe, ternary CuAgSe nanoplatelets were generated through a rapid ion exchange reaction at 300 K using AgNO3 solution. The Cu2-xSe nanoplatelet template and the final CuAgSe nanoplatelets were analyzed by electron microscopy and X-ray diffraction (XRD). It was found that both the low temperature pseudotetragonal and the high temperature cubic forms of CuAgSe phase were created while maintaining the morphology of the Cu2-xSe nanoplatelet template. Thermal and electronic transport measurements of hot-pressed pellets of the synthesized CuAgSe nanoplatelets showed a drastic reduction in the thermal conductivity and a sharp transition from n-type (S = -45 μV K-1) to p-type (S = +200 μV K-1) semiconducting behavior upon heating above the structural transition from the low temperature orthorhombic to the high temperature super-ionic cubic phase. This simple reaction process utilizing a template nanostructure matrix represents an energy efficient, cost-efficient, and versatile strategy to create interesting materials with lower defect density and superior thermoelectric performance.The use of template nanostructures for the creation of photovoltaic and thermoelectric semiconductors is becoming a quickly expanding synthesis strategy. In this work we report a simple two-step process enabling the formation of ternary CuAgSe nanoplatelets with a great degree of control over the composition and shape. Starting with hexagonal nanoplatelets of cubic Cu2-xSe, ternary CuAgSe nanoplatelets were generated through a rapid ion exchange reaction at 300 K using AgNO3 solution. The Cu2-xSe nanoplatelet template and the final CuAgSe nanoplatelets were analyzed by electron microscopy and X-ray diffraction (XRD). It was found that both the low temperature pseudotetragonal and the high temperature cubic forms of CuAgSe phase were created while maintaining the morphology of the Cu2-xSe nanoplatelet template. Thermal and electronic transport measurements of hot-pressed pellets of the synthesized CuAgSe nanoplatelets showed a drastic reduction in the thermal conductivity and a sharp transition from n-type (S = -45 μV K-1) to p-type (S = +200 μV K-1) semiconducting behavior upon heating above the structural transition from the low temperature orthorhombic to the high temperature super-ionic cubic phase. This simple reaction process utilizing a template nanostructure matrix represents an energy efficient, cost-efficient, and versatile strategy to create interesting materials with lower defect density and superior thermoelectric performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01451d
Zhang, Qiang; Fernandes, Rafael M.; Lamsal, Jagat; ...
2015-02-04
Inelastic neutron scattering is employed to investigate the impact of electronic nematic order on the magnetic spectra of LaFeAsO and Ba(Fe 0.953Co 0.047) 2As 2. These materials are ideal to study the paramagnetic-nematic state, since the nematic order, signaled by the tetragonal-to-orthorhombic transition at T S, sets in well above the stripe antiferromagnetic ordering at T N. We find that the temperature-dependent dynamic susceptibility displays an anomaly at T S followed by a sharp enhancement in the spin-spin correlation length, revealing a strong feedback effect of nematic order on the low-energy magnetic spectrum. As a result, our findings can bemore » consistently described by a model that attributes the structural or nematic transition to magnetic fluctuations, and unveils the key role played by nematic order in promoting the long-range stripe antiferromagnetic order in iron pnictides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qiang; Fernandes, Rafael M.; Lamsal, Jagat
Inelastic neutron scattering is employed to investigate the impact of electronic nematic order on the magnetic spectra of LaFeAsO and Ba(Fe 0.953Co 0.047) 2As 2. These materials are ideal to study the paramagnetic-nematic state, since the nematic order, signaled by the tetragonal-to-orthorhombic transition at T S, sets in well above the stripe antiferromagnetic ordering at T N. We find that the temperature-dependent dynamic susceptibility displays an anomaly at T S followed by a sharp enhancement in the spin-spin correlation length, revealing a strong feedback effect of nematic order on the low-energy magnetic spectrum. As a result, our findings can bemore » consistently described by a model that attributes the structural or nematic transition to magnetic fluctuations, and unveils the key role played by nematic order in promoting the long-range stripe antiferromagnetic order in iron pnictides.« less
Why Compositional Convection Cannot Explain Substellar Objects’ Sharp Spectral-type Transitions
NASA Astrophysics Data System (ADS)
Leconte, Jérémy
2018-02-01
As brown dwarfs and young giant planets cool down, they are known to experience various chemical transitions—for example, from {CO} rich L-dwarfs to methane rich T-dwarfs. Those chemical transitions are accompanied by spectral transitions with sharpness that cannot be explained by chemistry alone. In a series of articles, Tremblin et al. proposed that some of the yet-unexplained features associated with these transitions could be explained by a reduction of the thermal gradient near the photosphere. To explain, in turn, this more isothermal profile, they invoke the presence of an instability analogous to fingering convection—compositional convection—triggered by the change in mean molecular weight of the gas due to the chemical transitions mentioned above. In this Letter, we use existing arguments to demonstrate that any turbulent transport, if present, would in fact increase the thermal gradient. This misinterpretation comes from the fact that turbulence mixes/homogenizes entropy (potential temperature) instead of temperature. So, while increasing transport, turbulence in an initially stratified atmosphere actually carries energy downward, whether it is due to fingering or any other type of compositional convection. These processes therefore cannot explain the features observed along the aforementioned transitions by reducing the thermal gradient in the atmosphere of substellar objects. Understanding the microphysical and dynamical properties of clouds at these transitions thus probably remains our best way forward.
On the correlation between phase-locking modes and Vibrational Resonance in a neuronal model
NASA Astrophysics Data System (ADS)
Morfu, S.; Bordet, M.
2018-02-01
We numerically and experimentally investigate the underlying mechanism leading to multiple resonances in the FitzHugh-Nagumo model driven by a bichromatic excitation. Using a FitzHugh-Nagumo circuit, we first analyze the number of spikes triggered by the system in response to a single sinusoidal wave forcing. We build an encoding diagram where different phase-locking modes are identified according to the amplitude and frequency of the sinusoidal excitation. Next, we consider the bichromatic driving which consists in a low frequency sinusoidal wave perturbed by an additive high frequency signal. Beside the classical Vibrational Resonance phenomenon, we show in real experiments that multiple resonances can be reached by an appropriate setting of the perturbation parameters. We clearly establish a correlation between these resonances and the encoding diagram of the low frequency signal free FitzHugh-Nagumo model. We show with realistic parameters that sharp transitions of the encoding diagram allow to predict the main resonances. Our experiments are confirmed by numerical simulations of the system response.
Ehlmann, B. L.; Arvidson, R. E.; Edwards, C. S.; Grotzinger, J. P.; Milliken, R. E.; Quinn, D. P.; Rice, M. S.
2016-01-01
Abstract We have developed a refined geologic map and stratigraphy for lower Mount Sharp using coordinated analyses of new spectral, thermophysical, and morphologic orbital data products. The Mount Sharp group consists of seven relatively planar units delineated by differences in texture, mineralogy, and thermophysical properties. These units are (1–3) three spatially adjacent units in the Murray formation which contain a variety of secondary phases and are distinguishable by thermal inertia and albedo differences, (4) a phyllosilicate‐bearing unit, (5) a hematite‐capped ridge unit, (6) a unit associated with material having a strongly sloped spectral signature at visible near‐infrared wavelengths, and (7) a layered sulfate unit. The Siccar Point group consists of the Stimson formation and two additional units that unconformably overlie the Mount Sharp group. All Siccar Point group units are distinguished by higher thermal inertia values and record a period of substantial deposition and exhumation that followed the deposition and exhumation of the Mount Sharp group. Several spatially extensive silica deposits associated with veins and fractures show that late‐stage silica enrichment within lower Mount Sharp was pervasive. At least two laterally extensive hematitic deposits are present at different stratigraphic intervals, and both are geometrically conformable with lower Mount Sharp strata. The occurrence of hematite at multiple stratigraphic horizons suggests redox interfaces were widespread in space and/or in time, and future measurements by the Mars Science Laboratory Curiosity rover will provide further insights into the depositional settings of these and other mineral phases. PMID:27867788
Xenon-plasma-light low-energy ultrahigh-resolution photoemission study of Co(S1-xSex)2 (x=0.075)
NASA Astrophysics Data System (ADS)
Sato, Takafumi; Souma, Seigo; Sugawara, Katsuaki; Nakayama, Kosuke; Raj, Satyabrata; Hiraka, Haruhiro; Takahashi, Takashi
2007-09-01
We have performed low-energy ultrahigh-resolution photoemission spectroscopy on Co(S1-xSex)2 (x=0.075) to elucidate the bulk electronic states responsible for the ferromagnetic transition. By using a newly developed plasma-driven low-energy xenon (Xe) discharge lamp (hν=8.436eV) , we clearly observed a sharp quasiparticle peak at the Fermi level together with the remarkable temperature dependence of the electron density of states across the transition temperature. Comparison with the experimental result by the HeIα resonance line (hν=21.218eV) indicates that the sharp quasiparticle is of bulk origin and is produced by the Fermi-level crossing of the Co 3d eg↓ subband.
SHARP ENTRYWISE PERTURBATION BOUNDS FOR MARKOV CHAINS.
Thiede, Erik; VAN Koten, Brian; Weare, Jonathan
For many Markov chains of practical interest, the invariant distribution is extremely sensitive to perturbations of some entries of the transition matrix, but insensitive to others; we give an example of such a chain, motivated by a problem in computational statistical physics. We have derived perturbation bounds on the relative error of the invariant distribution that reveal these variations in sensitivity. Our bounds are sharp, we do not impose any structural assumptions on the transition matrix or on the perturbation, and computing the bounds has the same complexity as computing the invariant distribution or computing other bounds in the literature. Moreover, our bounds have a simple interpretation in terms of hitting times, which can be used to draw intuitive but rigorous conclusions about the sensitivity of a chain to various types of perturbations.
Fe/Rh (100) multilayer magnetism probed by x-ray magnetic circular dichroism
NASA Astrophysics Data System (ADS)
Tomaz, M. A.; Ingram, D. C.; Harp, G. R.; Lederman, D.; Mayo, E.; O'brien, W. L.
1997-09-01
We report the layer-averaged magnetic moments of both Fe and Rh in sputtered Fe/Rh (100) multilayer thin films as measured by x-ray magnetic circular dichroism. We observe two distinct regimes in these films. The first is characterized by Rh moments of at least 1μB, Fe moments enhanced as much as 30% above bulk, and a bct crystal structure. The second regime is distinguished by sharp declines of both Fe and Rh moments accompanied by a transition to an fct crystal lattice. The demarcation between the two regions is identified as the layer thickness for which both bct and fct phases first coexist, which we term the critical thickness tcrit. We attribute the change in magnetic behavior to the structural transformation.
Final Report: Identification and Manipulation of Novel Topological Phases
2016-02-09
ps at TG and then exhibits a marked change in temperature dependence below TG [Fig. 4(d)]. A sharp rise in relaxation time at TN typically signifies...description, which predicts sharp first-order MITs like in V2O3.28 Although our measurements do not rule out gaps beginning to form in microscopically...Sr2IrO4 defies a strictMott-Hubbard description.We rule out the possibility of a disorder broadened TMIT in our samples based on their sharp magnetic
NASA Astrophysics Data System (ADS)
Watanabe, Shinji; Tsuruta, Atsushi; Miyake, Kazumasa; Flouquet, Jacques
2009-03-01
Valence instability and its critical fluctuations have attracted much attention recently in the heavy-electron systems. Valence fluctuations are essentially charge fluctuations, and it is highly non-trivial how the quantum critical point (QCP) as well as the critical end point is controlled by the magnetic field. To clarify this fundamental issue, we have studied the mechanism of how the critical points of the first-order valence transitions are controlled by the magnetic field [1]. We show that the critical temperature is suppressed to be the QCP by the magnetic field and unexpectedly the QCP exhibits nonmonotonic field dependence in the ground-state phase diagram, giving rise to emergence of metamagnetism even in the intermediate valence-crossover regime. The driving force of the field-induced QCP is clarified to be a cooperative phenomenon of Zeeman effect and Kondo effect, which creates a distinct energy scale from the Kondo temperature. This mechanism explains a peculiar magnetic response in CeIrIn5 and metamagnetic transition in YbXCu4 for X=In as well as a sharp contrast between X=Ag and Cd. We present the novel phenomena under the magnetic field to discuss significance of the proximity of the critical points of the first-order valence transition. [1] S. Watanabe et al. PRL100, (2008) 236401.
Metal-Insulator Transition in W-doped VO2 Nanowires
NASA Astrophysics Data System (ADS)
Long, Gen; Parry, James; Whittaker, Luisa; Banerjee, Sarbajit; Zeng, Hao
2010-03-01
We report a systematic study of the metal-insulator transition in W-doped VO2 nanowires. Magnetic susceptibility were measured for a bulk amount of VO2 nanowire powder. The susceptibility shows a sharp drop with decreasing temperature corresponding to the metal-insulator transition. The transition shows large temperature hysteresis for cooling and heating. With increasing doping concentration, the transition temperatures decreases systematically from 320 K to 275K. Charge transport measurements on the same nanowires showed similar behavior. XRD and TEM measurements were taken to further determine the structure of the materials in study.
Phase Transformation of Droplets into Particles and Nucleation in Atmospheric Pressure Discharges
NASA Astrophysics Data System (ADS)
Iqbal, M. M.; Stallard, C. P.; Dowling, D. P.; Turner, M. M.
2013-09-01
We investigate the mechanism of phase transformation of liquid precursor droplets into nano-particulates in an atmospheric pressure discharge (APD). This phase transformation is possible when the solid to a liquid mass ratio of slurry droplet reaches a threshold value. The behaviour of phase transformation of a single slurry droplet of HMDSO is described by developing a numerical model under the saturation condition of evaporation. It is observed from the temporal evolution of inner radius (Ri) of a single slurry droplet that its value approaches zero before the entire shifting of a liquid phase and which explains with an expansion in the crust thickness (Ro - Ri) . The solid traces of nano-particles are observed experimentally on the surface coating depositions because the time for transferring the slurry droplet of HMDSO into solid state is amplified with an increment in the radii of droplets and the entire phase transition occurs within residence time for the nano-sized liquid droplets. The GDE coupled with discharge plasma is numerically solved to describe the mechanism of nucleation of nano-sized particles in APD plasma under similar conditions of the experiment. The growth of nucleation in APD plasma depends on the type of liquid precursor, such as HMDSO, TEOS and water, which is verified with a sharp peak in the nucleation rate and saturation ratio. Science Foundation Ireland under Grant No. 08/SRC/I1411.
High-field magnetoelasticity of Tm2Co17 and comparison with Er2Co17
NASA Astrophysics Data System (ADS)
Andreev, A. V.; Zvyagin, A. A.; Skourski, Y.; Yasin, S.; Zherlitsyn, S.
2017-11-01
Acoustic properties (ultrasound velocity and attenuation) and magnetostriction were measured in pulsed fields up to 60 T applied along the c axis of Tm2Co17 single crystal. Similar to Er2Co17, the transition in Tm2Co17 is accompanied by clear anomalies in the sound velocity. The observed 0.3% jump of the sound velocity at the transition is negative in Tm2Co17, whereas it is positive in Er2Co17. The magnetostriction at the transition also differs very much from that in Er2Co17. In Tm2Co17, the transition is accompanied by a smooth minimum of 0.15 × 10-4 in longitudinal magnetostriction whereas in Er2Co17 by a very sharp expansion of much larger magnitude (1.2 × 10-4). In the transverse mode, the effect in Tm2Co17 looks as very broad minimum of low amplitude (<0.1 × 10-4) whereas in Er2Co17 as very sharp and large shrinkage (2.6 × 10-4). Thus, both the magnetoacoustics and magnetostriction are rather different in Tm2Co17 and Er2Co17. This supports different nature of the field-induced transitions in these compounds.
Reliability of fracture appearance measurement in the Charpy test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, B.F.
1994-12-31
Despite conventional wisdom, the Charpy fracture appearance transition curve does not always coincide with the energy transition curve. Furthermore, unlike Charpy energy, fracture appearance tells how a specimen failed. It can therefore be used to meaningfully relate the results of Charpy testing to results of other toughness tests which may employ different geometries and loading rates. In order to address the question of consistency, a set of 20 specimens was prepared and used in a `round robin` survey. Results showed that agreement was greatest when operators are experienced, samples are close to fracture appearance transition, and simple, two-dimensional diagrams aremore » sued for assessment. It was also found that certain inconsistencies exist between various assessment techniques for Charpy fracture appearance. As a part of this work, fracture appearance curves were compared to energy impact curves for the Charpy test and a similar test, the Schnadt K{sub o} test, which uses a sharp pressed notch. It was found that energy and fracture appearance transition may differ by as much as 50{degrees}C in the Charpy test while the two curves coincided in the Schnadt test. In series of toughness tests on 132 steels, the average difference between Charpy energy transition and Schnade K{sub o} energy transition was about 27{degrees}C. This is believed to represent the difference in toughness between blunt and sharp notches in Charpy size specimens.« less
Effect of Exogenous and Endogenous Nitrate Concentration on Nitrate Utilization by Dwarf Bean 1
Breteler, Hans; Nissen, Per
1982-01-01
The effect of the exogenous and endogenous NO3− concentration on net uptake, influx, and efflux of NO3− and on nitrate reductase activity (NRA) in roots was studied in Phaseolus vulgaris L. cv. Witte Krombek. After exposure to NO3−, an apparent induction period of about 6 hours occurred regardless of the exogenous NO3− level. A double reciprocal plot of the net uptake rate of induced plants versus exogenous NO3− concentration yielded four distinct phases, each with simple Michaelis-Menten kinetics, and separated by sharp breaks at about 45, 80, and 480 micromoles per cubic decimeter. Influx was estimated as the accumulation of 15N after 1 hour exposure to 15NO3−. The isotherms for influx and net uptake were similar and corresponded to those for alkali cations and Cl−. Efflux of NO3− was a constant proportion of net uptake during initial NO3− supply and increased with exogenous NO3− concentration. No efflux occurred to a NO3−-free medium. The net uptake rate was negatively correlated with the NO3− content of roots. Nitrate efflux, but not influx, was influenced by endogenous NO3−. Variations between experiments, e.g. in NO3− status, affected the values of Km and Vmax in the various concentration phases. The concentrations at which phase transitions occurred, however, were constant both for influx and net uptake. The findings corroborate the contention that separate sites are responsible for uptake and transitions between phases. Beyond 100 micromoles per cubic decimeter, root NRA was not affected by exogenous NO3− indicating that NO3− uptake was not coupled to root NRA, at least not at high concentrations. PMID:16662570
Criticality in finite dynamical networks
NASA Astrophysics Data System (ADS)
Rohlf, Thimo; Gulbahce, Natali; Teuscher, Christof
2007-03-01
It has been shown analytically and experimentally that both random boolean and random threshold networks show a transition from ordered to chaotic dynamics at a critical average connectivity Kc in the thermodynamical limit [1]. By looking at the statistical distributions of damage spreading (damage sizes), we go beyond this extensively studied mean-field approximation. We study the scaling properties of damage size distributions as a function of system size N and initial perturbation size d(t=0). We present numerical evidence that another characteristic point, Kd exists for finite system sizes, where the expectation value of damage spreading in the network is independent of the system size N. Further, the probability to obtain critical networks is investigated for a given system size and average connectivity k. Our results suggest that, for finite size dynamical networks, phase space structure is very complex and may not exhibit a sharp order-disorder transition. Finally, we discuss the implications of our findings for evolutionary processes and learning applied to networks which solve specific computational tasks. [1] Derrida, B. and Pomeau, Y. (1986), Europhys. Lett., 1, 45-49
NASA Astrophysics Data System (ADS)
He, Can; Ji, Haipeng; Huang, Zhaohui; Zhang, Xiaoguang; Liu, Haitao; Liu, Silin; Liu, Yangai; Fang, Minghao; Wu, Xiaowen; Min, Xin
2018-02-01
A series of ZnAl2-x O4:xEu3+ phosphors was synthesized by a modified co-precipitation method. The phase structure and photoluminescence properties were examined and extensively discussed. Composition-optimized ZnAl1.97O4:0.03Eu3+ exhibited sharp, intense red characteristic emissions with the Commission Internationale de l’Eclairage coordinates of (0.62, 0.33) peaking at 620 nm under an excitation at 394 nm, corresponding to the 5D0 → 7F2 transition of Eu3+. The quenching concentration of Eu3+ in ZnAl2-x O4:xEu3+ phosphors was approximately 0.03. In addition, the concentration quenching mechanism, fluorescence decay curves, and thermally stable luminescence properties of ZnAl2-x O4:xEu3+ phosphors were investigated. The results indicated that ZnAl2-x O4:xEu3+ phosphors demonstrate potential applications in near-ultraviolet light-emitting diode pumped white light lamps.
NASA Astrophysics Data System (ADS)
Cogoni, Marco; Busonera, Giovanni; Anedda, Paolo; Zanetti, Gianluigi
2015-01-01
We generalize previous studies on critical phenomena in communication networks [1,2] by adding computational capabilities to the nodes. In our model, a set of tasks with random origin, destination and computational structure is distributed on a computational network, modeled as a graph. By varying the temperature of a Metropolis Montecarlo, we explore the global latency for an optimal to suboptimal resource assignment at a given time instant. By computing the two-point correlation function for the local overload, we study the behavior of the correlation distance (both for links and nodes) while approaching the congested phase: a transition from peaked to spread g(r) is seen above a critical (Montecarlo) temperature Tc. The average latency trend of the system is predicted by averaging over several network traffic realizations while maintaining a spatially detailed information for each node: a sharp decrease of performance is found over Tc independently of the workload. The globally optimized computational resource allocation and network routing defines a baseline for a future comparison of the transition behavior with respect to existing routing strategies [3,4] for different network topologies.
NASA Astrophysics Data System (ADS)
Sugiyama, Makoto; Fujimoto, Yutaka; Yanagida, Takayuki; Yokota, Yuui; Pejchal, Jan; Furuya, Yuki; Tanaka, Hidehiko; Yoshikawa, Akira
2011-04-01
Nd 0.1%, 0.5%, 1% and 3% doped Lu 3Al 5O 12 (Nd:LuAG) single crystals were grown in the nitrogen atmosphere by the micro-pulling down (μ-PD) method. The grown crystals had a single-phase confirmed by powder XRD analysis. In absorption spectra, some weak absorption lines due to Nd 3+ 4f-4f transitions were observed and their intensity increased with the increase of Nd concentration. When excited by 241Am α-ray, a broad emission peak due to defects in the host lattice at 320 nm and some sharp lines due to Nd 3+ 4f-4f transitions at wavelength longer than 400 nm were observed. The decay time profiles of Nd:LuAG under γ-ray excitation were well approximated by two exponential function of 340-760 ns and 3-5 μs for each sample. By pulse height measurement using 137Cs, Nd 0.5%:LuAG showed the highest light yield of 7600 ± 760 photons/MeV.
Effect of oxygen vacancies on magnetic and transport properties of Sr2IrO4
NASA Astrophysics Data System (ADS)
Dwivedi, Vinod Kumar; Mukhopadhyay, Soumik
2018-05-01
Iridates have recently attracted growing interest because of their potential for realizing various interesting phases like interaction driven Mott-type insulator and magnetically driven Slater-type. In this paper, we present the magnetic and electrical transport properties of polycrystalline Sr2IrO4 synthesized by solid state reaction route. We find a ferromagnetic transition at 240 K. The Curie-Weiss law behavior hold good above the magnetic transition temperature TMag = 240 K with a small effective paramagnetic magnetic moment μeff = 0.25 µB/f.u. and a Curie-Weiss temperature, θCW = +100 K. Zero field cooled (ZFC) magnetization shows a gradual dcrease below 150 K, while same for field cooled (FC) below 50 K. Interestingly, below temperatures, ⁓ 10 K, a sharp increase in ZFC and FC magnetization can be seen. A temperature dependent resistivity reveals insulating behavior followed by power law mechanism. The sintering of sample in air leads to the very low value of resistivity is likely related to Sr or oxygen vacancies.
Hu, Qing-song; Zhu, Cheng-jing; Xia, Yue-yi; Wang, Li-li; Liu, Wen-han; Pan, Zai-fa
2016-02-01
Eu³⁺ doped BaSrMg (PO₄)₂ were prepared by a hydrothermal method. The crystal structure and morphology of BaSrMg(PO₄)₂:Eu³⁺ phosphor were characterized by X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM). The effects of different pH values (5, 6, 7 and 8) and different reaction temperatures (120, 140, 160, 180 and 200 °C) on the crystal structure and morphology of BaSrMg(PO₄)₂:Eu³⁺ phosphor were studied in this paper. The results of XRD indicate that diffraction peaks are sharp and strong only when pH value is 6, meanwhile the FESEM shows the morphology is regular-shaped. The XRD patterns show amorphous halos superimposed with several weak sharp peaks for the samples preparing under the pH values of 5, 7 and 8. It indicates that these three samples are solid solution or mixed phases, which are in accord with the results of FESEM. From the fluorescence spectra, the peaks in the excitation spectra were assigned to the transition from ⁷F₀ to ⁵D₄, ⁵L₈, ⁵L₆ and ⁵D₂, while the peaks of emission spectra corresponding to the transition of ⁵D₁ --> ⁷F₁ and ⁵D₀-->⁷Fj (J = 0, 1, 2, 3 and 4). The strongest emission peak of the optimized phosphor located at 613 nm (⁵D0--> ⁷F₂), excited by the main excitation peak with wavelength of 394 nm. The splitting of the emission peaks changes depends on pH values and temperatures, which indicating that luminescence properties is closely related to the crystal structure and morphology of particles.
NASA Astrophysics Data System (ADS)
Lavina, B.; Dera, P. K.; Downs, R. T.
2009-12-01
Phases in the Fe-C-O system are of interest for the deep carbon cycle, they might play an important role in buffering the mantle fO2. Carbon is also common in the fluid phases that greatly influence the Earth’s processes. The study of the high pressure behavior of siderite and of the phases synthesized after laser heating offers a good opportunity to illustrate the advantages and importance of single crystal diffraction in the high pressure science. The structure of siderite, FeCO3, has been refined up to 54 GPa across the spin pairing transition. Splitting of the diffraction peaks at the transition pressure provides unequivocal evidence of the sharpness of the spin crossover and of the absence of any intermediate volume and therefore of an intermediate spin state at ambient temperature. Diffraction intensities were collected in about 30 minutes at a bending magnet station (HPCAT, APS) and in about one minute at an insertion device station (GSECARS, APS). The quality of the refinement is unvaried in the investigated range, and the results obtained from the two different radiation and detectors are consistent. The refinements provide an accurate and robust determination of the dependence of bond distances and angles with pressure. Subtle structural rearrangements associated with the collapse of the octahedral cation size will be discussed. In situ laser heating is a very powerful method to study minerals at the actual P-T of the Earth’s deep interior. Overcoming the kinetic barriers required for bond breaking and atom diffusion, high pressure-high temperature phases may be synthesized. The analysis of high-pressure phases is very challenging. Diffraction patterns are usually of moderate quality and resolution, furthermore in addition to the sample, the pattern contains the contribution of other phases such as those used to insulate the anvils, to provide a pressure medium and a pressure marker. In several cases after laser heating, we observed phase transitions and growth of large crystallites, here the contribution of different phases could be better distinguished by analyzing the 3-dimensional distribution in the reciprocal space of the diffraction peaks. Laser heating experiments in the Fe-C-O system were conducted in the pressure range 20-140 GPa. The siderite stability field seems narrower than the previous investigations suggested. At least one of the extracted single crystal phases provides evidence of oxidation-reduction reactions.
Response of the Higgs amplitude mode of superfluid Bose gases in a three-dimensional optical lattice
NASA Astrophysics Data System (ADS)
Nagao, Kazuma; Takahashi, Yoshiro; Danshita, Ippei
2018-04-01
We study the Higgs mode of superfluid Bose gases in a three-dimensional optical lattice, which emerges near the quantum phase transition to the Mott insulator at commensurate fillings. Specifically, we consider responses of the Higgs mode to temporal modulations of the onsite interaction and the hopping energy. In order to calculate the response functions including the effects of quantum and thermal fluctuations, we map the Bose-Hubbard model onto an effective pseudospin-1 model and use a perturbative expansion based on the imaginary-time Green's function theory. We also include the effects of an inhomogeneous trapping potential by means of a local density approximation. We find that the response function for the hopping modulation is equal to that for the interaction modulation within our approximation. At the unit filling rate and in the absence of a trapping potential, we show that the Higgs mode can exist as a sharp resonance peak in the dynamical susceptibilities at typical temperatures. However, the resonance peak is significantly broadened due to the trapping potential when the modulations are applied globally to the entire system. We suggest that the Higgs mode can be detected as a sharp resonance peak by partial modulations around the trap center.
Ancient whales did not filter feed with their teeth.
Hocking, David P; Marx, Felix G; Fitzgerald, Erich M G; Evans, Alistair R
2017-08-01
The origin of baleen whales (Mysticeti), the largest animals on Earth, is closely tied to their signature filter-feeding strategy. Unlike their modern relatives, archaic whales possessed a well-developed, heterodont adult dentition. How these teeth were used, and what role their function and subsequent loss played in the emergence of filter feeding, is an enduring mystery. In particular, it has been suggested that elaborate tooth crowns may have enabled stem mysticetes to filter with their postcanine teeth in a manner analogous to living crabeater and leopard seals, thereby facilitating the transition to baleen-assisted filtering. Here we show that the teeth of archaic mysticetes are as sharp as those of terrestrial carnivorans, raptorial pinnipeds and archaeocetes, and thus were capable of capturing and processing prey. By contrast, the postcanine teeth of leopard and crabeater seals are markedly blunter, and clearly unsuited to raptorial feeding. Our results suggest that mysticetes never passed through a tooth-based filtration phase, and that the use of teeth and baleen in early whales was not functionally connected. Continued selection for tooth sharpness in archaic mysticetes is best explained by a feeding strategy that included both biting and suction, similar to that of most living pinnipeds and, probably, early toothed whales (Odontoceti). © 2017 The Authors.
NASA Astrophysics Data System (ADS)
Tůma, K.; Stupkiewicz, S.; Petryk, H.
2016-10-01
A finite-strain phase field model for martensitic phase transformation and twinning in shape memory alloys is developed and confronted with the corresponding sharp-interface approach extended to interfacial energy effects. The model is set in the energy framework so that the kinetic equations and conditions of mechanical equilibrium are fully defined by specifying the free energy and dissipation potentials. The free energy density involves the bulk and interfacial energy contributions, the latter describing the energy of diffuse interfaces in a manner typical for phase-field approaches. To ensure volume preservation during martensite reorientation at finite deformation within a diffuse interface, it is proposed to apply linear mixing of the logarithmic transformation strains. The physically different nature of phase interfaces and twin boundaries in the martensitic phase is reflected by introducing two order-parameters in a hierarchical manner, one as the reference volume fraction of austenite, and thus of the whole martensite, and the second as the volume fraction of one variant of martensite in the martensitic phase only. The microstructure evolution problem is given a variational formulation in terms of incremental fields of displacement and order parameters, with unilateral constraints on volume fractions explicitly enforced by applying the augmented Lagrangian method. As an application, size-dependent microstructures with diffuse interfaces are calculated for the cubic-to-orthorhombic transformation in a CuAlNi shape memory alloy and compared with the sharp-interface microstructures with interfacial energy effects.
Quackenbush, Nicholas F.; Paik, Hanjong; Woicik, Joseph C.; Arena, Dario A.; Schlom, Darrell G.; Piper, Louis F. J.
2015-01-01
Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe a low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Our results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. More generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions. PMID:28793516
Holography for Heavy Ions Collisions at LHC and NICA
NASA Astrophysics Data System (ADS)
Aref'eva, Irina
2017-12-01
This is a contribution for the Proceedings of 5th International Conference on New Frontiers in Physics (ICNFP 2016), held at Crete, 6-14 July 2016. Our goal is to obtain phenomenologically reliable insights for the physics of the quark-gluon plasma (QGP) from the holography. I briefly review how in the holographical setup one can describe the QGP formation in heavy ion collisions and how to get quantitatively the main characteristics of the QGP formation - the total multiplicity and the thermalization time. To fit the experimental form of dependence of total multiplicity on energy, obtained at LHC, we have to deal with a special anisotropic holographic model, related with the Lifshitz-type background. Our conjecture is that this Lifshitz-type background with non-zero chemical potential can be used to describe future data expected from NICA. In particular, we present the results of calculations the holographic confinement/deconfinement phase transition in the (µ, T) (chemical potential, temperature) plane in this anizotropic background and show the dependence of the transition line on the orientation of the quark pair. This dependence leads to a non-sharp character of physical confinement/deconfinement phase in the (µ, T)-plane. We use the bottom-up soft wall approach incorporating quark confinement deforming factor and vector field providing the non-zero chemical potential. In this model we also estimate the holographic photon production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quackenbush, Nicholas F.; Paik, Hanjong; Woicik, Joseph C.
2015-08-21
Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe amore » low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. Generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions.« less
Appplication of statistical mechanical methods to the modeling of social networks
NASA Astrophysics Data System (ADS)
Strathman, Anthony Robert
With the recent availability of large-scale social data sets, social networks have become open to quantitative analysis via the methods of statistical physics. We examine the statistical properties of a real large-scale social network, generated from cellular phone call-trace logs. We find this network, like many other social networks to be assortative (r = 0.31) and clustered (i.e., strongly transitive, C = 0.21). We measure fluctuation scaling to identify the presence of internal structure in the network and find that structural inhomogeneity effectively disappears at the scale of a few hundred nodes, though there is no sharp cutoff. We introduce an agent-based model of social behavior, designed to model the formation and dissolution of social ties. The model is a modified Metropolis algorithm containing agents operating under the basic sociological constraints of reciprocity, communication need and transitivity. The model introduces the concept of a social temperature. We go on to show that this simple model reproduces the global statistical network features (incl. assortativity, connected fraction, mean degree, clustering, and mean shortest path length) of the real network data and undergoes two phase transitions, one being from a "gas" to a "liquid" state and the second from a liquid to a glassy state as function of this social temperature.
Anim-Danso, Emmanuel; Zhang, Yu; Dhinojwala, Ali
2013-06-12
Understanding the freezing of salt solutions near solid surfaces is important in many scientific fields. Here we use sum frequency generation (SFG) spectroscopy to study the freezing of a NaCl solution next to a sapphire substrate. During cooling we observe two transitions. The first corresponds to segregation of concentrated brine next to the sapphire surface as we cool the system down to the region where ice and brine phases coexist. At this transition, the intensity of the ice-like peak decreases, suggesting the disruption of hydrogen-bonding by sodium ions. The second transition corresponds to the formation of NaCl hydrates with abrupt changes in both the SFG intensity and the sharpness of spectral peaks. The similarity in the position of the SFG peaks with those observed using IR and Raman spectroscopy indicates the formation of NaCl·2H2O crystals next to the sapphire substrate. The melting temperatures of the hydrates are very similar to those reported for bulk NaCl·2H2O. This study enhances our understanding of nucleation and freezing of salt solutions on solid surfaces and the effects of salt ions on the structure of interfacial ice.
Higgs-mode radiance and charge-density-wave order in 2 H -NbSe2
NASA Astrophysics Data System (ADS)
Grasset, Romain; Cea, Tommaso; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Cario, Laurent; Benfatto, Lara; Méasson, Marie-Aude
2018-03-01
Despite being usually considered two competing phenomena, charge-density wave and superconductivity coexist in few systems, the most emblematic one being the transition-metal dichalcogenide 2 H -NbSe2 . This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp subgap mode emerging below the superconducting temperature is still under debate. In this work we use external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique, we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge-density-wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density wave and superconductivity in 2 H -NbSe2 involve mutual electronic degrees of freedom. These findings fill the knowledge gap on the electronic mechanisms at play in transition-metal dichalcogenides, a crucial step to fully exploit their properties in few-layer systems optimized for device applications.
Chemical pressure tuning of URu2Si2 via isoelectronic substitution of Ru with Fe
NASA Astrophysics Data System (ADS)
Das, Pinaki; Kanchanavatee, N.; Helton, J. S.; Huang, K.; Baumbach, R. E.; Bauer, E. D.; White, B. D.; Burnett, V. W.; Maple, M. B.; Lynn, J. W.; Janoschek, M.
2015-02-01
We have used specific heat and neutron diffraction measurements on single crystals of URu2 -xFexSi2 for Fe concentrations x ≤0.7 to establish that chemical substitution of Ru with Fe acts as "chemical pressure" Pc h as previously proposed by Kanchanavatee et al. [Phys. Rev. B 84, 245122 (2011), 10.1103/PhysRevB.84.245122] based on bulk measurements on polycrystalline samples. Notably, neutron diffraction reveals a sharp increase of the uranium magnetic moment at x =0.1 , reminiscent of the behavior at the "hidden order" to large-moment-antiferromagnetic phase transition observed at a pressure Px≈0.5 -0.7 GPa in URu2Si2 . Using the unit-cell volume determined from our measurements and an isothermal compressibility κT=5.2 ×10-3 GPa-1 for URu2Si2 , we determine the chemical pressure Pc h in URu2 -xFexSi2 as a function of x . The resulting temperature (T )-chemical pressure (Pc h) phase diagram for URu2 -xFexSi2 is in agreement with the established temperature (T )-external pressure (P ) phase diagram of URu2Si2 .
Chemical pressure tuning of URu 2 Si 2 via isoelectronic substitution of Ru with Fe
Das, Pinaki; Kanchanavatee, N.; Helton, J. S.; ...
2015-02-26
We have used specific heat and neutron diffraction measurements on single crystals of URu 2–xFe xSi₂ for Fe concentrations x ≤ 0.7 to establish that chemical substitution of Ru with Fe acts as “chemical pressure” P ch as previously proposed by Kanchanavatee et al. [Phys. Rev. B 84, 245122 (2011)] based on bulk measurements on polycrystalline samples. Neutron diffraction reveals a sharp increase of the uranium magnetic moment at x = 0.1, reminiscent of the behavior at the “hidden order” to large moment antiferromagnetic (LMAFM) phase transition observed at a pressure P x ≈ 0.5-0.7 GPa in URu₂Si₂. Using themore » unit cell volume determined from our measurements and an isothermal compressibility κ T = 5.2×10⁻³ GPa⁻¹ for URu₂Si₂, we determine the chemical pressure P ch in URu 2-xFe xSi₂ as a function of x. The resulting temperature T-chemical pressure P ch phase diagram for URu 2-xFe xSi₂ is in agreement with the established temperature T-external pressure P phase diagram of URu₂Si₂.« less
Liu, Gang; Kong, Lingping; Yan, Jinyuan; Liu, Zhenxian; Zhang, Hengzhong; Lei, Pei; Xu, Tao; Mao, Ho-Kwang; Chen, Bin
2016-06-09
We report an unprecedented surface doping-driven anomaly in the compression behaviors of nanocrystals demonstrating that the change of surface chemistry can lead to an interior bulk structure change in nanoparticles. In the synchrotron-based X-ray diffraction experiments, titania nanocrystals with low concentration yttrium dopants at the surface are found to be less compressible than undoped titania nanocrystals. More surprisingly, an unexpected TiO2(ii) phase (α-PbO2 type) is induced and obvious anisotropy is observed in the compression of yttrium-doped TiO2, in sharp contrast to the compression behavior of undoped TiO2. In addition, the undoped brookite nanocrystals remain with the same structure up to 30 GPa, whereas the yttrium-doped brookite amorphizes above 20 GPa. The abnormal structural evolution observed in yttrium-doped TiO2 does not agree with the reported phase stability of nano titania polymorphs, thus suggesting that the physical properties of the interior of nanocrystals can be controlled by the surface, providing an unconventional and new degree of freedom in search for nanocrystals with novel tunable properties that can trigger applications in multiple areas of industry and provoke more related basic science research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaonan; Lin, Kun; Gao, Qilong
As one class of the most important intermetallic compounds, the binary Laves-phase is well-known for their abundant magnetic properties. Samarium-iron alloy system, SmFe 2, is a prototypical Laves compound that shows strong negative magnetostriction but relatively weak magnetocrystalline anisotropy. SmFe 2 has been identified as a cubic Fdmore » $$ \\overline{3}\\ $$m structure at room temperature, however, the cubic symmetry does not match the spontaneous magnetization along the [111] cubic direction. Here we studied the crystal structure of SmFe 2 by high-resolution synchrotron X-ray powder diffraction and X-ray total scattering methods. SmFe 2 is found to adopt a centrosymmetric trigonal R$$ \\overline{3}\\ $$m structure at room temperature, which transforms to an orthorhombic Imma structure at 200 K. This transition is in agreement with the changes of easy magnetization direction from [111] cubic to [110] cubic direction, and is further evidenced by the inflexion of thermal expansion behavior, the sharp decline of the magnetic susceptibility in the FC-ZFC curve, and the anomaly in the specific heat capacity measurement. The revised structure and phase transformation of SmFe 2 could be useful to understand the magnetostriction and related physical properties of other RM 2-type pseudo-cubic Laves-phase intermetallic compounds.« less
Transition to Chaos in Random Neuronal Networks
NASA Astrophysics Data System (ADS)
Kadmon, Jonathan; Sompolinsky, Haim
2015-10-01
Firing patterns in the central nervous system often exhibit strong temporal irregularity and considerable heterogeneity in time-averaged response properties. Previous studies suggested that these properties are the outcome of the intrinsic chaotic dynamics of the neural circuits. Indeed, simplified rate-based neuronal networks with synaptic connections drawn from Gaussian distribution and sigmoidal nonlinearity are known to exhibit chaotic dynamics when the synaptic gain (i.e., connection variance) is sufficiently large. In the limit of an infinitely large network, there is a sharp transition from a fixed point to chaos, as the synaptic gain reaches a critical value. Near the onset, chaotic fluctuations are slow, analogous to the ubiquitous, slow irregular fluctuations observed in the firing rates of many cortical circuits. However, the existence of a transition from a fixed point to chaos in neuronal circuit models with more realistic architectures and firing dynamics has not been established. In this work, we investigate rate-based dynamics of neuronal circuits composed of several subpopulations with randomly diluted connections. Nonzero connections are either positive for excitatory neurons or negative for inhibitory ones, while single neuron output is strictly positive with output rates rising as a power law above threshold, in line with known constraints in many biological systems. Using dynamic mean field theory, we find the phase diagram depicting the regimes of stable fixed-point, unstable-dynamic, and chaotic-rate fluctuations. We focus on the latter and characterize the properties of systems near this transition. We show that dilute excitatory-inhibitory architectures exhibit the same onset to chaos as the single population with Gaussian connectivity. In these architectures, the large mean excitatory and inhibitory inputs dynamically balance each other, amplifying the effect of the residual fluctuations. Importantly, the existence of a transition to chaos and its critical properties depend on the shape of the single-neuron nonlinear input-output transfer function, near firing threshold. In particular, for nonlinear transfer functions with a sharp rise near threshold, the transition to chaos disappears in the limit of a large network; instead, the system exhibits chaotic fluctuations even for small synaptic gain. Finally, we investigate transition to chaos in network models with spiking dynamics. We show that when synaptic time constants are slow relative to the mean inverse firing rates, the network undergoes a transition from fast spiking fluctuations with constant rates to a state where the firing rates exhibit chaotic fluctuations, similar to the transition predicted by rate-based dynamics. Systems with finite synaptic time constants and firing rates exhibit a smooth transition from a regime dominated by stationary firing rates to a regime of slow rate fluctuations. This smooth crossover obeys scaling properties, similar to crossover phenomena in statistical mechanics. The theoretical results are supported by computer simulations of several neuronal architectures and dynamics. Consequences for cortical circuit dynamics are discussed. These results advance our understanding of the properties of intrinsic dynamics in realistic neuronal networks and their functional consequences.
Unveiling the control of quenched disorder in rare earth nickelates
NASA Astrophysics Data System (ADS)
Das, Sarmistha; Phanindra, V. Eswara; Philip, Sharon S.; Rana, D. S.
2017-10-01
The role of quenched disorder, a key control to obtain novel phases and functionalities, has not yet been determined in the complex phase diagram of RNi O3 (R = rare-earth ion) perovskites. Here we present such a study by investigating (L a0.5E u0.5 ) Ni O3 (LENO) having large R-site cation disorder. We show that in the presence of quenched disorder, (i) the resistivity drops by a few orders of magnitude across the metal-insulator transition (MIT) but the MIT shows only a subtle decrease, (ii) compressive films are completely metallic while largely tensile films are completely insulating sans a MIT, (iii) orthorhombic distortion promotes sharp MIT, and (iv) a Fermi liquid behavior even as high temperature resistivity exceeds the Mott-Ioffe-Regel limit with a bad metallic state. The low-energy terahertz conductivity dynamics obey Drude and Drude-Smith models for compressive and tensile films, respectively. All these features of disordered LENO, which are not typical of prototype ordered NdNi O3 , reveal an extraordinary sensitivity to slight structural perturbations. This study depicts the ease with which a variety of electronic phases can be tuned in disordered nickelates and emphasize the need to incorporate quenched disorder as a key control in the phase diagram of nickelates.
Magnetic and dielectric properties of Fe3BO6 nanoplates prepared through self-combustion method
NASA Astrophysics Data System (ADS)
Kumari, Kalpana
In the present investigation, a facile synthesis method is explored involving a self-combustion of a solid precursor mixture of iron oxide Fe2O3 and boric acid (H3BO3) using camphor (C10H16O) as fuel in ambient air in order to form a single phase Fe3BO6 crystallites. X-ray diffraction (XRD), Field emission electron microscopy (FESEM), magnetic, and dielectric properties of as prepared sample are studied. From XRD pattern, a single phase compound is observed with an orthorhombic crystal structure (Pnma space group), with average crystallite size of 42nm. A reasonably uniform size distribution of the plates and self-assemblies is retained in the sample. A magnetic transition is observed in dielectric permittivity (at ˜445K) and power loss (at ˜435K) when plotted against temperature. A weak peak occurs near 330K due to the charge reordering in the sample. For temperatures above the transition temperature, a sharp increase of the dielectric loss is observed which occurs due to the presence of thermally activated charge carriers. A canted antiferromagnetic Fe3+ ordering in a Fe3BO6 lattice with a localized charge surface layer is an apparent source of exhibiting a ferroelectric feature in this unique example of a centrosymmetric compound. An induced spin current over the Fe sites thus could give rise to a polarization hysteresis loop. Due to the presence of both ferromagnetic as well as polarization ordering, Fe3BO6 behaves like a single phase multiferroic ceramics.
NASA Astrophysics Data System (ADS)
Su, Rigu; Nie, Hengchang; Liu, Zhen; Peng, Ping; Cao, Fei; Dong, Xianlin; Wang, Genshui
2018-02-01
Several 0.97PbZrO3-0.03Ba(Mg1/3Nb2/3)O3 (0.97PZ-0.03BMN) ceramics were prepared via the columbite precursor method. Their microstructures and pressure-dependent ferroelectric and depolarization performances were then studied. The X-ray diffraction patterns of ground and fresh samples indicate that a main rhombohedral symmetry crystal structure is present in the bulk and that it sits alongside a trace quantity of an orthorhombic antiferroelectric phase that results from the effect of grinding on the surface. The remanent polarization (Pr) of the 0.97PZ-0.03BMN reached 32.4 μC/cm2 at 4.5 kV/mm and ambient pressure. In an in situ pressure-induced current measurement, more than 91% of the retained Pr of the pre-poled sample was released when the pressure was increased from 194 MPa to 238 MPa. That this pressure-driven depolarization should be attributed to the pressure-induced ferroelectric-antiferroelectric phase transition is supported by the emergence of double P-E loops at high hydrostatic pressures. Moreover, the 0.97PZ-0.03BMN ceramics exhibit no temperature-induced phase transitions and little related polarization loss up to 125 °C, which suggests that Pr has excellent thermal stability. The sharp depolarization behavior at low pressures and excellent temperature stability reveal that our 0.97PZ-0.03BMN ceramics exhibit superior performances in mechanical-electrical energy conversion applications.
Crystal Field Excitations Across High Tc Phase Diagram in La1 . 6 - x Nd0 . 4 Srx CuO4
NASA Astrophysics Data System (ADS)
Ma, Qianli; Maharaj, Dalini; Buhariwalla, Connor; Kolesnikov, Alexander; Stone, Matthew; Gaulin, Bruce
The family of high Tc superconductors(SC) La1 . 6 - x Nd0 . 4 Srx CuO4 (Nd-LSCO) has been studied as it displays a complex picture of the canonical hole-doped high Tc phase diagram. It displays static charge and spin stripe order over a range of Sr doping, which are optimized around x=0.125. Nd-LSCO evolves from an AFM insulating phase at x=0, to a region (0.05
Scaling with System Size of the Lyapunov Exponents for the Hamiltonian Mean Field Model
NASA Astrophysics Data System (ADS)
Manos, Thanos; Ruffo, Stefano
2011-12-01
The Hamiltonian Mean Field model is a prototype for systems with long-range interactions. It describes the motion of N particles moving on a ring, coupled with an infinite-range potential. The model has a second-order phase transition at the energy density Uc =3/4 and its dynamics is exactly described by the Vlasov equation in the N→∞ limit. Its chaotic properties have been investigated in the past, but the determination of the scaling with N of the Lyapunov Spectrum (LS) of the model remains a challenging open problem. Here we show that the N -1/3 scaling of the Maximal Lyapunov Exponent (MLE), found in previous numerical and analytical studies, extends to the full LS; scaling is "precocious" for the LS, meaning that it becomes manifest for a much smaller number of particles than the one needed to check the scaling for the MLE. Besides that, the N -1/3 scaling appears to be valid not only for U>Uc , as suggested by theoretical approaches based on a random matrix approximation, but also below a threshold energy Ut ≈0.2. Using a recently proposed method (GALI) devised to rapidly check the chaotic or regular nature of an orbit, we find that Ut is also the energy at which a sharp transition from weak to strong chaos is present in the phase-space of the model. Around this energy the phase of the vector order parameter of the model becomes strongly time dependent, inducing a significant untrapping of particles from a nonlinear resonance.
Tracing iron-carbon redox from surface to core
NASA Astrophysics Data System (ADS)
McCammon, C. A.; Cerantola, V.; Bykova, E.; Kupenko, I.; Bykov, M.; Chumakov, A. I.; Rüffer, R.; Dubrovinsky, L. S.
2017-12-01
Numerous redox reactions separate the Earth's oxidised surface from its reduced core. Many involve iron, the Earth's most abundant element and the mantle's most abundant transition element. Most iron redox reactions (although not all) also involve other elements, including carbon, where iron-carbon interactions drive a number of important processes within the Earth, for example diamond formation. Many of the Earth's redox boundaries are sharp, much like the seismic properties that define them, for example between the lower mantle and the core. Other regions that appear seismically homogeneous, for example the lower mantle, harbour a wealth of reactions between oxidised and reduced phases of iron and carbon. We have undertaken many experiments at high pressure and high temperature on phases containing iron and carbon using synchrotron-based X-rays to probe structures and iron oxidation states. Results demonstrate the dominant role that crystal structures play in determining the stable oxidation states of iron and carbon, even when oxygen fugacity (and common sense) would suggest otherwise. Iron in bridgmanite, for example, occurs predominantly in its oxidised form (ferric iron) throughout the lower mantle, despite the inferred reducing conditions. Newly discovered structures of iron carbonate also stabilise ferric iron, while simultaneously reducing some carbon to diamond to balance charge. Other high-pressure iron carbonates appear to be associated with the emerging zoo of iron oxide phases, involving transitions between ferrous and ferric iron through the exchange of oxygen. The presentation will trace redox relations between iron and carbon from the Earth's surface to its core, with an emphasis on recent experimental results.
1980-09-01
Ogee spillway crest 1269.5 Sharp crest weir (rigid fish screen) 1271.5 N Upstream invert of spillway 1265.4 Downstream invert of spillway 1260.9 Maximum...Sluice gate Access Valve house upstream Regulating facilities Sluice gate i. Spillway. Type Concrete ogee to sharp crested weir Length 26 feet Ogee... crest elevation 1269.5 Sharp crest weir (rigid fish screen) 1271.5 Upstream channel Lake Downstream channel Reinforced concrete channel for
Shahmoradi, Ali; Reinecke, Lisa; Kroos, Christina; Wichert, Sven P.; Oster, Henrik; Wehr, Michael C.; Taneja, Reshma; Hirrlinger, Johannes; Rossner, Moritz J.
2014-01-01
Increasing evidence suggests that clock genes may be implicated in a spectrum of psychiatric diseases, including sleep and mood related disorders as well as schizophrenia. The bHLH transcription factors SHARP1/DEC2/BHLHE41 and SHARP2/DEC1/BHLHE40 are modulators of the circadian system and SHARP1/DEC2/BHLHE40 has been shown to regulate homeostatic sleep drive in humans. In this study, we characterized Sharp1 and Sharp2 double mutant mice (S1/2-/-) using online EEG recordings in living animals, behavioral assays and global gene expression profiling. EEG recordings revealed attenuated sleep/wake amplitudes and alterations of theta oscillations. Increased sleep in the dark phase is paralleled by reduced voluntary activity and cortical gene expression signatures reveal associations with psychiatric diseases. S1/2-/- mice display alterations in novelty induced activity, anxiety and curiosity. Moreover, mutant mice exhibit impaired working memory and deficits in prepulse inhibition resembling symptoms of psychiatric diseases. Network modeling indicates a connection between neural plasticity and clock genes, particularly for SHARP1 and PER1. Our findings support the hypothesis that abnormal sleep and certain (endo)phenotypes of psychiatric diseases may be caused by common mechanisms involving components of the molecular clock including SHARP1 and SHARP2. PMID:25340473
NASA-Ames Summer High School Apprenticeship Research Program (SHARP)
NASA Technical Reports Server (NTRS)
Powell, P.
1983-01-01
The function of SHARP is to recognize high school juniors who have demonstrated unusually high promise for sucess in mathemtics and science. Twenty academically talented students who will be seniors in high school in September were chosen to participate in SHARP 83. Mentors were selected to provide students with first-hand experiences in a research and development environment in order that each student might try out his or her tentative professional career choice. Some special features of SHARP included field trips to private industries doing similar and related research, special lectures on topics of research here at ARC, individual and group counseling sessions, written research papers and oral reports, and primarily the opportunity to be exposed to the present frontiers in space exploration and research. The long-range goal of SHARP is to contribute to the future recruitment of needed scientists and engineers. This final report is summary of all the phases of the planning and implemenation of the 1983 Summer High School Apprenticeship Research Program (SHARP).
Phase-driven collapse of the Cooper condensate in a nanosized superconductor
NASA Astrophysics Data System (ADS)
Ronzani, Alberto; D'Ambrosio, Sophie; Virtanen, Pauli; Giazotto, Francesco; Altimiras, Carles
2017-12-01
Superconductivity can be understood in terms of a phase transition from an uncorrelated electron gas to a condensate of Cooper pairs in which the relative phases of the constituent electrons are coherent over macroscopic length scales. The degree of correlation is quantified by a complex-valued order parameter, whose amplitude is proportional to the strength of the pairing potential in the condensate. Supercurrent-carrying states are associated with nonzero values of the spatial gradient of the phase. The pairing potential and several physical observables of the Cooper condensate can be manipulated by means of temperature, current bias, dishomogeneities in the chemical composition, or application of a magnetic field. Here we show evidence of complete suppression of the energy gap in the local density of quasiparticle states (DOS) of a superconducting nanowire upon establishing a phase difference equal to π over a length scale comparable to the superconducting coherence length. These observations are consistent with a complete collapse of the pairing potential in the center of the wire, in accordance with theoretical modeling based on the quasiclassical theory of superconductivity in diffusive systems. Our spectroscopic data, fully exploring the phase-biased states of the condensate, highlight the profound effect that extreme phase gradients exert on the amplitude of the pairing potential. Moreover, the sharp magnetic response (up to 27 mV/Φ0) observed near the onset of the superconducting gap collapse regime is exploited to realize magnetic flux detectors with noise-equivalent resolution as low as 260 n Φ0/√{Hz} .
Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shi-Qiang; Bruce Buchholz, D.; Zhou, Wei
Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retainedmore » the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.« less
Finite-size effects in the short-time height distribution of the Kardar-Parisi-Zhang equation
NASA Astrophysics Data System (ADS)
Smith, Naftali R.; Meerson, Baruch; Sasorov, Pavel
2018-02-01
We use the optimal fluctuation method to evaluate the short-time probability distribution P(H, L, t) of height at a single point, H=h(x=0, t) , of the evolving Kardar-Parisi-Zhang (KPZ) interface h(x, t) on a ring of length 2L. The process starts from a flat interface. At short times typical (small) height fluctuations are unaffected by the KPZ nonlinearity and belong to the Edwards-Wilkinson universality class. The nonlinearity, however, strongly affects the (asymmetric) tails of P(H) . At large L/\\sqrt{t} the faster-decaying tail has a double structure: it is L-independent, -\\lnP˜≤ft\\vert H\\right\\vert 5/2/t1/2 , at intermediately large \\vert H\\vert , and L-dependent, -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , at very large \\vert H\\vert . The transition between these two regimes is sharp and, in the large L/\\sqrt{t} limit, behaves as a fractional-order phase transition. The transition point H=Hc+ depends on L/\\sqrt{t} . At small L/\\sqrt{t} , the double structure of the faster tail disappears, and only the very large-H tail, -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , is observed. The slower-decaying tail does not show any L-dependence at large L/\\sqrt{t} , where it coincides with the slower tail of the GOE Tracy-Widom distribution. At small L/\\sqrt{t} this tail also has a double structure. The transition between the two regimes occurs at a value of height H=Hc- which depends on L/\\sqrt{t} . At L/\\sqrt{t} \\to 0 the transition behaves as a mean-field-like second-order phase transition. At \\vert H\\vert <\\vert H_c-\\vert the slower tail behaves as -\\lnP˜ ≤ft\\vert H\\right\\vert 2L/t , whereas at \\vert H\\vert >\\vert H_c-\\vert it coincides with the slower tail of the GOE Tracy-Widom distribution.
Topological and trivial magnetic oscillations in nodal loop semimetals
NASA Astrophysics Data System (ADS)
Oroszlány, László; Dóra, Balázs; Cserti, József; Cortijo, Alberto
2018-05-01
Nodal loop semimetals are close descendants of Weyl semimetals and possess a topologically dressed band structure. We argue by combining the conventional theory of magnetic oscillation with topological arguments that nodal loop semimetals host coexisting topological and trivial magnetic oscillations. These originate from mapping the topological properties of the extremal Fermi surface cross sections onto the physics of two dimensional semi-Dirac systems, stemming from merging two massless Dirac cones. By tuning the chemical potential and the direction of magnetic field, a sharp transition is identified from purely trivial oscillations, arising from the Landau levels of a normal two dimensional (2D) electron gas, to a phase where oscillations of topological and trivial origin coexist, originating from 2D massless Dirac and semi-Dirac points, respectively. These could in principle be directly identified in current experiments.
TL and PL studies on cubic fluoroperovskite single crystal (KMgF3: Eu2+, Ce3+)
NASA Astrophysics Data System (ADS)
Daniel, D. Joseph; Madhusoodanan, U.; Annalakshmi, O.; Ramasamy, P.
2014-04-01
The perovskite-like KMgF3 polycrystalline compounds were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of (0.2 mol% of EuF3 and CeF3) Co-doped KMgF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Thermoluminescence (TL) characteristics of KMgF3 samples doped with Eu2+ and Ce3+ have been studied after β-ray irradiation. At ambient conditions the photoluminescence spectra consisted of sharp line peaked of Eu2+ at 360 nm attributed to the f → f transition (6P7/2→8S7/2) could only be observed due to the energy transfer from Ce3+ to Eu2+.
High-quality single crystal growth and magnetic property of Mn4Ta2O9
NASA Astrophysics Data System (ADS)
Cao, Yiming; Xu, Kun; Yang, Ya; Yang, Wangfan; Zhang, Yuanlei; Kang, Yanru; He, Xijia; Zheng, Anmin; Liu, Mian; Wei, Shengxian; Li, Zhe; Cao, Shixun
2018-06-01
A large-size single crystal of Mn4Ta2O9 with ∼3.5 mm in diameter and ∼65 mm in length was successfully grown for the first time by a newly designed one-step method based on the optical floating zone technique. Both the clear Laue spots and sharp XRD Bragg reflections suggest the high quality of the single crystal. In Mn4Ta2O9 single crystal, an antiferromagnetic phase transition was observed below Néel temperature 102 K along c axis, which is similar to the isostructural compound Mn4Nb2O9, but differs from the isostructural Co4Nb2O9. Relative dielectric constant at 30 kOe suggests that no magnetoelectric coupling exists in Mn4Ta2O9.
Optical properties of titanium di-oxide thin films prepared by dip coating method
NASA Astrophysics Data System (ADS)
Biswas, Sayari; Rahman, Kazi Hasibur; Kar, Asit Kumar
2018-05-01
Titanium dioxide (TiO2) thin films were prepared by sol-gel dip coating method on ITO coated glass substrate. The sol was synthesized by hydrothermal method at 90°C. The sol was then used to make TiO2 films by dip coating. After dip coating the rest of the sol was dried at 100°C to make TiO2 powder. Thin films were made by varying the number of dipping cycles and were annealed at 500°C. XRD study was carried out for powder samples that confirms the formation of anatase phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60%. Band gap of the prepared films varies from 3.15 eV to 3.22 eV.
Critical dynamics on a large human Open Connectome network
NASA Astrophysics Data System (ADS)
Ódor, Géza
2016-12-01
Extended numerical simulations of threshold models have been performed on a human brain network with N =836 733 connected nodes available from the Open Connectome Project. While in the case of simple threshold models a sharp discontinuous phase transition without any critical dynamics arises, variable threshold models exhibit extended power-law scaling regions. This is attributed to fact that Griffiths effects, stemming from the topological or interaction heterogeneity of the network, can become relevant if the input sensitivity of nodes is equalized. I have studied the effects of link directness, as well as the consequence of inhibitory connections. Nonuniversal power-law avalanche size and time distributions have been found with exponents agreeing with the values obtained in electrode experiments of the human brain. The dynamical critical region occurs in an extended control parameter space without the assumption of self-organized criticality.
Statistical properties of derivatives: A journey in term structures
NASA Astrophysics Data System (ADS)
Lautier, Delphine; Raynaud, Franck
2011-06-01
This article presents an empirical study of 13 derivative markets for commodities and financial assets. The study goes beyond statistical analysis by including the maturity as a variable for the daily returns of futures contracts from 1998 to 2010, and for delivery dates up to 120 months. We observe that the mean and variance of the commodities follow a scaling behavior in the maturity dimension with an exponent characteristic of the Samuelson effect. The comparison between the tails of the probability distribution according to the expiration dates shows that there is a segmentation in the fat tails exponent term structure above the Lévy stable region. Finally, we compute the average tail exponent for each maturity, and we observe two regimes of extreme events for derivative markets, reminiscent of a phase diagram with a sharp transition at the 18th delivery month.
Transition Reynolds number comparisons in several major transonic tunnels
NASA Technical Reports Server (NTRS)
Dougherty, N. S., Jr.; Steinle, F. W., Jr.
1974-01-01
Boundary-layer transition and test section environmental noise data were acquired in six major transonic wind tunnels as a part of a broader correlation of the effect of free-stream disturbances on transition Reynolds number. The data were taken at comparative test conditions on a sharp, smooth 10-deg included-angle cone. It was found that aerodynamic noise sources within the test section were the dominant sources of unsteadiness and that transition Reynolds number provided a good indicator for the resulting degradation in flow quality. Amplitudes, frequency composition, directivity, and origin of these disturbances are described.
Athermal brittle-to-ductile transition in amorphous solids.
Dauchot, Olivier; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques
2011-10-01
Brittle materials exhibit sharp dynamical fractures when meeting Griffith's criterion, whereas ductile materials blunt a sharp crack by plastic responses. Upon continuous pulling, ductile materials exhibit a necking instability that is dominated by a plastic flow. Usually one discusses the brittle to ductile transition as a function of increasing temperature. We introduce an athermal brittle to ductile transition as a function of the cutoff length of the interparticle potential. On the basis of extensive numerical simulations of the response to pulling the material boundaries at a constant speed we offer an explanation of the onset of ductility via the increase in the density of plastic modes as a function of the potential cutoff length. Finally we can resolve an old riddle: In experiments brittle materials can be strained under grip boundary conditions and exhibit a dynamic crack when cut with a sufficiently long initial slot. Mysteriously, in molecular dynamics simulations it appeared that cracks refused to propagate dynamically under grip boundary conditions, and continuous pulling was necessary to achieve fracture. We argue that this mystery is removed when one understands the distinction between brittle and ductile athermal amorphous materials.
NASA Astrophysics Data System (ADS)
Wang, Yang; Zhou, Lin; Zheng, Qinghui; Lu, Hong; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia
2017-05-01
Spectrally selective absorbers (SSA) with high selectivity of absorption and sharp cut-off between high absorptivity and low emissivity are critical for efficient solar energy conversion. Here, we report the semiconductor nanowire enabled SSA with not only high absorption selectivity but also temperature dependent sharp absorption cut-off. By taking advantage of the temperature dependent bandgap of semiconductors, we systematically demonstrate that the absorption cut-off profile of the semiconductor-nanowire-based SSA can be flexibly tuned, which is quite different from most of the other SSA reported so far. As an example, silicon nanowire based selective absorbers are fabricated, with the measured absorption efficiency above (below) bandgap ˜97% (15%) combined with an extremely sharp absorption cut-off (transition region ˜200 nm), the sharpest SSA demonstrated so far. The demonstrated semiconductor-nanowire-based SSA can enable a high solar thermal efficiency of ≳86% under a wide range of operating conditions, which would be competitive candidates for the concentrated solar energy utilizations.
Patel, Mainak; Joshi, Badal
2013-10-07
The widespread presence of synchronized neuronal oscillations within the brain suggests that a mechanism must exist that is capable of decoding such activity. Two realistic designs for such a decoder include: (1) a read-out neuron with a high spike threshold, or (2) a phase-delayed inhibition network motif. Despite requiring a more elaborate network architecture, phase-delayed inhibition has been observed in multiple systems, suggesting that it may provide inherent advantages over simply imposing a high spike threshold. In this work, we use a computational and mathematical approach to investigate the efficacy of the phase-delayed inhibition motif in detecting synchronized oscillations. We show that phase-delayed inhibition is capable of creating a synchrony detector with sharp synchrony filtering properties that depend critically on the time course of inputs. Additionally, we show that phase-delayed inhibition creates a synchrony filter that is far more robust than that created by a high spike threshold. Copyright © 2013 Elsevier Ltd. All rights reserved.
Metastable growth of pure wurtzite InGaAs microstructures.
Ng, Kar Wei; Ko, Wai Son; Lu, Fanglu; Chang-Hasnain, Connie J
2014-08-13
III-V compound semiconductors can exist in two major crystal phases, namely, zincblende (ZB) and wurtzite (WZ). While ZB is thermodynamically favorable in conventional III-V epitaxy, the pure WZ phase can be stable in nanowires with diameters smaller than certain critical values. However, thin nanowires are more vulnerable to surface recombination, and this can ultimately limit their performances as practical devices. In this work, we study a metastable growth mechanism that can yield purely WZ-phased InGaAs microstructures on silicon. InGaAs nucleates as sharp nanoneedles and expand along both axial and radial directions simultaneously in a core-shell fashion. While the base can scale from tens of nanometers to over a micron, the tip can remain sharp over the entire growth. The sharpness maintains a high local surface-to-volume ratio, favoring hexagonal lattice to grow axially. These unique features lead to the formation of microsized pure WZ InGaAs structures on silicon. To verify that the WZ microstructures are truly metastable, we demonstrate, for the first time, the in situ transformation from WZ to the energy-favorable ZB phase inside a transmission electron microscope. This unconventional core-shell growth mechanism can potentially be applied to other III-V materials systems, enabling the effective utilization of the extraordinary properties of the metastable wurtzite crystals.
Mantle structure beneath the western edge of the Colorado Plateau
Sine, C.R.; Wilson, D.; Gao, W.; Grand, S.P.; Aster, R.; Ni, J.; Baldridge, W.S.
2008-01-01
Teleseismic traveltime data are inverted for mantle Vp and Vs variations beneath a 1400 km long line of broadband seismometers extending from eastern New Mexico to western Utah. The model spans 600 km beneath the moho with resolution of ???50 km. Inversions show a sharp, large-magnitude velocity contrast across the Colorado Plateau-Great Basin transition extending ???200 km below the crust. Also imaged is a fast anomaly 300 to 600 km beneath the NW portion of the array. Very slow velocities beneath the Great Basin imply partial melting and/or anomalously wet mantle. We propose that the sharp contrast in mantle velocities across the western edge of the Plateau corresponds to differential lithospheric modification, during and following Farallon subduction, across a boundary defining the western extent of unmodified Proterozoic mantle lithosphere. The deep fast anomaly corresponds to thickened Farallon plate or detached continental lithosphere at transition zone depths. Copyright 2008 by the American Geophysical Union.
Irradiation-induced formation of a spinel phase at the FeCr/MgO interface
Xu, Yun; Yadav, Satyesh Kumar; Aguiar, Jeffery A.; ...
2015-04-27
Oxide dispersion strengthened ferritic/martensitic alloys have attracted significant attention for their potential uses in future nuclear reactors and storage vessels, as the metal/oxide interfaces act as stable high-strength sinks for point defects while also dispersing helium. Here, in order to unravel the evolution and interplay of interface structure and chemistry upon irradiation in these types of materials, an atomically sharp FeCr/MgO interface was synthesized at 500 °C and separately annealed and irradiated with Ni 3+ ions at 500 °C. After annealing, a slight enrichment of Cr atoms was observed at the interface, but no other structural changes were found. However,more » under irradiation, sufficient Cr diffuses across the interface into the MgO to form a Cr-enriched transition layer that contains spinel precipitates. First-principles calculations indicate that it is energetically favorable to incorporate Cr, but not Fe, substitutionally into MgO. Furthermore, our results indicate that irradiation can be used to form new phases and complexions at interfaces, which may have different radiation tolerance than the pristine structures.« less
Role of the d -d interaction in the antiferromagnetic phase of λ -(BEDT-STF ) 2FeCl4
NASA Astrophysics Data System (ADS)
Minamidate, Takaaki; Shindo, Hironori; Ihara, Yoshihiko; Kawamoto, Atsushi; Matsunaga, Noriaki; Nomura, Kazushige
2018-03-01
Magnetic susceptibility and proton nuclear magnetic resonance (1H-NMR ) measurements were performed for the quasi-two-dimensional π -d interacting system λ -(BEDT-STF ) 2FeCl4 at ambient pressure. Magnetic susceptibility arising from the 3 d spins of the FeCl4 anion show an anisotropy at low temperature and its temperature dependence for the external field parallel to the c axis is described as a broad peak structure at 8 K. A sharp peak in the temperature dependence of T1-1 associated with the antiferromagnetic (AF) transition is observed at TAF=16 K, together with the drastic splitting of the NMR spectrum below TAF. The relation between the static susceptibility and the splitting of the NMR shift suggests the existence of the relatively strong d -d AF interaction. These results can be explained by the model considering the AF-coupled d -spin system in the AF long-range-ordered π -spin system. We find that the AF phases in λ -type salts can be universally explained by this model.
Preparation and magnetic properties of multiferroic CuMnO2 nanoparticles.
Kurokawa, Akinobu; Yanoh, Tkuya; Yano, Shinya; Ichiyanagi, Yuko
2014-03-01
CuMnO2 nanoparticles with diameters of 64 nm were synthesized by a novel wet chemical method. An optimized two-step annealing method was developed through the analysis of thermogravimetric differential thermal analysis (TG-DTA) measurements in order to obtain single-phase CuMnO2. A sharp exothermic peak was observed in the DTA curve at approximately 500 K where structural changes of the copper oxides and manganese oxides in the precursor are expected to occur. It is believed that Cu+ ions were oxidized to Cu2+ ions and that Mn2+ ions were oxidized to Mn3+ ions in the Cu-Mn-O system. Deoxidization reactions were also found at approximately 1200 K. The optimized annealing temperature for the first step was determined to be 623 K in air. The optimized annealing temperature for the second step was 1173 K in an Ar atmosphere. Magnetization measurements suggested an antiferromagnetic spin ordering at approximately 50 K. It was expected that Mn3+ spin interactions induced magnetic phase transition affected by definite temperature.
Effect of orthorhombic distortion on dielectric and piezoelectric properties of CaBi4Ti4O15 ceramics
NASA Astrophysics Data System (ADS)
Tanwar, Amit; Sreenivas, K.; Gupta, Vinay
2009-04-01
High temperature bismuth layered piezoelectric and ferroelectric ceramics of CaBi4Ti4O15 (CBT) have been prepared using the solid state route. The formation of single phase material with orthorhombic structure was verified from x-ray diffraction and Raman spectroscopy. The orthorhombic distortion present in the CBT ceramic sintered at 1200 °C was found to be maximum. A sharp phase transition from ferroelectric to paraelectric was observed in the temperature dependent dielectric studies of all CBT ceramics. The Curie's temperature (Tc=790 °C) was found to be independent of measured frequency. The behavior of ac conductivity as a function of frequency (100 Hz-1 MHz) at low temperatures (<500 °C) follows the power law and is attributed to hopping conduction. The presence of large orthorhombic distortion in the CBT ceramic sintered at 1200 °C results in high dielectric constant, low dielectric loss, and high piezoelectric coefficient (d33). The observed results indicate the important role of orthorhombic distortion in determining the improved property of multicomponent ferroelectric material.
Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe
Wang, Qisi; Shen, Yao; Pan, Bingying; ...
2015-12-07
In iron-based superconductors the interactions driving the nematic order (that breaks four-fold rotational symmetry in the iron plane) may also mediate the Cooper pairing. The experimental determination of these interactions, which are believed to depend on the orbital or the spin degrees of freedom, is challenging because nematic order occurs at, or slightly above, the ordering temperature of a stripe magnetic phase. In this paper, we study FeSe—which exhibits a nematic (orthorhombic) phase transition at T s = 90 K without antiferromagnetic ordering—by neutron scattering, finding substantial stripe spin fluctuations coupled with the nematicity that are enhanced abruptly on coolingmore » through T s. A sharp spin resonance develops in the superconducting state, whose energy (~4 meV) is consistent with an electron–boson coupling mode revealed by scanning tunnelling spectroscopy. The magnetic spectral weight in FeSe is found to be comparable to that of the iron arsenides. Finally, our results support recent theoretical proposals that both nematicity and superconductivity are driven by spin fluctuations.« less
Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qisi; Shen, Yao; Pan, Bingying
In iron-based superconductors the interactions driving the nematic order (that breaks four-fold rotational symmetry in the iron plane) may also mediate the Cooper pairing. The experimental determination of these interactions, which are believed to depend on the orbital or the spin degrees of freedom, is challenging because nematic order occurs at, or slightly above, the ordering temperature of a stripe magnetic phase. In this paper, we study FeSe—which exhibits a nematic (orthorhombic) phase transition at T s = 90 K without antiferromagnetic ordering—by neutron scattering, finding substantial stripe spin fluctuations coupled with the nematicity that are enhanced abruptly on coolingmore » through T s. A sharp spin resonance develops in the superconducting state, whose energy (~4 meV) is consistent with an electron–boson coupling mode revealed by scanning tunnelling spectroscopy. The magnetic spectral weight in FeSe is found to be comparable to that of the iron arsenides. Finally, our results support recent theoretical proposals that both nematicity and superconductivity are driven by spin fluctuations.« less
NASA Astrophysics Data System (ADS)
Gudfinnsson, Gudmundur H.; Presnall, Dean C.
1996-12-01
Isobarically invariant phase relations in the CaO-MgO-Al2O3-SiO2 system (CMAS) involving the lherzolite phase assemblage in equilibrium with liquid have been determined at 2.4-3.4 GPa. These phase relations form the solidus of model lherzolite in the CMAS system. Our data, which include determinations of all phase compositions, are in excellent agreement with the 3.0 and 4.0 GPa points of Milholland and Presnall [1991] and Davis and Schairer [1965], respectively. The invariant transition on the P-T solidus curve from spinel- to garnet-lherzolite at 3.0 GPa, 1575°C [Milholland and Presnall, 1991], is confirmed, but we observe that the theoretically required temperature depression on the solidus curve at this point is not experimentally detectable. Composition trends along the solidus take a sharp turn at the transition. In the spinel-lherzolite stability field, melt compositions become increasingly Fo-normative and less En-normative with increasing pressure, but become less Fo-normative and more pyroxenitic as pressure increases in the garnet-lherzolite stability field. Calculated melting reactions indicate that forsterite is in reaction relationship with the melt up to 3.0 GPa. Orthopyroxene is also in reaction relationship at pressures higher than just over 2.8 GPa and is the only phase in reaction relationship with the melt in the garnet-lherzolite stability field. Comparison of the normative compositions and the CaO/Al2O3 values of the komatiites of Gorgona Island and of the Reliance Formation in Zimbabwe with the compositions of liquids along the solidus of model lherzolite in the CMAS system indicates that the former komatiites were generated at pressures close to 3.7 GPa and the latter at close to 4.5 GPa, assuming that the melt generation occurred in the presence of the complete garnet-lherzolite assemblage.
Coexistence of charge order and antiferromagnetism in (TMTTF)2SbF6: NMR study
NASA Astrophysics Data System (ADS)
Nomura, K.; Yamamoto, M.; Matsunaga, N.; Hirose, S.; Shimohara, N.; Satoh, T.; Isome, T.; Liu, Y.; Kawamoto, A.
2015-03-01
The electronic state of (TMTTF)2SbF6 was investigated by the 1H and 13C NMR measurements. The temperature dependence of T1-1 in 1H NMR shows a sharp peak associated with the antiferromagnetic transition at TAF=6 K. The temperature dependence of T1-1 is described by the power law T2.4 below TAF. This suggests the nodal gapless spin wave excitation in antiferromagnetic phase. In 13C NMR, two sharp peaks at high temperature region, associated with the inner and the outer carbon sites in TMTTF dimer, split into four peaks below 150 K. It indicates that the charge disproportionation occurs. The degree of charge disproportionation Δρ is estimated as (0.25±0.09)e from the chemical shift difference. This value of Δρ is consistent with that obtained from the infrared spectroscopy. In the antiferromagnetic state (AFI), the observed line shape is well fitted by eight Lorentzian peaks. This suggests that the charge order with the same degree still remains in the AF state. From the line assignment, the AF staggered spin amplitude is obtained as 0.70 μB and 0.24 μB at the charge rich and the poor sites, respectively. These values corresponding to almost 1 μB per dimer are quite different from 0.11 μB of another AF (AFII) state in (TMTTF)2Br with effective higher pressure. As a result, it is understood that the antiferromagnetic staggered spin order is stabilized on the CO state in the AFI phase of (TMTTF)2SbF6.
Taillefumier, Thibaud; Magnasco, Marcelo O
2013-04-16
Finding the first time a fluctuating quantity reaches a given boundary is a deceptively simple-looking problem of vast practical importance in physics, biology, chemistry, neuroscience, economics, and industrial engineering. Problems in which the bound to be traversed is itself a fluctuating function of time include widely studied problems in neural coding, such as neuronal integrators with irregular inputs and internal noise. We show that the probability p(t) that a Gauss-Markov process will first exceed the boundary at time t suffers a phase transition as a function of the roughness of the boundary, as measured by its Hölder exponent H. The critical value occurs when the roughness of the boundary equals the roughness of the process, so for diffusive processes the critical value is Hc = 1/2. For smoother boundaries, H > 1/2, the probability density is a continuous function of time. For rougher boundaries, H < 1/2, the probability is concentrated on a Cantor-like set of zero measure: the probability density becomes divergent, almost everywhere either zero or infinity. The critical point Hc = 1/2 corresponds to a widely studied case in the theory of neural coding, in which the external input integrated by a model neuron is a white-noise process, as in the case of uncorrelated but precisely balanced excitatory and inhibitory inputs. We argue that this transition corresponds to a sharp boundary between rate codes, in which the neural firing probability varies smoothly, and temporal codes, in which the neuron fires at sharply defined times regardless of the intensity of internal noise.
Infrared spectroscopic study of thermotropic phase behavior of newly developed synthetic biopolymers
NASA Astrophysics Data System (ADS)
Bista, Rajan K.; Bruch, Reinhard F.; Covington, Aaron M.
2011-10-01
The thermotropic phase behavior of a suite of newly developed self-forming synthetic biopolymers has been investigated by variable-temperature Fourier transform infrared (FT-IR) absorption spectroscopy. The temperature-induced infrared spectra of these artificial biopolymers (lipids) composed of 1,2-dimyristoyl- rac-glycerol-3-dodecaethylene glycol (GDM-12), 1,2-dioleoyl- rac-glycerol-3-dodecaethylene glycol (GDO-12) and 1,2-distearoyl- rac-glycerol-3-triicosaethylene glycol (GDS-23) in the spectral range of 4000-500 cm -1 have been acquired by using a thin layered FT-IR spectrometer in conjunction with a custom built temperature-controlled demountable liquid cell having a pathlength of ˜15 μm. The lipids under consideration have long hydrophobic acyl chains and contain various units of hydrophilic polyethylene glycol (PEG) headgroups. In contrast to conventional phospholipids, this new kind of lipids forms liposomes or nanovesicles spontaneously upon hydration, without requiring external activation energy. We have found that the thermal stability of the PEGylated lipids differs greatly depending upon the acyl chain-lengths as well as the nature of the associated bonds and the number of PEG headgroup units. In particular, GDM-12 (saturated 14 hydrocarbon chains with 12 units of PEG headgroup) exhibits one sharp order-disorder phase transition over a temperature range increasing from 3 °C to 5 °C. Similarly, GDS-23 (saturated 18 hydrocarbon chains with 23 units of PEG headgroup) displays comparatively broad order-disorder phase transition profiles between temperature 17 °C and 22 °C. In contrast, GDO-12 (monounsaturated 18 hydrocarbon chains with 12 units of PEG headgroup) does not reveal any order-disorder transition phenomena demonstrating a highly disordered behavior for the entire temperature range. To confirm these observations, differential scanning calorimetry (DSC) was applied to the samples and revealed good agreement with the infrared spectroscopy results. Finally, the investigation of thermal properties of lipids is extremely critical for numerous purposes and the result obtained in this work may find application in various studies including the development of PEGylated lipid based novel drug and substances delivery vehicles.
Applying state diagrams to food processing and development
NASA Technical Reports Server (NTRS)
Roos, Y.; Karel, M.
1991-01-01
The physical state of food components affects their properties during processing, storage, and consumption. Removal of water by evaporation or by freezing often results in formation of an amorphous state (Parks et al., 1928; Troy and Sharp, 1930; Kauzmann, 1948; Bushill et al., 1965; White and Cakebread, 1966; Slade and Levine, 1991). Amorphous foods are also produced from carbohydrate melts by rapid cooling after extrusion or in the manufacturing of hard sugar candies and coatings (Herrington and Branfield, 1984). Formation of the amorphous state and its relation to equilibrium conditions are shown in Fig. 1 [see text]. The most important change, characteristic of the amorphous state, is noticed at the glass transition temperature (Tg), which involves transition from a solid "glassy" to a liquid-like "rubbery" state. The main consequence of glass transition is an increase of molecular mobility and free volume above Tg, which may result in physical and physico-chemical deteriorative changes (White and Cakebread, 1966; Slade and Levine, 1991). We have conducted studies on phase transitions of amorphous food materials and related Tg to composition, viscosity, stickiness, collapse, recrystallization, and ice formation. We have also proposed that some diffusion-limited deteriorative reactions are controlled by the physical state in the vicinity of Tg (Roos and Karel, 1990, 1991a, b, c). The results are summarized in this article, with state diagrams based on experimental and calculated data to characterize the relevant water content, temperature, and time-dependent phenomena of amorphous food components.
Art into Science: Helicopter Fleet Replacement Squadron Operations in a Period of Transition
2012-04-27
aircraft allocations during the transition period.11 The “Marine Sierra Hotel Aviation Readiness Program” (M-SHARP), implemented by Training and...students, healthy aircraft were flown continuously for long periods, with returning crews hot-seating, or switching seats with the outbound crews with...and other aspects of logistics system across the Naval Aviation Enterprise to align and create reliable throughput so that the appropriate levels of
Lateral epitaxy of atomically sharp WSe 2/WS 2 heterojunctions on silicon dioxide substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jianyi; Zhou, Wu; Tang, Wei
Here, in recent years, 2-D transition-metal dichalcogenides (TMDCs) have received great interests because of the broader possibilities offered by their tunable band gaps, as opposed to gapless graphene which precludes application in digital electronics. TMDCs exhibit an indirect-to-direct band gap transition at the single atomic sheet state as well as optically accessible spin degree of freedom in valleytronics.
Lateral epitaxy of atomically sharp WSe 2/WS 2 heterojunctions on silicon dioxide substrates
Chen, Jianyi; Zhou, Wu; Tang, Wei; ...
2016-09-30
Here, in recent years, 2-D transition-metal dichalcogenides (TMDCs) have received great interests because of the broader possibilities offered by their tunable band gaps, as opposed to gapless graphene which precludes application in digital electronics. TMDCs exhibit an indirect-to-direct band gap transition at the single atomic sheet state as well as optically accessible spin degree of freedom in valleytronics.
Sharp Transition from Nonmetallic Au246 to Metallic Au279 with Nascent Surface Plasmon Resonance.
Higaki, Tatsuya; Zhou, Meng; Lambright, Kelly J; Kirschbaum, Kristin; Sfeir, Matthew Y; Jin, Rongchao
2018-05-02
The optical properties of metal nanoparticles have attracted wide interest. Recent progress in controlling nanoparticles with atomic precision (often called nanoclusters) provide new opportunities for investigating many fundamental questions, such as the transition from excitonic to plasmonic state, which is a central question in metal nanoparticle research because it provides insights into the origin of surface plasmon resonance (SPR) as well as the formation of metallic bond. However, this question still remains elusive because of the extreme difficulty in preparing atomically precise nanoparticles larger than 2 nm. Here we report the synthesis and optical properties of an atomically precise Au 279 (SR) 84 nanocluster. Femtosecond transient absorption spectroscopic analysis reveals that the Au 279 nanocluster shows a laser power dependence in its excited state lifetime, indicating metallic state of the particle, in contrast with the nonmetallic electronic structure of the Au 246 (SR) 80 nanocluster. Steady-state absorption spectra reveal that the nascent plasmon band of Au 279 at 506 nm shows no peak shift even down to 60 K, consistent with plasmon behavior. The sharp transition from nonmetallic Au 246 to metallic Au 279 is surprising and will stimulate future theoretical work on the transition and many other relevant issues.
The shaping of human diversity: filters, boundaries and transitions
Mirazón Lahr, Marta
2016-01-01
The evolution of modern humans was a complex process, involving major changes in levels of diversity through time. The fossils and stone tools that record the spatial distribution of our species in the past form the backbone of our evolutionary history, and one that allows us to explore the different processes—cultural and biological—that acted to shape the evolution of different populations in the face of major climate change. Those processes created a complex palimpsest of similarities and differences, with outcomes that were at times accelerated by sharp demographic and geographical fluctuations. The result is that the population ancestral to all modern humans did not look or behave like people alive today. This has generated questions regarding the evolution of human universal characters, as well as the nature and timing of major evolutionary events in the history of Homo sapiens. The paucity of African fossils remains a serious stumbling block for exploring some of these issues. However, fossil and archaeological discoveries increasingly clarify important aspects of our past, while breakthroughs from genomics and palaeogenomics have revealed aspects of the demography of Late Quaternary Eurasian hominin groups and their interactions, as well as those between foragers and farmers. This paper explores the nature and timing of key moments in the evolution of human diversity, moments in which population collapse followed by differential expansion of groups set the conditions for transitional periods. Five transitions are identified (i) at the origins of the species, 240–200 ka; (ii) at the time of the first major expansions, 130–100 ka; (iii) during a period of dispersals, 70–50 ka; (iv) across a phase of local/regional structuring of diversity, 45–25 ka; and (v) during a phase of significant extinction of hunter–gatherer diversity and expansion of particular groups, such as farmers and later societies (the Holocene Filter), 15–0 ka. This article is part of the themed issue ‘Major transitions in human evolution’. PMID:27298471
Analysis of Windward Side Hypersonic Boundary Layer Transition on Blunted Cones at Angle of Attack
2017-01-09
AIAA-95-2294 , 1995. 6Wadhams, T. P., MacLean, M. G., Holden, M. S., and Mundy, E., “ Pre -Flight Ground Testing of the Full-Scale FRESH FX-1 at...correlated with PSE/LST N-Factors. 15. SUBJECT TERMS boundary layer transition, hypersonic, ground test 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...movement of the windward transition front on a sharp and 6% blunt cones, but upstream movement for a 21% blunt cone at M = 11 and 13. Tests of the HIFiRE
Existence and non-existence of transition fronts in mixed ignition-monostable media
NASA Astrophysics Data System (ADS)
Graham, Cole; Shean Lim, Tau; Ma, Andrew; Weber, David
2018-02-01
We study transition fronts for one-dimensional reaction-diffusion equations with compactly-perturbed ignition-monostable reactions. We establish an almost sharp condition on reactions which characterizes the existence and non-existence of fronts. In particular, we prove that a strong inhomogeneity in the reaction prevents formation of transition fronts, while a weak inhomogeneity gives rise to a front. Our work extends the results and methods introduced in Nolen et al 2012 (Arch. Ration. Mech. Anal. 203 217-46), which studied the same question in inhomogeneous KPP media.
Effects of cone surface waviness and freestream noise on transition in supersonic flow
NASA Technical Reports Server (NTRS)
Morrisette, E. L.; Creel, T. R., Jr.; Chen, F.-J.
1986-01-01
A comparison of transition on wavy-wall and smooth-wall cones in a Mach 3.5 wind tunnel is made under conditions of either low freestream noise (quiet flow) or high freestream noise (noisy flow). The noisy flow compares to that found in conventional wind tunnels while the quiet flow gives transitional Reynolds numbers on smooth sharp cones comparable to those found in flight. The waves were found to have a much smaller effect on transition than similar sized trip wires. A satisfatory correlating parameter for the effect of waves on transition was simply the wave height-to-length ratio. A given value of this ratio was found to cause the same percentage change in transition location in quiet and noisy flows.
ERIC Educational Resources Information Center
Boulding, Kenneth E.
The international system exhibits very sharp phase boundaries, the most striking of which is the boundary between war and peace. A phase boundary for water would be the difference between water and ice, influenced by pressure and temperature. Similarly the phase boundary between war and peace is influenced by national strength and stress. Although…
Some anomalies between wind tunnel and flight transition results
NASA Technical Reports Server (NTRS)
Harvey, W. D.; Bobbitt, P. J.
1981-01-01
A review of environmental disturbance influence and boundary layer transition measurements on a large collection of reference sharp cone tests in wind tunnels and of recent transonic-supersonic cone flight results have previously demonstrated the dominance of free-stream disturbance level on the transition process from the beginning to end. Variation of the ratio of transition Reynolds number at onset-to-end with Mach number has been shown to be consistently different between flight and wind tunnels. Previous correlations of the end of transition with disturbance level give good results for flight and large number of tunnels, however, anomalies occur for similar correlation based on transition onset. Present cone results with a tunnel sonic throat reduced the disturbance level by an order of magnitude with transition values comparable to flight.
Transition between 'base' and 'tip' carbon nanofiber growth modes
NASA Astrophysics Data System (ADS)
Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Guillorn, Michael A.; Simpson, Michael L.
2002-04-01
Carbon nanofibers (CNFs) have been synthesized by catalytically controlled dc glow discharge plasma-enhanced chemical vapor deposition (PECVD). Both base-type and tip-type nanofibers have been produced on identical substrates. We have observed a sharp transition between these two growth modes by controlling the kinetics of the growth process without changing the substrate and catalyst materials. This transition is brought about by changing the parameters used in the deposition process such as the flow ratio of the carbonaceous and etchant gasses and others. This study of the initial growth stages as a function of time for both regimes provides a basis for a model of the growth mode transition.
Pressure and magnetic field effects on the valence transition of EuRh2Si2
NASA Astrophysics Data System (ADS)
Mitsuda, Akihiro; Kishaba, Eigo; Fujimoto, Takumi; Oyama, Kohei; Wada, Hirofumi; Mizumaki, Masaichiro; Kawamura, Naomi; Ishimatsu, Naoki
2018-05-01
We have measured the X-ray absorption spectra (XAS), electrical resistivity and magnetic susceptibility of EuRh2Si2, which undergoes a valence transition under high pressures. A sharp decrease in the Eu valence determined from the XAS was observed at around 70 K in the temperature dependence at P = 1.2-1.9 GPa. In the temperature dependence of electrical resistivity and magnetic susceptibility, we observed jumps associated with the temperature-induced valence transition under high pressures. The magnetoresistance detected a field-induced valence transition. The results are discussed from the thermodynamic point of view.
Influence of free-stream disturbances on boundary-layer transition
NASA Technical Reports Server (NTRS)
Harvey, W. D.
1978-01-01
Considerable experimental evidence exists which shows that free stream disturbances (the ratio of root-mean-square pressure fluctuations to mean values) in conventional wind tunnels increase with increasing Mach number at low supersonic to moderate hypersonic speeds. In addition to local conditions, the free stream disturbance level influences transition behavior on simple test models. Based on this observation, existing noise transition data obtained in the same test facility were correlated for a large number of reference sharp cones and flat plates and are shown to collapse along a single curve. This result is a significant improvement over previous attempts to correlate noise transition data.
NASA Astrophysics Data System (ADS)
Goad, Pamela Joy
The fusion of musical voices is an important aspect of musical blend, or the mixing of individual sounds. Yet, little research has been done to explicitly determine the factors involved in fusion. In this study, the similarity of timbre and modulation were examined for their contribution to the fusion of sounds. It is hypothesized that similar timbres will fuse better than dissimilar timbres, and, voices with the same kind of modulation will fuse better than voices of different modulations. A perceptually-based measure, known as sharpness was investigated as a measure of timbre. The advantages of using sharpness are that it is based on hearing sensitivities and masking phenomena of inner ear processing. Five musical instrument families were digitally recorded in performances across a typical playing range at two extreme dynamic levels. Analyses reveal that sharpness is capable of uncovering subtle changes in timbre including those found in musical dynamics, instrument design, and performer-specific variations. While these analyses alone are insufficient to address fusion, preliminary calculations of timbral combinations indicate that sharpness has the potential to predict the fusion of sounds used in musical composition. Three experiments investigated the effects of modulation on the fusion of a harmonic major sixth interval. In the first experiment using frequency modulation, stimuli varied in deviation about a mean fundamental frequency and relative modulation phase between the two tones. Results showed smaller frequency deviations promoted fusion and relative phase differences had a minimal effect. In a second experiment using amplitude modulation, stimuli varied in deviation about a mean amplitude level and relative phase of modulation. Results showed smaller amplitude deviations promoted better fusion, but unlike frequency modulation, relative phase differences were also important. In a third experiment, frequency modulation, amplitude modulation and mixed modulation were arranged in all possible voicings. Results showed frequency modulation in the lower voice and less variance in amplitude envelopes contributed to an increase in fusion. The theory that similar modulations would promote better fusion was only marginally supported. For these experiments, results revealed differences depending on modulation type and that a lesser amount of modulation fosters greater fusion.
The Formation and Erosion History of Mt. Sharp
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Dapremont, Angela M.
2014-01-01
The Curiosity rover is exploring 155 km diameter Gale crater and Mt. Sharp, Gale's 5 km high central mound (Fig. 1). This study addresses the formation and erosion history of Mt. Sharp. Gale lies on the topographic dichotomy between the southern highlands and the northern plains - a drop of over 2 km [1,2]. Altitude differences between the north and south rim reflect this regional slope, as do altitude differences between the deep annulus north of Mt. Sharp and the southern crater floor. Orbiter and rover images demonstrate that most exposed areas on Mt. Sharp consist of thin, sub-parallel units interpreted as sedimentary layers [3]. Gale is typical of the 50 large martian craters that have been totally or partially filled with such layers [4,5]. In many craters these sediments have been deeply eroded. Central Peak and Peak Ring: The highest point on Mt. Sharp, near the crater's center, is interpreted as a central peak [6]. The peak has a massive lower portion and a thin, smooth capping deposit (Fig. 2). Gale's size is transitional between martian craters with single central peaks and craters with peak rings approximately half the crater's diameter [2,6]. The boundaries of Mt. Sharp, as well as an arc of hills to the southeast of the mountain, closely match a circle approximately 80 km in diameter (Fig. 3). This morphology suggests that the Gale impact may have formed both a central peak and a partial peak ring, which is covered by the sediments of Mt. Sharp in the north and possibly exposed in the arc of eroded hills in the southeast quadrant (Figs. 3,4).
Moroz, N A; Olvera, A; Willis, G M; Poudeu, P F P
2015-06-07
The use of template nanostructures for the creation of photovoltaic and thermoelectric semiconductors is becoming a quickly expanding synthesis strategy. In this work we report a simple two-step process enabling the formation of ternary CuAgSe nanoplatelets with a great degree of control over the composition and shape. Starting with hexagonal nanoplatelets of cubic Cu2-xSe, ternary CuAgSe nanoplatelets were generated through a rapid ion exchange reaction at 300 K using AgNO3 solution. The Cu2-xSe nanoplatelet template and the final CuAgSe nanoplatelets were analyzed by electron microscopy and X-ray diffraction (XRD). It was found that both the low temperature pseudotetragonal and the high temperature cubic forms of CuAgSe phase were created while maintaining the morphology of the Cu2-xSe nanoplatelet template. Thermal and electronic transport measurements of hot-pressed pellets of the synthesized CuAgSe nanoplatelets showed a drastic reduction in the thermal conductivity and a sharp transition from n-type (S = -45 μV K(-1)) to p-type (S = +200 μV K(-1)) semiconducting behavior upon heating above the structural transition from the low temperature orthorhombic to the high temperature super-ionic cubic phase. This simple reaction process utilizing a template nanostructure matrix represents an energy efficient, cost-efficient, and versatile strategy to create interesting materials with lower defect density and superior thermoelectric performance.
Wang, Qisi; Park, J T; Feng, Yu; Shen, Yao; Hao, Yiqing; Pan, Bingying; Lynn, J W; Ivanov, A; Chi, Songxue; Matsuda, M; Cao, Huibo; Birgeneau, R J; Efremov, D V; Zhao, Jun
2016-05-13
An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.
Mineralogy of Mudstone at Gale Crater, Mars: Evidence for Dynamic Lacustrine Environments
NASA Technical Reports Server (NTRS)
Rampe, E. B.; Ming, D. W.; Grotzinger, J. P.; Morris, R. V.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; Yen, A. S.; Chipera, S. J.; Morrison, S. M.;
2016-01-01
The Mars Science Laboratory Curiosity rover landed in Gale crater in August 2012 to assess the habitability of sedimentary deposits that show orbital evidence for diverse ancient aqueous environments. Gale crater contains a 5 km high mound of layered sedimentary rocks in its center, informally named Mount Sharp. The lowermost rocks of Mount Sharp contain minerals that are consistent with a dramatic climate change during Mars' early history. During the rover's traverse across the Gale crater plains to the base of Mount Sharp, Curiosity discovered sedimentary rocks consistent with a fluviolacustrine sequence. Curiosity studied ancient lacustrine deposits at Yellowknife Bay on the plains of Gale crater and continues to study ancient lacustrine deposits in the Murray formation, the lowermost unit of Mount Sharp. These investigations include drilling into the mudstone and delivering the sieved less than 150 micrometers fraction to the CheMin XRD/XRF instrument inside the rover. Rietveld refinement of XRD patterns measured by CheMin generates mineral abundances with a detection limit of 1-2 wt.% and refined unit-cell parameters of minerals present in abundances greater than approximately 5 wt.%. FULLPAT analyses of CheMin XRD patterns provide the abundance of X-ray amorphous materials and constrain the identity of these phases (e.g., opal-A vs. opal-CT). At the time of writing, CheMin has analyzed 14 samples, seven of which were drilled from lacustrine deposits. The mineralogy from CheMin, combined with in-situ geochemical measurements and sedimentological observations, suggest an evolution in the lake waters through time, including changes in pH and salinity and transitions between oxic and anoxic conditions. In addition to a geochemically dynamic lake environment, the igneous minerals discovered in the lake sediments indicate changes in source region through time, with input from mafic and silicic igneous sources. The Murray formation is predominantly comprised of lacustrine mudstone and is 150-200 m thick, suggesting long history of lake environments in Gale crater. Curiosity has traversed through the lowermost approximately 30 m of the Murray formation, and each additional sample provides clues about the climate on early Mars.
NASA Astrophysics Data System (ADS)
Wang, Zhe; Lorenz, T.; Gorbunov, D. I.; Cong, P. T.; Kohama, Y.; Niesen, S.; Breunig, O.; Engelmayer, J.; Herman, A.; Wu, Jianda; Kindo, K.; Wosnitza, J.; Zherlitsyn, S.; Loidl, A.
2018-05-01
We report on magnetization, sound-velocity, and magnetocaloric-effect measurements of the Ising-like spin-1 /2 antiferromagnetic chain system BaCo2V2O8 as a function of temperature down to 1.3 K and an applied transverse magnetic field up to 60 T. While across the Néel temperature of TN˜5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v (B ) and a clear minimum of temperature T (B ) at B⊥c,3 D=21.4 T , indicating the suppression of the antiferromagnetic order. At higher fields, the T (B ) curve shows a broad minimum at B⊥c=40 T , accompanied by a broad minimum in the sound velocity and a saturationlike magnetization. These features signal a quantum phase transition, which is further characterized by the divergent behavior of the Grüneisen parameter ΓB∝(B -B⊥c)-1. By contrast, around the critical field, the Grüneisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheckelton, John P.; Plumb, Kemp W.; Trump, Benjamin A.
Insulating Nb3Cl8 is a layered chloride consisting of two-dimensional triangular layers of Seff = 1/2 Nb3Cl13 clusters at room temperature. Magnetic susceptibility measurement show a sharp, hysteretic drop to a temperature independent value below T = 90 K. Specific heat measurements show that the transition is first order, with ΔS ≈ 5 J K-1 mol-1 f.u.-1, and a low temperature T-linear contribution originating from defect spins. Neutron and X-ray diffraction show a lowering of symmetry from trigonal P[3 with combining macron]m1 to monoclinic C2/m symmetry, with a change in layer stacking from –AB–AB– to –AB'–BC'–CA'– and no observed magnetic order.more » This lowering of symmetry and rearrangement of successive layers evades geometric magnetic frustration to form a singlet ground state. It is the lowest temperature at which a change in stacking sequence is known to occur in a van der Waals solid, occurs in the absence of orbital degeneracies, and suggests that designer 2-D heterostructures may be able to undergo similar phase transitions.« less
Isolation of Estrogen Regulated Genes from MCF-7 Human Mammary Cancer Cells
1990-07-13
Syrian hamster BHK cells. The expression of approximately five hundred clones increased at various points in Gl transit (Hirschhom er d., 1984). No...hyperplasia of ductal epithelium of the mammary gland (Lyons etal., 1958). Biochemical changes in uterine wet weight, protein content, and nucleic... transition from a resting to a growing state (Kaufman and Sharp, 1983). Similarly post- transcriptional processing appears to be important in the ceU
Physical metallurgy of metastable Bcc lanthanide-magnesium alloys for R = La, Gd, and Dy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herchenroeder, J.W.; Manfrinetti, P.; Gschneidner, K.A. Jr.
1989-09-01
Bcc La-Mg, Gd-Mg, and Dy-Mg alloys have been prepared by an ice water/acetone quench from liquid melts. Single-phase alloys could be retained in a window around the eutectoid composition: 13 to 22 at. pct Mg, 23.6 to 29 at. pct Mg, and 27 to 29 at. pct Mg for La, Gd, and Dy alloys, respectively. At the center of the windows, x-ray diffraction peaks are extremely sharp as in equilibrium bcc structures; however, as alloy composition is moved away from the eutectoid, line broadening is observed. Reversion of the bcc phase to the equilibrium microstructure for R-Mg alloys (R =more » La, Gd, or Dy) has been characterized by differential thermal analysis (DTA) or differential scanning calorimetry (DSC) and isothermal annealing. La-Mg alloys revert directly to {alpha}La (dhcp) + LaMg at about 350{degrees}C when heated at 10{degrees}C/min. In contrast, the Gd and Dy alloys revert by a two-step process: first, a transition to an intermediate distorted hcp phase between 300{degrees}C and 400{degrees}C, and, second, the relaxation of this phase to {alpha}R (hcp) + RMg at about 490{degrees}C when heated at 10{degrees}C/min. Isothermal annealing and high temperature x-ray diffraction confirm the nature of these reactions.« less
Processing and characterization of Zr-based metallic glass by laser direct deposition
NASA Astrophysics Data System (ADS)
Bae, Heehun
Bulk Metallic Glass has become famous for its exceptional mechanical and corrosion properties. Especially, Zirconium has been the prominent constituent in Bulk Metallic Glass due to its superior glass forming ability, the ability to form amorphous phase with low cooling rate, thereby giving advantages in structural applications. In this study, Zirconium powder was alloyed with Aluminum, Nickel and Copper powder at an atomic ratio of 65:10:10:15, respectively. Using the ball milling process to mix the powders, Zr65Al10Ni 10Cu15 amorphous structure was manufactured by laser direct deposition. Laser power and laser scanning speed were optimized to increase the fraction of amorphous phase. X-ray Diffraction confirmed the existence of both amorphous and crystalline phase by having a wide halo peak and sharp intense peak in the spectrum. Differential Scanning Calorimetry proved the presence of amorphous phase and glass transition was observed to be around 655 K. Scanning electron microscopy showed the microstructure of the deposited sample to have repetitive amorphous and crystalline phase as XRD examined. Crystalline phase resulted from the laser reheating and remelting process due to subsequent laser scan. Laser direct deposited amorphous/crystalline composite showed Vickers Hardness of 670 Hv and exhibited improved corrosion resistance in comparison to fully-crystallized sample. The compression test showed that, due to the existence of crystalline phase, fracture strain of Zr65Al10Ni10Cu 15 amorphous composites was enhanced from less than 2% to as high as 5.7%, compared with fully amorphous metallic glass.
NASA Technical Reports Server (NTRS)
Johnson, Charles B.; Stainback, P. Calvin; Wicker, Kathleen C.; Boney, Lillian R.
1972-01-01
A flight experiment, designated Reentry F, was conducted to measure heat-transfer rates for laminar, transitional, and turbulent boundary layers on a 5 deg half-angle cone 3.962 m (13 ft) long with a preflight nose radius of 2.54 mm (0.10 in.). Data were obtained over an altitude range from 36.58 to 18.29 km (120 000 to 60 000 ft) at a flight velocity of about 6.096 km/sec (20 000 ft/sec). The nominal values of the free-stream total enthalpy, sharp-cone Mach number, and the wall-to-total enthalpy ratio were 18 MJ/kg (8000 Btu/lb), 15, and 0.03, respectively. Calculated boundary-layer edge conditions that account for effects of the entropy layer and corresponding local transition Reynolds numbers are reported in the present paper. Fully developed turbulent flow occurred with essentially constant boundary-layer edge conditions near the sharp-cone values. Transition data were obtained with local edge Mach numbers ranging from about 5.55 to 15. Transition Reynolds numbers, based on local condition, were as high as 6.6 x 10(exp 7) with an edge Mach number of about 14.4 at an altitude of 24.38 km (80 000 ft). The transition could be correlated with previous flight data taken over a Mach number range from 3 to 12 in terms of parameters including the effects of local unit Reynolds number, boundary-layer wall-to-edge enthalpy ratio, and local Mach number.
Crime and punishment: the economic burden of impunity
NASA Astrophysics Data System (ADS)
Gordon, M. B.; Iglesias, J. R.; Semeshenko, V.; Nadal, J. P.
2009-03-01
Crime is an economically relevant activity. It may represent a mechanism of wealth distribution but also a social and economic burden because of the interference with regular legal activities and the cost of the law enforcement system. Sometimes it may be less costly for the society to allow for some level of criminality. However, a drawback of such a policy is that it may lead to a high increase of criminal activity, that may become hard to reduce later on. Here we investigate the level of law enforcement required to keep crime within acceptable limits. A sharp phase transition is observed as a function of the probability of punishment. We also analyze other consequences of criminality as the growth of the economy, the inequality in the wealth distribution (the Gini coefficient) and other relevant quantities under different scenarios of criminal activity and probabilities of apprehension.
The Eclogite-Garnetite transformation in the MORB + H 2O system
NASA Astrophysics Data System (ADS)
Okamoto, Kazuaki; Maruyama, Shigenori
2004-08-01
To decipher phase relations of oceanic crust in the coldest slab at the mantle transition zone, multi-anvil experiments were conducted in the MORB+H 2O system at pressures of 10-19 GPa, and temperatures of 700-1500 °C. Garnet and stishovite were recognized in all run charges. Above 15 GPa, garnet drastically increases NaSi (Na 2MSi 5O 12) component (M = Ca, Mg, Fe 2+), jadeite occurs instead of omphacite. Na-, K-hollandite containing 7 mol% NaAlSi 3O 8 and Ca-perovskite with 60 mol% CaTiO 3, were observed at P>17 GPa. With decomposition of omphacite and increase of modal ratio of garnet, there is a sharp increase of density at 440 km. The density increase due to appearance of Ca-perovskite at 570 km, is estimated approximately 100 km shallower than that of previous estimation.
Critical Time Crystals in Dipolar Systems
NASA Astrophysics Data System (ADS)
Ho, Wen Wei; Choi, Soonwon; Lukin, Mikhail D.; Abanin, Dmitry A.
2017-07-01
We analyze the quantum dynamics of periodically driven, disordered systems in the presence of long-range interactions. Focusing on the stability of discrete time crystalline (DTC) order in such systems, we use a perturbative procedure to evaluate its lifetime. For 3D systems with dipolar interactions, we show that the corresponding decay is parametrically slow, implying that robust, long-lived DTC order can be obtained. We further predict a sharp crossover from the stable DTC regime into a regime where DTC order is lost, reminiscent of a phase transition. These results are in good agreement with the recent experiments utilizing a dense, dipolar spin ensemble in diamond [Nature (London) 543, 221 (2017), 10.1038/nature21426]. They demonstrate the existence of a novel, critical DTC regime that is stabilized not by many-body localization but rather by slow, critical dynamics. Our analysis shows that the DTC response can be used as a sensitive probe of nonequilibrium quantum matter.
NASA Astrophysics Data System (ADS)
Ochoa, D. A.; Levit, R.; Fancher, C. M.; Esteves, G.; Jones, J. L.; E García, J.
2017-05-01
Ordinary ferroelectrics exhibit a second order phase transition that is characterized by a sharp peak in the dielectric permittivity at a frequency-independent temperature. Furthermore, these materials show a low temperature dielectric relaxation that appears to be a common behavior of perovskite systems. Tetragonal lead zirconate titanate is used here as a model system in order to explore the origin of such an anomaly, since there is no consensus about the physical phenomenon involved in it. Crystallographic and domain structure studies are performed from temperature dependent synchrotron x-ray diffraction measurement. Results indicate that the dielectric relaxation cannot be associated with crystallographic or domain configuration changes. The relaxation process is then parameterized by using the Vogel-Fulcher-Tammann phenomenological equation. Results allow us to hypothesize that the observed phenomenon is due to changes in the dynamic behavior of the ferroelectric domains related to the fluctuation of the local polarization.
A simplified model for equilibrium and transient swelling of thermo-responsive gels.
Drozdov, A D; deClaville Christiansen, J
2017-11-01
A simplified model is developed for the elastic response of thermo-responsive gels subjected to swelling under an arbitrary deformation with finite strains. The constitutive equations involve five adjustable parameters that are determined by fitting observations in equilibrium water uptake tests and T-jump transient tests on thin gel disks. Two scenarios for water release under heating are revealed by means of numerical simulation. When the final temperature in a T-jump test is below the volume-phase transition temperature, deswelling is characterized by smooth distribution of water molecules and small tensile stresses. When the final temperature exceeds the critical temperature, a gel disk is split into three regions (central part with a high concentration of water molecules and two domains near the boundaries with low water content) separated by sharp interfaces, whose propagation is accompanied by development of large (comparable with the elastic modulus) tensile stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Physical property characterization of Fe-tube encapsulated and vacuum annealed bulk MgB 2
NASA Astrophysics Data System (ADS)
Awana, V. P. S.; Rawat, Rajeev; Gupta, Anurag; Isobe, M.; Singh, K. P.; Vajpayee, Arpita; Kishan, H.; Takayama-Muromachi, E.; Narlikar, A. V.
2006-08-01
We report the phase formation, and present a detailed study of magnetization and resistivity under magnetic field of MgB 2 polycrystalline bulk samples prepared by the Fe-tube encapsulated and vacuum (10 -5 Torr) annealed (750 ∘C) route. Zero-field-cooled magnetic susceptibility (χ) measurements exhibited a sharp transition to the superconducting state with a sizeable diamagnetic signal at 39 K (Tc). The measured magnetization loops of the samples, despite the presence of flux jumps, exhibited a stable current density (Jc) of around 2.4×10 5 A/cm 2 in up to 2 T (Tesla) field and at temperatures (T) up to 10 K. The upper critical field is estimated from resistivity measurements in various fields and shows a typical value of 8 T at 21 K. Further, χ measurements at an applied field of 0.1 T reveal a paramagnetic Meissner effect (PME) that is briefly discussed.
Conducting linear chains of sulphur inside carbon nanotubes
Fujimori, Toshihiko; Morelos-Gómez, Aarón; Zhu, Zhen; Muramatsu, Hiroyuki; Futamura, Ryusuke; Urita, Koki; Terrones, Mauricio; Hayashi, Takuya; Endo, Morinobu; Young Hong, Sang; Chul Choi, Young; Tománek, David; Kaneko, Katsumi
2013-01-01
Despite extensive research for more than 200 years, the experimental isolation of monatomic sulphur chains, which are believed to exhibit a conducting character, has eluded scientists. Here we report the synthesis of a previously unobserved composite material of elemental sulphur, consisting of monatomic chains stabilized in the constraining volume of a carbon nanotube. This one-dimensional phase is confirmed by high-resolution transmission electron microscopy and synchrotron X-ray diffraction. Interestingly, these one-dimensional sulphur chains exhibit long domain sizes of up to 160 nm and high thermal stability (~800 K). Synchrotron X-ray diffraction shows a sharp structural transition of the one-dimensional sulphur occurring at ~450–650 K. Our observations, and corresponding electronic structure and quantum transport calculations, indicate the conducting character of the one-dimensional sulphur chains under ambient pressure. This is in stark contrast to bulk sulphur that needs ultrahigh pressures exceeding ~90 GPa to become metallic. PMID:23851903
On the Mechanism of Boron Ignition
NASA Technical Reports Server (NTRS)
Keil, D. G.; Dreizin, E. L.; Felder, W.; Vicenzi, E. P.
1997-01-01
Boron filaments were electrically heated in air and argon/oxygen mixtures while their resistance, temperature, and radiation at the wavelengths of BO and BO2 bands were monitored. The filaments 'burned' in two distinct stages. Samples of the filaments were quenched at different times before and during the burning and analyzed using electron microscopy. The beginning of the first stage combustion characterized by a local resistance minimum, a sharp spike in boron oxide radiation emission, and a rapid rise in temperature, occurred at 1500 +/- 70 deg. C, independent of pre-heating history and oxygen content (540%) in the gas environment. The data suggest that a phase transition occurs in the filaments at this temperature that triggers stage one combustion. Significant amounts of oxygen were found inside quenched filaments. Large spherical voids formed in the boron filaments during their second stage combustion which is interpreted to indicate a crucial role for the gas dissolution processes in the combustion scenario.
Perpetual American vanilla option pricing under single regime change risk: an exhaustive study
NASA Astrophysics Data System (ADS)
Montero, Miquel
2009-07-01
Perpetual American options are financial instruments that can be readily exercised and do not mature. In this paper we study in detail the problem of pricing this kind of derivatives, for the most popular flavour, within a framework in which some of the properties—volatility and dividend policy—of the underlying stock can change at a random instant of time but in such a way that we can forecast their final values. Under this assumption we can model actual market conditions because most relevant facts usually entail sharp predictable consequences. The effect of this potential risk on perpetual American vanilla options is remarkable: the very equation that will determine the fair price depends on the solution to be found. Sound results are found under the optics both of finance and physics. In particular, a parallelism among the overall outcome of this problem and a phase transition is established.
NASA Astrophysics Data System (ADS)
Srivastava, P.; Chaudhary, S.; Maurya, V.; Saha, J.; Kaushik, S. D.; Siruguri, V.; Patnaik, S.
2018-05-01
Synthesis and extensive structural, pyroelectric, magnetic, dielectric and magneto-electric characterizations are reported for polycrystalline Co4Nb2O9 towards unraveling the multiferroic ground state. Magnetic measurements confirm that Co4Nb2O9 becomes an anti-ferromagnet at around 28 K. Associated with the magnetic phase transition, a sharp peak in pyroelectric current indicates the appearance of strong magneto-electric coupling below Neel temperature (TN) along with large coupling constant upto 17.8 μC/m2T. Using temperature oscillation technique, we establish Co4Nb2O9 to be a genuine multiferroic with spontaneous electric polarization in the anti-ferromagnetic state in the absence of magnetic field poling. This is in agreement with our low temperature neutron diffraction studies that show the magnetic structure of Co4Nb2O9 to be that of a non-collinear anti-ferromagnet with ferroelectric ground state.
Role of uncrosslinked chains in droplets dynamics on silicone elastomers.
Hourlier-Fargette, Aurélie; Antkowiak, Arnaud; Chateauminois, Antoine; Neukirch, Sébastien
2017-05-21
We report an unexpected behavior in wetting dynamics on soft silicone substrates: the dynamics of aqueous droplets deposited on vertical plates of such elastomers exhibits two successive speed regimes. This macroscopic observation is found to be closely related to microscopic phenomena occurring at the scale of the polymer network: we show that uncrosslinked chains found in most widely used commercial silicone elastomers are responsible for this surprising behavior. A direct visualization of the uncrosslinked oligomers collected by water droplets is performed, evidencing that a capillarity-induced phase separation occurs: uncrosslinked oligomers are extracted from the silicone elastomer network by the water-glycerol mixture droplet. The sharp speed change is shown to coincide with an abrupt transition in surface tension of the droplets, when a critical surface concentration in uncrosslinked oligomer chains is reached. We infer that a droplet shifts to a second regime with a faster speed when it is completely covered with a homogeneous oil film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Banasri; Bandyopadhyay, Pratul; Majumdar, Priyadarshi
We have studied quantum phase transition induced by a quench in different one-dimensional spin systems. Our analysis is based on the dynamical mechanism which envisages nonadiabaticity in the vicinity of the critical point. This causes spin fluctuation which leads to the random fluctuation of the Berry phase factor acquired by a spin state when the ground state of the system evolves in a closed path. The two-point correlation of this phase factor is associated with the probability of the formation of defects. In this framework, we have estimated the density of defects produced in several one-dimensional spin chains. At themore » critical region, the entanglement entropy of a block of L spins with the rest of the system is also estimated which is found to increase logarithmically with L. The dependence on the quench time puts a constraint on the block size L. It is also pointed out that the Lipkin-Meshkov-Glick model in point-splitting regularized form appears as a combination of the XXX model and Ising model with magnetic field in the negative z axis. This unveils the underlying conformal symmetry at criticality which is lost in the sharp point limit. Our analysis shows that the density of defects as well as the scaling behavior of the entanglement entropy follows a universal behavior in all these systems.« less
Mechanically - induced disorder in CaFe2As2: a 57Fe Mössbauer study
NASA Astrophysics Data System (ADS)
Ma, Xiaoming; Ran, Sheng; Canfield, Paul C.; Bud'Ko, Sergey L.
57 Fe Mössbauer spectroscopy was used to study an extremely pressure and strain sensitive compound, CaFe2As2, with different degrees of strain introduced by grinding and annealing. At the base temperature, in the antiferromagnetic/orthorhombic phase, compared to a sharp sextet Mössbauer spectrum of single crystal CaFe2As2, which is taken as an un-strained sample, an obviously broadened sextet and an extra doublet were observed for ground CaFe2As2 powders with different degrees of strain. The Mössbauer results suggest that the magnetic phase transition of CaFe2As2 can be inhomogeneously suppressed by the grinding induced strain to such an extent that the antiferromagnetic order in parts of the grains forming the powdered sample remain absent all the way down to 4.6 K. However, strain has almost no effect on the temperature dependent hyperfine magnetic field in the grains with magnetic order. The quadrupole shift in the magnetic phase approachs zero with increasing degrees of strain, indicating that the strain reduces the average lattice asymmetry at Fe atom position. Supported by US DOE under the Contract No. DE-AC02-07CH11358 and by the China Scholarship Council.
NASA Astrophysics Data System (ADS)
Haftbaradaran, H.; Maddahian, A.; Mossaiby, F.
2017-05-01
It is well known that phase separation could severely intensify mechanical degradation and expedite capacity fading in lithium-ion battery electrodes during electrochemical cycling. Experiments have frequently revealed that such degradation effects could be substantially mitigated via reducing the electrode feature size to the nanoscale. The purpose of this work is to present a fracture mechanics study of the phase separating planar electrodes. To this end, a phase field model is utilized to predict how phase separation affects evolution of the solute distribution and stress profile in a planar electrode. Behavior of the preexisting flaws in the electrode in response to the diffusion induced stresses is then examined via computing the time dependent stress intensity factor arising at the tip of flaws during both the insertion and extraction half-cycles. Further, adopting a sharp-interphase approximation of the system, a critical electrode thickness is derived below which the phase separating electrode becomes flaw tolerant. Numerical results of the phase field model are also compared against analytical predictions of the sharp-interphase model. The results are further discussed with reference to the available experiments in the literature. Finally, some of the limitations of the model are cautioned.
Liquid Chromatography in 1982.
ERIC Educational Resources Information Center
Freeman, David H.
1982-01-01
Reviews trends in liquid chromatography including apparatus, factors affecting efficient separation of a mixture (peak sharpness and speed), simplified problem-solving, adsorption, bonded phase chromatography, ion selectivity, and size exclusion. The current trend is to control chemical selectivity by the liquid phase. (Author/JN)
Beyond the Quantum Hall Effect: New Phases of 2D Electrons at High Magnetic Field
NASA Astrophysics Data System (ADS)
Eisenstein, James
2007-03-01
In this talk I will discuss recent experiments on high mobility single and double layer 2D electron systems in which collective phases lying outside the usual quantum Hall effect paradigm have been detected and studied. For example, in single layer 2D systems near half-filling of highly excited Landau levels new states characterized by a massive anisotropy in the electrical resistivity of the sample are observed at very low temperature. The anisotropy has been widely interpreted as the signature of a new class of correlated electron phases which incorporate a stripe-like charge density modulation. Orientational ordering of small striped domains at low temperatures accounts for the resistive anisotropy and is reminiscent of the isotropic-to-nematic phase transition in classical liquid crystals. Double layer 2D electron systems possess collective phases not present in single layer systems. In particular, when the total number of electrons in the bilayer equals the degeneracy of a single Landau level, an unusual phase appears at small layer separation. This phase possesses a novel broken symmetry, spontaneous interlayer phase coherence, which has a number of dramatic experimental signatures. The interlayer tunneling conductance develops a strong and very sharp resonance around zero bias resembling the dc Josephson effect. At the same time, both the longitudinal and Hall resistances of the sample vanish at low temperatures when currents are driven in opposite directions through the two layers. These, and other observations are broadly consistent with theories in which the broken symmetry phase can equivalently be described as a pseudospin ferromagnet or an (imperfect) excitonic superfluid. This work reflects a collaboration with M.P. Lilly, K.B. Cooper, I.B. Spielman, M. Kellogg, L.A. Tracy, L.N. Pfeiffer, and K.W. West.
NASA Astrophysics Data System (ADS)
Fábián, G.; Makk, P.; Madsen, M. H.; Nygârd, J.; Schönenberger, C.; Baumgartner, A.
2016-11-01
We present magnetoresistance (MR) experiments on an InAs nanowire quantum dot device with two ferromagnetic sidegates (FSGs) in a split-gate geometry. The wire segment can be electrically tuned to a single dot or to a double dot regime using the FSGs and a backgate. In both regimes we find a strong MR and a sharp MR switching of up to 25% at the field at which the magnetizations of the FSGs are inverted by the external field. The sign and amplitude of the MR and the MR switching can both be tuned electrically by the FSGs. In a double dot regime close to pinch-off we find two sharp transitions in the conductance, reminiscent of tunneling MR (TMR) between two ferromagnetic contacts, with one transition near zero and one at the FSG switching fields. These surprisingly rich characteristics we explain in several simple resonant tunneling models. For example, the TMR-like MR can be understood as a stray-field controlled transitions between singlet and triplet double dot states. Such local magnetic fields are the key elements in various proposals to engineer novel states of matter and may be used for testing electron spin based Bell inequalities.
NASA Astrophysics Data System (ADS)
Sun, Xingdong; Guo, Yue; Li, Lijia; Liu, Zeyang; Wu, Di; Shi, Dong; Zhao, Hongwei; Zhang, Shizhong
2018-03-01
Based on different damage forms of various contact forms to bone, the mechanical response and mechanism were investigated by nanoindentation under different sharpness contact forms. For the purpose of simulating the different sharpness contact forms, two kinds of indenters were used in experiments and finite elements simulations. Through nanoindentation experiments, it was concluded that the residual depth of sharp indenter was bigger than that of blunt indenter with small penetration depth. However, the contrary law was obtained with bigger penetration depth. There was a turning point of transition from blunt tendency to sharp tendency. By calculation, it was concluded that the sharper the indenter was, the bigger the proportion of plastic energy in total energy was. Basically, results of finite elements simulation could correspond with the experimental conclusions. By the observation of FE-SEM, the surface of cortical bone compressed was more seriously directly below the blunt indenter than the lateral face. For the berkovich indenter, the surface of indentation compressed was less directly below the indenter, but seriously on three lateral faces. This research may provide some new references to the studies of bone fracture mechanism in different load patterns in the initial press-in stage and offer new explanation for bone trauma diagnosis in clinical treatment and criminal investigation.
Hippocampal Sharp Wave Bursts Coincide with Neocortical "Up-State" Transitions
ERIC Educational Resources Information Center
Battaglia, Francesco P.; Sutherland, Gary R.; McNaughton, Bruce L.
2004-01-01
The sleeping neocortex shows nested oscillatory activity in different frequency ranges, characterized by fluctuations between "up-states" and "down-states." High-density neuronal ensemble recordings in rats now reveal the interaction between synchronized activity in the hippocampus and neocortex: Electroencephalographic sharp…
NASA Astrophysics Data System (ADS)
Milton, Graeme W.; Camar-Eddine, Mohamed
2018-05-01
For a composite containing one isotropic elastic material, with positive Lame moduli, and void, with the elastic material occupying a prescribed volume fraction f, and with the composite being subject to an average stress, σ0 , Gibiansky, Cherkaev, and Allaire provided a sharp lower bound Wf(σ0) on the minimum compliance energy σ0 :ɛ0 , in which ɛ0 is the average strain. Here we show these bounds also provide sharp bounds on the possible (σ0 ,ɛ0) -pairs that can coexist in such composites, and thus solve the weak G-closure problem for 3d-printed materials. The materials we use to achieve the extremal (σ0 ,ɛ0) -pairs are denoted as near optimal pentamodes. We also consider two-phase composites containing this isotropic elasticity material and a rigid phase with the elastic material occupying a prescribed volume fraction f, and with the composite being subject to an average strain, ɛ0. For such composites, Allaire and Kohn provided a sharp lower bound W˜f(ɛ0) on the minimum elastic energy σ0 :ɛ0 . We show that these bounds also provide sharp bounds on the possible (σ0 ,ɛ0) -pairs that can coexist in such composites of the elastic and rigid phases, and thus solve the weak G-closure problem in this case too. The materials we use to achieve these extremal (σ0 ,ɛ0) -pairs are denoted as near optimal unimodes.
Spatio-temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity.
Unal, Gunes; Crump, Michael G; Viney, Tim J; Éltes, Tímea; Katona, Linda; Klausberger, Thomas; Somogyi, Peter
2018-03-03
Medial septal GABAergic neurons of the basal forebrain innervate the hippocampus and related cortical areas, contributing to the coordination of network activity, such as theta oscillations and sharp wave-ripple events, via a preferential innervation of GABAergic interneurons. Individual medial septal neurons display diverse activity patterns, which may be related to their termination in different cortical areas and/or to the different types of innervated interneurons. To test these hypotheses, we extracellularly recorded and juxtacellularly labeled single medial septal neurons in anesthetized rats in vivo during hippocampal theta and ripple oscillations, traced their axons to distant cortical target areas, and analyzed their postsynaptic interneurons. Medial septal GABAergic neurons exhibiting different hippocampal theta phase preferences and/or sharp wave-ripple related activity terminated in restricted hippocampal regions, and selectively targeted a limited number of interneuron types, as established on the basis of molecular markers. We demonstrate the preferential innervation of bistratified cells in CA1 and of basket cells in CA3 by individual axons. One group of septal neurons was suppressed during sharp wave-ripples, maintained their firing rate across theta and non-theta network states and mainly fired along the descending phase of CA1 theta oscillations. In contrast, neurons that were active during sharp wave-ripples increased their firing significantly during "theta" compared to "non-theta" states, with most firing during the ascending phase of theta oscillations. These results demonstrate that specialized septal GABAergic neurons contribute to the coordination of network activity through parallel, target area- and cell type-selective projections to the hippocampus.
Topological transitions in continuously deformed photonic crystals
NASA Astrophysics Data System (ADS)
Zhu, Xuan; Wang, Hai-Xiao; Xu, Changqing; Lai, Yun; Jiang, Jian-Hua; John, Sajeev
2018-02-01
We demonstrate that multiple topological transitions can occur, with high sensitivity, by continuous change of the geometry of a simple two-dimensional dielectric-frame photonic crystal consisting of circular air holes. By changing the radii of the holes and/or the distance between them, multiple transitions between normal and topological photonic band gaps (PBGs) can appear. The time-reversal symmetric topological PBGs resemble the quantum spin Hall insulator of electrons and have two counterpropagating edge states. We search for optimal topological transitions, i.e., sharp transitions sensitive to the geometry, and optimal topological PBGs, i.e., large PBGs with a clean spectrum of edge states. Such optimizations reveal that dielectric-frame photonic crystals are promising for optical sensors and unidirectional waveguides.
A Hele-Shaw-Cahn-Hilliard Model for Incompressible Two-Phase Flows with Different Densities
NASA Astrophysics Data System (ADS)
Dedè, Luca; Garcke, Harald; Lam, Kei Fong
2017-07-01
Topology changes in multi-phase fluid flows are difficult to model within a traditional sharp interface theory. Diffuse interface models turn out to be an attractive alternative to model two-phase flows. Based on a Cahn-Hilliard-Navier-Stokes model introduced by Abels et al. (Math Models Methods Appl Sci 22(3):1150013, 2012), which uses a volume-averaged velocity, we derive a diffuse interface model in a Hele-Shaw geometry, which in the case of non-matched densities, simplifies an earlier model of Lee et al. (Phys Fluids 14(2):514-545, 2002). We recover the classical Hele-Shaw model as a sharp interface limit of the diffuse interface model. Furthermore, we show the existence of weak solutions and present several numerical computations including situations with rising bubbles and fingering instabilities.
Simulation of dispersion in layered coastal aquifer systems
Reilly, T.E.
1990-01-01
A density-dependent solute-transport formulation is used to examine ground-water flow in layered coastal aquifers. The numerical experiments indicate that although the transition zone may be thought of as an impermeable 'sharp' interface with freshwater flow parallel to the transition zone in homogeneous aquifers, this is not the case for layered systems. Freshwater can discharge through the transition zone in the confining units. Further, for the best simulation of layered coastal aquifer systems, either a flow-direction-dependent dispersion formulation is required, or the dispersivities must change spatially to reflect the tight thin confining unit. ?? 1990.
NASA Astrophysics Data System (ADS)
Liu, D. R.; Mangelinck-Noël, N.; Gandin, Ch-A.; Zimmermann, G.; Sturz, L.; Nguyen Thi, H.; Billia, B.
2016-03-01
A two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement.
Semiconductor-like behavior in superconducting Nb/Al films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greco, M.; Menichetti, E.; Rinaudo, G.
1999-04-20
The authors report here the experimental evidence of semiconductor-superconductor transitions in relatively thick Nb/Al structures. The temperature dependence of resistivity {rho}(T) shows a sharp superconducting transition followed by either a normal metallic behavior in low-resistivity samples, or a semiconducting behavior when the sample resistivity at 10 K is above 100 {mu}{Omega} cm. The authors discuss here the fabrication conditions and the electron localization regime associated with the measured {rho}(T) dependence.
NASA Astrophysics Data System (ADS)
Hofferth, Jerrod; Saric, William
2012-11-01
Hotwire measurements of second-mode instability waves and the early stages of nonlinear interaction are conducted on a sharp-tipped, 5°-half-angle flared cone at zero angle of attack in a low-disturbance Mach 6 wind tunnel at Re = 10 ×106 m-1. Profiles of mean and fluctuating mass flux are acquired at several axial stations along the cone with a bandwidth of over 300 kHz. Frequencies and relative amplitude growth of second-mode instability waves are characterized and compared with nonlinear parabolized stability (NPSE) computations. Additionally, an azimuthal probe-traversing mechanism is used to investigate the character of the nonlinear stages of transition occurring near the base of the cone. Recent Direct Numerical Simulations (DNS) of a sharp cone at Mach 6 have shown that a fundamental resonance (or Klebanoff-type) breakdown mechanism can arise in the late stages of transition, wherein a pair of oblique waves nonlinearly interacts with the dominant two-dimensional wave to create an azimuthal modulation in the form of Λ-vortex structures and streamwise streaks. The azimuthal measurements will identify periodicity qualitatively consistent with these computations and with ``hot streaks'' observed in temperature sensitive paints at Purdue. AFOSR/NASA National Center for Hypersonic Laminar-Turbulent Transition Research, Grant FA9550-09-1-0341.
NASA Astrophysics Data System (ADS)
Yu, Hongyi; Liu, Gui-Bin; Yao, Wang
2018-07-01
We investigate the optical properties of spin-triplet interlayer excitons in heterobilayer transition metal dichalcogenides in comparison with the spin-singlet ones. Surprisingly, the optical transition dipole of the spin-triplet exciton is found to be in the same order of magnitude to that of the spin-singlet exciton, in sharp contrast to the monolayer excitons where the spin-triplet species is considered as dark compared to the singlet. Unlike the monolayer excitons whose spin-conserved (spin-flip) transition dipole can only couple to light of in-plane (out-of-plane) polarisation, such restriction is removed for the interlayer excitons due to the breaking of the out-of-plane mirror symmetry. We find that as the interlayer atomic registry changes, the optical transition dipole of interlayer exciton crosses between in-plane ones of opposite circular polarizations and the out-of-plane one for both the spin-triplet and spin-singlet species. As a result, excitons of both species have non-negligible coupling into photon modes of both in-plane and out-of-plane propagations, another sharp difference from the monolayers where the exciton couples predominantly into the out-of-plane propagation channel. At given atomic registry, the spin-triplet and spin-singlet excitons have distinct valley polarisation selection rules, allowing the selective optical addressing of both the valley configuration and the spin-singlet/triplet configuration of interlayer excitons.
Determination of Hund's coupling in 5 d oxides using resonant inelastic x-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Bo; Clancy, J. P.; Cook, A. M.
2017-06-01
We report resonant inelastic x-ray scattering (RIXS) measurements on ordered double-perovskite samples containing Re5+ and Ir5+ with 5d(2) and 5d(4) electronic configurations, respectively. In particular, the observedRIXS spectra of Ba2YReO6 and Sr2MIrO6 (M = Y, Gd) show sharp intra-t(2g) transitions, which can be quantitatively understood using a minimal "atomic" Hamiltonian incorporating spin-orbit coupling. and Hund's coupling J(H). Our analysis yields lambda = 0.38(2) eV with J(H) = 0.26(2) eV for Re5+ and lambda = 0.42(2) eV with J(H) = 0.25(4) eV for Ir5+. Our results provide sharp estimates for Hund's coupling in 5d oxides and suggest that it should bemore » treated on equal footing with spin-orbit interaction in multiorbital 5d transition-metal compounds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Tao; Qi, Zeming, E-mail: zmqi@ustc.edu.cn; Wang, Yuyin
2015-07-13
Metal-insulator transition (MIT) occurs due to the charge disproportionation and lattice distortions in rare-earth nickelates. Existing studies revealed that the MIT behavior of rare-earth nickelates is fairly sensitive to external stress/pressure, suggesting a viable route for MIT strain engineering. Unlike applying extrinsic strain, the MIT can also be modulated by through rare-earth cation mixing, which can be viewed as intrinsic quantum stress. We choose Nd{sub 1−X}Y{sub X}NiO{sub 3} (x = 0.3, 0.4) perovskites thin films as a prototype system to exhibit the tunable sharp MIT at near room temperature. By adjusting Y concentration, the transition temperature of the thin films can bemore » changed within the range of 340–360 K. X-ray diffraction, X-ray absorption fine structure (XAFS), and in situ infrared spectroscopy are employed to probe the structural and optical property variation affected by composition and temperature. The infrared transmission intensity decreases with temperature across the MIT, indicating a pronounced thermochromic effect. Meanwhile, the XAFS result exhibits that the crystal atomistic structure changes accompanying with the Y atoms incorporation and MIT phase transition. The heavily doped Y atoms result in the pre-edge peak descent and Ni-O bond elongation, suggesting an enhanced charge disproportionation effect and the weakening of hybridization between Ni-3d and O-2p orbits.« less
NASA Astrophysics Data System (ADS)
Garnero, E.; McNamara, A. K.; Shim, S. H. D.
2014-12-01
The term large low shear velocity province (LLSVP) represents large lowermost mantle regions of reduced shear velocities (Vs) relative to 1D reference models. There are two LLSVPs: one beneath the central Pacific Ocean, and one beneath the southern Atlantic Ocean and Africa. While LLSVP existence has been well known for several decades, more recently evidence from forward modeling has brought to light relatively sharp margins of the LLSVPs, i.e., the transition from low-to-"normal" Vs occurs over a short lateral distance (probably < ~100 km). This finding is further supported by the strongest lateral dVs gradients in tomography coinciding with locations of sharp LLSVP sides in high-resolution studies. Surface hotspot and large igneous province origination locations mostly map above the present day LLSVP edges. Combined with geochemical arguments that a deep mantle long-lived (possibly primordial) reservoir exists, and geodynamics experiments that demonstrate a dense basal reservoir would be swept by convection to reside beneath upwellings and plumes, a strong argument can be made for dense, chemically distinct material explaining LLSVPs. This presentation will present additional seismic information that needs to be considered for a self-consistent geodynamic and mineralogical framework. For example, there does not appear to be consistency between Vp and Vs reductions defining LLSVPs; however, this comparison is complicated by lowermost mantle Vp models exhibiting greater divergence from each other than Vs models. LLSVP forward modeling usually involves a trade-off between dVs within the LLSVP and LLSVP height/shape; thus continued mapping of heterogeneity within LLSVP is critical. ULVZs might relate to LLSVP chemistry, temperature, and evolution, and thus will be discussed. The chemistry that can explain large and old thermochemical piles is as of yet unconstrained; other mineralogical considerations include understanding the possible role of the post-perovskite phase transition within and outside LLSVPs (which may affect Vs differently from Vp), and the evolution of pile chemistry over time, since geodynamics work demonstrates how mantle material (including deeply subducted MORB) can become downward entrained into piles.
Major Volatiles from MSL SAM Evolved Gas Analyses: Yellowknife Bay Through Lower Mount Sharp
NASA Technical Reports Server (NTRS)
McAdam, A. C.; Archer, P. D., Jr.; Sutter, B.; Franz, H. B.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Niles, P. B.; Stern, J. C.; Freissinet, C.;
2015-01-01
The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of <150 µm fines from five sites at Gale Crater. Three were in Yellowknife Bay: the Rocknest aeolian bedform ("RN") and drilled Sheepbed mudstone from sites John Klein ("JK") and Cumberland ("CB"). One was drilled from the Windjana ("WJ") site on a sandstone of the Kimberly formation investigated on route to Mount Sharp. Another was drilled from the Confidence Hills ("CH") site on a sandstone of the Murray Formation at the base of Mt. Sharp (Pahrump Hills). Outcrops are sedimentary rocks that are largely of fluvial or lacustrine origin, with minor aeolian deposits.. SAM's evolved gas analysis (EGA) mass spectrometry detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments. The identity and evolution temperature (T) of evolved gases can support CheMin mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with XRD (e.g., X-ray amorphous phases). They can also give constraints on sample organic chemistry. Here, we discuss trends in major evolved volatiles from SAM EGA analyses to date.
Smirnova, Ekaterina S; Alekseeva, Olga A; Dudka, Alexander P; Artemov, Vladimir V; Zubavichus, Yan V; Gudim, Irina A; Bezmaterhykh, Leonard N; Frolov, Kirill V; Lyubutin, Igor S
2018-04-01
An accurate X-ray diffraction study of (Y 0.95 Bi 0.05 )Fe 3 (BO 3 ) 4 single crystals in the temperature range 90-500 K was performed on a laboratory diffractometer and used synchrotron radiation. It was established that the crystal undergoes a diffuse structural phase transition in the temperature range 350-380 K. The complexity of localization of such a transition over temperature was overcome by means of special analysis of systematic extinction reflections by symmetry. The transition temperature can be considered to be T str ≃ 370 K. The crystal has a trigonal structure in the space group P3 1 21 at temperatures of 90-370 K, and it has a trigonal structure in the space group R32 at 375-500 K. There is one type of chain formed by the FeO 6 octahedra along the c axis in the R32 phase. When going into the P3 1 21 phase, two types of nonequivalent chains arise, in which Fe atoms are separated from the Y atoms by a different distance. Upon lowering the temperature from 500 to 90 K, a distortion of the Y(Bi)O 6 , FeO 6 , B(2,3)O 3 coordination polyhedra is observed. The distances between atoms in helical Fe chains and Fe-O-Fe angles change non-uniformly. A sharp jump in the equivalent isotropic displacement parameters of O1 and O2 atoms within the Fe-Fe chains and fluctuations of the equivalent isotropic displacement parameters of B2 and B3 atoms were observed in the region of structural transition as well as noticeable elongation of O1, O2, B2, B3, Fe1, Fe2 atomic displacement ellipsoids. It was established that the helices of electron density formed by Fe, O1 and O2 atoms may be structural elements determining chirality, optical activity and multiferroicity of rare-earth iron borates. Compression and stretching of these helices account for the symmetry change and for the manifestation of a number of properties, whose geometry is controlled by an indirect exchange interaction between iron cations that compete with the thermal motion of atoms in the structure. Structural analysis detected these changes as variations of a number of structural characteristics in the c unit-cell direction, that is, the direction of the helices. Structural results for the local surrounding of the atoms in (Y 0.95 Bi 0.05 )Fe 3 (BO 3 ) 4 were confirmed by EXAFS and Mössbauer spectroscopies.
NASA Astrophysics Data System (ADS)
Kumar, K. Ramesh; Nair, Harikrishnan S.; Christian, Reinke; Thamizhavel, A.; Strydom, André M.
2016-11-01
Single crystals of Frank-Kasper compounds RTM2Al20 (R = Eu, Gd and La; TM = V and Ti) were grown by self-flux method and their physical properties were investigated through magnetization (M), magnetic susceptibility (χ), specific heat (C P) and electrical resistivity (ρ) measurements. Powder x-ray diffraction studies and structural analysis showed that these compounds crystallize in the cubic crystal structure with the space group Fd\\bar{3}m . The magnetic susceptibility for the compounds EuTi2Al20 and GdTi2Al20 showed a sudden jump below the Néel temperature T N indicative of plausible double magnetic transition. Specific heat (C P) and electrical resistivity (ρ) measurements also confirm the first-order magnetic transition (FOMT) and possible double magnetic transitions. Temperature variation of heat capacity showed a sharp phase transition and huge C P value for the (Eu/Gd)Ti2Al20 compounds’ full width at half-maximum (FWHM) (<0.2 K) which is reminiscent of a first-order phase transition and a unique attribute among RTM2Al20 compounds. In contrast, linear variation of C P is observed in the ordered state for (Eu/Gd)V2Al20 compounds suggesting a λ-type transition. We observed clear anomaly between heating and cooling cycle in temperature-time relaxation curve for the compounds GdTi2Al20 (2.38 K) and EuTi2Al20 (3.2 K) which is indicating a thermal arrest due to the latent heat. The temperature variation of S mag for GdTi2Al20 saturates to a value 0.95R\\ln 8 while the other magnetic systems exhibited still lower entropy saturation values in the high temperature limit. ≤ft({{C}\\text{P}}-γ T\\right)/{{T}3} versus T plot showed a maximum near 27 K for all the compounds indicating the presence of low frequency Einstein modes of vibrations. Resistivity measurements showed that all the samples behave as normal Fermi liquid type compounds and ρ (T) due to electron-phonon scattering follows Bloch-Grüneisen-Mott relation in the paramagnetic region.
The effect of pumping noise on the characteristics of a single-stage parametric amplifier
NASA Astrophysics Data System (ADS)
Medvedev, S. Iu.; Muzychuk, O. V.
1983-10-01
An analysis is made of the operation of a single-stage parametric amplifier based on a varactor with a sharp transition. Analytical expressions are obtained for the statistical moments of the output signal, the signal-noise ratio, and other characteristics in the case when the output signal and the pump are a mixture of harmonic oscillation and Gaussian noise. It is shown that, when a noise component is present in the pump, an increase of its harmonic component to values close to the threshold leads to a sharp decrease in the signal-noise ratio at the amplifier output.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyra, Wladimir; Mac Low, Mordecai-Mark, E-mail: wlyra@jpl.nasa.gov, E-mail: mordecai@amnh.org
It has been suggested that the transition between magnetorotationally active and dead zones in protoplanetary disks should be prone to the excitation of vortices via Rossby wave instability (RWI). However, the only numerical evidence for this has come from alpha disk models, where the magnetic field evolution is not followed, and the effect of turbulence is parameterized by Laplacian viscosity. We aim to establish the phenomenology of the flow in the transition in three-dimensional resistive-magnetohydrodynamical models. We model the transition by a sharp jump in resistivity, as expected in the inner dead zone boundary, using the PENCIL CODE to simulatemore » the flow. We find that vortices are readily excited in the dead side of the transition. We measure the mass accretion rate finding similar levels of Reynolds stress at the dead and active zones, at the {alpha} Almost-Equal-To 10{sup -2} level. The vortex sits in a pressure maximum and does not migrate, surviving until the end of the simulation. A pressure maximum in the active zone also triggers the RWI. The magnetized vortex that results should be disrupted by parasitical magneto-elliptic instabilities, yet it subsists in high resolution. This suggests that either the parasitic modes are still numerically damped or that the RWI supplies vorticity faster than they can destroy it. We conclude that the resistive transition between the active and dead zones in the inner regions of protoplanetary disks, if sharp enough, can indeed excite vortices via RWI. Our results lend credence to previous works that relied on the alpha-disk approximation, and caution against the use of overly reduced azimuthal coverage on modeling this transition.« less
Solar Cycle Changes in the Position of the Intermediate Transition in the Venus Ionosheath.
NASA Astrophysics Data System (ADS)
Perez De Tejada, H. A.; Lundin, R. N. A.; Durand-Manterola, H. J.; Reyes-Ruiz, M.; Barabash, S.; Zhang, T.; Sauvaud, J. A.
2014-12-01
Measurements conducted with the ASPERA plasma probe and the magnetometer of the Venus Express (VEX) spacecraft in orbits that probed by the midnight plane within the Venus wake show the presence of a sharp plasma transition outside the region where enhanced fluxes of planetary ions are observed. That transition agrees with a feature reported earlier [1] from the VEX electron measurements and that is now also characterized by a sharp change in the speed and density of the solar wind H+ ions [2]. From the analysis of the plasma data of 10 VEX orbits in two different time periods (August 2006 and September 2009) it is possible to derive the position of the VEX spacecraft at the time when the plasma transition is observed in all 10 orbits. The data show a collection of different distances downstream from Venus where the plasma transition is detected and that are grouped for each time period. As a whole the X-distance on the sun-Venus line downstream from the planet for each of the 5 orbits corresponding to the August 2006 time period is smaller than that corresponding to the 5 orbits of the September 2009 time period. The average distance difference between both sets of data points is nearly one half planetary radius thus leading to two different groups in their distribution. The position of the plasma transition downstream from Venus will vary along the solar cycle being displaced to regions that extend farther away from the inner wake under solar maximum conditions. [1] Pérez-de-Tejada, H.et al., JGR, 116, JA015216, 2011. [2] Pérez-de-Tejada, H.et al., JGR, 118, JA019029, 2013.
Laminar-turbulent transition on a blunted ogive-conical body at hypersonic speeds
NASA Astrophysics Data System (ADS)
Vaganov, A. V.; Noev, A. Yu.; Plyashechnik, V. I.; Radchenko, V. N.; Skuratov, A. S.; Shustov, A. A.
2016-10-01
Influence of flow parameters and nose radius on laminar-turbulent transition location is under investigation. Experiments were conducted in shock tunnel at Mach number 6. Transition location was diagnosed by heat transfer rate distribution determined with aid of luminescent temperature converters. Model used was ogive-conical body of revolution having half angle about 9°. Through obtained Reynolds number range (up to Re∞,R = 3.44×105) no transition reversal was observed. Present data are in accordance with the hypothesis that transition reversal is due to formation of turbulence wedges in nosetip region. Highest observed transition onset Reynolds number was about Re∞,Xt ≈ 1.4×107 which is anomaly higher than conventional wind tunnel data for sharp cone at this Mach number range and lies in flight data region.
Technology of welding aluminum alloys-I
NASA Technical Reports Server (NTRS)
Harrison, J. R.; Korb, L. J.; Oleksiak, C. E.
1978-01-01
Systems approach to high-quality aluminum welding uses square-butt joints, kept away from sharp contour changes. Intersecting welds are configured for T-type intersections rather than crossovers. Differences in panel thickness are accommodated with transition step areas where thickness increases or decreases within weld, but never at intersection.
Bifurcation analysis and dimension reduction of a predator-prey model for the L-H transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dam, Magnus; Brøns, Morten; Juul Rasmussen, Jens
2013-10-15
The L-H transition denotes a shift to an improved confinement state of a toroidal plasma in a fusion reactor. A model of the L-H transition is required to simulate the time dependence of tokamak discharges that include the L-H transition. A 3-ODE predator-prey type model of the L-H transition is investigated with bifurcation theory of dynamical systems. The analysis shows that the model contains three types of transitions: an oscillating transition, a sharp transition with hysteresis, and a smooth transition. The model is recognized as a slow-fast system. A reduced 2-ODE model consisting of the full model restricted to themore » flow on the critical manifold is found to contain all the same dynamics as the full model. This means that all the dynamics in the system is essentially 2-dimensional, and a minimal model of the L-H transition could be a 2-ODE model.« less
NASA Astrophysics Data System (ADS)
Sivasubramanian, V.; Subramanian, V.; Kojima, S.
2016-02-01
The ferroelectric phase transition behavior in the highly ordered Pb (S c1 /2N b1 /2) O3 has been investigated by the dielectric and Brillouin spectroscopy. The dielectric permittivity ɛr exhibits a sharp maximum without any frequency dispersion at its Curie temperature Tc. In the temperature range far above Tc, it was noted that the dielectric permittivity exhibits a noticeable deviation from the Curie-Weiss law below the characteristic intermediate temperature T*=500 K , which is common to most of the Pb-based oxide perovskite relaxors. Upon cooling, the frequency of the longitudinal acoustic phonon mode exhibits a remarkable softening towards Tc. The relaxation time of the order parameter calculated using the Landau-Khalatnikov approach was determined to be more than one order of magnitude lower than that of the disordered Pb (S c1 /2N b1 /2)O3 and is very close to that observed in the paraelectric phase of the classical ferroelectric, BaTi O3 . The observed dielectric and relaxation features are qualitatively discussed in terms of the difference in the strength of the random electric fields.
Zhao, Yongsheng; Li, Nana; Xu, Cong; Li, Yan; Zhu, Hongyu; Zhu, Pinwen; Wang, Xin; Yang, Wenge
2017-09-01
La 2 Sn 2 O 7 is a transparent conducting oxide (TCO) material and shows a strong near-infrared fluorescent at ambient pressure and room temperature. By in situ high-pressure research, pressure-induced visible photoluminescence (PL) above 2 GPa near 2 eV is observed. The emergence of unusual visible PL behavior is associated with the seriously trigonal lattice distortion of the SnO 6 octehedra, under which the Sn-O1-Sn exchange angle θ is decreased below 22.1 GPa, thus enhancing the PL quantum yield leading to Sn 3 P 1 → 1 S 0 photons transition. Besides, bandgap closing followed by bandgap opening and the visible PL appearing at the point of the gap reversal, which is consistent with high-pressure phase decomposition, are discovered. The high-pressure PL results demonstrate a well-defined pressure window (7-17 GPa) with flat maximum PL yielding and sharp edges at both ends, which may provide a great calibration tool for pressure sensors for operation in the deep sea or at extreme conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Pradhan, Kalpataru; Yunoki, Seiji
2017-12-01
Using a two-band double-exchange model with Jahn-Teller lattice distortions and superexchange interactions, supplemented by quenched disorder, at an electron density n =0.65 , we explicitly demonstrate the coexistence of the n =1 /2 -type (π ,π ) charge-ordered and the ferromagnetic nanoclusters above the ferromagnetic transition temperature Tc in colossal magnetoresistive (CMR) manganites. The resistivity increases due to the enhancement of the volume fraction of the charge-ordered and the ferromagnetic nanoclusters upon decreasing the temperature down to Tc. The ferromagnetic nanoclusters start to grow and merge, and the volume fraction of the charge-ordered nanoclusters decreases below Tc, leading to the sharp drop in the resistivity. By applying a small external magnetic field h , we show that the resistivity above Tc increases, as compared with the case when h =0 , a fact that further confirms the coexistence of the charge-ordered and the ferromagnetic nanoclusters. In addition, we show that the volume fraction of the charge-ordered nanoclusters decreases upon increasing the bandwidth, and consequently the resistivity hump diminishes for large bandwidth manganites, in good qualitative agreement with experiments. The obtained insights from our calculations provide a complete pathway to understand the phase competition in CMR manganites.
Crustal structure of the Kaapvaal craton and its significance for early crustal evolution
NASA Astrophysics Data System (ADS)
James, David E.; Niu, Fenglin; Rokosky, Juliana
2003-12-01
High-quality seismic data obtained from a dense broadband array near Kimberley, South Africa, exhibit crustal reverberations of remarkable clarity that provide well-resolved constraints on the structure of the lowermost crust and Moho. Receiver function analysis of Moho conversions and crustal multiples beneath the Kimberley array shows that the crust is 35 km thick with an average Poisson's ratio of 0.25. The density contrast across the Moho is ˜15%, indicating a crustal density about 2.86 gm/cc just above the Moho, appropriate for felsic to intermediate rock compositions. Analysis of waveform broadening of the crustal reverberation phases suggests that the Moho transition can be no more than 0.5 km thick and the total variation in crustal thickness over the 2400 km 2 footprint of the array no more than 1 km. Waveform and travel time analysis of a large earthquake triggered by deep gold mining operations (the Welkom mine event) some 200 km away from the array yield an average crustal thickness of 35 km along the propagation path between the Kimberley array and the event. P- and S-wave velocities for the lowermost crust are modeled to be 6.75 and 3.90 km/s, respectively, with uppermost mantle velocities of 8.2 and 4.79 km/s, respectively. Seismograms from the Welkom event exhibit theoretically predicted but rarely observed crustal reverberation phases that involve reflection or conversion at the Moho. Correlation between observed and synthetic waveforms and phase amplitudes of the Moho reverberations suggests that the crust along the propagation path between source and receiver is highly uniform in both thickness and average seismic velocity and that the Moho transition zone is everywhere less than about 2 km thick. While the extremely flat Moho, sharp transition zone and low crustal densities beneath the region of study may date from the time of crustal formation, a more geologically plausible interpretation involves extensive crustal melting and ductile flow during the major craton-wide Ventersdorp tectonomagmatic event near the end of Archean time.
Bressloff, P C; Bressloff, N W; Cowan, J D
2000-11-01
Orientation tuning in a ring of pulse-coupled integrate-and-fire (IF) neurons is analyzed in terms of spontaneous pattern formation. It is shown how the ring bifurcates from a synchronous state to a non-phase-locked state whose spike trains are characterized by clustered but irregular fluctuations of the interspike intervals (ISIs). The separation of these clusters in phase space results in a localized peak of activity as measured by the time-averaged firing rate of the neurons. This generates a sharp orientation tuning curve that can lock to a slowly rotating, weakly tuned external stimulus. Under certain conditions, the peak can slowly rotate even to a fixed external stimulus. The ring also exhibits hysteresis due to the subcritical nature of the bifurcation to sharp orientation tuning. Such behavior is shown to be consistent with a corresponding analog version of the IF model in the limit of slow synaptic interactions. For fast synapses, the deterministic fluctuations of the ISIs associated with the tuning curve can support a coefficient of variation of order unity.
Wafer-Scale Aluminum Nanoplasmonic Resonators with Optimized Metal Deposition
2016-01-04
As observed by others, the location of these plasmonic resonances is accompanied by a sharp change in phase ( Figure 6 C and F).48 17 Figure...bottom of the structure. The reflectance curves (Figure 4) do not show sharp resonances between 300 and 500 nm, but a broader depression in...Letters 2015, 15, 6946-6951. 3. Taguchi, A.; Saito, Y.; Watanabe , K.; Yijian, S.; Kawata, S. Tailoring plasmon resonances in the deep-ultraviolet by size
Analysis of Dibenzothiophene Desulfurization in a Recombinant Pseudomonas putida Strain▿
Calzada, Javier; Zamarro, María T.; Alcón, Almudena; Santos, Victoria E.; Díaz, Eduardo; García, José L.; Garcia-Ochoa, Felix
2009-01-01
Biodesulfurization was monitored in a recombinant Pseudomonas putida CECT5279 strain. DszB desulfinase activity reached a sharp maximum at the early exponential phase, but it rapidly decreased at later growth phases. A model two-step resting-cell process combining sequentially P. putida cells from the late and early exponential growth phases was designed to significantly increase biodesulfurization. PMID:19047400
NASA Technical Reports Server (NTRS)
McFadden, G. B.; Wheeler, A. A.; Anderson, D. M.
1999-01-01
Karma and Rapped recently developed a new sharp interface asymptotic analysis of the phase-field equations that is especially appropriate for modeling dendritic growth at low undercoolings. Their approach relieves a stringent restriction on the interface thickness that applies in the conventional asymptotic analysis, and has the added advantage that interfacial kinetic effects can also be eliminated. However, their analysis focussed on the case of equal thermal conductivities in the solid and liquid phases; when applied to a standard phase-field model with unequal conductivities, anomalous terms arise in the limiting forms of the boundary conditions for the interfacial temperature that are not present in conventional sharp-interface solidification models, as discussed further by Almgren. In this paper we apply their asymptotic methodology to a generalized phase-field model which is derived using a thermodynamically consistent approach that is based on independent entropy and internal energy gradient functionals that include double wells in both the entropy and internal energy densities. The additional degrees of freedom associated with the generalized phased-field equations can be chosen to eliminate the anomalous terms that arise for unequal conductivities.
Reddy, S Thirupathi; Swamy, Musti J
2017-11-01
N-Acylglycines (NAGs), the endogenous single-tailed lipids present in rat brain and other mammalian tissues, play significant roles in cell physiology and exhibit interesting pharmacological properties. In the present study, a homologous series of N-acylglycine alkyl esters (NAGEs) with matched chains were synthesized and characterized. Results of differential scanning calorimetric studies revealed that all NAGEs exhibit a single sharp phase transition and that the transition enthalpy and entropy show a linear dependence on the N-acyl and ester alkyl chain length. The structure of N-myristoylglycine myristyl ester (NMGME), solved by single-crystal X-ray diffraction, showed that the molecule adopts a linear geometry and revealed that the structure of N-myristoyl glycyl moiety in NMGME is identical to that in N-myristoylglycine. The molecules are packed in layers with the polar functional groups of the ester and amide functionalities located at the center of the layer. The crystal packing is stabilized by NH⋯O hydrogen bonds between the amide CO and NH groups of adjacent molecules as well as by CH⋯O hydrogen bonds between the amide carbonyl and the methylene CH adjacent to the ester carbonyl of neighboring molecules as well as between ester carbonyl and methylene group of the glycine moiety of adjacent molecules. Powder X-ray diffraction studies showed a linear dependence of the d-spacings on the acyl chain length, suggesting that all NAGEs adopt a structure similar to the packing exhibited in the crystal lattice of NMGME. Copyright © 2017 Elsevier B.V. All rights reserved.
Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS.
Ali, Mazhar N; Schoop, Leslie M; Garg, Chirag; Lippmann, Judith M; Lara, Erik; Lotsch, Bettina; Parkin, Stuart S P
2016-12-01
Magnetoresistance (MR), the change of a material's electrical resistance in response to an applied magnetic field, is a technologically important property that has been the topic of intense study for more than a quarter century. We report the observation of an unusual "butterfly"-shaped titanic angular magnetoresistance (AMR) in the nonmagnetic Dirac material, ZrSiS, which we find to be the most conducting sulfide known, with a 2-K resistivity as low as 48(4) nΩ⋅cm. The MR in ZrSiS is large and positive, reaching nearly 1.8 × 10 5 percent at 9 T and 2 K at a 45° angle between the applied current ( I || a ) and the applied field (90° is H || c ). Approaching 90°, a "dip" is seen in the AMR, which, by analyzing Shubnikov de Haas oscillations at different angles, we find to coincide with a very sharp topological phase transition unlike any seen in other known Dirac/Weyl materials. We find that ZrSiS has a combination of two-dimensional (2D) and 3D Dirac pockets comprising its Fermi surface and that the combination of high-mobility carriers and multiple pockets in ZrSiS allows for large property changes to occur as a function of angle between applied fields. This makes it a promising platform to study the physics stemming from the coexistence of 2D and 3D Dirac electrons as well as opens the door to creating devices focused on switching between different parts of the Fermi surface and different topological states.
Two Bistable Switches Govern M Phase Entry.
Mochida, Satoru; Rata, Scott; Hino, Hirotsugu; Nagai, Takeharu; Novák, Béla
2016-12-19
The abrupt and irreversible transition from interphase to M phase is essential to separate DNA replication from chromosome segregation. This transition requires the switch-like phosphorylation of hundreds of proteins by the cyclin-dependent kinase 1 (Cdk1):cyclin B (CycB) complex. Previous studies have ascribed these switch-like phosphorylations to the auto-activation of Cdk1:CycB through the removal of inhibitory phosphorylations on Cdk1-Tyr15 [1, 2]. The positive feedback in Cdk1 activation creates a bistable switch that makes mitotic commitment irreversible [2-4]. Here, we surprisingly find that Cdk1 auto-activation is dispensable for irreversible, switch-like mitotic entry due to a second mechanism, whereby Cdk1:CycB inhibits its counteracting phosphatase (PP2A:B55). We show that the PP2A:B55-inhibiting Greatwall (Gwl)-endosulfine (ENSA) pathway is both necessary and sufficient for switch-like phosphorylations of mitotic substrates. Using purified components of the Gwl-ENSA pathway in a reconstituted system, we found a sharp Cdk1 threshold for phosphorylation of a luminescent mitotic substrate. The Cdk1 threshold to induce mitotic phosphorylation is distinctly higher than the Cdk1 threshold required to maintain these phosphorylations-evidence for bistability. A combination of mathematical modeling and biochemical reconstitution show that the bistable behavior of the Gwl-ENSA pathway emerges from its mutual antagonism with PP2A:B55. Our results demonstrate that two interlinked bistable mechanisms provide a robust solution for irreversible and switch-like mitotic entry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Capturing Hot Moments of Carbon Cycling in the Hyporheic Zone of an Intermittent Stream
NASA Astrophysics Data System (ADS)
Brandt, T.; Harjung, A.; Vieweg, M.; Butturini, A.; Schmidt, C.; Fleckenstein, J. H.; Sabater, F.
2016-12-01
Intermittent streams are increasingly recognized as a factor for underestimating potential CO2 emissions of aquatic ecosystems, because they are neglected during their dry phase. This can be partly attributed to poor understanding of dissolved organic matter (DOM) processing at highly reactive interfaces such as the hyporheic zone (HZ). Here, hydrological transitions drive rapid changes in the spatiotemporal distribution of dissolved oxygen (DO), thus creating hot moments of increased biogeochemical cycling. However, capturing these process-dynamics requires a continuous monitoring of hyporheic pore water at a sufficient temporal and spatial resolution. In order to investigate the transitions between the wet and dry phase, we used a combination of automated pore water sampling and in situ measurements. By combining conventional pumping approaches with recently developed technology we achieved a high resolution multi-scale, quasi continuous monitoring of relevant parameters of the carbon cycle. Our novel approach coupled continuous fluorescence DOM and infrared CO2 sensor measurements with spatially continuous vertical oxygen profiling in situ. A proof-of-concept application was established in a semi-pristine Mediterranean stream during the drying period in summer 2015. Previous sampling campaigns already identified the water level as a driver of DOM composition in the HZ. Once the surface flow switches to subsurface flow, the HZ becomes a sink for aromatic, high molecular weight compounds, while protein-like, autochthonous DOM gets released. Generally, we observed exponential increases in hyporheic CO2 from this point on, co-occurring with a sharp vertical DO gradient as a function of changing hydrological conditions.
Improving College-to-Work Transitions through Enhanced Training for Employment
ERIC Educational Resources Information Center
Papier, Joy
2017-01-01
Historically in South Africa, apprentice training towards artisanship in the engineering trades has been characterised by a sharp separation between theoretical studies undertaken in a technical and vocational education and training (TVET) college and subsequent practical training undertaken in a workshop or through industry placement. TVET…
Cyclic behavior at quasi-parallel collisionless shocks
NASA Technical Reports Server (NTRS)
Burgess, D.
1989-01-01
Large scale one-dimensional hybrid simulations with resistive electrons have been carried out of a quasi-parallel high-Mach-number collisionless shock. The shock initially appears stable, but then exhibits cyclic behavior. For the magnetic field, the cycle consists of a period when the transition from upstream to downstream is steep and well defined, followed by a period when the shock transition is extended and perturbed. This cyclic shock solution results from upstream perturbations caused by backstreaming gyrating ions convecting into the shock. The cyclic reformation of a sharp shock transition can allow ions, at one time upstream because of reflection or leakage, to contribute to the shock thermalization.
Phase transformations during the growth of paracetamol crystals from the vapor phase
NASA Astrophysics Data System (ADS)
Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.
2014-07-01
Phase transformations during the growth of paracetamol crystals from the vapor phase are studied by differential scanning calorimetry. It is found that the vapor-crystal phase transition is actually a superposition of two phase transitions: a first-order phase transition with variable density and a second-order phase transition with variable ordering. The latter, being a diffuse phase transition, results in the formation of a new, "pretransition," phase irreversibly spent in the course of the transition, which ends in the appearance of orthorhombic crystals. X-ray diffraction data and micrograph are presented.
Handle, Philip H; Loerting, Thomas
2018-03-28
Since the first report of very-high density amorphous ice (VHDA) in 2001 [T. Loerting et al., Phys. Chem. Chem. Phys. 3, 5355-5357 (2001)], the status of VHDA as a distinct amorphous ice has been debated. We here study VHDA and its relation to expanded high density amorphous ice (eHDA) on the basis of isobaric heating experiments. VHDA was heated at 0.1 ≤ p ≤ 0.7 GPa, and eHDA was heated at 1.1 ≤ p ≤ 1.6 GPa to achieve interconversion. The behavior upon heating is monitored using in situ volumetry as well as ex situ X-ray diffraction and differential scanning calorimetry. We do not observe a sharp transition for any of the isobaric experiments. Instead, a continuous expansion (VHDA) or densification (eHDA) marks the interconversion. This suggests that a continuum of states exists between VHDA and HDA, at least in the temperature range studied here. This further suggests that VHDA is the most relaxed amorphous ice at high pressures and eHDA is the most relaxed amorphous ice at intermediate pressures. It remains unclear whether or not HDA and VHDA experience a sharp transition upon isothermal compression/decompression at low temperature.
NASA Astrophysics Data System (ADS)
Handle, Philip H.; Loerting, Thomas
2018-03-01
Since the first report of very-high density amorphous ice (VHDA) in 2001 [T. Loerting et al., Phys. Chem. Chem. Phys. 3, 5355-5357 (2001)], the status of VHDA as a distinct amorphous ice has been debated. We here study VHDA and its relation to expanded high density amorphous ice (eHDA) on the basis of isobaric heating experiments. VHDA was heated at 0.1 ≤ p ≤ 0.7 GPa, and eHDA was heated at 1.1 ≤ p ≤ 1.6 GPa to achieve interconversion. The behavior upon heating is monitored using in situ volumetry as well as ex situ X-ray diffraction and differential scanning calorimetry. We do not observe a sharp transition for any of the isobaric experiments. Instead, a continuous expansion (VHDA) or densification (eHDA) marks the interconversion. This suggests that a continuum of states exists between VHDA and HDA, at least in the temperature range studied here. This further suggests that VHDA is the most relaxed amorphous ice at high pressures and eHDA is the most relaxed amorphous ice at intermediate pressures. It remains unclear whether or not HDA and VHDA experience a sharp transition upon isothermal compression/decompression at low temperature.
The remarkable ability of turbulence model equations to describe transition
NASA Technical Reports Server (NTRS)
Wilcox, David C.
1992-01-01
This paper demonstrates how well the k-omega turbulence model describes the nonlinear growth of flow instabilities from laminar flow into the turbulent flow regime. Viscous modifications are proposed for the k-omega model that yield close agreement with measurements and with Direct Numerical Simulation results for channel and pipe flow. These modifications permit prediction of subtle sublayer details such as maximum dissipation at the surface, k approximately y(exp 2) as y approaches 0, and the sharp peak value of k near the surface. With two transition specific closure coefficients, the model equations accurately predict transition for an incompressible flat-plate boundary layer. The analysis also shows why the k-epsilon model is so difficult to use for predicting transition.
Structure, magnetism, and transport of single-crystalline R NiSi3 (R = Y, Gd-Tm, Lu)
NASA Astrophysics Data System (ADS)
Arantes, Fabiana R.; Aristizábal-Giraldo, Deisy; Masunaga, Sueli H.; Costa, Fanny N.; Ferreira, Fabio F.; Takabatake, Toshiro; Mendonça-Ferreira, Leticie; Ribeiro, Raquel A.; Avila, Marcos A.
2018-04-01
We report on the physical properties of the intermetallic series R NiSi3 (R =Y , Gd-Tm, Lu). High quality single crystals with platelike morphology were grown using the Sn flux method. X-ray powder diffraction data show that this series crystallizes in the orthorhombic space group Cmmm, and Laue patterns indicate that the b axis remains perpendicular to the plane of the plates. Magnetization measurements show anisotropic antiferromagnetic ground states for R = Gd-Tm with Néel temperatures ranging from TN=2.6 K (TmNiSi3) up to 32.2 K (TbNiSi3), as well as metamagnetic transitions that in some cases appear together with hysteresis (TbNiSi3,DyNiSi3, and HoNiSi3). The easy axis changes from a axis to b axis on going from R = Gd-Ho to R = Er-Tm. All transitions from antiferromagnetic to paramagnetic states are clearly marked by sharp peaks in specific heat as well as in the derivative of resistivity measurements, which show metallic temperature dependence for all compounds and residual values in the range of 1 μ Ω cm . DyNiSi3 has two close phase transitions, while HoNiSi3 presents distinct critical temperatures for applied fields in the a or c directions (10.4 and 6.3 K, respectively), pointing to possible component-specific ordering of the local magnetic moments.
Giant electrocaloric effect in a cracked ferroelectrics
NASA Astrophysics Data System (ADS)
Huang, Cheng; Yang, Hai-Bing; Gao, Cun-Fa
2018-04-01
The electrocaloric effect (ECE) is the temperature change in a material induced by electrical field variation under adiabatic condition. Considering an external electric load applied on a cracked ferroelectric solid, a non-uniform electric field would be induced at the crack tip, and thus, incompatible strain field and local stress concentration would be generated around it. Furthermore, the enormous strain energy and the electrostatic energy would affect the polarization switching of the ferroelectric solid, important for the electrocaloric response. In this paper, the large negative and positive ECEs in a ferroelectric sheet with a conducting crack are investigated by the phase field method with the consideration of time-dependent Ginzburg-Landau equation. The numerical calculations indicated that the polarization field generates a sharp rise during the domain transition from polydomain to monodomain under a certain electric load. Large negative ECEs, about -10.21 K and -7.55 K, are obtained at 135 °C and 85 °C, respectively. The domain transition temperature is much lower than the Curie temperature, which enlarges the existence scope of the large ECE in ferroelectrics. The results also imply that the domain transition from a multi-domain state to a single domain takes place with the minimization of total free energy, which involves the courses of the electric field, stress field, temperature, and polarization interaction. Therefore, the non-uniform distributions of the stress-electric fields induced by the crack play an important role in ECE.
Li, B O; Liu, Yuan
A phase-field free-energy functional for the solvation of charged molecules (e.g., proteins) in aqueous solvent (i.e., water or salted water) is constructed. The functional consists of the solute volumetric and solute-solvent interfacial energies, the solute-solvent van der Waals interaction energy, and the continuum electrostatic free energy described by the Poisson-Boltzmann theory. All these are expressed in terms of phase fields that, for low free-energy conformations, are close to one value in the solute phase and another in the solvent phase. A key property of the model is that the phase-field interpolation of dielectric coefficient has the vanishing derivative at both solute and solvent phases. The first variation of such an effective free-energy functional is derived. Matched asymptotic analysis is carried out for the resulting relaxation dynamics of the diffused solute-solvent interface. It is shown that the sharp-interface limit is exactly the variational implicit-solvent model that has successfully captured capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states of underlying biomolecular systems as found in experiment and molecular dynamics simulations. Our phase-field approach and analysis can be used to possibly couple the description of interfacial fluctuations for efficient numerical computations of biomolecular interactions.
Sharp phase variations from the plasmon mode causing the Rabi-analogue splitting
NASA Astrophysics Data System (ADS)
Wang, Yujia; Sun, Chengwei; Gan, Fengyuan; Li, Hongyun; Gong, Qihuang; Chen, Jianjun
2017-06-01
The Rabi-analogue splitting in nanostructures resulting from the strong coupling of different resonant modes is of importance for lasing, sensing, switching, modulating, and quantum information processes. To give a clearer physical picture, the phase analysis instead of the strong coupling is provided to explain the Rabi-analogue splitting in the Fabry-Pérot (FP) cavity, of which one end mirror is a metallic nanohole array and the other is a thin metal film. The phase analysis is based on an analytic model of the FP cavity, in which the reflectance and the reflection phase of the end mirrors are dependent on the wavelength. It is found that the Rabi-analogue splitting originates from the sharp phase variation brought by the plasmon mode in the FP cavity. In the experiment, the Rabi-analogue splitting is realized in the plasmonic-photonic coupling system, and this splitting can be continually tuned by changing the length of the FP cavity. These experimental results agree well with the analytic and simulation data, strongly verifying the phase analysis based on the analytic model. The phase analysis presents a clear picture to understand the working mechanism of the Rabi-analogue splitting; thus, it may facilitate the design of the plasmonic-photonic and plasmonic-plasmonic coupling systems.
Kaon and open charm production in central lead-lead collisions at the CERN SPS
NASA Astrophysics Data System (ADS)
van Leeuwen, Marco
2003-05-01
This thesis describes the experimental study of hadronic systems with a very high energy density and temperature. From theoretical caluclations it is expected that hadronic matter undergoes a phase transition to a deconfined state at an energy density of about 1 GeV/fm^3 or a temperature of 170 MeV. The goal of the experiments is to observe the phase transition and study the properties of the deconfined state, the Quark Gluon Plasma (QGP). Two different measurements are described and the results are discussed. The first measurement concerns the momentum distributions and total yields of kaons in lead-lead collisions at 40, 80 and 158 AGeV beam energy. Kaons are the most abundant carrier of the relatively heavy strange quarks and their production is expected to be sensitive to the energy density and the state of matter early in the collision. The second measurement is a search for the production of mesons which carry the even heavier charm quark, at the highest beam energy. The measurements have been performed with the NA49 detector at the SPS accelerator at CERN. The main detector elements are four Time Projection Chambers (TPCs), which record the trajectories of a large fraction of the final state particles to determine the charge and the momentum of each particle. In addition, the measurement of the ionisation energy loss dE/dx in the TPCs allows to identify pions, kaons and protons. Additional detectors provide a measurement of the time-of-flight in a limited acceptance. Combining the time-of-flight and dE/dx measurements greatly improves the separation of the different particle species. The kaon momentum distributions as presented in this thesis have been determined using the dE/dx measurement in the TPCs. The time-of-flight information is used for a detailed study of the peak shape of the dE/dx measurement. The resulting kaon spectra and total yields provide strong indications that interactions between produced particles or even thermalisation play an important role in nucleus-nucleus collisions. The measured kaon yields are compared to two different models which are based on purely hadronic processes, not taking into account the possible phase transition to the QGP. The hadron-transport model RQMD takes into account collisions between produced particles, and the Hadron Gas Model assumes thermalisation. Both models are in reasonable agreement with the data. A model which does assume the phase transition, the Statistical Model of the Early Stage (SMES), shows even better agreement with the data. It predicts a sharp maximum in the strangeness to pion ratio between 10 AGeV, the highest beam energy of earlier experiments, and 40 AGeV, the lowest beam energy used in this thesis. The present data are consistent with this prediction, but future measurements at 20 and 30 AGeV will decide whether the sharp maximum is indeed observed. If indeed an equilibrium QGP is formed at the highest SPS energies, as is expected within the SMES, this would also lead to a relatively large production of charm quarks and hence open charm mesons. Therefore, a large sample of three million lead-lead events at 158 AGeV was taken to search for open charm production. No signal has been observed in the analysis, implying that the charm yield is lower than the expected yield in an equilibrium QGP. It is concluded that if a QGP is formed in the collisions, it does not live long enough or has too low a temperature to allow the charm production to reach equilibrium.
Nearly free electrons in a 5d delafossite oxide metal.
Kushwaha, Pallavi; Sunko, Veronika; Moll, Philip J W; Bawden, Lewis; Riley, Jonathon M; Nandi, Nabhanila; Rosner, Helge; Schmidt, Marcus P; Arnold, Frank; Hassinger, Elena; Kim, Timur K; Hoesch, Moritz; Mackenzie, Andrew P; King, Phil D C
2015-10-01
Understanding the role of electron correlations in strong spin-orbit transition-metal oxides is key to the realization of numerous exotic phases including spin-orbit-assisted Mott insulators, correlated topological solids, and prospective new high-temperature superconductors. To date, most attention has been focused on the 5d iridium-based oxides. We instead consider the Pt-based delafossite oxide PtCoO2. Our transport measurements, performed on single-crystal samples etched to well-defined geometries using focused ion beam techniques, yield a room temperature resistivity of only 2.1 microhm·cm (μΩ-cm), establishing PtCoO2 as the most conductive oxide known. From angle-resolved photoemission and density functional theory, we show that the underlying Fermi surface is a single cylinder of nearly hexagonal cross-section, with very weak dispersion along k z . Despite being predominantly composed of d-orbital character, the conduction band is remarkably steep, with an average effective mass of only 1.14m e. Moreover, the sharp spectral features observed in photoemission remain well defined with little additional broadening for more than 500 meV below E F, pointing to suppressed electron-electron scattering. Together, our findings establish PtCoO2 as a model nearly-free-electron system in a 5d delafossite transition-metal oxide.
Nearly free electrons in a 5d delafossite oxide metal
Kushwaha, Pallavi; Sunko, Veronika; Moll, Philip J. W.; Bawden, Lewis; Riley, Jonathon M.; Nandi, Nabhanila; Rosner, Helge; Schmidt, Marcus P.; Arnold, Frank; Hassinger, Elena; Kim, Timur K.; Hoesch, Moritz; Mackenzie, Andrew P.; King, Phil D. C.
2015-01-01
Understanding the role of electron correlations in strong spin-orbit transition-metal oxides is key to the realization of numerous exotic phases including spin-orbit–assisted Mott insulators, correlated topological solids, and prospective new high-temperature superconductors. To date, most attention has been focused on the 5d iridium-based oxides. We instead consider the Pt-based delafossite oxide PtCoO2. Our transport measurements, performed on single-crystal samples etched to well-defined geometries using focused ion beam techniques, yield a room temperature resistivity of only 2.1 microhm·cm (μΩ-cm), establishing PtCoO2 as the most conductive oxide known. From angle-resolved photoemission and density functional theory, we show that the underlying Fermi surface is a single cylinder of nearly hexagonal cross-section, with very weak dispersion along kz. Despite being predominantly composed of d-orbital character, the conduction band is remarkably steep, with an average effective mass of only 1.14me. Moreover, the sharp spectral features observed in photoemission remain well defined with little additional broadening for more than 500 meV below EF, pointing to suppressed electron-electron scattering. Together, our findings establish PtCoO2 as a model nearly-free–electron system in a 5d delafossite transition-metal oxide. PMID:26601308
Emergence of topological semimetals in gap closing in semiconductors without inversion symmetry.
Murakami, Shuichi; Hirayama, Motoaki; Okugawa, Ryo; Miyake, Takashi
2017-05-01
A band gap for electronic states in crystals governs various properties of solids, such as transport, optical, and magnetic properties. Its estimation and control have been an important issue in solid-state physics. The band gap can be controlled externally by various parameters, such as pressure, atomic compositions, and external field. Sometimes, the gap even collapses by tuning some parameter. In the field of topological insulators, this closing of the gap at a time-reversal invariant momentum indicates a band inversion, that is, it leads to a topological phase transition from a normal insulator to a topological insulator. We show, through an exhaustive study on possible space groups, that the gap closing in inversion-asymmetric crystals is universal, in the sense that the gap closing always leads either to a Weyl semimetal or to a nodal-line semimetal. We consider three-dimensional spinful systems with time-reversal symmetry. The space group of the system and the wave vector at the gap closing uniquely determine which possibility occurs and where the gap-closing points or lines lie in the wave vector space after the closing of the gap. In particular, we show that an insulator-to-insulator transition never happens, which is in sharp contrast to inversion-symmetric systems.
Evolutionary dynamics of group formation.
Javarone, Marco Alberto; Marinazzo, Daniele
2017-01-01
Group formation is a quite ubiquitous phenomenon across different animal species, whose individuals cluster together forming communities of diverse size. Previous investigations suggest that, in general, this phenomenon might have similar underlying reasons across the interested species, despite genetic and behavioral differences. For instance improving the individual safety (e.g. from predators), and increasing the probability to get food resources. Remarkably, the group size might strongly vary from species to species, e.g. shoals of fishes and herds of lions, and sometimes even within the same species, e.g. tribes and families in human societies. Here we build on previous theories stating that the dynamics of group formation may have evolutionary roots, and we explore this fascinating hypothesis from a purely theoretical perspective, with a model using the framework of Evolutionary Game Theory. In our model we hypothesize that homogeneity constitutes a fundamental ingredient in these dynamics. Accordingly, we study a population that tries to form homogeneous groups, i.e. composed of similar agents. The formation of a group can be interpreted as a strategy. Notably, agents can form a group (receiving a 'group payoff'), or can act individually (receiving an 'individual payoff'). The phase diagram of the modeled population shows a sharp transition between the 'group phase' and the 'individual phase', characterized by a critical 'individual payoff'. Our results then support the hypothesis that the phenomenon of group formation has evolutionary roots.
NASA Technical Reports Server (NTRS)
Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.
2015-01-01
Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using micro-Raman spectroscopy.
NASA Technical Reports Server (NTRS)
Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.
2015-01-01
Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade [1-3]. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using µ-Raman spectroscopy.
Direct handling of sharp interfacial energy for microstructural evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández–Rivera, Efraín; Tikare, Veena; Noirot, Laurence
In this study, we introduce a simplification to the previously demonstrated hybrid Potts–phase field (hPPF), which relates interfacial energies to microstructural sharp interfaces. The model defines interfacial energy by a Potts-like discrete interface approach of counting unlike neighbors, which we use to compute local curvature. The model is compared to the hPPF by studying interfacial characteristics and grain growth behavior. The models give virtually identical results, while the new model allows the simulator more direct control of interfacial energy.
Direct handling of sharp interfacial energy for microstructural evolution
Hernández–Rivera, Efraín; Tikare, Veena; Noirot, Laurence; ...
2014-08-24
In this study, we introduce a simplification to the previously demonstrated hybrid Potts–phase field (hPPF), which relates interfacial energies to microstructural sharp interfaces. The model defines interfacial energy by a Potts-like discrete interface approach of counting unlike neighbors, which we use to compute local curvature. The model is compared to the hPPF by studying interfacial characteristics and grain growth behavior. The models give virtually identical results, while the new model allows the simulator more direct control of interfacial energy.
Thermopower behavior in the Gd5(Si0.1Ge0.9)4 magnetocaloric compound from 4 to 300 K
NASA Astrophysics Data System (ADS)
Sousa, J. B.; Braga, M. E.; Correia, F. C.; Carpinteiro, F.; Morellon, L.; Algarabel, P. A.; Ibarra, R.
2002-04-01
Recent studies on the orthorhombic Gd5(Si0.1Ge0.9)4 compound show, upon heating, a ferromagnetic to antiferromagnetic-like (AFM*) transition at TS=78 K, coupled with a first-order structural martensitic transformation keeping the orthorhombic symmetry but producing a large increase in the interlayer Si(Ge) distances leading to covalent bond-pair breaking. A second-order AFM*→(paramagnetic)PM transition occurs at TN=125 K. We report thermopower (S) measurements for the Gd5(SixGe1-x)4 series, performed on an x=0.1 sample, from 4 to 300 K, with increasing and decreasing temperatures through successive thermal cycling. Resistivity measurements show a systematic increase in the residual resistivity and a dramatic change in the ρ(T) behavior upon thermal cycling. In spite of this, the thermopower data show a common intrinsic behavior both in the ferromagnetic phase (T
NASA Technical Reports Server (NTRS)
Moshchalcov, V. V.; Zhukov, A. A.; Kuznetzov, V. D.; Metlushko, V. V.; Leonyuk, L. I.
1990-01-01
At the initial time intervals, preceding the thermally activated flux creep regime, fast nonlogarithmic relaxation is found. The fully magnetic moment Pm(t) relaxation curve is shown. The magnetic measurements were made using SQUID-magnetometer. Two different relaxation regimes exist. The nonlogarithmic relaxation for the initial time intervals may be related to the viscous Abrikosov vortices flow with j is greater than j(sub c) for high enough temperature T and magnetic field induction B. This assumption correlates with Pm(t) measurements. The characteristic time t(sub O) separating two different relaxation regimes decreases as temperature and magnetic field are lowered. The logarithmic magnetization relaxation curves Pm(t) for fixed temperature and different external magnetic field inductions B are given. The relaxation rate dependence on magnetic field, R(B) = dPm(B, T sub O)/d(1nt) has a sharp maximum which is similar to that found for R(T) temperature dependences. The maximum shifts to lower fields as temperature goes up. The observed sharp maximum is related to a topological transition in shielding critical current distribution and, consequently, in Abrikosov vortices density. The nonlogarithmic magnetization relaxation for the initial time intervals is found. This fast relaxation has almost an exponentional character. The sharp relaxation rate R(B) maximum is observed. This maximum corresponds to a topological transition in Abrikosov vortices distribution.
Structural and spectral properties of undoped and tungsten doped Zn3(PO4)2ZnO nanopowders
NASA Astrophysics Data System (ADS)
Satyavathi, K.; Subba Rao, M.; Nagabhaskararao, Y.; Cole, Sandhya
2018-01-01
Pure and tungsten doped Zn3(PO4)2ZnO nanopowders (NPs) are prepared using sol-gel method. It has the longest track record of used in dentistry. It is used for cementation of inlays, crowns and orthodontic appliances. The systematic investigations like X-ray Diffraction (XRD), Scanning electron microscope (SEM) with energy dispersive X-ray (EDX) spectroscope, Transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, Optical absorption, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) spectroscopic techniques are carried out for the prepared NPs. XRD pattern reveals that the prepared samples are in crystalline nature in which Zn3(PO4)2 corresponding to monoclinic phase and ZnO corresponding to hexagonal wurtzite phase, the average crystallite size of prepared nanopowders is in the range of 20-30 nm. The lattice strain, lattice cell parameters, unit cell volume and dislocation density of the prepared NPs are also calculated. The morphology of the prepared NPs is analyzed with SEM and TEM images. The distribution of Zn, P, O and W species in the prepared samples are identified by the chemical composition mapping through EDX. IR spectra of prepared samples exhibit the characteristic sharp absorption band peaks. The sharp absorption bands observed in the region 1200-900 cm-1 are due to complex stretching of characteristic PO43- groups. The absorption spectra exhibit a broad band around 696 nm is recognized due to 2B2g → 2B1g (dxy → dx2- y2) transition of tungsten ions. The PL spectra exhibit four emission peaks in the visible region indicating the quantum-confinement-induced photoluminescence. The CIE chromaticity diagram suggests that the prepared NPs have good color purity. The EPR spectra indicate that the W5+ ions occupy octahedral site symmetry in the host lattice.
Using Receiver Functions to Image the Montana Crust and Upper Mantle
NASA Astrophysics Data System (ADS)
Sirianni, R. T.; Russo, R. M.
2008-12-01
We determined receiver functions (RFs) at six permanent Advanced National Seismic System (ANSS) stations to examine crust and upper mantle structure of the Wyoming craton (WC) and Medicine Hat block (MHB). The Deep Probe & SAREX projects (Henstock et al., 1998; Clowes et al., 2002; Gorman et al., 2002) used active source seismics to model a high velocity crustal layer (the so-called 7x layer) beneath the WC. This layer exhibits P wave velocities that are high for lower continental crust (~7+ km/s) and extends from 30-55 km below the surface. Interpretations of the active source data indicate that this layer may represent wide scale crustal underplating of the WC, implying post-Archean craton modification with implications for Laurentia assembly. We used 43 earthquakes from a wide azimuthal distribution recorded at the Montana ANSS stations; high signal-to-noise ratios of 25 of these RFs were acceptable for further analysis. Receiver functions constrain crustal velocity structure beneath a seismometer by using P-to-S wave conversions at sharp velocity contrast boundaries. Preliminary results for seismic stations DGMT, EGMT, and LAO, located to the east of the Deep Probe and SAREX seismic line on the Wyoming craton/Medicine Hat block show the influence of sedimentary cover and a strong Ps phase at approximately four seconds after P. At BOZ and MSO, located in the Rocky mountains, the sedimentary cover signal previously noted is absent, and instead we observe a sharp Ps phase at about four and a half seconds after P. RFs at station RLMT (on the WC) are highly anomalous, probably reflecting complex conversions from two differently oriented dipping layers. We will use the RFs to produce suites of acceptable structural models to test for the presence and lateral extent of the 7x layer and other structural features of the Rocky Mountains-craton transition.
Wilson loop's phase transition probed by non-local observable
NASA Astrophysics Data System (ADS)
Li, Hui-Ling; Feng, Zhong-Wen; Yang, Shu-Zheng; Zu, Xiao-Tao
2018-04-01
In order to give further insights into the holographic Van der Waals phase transition, it would be of great interest to investigate the behavior of Wilson loop across the holographic phase transition for a higher dimensional hairy black hole. We offer a possibility to proceed with a numerical calculation in order to discussion on the hairy black hole's phase transition, and show that Wilson loop can serve as a probe to detect a phase structure of the black hole. Furthermore, for a first order phase transition, we calculate numerically the Maxwell's equal area construction; and for a second order phase transition, we also study the critical exponent in order to characterize the Wilson loop's phase transition.
Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances (Invited)
NASA Technical Reports Server (NTRS)
Balakumar, P.
2015-01-01
Boundary-layer receptivity to two-dimensional acoustic and vortical disturbances for hypersonic flows over two-dimensional and axi-symmetric geometries were numerically investigated. The role of bluntness, wall cooling, and pressure gradients on the receptivity and stability were analyzed and compared with the sharp nose cases. It was found that for flows over sharp nose geometries in adiabatic wall conditions the instability waves are generated in the leading-edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. The computations confirmed the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary layer transition. The receptivity coefficients in flows over blunt bodies are orders of magnitude smaller than that for the sharp cone cases. Wall cooling stabilizes the first mode strongly and destabilizes the second mode. However, the receptivity coefficients are also much smaller compared to the adiabatic case. The adverse pressure gradients increased the unstable second mode regions.
Pressure dependence of band-gap and phase transitions in bulk CuX (X = Cl, Br, I)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azhikodan, Dilna; Nautiyal, Tashi; Sharma, S.
2016-05-06
Usually a phase transition, in theoretical studies, is explored or verified by studying the total energy as a function of the volume considering various plausible phases. The intersection point, if any, of the free energy vs. volume curves for the different phases is then the indicator of the phase transition(s). The question is, can the theoretical study of a single phase alone indicate a phase transition? i.e. can we look beyond the phase under consideration through such a study? Using density-functional theory, we report a novel approach to suggest phase transition(s) through theoretical study of a single phase. Copper halidesmore » have been engaged for this study. These are direct band-gap semiconductors, with zinc blende structure at ambient conditions, and are reported to exhibit many phase transitions. We show that the study of volume dependence of energy band-gap in a single phase facilitates looking beyond the phase under consideration. This, when translated to pressures, reflects the phase transition pressures for CuX (X = Cl, Br, I) with an encouraging accuracy. This work thus offers a simple, yet reliable, approach based on electronic structure calculations to investigate new semiconducting materials for phase changes under pressure.« less
Experimental and computational studies on the electronic excited states of nitrobenzene
NASA Astrophysics Data System (ADS)
Krishnakumar, Sunanda; Das, Asim Kumar; Singh, Param Jeet; Shastri, Aparna; Rajasekhar, B. N.
2016-11-01
The gas phase electronic absorption spectrum of nitrobenzene (C6H5NO2) in the 4.5-11.2 eV region is recorded using synchrotron radiation with a view to comprehend the nature of the excited states. Electronic excited states of nitrobenzene are mainly classified as local excitations within the benzene ring or nitro group and charge transfer excitations between the benzene and nitro group, with some transitions showing percentage from both. The nature of molecular orbitals, their orderings and energies are obtained from density functional theory calculations which help in assigning partially assigned/unassigned features in earlier photoelectron spectroscopy studies. Optimized geometry of ionic nitrobenzene predicts redistribution of charge density in the benzene ring rather than the nitro group resulting in stabilization of the benzene ring π orbitals in comparison to the neutral molecule. Time dependent density functional theory computations are found to describe the experimental spectra well with respect to energies, relative intensities and nature of the observed transitions in terms of valence, Rydberg or charge transfer type. New insights into the interpretation of 1B2u←1A1g and 1B1u←1A1g shifted benzene transitions in light of the present computational calculations are presented. The first few members of the ns, np and nd type Rydberg series in nitrobenzene, converging to the first six ionization potentials, identified in the spectra as weak but sharp peaks are reported for the first time. In general, transitions to the lowest three unoccupied molecular orbitals 4b1, 3a2 and 5b1 are valence or charge transfer in nature, while excitations to higher orbitals are predominantly Rydberg in nature. This work presents a consolidated experimental study and theoretical interpretation of the electronic absorption spectrum of nitrobenzene.
Overview of the relevant CFD work at Thiokol Corporation
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Loh, Hai-Tien
1992-01-01
An in-house developed proprietary advanced computational fluid dynamics code called SHARP (Trademark) is a primary tool for many flow simulations and design analyses. The SHARP code is a time dependent, two dimensional (2-D) axisymmetric numerical solution technique for the compressible Navier-Stokes equations. The solution technique in SHARP uses a vectorizable implicit, second order accurate in time and space, finite volume scheme based on an upwind flux-difference splitting of a Roe-type approximated Riemann solver, Van Leer's flux vector splitting, and a fourth order artificial dissipation scheme with a preconditioning to accelerate the flow solution. Turbulence is simulated by an algebraic model, and ultimately the kappa-epsilon model. Some other capabilities of the code are 2-D two-phase Lagrangian particle tracking and cell blockages. Extensive development and testing has been conducted on the 3-D version of the code with flow, combustion, and turbulence interactions. The emphasis here is on the specific applications of SHARP in Solid Rocket Motor design. Information is given in viewgraph form.
Cognition-Emotion Interaction as a Predictor of Adolescent Depressive Symptoms
ERIC Educational Resources Information Center
Rudolph, Karen D.; Davis, Megan M.; Monti, Jennifer D.
2017-01-01
Given the sharp increase in rates of depression during adolescence, especially in girls, it is important to identify which youth are at greatest risk across this critical developmental transition. During the present research, we examined whether (a) individual differences in cognition-emotion interaction, as reflected in cognitive control (CC)…
Near-Peer Teaching in Paramedic Education: A Repeated Measures Design
ERIC Educational Resources Information Center
Williams, Brett; Nguyen, David
2017-01-01
The transition of the Australian paramedic discipline from vocation education and training to the higher education sector has seen a sharp rise in interest in near-peer teaching (NPT). The objective of this study was to examine satisfaction levels of NPT over one academic semester among undergraduate paramedic students. A repeated measured design…
Sense, Nonsense, and Violence: Levinas and the Internal Logic of School Shootings
ERIC Educational Resources Information Center
Keehn, Gabriel; Boyles, Deron
2015-01-01
Utilizing a broadly Levinasian framework, specifically the interplay among his ideas of possession, violence, and negation, Gabriel Keehn and Deron Boyles illustrate how the relatively recent sharp turn toward the hypercorporatized school and the concomitant transition of the student from simple (potential) customer to a type of hybrid…
Sowers, MaryFran R; Zheng, Huiyong; Greendale, Gail A; Neer, Robert M; Cauley, Jane A; Ellis, Jayne; Johnson, Sarah; Finkelstein, Joel S
2013-07-01
Our objective was to characterize changes in bone resorption in relation to the final menstrual period (FMP), reproductive hormones, body mass index (BMI), and ethnicity. Urinary type I collagen N-telopeptide (NTX), estradiol, and FSH levels were measured annually for up to 8 years spanning the menopause transition in 918 African American, Chinese, Japanese, or Caucasian women. Urinary NTX began to increase sharply about 2 years before the FMP, reaching its peak level about 1 to 1.5 years after the FMP. NTX levels declined modestly from 2 to 6 years after the FMP but remained about 20% higher than before the menopause transition. The sharp rise in FSH occurred in conjunction with a sharp decline in estradiol and shortly after FSH levels began increasing rapidly. The mean increase in urinary NTX across the menopause transition was greatest in women with BMI <25 kg/m² and smallest in women with BMI >30 kg/m². Increases in NTX were greatest in Japanese women and smallest in African Americans. These differences were attenuated, but not eliminated, when analyses were adjusted for covariates, particularly BMI. During the menopause transition, a decline in ovarian function beginning about 2 years before the FMP is followed by an increase in bone resorption and subsequently by bone loss. The magnitude of the increase in bone resorption is inversely associated with BMI. Ethnic differences in changes in bone resorption are attenuated, but not eliminated, by adjustment for BMI. Ethnic differences in BMI, and corresponding ethnic differences in bone resorption, appear to account for much of the ethnic variation in perimenopausal bone loss.
NASA Technical Reports Server (NTRS)
Hunter, W. W., Jr.; Ocheltree, S. L.; Russ, C. E., Jr.
1991-01-01
Laser transit anemometer (LTA) measurements of a 7 degree sharp cone boundary layer were conducted in the Air Force/AEDC Supersonic Tunnel A Mach 4 flow field. These measurements are compared with Pitot probe measurements and tricone theory provided by AEDC staff. Measurements were made both in laminar and turbulent boundary layers of the model. Comparison of LTA measurements with theory showed agreement to better than 1 percent for the laminar boundary layer cases. This level of agreement was obtained after small position corrections, 0.01 to 0.6 mm, were applied to the experimental data sets. Pitot probe data when compared with theory also showed small positioning errors. The Pitot data value was also limited due to probe interference with the flow near the model. The LTA turbulent boundary layer data indicated a power law dependence of 6.3 to 6.9. The LTA data was analyzed in the time (Tau) domain in which it was obtained and in the velocity domain. No significant differences were noted between Tau and velocity domain results except in one turbulent boundary layer case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, A. N.
We propose a new spin-glass model with no positional quenched disorder which is regarded as a coarse-grained model of a structural glass-former. The model is analyzed in the 1D case when the number N of states of a primary cell is large. For N → ∞, the model exhibits a sharp freezing transition of the thermodynamic origin. It is shown both analytically and numerically that the glass transition is accompanied by a significant growth of a static length scale ξ pointing to the structural (equilibrium) nature of dynamical slowdown effects in supercooled liquids.
NASA Astrophysics Data System (ADS)
Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.; Zarembo, V. I.
2014-03-01
We report on the structural and technological investigations of the vapor-crystal phase transition during synthesis of paracetamol films of the monoclinic system by vacuum evaporation and condensation in the temperature range 220-320 K. The complex nature of the transformation accompanied by the formation of a gel-like phase is revealed. The results are interpreted using a model according to which the vapor-crystal phase transition is not a simple first-order phase transition, but is a nonlinear superposition of two phase transitions: a first-order transition with a change in density and a second-order phase transition with a change in ordering. Micrographs of the surface of the films are obtained at different phases of formation.
Antiferromagnetic Resonance and Terahertz Continuum in α-RuCl_{3}.
Little, A; Wu, Liang; Lampen-Kelley, P; Banerjee, A; Patankar, S; Rees, D; Bridges, C A; Yan, J-Q; Mandrus, D; Nagler, S E; Orenstein, J
2017-12-01
We report measurements of optical absorption in the zigzag antiferromagnet α-RuCl_{3} as a function of temperature T, magnetic field B, and photon energy ℏω in the range ∼0.3-8.3 meV, using time-domain terahertz spectroscopy. Polarized measurements show that threefold rotational symmetry is broken in the honeycomb plane from 2 to 300 K. We find a sharp absorption peak at 2.56 meV upon cooling below the Néel temperature of 7 K at B=0 that we identify as the magnetic-dipole excitation of a zero-wave-vector magnon, or antiferromagnetic resonance (AFMR). With the application of B, the AFMR broadens and shifts to a lower frequency as long-range magnetic order is lost in a manner consistent with transitioning to a spin-disordered phase. From a direct, internally calibrated measurement of the AFMR spectral weight, we place an upper bound on the contribution to the dc susceptibility from a magnetic excitation continuum.
Antiferromagnetic Resonance and Terahertz Continuum in α - RuCl 3
Little, A.; Wu, Liang; Lampen-Kelley, P.; ...
2017-11-28
We report measurements of optical absorption in the zigzag antiferromagnet α-RuCl 3 as a function of temperature T , magnetic field B , and photon energy ℏ ω in the range ~ 0.3 –8.3 meV, using time-domain terahertz spectroscopy. Polarized measurements show that threefold rotational symmetry is broken in the honeycomb plane from 2 to 300 K. We find a sharp absorption peak at 2.56 meV upon cooling below the Néel temperature of 7 K at B = 0 that we identify as the magnetic-dipole excitation of a zero-wave-vector magnon, or antiferromagnetic resonance (AFMR). With the application of B ,more » the AFMR broadens and shifts to a lower frequency as long-range magnetic order is lost in a manner consistent with transitioning to a spin-disordered phase. From a direct, internally calibrated measurement of the AFMR spectral weight, we place an upper bound on the contribution to the dc susceptibility from a magnetic excitation continuum.« less
TL and PL studies on cubic fluoroperovskite single crystal (KMgF{sub 3}: Eu{sup 2+}, Ce{sup 3+})
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, D. Joseph, E-mail: josephd@ssn.edu.in; Ramasamy, P.; Madhusoodanan, U.
2014-04-24
The perovskite-like KMgF{sub 3} polycrystalline compounds were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of (0.2 mol% of EuF{sub 3} and CeF{sub 3}) Co-doped KMgF{sub 3} have been grown from melt by using a vertical Bridgman-Stockbarger method. Thermoluminescence (TL) characteristics of KMgF{sub 3} samples doped with Eu{sub 2+} and Ce{sub 3+} have been studied after β-ray irradiation. At ambient conditions the photoluminescence spectra consisted of sharp line peaked of Eu{sub 2+} at 360 nm attributed to the f → f transition ({sup 6}P{sub 7/2}→{sup 8}S{submore » 7/2}) could only be observed due to the energy transfer from Ce{sub 3+} to Eu{sub 2+}.« less
Gugliotti, M; Chaimovich, H; Politi, M J
2000-02-15
Fusion of vesicles with the air-water interface and consequent monolayer formation has been studied as a function of temperature. Unilamellar vesicles of DMPC, DPPC, and DODAX (X=Cl(-), Br(-)) were injected into a subphase containing NaCl, and the surface pressure (tension) was recorded on a Langmuir Balance (Tensiometer) using the Wilhelmy plate (Ring) method. For the zwitterionic vesicles, plots of the initial surface pressure increase rate (surface tension decrease rate) as a function of temperature show a peak at the phase transition temperature (T(m)) of the vesicles, whereas for ionic ones they show a sharp rise. At high concentrations of NaCl, ionic DODA(Cl) vesicles seem to behave like zwitterionic ones, and the rate of fusion is higher at the T(m). The influence of size was studied comparing large DODA(Cl) vesicles with small sonicated ones, and no significant changes were found regarding the rate of fusion with the air-water interface.
Ochoa, D. A.; Levit, R.; Fancher, C. M.; ...
2017-04-05
We report that ordinary ferroelectrics exhibit a second order phase transition that is characterized by a sharp peak in the dielectric permittivity at a frequency-independent temperature. Furthermore, these materials show a low temperature dielectric relaxation that appears to be a common behavior of perovskite systems. Tetragonal lead zirconate titanate is used here as a model system in order to explore the origin of such an anomaly, since there is no consensus about the physical phenomenon involved in it. Crystallographic and domain structure studies are performed from temperature dependent synchrotron x-ray diffraction measurement. Results indicate that the dielectric relaxation cannot bemore » associated with crystallographic or domain configuration changes. The relaxation process is then parameterized by using the Vogel–Fulcher–Tammann phenomenological equation. Finally, results allow us to hypothesize that the observed phenomenon is due to changes in the dynamic behavior of the ferroelectric domains related to the fluctuation of the local polarization.« less
Microscopic theory of the Coulomb based exchange coupling in magnetic tunnel junctions.
Udalov, O G; Beloborodov, I S
2017-05-04
We study interlayer exchange coupling based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction. This mechanism complements the known interaction between magnetic layers based on virtual electron hopping (or spin currents). We find that these two mechanisms have different behavior on system parameters. The Coulomb based coupling may exceed the hopping based exchange. We show that the Coulomb based exchange interaction, in contrast to the hopping based coupling, depends strongly on the dielectric constant of the insulating layer. The dependence of the interlayer exchange interaction on the dielectric properties of the insulating layer in magnetic tunnel junction is similar to magneto-electric effect where electric and magnetic degrees of freedom are coupled. We calculate the interlayer coupling as a function of temperature and electric field for magnetic tunnel junction with ferroelectric layer and show that the exchange interaction between magnetic leads has a sharp decrease in the vicinity of the ferroelectric phase transition and varies strongly with external electric field.
Impedance Spectroscopy Study of the Ferroelectric Pb0.8K0.1Dy0.1Nb2O6 Ceramics
NASA Astrophysics Data System (ADS)
Rao, K. Sambasiva; Latha, T. Swarna; Krishna, P. Murali; Prasad, D. Madhava
Polycrystalline Dy-modified Pb1-xK2xNb2O6 (PKN) ferroelectric ceramic with a general formula Pb1-xK2x-3yMyNb2O6 for x=0.20, y=0.10 and M=Dy, have been prepared by the solid-state reaction route. The X-ray diffraction (XRD) studies of the material at room temperature revealed orthorhombic structure with lattice parameters a=17.701 Å, b=17.958 Å and c=3.883 Å. The dielectric anomaly with a sharp peak is observed at 430°C. The impedance plots are used as a tool to analyze the sample behavior as a function of frequency. The grain and grain boundary contributions are estimated. The modulus mechanism indicates the non-Debye type relaxation. The activation energy value near the phase transition temperature has been found to be different in the above TC from AC conductivity measurements.
Core-shell photoabsorption and photoelectron spectra of gas-phase pentacene: experiment and theory.
Alagia, Michele; Baldacchini, Chiara; Betti, Maria Grazia; Bussolotti, Fabio; Carravetta, Vincenzo; Ekström, Ulf; Mariani, Carlo; Stranges, Stefano
2005-03-22
The C K-edge photoabsorption and 1s core-level photoemission of pentacene (C22H14) free molecules are experimentally measured, and calculated by self-consistent-field and static-exchange approximation ab initio methods. Six nonequivalent C atoms present in the molecule contribute to the C 1s photoemission spectrum. The complex near-edge structures of the carbon K-edge absorption spectrum present two main groups of discrete transitions between 283 and 288 eV photon energy, due to absorption to pi* virtual orbitals, and broader structures at higher energy, involving sigma* virtual orbitals. The sharp absorption structures to the pi* empty orbitals lay well below the thresholds for the C 1s ionizations, caused by strong excitonic and localization effects. We can definitely explain the C K-edge absorption spectrum as due to both final (virtual) and initial (core) orbital effects, mainly involving excitations to the two lowest-unoccupied molecular orbitals of pi* symmetry, from the six chemically shifted C 1s core orbitals.
Core-shell photoabsorption and photoelectron spectra of gas-phase pentacene: Experiment and theory
NASA Astrophysics Data System (ADS)
Alagia, Michele; Baldacchini, Chiara; Betti, Maria Grazia; Bussolotti, Fabio; Carravetta, Vincenzo; Ekström, Ulf; Mariani, Carlo; Stranges, Stefano
2005-03-01
The C K-edge photoabsorption and 1s core-level photoemission of pentacene (C22H14) free molecules are experimentally measured, and calculated by self-consistent-field and static-exchange approximation ab initio methods. Six nonequivalent C atoms present in the molecule contribute to the C 1s photoemission spectrum. The complex near-edge structures of the carbon K-edge absorption spectrum present two main groups of discrete transitions between 283 and 288eV photon energy, due to absorption to π* virtual orbitals, and broader structures at higher energy, involving σ* virtual orbitals. The sharp absorption structures to the π* empty orbitals lay well below the thresholds for the C 1s ionizations, caused by strong excitonic and localization effects. We can definitely explain the C K-edge absorption spectrum as due to both final (virtual) and initial (core) orbital effects, mainly involving excitations to the two lowest-unoccupied molecular orbitals of π* symmetry, from the six chemically shifted C 1s core orbitals.
Pattern Driven Stress Localization
NASA Astrophysics Data System (ADS)
Croll, Andrew; Crosby, Alfred
2010-03-01
The self-assembly of patterns from isotropic initial states is a major driver of modern soft-matter research. This avenue of study is directed by the desire to understand the complex physics of the varied structures found in Nature, and by technological interest in functional materials that may be derived through biomimicry. In this work we show how a simple striped phase can respond with significant complexity to an appropriately chosen perturbation. In particular, we show how a buckled elastic plate transitions into a state of stress localization using a simple, self-assembled variation in surface topography. The collection of topographic boundaries act in concert to change the state from isotropic sinusoidal wrinkles, to sharp folds or creases separated by relatively flat regions. By varying the size of the imposed topographic pattern or the wavelength of the wrinkles, we construct a state diagram of the system. The localized state has implications for both biological systems, and for the control of non-linear pattern formation.
Thompson, J D; McClarty, P A; Prabhakaran, D; Cabrera, I; Guidi, T; Coldea, R
2017-08-04
The frustrated pyrochlore magnet Yb_{2}Ti_{2}O_{7} has the remarkable property that it orders magnetically but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe, in addition to dispersive magnons, a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low- and high-field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set of dispersion relations combined with magnetization measurements, we reevaluate the spin Hamiltonian, finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.
Phase transitions in a multistate majority-vote model on complex networks
NASA Astrophysics Data System (ADS)
Chen, Hanshuang; Li, Guofeng
2018-06-01
We generalize the original majority-vote (MV) model from two states to arbitrary p states and study the order-disorder phase transitions in such a p -state MV model on complex networks. By extensive Monte Carlo simulations and a mean-field theory, we show that for p ≥3 the order of phase transition is essentially different from a continuous second-order phase transition in the original two-state MV model. Instead, for p ≥3 the model displays a discontinuous first-order phase transition, which is manifested by the appearance of the hysteresis phenomenon near the phase transition. Within the hysteresis loop, the ordered phase and disordered phase are coexisting, and rare flips between the two phases can be observed due to the finite-size fluctuation. Moreover, we investigate the type of phase transition under a slightly modified dynamics [Melo et al., J. Stat. Mech. (2010) P11032, 10.1088/1742-5468/2010/11/P11032]. We find that the order of phase transition in the three-state MV model depends on the degree heterogeneity of networks. For p ≥4 , both dynamics produce the first-order phase transitions.
Tsui, Lokman; Huang, Yen-Ta; Jiang, Hong-Chen; ...
2017-03-27
The study of continuous phase transitions triggered by spontaneous symmetry breaking has brought revolutionary ideas to physics. Recently, through the discovery of symmetry protected topological phases, it is realized that continuous quantum phase transition can also occur between states with the same symmetry but different topology. Here in this paper we study a specific class of such phase transitions in 1+1 dimensions – the phase transition between bosonic topological phases protected by Z n × Z n. We find in all cases the critical point possesses two gap opening relevant operators: one leads to a Landau-forbidden symmetry breaking phase transitionmore » and the other to the topological phase transition. We also obtained a constraint on the central charge for general phase transitions between symmetry protected bosonic topological phases in 1+1D.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, Lokman; Huang, Yen-Ta; Jiang, Hong-Chen
The study of continuous phase transitions triggered by spontaneous symmetry breaking has brought revolutionary ideas to physics. Recently, through the discovery of symmetry protected topological phases, it is realized that continuous quantum phase transition can also occur between states with the same symmetry but different topology. Here in this paper we study a specific class of such phase transitions in 1+1 dimensions – the phase transition between bosonic topological phases protected by Z n × Z n. We find in all cases the critical point possesses two gap opening relevant operators: one leads to a Landau-forbidden symmetry breaking phase transitionmore » and the other to the topological phase transition. We also obtained a constraint on the central charge for general phase transitions between symmetry protected bosonic topological phases in 1+1D.« less
Plio-Pleistocene North-South and East-West Extension at the Southern Margin of the Tibetan Plateau
NASA Astrophysics Data System (ADS)
McDermott, Jeni Amber
The tectonic significance of the physiographic transition from the low-relief Tibetan plateau to the high peaks, rugged topography and deep gorges of the Himalaya is the source of much controversy. Some workers have suggested the transition may be structurally controlled (e.g. Hodges et al., 2001), and indeed, the sharp change in geomorphic character across the transition strongly suggests differential uplift between the Himalayan realm and the southernmost Tibetan Plateau. Most Himalayan researchers credit the South Tibetan fault system (STFS), a family of predominantly east-west trending, low-angle normal faults with a known trace of over 2,000 km along the Himalayan crest (e.g. Burchfiel et al., 1992), with defining the southern margin of the Tibetan Plateau in the Early Miocene. Inasmuch as most mapped strands of the STFS have not been active since the Middle Miocene (e.g., Searle & Godin, 2003), modern-day control of the physiographic transition by this fault system seems unlikely. However, several workers have documented Quaternary slip on east-west striking, N-directed extensional faults, of a similar structural nature but typically at a different tectonostratigraphic level than the principal STFS strand, in several locations across the range (Nakata, 1989; Wu et al., 1998; Hurtado et al., 2001). In order to explore the nature of the physiographic transition and determine its relationship to potential Quaternary faulting, I examined three field sites: the Kali Gandaki valley in central Nepal (˜28°39'54"N; 83°35'06"E), the Nyalam region of south-central Tibet (28°03'23.3"N, 86°03'54.08"E), and the Ama Drime Range in southernmost Tibet (87º15'-87º50'E; 27º45'-28º30'N). Research in each of these areas yielded evidence of young faulting on structures with normal-sense displacement in various forms: the structural truncation of lithostratigraphic units, distinctive fault scarps, or abrupt changes in bedrock cooling age patterns. These structures are accompanied by geomorphic changes implying structural control, particularly sharp knickpoints in rivers that drain from the Tibetan Plateau, across the range crest, and down through the southern flank of the Himalaya. Collectively, my structural, geomorphic, and thermochronometric studies confirm the existence of extensional structures near the physiographic transition that have been active more recently than 1.5 Ma in central Nepal, and over the last 3.5 Ma in south-central Tibet. The structural history of the Ama Drime Range is complex and new thermochronologic data suggest multiple phases of E-W extension from the Middle Miocene to the Holocene. Mapping in the accessible portions of the range did not yield evidence for young N-S extension, although my observations do not preclude such deformation on structures south of the study area. In contrast, the two other study areas yielded direct evidence that Quaternary faulting may be controlling the position and nature of the physiographic transition across the central Tibetan Plateau-Himalaya orogenic system.
A policy model of cardiovascular disease in moderate-to-advanced chronic kidney disease.
Schlackow, Iryna; Kent, Seamus; Herrington, William; Emberson, Jonathan; Haynes, Richard; Reith, Christina; Wanner, Christoph; Fellström, Bengt; Gray, Alastair; Landray, Martin J; Baigent, Colin; Mihaylova, Borislava
2017-12-01
To present a long-term policy model of cardiovascular disease (CVD) in moderate-to-advanced chronic kidney disease (CKD). A Markov model with transitions between CKD stages (3B, 4, 5, on dialysis, with kidney transplant) and cardiovascular events (major atherosclerotic events, haemorrhagic stroke, vascular death) was developed with individualised CKD and CVD risks estimated using the 5 years' follow-up data of the 9270 patients with moderate-to-severe CKD in the Study of Heart and Renal Protection (SHARP) and multivariate parametric survival analysis. The model was assessed in three further CKD cohorts and compared with currently used risk scores. Higher age, previous cardiovascular events and advanced CKD were the main contributors to increased individual disease risks. CKD and CVD risks predicted by the state-transition model corresponded well to risks observed in SHARP and external cohorts. The model's predictions of vascular risk and progression to end-stage renal disease were better than, or comparable to, those produced by other risk scores. As an illustration, at age 60-69 years, projected survival for SHARP participants in CKD stage 3B was 13.5 years (10.6 quality-adjusted life years (QALYs)) in men and 14.8 years (10.7 QALYs) in women. Corresponding projections for participants on dialysis were 7.5 (5.6 QALYs) and 7.8 years (5.4 QALYs). A non-fatal major atherosclerotic event reduced life expectancy by about 2 years in stage 3B and by 1 year in dialysis. The SHARP CKD-CVD model is a novel resource for evaluating health outcomes and cost-effectiveness of interventions in CKD. NCT00125593 and ISRCTN54137607; Post-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Liu, Shiu-Jen; Su, Yu-Tai; Hsieh, Juang-Hsin
2014-03-01
We report the fabrication of textured VO2-x films on c-cut sapphire substrates by postdeposition annealing of V2O3 films prepared by RF magnetron sputtering using V2O3 as the target. Although the prepared VO2-x films are expected to be oxygen-deficient, overoxidation on the film surface was revealed by X-ray photoelectron spectroscopy. The metal-insulator transition (MIT) characteristics of the VO2-x films were investigated. MIT parameters including the transition temperature, transition sharpness, and hysteresis width of the VO2-x films were manipulated by varying the oxygen pressure during postdeposition annealing. The suppression of optical transmittance in the near-infrared region was observed by increasing the temperature through the MIT.
Emission and reflection spectra from AlxGa1-xN/GaN single heterostructures
NASA Astrophysics Data System (ADS)
Reynolds, D. C.; Hoelscher, J.; Litton, C. W.; Collins, T. C.; Fitch, R.; Via, G. D.; Gillespie, J.; Crespo, A.; Jenkins, T. J.; Saxler, A.
2003-10-01
Emission and reflection spectra from AlGaN/GaN single heterostructures grown on SiC substrates were investigated. Two-dimensional electron gas (2DEG) transitions were observed in both emission and reflection. The transitions are sharp, associated with the excited state of the 2DEG, reflect the conservation of the K-selection rule, and are excitonlike. The transitions are also associated with both the A- and B-valence bands. To verify the origin of the reflection and emission spectra, the top AlGaN layer was removed by reactive ion etching. After etching, only the excitonic reflection and emission spectra associated with GaN were observed.
Study of a structural phase transition by two dimensional Fourier transform NMR method
NASA Astrophysics Data System (ADS)
Trokiner, A.; Man, P. P.; Théveneau, H.; Papon, P.
1985-09-01
The fluoroperovskite RbCaF 3 undergoes a structural phase transition at 195.5 K, from a cubic phase where the 87Rb nuclei have no quadrupolar interaction ( ωQ= 0) to a tetragonal phase where ω Q ≠ O. The transition is weakly first-order. A two-dimensional FT NMR experiment has been performed on 87Rb ( I = {3}/{2}) in a single crystal in both phases and in the vicinity of the phase transition. Our results show the coexistence of the two phases at the phase transition.
NASA Astrophysics Data System (ADS)
Bannenberg, L. J.; Kakurai, K.; Falus, P.; Lelièvre-Berna, E.; Dalgliesh, R.; Dewhurst, C. D.; Qian, F.; Onose, Y.; Endoh, Y.; Tokura, Y.; Pappas, C.
2017-04-01
We present a comprehensive small angle neutron scattering and neutron spin echo spectroscopy study of the structural and dynamical aspects of the helimagnetic transition in Fe1 -xCoxSi with x =0.30 . In contrast to the sharp transition observed in the archetype chiral magnet MnSi, the transition in Fe1 -xCoxSi is gradual, and long-range helimagnetic ordering coexists with short-range correlations over a wide temperature range. The dynamics are more complex than in MnSi and involve long relaxation times with a stretched exponential relaxation which persists even under magnetic field. These results in conjunction with an analysis of the hierarchy of the relevant length scales show that the helimagnetic transition in Fe1 -xCoxSi differs substantially from the transition in MnSi and question the validity of a universal approach to the helimagnetic transition in chiral magnets.
Direct numerical simulation of incompressible multiphase flow with phase change
NASA Astrophysics Data System (ADS)
Lee, Moon Soo; Riaz, Amir; Aute, Vikrant
2017-09-01
Simulation of multiphase flow with phase change is challenging because of the potential for unphysical pressure oscillations, spurious velocity fields and mass flux errors across the interface. The resulting numerical errors may become critical when large density contrasts are present. To address these issues, we present a new approach for multiphase flow with phase change that features, (i) a smooth distribution of sharp velocity jumps and mass flux within a narrow region surrounding the interface, (ii) improved mass flux projection from the implicit interface onto the uniform Cartesian grid and (iii) post-advection velocity correction step to ensure accurate velocity divergence in interfacial cells. These new features are implemented in combination with a sharp treatment of the jumps in pressure and temperature gradient. A series of 1-D, 2-D, axisymmetric and 3-D problems are solved to verify the improvements afforded by the new approach. Axisymmetric film boiling results are also presented, which show good qualitative agreement with heat transfer correlations as well as experimental observations of bubble shapes.
Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael
2014-05-01
Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F → J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F → J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F → S transition) can be induced at the bottleneck. This explains why rather than the F → J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F → S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F → S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.
Deciphering the role of CA1 inhibitory circuits in sharp wave-ripple complexes.
Cutsuridis, Vassilis; Taxidis, Jiannis
2013-01-01
Sharp wave-ripples (SWRs) are population oscillatory patterns in hippocampal LFPs during deep sleep and immobility, involved in the replay of memories acquired during wakefulness. SWRs have been extensively studied, but their exact generation mechanism is still unknown. A computational model has suggested that fast perisomatic inhibition may generate the high frequency ripples (~200 Hz). Another model showed how replay of memories can be controlled by various classes of inhibitory interneurons targeting specific parts of pyramidal cells (PC) and firing at particular SWR phases. Optogenetic studies revealed new roles for interneuronal classes and rich dynamic interplays between them, shedding new light in their potential role in SWRs. Here, we integrate these findings in a conceptual model of how dendritic and somatic inhibition may collectively contribute to the SWR generation. We suggest that sharp wave excitation and basket cell (BC) recurrent inhibition synchronises BC spiking in ripple frequencies. This rhythm is imposed on bistratified cells which prevent pyramidal bursting. Axo-axonic and stratum lacunosum/moleculare interneurons are silenced by inhibitory inputs originating in the medial septum. PCs receiving rippling inhibition in both dendritic and perisomatic areas and excitation in their apical dendrites, exhibit sparse ripple phase-locked spiking.
Investigation of phase transitions in LiK 1- x(NH 4) xSO 4 mixed crystal
NASA Astrophysics Data System (ADS)
Freire, P. T. C.; Paraguassu, W.; Silva, A. P.; Pilla, O.; Teixeira, A. M. R.; Sasaki, J. M.; Mendes Filho, J.; Guedes, I.; Melo, F. E. A.
1999-02-01
We present Raman scattering results on LiK 1- x(NH 4) xSO 4 mixed crystal for temperatures between 100 and 300 K. We observed that in this temperature range the crystal undergoes two different phase transitions, which we call Bansal and Tomaszewski phase transitions. The introduction of ammonium ions in the potassium sites increases the C 66→C 3v4 (Bansal) phase transition temperature and decreases the Tomaszewski phase transition temperature. Finally, the most impressive effect of the presence of ammonium impurity in the LiKSO 4 structure is the decrease in the temperature hysteresis of Bansal phase transition and the almost complete destruction of hysteresis in the Tomaszewski phase transition, leading to a high temperature range of stability of the trigonal phase.
New Constraints on the Deposition and Alteration History of Mt. Sharp in Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Rice, M. S.; Horgan, B. H. N.; Fraeman, A.; Ackiss, S. E.
2015-12-01
The Mars Science Laboratory (MSL) rover is currently investigating the lower stratigraphy of northwestern Mt. Sharp, the 5 km thick stack of layered rock that makes up the central mound of Gale Crater. Previous near-infrared spectral investigations from orbit using CRISM have shown that this portion of the mound exhibits a diverse mineralogy that may indicate changing aqueous environments on early Mars. The relationship of these mineralogic units to stratigraphic units across the full extent of Mt. Sharp is not well understood, although such relationships are key to interpreting the depositional and digenetic history. Here we present new mineral maps derived from CRISM data, as well as detailed stratigraphic columns from around the mound, and we use these new results to constrain hypotheses for the modes of aqueous alteration. Our new CRISM mineral maps are projected and co-registered to HiRISE imagery and DEMs, and include Fe/Mg-smectites, poly- and mono-hydrated sulfates, iron oxides, high-Ca pyroxene, and a ferrous phase with a strong red spectral slope between 1.1-1.8 μm, which is consistent with ferrous alteration phases like ferrous clays. This latter unit consistently overlies Fe/Mg-smectites in NW and SW Mt. Sharp, and is located in topographic benches that are either immediately stratigaphically above hematite-bearing ridges. The presence of ferrous alteration phases supports previous interpretations that hematite formed when an Fe2+-bearing fluid encountered an oxidizing environment. In this scenario, the reducing fluids were created by long-term oxygen limited alteration of Fe-bearing minerals in the near-surface. Downward movement of these fluids may have been limited by the underlying clay layer, forcing lateral flow. On emergence at the surface, the iron was oxidized by photochemical or other redox reactions. On Earth, similar pedogenic processes form hematite ironpans on slopes surrounding poorly-drained hilltops, as well as ancient banded iron formations in shallow coastal waters. The reducing environment inferred from the ferrous phases could be a site of high organic preservation potential, and the redox gradient inferred from the ferric/ferrous mineral relationship could have served as an energy source for chemolithotrophic microbes.
Structural phase transition in monolayer MoTe2 driven by electrostatic doping
NASA Astrophysics Data System (ADS)
Wang, Ying; Xiao, Jun; Zhu, Hanyu; Li, Yao; Alsaid, Yousif; Fong, King Yan; Zhou, Yao; Wang, Siqi; Shi, Wu; Wang, Yuan; Zettl, Alex; Reed, Evan J.; Zhang, Xiang
2017-10-01
Monolayers of transition-metal dichalcogenides (TMDs) exhibit numerous crystal phases with distinct structures, symmetries and physical properties. Exploring the physics of transitions between these different structural phases in two dimensions may provide a means of switching material properties, with implications for potential applications. Structural phase transitions in TMDs have so far been induced by thermal or chemical means; purely electrostatic control over crystal phases through electrostatic doping was recently proposed as a theoretical possibility, but has not yet been realized. Here we report the experimental demonstration of an electrostatic-doping-driven phase transition between the hexagonal and monoclinic phases of monolayer molybdenum ditelluride (MoTe2). We find that the phase transition shows a hysteretic loop in Raman spectra, and can be reversed by increasing or decreasing the gate voltage. We also combine second-harmonic generation spectroscopy with polarization-resolved Raman spectroscopy to show that the induced monoclinic phase preserves the crystal orientation of the original hexagonal phase. Moreover, this structural phase transition occurs simultaneously across the whole sample. This electrostatic-doping control of structural phase transition opens up new possibilities for developing phase-change devices based on atomically thin membranes.
Numerical investigation of rarefaction effects in the vicinity of a sharp leading edge
NASA Astrophysics Data System (ADS)
Pan, Shaowu; Gao, Zhenxun; Lee, Chunhian
2014-12-01
This paper presents a study of rarefaction effect on hypersonic flow over a sharp leading edge. Both continuum approach and kinetic method: a widely spread commercial Computational Fluid Dynamics-Navior-Stokes-Fourier (CFD-NSF) software - Fluent together with a direct simulation Monte Carlo (DSMC) code developed by the authors are employed for simulation of transition regime with Knudsen number ranging from 0.005 to 0.2. It is found that Fluent can predict the wall fluxes in the case of hypersonic argon flow over the sharp leading edge for the lowest Kn case (Kn = 0.005) in current paper while for other cases it also has a good agreement with DSMC except at the location near the sharp leading edge. Among all of the wall fluxes, it is found that coefficient of pressure is the most sensitive to rarefaction while heat transfer is the least one. A parameter based on translational nonequilibrium and a cut-off value of 0.34 is proposed for continuum breakdown in this paper. The structure of entropy and velocity profile in boundary layer is analyzed. Also, it is found that the ratio of heat transfer coefficient to skin friction coefficient remains uniform along the surface for the four cases in this paper.
Experimental Evidence for a Structural-Dynamical Transition in Trajectory Space.
Pinchaipat, Rattachai; Campo, Matteo; Turci, Francesco; Hallett, James E; Speck, Thomas; Royall, C Patrick
2017-07-14
Among the key insights into the glass transition has been the identification of a nonequilibrium phase transition in trajectory space which reveals phase coexistence between the normal supercooled liquid (active phase) and a glassy state (inactive phase). Here, we present evidence that such a transition occurs in experiments. In colloidal hard spheres, we find a non-Gaussian distribution of trajectories leaning towards those rich in locally favored structures (LFSs), associated with the emergence of slow dynamics. This we interpret as evidence for a nonequilibrium transition to an inactive LFS-rich phase. Reweighting trajectories reveals a first-order phase transition in trajectory space between a normal liquid and a LFS-rich phase. We also find evidence for a purely dynamical transition in trajectory space.